
SEKE2020

Proceedings of the 32nd
International Conference on

Software Engineering and

Knowledge Engineering

July 9 to 19, 2020
KSIR Virtual Conference Center
Pittsburgh, USA

Copyright ⓒ 2020 by KSI Research Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the publisher.

DOI: 10.18293/SEKE2020

Proceedings preparation, editing and printing are sponsored by KSI Research Inc.

 i

PROCEEDINGS

SEKE 2020

The 32nd International Conference on
Software Engineering &
Knowledge Engineering

Sponsored by
KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

Technical Program
July 9 – 19, 2020

KSIR Virtual Conference Center, Pittsburgh, USA

Organized by
KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

 ii

Copyright ⓒ 2020 by KSI Research Inc. and Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of the publisher.

ISBN: 1-891706-50-0
ISSN: 2325-9000 (print)

2325-9086 (online)
DOI reference number: 10.18293/SEKE2020

Publisher Information:
KSI Research Inc. and Knowledge Systems Institute Graduate School
156 Park Square
Pittsburgh, PA 15238 USA
Tel: +1-412-606-5022
Fax: +1-847-679-3166
Email: seke@ksiresearch.org
Web: http://ksiresearchorg.ipage.com/seke/seke19.html

Proceedings preparation, editing and printing are sponsored by KSI Research Inc. and Knowledge Systems Institute
Graduate School, USA.

Printed by KSI Research Inc. and Knowledge Systems Institute Graduate School

mailto:seke@ksiresearch.org

 iii

FOREWORD

Welcome to the 32nd International Conference on Software Engineering and Knowledge Engineering (SEKE), in KSIR Virtual
Conference Center, Pittsburgh, PA, USA. In the last 30 years, SEKE has established itself as a major international forum to foster,
among academia, industry, and government agencies, discussion and exchange of ideas, research results and experience in software
engineering and knowledge engineering. The SEKE community has grown to become a very important and influential source of
ideas and innovations on the interplays between software engineering and knowledge engineering, and its impact on the knowledge
economy has been felt worldwide. On behalf of the Program Committee, it is my great pleasure to invite you to participate in the
technical program of SEKE.

This year, we received 160 submissions from 39 countries. Through a rigorous review process where a majority of the submitted
papers received three reviews, and the rest with two reviews, we were able to select 66 full papers for the general conference (41
percent), 44 short papers (27.5 percent) and 44 rejects (27.5 percent). There are also 6 withdrawals. Out of that 100 papers are
scheduled for presentation in eleven sessions during the conference.

The high quality of the SEKE 2020 technical program would not have been possible without the tireless effort and hard work of
many individuals. First of all, we would like to express our sincere appreciation to all the authors whose technical contributions
have made the final technical program possible. We are very grateful to all the Program Committee members whose expertise and
dedication made our responsibility that much easier. Our gratitude also goes to the keynote speakers who graciously agreed to
share their insight on important research issues, to the conference organizing committee members for their superb work, and to the
external reviewers for their contribution.

Personally, we owe a debt of gratitude to a number of people whose help and support with the technical program and the
conference organization are unfailing and indispensable. We are deeply indebted to Dr. S. K. Chang, Chair of the Steering
Committee, for his constant guidance and support that are essential to pull off SEKE 2020. Our heartfelt appreciation goes to Dr.
Angelo Perkusich, Federal University of Campina Grande, Brazil, the Conference Chair, for his help and experience. We also
thank Dr. Ji Wu for his excellent keynote.

We would like also to express our great appreciation to all of the conference organization committee members, including the
Publicity Chair, Lan Lin, Ball State University, USA and Rong Peng, Wuhan University, China. Moreover, we would like to
appreciate and recognize our Conference Liaisons in different regions for their important contributions. They are: Asia Liaison –
Hironori Washizaki, Waseda University, Japan; Australasia Liaison – Jing Sun, The University of Auckland, New Zealand; and
India Liaison - Swapan Bhattacharya, National Institute of Technology Karnataka, Surathakl.

Last but certainly not the least, we must acknowledge the important contributions that the KSI staff members have made. Their
timely and dependable support and assistance throughout the entire process have been truly remarkable. Finally, we wish you have
productive discussion, great networking and effective virtual presentation to participate in SEKE 2020.

Raul Garcia Castro, Universidad Politecnica de Madrid, Spain, Program Committee Chair

 iv

SEKE 2020

The 32nd International Conference on
Software Engineering &
Knowledge Engineering

July 9 – 19, 2020

KSIR Virtual Conference Center, Pittsburgh, USA

Conference Organization

CONFERENCE CHAIR
Angelo Perkusich, Federal University of Campina Grande, Brazil

PROGRAM COMMITTEE CHAIR

Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

PROGRAM COMMITTEE CO-CHAIRS
Huiqun Yu, East China University of Science and Technology, China

Kazuhiro Ogata, JAIST, Japan

STEERING COMMITTEE CHAIR
Shi-Kuo Chang, University of Pittsburgh, USA

STEERING COMMITTEE
Vic Basili, University of Maryland, USA

Bruce Buchanan, University of Pittsburgh, USA
C. V. Ramamoorthy, University of California, Berkeley, USA

ADVISORY COMMITTEE
Jerry Gao, San Jose State University, USA

Swapna Gokhale, University of Connecticut, USA
Xudong He, Florida International University, USA

Natalia Juristo, Universidad Politecnica de Madrid, Spain
Taghi Khoshgoftaar, Florida Atlantic University, USA

Guenther Ruhe, University of Calgary, Canada
Masoud Sadjadi, Florida International University, USA

Du Zhang, California State University, USA

 v

PROGRAM COMMITTEE
Silvia Teresita Acuna, Universidad Autonoma de Madrid, Spain

Shadi Alawneh, Oakland University, USA
Vaibhav Anu, North Dakuta State University, USA

Dionysios Athanasopoulos, Queen's University of Belfast, United Kingdom
Doo-Hwan Bae, Korea Advanced Institute of Science and Technology, Korea

Kyungmin Bae, Pohang University of Science and Technology, Korea
Vita Barletta, University of Bari, Italy

Fevzi Belli, University of Paderborn, Germany
Ateet Bhalla, Consultant, India

Swapan Bhattacharya, NITK, Surathakl, India
AndrÃ© Pinz Borges, Federal University of Technology - Parana (UTFPR), Brazil (EEAS)

Ivo Bukovsky, Czech Technical University in Prague, Czech Republic
Guoray Cai, Penn State University, USA

Rafael Cardoso, University of Liverpool, United Kingdom (EEAS)
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain
Keith Chan, Hong Kong Polytechnic University, Hong Kong

Kuang-nan Chang, Eastern Kentucky University, USA
Meiru Che, University of Texas at Austin, USA

Wen-Hui Chen, National Taipei University of Technology, Taiwan
Xiangping Chen, Sun Yat-sen University, China (IPA)
Fabio M. Costa, Universidade Federal de Goias, Brazil

Maria Francesca Costabile, University of Bari, Italy
Andrea De Lucia, University of Salerno, Italy (IPA)

Lin Deng, Towson University, USA
Derek Doran, Wright State University, USA

Weichang Du, University of New Brunswick, Canada
Ashish Kumar Dwivedi, National Instititute of Technology, India (IPA)

Abdelrahman Osman Elfaki, University of Tabuk, Saudi Arabia
Iaakov Exman, Jerusalem College of Engineering, Israel

Fumiyo Fukumoto, University of Yamanashi, Japan (IPA)
Honghao Gao, ShangHai University, China
Olivier Le Goaer, University of Pau, France

Swapna Gokhale, Univ. of Connecticut, USA
Wolfgang Golubski, Zwickau University of Applied Sciences, Germany

Desmond Greer, Queen's University Belfast, United Kingdom
Hao Han, National Institute of Informatics, Japan

Xudong He, Florida International University, USA
Hamdy Ibrahim, University of Calgary, Canada

Bassey Isong, North-West University, South Africa
Clinton Jeffery, University of Idaho, USA

Jason Jung, Chung-Ang University, South Korea
Pankaj Kamthan, Concordia University, Canada

Ananya Kanjilal, B.P. Poddar Institute of Technology and Management, India
Taghi Khoshgoftaar, Florida Atlantic University, USA

Jun Kong, North Dakota State University, USA
Vinay Kulkarni, Tata Consultancy Services, India

Meira Levy, Shenkar College of Engineering and Design, Israel
Bixin Li, Southeast University, China

Xin Li, Google Inc., USA
Yingling Li, Chengdu University of Information Technology, China, (IPA)

Jianhua Lin, Eastern Connecticut State University, USA
Lan Lin, Ball State University, USA

Xiaodong Liu, Edinburgh Napier University, United Kingdom

 vi

Luanna Lopes Lobato, Federal University of Goias, Brazil
Jiawei Lu, Zhejiang University of Technology, China (IPA)

Baojun Ma, Shanghai International Studies University, China
Beatriz Marin, Universidad Diego Portales, Chile

Riccardo Martoglia, University of Modena and Reggio Emilia, Italy
Santiago Matalonga, University of the West of Scotland, UK

Andre Menolli, Universidade Estadual do Norte do Parana (UENP), Brazil
Hiroyuki Nakagawa, Osaka University, Japan

Alex Norta, Tallinn University of Technology, Estonia
Kazuhiro Ogata, JAIST, Japan

Edson A. Oliveira Jr., State University of Maringa, Brazil
Carlos Eduardo Pantoja, Federal Center for Technological Education (CEFET-RJ), Brazil (EEAS)

George Angelos Papadopoulos, University of Cyprus, Cyprus
Rong Peng, Wuhan University, China

Oscar Mortagua Pereira, University of Aveiro, Portugal
Rick Rabiser, Johannes Kepler University, Austria

Filip Radulovic, Universidad Politecnica de Madrid, Spain
Claudia Raibulet, University of Milan, Italy

Damith C. Rajapakse, National University of Singapore, Singapore
Rajeev Raje, IUPUI, USA

Marek Reformat, University of Alberta, Canada
Diogo Regateiro, Institute de Telecomunicacoes, Portugal

Stephan Reiff-Marganiec, Leicester University, United Kingdom
Robert Reynolds, Wayne State University, USA

Ignacio Garcia Rodriguez De Guzman, University of Castilla-La Mancha, Spain
Daniel Rodriguez, Universidad de Alcala, Spain

Claudio Sant'Anna, Universidade Federal da Bahia, Brazil
Klaus-Dieter Schewe, SCCH, Austria

Abdelhak-Djamel Seriai, University of Montpellier 2 for Sciences and Technology, France
Michael Shin, Texas Tech University, USA

Vijayan Sugumaran, Oakland University, USA
Jing Sun, University of Auckland, New Zealand

Meng Sun, Peking University, China
Yanchun Sun, Peking University, China

Xiaobing Sun, Yangzhou University, China
Gerson Sunye, University of Nantes, France

Kumiko Tadano, NEC, Japan
Chuanqi Tao, Nanjing University of Science and Technology, China

Jeff Tian, Southern Methodist University, USA
Mark Trakhtenbrot, Holon Institute of Technology, Israel

Peter Troeger, TU Chemnitz, Germany
Christelle Urtado, LGI2P Ecole des Mines d'Ales, France

Sylvain Vauttier, Ecole des mines d'Ales, France
Gleifer Vaz Alves, Federal University of Technology - Parana (UTFPR), Brazil (EEAS)

Silvia Vergilio, Federal University of Parana (UFPR), Brazil
Gennaro Vessio, University of Bari, Italy

Aaron Visaggio, University of Sannio, Italy
JosÃ© Viterbo, Fluminense Federal University (UFF), Brazil (EEAS)

Jiaojiao Wang, China Communication University of Zhejiang, China (IPA)
Ye Wang, Zhejiang Gongshang University, China

Yong Wang, New Mexico Highlands University, USA
Zhongjie Wang, Harbin Institute of Technology, China

Hironori Washizaki, Waseda University, Japan
Bingyang Wei, Midwestern State University, USA

Guido Wirtz, Bamberg University, Germany
Franz Wotawa, TU Graz, Austria

Peng Wu, Institute of Software, Chinese Academy of Sciences, China

 vii

Qing Wu, Hangzhou Dianzi University, China
Frank Weifeng Xu, University of Baltimore, USA

Haiping Xu, University of Massachusetts Dartmouth, USA
Lai Xu, Bournemouth University, UK

Guowei Yang, Texas State University, USA
Yuyu Yin, Hangzhou Dianzi University, China

Dongjin Yu, Hangzhou Dianzi University, China
Huiqun Yu, East China University of Science and Technology, China

Jiang Yue, Fujian Normal University, China
Fiorella Zampetti, University of Sannio, Italy

Du Zhang, Macau University of Science and Technology, China
Pengcheng Zhang, Hohai University, China
Yong Zhang, Tsinghua University, China

Zhenyu Zhang, Institute of Software, Chinese Academy of Sciences, China
Nianjun Zhou, IBM, USA

Huibiao Zhu, East China Normal University, China
Eugenio Zimeo, University of Sannio, Italy
Eugenio Zimeo, University of Sannio, Italy

PUBLICITY CHAIR
Lan Lin, Ball State University, USA

Rong Peng, Wuhan University, China

ASIA LIAISON
Hironori Washizaki, Waseda University, Japan

AUSTRALASIA LIAISON
Jing Sun, The University of Auckland, New Zealand

EUROPE LIAISON
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

INDIA LIAISON
Swapan Bhattacharya, National Institute of Technology Karnataka, Surathakl, India

 viii

Keynote

Looking into the Evidences for Claiming System Quality

Professor Ji Wu
School of Computer Science and Engineering

Beihang University
China

Abstract

IT system is getting complicated and evolving quickly. As IT system plays at more and more scenarios to improve
human life experiences, people really care about its quality. In general, the quality of IT system is not a trivial
problem. In software engineering domain, people deploy tool chains to collect data from software development
activities, which can increase trust of the quality. In this talk, I will present the motivation of applying knowledge
engineering to construct model to better extract evidences from software artefacts to claim system quality. And I will
also discuss some of the challenges.

 About the Speaker

Ji Wu, Dr., Associate Professor from the School of Computer Science and Engineering in Beihang University, which
is well-known in China and strong at engineering complex systems, in particular in the domain of avionics and
aeronautics. My personal research interests include software modeling, verification and testing. I am interested in
industry problem driven research, and collaborate with industry partners in most of the research projects. Recently, I
focus on the methodology of testing and assessing the autonomous system such as drone swarm. I teach the course of
object-oriented design and construction for bachelor students, we propose the competitive learning model and use the
cloud deployed testing services to assure the quality of assignments. I also teach the course of software modeling for
graduate students.

SEKE2020 Table of Contents

ix

Table of Contents

Session ITR: Internet of Things and Robotics

Formalization and Verification of VANET .. 1

Ran Li, Huibiao Zhu, Lili Xiao, Jiaqi Yin, Yuan Fei and Gang Lu

The Prediction of Delay Time and Route Planning for Autonomous Vehicles (S) 7

Gen Wang Gou, Yong Xin Zhao, Jia Wei Jiang and Ling Shi

DCBlock: Efficient Module for Unpaired Image to Image Translation Using GANs 13

Jin Yong Kim, Myeong Oh Lee and Geun Sik Jo

A Detect-and-Modify Region-based Classifier to Defend Evasion Attacks ... 19

Jiawei Jiang, Yongxin Zhao, Xi Wu and Genwang Gou

Inspect Characteristics of Rice via Machine Learning Method (S) .. 25

Xin Ma, Mingliang Li, Jinxi Kong, Zhao Siming, Wei Li and Xiaohui Cui

Modeling and Verifying NDN-based IoV Using CSP ... 31

Ningning Chen, Huibiao Zhu, Jiaqi Yin, Lili Xiao and Yuan Fei

Controller Synthesis for ROS-based Multi-Robot Collaboration ... 37

Xudong Zhao, Rui Li, Wanwei Liu, Hao Shi, Shaoxian Shu and Wei Dong

Understanding Travel Patterns of Commuting Private Cars using Big data of Electronic Registration

Identification of Vehicles .. 43

Junchao Lv, Linjiang Zheng, Yuhui Ye and Chenglin Ye

TIMESIGHT: Discovering Time-driven Insights Automatically and Fairly .. 49

Yohan Bae, Suyeong Lee and Yeonghun Nam

Physical Artifacts for Agents in a Cyber-Physical System: A Case Study in Oil & Gas Scenario (EEAS) …... 55

Fabian Cesar Manoel, Carlos Pantoja, Leandro Samyn and Vinicius Jesus

Session OKG: Ontologies and Knowledge Graphs

Classifying Common Security Vulnerabilities by Software Type (S) .. 61

Onyeka Ezenwoye, Yi Liu and William Patten

Modeling Relation Path for Knowledge Graph via Dynamic Projection (S) .. 65

Hongming Zhu, Yizhi Jiang, Xiaowen Wang, Hongfei Fan, Qin Liu and Bowen Du

SEKE2020 Table of Contents

x

Modeling HiBrinto Ontology to Develop Knowledge Management Portal for Highway Bridge

Construction .. 71

Shanmuganathan Vasanthapriyan and Banujan Kuhaneswaran

An Extended Knowledge Representation Learning Approach for Context-based Traceability Link

Recovery (S) .. 77

Guoshuai Zhao, Tong Li and Zhen Yang

Identifying Security Concerns Based on a Use Case Ontology Framework ... 83

Imano Williams and Xiaohong Yuan

Towards High Quality Recommendations: A Goal-Oriented and Ontology-Based Interactive Approach

(S) .. 89

Ronaldo Goncalves, Robert Ahn, Tom Hill and Lawrence Chung

SHAMROQ: Towards semantic models of regulations .. 93

Patrick Cook, Susan Mengal and Siva Parameswaran

On the Reuse of Knowledge to Develop Intelligent Software Engineering Solutions 101

José Ferdinandy Silva Chagas, Luiz Antonio Pereira Silva, Mirko Perkusich, Ademar França Sousa

Neto, Danyllo Albuquerque, Dalton Cézane Gomes Valadares, Hyggo Almeida and Angelo Perkusich

Session SS: Software Specification

Research on Multi Source Fusion Evolution Requirements Acquisition in Mobile Applications (S) 107

Yuanbang Li, Rong Peng, Bangchao Wang and Dong Sun

Detecting and Modeling Method-level Hotspots in Architecture Design Flaws 111

Ran Mo, Shaozhi Wei and Ting Hu

Threat and Security Modeling for Secure Software Requirements and Architecture (S) 117

Michael Shin, Don Pathirage and Dongsoo Jang

Knowledge-based Interface transition diagram for SRS(Software Requirements Specification) in mobile

application (S) ... 121

Taeghyun Kang, Hyungbae Park and Venkata Inukollu

Correct Software by Design for Software-Defined Networking: A preliminary Study 127

Liang Hao, Xin Sun, Lan Lin and Zedong Peng

Dynamic Architecture-Implementation Mapping for Architecture-Based Runtime Software

Adaptation .. 135

SEKE2020 Table of Contents

xi

Cuong Cu, Rachel Culver and Yongjie Zheng

An Automated Goal Labeling Method Based on User Reviews .. 141

Shuaicai Ren, Hiroyuki Nakagawa and Tatsuhiro Tsuchiya

A Co-evolutionary Method Between Architecture and Code ... 147

Tong Wang, Bixin Li and Lingyuan Zhu

Session ESE: Empirical Software Engineering

An Empirical Study of Maven Archetype (S) ... 153

Xinlei Ma and Yan Liu

Evaluating the Usefulness and Ease of Use of an Experimentation Definition Language (S) 158

Florian Auer and Michael Felderer

Time-Aware Models for Software Effort Estimation (S) .. 164

Michael Franklin Bosu, Stephen MacDonell and Peter Whigham

An Empirical Study on Issue Knowledge Transfer from Python to R for Machine Learning Software (S) 168

Wenchin Huang, Zhenlan Ji and Yanhui Li

Quantifying the Relationship Between Health Outcomes and Unhealthy Habits (S) 174

Swapna Gokhale

The Reaction of Open Source Projects to C++ Templates and Lambdas: An Empirical Replication

Study ... 180

Donghoon Kim and Loc Ho

Analyzing the Performance of Apps Developed by using Cross-Platform and Native Technologies 186

Lucas Barros, Flávio Medeiros, Eduardo Moraes and Anderson Feitosa Júnior

On the Use of Support Mechanisms to Perform Experimental Variables Selection 192

Lilian Passos Scatalon, Rogério Eduardo Garcia and Ellen Francine Barbosa

Testing the Stationarity Assumption in Software Effort Estimation Datasets .. 198

Michael Bosu, Stephen MacDonell and Peter Whigham

Session DSML: Distributed Systems and Machine Learning

Graph Machine Learning for Anomaly Prediction in Distributed Systems .. 204

Sheyda Kiani Mehr, Wenting Sun, Xuancheng Fan, Nikita Butakov and Nicolas Ferlans

SEKE2020 Table of Contents

xii

F(X)-MAN: An Algebraic and Hierarchical Composition Model for Function-as-a-Service …................... 210

Chen Qian and Wenjing Zhu

Privacy-aware OrLa Based Access Control Model in the Cloud .. 216

Pengfei Shao and Shuyuan Jin

Formal Modelling and Verification of MCAC Router Architecture in ICN ... 222

Junya Xu, Huibiao Zhu, Lili Xiao, Jiaqi Yin, Yuan Fei and Gang Lu

Data-sparsity Service Discovery using Enriched Neural Topic Model and Attentional Bi-LSTM 228

Li Yao, Bing Li and Jian Wang

Explainable Deep Convolutional Candlestick Learner (S) .. 234

Jun-Hao Chen, Samuel Yen-Chi Chen, Yun-Cheng Tsai and Chih-Shiang Shur

Conditional Normalizing Flow-based Generative Model for Zero-Shot Recognition 238

Xinwei Zhu, Haiping Zhang, Liming Guan, Dongjin Yu and Zhongjin Li

An SNN Construction Method Based on CNN Conversion and Threshold Setting 244

Ying Shang, Yongli Li and Feng You

Multi Classification of Alzheimer’s Disease using Linear Fusion with TOP-MRI Images and Clinical

Indicators .. 250

Qiao Pan, Golddy Indra Kumara and Jiahuan Chu

Deep Hashing with Large Batch Training for Cross-modal Retrieval ... 257

Xuewang Zhang and Yin Zhou

Session SD: Software Development

Algebraic Higher-Abstraction for Software Refactoring Automation (TSE) (S) 264

Iaakov Exman and Alexey Nechaev

Reliable Compilation Optimization Selection Based on Gate Graph Neural Network 270

Wu Jiang and Xu Jianjun

Trends in Software Reverse Engineering (S) ... 276

Rehman Arshad

Do Experienced Programmers put too Much Confidence in Comments? (S) ... 281

Elia Eiroa-Lledo, Abby Bechtel, Emily Daskas, Lily Foster, Raha Pirzadeh, Katie Rodeghiero and

Erik Linstead

Formal verification of an abstract version of Anderson protocol with CafeOBJ, CiMPA and CiMPG (S) 287

SEKE2020 Table of Contents

xiii

Duong Dinh Tran and Kazuhiro Ogata

Plagiarism Detection of Multi-threaded Programs using Frequent Behavioral Pattern Mining ….......... 293

Qing Wang, Zhenzhou Tian, Cong Gao and Lingwei Chen

The Impact of Auto-Refactoring Code Smells on the Resource Utilization of Cloud Software 299

Asif Imran and Tevfik Kosar

Towards Fine-Grained Compiler Identification with Neural Modeling ... 305

Borun Xie, Zhenzhou Tian, Cong Gao and Lingwei Chen

Evaluating the Relationship of Personality and Teamwork Quality in the Context of Agile Software

Development .. 311

Alexandre Braga Gomes, Manuel Silva, Dalton Valadares, Mirko Perkusich, Danyllo Albuquerque,

Hyggo Almeida and Angelo Perkusich

Session ST: Software Testing

ISC-FS: An Improved Spectral Clustering with Feature Selection for Defect Prediction (S) 317

Xuan Zhou, Lu Lu and Yexia Qin

A Semantic Convolutional Auto-Encoder Model for Software Defect Prediction (S) 323

Zhihan Wang and Lu Lu

Revisiting Dependence Cluster Metrics based Defect Prediction ... 329

Qiguo Huang, Xiang Chen, Zhengliang Li, Chao Ni and Qing Gu

Guidelines for Quality Assurance of Machine Learning-based Artificial Intelligence 335

Koichi Hamada, Fuyuki Ishikawa, Satoshi Masuda, Tomoyuki Myojin, Yasuharu Nishi, Hideto

Ogawa, Takahiro Toku, Susumu Tokumoto, Kazunori Tsuchiya, Yasuhiro Ujita and Mineo Matsuya

Call Sequence List Distiller for Practical Stateful API Testing (S) ... 342

Koji Yamamoto, Takao Nakagawa, Shogo Tokui and Kazuki Munakata

Impact of Label Noise and Efficacy of Noise Filters in Software Defect Prediction ………………................ 347

Shihab Shahriar Khan, Nishat Tasnim Niloy, Md Aquib Azmain and Ahmedul Kabir

Using Deep Learning Classifiers to Identify Candidate Classes for Unit Testing in Object-Oriented

Systems ... 353

Wyao Matcha, Fadel Touré, Mourad Badri and Linda Badri

Unit Test Effort Prioritization Using Combined Datasets and Deep Learning: A Cross-Systems Validation

(S) .. 359

SEKE2020 Table of Contents

xiv

Fadel Toure and Mourad Badri

An Empirical Investigation on the Relationship Between Bug Severity and Bug Fixing Change

Complexity .. 365

Zengyang Li, Dengwei Li, Peng Liang and Ran Mo

Session NLP: Natural Language Processing

Can language help in the characterization of user behavior? Feature engineering experiments with Word

(S) .. 371

Eduardo Lopez and Kamran Sartipi

Patent Technical Function-effect Representation and Mining Method (S) .. 375

Weidong Liu, Piying Zhang and Wenbo Qiao

Towards A Systematic Derivation Of BPMN Model From Business Process Textual Description (S) …... 380

Wiem Khlif, Nourchène Elleuch Ben Ayed and Faten Chihi

A Novel Self-Attention Based Automatic Code Completion Neural Network (IPA) 386

Bohao Wang, Wanyou Lv, Jianqi Shi and Yanhong Huang

An Ensemble Approach to Detect Code Comment Inconsistencies using Topic Modeling (S)................ 392

Fazle Rabbi, Md Nazmul Haque, Md Eusha Kadir, Md Saeed Siddik and Ahmedul Kabir

A Combined Model for Extractive and Abstractive summarization based on Transformer model (S) ... 396

Xin Liu and Liutong Xu

Modeling Topic Exhaustion for Programming Languages on StackOverflow (IPA) 400

Rao Hamza Ali and Erik Linstead

An Efficient Application Searching Approach Based on User Review Knowledge Graph 406

Fang Li and Tong Li

SLK-NER: Exploiting Second-order Lexicon Knowledge for Chinese NER (S) ... 413

Dou Hu and Lingwei Wei

Session SMM: Social Media Mining

Sentiment Analysis over Collaborative Relationships in Open Source Software Projects 418

Lingjia Li, Jian Cao and David Lo

Searching, Examining, and Exploiting In-demand Technical (SEE IT) Skills using Web Data Mining 424

SEKE2020 Table of Contents

xv

Taeghyun Kang, Hyungbae Park and Sunae Shin

Sentiment Analysis of Online Reviews with a Hierarchical Attention Network 429

Jingren Zhou and Peiquan Jin

Cross-project Reopened Pull Request Prediction in GitHub (S) .. 435

Abdillah Mohamed, Li Zhang and Jing Jiang

Restaurant Failure Prediction Based on Multi-View Online Data ... 439

Ping Liang, Dongjin Yu and Xiaoxiao Sun

Detecting Spammers from Hot Events on Microblog Platforms: An Experimental Study 445

Jialing Liang and Peiquan Jin

Automatic Identification of Architecture Smell Discussions from Stack Overflow 451

Fangchao Tian, Fan Lu, Peng Liang and Muhammad Ali Babar

Exploring CQA User Contributions and Their Influence on Answer Distribution (S) 457

Yi Yang, Xinjun Mao, Zixi Xu and Yao Lu

Copy and Paste Behavior: A Systematic Mapping Study (S) ... 463

Luqi Guan, John Castro, Xavier Ferré and Silvia Acuña

Generating Luck from Weak Ties in Social Networks (S) .. 467

Iaakov Exman, Omer Ganon and Asaf Yosef

Session RS: Recommender Systems

Personalized Video Recommendation Based on Latent Community (S) ... 473

Han Yan, Ye Tian, Shunyao Wang, Xiangyang Gong, Xirong Que and Wendong Wang

Mining and Predicting Micro-Process Patterns of Issue Resolution for Open Source Software

Projects ... 477

Yiran Wang, Jian Cao and David Lo

Deep Graph Attention Neural Network for Click-Through Rate Prediction .. 483

Wen Fang and Lu Lu

A Session-based Job Recommendation System Combining Area Knowledge and Interest Graph Neural

Networks (S) .. 489

Yusen Wang, Kaize Shi and Zhendong Niu

Modeling and Selecting Frameworks in terms of Patterns, Tactics, and System Qualities 493

Hind Milhem, Michael Weiss and Stéphane Somé

SEKE2020 Table of Contents

xvi

An Evaluation of Recommendation Algorithms for Tourist Attractions ... 501

Anderson Feitosa Júnior, Flávio Medeiros and Ivo Calado

Who Should Close the Questions: Recommending Voters for Closing Questions Based on Tags 507

Zhang Zhang, Xinjun Mao, Yao Lu and Jinyu Lu

A Deep Spatio-temporal Residual Network Model for Commercial Activeness Prediction 513

Ping Liang, Dongjin Yu and Xiaoxiao Sun

Collaborative Denoising Graph Attention Autoencoders for Social Recommendation 519

Nan Mu, Daren Zha, Lin Zhao and Rui Gong

Identifying Similar Users Based on Metagraph of Check-in Trajectory Data .. 525

Rui Song, Tong Li, Xin Dong and Zhiming Ding

Session SB: Security and Blockchain

Formal Security Analysis for Blockchain-based Software Architecture .. 532

Nacha Chondamrongkul, Jing Sun and Ian Warren

Characterizing Vulnerabilities in a Major Linux Distribution ... 538

Stephen Tate, Moulika Bollinadi and Joshua Moore

Mining DApp Repositories: Towards In-Depth Comprehension and Accurate Classification 544

Yeming Lin, Jianbo Gao, Tong Li, Jingguo Ge, Bingzhen Wu

Automated Rogue Behavior Detection for Android Applications (S) .. 550

Shuangmin Zhang, Ruixuan Li, Junwei Tang and Xiwu Gu

Benchmarking the efficiency of RDF-based access for blockchain environments 554

Juan Cano-Benito, Andrea Cimmino Arriaga and Raúl García-Castro

SecureChange: An Automated Framework to Guide Programmers in Fixing Vulnerability 560

Sayem Mohammad Imtiaz, Kazi Zakia Sultana and Tanmay Bhowmik

Significant API Calls in Android Malware Detection (Using Feature Selection Techniques and Correlation

Based Feature Elimination) ... 566

Asadullah Hill Galib and B M Mainul Hossain

Threat Intelligence Relationship Extraction Based on Distant Supervision and Reinforcement Learning

(S) .. 572

Wang Xuren, Yang Jie, Wang Qiuyun, and Su Changxin

Note: (S) denotes a short paper.

Formalization and Verification of VANET
Ran Li1, Huibiao Zhu∗1, Lili Xiao1, Jiaqi Yin1, Yuan Fei2, Gang Lu∗1

1Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

2School of Information, Mechanical and Electrical Engineering,
Shanghai Normal University, Shanghai, China

Abstract—Vehicular Ad Hoc Network (VANET) is a subclass
of Mobile Ad Hoc Network (MANET) types. As a key part
of the Intelligent Transportation Systems (ITSs) framework, it
can be used not only to provide value added services, but also
to guarantee the security of ITS. Since VANET is extensively
applied, its security is of great significance.

In this paper, we model the architecture of VANET using
process algebra Communicating Sequential Processes (CSP). By
utilizing model checker Process Analysis Toolkit (PAT), we verify
five properties (deadlock freedom, divergence freedom, data
leakage, vehicle faking and RSU faking) of the model and find
that the proposed architecture may cause data leakage. Hence,
we improve the model by encrypting the messages with receiver’s
public key to cope with this problem. The new verification results
show that our study can guarantee the security of VANET.

Index Terms—VANET; Security; CSP; Modeling; Verification

I. INTRODUCTION

While the rapid growth of driverless vehicles has been
fueled by the development of vehicle industry and wireless
communication technology, VANET is actually the supporting
infrastructure and paves the way for driverless vehicles.

VANET is the application of traditional MANET in the field
of intelligent traffic [1]. The basic architecture of VANET
is demonstrated in Fig. 1. Each vehicle has an On Board
Unit (OBU) and one or more Application Units (AUs). Road
Side Unit (RSU) is the device installed along road side
and communicates with OBUs using Dedicated Short Range
Communication (DSRC) technology. Moreover, RSU can also
get in touch with the gateway to the Internet.

Fig. 1 illustrates that communication in VANET can be
divided into three domains: in-vehicle domain, ad hoc domain
and infrastructure domain [1]. In-vehicle domain contains an
OBU and one or more AUs. Infrastructure domain commu-
nication is between RSUs and infrastructure. Ad hoc domain
is composed of two types of communication. One is Vehicle-
to-Vehicle (V2V) communication which means a vehicle can
connect with other vehicles, and the other is Vehicle-to-
Infrastructure (V2I) communication which represents that a
vehicle can exchange information with infrastructure.

Since VANET is an emergent technology, it has massive
challenges of security issues. Many studies have been carried
out on the topic of communications security in VANET
[2]–[4]. However, the previous solutions cannot comfirm the

∗Corresponding authors: hbzhu@sei.ecnu.edu.cn (H. Zhu),
glu@cs.ecnu.edu.cn (G. Lu).

confidentiality-integrity-availability (CIA) property [5]. To se-
cure communications in VANET, a newly proposed archi-
tecture uses end-to-end authentication to avoid intrusion in
VANET and considers VANET as a hierarchical model to
decrease the number of message exchanges [5]. However, the
proposed architecture is not verified formally.

Fig. 1. Basic Architecture of VANET

In this paper, we formalize the model of the proposed
architecture of VANET [5] using process algebra CSP [6],
[7]. Additionally, we use model checking tool PAT [8], [9] to
verify some related properties, including deadlock freedom,
divergence freedom, data leakage, vehicle faking and RSU
faking. From the verification results, we find that the original
proposed architecture [5] is not safe and it may cause data
leakage problem. Hence, we modify the original model by
means of encrypting messages with receiver’s public key to
solve this problem. The verification results of the improved
model show that the modification is truly effective.

The remainder of this paper is organized as follows. In
Section II, we give a brief introduction to VANET which
contains the proposed architecture [5] and the flow of commu-
nications between entities. Besides, the process algebra CSP is
also introduced briefly in this section. Section III presents the
formalized model of VANET [5]. Furthermore, Section IV is
about the verification results of the original model and we also
put forward some improvements of the model. We conclude
our work and propose the future work in Section V.

II. BACKGROUND

In this section, we briefly explain the proposed architecture
of VANET [5] and focus on the communication flow of it. In
addition, an introduction to CSP is given as well.

DOI reference number: 10.18293/SEKE2020-011
1

Fig. 2. In Ad Hoc and Infrastructure Domain

Fig. 3. In-vehicle Domain (Adapted from[5])

A. VANET

In order to ensure communications security, a newly pro-
posed architecture adopts end-to-end authentication to avoid
intrusion in VANET and considers VANET as a hierarchical
model to decrease the number of message exchanges.

The proposed architecture covers five entities: Vehicle,
RSU, RSU Controller, Zone Controller and CA. Vehicle and
RSU are the same as the entities in the basic architecture
mentioned above, while RSU Controller, Zone Controller and
CA are newly introduced entities in VANET.
• RSU Controller: It is in charge of the communications

in an area with a number of RSUs.
• Zone Controller: It controls multiple RSU Controllers.
• CA (Certification Authority): It is responsible for dis-

tributing the certificates to RSUs, RSU controllers and
Zone controllers. Each certificate contains the entity’s ID,
public key and expiry time.

To ensure security applications in ad hoc domain communi-
cation and infrastructure domain communication, the proposed
architecture emphasizes end-to-end authentication process us-
ing certificates from CA. Fig. 2 shows the flow of this solution.

1. The vehicle sends a request to the RSU.
2. Once a RSU receives this request, it checks the expiry

time and the threshold value of the message control. If they
are both valid, it returns its ID and the timestamp. If not, it
broadcasts an alarm notification.

3. Then, the vehicle executes Deffie-Hellman key exchange
[10] with the RSU and uses the shared key to encrypt the
message with Elliptic Curve Cryptography [11].

4. Afterwards, the RSU decrypts the message and passes it
along with timestamp forward to the RSU controller.

5. If the timestamp is valid, the RSU controller returns its
certificate with an ack to the RSU. It also proceeds to encrypt

and sends the message along with its certificate to the Zone
controller. Otherwise, the RSU controller broadcasts an alarm
notification, i.e., it fails.

6. When the Zone controller receives the message, it checks
the timestamp at first. If the timestamp is valid, the Zone
controller decrypts the message and sends the message to other
Zone controllers and base stations. Otherwise, it fails.

On the other hand, to ensure security in in-vehicle commu-
nication, the proposed architecture emphasizes the verification
of the certificates. The flow is shown in Fig. 3. Here, RSU in
Fig. 3 can also be a service provider. Due to the similarity in
flows of them, we list the flow of the communication among
the vehicle, the RSU and CA.

1. The OBU of a vehicle sends a service request which
includes the certificate of the vehicle.

2. A RSU sends the certificate of the vehicle to CA to check
its validity.

3. CA returns the verification result.
4. Once the RSU receives the verification result which

shows the certificate is valid, it sends its own certificate to
the vehicle along with an ack. If not, it refuses the request.

5. Then, the vehicle sends the received certificate to CA to
check its validity.

6. CA returns the verification result.
7. Once the vehicle receives the verification result which

shows the certificate is valid, the vehicle can use the service
successfully and safely in AU. Otherwise, it rejects the service.

B. CSP

CSP, the abbreviation of Communicating Sequential Pro-
cesses, is a process algebra proposed by C. A. R. Hoare [6].
The syntax of CSP provides many operators to express the
actions of processes and their interactions. We give a brief
definition of the syntax used in this paper as below.

P,Q ::= Skip | a→ P | c?x→ P | c!u→ P

| P ||Q | P�Q | P CB BQ | P [[a← b]]

• Skip denotes that a process terminates successfully.
• a → P describes an object which first engages in the

event a and then behaves exactly as described by P .
• c?x → P represents that a process receives a message

through a channel called c and assigns the value of the
message to x, and then behaves like process P .

• c!u→ P means that a process sends message u through
a channel called c and then behaves like process P .

• P ||Q indicates process P executes in parallel with pro-
cess Q.

• P�Q stands for external choice, which means that a pro-
cess performs like P or Q and the choice is determined
by the environment.

• P C B B Q expresses conditional choice. If B is true,
then the process behaves like P , otherwise behaves like
Q.

• P [[a ← b]] is the syntax of renaming and signifies an
event a is replaced by b in process P .

2

III. MODELING VANET
In this section, we give the formalized model of VANET.

First, we introduce the definitions of sets, messages and
channels. On this basis, we formalize the model of VANET
using CSP.

A. Sets, Messages and Channels
First, some sets are introduced in our formalized model for

convenience. For communicators, we define the set Vehicles of
the Vehicle components, RSUs of the RSUs and Controllers
of the RSU Controller and the Zone Controller components.

Entity set involves entities mentioned above. Further, each
entity has its own certificates, ID and keys. Cert is the set of
certificates. Id is the set of IDs and Key is the set of keys.
Key = PUBK ∪ PRIK, where PUBK denotes the public
keys and PRIK represents the private keys.

Moreover, we give definitions of Content of the content, T
of the time and State of the states which contain true state
and false state.

Based on the sets above, the messages are further abstracted
as follows.

MSGcert =df {msgreqv.a.b.cert,msgrspv.a.b.state|
a, b ∈ Entity ∪ CA, cert ∈ Cert, state ∈ State}

MSGprdc =df {msgprdc.a.b.E(k, c)|
a, b ∈ Entity ∪ CA, k ∈ Key, c ∈ Content}

MSGreqb =df {msgreqb.a.b.id.t|a, b ∈ Entity, id ∈ Id, t ∈ T}
MSGreqs =df {msgreqs.a.b.rid.vid.cert|

a, b ∈ Entity, rid, vid ∈ Id, cert ∈ Cert}
MSGack =df {msgackr.a.b.rid.ack.cert, msgackrc.a.b.ack.cert|

a, b ∈ Entity, rid ∈ Id, ack ∈ State, cert ∈ Cert}
MSGdata =df {msgd1.a.b.E(k, c),msgd2.a.b.E(k, c).cert.t|

a, b ∈ Entity, k ∈ Key, c ∈ Content, cert ∈ Cert, t ∈ T}
MSGc1 =df MSGcert ∪MSGprdc ∪MSGreqb

∪MSGdata ∪MSGack

MSGc2 =df MSGcert ∪MSGreqs ∪MSGack

MSGc1 is the set of messages in ad hoc and infrastrusture
domain and MSGc2 consists of messages communicated in
in-vehicle domain.

Besides, we use the symbols E and D to represent encryp-
tion function and decryption function respectively.
• E(k,msg) indicates that k is the key which is used to

encrypt the message msg.
• D(k−1,E(k,msg)) means that the corresponding decryp-

tion key k−1 can decrypt the message which is encrypted
with k.

Then, we give the definitions of channels.
• channels of processes between legal entities, denoted by

COM PATH:
ComV C, ComRC, ComRcC, ComZcC,
ComV R, ComRRc, ComRcZc

• channels of intruders faking/intercepting processes, rep-
resented by INTRUDER PATH:
FakeV R, InterceptRV, FakeRV, InterceptV R,
FakeRRc, InterceptRcR, FakeRcR, InterceptRRc,
FakeRcZc, InterceptZcRc, FakeZcRc, InterceptRcZc

• channel of synchronization time: T ime

The declarations of the channels are as follows.
Channel COM PATH , INTRUDER PATH: MSG

B. Overall Modeling
We formalize the whole model as below. V ANET0

represents the system without considering intruders, while
V ANET takes account of the attacks from intruders. The
channels of our model are shown in Fig. 4.
V ANET =df V ANET0 [|INTRUDER PATH|] Intruder
V ANET0 =df V ehicle ||RSU ||RC ||ZC ||CA ||Clock

V ehicle, RSU , RC, ZC and CA describe the performance
of vehicles, RSUs, RSU controllers, Zone controllers and CA
respectively. The process called Clock is used to realize the
synchronization of time. Additionally, we use the process
Intruder to simulate intruders’ actions, such as intercepting
or faking messages.

Fig. 4. Channels of VANET

C. Clock Modeling
When entities deliver messages, they need to check whether

the timestamp is valid. So we define Clock in order to
realize the synchronization of all entities. The Clock process
is responsible for recording time and returning the current time
whenever some entities want it.

Clock(t) =df tick → Clock(t+ 1) � T ime!t→ Clock(t)

D. CA Modeling
CA provides the identities and certificates for all RSUs,

RSU controllers and Zone controllers. Besides, CA can verify
the entities by certificate verification. The model of CA is
given as follows.

CA =df ComRC!msgprdc.C.R.E(cakpri, certr)→ CA

�ComRcC!msgprdc.C.Rc.E(cakpri, certrc)→ CA

�ComZcC!msgprdc.C.Zc.E(cakpri, certzc)→ CA

�ComRC?msgreqv.R.C.certv →
verified := valid(certv)→
ComRC!msgrspv.C.R.certv.verified→ CA

�ComV C?msgreqv.V.C.certr →
verified := valid(certr)→
ComV C!msgrspv.C.V.certr.verified→ CA

valid(cert) is a function to verify whether the certificate is
valid. If the certificate is valid, it returns true and then the
variable verified is set to true.

3

E. Vehicle Modeling
We formalize the process V ehicle using general choice �

to describe the two types of communication mentioned above.
The model of V ehicle is shown as below.

V ehicle0 =df ComV R!msgreqb.V.R.vid.texp →
ComV R?msgreqb.R.V.rsuid.ts →
dh key change→
ComV R!msgdata1.V.R.E(kdh,msg)→ V ehicle0

� ComV R!msgreqs.V.R.rsuid.vid.certv →
ComV R?msgackr.R.V.rsuid.ack.certr →

 ComV C!msgreqv.V.C.certr →
ComV C?msgrspv.C.V.certr.verified→
(success→ V ehicle0)
C(verified == true)B

(
fail→ V ehicle0

)

C(ack == true)B (fail→ V ehicle0)

In the first half of the model, we describe the behaviors

of the vehicle in ad hoc or infrastructure domain and they
correspond to Steps 1-3 in Fig. 2. texp is the expiry timestamp
and ts records when the RSU sends the reply. We also define
an event called dh key change which denotes that the vehicle
executes Deffie-Hellman key exchange with the RSU. After
the execution, the vehicle and the RSU have a shared key
kdh, which is used to encrypt the message with Elliptic Curve
Cryptography. The remaining actions correspond to Steps 1,
4, 5 and 6 in Fig. 3 and represent the actions of the vehicle
in in-vehicle communication.

Since we have given the model without intruders, then we
need to consider the existence of intruder actions. For example,
we should allow intruders to fake or intercept messages. We
describe the behavior of the intruder via renaming as follows
and the channels that intruders involved are shown in Fig. 5.

V ehicle =df V ehicle0[[

ComV R!{|ComV R|} ← ComV R!{|ComV R|},
ComV R!{|ComV R|} ← InterceptV R!{|ComV R|},
ComV R?{|ComV R|} ← ComV R?{|ComV R|},
ComV R?{|ComV R|} ← FakeRV ?{|ComV R|}]]

Fig. 5. Channels with an Intruder

{|c|} is the symbol which denotes that the set of all
communications over the channel c. The first two formulas
represent that the process performs either a ComV R!msg
or InterceptV R!msg event whenever V ehicle0 performs a
corresponding ComV R!msg event. Similarly, the last two
formulas imply that when the ComV R!msg event occurs in
V ehicle0, the process V ehicle behaves like ComV R?msg or
FakeRV ?msg.

F. RSU Modeling
We formalize RSU process as below.

RSU0 =df ComRC?msgprdc.R.C.E(cakpri, certr)→
ComV R?msgreqb.V.R.vid.texp → T ime?t→

ComV R!msgreqb.R.V.rsuid.ts
{msgcnt := msgcnt + 1} → dh key change→
ComV R?msgdata1.V.R.E(kdh,msg)→ ComRRc!msgdata2.R.Rc.

E(rkpri,msg).certrsu.tv →
ComRRc?msgackrc.Rc.R.ack.certrc
{msgcnt := msgcnt − 1} → RSU0

C(D(k,E(kdh,msg)))B
(fail{msgcnt := msgcnt − 1} → RSU0)

C(msgcnt < mthreshold ∧ t < texp)B (fail→ RSU0)

� ComV R?msgreqs.V.R.rsuid.vid.certv →

ComRC!msgreqv.R.C.certv →
ComRC?msgrspv.C.R.certv.verified→ (

ack := true→
ComV R!msgackr.R.V.rsuid.ack.certr → RSU0

)
C(verified == true)B (fail→ RSU0)

msgcnt is the current number of messages in this RSU.

mthreshold denotes the threshold value of message control and
tv indicates the validity time duration. For the RSU, in ad hoc
or infrastructure domain, the actions on channels ComV R
and ComRRc correspond to Steps 2-5 in Fig. 2. While, in
in-vehicle communication, the actions on channels ComV R
and ComRC correspond to Steps 1-4 in Fig. 3.

The corresponding process RSU is formalized using renam-
ing which is similar to the process V ehicle, so we leave out
details here.

G. Controller Modeling
Controllers are only used in ad hoc or infrastructure domain.

The actions of the RSU controller on channels ComRRc and
ComRcZc correspond to Steps 4-6 in Fig. 2 and the action
of the Zone controller on channel ComRcZc corresponds
to Step 6 in Fig. 2. The models of RSUController and
ZoneController are shown as below.

RC0 =df ComRcC?msgprdc.C.Rc.E(cakpri, certrc)→
ComRRc?msgdata2.R.Rc.E(rkpri,msg).certrsu.tv →
T ime?t→
 ComRRc!msgackr.Rc.R.ack.certrc →

ComRcZc!msgdata1.Rc.Zc.
E(rckpri, E(rkpri,msg)).tr → RC0

C(t < tv)B (fail→ RC0)

ZC0 =df ComZcC?msgprdc.C.Zc.E(cakpri, certzc)→

ComRcZc?msgdata1.Rc.Zc.

E(rckpri, E(rkpri,msg)).tr → T ime?t→

 (success→ ZC0)
C(D(rkpub, E(rkpri,msg)))B
(fail→ ZC0)

C(D(rckpub, E(rckpri, E(rkpri,msg))))B
(fail→ ZC0)

C(t < tr)B (fail→ ZC0)

Similarly, the processes RC and ZC are built using renam-

ing and due to the space limit, we omit the details here.

4

H. Intruder Modeling
We formalize the intruder as a process which can carry out

attacks such as intercepting and faking messages from valid
communications. Firstly, we have a set Fact, containing all
facts an intruder can learn.
Fact =df {Entity, CA} ∪ Cert ∪ T ∪ {Ikpri, Ikpub}∪
{k, c|k ∈ Key, c ∈ Content} ∪ {E(k, c)|k ∈ Key, c ∈ Content}
Then we define how the intruder deduces new fact f from

given fact set F . We use the symbol F 7→ f to represent that
f can be deduced from the set F . The detailed definition is
given as follows. The first two rules indicate encryption and
decryption. The last rule means that if the intruder can deduce
the fact f from the fact set F and F is the subset of F ′, the
f can also be derived from F ′.

{k, c} 7→ E(k, c) {k−1, E(k, c)} 7→ c

F 7→ f ∧ F ⊆ F ′ ⇒ F ′ 7→ f

We also introduce a function Info(m), which implies the
facts learned by the intruders if they intercept messages.

Info(msgreqv.a.b.cert) =df {a, b, cert}
Info(msgrspv.a.b.state) =df {a, b, state}
Info(msgprdc.a.b.E(k, c)) =df {a, b, E(k, c)}
Info(msgreqb.a.b.id.t) =df {a, b, id, t}
Info(msgd1.a.b.E(k, c)) =df {a, b, E(k, c)}
Info(msgd2.a.b.E(k, c).cert.t) =df {a, b, E(k, c), cert, t}
Info(msgreqs.a.b.rid.vid.cert) =df {a, b, rid, vid, cert}
Info(msgackr.a.b.rid.ack.cert) =df {a, b, rid, ack, cert}
Info(msgackrc.a.b.ack.cert) =df {a, b, ack, cert}

Then, we add a definition of Deduce channel which is used
to deduce new facts.

Channel Deduce : FACT.P (FACT)

Based on this, we give the formalization of Intruder which
is parameterized by the facts he knows.

Intruder(I) =df

�msg∈MSGIntercept.msg → Intruder0(I ∪ Info(msg))

��msg∈MSG∩Info(msg)∈IFake.msg → Intruder0(I)

��f∈Fact,f /∈F,F 7→fInit{data leakage success := false}

→ Deduce.f.F →

(

data leakage success = true
→ Intruder0(F ∪ {f})

)
C(f == Data)B(

data leakage success = false
→ Intruder0(F ∪ {f})

)

If the intruder intercepts the message msg, then it adds
info(msg) into his facts. Also, if the intruder knows
info(msg) , then he can pretend as a legal entity and fake
the message msg. Further, as introduced before, the intruder
can deduce new facts from the known facts as well.

For Intruder0, we define its parameter as IK, which stands
for the intruder’s initial knowledge.

Intruder =df Intruder0(IK), IK =df {Entity, Ikpub, Ikpri}

IV. VERIFICATION AND IMPROVEMENT
In this section, we use model checker PAT to verify the

properties of the above constructed model. Moreover, we
propose an improved model according to the verification
results.

A. Properties Verification

The descriptions and the corresponding assertions of spe-
cific security properties are given below.
Property 1: Deadlock Freedom

Deadlock is a situation in which nothing further can happen.
This property means that we need to ensure the model cannot
get stuck in a deadlock state. In the tool PAT, we use a
primitive to describe this situation.

#assert V ANET deadlockfree;

Property 2: Divergence Freedom
Divergence is a phenomenon in which a process has an

infinite loop or unguarded recursion. To ensure that the model
is well defined, we need to check if the model is divergence
free. We complete the check by means of a primitive in PAT.

#assert V ANET divergencefree;

Property 3: Data Leakage
We also verify whether the intruder can obtain the message

successfully since this property is relevant to the security of
VANET. The assertion is set to check it.

#define Data Leakage Success

data leakage success == true;

#assert V ANET reaches Data Leakage Success;

Property 4: Vehicle Faking
This property means that the system is unaware that

an intruder has succeeded in posing as a legal Vehicle
successfully. The assertions are listed as follows, where
vehicle fake success1 and vehicle fake success2 are
boolean variables defined to verify whether the intruder suc-
ceeded in in-vehicle communication and in ad hoc or infras-
tructure domain respectively.

#define V ehicle Fake Success

vehicle fake success1||vehicle fake success2 == true

#assert V ANET reaches V ehicle Fake Success;

Property 5: RSU Faking
Analogously, this property means that an intruder has dis-

guised as a legal RSU successfully. rsu fake success1 and
rsu fake success2 are used to check whether the intruder
succeeded in in-vehicle communication and in ad hoc or
infrastructure domain. The related assertions are shown as
below.

#define RSU Fake Success

rsu fake success1||rsu fake success2 == true;

#assert V ANET reaches RSU Fake Success;

Verification Results
The verification results are shown in Fig. 6.
• Property 1 and Property 2 are valid, indicating that our

model can never run into a deadlock state and is well
defined.

• Property 3 is valid. It means the intruder has acquired the
message successfully, i.e., data security of the system is
not guaranteed. Therefore, we put forward the improve-
ment next.

• Property 4 and Property 5 are invalid, which represents
that the intruder can never pretend as a legal vehicle or
a legal RSU successfully.

5

Fig. 6. Verification Results of the Model

Fig. 7. Verification Results of the Improved Model

B. Attack and Improvement
As illustrated in the verification results above, Property 3

is valid. It indicates that the system still has security risk in
spite of the usage of digital signature and encryption. After
executing Deffie-Hellman key exchange with the RSU, the
vehicle sends the message encrypted with the key shared with
the RSU. Later, the RSU uses the shared key to decrypt the
message. After decrypting, the RSU encrypts the decrypted
message with its own private key. Then the RSU sends
the encrypted message along with its certificate to the RSU
controller. Once the intruder gets the RSU’s public key, he can
decrypt the message and obtain it. An example which causes
data leakage is presented as below.

ComV R.msgdata1.V.R.E(kdh,msg)

→ InterceptRRc.msgdata2.R.Rc.E(rkpri,msg).certrsu.tv

→ FakeRcR.msgackrc.Rc.R.ack.certrc

First, the vehicle sends the encrypted message to RSU
through the channel ComV R. Then the intruder intercepts
this message through the channel InterceptRRc. Since every
entity in the system knows the public key of CA, the intruder
can decrypt the certificate of the RSU with CA’s public key.
Also, as the certificate contains the entity’s public key, the
intruder can access the public key and obtain the message.

In order to overcome the above problem, we modify the
architecture by encrypting the original encrypted message with
the receiver’s public key. Thus, we replace MSGdata defined
before with the new following definition.

MSGdata =df {msgdata1.a.b.E(k1, E(k2, c)),

msgdata2.a.b.E(k1, E(k2, c)).cert.t |
a, b ∈ Entity, k1 ∈ PUBK, k2 ∈ PRIK,

c ∈ Content, cert ∈ Cert, t ∈ T}
In this case, the intruder may intercept msgdata without

the ability to decrypt it. Since the intruder cannot get the
receiver’s private key and it cannot decrypt the intercepted
message consequently.

C. Improved Model and Verification
We formalize the following model to verify whether the im-

proved model V ANETNEW can solve data leakage problem
based on the analyses above.

V ANET NEW =df

V ANET NEW1 [|INTRUDER PATH|] Intruder
V ANET NEW1 =df V ehicle||RSU ||RC||ZC||CA||Clock

The new verification results are shown in Fig. 7. Property
3 is invalid, which indicates that the intruder cannot get the
message, i.e., data security is ensured in our new model.

V. CONCLUSION AND FUTUREWORK
Kumar et al. proposed a new architecture to confirm the

security of VANET using end-to-end authentication and
hierarchical structure [5]. In this paper, we have modeled this
proposed architecture of VANET using CSP. With the aid of
model checking tool PAT, we have verified five properties of
this model, including deadlock freedom, divergence freedom,
data leakage, vehicle faking and RSU faking. The verification
results show that the proposed architecture may cause data
leakage. Aiming to handle this problem, we improved the
above proposed model by encrypting the messages with
receiver’s public key. The new verification results indicate
that the improved model is truly secure. We will dive into
more security issues over VANET and explore how to verify
other security properties with formal methods in the future.

Acknowledgements. This work was partly supported by National
Key Research and Development Program of China (grant no.
2018YFB2101300), National Natural Science Foundation of China
(grant no. 61872145), Shanghai Collaborative Innovation Center of
Trustworthy Software for Internet of Things (grant no. ZF1213), the
Fundamental Research Funds for the Central Universities of China
and the Opening Project of Shanghai Trusted Industrial Control
Platform (grant no. TICPSH202003007-ZC).

REFERENCES

[1] Saif Al-Sultan, Moath M. Al-Doori, Ali H. Al-Bayatti, Hussein Zedan:
A comprehensive survey on vehicular Ad Hoc network. J. Network and
Computer Applications 37: 380-392 (2014)

[2] H. Hasrouny, C. Bassil, A.E. Samhat, A. Laouiti, ”Security Risk Anal-
ysis of a Trust model for Secure Group Leader-based communication in
VANET”, Ad-hoc Networks for Smart Cities Book IWVSC Malaysia,
pp. 71-83, 2016.

[3] H. Hasrouny, A.E. Samhat, C. Bassil, A. Laouiti, ”VANET Security
Challenges and Solutions: A Survey” in Vehicular Communications
journal, Elsevier, vol. 7, pp. 7-20, January 2017.

[4] Hamssa Hasrouny, Abed Ellatif Samhat, Carole Bassil, Anis Laouiti:
VANet security challenges and solutions: A survey. Vehicular Commu-
nications 7: 7-20 (2017)

[5] Gulshan Kumar, Rahul Saha, Mritunjay Kumar Rai, Tai-Hoon Kim:
Multidimensional Security Provision for Secure Communication in
Vehicular Ad Hoc Networks Using Hierarchical Structure and End-to-
End Authentication. IEEE Access 6: 46558-46567 (2018)

[6] C. A. R. Hoare: Communicating Sequential Processes. Commun. ACM
21(8): 666-677 (1978)

[7] Gavin Lowe, A. W. Roscoe: Using CSP to Detect Errors in the TMN
Protocol. IEEE Trans. Software Eng. 23(10): 659-669 (1997)

[8] Ho T. Dung, Thang H. Bui, Tho T. Quan: Model Checking Control Flow
Petri Nets Using PAT. ICCSA (6) 2013: 124-129

[9] Zhipeng Shao, HanYong Hao, Yuanyuan Ma, Chen Wang, Jiaxuan Fei:
Modeling and Verifying Intelligent Unit Transmission Protocol Using
CSP Model Checker PAT. QRS Companion 2016: 244-251

[10] Whitfield Diffie, Martin E. Hellman: New directions in cryptography.
IEEE Trans. Information Theory 22(6): 644-654 (1976)

[11] Victor S. Miller: Use of Elliptic Curves in Cryptography. CRYPTO 1985:
417-426

6

The Prediction of Delay Time at Intersection
and Route Planning for Autonomous Vehicles

Genwang Gou1, Yongxin Zhao∗1,2, Jiawei Jiang1, Ling Shi3
1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

2Shanghai Trusted Industrial Control Platform Co., Ltd., China
3School of Information Systems, Singapore Management University

Abstract—Intelligent Intersections (roundabout and cross-
roads) management is considered as one of the challenges to
significantly improve urban traffic efficiency. Recent researches
in artificial intelligence suggest that autonomous vehicles have
the possibility of forming intelligent intersection management,
and likely to occupy the leading role in future urban traffic.
If route planning method can be used for route decision of
autonomous vehicle, the urban traffic efficiency can be further
improved. In this paper, we propose an Intelligent Intersection
Control Protocol (IICP) for controlling autonomous vehicles cross
intersection, and recommend route for autonomous vehicles to
reduce travel time and improve urban traffic efficiency. Firstly,
we run IICP to obtain the original data, use SMOTE algorithm to
synthesize balance data, and use RF, GBDT algorithms to predict
delay time. Secondly, we use the iEigenAnt algorithm to find
multiple short routes in traffic network. Finally, we recommend
route for autonomous vehicles based on the minimum of driving
time on the route and all delay time at each intersection to
improve urban traffic efficiency.

Index Terms—intersection management, autonomous vehicle,
SMOTE algorithm, route planning.

I. INTRODUCTION

Over the past half-century, road intersections are managed
by traffic lights or traffic control signals, these control mech-
anisms used to be efficient. However, as a growing number
of vehicles flooding into the urban traffic flow, the shortcom-
ings of these management mechanisms begin to emerge. In
many cases, vehicles are required to stop even if there is no
vehicles inside the intersection, resulting in traffic congestion
at intersection, the trip time is also increased. The study of
American cities shows that the congestion problem caused
urban Americans to travel an extra 8.8 billion hours and
purchases an extra 3.3 billion gallons of fuel for a congestion
cost of $166 billion [1].

In order to solve these problems and improve intersection
condition, some works [5][12] focus on regulating traffic flow
and optimizing signal control, the study [11] tries to explore
new intersection management design. Some researchers focus
on proposing intelligent transportation system and develop
autonomous vehicles to improve intersection efficiency, and
they have made many remarkable achievements. On one hand,
various autonomous vehicles have been developed and tested
at intersection. On the other hand, many intelligent trans-
portation system have been demonstrated efficient, such as

*Corresponding author: yxzhao@sei.ecnu.edu.cn

work [3] which manages the efficient passage of autonomous
vehicles through intersections, increase the throughput of the
intersections by up to 96.24% compared to common signalized
intersections.

In this paper, we propose an IICP protocol to manage
autonomous vehicles cross intersection. There are two kinds of
objects in IICP, which are Intelligent Control Center (ICC) and
autonomous vehicle, ICC makes two important calculations
to manage autonomous vehicles cross intersection. First, it
analyzes the transmitted message by autonomous vehicles
and generates a priority sequence of all vehicles near the
intersection by First Come, First Serve strategy. Second, it
detects potential collision among vehicles in order of priority
sequence, and uses two speed adjustment mechanisms to
calculates the safety speed for each autonomous vehicle. The
simulation result shows that IICP can greatly reduce delay
time for each autonomous vehicle crossing intersection.

Afterwards, we apply machine learning algorithms on IICP
to predict delay time at intersection under different traffic flow
and parameter configurations. We run IICP to generate the
original data set, whereas the original data set is imbalanced.
In an imbalanced dataset, the training instance of minority
data is obviously less than that of other data, as a result, these
examples are more likely to be mispredicted. Hence many
researchers have proposed numbers of algorithms to solve the
consequences of imbalanced data. These algorithms can be
categorized as three mainstream types, which are algorithm,
sampling and oversampling, Among them, oversampling tech-
nology can avoid losing data information[8], and synthetic
minority samples to form balance data, one of the most
popular method of oversampling level is the synthetic minority
oversampling technique (SMOTE) in [7]. Experiments on
imbalanced UCI data reveal that using SMOTE algorithm can
effectively improve the performance compared with sampling
level [10], so we use SMOTE algorithm to preprocess data set
to form balance data, and use RF and GBDT algorithms fit
these balance data to predict delay time.

Finally, we use ant colony algorithm to solve route plan-
ning problem. In our previous work, we have proposed an
iEigenAnt algorithm [9], which can find short route between
the source node and destination node in reticular structure.
We apply iEigenAnt algorithm to find multiple short routes in
traffic network, and recommend route for autonomous vehicles
according to the sum of driving time on the road and all delay

DOI reference number: 10.18293/SEKE2020-018
7

time at each intersection.
The main contributions of this paper includes:
• Prediction of Delay Time. We use SMOTE algorithm

to preprocess the original data to form the balanced
synthetic data, and use RF algorithm to fit the synthetic
data to predict delay time under different traffic flow and
parameters configuration, which get a higher prediction
accuracy.

• Route Planning. We use iEigenAnt algorithm to find
multiple short routes between the source intersection and
the destination intersection, and recommend route for
autonomous vehicle based on the minimum driving time,
which improve the urban traffic efficiency.

The remainder of this paper is organized as follow. Section
II presents the methods used in this paper. Section III describes
IICP in detail. Section IV elaborates the process of the
prediction of delay time. Section V includes the route planning
for autonomous vehicles. Finally, this paper is concluded in
section VI.

II. PRELIMINARIES

In this section, we describe some basic knowledge about
techniques and models. We use SMOTE algorithm to synthe-
size minority samples to generate balance data. Afterwards,
we use RF and GBDT to train the balance training data to
predict the value of delay time.

A. SMOTE Algorithm

The paper [6] suggested that the SMOTE algorithm can
avoid the risk of overfitting by randomly duplicates minority
class instance. The core idea of SMOTE algorithm is to
analyze the minority class samples and synthetic new samples
according to these minority class samples, and add new
samples to the dataset. There are three steps for SMOTE
algorithm generates a new sample. Fig.1 shows the principle
of SMOTE algorithm.

• For each sample x in minority class samples S, calculates
the distance from x and all samples in S according to the
Euclidean distance, and then obtain its k-nearest neighbors.

• Determine the sampling ration n by the sample imbalance
proportion. For each sample x, randomly choose several
samples from its k-nearest neighbors, suppose as xn.

• For each randomly selected neighbor xn, use the equation
(1) to synthetic a new sample xnew.

xnew = x+ rand(0, 1) ∗ |x− xn| (1)

B. Random Forest (RF)

Random Forest is one of the most successful general-
purpose algorithms in modern times. As an integrated training
method, RF generates multiple prediction models and summa-
rizes the results of the model to improve the accuracy of the
prediction model. Figure 2 shows three main steps for RF to
get the final prediction result or classification result.

x1

x3
x

Majority class sample

x2

x4

Minority class sample

New minority class sample

Fig. 1. Schematic diagram of synthetic data in SMOTE algorithm

• Get the training sets S1, S2, ..., Sn, (n represents the number
of regression trees) according to the bootstrap [4] mecha-
nism randomly with replacement.

• Training decision tree T1, T2, ..., Tn based on training sets.
• The results of all regression trees are integrated to generate

prediction value.

Training set

Feature

The original dataset

S1 S2 ··· Sn

The final result

··· ··· ···
···

Average

Si

Decision tree

Fig. 2. Process of random forest algorithm

C. Gradient Boosting Decision Tree

Gradient Boosting Decision Tree is an iterative decision
tree algorithm, which is composed of multiple decision trees,
and the results of all trees are accumulated to make the final
result. There are three steps for GBDT generates the final
classification tree.

• Initial a weak tree with one root node, which can minimize
the loss function.

• Calculate the negative gradient of loos function in current
model, and take it as an estimate of the residuals. The core
idea of Gradient Boost is to build a new model in the gradi-
ent direction of residual reduction to eliminate the previous
residual, which is quite different from the traditional boost
in weighting the correct and wrong samples.

• Estimate the regression leaf node area to fit the approximate
residual value. Using linear search to estimate the value of
leaf node region, minimizing the loss function, and update
decision tree.

III. INTELLIGENT INTERSECTION CONTROL PROTOCOL

In this section, we present the intelligent protocol IICP,
which aims at increasing the throughput of autonomous ve-
hicles at intersection. Fig.3 shows the cross process of a new
coming vehicle, it needs to go through four zones to pass
intersection.

8

·

Conflict zone

Adjust zone Exit zone

Adjust zoneExit zone Outside zone

Outside zone

① Accelerates to a recommended

speed

② Vehicle

information

③ Calculate priority sequence（passing

sequence）for vehicles without right-of-way

④ Response

 information
⑤ Leave information

⑥ delete inforamtion of this vehicleICC

ICC locates at center of
intersection

A
d
j
u
s
t

z
o
n
e

E
x
i
t

z
o
n
e

Fig. 3. The intersection layout and cross process of a new coming vehicle

In outside zone, all vehicles will accelerate to a recommend
speed (as shown in Fig.4) to reduce travel time. In adjust zone,
vehicles need to adjust their speed according to the instruction
of ICC. In conflict zone, these vehicles will keep a constant
speed until they cross the intersection. When autonomous
vehicles arrival at the exit zone, which means vehicles have
crossed the intersection, they can accelerate to the maximum
speed to travel. Notice that all autonomous vehicles need to
follow car-following strategy in these four zones, that is to
say, the vehicles in the back must follow these in front.

Adjust
Zone

Outside Zone

Maximum
Speed

Speed (m/s)

Recommended
Speed

…

…

Conflict
Zone

Exit Zone

Fig. 4. Speed curve in IICP

A. Assumptions

In IICP, the human driving is replaced by autonomous
driving, the whole control system should be rethought, so we
introduce the following assumptions:

Intersection Assumptions: We model the intersection as a
grid which consists of multiple cells, each cell has a unique
identification number and can accommodate an autonomous
vehicle. The intersection is controlled by ICC rather than the
traffic light mechanism, and ICC is equipped with wireless
communication device, powerful calculation device, etc...

Vehicle Assumptions: We assume all vehicles are au-
tonomous vehicles, they have similar shape and physical, and
they are equipped with sensor, positioning system, wireless
communication device, so they can perceive nearby obstacles,
obtain their position, interactive information with ICC.

B. Actions

ICC Actions:
1) ICC calculates the priority sequence and safe speed at

fixed intervals by priority determination and speed adjust-

ment mechanism, afterwards, it sends speed adjustment
message to each vehicle accordingly.

2) ICC will ignore some vehicles when it is notified that
these vehicles have crossed the intersection.

Vehicle Actions:

1) All vehicles cannot enter the intersection without receiv-
ing speed adjustment message from ICC.

2) Whatever vehicles are in conflict zone or adjust zone,
they should periodically send vehicle driving information
to ICC, including vehicle location, speed, etc...

3) If ICC has replied driving information to each vehicle,
they must change their speed accordingly.

4) If some vehicles have crossed the intersection, they
should immediately send message to notify ICC.

C. Priority Determination

IICP is a sequence-based protocol, ICC needs to generate
a priority sequence for the adjust zone vehicles, lay the
foundation for the subsequent speed adjustment mechanism.

Now, we define the notations that will be used later.
• (r, r): Intersection cell size.
• CList: Records the vehicles which inside conflict zone.
• AList: Records the vehicles which inside adjust zone.
• DX,e: The distance between vehicle X and the entrance

of intersection.
• CL: The cell list which vehicle needs to use to cross the

intersection. CLi means the ith cell of CL.
• countn: Number of cells before vehicle X enters cell n.
• Tn: The occupy time of cell n.
• TX

inn
: Time of vehicle X entering cell n.

• VX : Speed of vehicle X .
• V new

X : The desired speed of vehicle X to avoid collision.
• P : The priority sequence of all AList vehicle, PX refers

to the priority of vehicle X .
• HPi: Record AList vehicles which have higher priority

than ith highest priority vehicle.

With these notations, we now have: the time of vehicle X
enters cell n consists of the time when vehicle X reaches
the edge of intersection and the time when vehicle X passes
through each cell before cell n (Equation (2)). Notice that the
priority of AList vehicles is lower than that of CList vehicles,
that is to say, the AList vehicles must avoid the CList vehicles.

TX
inn

=
DX,e

VX
+

n−1∑
i=1

TCLi
(2)

D. Speed Adjustment Mechanism

When the priority sequence of AList vehicles is determined,
ICC uses speed adjustment mechanism to adjust the speed of
these vehicles. Assume there exist a vehicle X and a higher
priority vehicle X1, if there’s no collision between vehicles
X and X1, ICC will accelerates vehicle X . The best situation
is that vehicle X1 has just left a cell n and vehicle X enters
it, so V new

B can be calculated from Equations (3) and (4).

9

Algorithm 1: Speed Adjustment Mechanism

1 Assume there are m vehicles in CList and HPi.
2 while exists vehicles in adjust zone do
3 Calculate the time of each vehicle arrival at intersection, record vehicles in priority sequence P by FCFS strategy.
4 Calculate TX

inn
for each CList vehicles and AList vehicles through Equation (2).

5 for i=0, i < the length of P do
6 Choose the ith highest priority vehicle i from P , check whether there exist potential collision among vehicle i

and m vehicles.
7 if There is no conflict then
8 for j=0, j < m do
9 Calculate the max allowed speed for vehicle i with vehicle j by Equations (3) and (4), suppose as V j

i .

10 Choose the min(V 1
i , V

2
i , ..., V

m
i) as the safety speed vehicle i can accelerates to.

11 else
12 for j=0, j < m do
13 Calculate the max allowed speed for vehicle i with vehicle j by Equations (5) and (6), suppose as V j

i .

14 Choose the min(V 1
i , V

2
i , ..., V

m
i) as the safety speed vehicle i can decelerates to.

15 Add vehicle i to HPi, m = m+ 1.

16 Reply specific driving information to AList vehicles.

(VX + V new
X) ∗ TX1

outn

2
= DX,e + r ∗ countn (3)

So we have:

V new
X =

2 ∗ (DX,e + r ∗ countn)
TX1
outn

− VX (4)

In contrast, if there exists potential collision between vehi-
cles X and X1, ICC will decelerates vehicle X . The way to
calculate V new

B is shown in Equations (5) and (6).

(VX − V new
X) ∗ TX1

outn

2
= DX,e + r ∗ countn (5)

So we have:

V new
X = VX −

2 ∗ (DX,e + r ∗ countn)
TX1
outn

(6)

On the whole, the process of speed adjustment mechanism
is to traverse each vehicle in order of priority sequence P
and determine the safe driving speed. Assume that there are
n vehicles in AList, so there will be n cycles in total. At
the ith cycle, ICC gets the ith highest priority vehicle i from
P , and check whether there will be potential collision among
vehicle i, CList vehicles and HPi vehicles. Note that potential
collision means if these vehicles drive at current speed, there
will be collision among them. There are two cases, which are
conflict and no conflict.

Case 1. No conflict: In this case, ICC will accelerates
vehicle i while ensuring safety. Assume the number of vehicles
in CList and HPi is m, ICC needs to calculate the maximum
allowed speed with each vehicle in m vehicles according to

equations (3) and (4), suppose as V 1
i , V 2

i , ..., V m
i . Afterwards,

ICC chooses the min(V 1
i , V

2
i , ..., V

m
i) as the safe driving

speed that vehicle i can accelerate to.
Case 2. Conflict: In this case, ICC will decelerates vehicle

i to avoid potential collision. Assume the number of vehicles
in CList and HPi is m, ICC needs to calculate the maximum
allowed speed with each vehicle in m vehicles according to
equations (5) and (6), suppose as V 1

i , V 2
i , ..., V m

i . Afterwards,
ICC chooses the min(V 1

i , V
2
i , ..., V

m
i) as the safe driving

speed that vehicle i can decelerate to.

IV. PREDICTION OF DELAY TIME

In this section, architecture of prediction of delay time is
explained. Fig. 4 shows the process of the prediction of delay
time. We run IICP to generate the original data set, and use
SMOTE algorithm to balance the imbalanced data, then use
RF and GBDT algorithms to predict the value of delay time
under different traffic flow and algorithm parameters.

Run IICP to
Generate the

Original Dataset

SMOTE
Algorithm Balanced

Dataset
Final Prediction

Result

RF&GBDT
Algorithms

Compare
Performance

Predict
Balanced
Dataset

Fig. 5. Architecture of prediction of delay time

A. SMOTE Algorithm for Data Preprocess

We obtain the original data by running IICP on SUMO [2]
firstly. There are five important parameters in this protocol,
which are vNumber, acc, dec, minGap, maxSpeed, the mean-
ing and the configuration of these parameters are shown in
Table I. We set these features to the given value in Table I
respectively. However, we find the original data is imbalanced

10

Algorithm 2: Prediction of delay time

1 Input: train dataset (xi, yi), test dataset (xj , yj), where i = 1, 2, ...,m, j = m+ 1,m+ 2, ...,m+ n.
2 Output: the appropriate classification algorithm and fitted models.
3 Step 1: Divide training dataset into N binary subsets considering all classes.
4 Step 2: Use SMOTE algorithm synthesize balance data.
5 for c = 1, c ≤ N do
6 Apply SMOTE algorithm on ith class data.

7 Combine all classes to form balance data.
8 Step 3: Apply RF and GBDT algorithms on the balanced data, select the better algorithm according to the evaluation

method.
9 Return the appropriate prediction algorithm and fitted models.

(as shown in Fig.6), most data is in the range of 0 to 6, so we
need to use SMOTE algorithm preprocess the original data.

TABLE I
KEY FEATURES IN IICP

Name Meaning Configuration

vNumber the number of vehicles cross
intersection in given time [25, 1000]

acc max acceleration of vehicle [2, 2.4], m/s2

dec max deceleration of vehicle [2, 2.4], m/s2

minGap min gap between continuous
vehicles [10, 14], m

maxSpeed max speed allowed on road [20, 29], m/s

Firstly, we segment the original data into 7 classes by the
range of delay time. Secondly, we execute 7 SMOTE oper-
ations on the original dataset. On the ith SMOTE operation,
we choose the ith class as the minority data and synthesize
data according to the imbalance rate, and then we combine all
classes to form the balance data. Finally, the synthetic balanced
data will be the entry data of RF and GBDT algorithms,
the appropriate prediction algorithm will be obtained by the
evaluation methods. We have transform the data processing
part as algorithm 2.

Fig. 6. Delay time under different traffic flow

B. Evaluation Methods

Performance evaluation metrics play an important
role in assessing the prediction performance. We use
Mean Absolute Error (MAE), Mean Square Error (MSE),
R2 Score (R2) as the evaluation methods to evaluate the

performance RF and GBDT algorithms in the original data
and the synthetic data. yti is the true value of yi, ypi is the
predicted value of yi.
MAE: It illustrates the difference between the predicted value
and the real value, the smaller, the better.

MAE =
1

n

n∑
i=1

|ypi − yti | (7)

MSE: It illustrates the square error between the predicted value
and the actual value, the smaller, the better.

MSE =
1

n

n∑
i=1

(ypi − yti)
2 (8)

R2: It illustrates the fitting degree of the prediction model and
the real data, The best value is 1.

R2 = 1−
∑n

i=1(y
t
i − ypi)

2∑n
i=1(y

t
i − 1

n

∑n
j=1 y

t
j)

2
(9)

C. Experiment Result

We apply RF and GBDT algorithms on the original data and
synthetic data sets respectively, to evaluate the performance of
using smote algorithm synthesizes data. The experiment result
shows that using smote algorithm can significantly improve the
prediction performance, and RF has a better prediction result
than GBDT algorithm (as shown in Table II).

TABLE II
EXPERIMENT RESULT OF RF, GBDT ALGORITHMS ON THE ORIGINAL

DATA AND THE SYNTHETIC DATA

Algorithm Evaluation
Methods

Original
Data

Synthetic
Data

RF
MAE 0.406 0.162
MSE 0.681 0.146
R2 0.876 0.971

GBDT
MAE 0.384 0.268
MSE 0.599 0.214
R2 0.891 0.956

11

V. ROUTE PLANNING

In this section, we describe the way to provide route plan-
ning services for autonomous vehicles in detail. When human
driving vehicles are replaced by autonomous vehicles, it’s
important to provide route planning services for autonomous
vehicles.

A. iEigenAnt Algorithm

In recent years, many researchers have put forward route
planning algorithms, among them, intelligent bionics algo-
rithm is rather useful when dealing with the problem of route
planning under the condition of complex dynamic environ-
ment. In our previous work, we have proposed an intelligent
bionic algorithm which called improved EigenAnt (iEigenAnt)
algorithm, it can find short route between multiple points
according to the way of both positive and negative feedback,
we have successfully applied iEigenAnt algorithm on TSP
problem. In this section, we use iEigenAnt algorithm to
provide route planning service for autonomous vehicles.

B. Experiment Design and Result

In this section, we recommend route for autonomous vehi-
cles according to the minimum of driving time on the route
and all delay time at each intersection. For driving time on the
route, we use iEigenAnt algorithm to find multiple short routes
between source intersection and destination intersection. For
delay time we randomly allocate traffic flow and parameter
setting for each intersection to simulate the real scene, and
use the model trained in section IV to predict the value of
delay time. Finally, we choose the route which takes the least
time as the recommend route.

We model a 10 ∗ 10 intersection network, where vehicles
start from the source intersection (intersection 1) to the desti-
nation intersection (intersection 100), the horizontal and verti-
cal distance between each two adjacent intersections is about
500 meters. Firstly, we use iEigenAnt algorithm find multiple
short routes, and choose 8 routes as candidate recommended
route, the length of each route is 8309.3, 8318.1, 8404.5,
8412.5, 8486.0, 8542.1, 8625.3, 8720.5 meters respectively.
Secondly, we calculate the sum of delay time on each route,
which is 32.43, 24.57, 41.53, 34.73, 55.47, 37.13, 44.26, 45.95
seconds respectively. Assume vehicles drive at 30km/h, the
total travel time of 8 routes is shown in Fig.7. It’s obviously,
the route which takes the least travel time is route 2 instead
of the shortest route 1.

VI. CONCLUSION

Autonomous driving can significantly decrease delay time
for autonomous vehicles crossing intersection, and it will be
the heart of urban transportation in the near future. So we
propose an IICP to manage the intersection area to solve traffic
congestion problem and seek the global benefit by dynami-
cally allocating a safe time-space passage for each vehicle.
Afterwards, we use iEigenAnt algorithm to recommend route
for autonomous vehicles according to the minimum of driving

(a) The recommended route (b) Total travel time of each route

Fig. 7. Applying iEigenAnt algorithm on route planning problem

time on route and all delay time at intersection, the experiment
results show our idea is effective.

VII. ACKNOWLEDGEMENT

This paper is partially supported by National Key
Research and Development Program of China (No.
2019YFB2102600), Science and Technology Commission of
Shanghai Municipality Project (No. 18ZR1411600) and the
Open Project of Shanghai Key Laboratory of Trustworthy
Computing (No. 08dz22304201804).

REFERENCES

[1] 2019 urban mobility report and appendices. https://mobility.tamu.edu/
umr/report/.

[2] simulation of urban mobility. http://sumo.sourceforge.net/.
[3] Reza Azimi, Gaurav Bhatia, Ragunathan Rajkumar, and Priyantha

Mudalige. Ballroom intersection protocol: Synchronous autonomous
driving at intersections. In 2015 IEEE 21st International Conference on
Embedded and Real-Time Computing Systems and Applications, pages
167–175. IEEE, 2015.

[4] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140,
1996.

[5] Shujian Bu, Zhang Tong, and Du Li. Approximations and simulation of
the optimal change interval for roundabout. In International Workshop
on Database Technology & Applications, 2010.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: Synthetic minority over-sampling technique. Journal of Artificial
Intelligence Research, 16(1):321–357, 2011.

[7] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Jour-
nal of artificial intelligence research, 16:321–357, 2002.

[8] Douzas Georgios, Bacao Fernando, and Last Felix. Improving imbal-
anced learning through a heuristic oversampling method based on k-
means and smote. Information Sciences, pages S0020025518304997–.

[9] Genwang Gou, Yongxin Zhao, Qin Li, and Qiwen Xu. A mathematical
analysis of improved eigenant algorithm. Journal of Experimental &
Theoretical Artificial Intelligence, 31(3):1–19, 2018.

[10] Li Ma and Suohai Fan. Cure-smote algorithm and hybrid algorithm for
feature selection and parameter optimization based on random forests.
Bmc Bioinformatics, 18(1):169.

[11] Tomaz Tollazzi, Marko Rencelj, and Saso Turnsek. Slovenian experi-
ences with alternative types of roundabouts-” turbo” and” flower” round-
abouts. In Environmental Engineering. Proceedings of the International
Conference on Environmental Engineering. ICEE, volume 8, page 1220.
Vilnius Gediminas Technical University, Department of Construction
Economics ¡, 2011.

[12] Bai Yu and Kun Xue. Association of signal-controlled method at
roundabout and stop rate. In International Conference on Intelligent
Computation Technology & Automation, 2011.

12

DCBlock : Efficient Module for Unpaired

 Image to Image Translation Using GANs

Jin Yong Kim, Myeong Oh Lee, Geun Sik Jo
*

Department of Computer Science

Inha University

nastynas9004@gmail.com, eremo2002@naver.com, gsjo@inha.ac.kr

Abstract — Recently, as various image-to-image translation

studies have been progressed, it is possible to generate

high-quality images. In particular, generation models

using unpaired data produce meaningful results even

building data at a low cost. However, these studies, which

are based on Generative Adversarial Networks (GANs), is

composed a very heavy architecture. Unlike the commonly

used other deep learning models, generally the GANs

model consists of two or more in a particular case deep

architecture, which has a large computational cost. To

solve this limitation, this paper proposes an efficient

generator module called DCBlock (Depthwise separable

Channel Attention Block). DCBlock consists of a depthwise

separable convolution with a relatively low computational

cost to replace the standard convolution commonly used in

the image to image translation, and channel attention to

compensate for information loss caused by depthwise

separable convolution. DCBlock showed similar

performance to the existing original model while reducing

the number of parameters that represents the amount of

computation by up to 91.6%. Besides, we experiment with

the proposed method for various novel researches and

prove that the problem is solved.

Keywords-component Generative Adversarial Networks ,
Unpaired Image-to-Image translation, Efficient model
architecture, deep learning

I. Introduction
Recently, image-to-image translation studies using
Generative Adversarial Networks (GANs) [1] produce
plausible results. GANs can translate the style of the image
to another domain [2-5] or generate new high-quality images
with high resolution [6,7]. However, GANs are very
expensive to compute because of standard convolutional
layers, such as convolutional neural networks using very
deep architectures (e.g. VGG [8], ResNet [9], AlexNet [10]).
Therefore, the number of parameters representing the
model's complexity will appear dramatically higher. A large

DOI reference number: 10.18293/SEKE2020-028.

*Corresponding Author

number of parameters have a significant impact on training
and inference time and requires high memory resources
which is the major limitation for many Image-to-Image
translation applications to be applied in real world.

To solve the aforementioned problems, this paper
introduces the “Depthwise-separable Channel attention
Block (DCBlock)” which replaces standard convolution with
depthwise separable convolution and applies channel
attention for an efficient unpaired image to image translation.
DCBlock dramatically reduces number of trainable
parameters that enables use of GANs in applications with
limited resources. When we first tried to reduce the number
of parameters, we replace standard convolution with
depthwise separable convolutions. However, depthwise
separable convolution is known to cause information loss
[11,12]. Information loss causes poor quality image
generation in the GAN model. At this point, we considered
how to generate the image as natural as the existing other
methods and were inspired by Zhang et al [13] who using
channel attention in the residual block. Applying the channel
attention focuses on the important parts in feature and make
up for information loss, thus ensuring the quality of image.
Therefore, we applied the techniques mentioned earlier to
create a module called DCBlock. DCBlock is a replacement
for “Resblock” [9] which is usually used in GAN
architectures [2-5] for image-to-image translation.
Overall, our contributions are as follows:
⚫ We propose a DCBlock that reduces number of

parameters and generate almost similar quality images
as existing image-to-image translation models

⚫ We have demonstrated how to use channel attention to
avoid information loss in depthwise separable
convolution.

⚫ We provide experimental results, including

quantitative and qualitative assessments of our results

with existing models and ablation study on the effect

of channel attention on our model

13

 In conclusion, our method can generate the same quality

image even though we reduce the parameters of existing

baseline models.

II. Related Work

 Generative Adversarial Networks. Generative

Adversarial Networks (GANs) have shown great

performance in image generation and image translation [2-5].

Inspecting image generation mechanism of GANs, generator

tries to produce fake images that are indistinguishable from

the real ones, while a discriminator tries to distinguish the

real image from the fake or generated images. Since two

networks are opposing, what each network learns is called

“adversarial loss” which is a key point in GAN. In the basic

GAN [1] model, there is one generator and one discriminator,

but nowadays there are many models with multiple

generators and discriminators depending on purpose.

 Unpaired Image-to-Image Translation. Image

translation that proceeds with paired data is often difficult to

apply because data is rarely paired in the real world. On the

contrary, using unpaired training data is suitable for real-

world application, Consequently, there are various GAN

methods presented. CycleGAN [2] learns the cycle

consistency loss by mapping the two domains separately in

two generators. Among the methods using attention guided,

AttentionGAN [4] is a model that adds attention mechanism

to CycleGAN. It can make the important part changes via the

built-in attention mechanism without the need for additional

labeled data or models. The case of multimodal is more

efficient than the above models when generating a diversity

of images. StarGAN [3] consists of one generator and several

discriminators, which efficiently generate various images to

increase efficiency and quality. MUNIT [5] creates

multimodal images without any guides. MUNIT is composed

of contents encoder and style encoder for recombine random

noise with input contents at style space.

Efficient CNN Architecture. Many networks using

depthwise separable convolution have been studied for

efficient neural networks. At first, Xception [11], an

architecture inspired by inception and depthwise separable

convolution, proposed an extreme version inception module

that does 1x1 conv first and then performs spatial correlation

mapping on all output channels individually. MobileNet [12]

also use depthwise separable convolution and additionally

proposed shrinking hyper-parameter consisting of a width

multiplier to control the input and output channels and a

resolution multiplier to adjust the size of the input image.

ShuffleNet [14] highlights that pointwise convolution is still

a high cost area. To solve this problem, ShuffleNet designed

channel sparse without connecting all weights, and shuffled

groups to prevent the problem of getting only information

flow for a specific area as input.

As we have seen, efficient CNN networks are being actively

researched and real-world applications using them are

actively being developed. Therefore, we will introduce a

module to be used in the GAN method for efficient image-

to-image translation.

III. DCBlock
To address the heavyweight model that unpaired image-to-

image translation with GAN has, we proposed DCBlock

(Depthwise separable Channel attention Block). At first, we

applied depthwise separable convolution to reduce number

of parameters. However, as can be seen in Xception [11], it

causes information loss. Xception bridges this gap with

residual connection but in image-to-image translation did not

alleviate it, causing poor generation. Since depthwise

separable convolution is performed for each channel, the loss

of the feature appearing in the whole part is inevitable.

Accordingly, to tackle an optimal balance between the qual-

ity of output and computational cost, we had to add a

technique to compensate for information loss. Therefore, we

applied an attention module to keep the information we need

as much as possible and not lose it even in deep architectures.

Our proposed module DCBlock is shown in Fig 1. It consists

Fig. 1 . DCBlock Architecture

14

of two sessions, Depthwise separable session and Channel

attention session. In DCBlock, the input feature and output

feature will be feed to each block proceeding residual

learning. For input feature 𝐹𝑛, DCBlock can be formulated as

follows:

𝐷𝐶(𝐹𝑛) = 𝐹𝑛 ⊕ 𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛)

⊕ 𝐶𝐴(𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛)) ,
(3)

where 𝐷𝐶(∙) denote DCBlock module and 𝑆𝑑𝑒𝑝𝑡ℎ(∙), 𝐶𝐴(∙)

denote depthwise separable session and channel attention

session. Depthwise separable session significantly reduces

the number of parameters than the standard convolution of

the existing resblock. And channel attention that denoted

𝐶𝐴(𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛)) is formulated as,

𝐶𝐴 (𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛)) = 𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛)

⊗ 𝑆𝑎𝑡𝑡 (𝑆𝑑𝑒𝑝𝑡ℎ(𝐹𝑛)),
(4)

where 𝑆𝑎𝑡𝑡(𝐹𝑛) is attention map extracted by channel atten-

tion. This is a statistic of the channel obtained through the

gating mechanism [15], which can prevent the information

loss. In summary, we present DCBlock which a method that

is efficient and produces quality similar to existing models.

In the next part, we describe a detailed description of the

DCBlock configuration.

Depthwise Separable Convolution. As explained in the

previous part, to reduce number of parameters, we used

depthwise separable convolution, which composed a

combination of depthwise convolution and pointwise

convolution. In depthwise convolution, there are filters for

the number of channels to extract spatial features, which is

why the number of input and output channels is the same.

Depthwise convolution is can be written as,

where �̂� denote kernel size of depthwise convolution, i,j,m

denote width, height, input channel and 𝐹 denote feature map.
And pointwise convolution is a 1x1 convolution, and the size

of the filter is fixed to 1x1. In contrast to the depthwise

convolution, pointwise convolution is performed only on the

channel without dealing with spatial features. This helps to

greatly reduce the amount of computation in DCBlock.

Table I shows the differences between the parameters and

computational costs of the two convolutions.

Table I

 COMPARISON OF TWO KIND OF CONVOLUTIONS

Method
Standard

Convolution

Depthwise Separable

Convolution

of Param 𝐾2 × 𝐶 × 𝑀 𝐶 × (𝐾2 + 𝑀)

Computational

cost
𝐾2 × 𝐶 × 𝑀 × 𝐻 × 𝑊 𝐶 × 𝐻 × 𝑊 × (𝐾2 + 𝑀)

where K denote kernel size, C, M denote input and output

channel size and H, W denote input height, width. As Table

I shown, Standard convolution has a computational cost of

𝐾2 × 𝐶 × 𝑀 × 𝐻 × 𝑊 while depthwise separable convolution

has 𝐶 × 𝐻 × 𝑊 × (𝐾2 + 𝑀). Dividing the two costs to see the

difference shows that the cost has reduced by
1

𝑀
+

1

𝐾2. This

has great effect in reducing proportionally increasing

parameters in GANs where relatively deep networks are used.

�̂�𝑘,𝑙,𝑚 = ∑ �̂�𝑖,𝑗,𝑚 × 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚𝑖,𝑗 , (5)

Fig. 2. Output Comparison of The Two Methods

15

Channel Attention Mechanism. Channel attention,

proposed by Zhang et al [13], is one of the attention’s

variations that leverages the interdependencies between the

channel to focus on informative feature. It uses global

average pooling to compress channel information and restore

the feature through the convolution layer. Subsequently, the

channel statistics are extracted via the gating mechanism [15].

This effect enhances and restores the feature for the focused

part of the network. Consequently, we use channel attention

to sustain as many features as possible even in deep architec-

tures and to address information loss caused by depthwise

separable convolution. We provided more details about

Channel Attention Mechanism usage in the next section and

show how it affects to generated images in section 4.

IV. Experiments
To explore the suitability of proposed model, we evaluated

DCBlock quantitatively and qualitatively on various datasets,

comparing different models. The method of experiments is

replacement of the “Resblock” [9] with a “DCBlock” on

other novel models as we mentioned at section II.

Baseline Models. As baseline models, we adopt

CycleGAN[2], AttentionGAN [4], StarGAN [3] and MUNIT

[5]. Since they include resblock in their models, they are

suitable models for evaluation. For comparison, we apply

DCBlock to aforementioned models, and compared the

performance and number of parameters. CycleGAN consists

of two generators and two discriminators, where the

generator typically uses nine resblocks, which could be six

or U-Net [16] depending on the resolution of images dataset.

We used horse2zebra datasets [2] for this task.

AttentionGAN has a similar architecture to CycleGAN. It

has also nine or six resblocks and additionally produce

attention mask via a built-in attention mechanism. For the

experiment, we used the selfie2anime dataset created in Kim

et al [17] for the AttentionGAN. StarGAN consists of one

generator and N discriminators, where N is datasets number

of class. In addition, StarGAN generator consists of six

resblocks. For StarGAN experiments we used celebA dataset.

MUNIT consists of a content encoder and a style encoder as

described in the paper. In the MUNIT model, resblocks were

applied only for the content encoder. For the experiments, we

use summer2winter yosemete dataset [2] with MUNIT

model.

Evaluation Metrics. In quantitative evaluation, we

measured the quality and diversity of the image with four

metrics along the baseline papers. FID [18] uses the

inception-v3[22] model to extract features and measure the

distance between the distribution of real and fake images.

The lower value of FID is more similar with real image.

LPIPS [19] is perceptual metric about patch images. LPIPS

evaluate the distance between images patches. Although It

indicated that higher is different, and lower is more similar,

we use it as a measure of the diversity of the image. SSIM

[20] is a metric that handles the structure of an image. It

evaluate three factors that affect perceptual quality: average

brightness, contrast, and structure. SSIM indicates higher is

similar. Inception Score (IS) [21] is similar to FID in that it

uses Inception network [22]. However, they differ in the way

they use features, and IS evaluates how diverse the image is

and how well it can be determined. In qualitative evaluation

was conducted perceptual study according to Kim et al [17].

We conducted a user study in which users voted on their

preference image.

Quantitative Evaluation. As seen in TABLE II, we applied

DCBlock to adopted models. In CycleGAN, replacing the

generator's resblock with a DCBlock shows that the FID,

SSIM, and IS are similar or better, despite a 91.6% reduction

in the number of parameters from 11.06M to 0.87M. In

AttentionGAN, SSIM and IS were lower than original model

when applied, but FID was higher, and the number of

parameters decreased by 69.3% from 11.25M to 3.3M. In

TABLE II

QUANTITATIVE EVALUATION

Method

Generator

Million

Parameter

LPIPS↑ FID ↓ SSIM↑ IS↑

CycleGAN
ResBlock 11.06

Evaluate

only

multimodal

210.48 0.7898 1.3771

DCBlock (Ours) 0.89 195.04 0.8495 1.4354

AttnetionGAN
ResBlock 11.82 221.09 0.4392 1.5045

DCBlock 3.62 226.16 0.4166 1.4620

StarGAN
ResBlock 8.43 0.114 17.61 0.8221 3.2183

DCBlock 2.56 0.109 19.36 0.8252 3.1949

MUNIT
ResBlock 15.02 0.047 105.94 0.3344 1.8457

DCBlock 7.22 0.044 105.81 0.3348 1.8322

16

StarGAN, number of parameters reduced by 70.4% from

8.43 to 2.5, and other metric show that original and DCBlock

generate images of similar quality. And in result of MUNIT,

the number of parameters decreased by 51.9% from 15.02 to

7.22, and similar figures in other metrics as well.

Analyzing the results of quantitative evaluation, we can see

that DCBlock shows similar performance as resblock, a

method of each model, while dramatically reducing the

number of parameters.

Table III

PREFERENCE PERCENTAGE OF USER SCORE

Model Original (Resblock) DCBlock(Ours)

CycleGAN

(horse2zebra)
51.4(257) 48.6(243)

StarGAN

(CelebA)
54.2(271) 45.8(229)

Qualitative Evaluation. We provide 10 randomly sampled

images from CycleGAN [2] (horse2zebra) and StarGAN [4]

(CelebA) with DCBlock and the original model pairs to 50

participants, and participants evaluate the fake images to

choose what they think is more natural. We inform the

participant that only the domain of fake image and the

original image. The results of the user study are shown in

Table III. As we aimed for, both methods showed nearly

similar preference percentages. First, the two methods of

CycleGAN have a difference of 2.8% p (14 votes), which is

higher than our method. And StarGAN showed the original

with an 8.4% p (42 votes) high preference.

 As a result, as shown in Fig. 2, our module produces a very

similar level of image quality, although it is slightly less in

terms of preference than the original module.

Ablation Study. As discussed in section 3, channel attention

[13] is an important contribution to image quality in this

paper. Our ablation study examines how channel attention

affects our module and contribute to generating images. To

verify the impact of channel attention, we compared

CycleGAN's original model, the "without-channel-attention"

model using only depthwise separable convolution, and

DCBlock. In terms of number of parameters, CycleGAN, as

provided TABLE IV, has 11.06 million parameters, without-

channel-attention has 0.66 million parameters and ours has

0.89 million. In Fig 3, several failure cases are shown in

CycleGAN original model and without channel attention

module. Second (The enlarged images are the first column)

and fifth column images were not translated to zebra when

horses in blurry form were used with CycleGAN and

without-channel-attention model. However, when we use our

module, we can see that the blurry horses are also translated

to zebra. And as shown in fourth column, input image is

difficult to recognize the horse on the hill with human

perception. Despite CycleGAN and Without-channel-

attention failure that translate wrong part (i.e. sky), our

Fig. 3. Ablation Study Comparison

17

method overcomes this issue. As a result, adding channel

attention increases a small number of parameters, however,

contributed to generate the similar quality as the existing

model or improve to better results. This is clear to say that

channel attention contributes to extracting the righter focus

even in the images that are difficult to distinguish.

Table IV

COMPARISON OF ABLATION STUDY

Model
Millions of

parameters

CycleGAN original 11.06 M

Without-CA 0.66 M

Ours (DCBlock) 0.89 M

V. Conclusion
In this research, we proposed DCBlock that solves high

computational cost problem in the unpaired image-to-image

translation with GANs. DCBlock overcome the large number

of parameters and high requirements of memory resources

while ensuring the quality of the image. Experimental results

show that when our method is applied to the baseline method,

it generates images of similar quality or more natural to the

existing method while reducing the number of parameters.

Since DCBlock is a lightweight network, it is thought to be

easier to use in a real world with limited resources.

Acknowledgements

This research was supported by the MSIT(Ministry of

Science and ICT), Korea, under the ITRC(Information

Technology Research Center) support program(IITP-2017-

0-01642) supervised by the IITP(Institute for Information &

communications Technology Promotion)

Reference
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio. Generative

adversarial nets. In Advances in Neural Information Processing

Systems (NIPS), 2014, pages 2672–2680.

[2] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial networks. In

Proceedings of the IEEE International Conference on Computer

Vision (ICCV), 2017.

[3] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo,

“Stargan: Unified generative adversarial networks for multi-domain

image-to-image translation,” in IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 8789–8797 .

[4] H. Tang, H. Liu, D. Xu, P. Torr, N. Sebe. AttentionGAN:

Unpaired Image-to-Image Translation using Attention-Guided

generative Adversarial Networks. arxiv preprint. Arxiv :

1911.11897, 2019

[5] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal

unsupervised image-to-image translation,” in European Conference

on Computer Vision (ECCV), 2018, pp. 172–189.

[6] C. Ledig, L. Theis, F. Husz ár, J. Caballero, A. Cunningham, A.

Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al.,

“Photorealistic single image super-resolution using a generative

adversarial network,” in IEEE Conference on Computer Vision and

Pattern Recognition, 2017, pp. 4681–4690.

[7] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and

C. Change Loy, “Esrgan: Enhanced super-resolution generative

adversarial networks,” in European Conference on Computer

Vision, 2018, pp. 63–79.

[8] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for

image recognition. arXiv preprint arXiv:1512.03385, 2015.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, 2012, pages

1097–1105.

[11] Chollet, F. Xception: Deep learning with depthwise separable

convolutions. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017, 1800–1807

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,W.Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[13] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image

super-resolution using very deep residual channel attention

networks,” in European Computer Vision Conference (ECCV),

2018.

[14] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An

extremely efficient convolutional neural network for mobile

devices,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 6848–6856.

[15] Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks.

arXiv preprint arXiv :1709.01507 (2017)

[16] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional

networks for biomedical image segmentation. In: International

Conference on Medical image computing and computer-assisted

intervention. pp. 234{241. Springer (2015)

[17] J. Kim, M. Kim, H. Kang, and K. Lee, “U-GAT-IT:

Unsupervised generative attentional networks with adaptive layer-

instance normalization for image-to-image translation,” arXiv

preprint arXiv: 1907.10830, 2019.

[18] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S.

Hochreiter, “Gans trained by a two time-scale update rule converge

to a local nash equilibrium,” in NIPS, 2017.

[19] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.

The unreasonable effectiveness of deep features as a perceptual

metric. In CVPR, 2018.

[20] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,

“Image quality assessment: From error visibility to structural

similarity,” IEEE Transactions on Image Processing, vol. 13, 2004.

[21] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A.

Radford, and X. Chen, “Improved techniques for training gans,” in

Neural Information Processing Systems, pp. 2234–2242, 2016.

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,

“Rethinking the inception architecture for computer vision,” in

IEEE Conference on Computer Vision and Pattern Recognition, pp.

2818–2826, 2016.

18

A Detect-and-Modify Region-based Classifier
to Defend Evasion Attacks

Jiawei Jiang1, Yongxin Zhao∗1,2, Xi Wu3 and Genwang Gou1

1 Shanghai Key Laboratory of Trustworthy Computing,
2 National Trusted Embedded Software Engineering Technology Research Center,

East China Normal University, Shanghai 20062, China
3 The University of Sydney, Australia

Abstract.
Deep Neural Networks (DNNs) are powerful models that have

achieved impressive results on image classifications. However, they
are vulnerable to be attacked by adversarial examples, which are
crafted to cause prediction errors in DNNs. In order to make the net-
works more robust and reliable, in this paper, we present an improved
region-based classification to mitigate the evasion attack, which is
well known to attack DNNs via generating adversarial examples.
Specifically, in our framework, an image is considered as a matrix of
Markov Chains and we detect possible adversarial examples accord-
ing to the Image Transition Probabilities (ITPs) in Markov Chains.
Furthermore, we modify the original ITPs of the detected adversarial
examples by using the saliency map of ITPs, and we employ our im-
proved region-based classification on these updated adversarial ex-
amples to get a better output prediction. Finally, our experiments
illustrate that our approach reduces the test errors imposed by ad-
versarial examples on MNIST datasets and CIFAR-10 datasets.

1 Introduction
In recent years, deep learning has achieved remarkable results in
image classification [5], malware detecting [3]. Though deep net-
works have exhibited a very good performance in classifications, re-
searchers from the machine learning area have found a fatal weak
point that Deep Neural Networks (DNNs) are extremely vulnera-
ble to be attacked by adversarial examples [14]. In 2014, Szegedy
et al. [14] firstly proposed the concept of adversarial example, which
is a kind of images crafted by adding tiny perturbations into normal
images (i.e., normal examples). For instance, an attacker may add
a small noise into a test example such that it can deceive the state-
of-the-art classifiers into giving an incorrect classification, which is
also called the evasion attack. Recently, many algorithms, including
FGSM [4], JSMA [12], have been proposed to generate adversarial
examples, which make the rate of wrong predictions given by DNNs
classifiers much higher. Moreover, because of transferability [11],
an adversarial example generated by one DNN model is also able
to mislead other DNN models which may have different network
structures and physical attacks [6]. Thus, adversarial examples sig-
nificantly limit the use of deep learning, especially in safety critical
applications such as self-driving cars [9]. It is important for us to
develop an approach to defend against adversarial examples and to
mitigate the evasion attack from DNNs.

* Corresponding Author: yxzhao@sei.ecnu.edu.cn

To defend against evasion attacks, some defense methods have
been proposed such as detecting adversarial example, adversarial
training and distillation defense [7]. The method of detecting adver-
sarial example is quite straightforward that the detection model de-
termines whether an input is legal or not according to the differences
between adversarial examples and normal examples. If the input is il-
legal, an exception handling strategy will be executed. However, it is
usually difficult to design a proper exception handling strategy. The
state-of-the-art detecting adversarial example method, which consid-
ers an image as a Markov Process, was proposed by Zhou et al [15].
Additionally, we can also mitigate evasion attacks by enhancing the
robustness of networks themselves. Goodfellow et al. [4] used ad-
versarial examples to train DNNs models, which is well known as
adversarial training. Besides, Papernot et al. [13] proposed a distilla-
tion method to make DNNs robust against adversarial attacks, which
uses the knowledge of the network to improve its own robustness.
However, all these methods above sacrifice the classification accu-
racy of normal examples.

In 2018, Cao et al. [1] proposed the region-based classification al-
gorithm, which samples some examples from a hypercube area cen-
tered by a test example and selects the label which appears most as
the prediction result of the test example after predicting labels of
all these sample examples via a trained DNNs model. Even though
this algorithm not only maintains a high accuracy of DNNs classi-
fiers on normal examples, but also increases the robustness of DNNs
classifiers against adversarial examples, it in fact heavily relies on
the surroundings of test examples. Specifically, the most sample ex-
amples from the surroundings of the test example can be classified
by the DNNs model, the more reliable and robust of the prediction
result of the algorithm on the existing evasion attacks. In the case
shown in Figure 1, the region-based classification algorithm will be-
have badly because most sample examples from the surroundings (a
hypercube area in blue) of the test example x′ are outside the clas-
sification boundary (a curve in red) and they cannot be classified
by the DNNs model. In this paper, we propose a new algorithm to
improve the region-based classification algorithm for image classifi-
cations. An image is regarded as a matrix of Markov Processes, in
which each Markov Process corresponds to one row of this image.
Firstly, we define the Image Transition Probability (ITP) to repre-
sent the transformation probabilities of all image pixel values, and
we perform 8000 MNIST data with adversarial examples and normal
examples to illustrate that ITP can remarkably distinguish adversar-
ial examples from normal examples. Secondly, we use ITP to detect

DOI reference number: 10.18293/SEKE2020-039

19

Figure 1. A case where the region-based classification behaves badly.
Here, x is a normal example whereas x′ is an adversarial example.

adversarial examples in an image, and decrease the original ITP of
detected adversarial examples in order to make the examples locate
at a proper location and to make the process more reliable. Finally,
we observe that it is easy to sample some examples with much noise
when sample examples from hypercube centered by the test example.
Thus, we newly create an area centered by the test example which is
different from the one used in the region-based classification.

In summary, the main contributions of our work include:

• We propose a new algorithm to address dependency on the
surrounding of the test example through modifying the detected
possible adversarial examples. As far as we know, it is the first
work to combine the region-based classification with detecting
method.

• We give a new region centered by the test example to sample ex-
amples which are different from region-based classification. Our
region is anisotropic and the region given by region-based classi-
fication is isotropic.

The structure of the remaining paper is given as follows. Section 2
shows some preliminaries of this paper including a brief introduction
on evasion attacks and some defense methods. Section 3 describes
our improved region-based classification approach. Our experiments
are in Section 4, which demonstrate the effectiveness of our algo-
rithm. In Section 5 we conclude our work and outlook future works.

2 Preliminaries
We firstly introduce the following notations:

• Let X be the normal example without perturbation.
• Let X ′ represent the adversarial example which is designed by

attacker to make classifiers wrong.
• Let ∇JX(X, θ, y) denote the gradient of cost function in DNNs.

Where, X is the input, y is the true class and θ is the parameter of
neural network.

• We use sign(m) to represent sign function which returns the sign
of a certain numberm (positive or negative). Ifm is metric, it will
return a matrix which consists of −1, 1 and 0.

• Let ε represents a small numerical.

Now, we will give a brief introduction on several typical attacks
and some major defense methods which have been used in our
experiments.

Evasion Attacks. Evasion attacks are well-known attacks in ma-
chine learning area which generate adversarial examples to attack
machine learning models. There are two types of evasion attacks, in-
cluding target evasion attacks and no-target evasion attacks. In target
attack, an adversarial example is designed to make classifiers to give
a wrong prediction. In contrast, an adversarial example is only gener-
ated to make classifiers wrong in the no-target attacks. In this paper,
we only discuss no-target attacks.

1) Fast Gradient Sign Method (FGSM): It is one of the simplest
methods to get adversarial examples by calculating the gradient of
cost function with respect to the input X , which is motivated by
the linear nature of DNNs models. Goodfellow et al. [4] efficiently
get the adversarial example X ′ via the following equation:

X ′ = X + ε · sign(∇JX(X, θ, y))

2) Jacobian-based Saliency Map Attack (JSMA): JSMA is a
method to create an adversarial example by restricting the l0-norm
of the perturbations, proposed by Papernot et al. [12]. It computes
a saliency map by extracting some important pixels from the in-
put image in which a small change can make the output various,
and then modifies these pixels iteratively until getting the output
variously.

3) Carlini Wagner (CW): CW [2] is an efficient algorithm which
generates successful adversarial examples with small noise. It
shows that an adversarial example generated by the CW method is
also effective in defensive distillation networks. Considering three
constraints l0,l2 and l∞, CW attacks can mainly divided into three
attacks as well, i.e., l0 attack, l2 attack and l∞ attack. In our paper,
we mainly use l∞ attack in the experiments.

4) DeepFool: DeepFool is a no-targeted attack proposed by
Moosavi-Dezfooli et al [10]. The key idea of DeepFool is to gen-
erate adversarial examples iteratively, that is each step searches a
decision boundary direction to modify examples. It can generate
adversarial examples with minimum noise.

Defense Methods Against Evasion Attacks. Adversarial examples
have brought great threats to security applications in deep learning
area. In order to defend against adversarial examples, various defense
methods have been advised.

1) Adversarial training: Firstly introduced by Goodfellow et al., it
is an effective defense method which trains the model via aug-
menting the training datasets with adversarial examples. Specifi-
cally, adversarial training can be considered as model regulariza-
tion by adding the loss function of adversarial examples to DNNs
models. Since adversarial training achieves a great effect in deal-
ing with adversarial examples, several variants of it have been pro-
posed with respect to different adversarial attack algorithms. Al-
though adversarial training has the state-of-the-art defending per-
formance, it still has a limitation. Adversarial training is found
that it decreases the classification accuracy on normal examples.
For instance, the DNNs model without adversarial training per-
forms greater than that with adversarial training on CIFAR-10.

20

2) Region-based classification: Although many defense methods
have been proposed, they have the same issue that they sacrifice
the accuracy on normal examples. The region-based classification
achieves a high accuracy on normal examples and also enhances
the robustness of DNNs models. The key idea in region-based
classification is sampling some examples which can help DNNs
models predict the results on test examples. When testing an ex-
ample, it samples some examples from a small region centered at
this example and uses a trained DNNs classifier to test these ex-
amples. The suggested class of this example is the most voted by
the classifier. However, region-based classification cannot behave
well on FGSM attacks, which only gets about 10 percent accu-
racy. It is considered that this method is easy to be attacked by
high-distortion adversarial examples. In this paper, we propose an
improved region-based method to solve this problem.

3 Detect-and-modify region-based classifiers

The region-based classification proposed by Cao et al. [1] depends
on the region centered by the test example. If a test example locates
at the area where most of examples cannot be classified correctly by
the DNNs model, the region-based classification then behaves badly.
In this section we mainly present our detect-and-modify region-based
classifiers to mitigate evasion attacks. There are three main processes

Figure 2. Flow of our approach

in our method, including detecting adversarial examples, modifying
adversarial examples and an improved region-based classification.
Figure 2. shows the whole process of our approach.

When testing an example, we firstly employ ITP, which can sig-
nificantly distinguish adversarial examples from normal examples,
to determine whether this test example is an adversarial example or
not. Specially, if the ITP of this example is greater than the threshold
value derived from training datasets, this example is supposed to be
an adversarial example.

Secondly, if this example is an adversarial example, we use the
saliency map of ITP to modify its original ITP. Thus the updated
example facilitates to decrease its ITP and enhance the reliability.

Thirdly, we use our improved region-based classification to predict
the label of the test example. However, if the test example is a normal
example, we simply use the traditional region-based classification to
predict its label.

The pseudo code of our algorithm is listed in Algorithm 1. There
are four main procedures used by our approach. Procedure detect(x)
determines whether x is an adversarial example or not. Procedure
modify(x) carries out the modification of x if x is detected as an
adversarial example and returns x′. Procedure IRC(x′) proposed by
us, gives the label of x. Procedure RC(x) predicts the label for x.

Algorithm 1 Detect-and-modify region-based classification
Input: A test example x
Output: The prediction label yx of x

1: Flag = detect(x)
2: if Flag == true then
3: x′ = modify(x)
4: yx = IRC(x′)
5: else
6: yx =RC(x)
7: end if
8: return yx

3.1 Detecting adversarial examples
Firstly, we introduce our detecting process. In an image, there are
many pixels and a pixel is usually related to its adjacent pixel in the
same row. In this paper, we consider a single relation that the next
pixel is related to its former pixel. For an image, we consider one
image row as a Markov Chain and the pixel in the same row is equal
to the discrete state of the Markov Chain. Therefore, the image can
be considered as a structure with many Markov Chains. The space
of state in a Markov Chain, which is consist of the value of pixels,
ranges from 0 to 255. The ITP which we firstly proposed represents
the transformation probability of all image pixel values related to
adjacent pixels in the same row. The ITP value can be calculated by
the following formula:

ITP =

H∑
h=1

Ph(x2|x1)× Ph(x3|x2)× · · · × Ph(xw|xw−1),

where Ph(xi+1|xi) is the probability of adjacent pixels in h-th im-
age row and w represents the number of pixels in one image row.
Ph(xi+1|xi) can be gotten in state transition which is calculated
by the normal examples. Then, we calculate the ITP by adding all
Markov chain transitions in an image. We put a single-channel im-
age as an example.

Suppose a single-channel image has H rows and W columns,
which means it includes H Markov Chains and W discrete states
in each chain. Each row of image can be converted into one dimen-
sional vector X with W pixels. So an image is composed by a set
of X1,X2,...,Xm. For a Xm, xnm represents n-th pixel in Xm. Let i
represent the value of xnm range from 0 to 255. The xn+1

m is a pixel
which is next to xnm and its value denotes j. While P (i, j) repre-
sents the transition probability from state value i to state value j. In
other words, Pi,j is the probability of appearance of value pair(i,j)
at two adjacent pixels. So, the transition of probability matrix P can
be described as follows:

P =

 P0,0 · · · P0,255

...
. . .

...
P255,0 · · · P255,255

We can calculate the transition of probability matrix P based on
training sets as below:

Pi,j =

∑N
n=1

∑H
h=1

∑W−1
t=1 hi,j(xt, xt+1)∑N

n=1

∑255
j=0

∑H
h=1

∑W−1
t=1 hi,j(xt, xt+1)

Here, hi,j(xt, xt+1) will be 1 only if the value of two adjacent
pixels is (i, j). Otherwise, it will be 0. H denotes the number of im-
age rows and N is the number of examples in the training set. Then,

21

we can calculate one image row which is considered as a markov
chain transition probability (IRTP) value by the following formula:

IRTPh = Ph(x1, x2)× Ph(x2, x3)× · · · × Ph(xW−1, xW)

where Ph(xi, xi+1) is the probability of adjacent pixels which the
first pixel is i-th position pixel in h-th row. However, the value of P
is so small that we use log in IRTP .

IRTPh = logPh(x1, x2)+logPh(x2, x3)+· · ·+logPh(xW−1, xW)

The ITP is the sum of all IRTP value.

ITP =

H∑
h=1

IRTPh

Because of adding small perturbation, an adversarial example breaks
Markov process nature for image row pixels. Thus, the ITP of adver-
sarial examples is bigger than the one of normal examples. Through
experiment results showed in Figure 3, we can find that the ITP ef-
ficiently distinguishes between adversarial examples and normal ex-
amples.

Figure 3. ITP on mnist datasets, red color represents adversarial
examples and green color represents normal examples

Thus, the ITP is a sum of all markov chain transition probabili-
ties which we consider a image row as a markov chain. Of course,
image transition probability also can be got by considering one im-
age column as a markov chain. So, ITPr represents image transition
probability which consider image row as markov chain. ITPc rep-
resents image transition probability which consider image column
as markov chain. In our work, image transition probability we have
proposed denotes ITPr . During detecting period, we compute the
image transition probability of test example. If ITP of this exam-
ple more than a the threshold ITPm which can be got from train-
ing dataset, this example maybe adversarial example and need to be
modify. Especially, we transform it into one channel image if this
image is multi-channel image. The process of detecting is showed in
algorithm 2.

3.2 Modifying adversarial examples
Next, we give the process of modifying image after detecting test ex-
ample which is a possible adversarial example. It is difficult to sam-
ple some examples which can be correctly predicted for a adversarial

Algorithm 2 Procedure Detect
Input: A test example x and a threshold value ITPm

Output: Boolean value
1: compute the image transition probability of x as ITPx

2: if ITPm ≤ ITPx then
3: return true
4: else
5: return false
6: end if

Figure 4. The figure shows the samplers from small region centered at
adversarial examples, At last in the figure is adversarial examples which

generated by FGSM

example. As figure 4 showed, the examples sampled around adver-
sarial example is extremely unclear and obscure which has a large
number of noise and can not recognized by us. So it is necessary to
modify image to make the sampled examples with small noise. And
we found that the image transition probability of adversarial exam-
ple is bigger than normal example’s. The image transition probabil-
ity describes the difference on image noise. If the image has much
noise, The image transition probability value will be big. Thus, we
can modify image by making its image transition probability smaller
before region-based classification.

The key idea of modify image is how to choose suitable pixels to
change and how to select suitable values to represent for chose pixels
so that make the image transition probability decrease. To address
this problem, we firstly use saliency map to describe the impact of
each pixel in an image. The saliency map can be got by following
equation
Sr,m,i,n = ITPr,n − ITPr,o

Sc,m,i,n = ITPc,n − ITPc,o

where m represents m-th row or column. r denotes row. i is i-th
pixel in one markov chain. The n denotes pixel value. So ITPr,n

is the value of image transition probability which consider image
row as a markov chain if current pixel value is n. ITPo represents
the value of image transition probability without modifying. Sr,m,i,n

denotes the change of image transition when i-th pixel value turn into
n in m-th row. The Sc,m,i,n represents the change of ITPc that con-
sider image column as a markov chain. Then, we choose pixels to
modify with min Sr,m,i,n in order to decrease ITPr quickly. How-
ever the ITPr of edge pixels which we do not need to modify are
obviously bigger than the others. In other word, only when the all

22

sr,m,i,n is not exceed threshold ITPt, we should choose suitable
value to represent original value. this threshold ITPt can be got in
training datasets by search min value of all edge pixels. In our exper-
iments, we take ITPt −2 for MNIST datasets. Another challenge is
choose suitable pixel n for chose pixel. we search n from 0 to 255
and choose n which satisfy min Sr,m,i,n and Sc,m,i,n is not more
than 0.

3.3 Improving region-based classification

At last, we give a method called improved region-based clas-
sification after modifying detected adversarial examples. Region-
based classification randomly uniformly sample some examples
from the hypercube of test examples x and help test example pre-
dict its label. this hypercube can formally defined: B(x, l) =
{y|yi ∈ [0, 1], |yi − xi| ≤ l,∀i = 1, 2, ..., n}, where yi and xi are
the i-th dimensions of x and y. However, as figure 4 showed, the ex-
amples sampled centered at adversarial example is extremely unclear
and can not recognized by us.

So we need to create a new area which can promise the ex-
ample with small noise when test example is detected as adver-
sarial example. we denote the new area A(x, r) which is cen-
tered at test example x which we consider it as a matrix and
different xi,j has different length ri,j . Formally, A(x, r) =
{y|yi,j ∈ [0, 1], |yi,j − xi,j | ≤ ri,j ,∀j = 1, 2, ..., n}, where i are
the i-th row of metric x,metric y, metric r and j are the j-th column of
metric x, metric y, metric r. Choosing area centered at test example
is equal to determine the metric r on test example x. Specifically, we
learn the length l in r for every dimension of metric x though a search
process described in algorithm 4. The key idea in search process is
selected the max length l such that the image transition probability
of example sampled from A(x, r) is all smaller than the test exam-
ple’s. In our work, it will be modified to be x′ if it is detected as
adversarial example for a test example x. Initially, we set ri,j which
is corresponding to xi,j be a small value. Then we increase ri,j until
image transition probability is bigger than x.

Algorithm 3 Learning metric r by Searching
Input: A text example x with H rows and W columns, ITP value

ITPx of x and an updated image x′ after modifying the ITP
1: ITPx′,i,j,z denotes the image transition probability of x′ when
x′i,j becomes z.

2: l = r0, i = 0, j = 0
3: while i ≤ H do
4: while j ≤W do
5: z1 = x′i,j , z2 = x′i,j
6: while ITPx′,i,j,z1 ≤ ITPx and ITPx′,i,j,z2 ≤ ITPx do
7: ri,j = ri,j + 1

8: z1 = x
′
i,j + ri,j , z2 = x

′
i,j − ri, j

9: end while
10: j = j + 1
11: end while
12: i = i+ 1
13: end while

4 Experiments

This section introduces our experiments on two common image
datasets with our algorithm and compared methods.

4.1 Experiment setup

Datasets: we test our algorithm on two standard image datasets :
MNIST and CIFAR-10. MNIST datasets includes a handwritten
numbers images with 50000 training examples and 10000 testing
examples which size is 28*28. CIFAR-10 has a total of 60,000 color
images. These images are 32*32, divided into 10 categories, each
category has 6000 images.

Nerual Networks: In our experiments, we use a common convolu-
tional neural network described as following:

Layer type
Convolution + Relu

Max pooling
Convolution + Relu

Max Pooling
Convolution + Relu

Max Pooling
Fully connected

Softmax

compared methods: We use four algorithms to generate adversarial
example, such as JSMA, DeepFool, FGSM and CW. Especially, we
take ε 0.2 in FGSM algorithm. And we use l∞ to generate adversarial
examples in CW algorithm. Then we Compare our method with the
following classifiers in same adversarial examples.

• adversarial training:First, we use adversarial training to learn a
DNN model for each datasets. Recently, A popular adversarial
training algorithm which was proposed by Madry et al [8] use
PGD algorithm to generate adversarial examples and learn the
DNN classifier with these adversarial examples and normal ex-
amples. However, These adversarial examples have so much noise
that sacrifices classification accuracy significantly. Thus, we adopt
DeepFool to get adversarial examples in adversarial training.

• region-based classification: For each datasets, we train a DNN
classifier which structure is the same as adversarial training’s. Ac-
cording to Cao et al work. we respectively set r which determine
the size of region centered at test example to be 0.3 in MNIST
datasets and take r 0.02 for CIFAR-10 datasets. In addition, we
sample 100 examples in region-based classification for each test-
ing example.

• our methods: The architecture of nerual networks is same with
compared method’s. we set iptm is 1800 in MNIST datasets and
2000 for CIFAR-10 during detecting adversarial examples. Dur-
ing region-based classification, we sample 100 examples for each
testing example.

4.2 Results

First, we perform a experiment which test normal example on our
methods and compared methods which test 5000 examples from
MNIST testing datasets and CIFAR-10 datasets. The result is showed
in Table 1 which show classification accuracy on normal examples.
From the table 1, we can find that our methods get better accuracy
on normal examples than adversarial training and achieve the same
accuracy with standard networks. Next, we test totally 4000 adver-
sarial examples of MNIST datatsets generated on testing datasets for
region-based classification and our methods. These adversarial ex-
amples is generated by FGSM, JSMA, CW and DeepFool which each
methods generated 1000 adversarial examples. The result is showed

23

Table 1. Classification accuracy on normal examples

MNIST CIFAR-10
standard CNNs 99.1% 89.8%
Adversarial training 98.3% 87%
region-based classification 99.1 % 89.8%
our methods 99.1 % 89.8%

in table 2. It showed that our methods perform better than region-
based classification on mnist datasets. Especially in CW attack, our
methods can evasion this attack.

Table 2. Classification accuracy on adversarial example

Method
MNIST datasets CIFAR-10 datasets

region-based classification our method region-based classification our method

FGSM 16.2% 54.5% 13.4% 52.0%

DeepFool 5.1 % 59.8% 10.6 % 50.3%

JSMA 7.3 % 46.2% 6.0 % 56.7 %

CW-L∞ 23.1 % 79.8% 16.5 % 73.7%

In the end, we compare region-based classification and our method
on CIFAR-10 datasets. CIFAR-10 datasets is a three channel im-
age set. First, we use CIFAR-10 trianing datasets train a CNNs and
randomly sample 1000 examples from CIFAR-10 testing datasets as
testing examples. Then we use FGSM , CW and DeepFool methods
to generate adversarial examples based on testing examples. Espe-
cially, we transform three channel image into one channel when carry
out our detecting methods. Though experiments, as table 2 showed,
our methods also achieve good accuracy on adversarial examples.

5 Conclusion and Future work
In this work, we propose a detect-and-modify region-based classifier
to mitigate evasion attacks in DNNs. Firstly, we observe that region-
based classification is limited by the surroundings of examples (es-
pecially the adversarial examples). Thus we use ITP, which can re-
markably distinguish adversarial examples from normal examples, to
detect whether the test example is an adversarial example or not. In
order to improve the accuracy on adversarial examples, we modify
the ITP of the test example which may be an adversarial example by
decreasing its original ITP. Then we use our improved region-based
classification to predict results on test examples.

We apply our approach on experiments with different adversar-
ial examples generated by different methods and different datasets.
The experimental results show that our method behave better than
the traditional region-based classification. As far as we know, our
work is the first work to improve the region-based classification by
combining it with detecting methods. The improved method finally
solves the issue that the region-based classification is limited by the
surroundings of test examples. In the future, we will continue im-
proving our method to make it better to modify images with a large
perturbation.

6 Acknowledgement
This paper is partially supported by National Key Research and De-
velopment Program of China (Grant Nos. 2019YFA0706400), Sci-
ence and Technology Commission of Shanghai Municipality Project

(No. 18ZR1411600) and the Open Project of Shanghai Key Labora-
tory of Trustworthy Computing (No. 08dz22304201804).

REFERENCES
[1] Xiaoyu Cao and Neil Zhenqiang Gong, ‘Mitigating evasion attacks to

deep neural networks via region-based classification’, in Proceedings of
the 33rd Annual Computer Security Applications Conference, Orlando,
FL, USA, December 4-8, 2017, pp. 278–287, (2017).

[2] Nicholas Carlini and David A. Wagner, ‘Towards evaluating the robust-
ness of neural networks’, in 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pp. 39–57,
(2017).

[3] Bingcai Chen, Zhongru Ren, Chao Yu, Iftikhar Hussain, and Jintao Liu,
‘Adversarial examples for cnn-based malware detectors’, IEEE Access,
7, 54360–54371, (2019).

[4] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, ‘Explaining
and harnessing adversarial examples’, in 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, (2015).

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, ‘Imagenet
classification with deep convolutional neural networks’, in Advances in
Neural Information Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceedings of a meet-
ing held December 3-6, 2012, Lake Tahoe, Nevada, United States, pp.
1106–1114, (2012).

[6] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio, ‘Adversarial
examples in the physical world’, in 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings, (2017).

[7] Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor C. M.
Leung, ‘A survey on security threats and defensive techniques of ma-
chine learning: A data driven view’, IEEE Access, 6, 12103–12117,
(2018).

[8] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu, ‘Towards deep learning models resistant to
adversarial attacks’, in 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings, (2018).

[9] Roland Meier, Thomas Holterbach, Stephan Keck, Matthias Stähli,
Vincent Lenders, Ankit Singla, and Laurent Vanbever, ‘(self) driving
under the influence: Intoxicating adversarial network inputs’, in Pro-
ceedings of the 18th ACM Workshop on Hot Topics in Networks, Hot-
Nets 2019, Princeton, NJ, USA, November 13-15, 2019, pp. 34–42,
(2019).

[10] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard, ‘Deepfool: A simple and accurate method to fool deep neural
networks’, in 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp.
2574–2582, (2016).

[11] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow, ‘Trans-
ferability in machine learning: from phenomena to black-box attacks
using adversarial samples’, CoRR, abs/1605.07277, (2016).

[12] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson,
Z. Berkay Celik, and Ananthram Swami, ‘The limitations of deep learn-
ing in adversarial settings’, in IEEE European Symposium on Security
and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24,
2016, pp. 372–387, (2016).

[13] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Anan-
thram Swami, ‘Distillation as a defense to adversarial perturbations
against deep neural networks’, in IEEE Symposium on Security and
Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pp. 582–597,
(2016).

[14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian J. Goodfellow, and Rob Fergus, ‘Intriguing properties
of neural networks’, in 2nd International Conference on Learning Rep-
resentations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings, (2014).

[15] Yue Zhou, Xiaofang Hu, Lidan Wang, Shukai Duan, and Yiran Chen,
‘Markov chain based efficient defense against adversarial examples in
computer vision’, IEEE Access, 7, 5695–5706, (2019).

24

Inspect Characteristics of Rice via Machine Learning Method
Xin Ma1∗ , Mingliang Li1∗ , Jinxi Kong3 , Siming Zhao4 , Wei Li2† , Xiaohui Cui 2†

1School of Sofware, Tsinghua University
2School of Cyber Science and Engineering, Wuhan University

3GREE Electric Appliances
4College of Food Science and Technology, Huazhong Agricultural University

mx19@mails.tsinghua.edu.cn, lml19@mails.tsinghua.edu.cn, kongjinxi18@gmail.com,
zxmjx@mail.hzau.edu.cn, auto weili@whu.edu.cn, xcui@whu.edu.cn

Abstract-For more than half of humanity rice is life.
Therefore, assessing the quality of rice in fast, accurate
and objective methods has attracted a lot of attention of
rice producers and processors. Unfortunately, the current
inspection methods that focusing on the computer vision
to inspect the characteristics of rice are either cost expen-
sive (e.g., it needs extra sensors to assist photography) or
need to be significantly improved in practice (e.g., framed
object incorrectly). In this paper, we make an in-depth
study of the characteristics of rice and explore an alterna-
tive direction to use machine learning methods to inspect
them through photos taken by cell phones. To be exact,
we develop a new mathematical variation formula and a
new area calculation formula, combining clustering meth-
ods, to inspect the main characteristics of rice both stati-
cally and dynamically. The effectiveness of our approach
is very visible no matter what the type of rice it is, which
is shown by comprehensive experiments on four typical
types of rice datasets. Moreover, We cooperate with one
of the world’s largest home appliance manufacturers, ap-
plying the rice characteristics extraction approach to pro-
duce smart electric rice cookers, thus improving the qual-
ity of life for millions of people.

Keywords— characteristics of rice; machine learning; digital
image processing; IoT

1 Introduction
Among the cereals, rice is the most important foodstuff in the world
and nearly half the population of the world takes rice as a staple
food. Rice is often damaged by the agricultural machinery during
past-harvest handling and processing, such damaged could affect the
quality and appearance. When consuming or processing rice, people
prefer to obtain sound products with less fissure and breakage. Fur-
thermore, people have a higher pursuit of the quality of rice cook-
ing. For rice with different characteristics, we should adopt different
strategies to cook to achieve the best taste. With the rapid develop-
ment of Internet of Things (IoT), smart electric rice cookers are be-
coming much more popular. If we can identify the characteristics of
rice conveniently and accurately and apply it to the rice cooker, we
can improve the quality of life for many people by choosing a spe-
cific cooking strategy dynamically when cooking rice. In this way,
inspecting and understanding the quality of rice is necessary.

∗Co-primary authors.
†Co-corresponding authors.
DOI reference number:10.18293/SEKE2020-057

In general, the methods of inspecting the characteristics of rice
are categorized into two aspects. The first one is to use a special ma-
chine, the rice detector, to inspect the characteristics of rice. It scans
each rice in a special closed space (the space can shield the natu-
ral light and just remains a single light-source to scan the rice like
a scanner), and calculates the characteristics with specific machine-
borne software. Although it can produce very precise results, the
cost is very expensive, the size of such a machine is too huge to be
a home appliance. The second one is to develop a computer vision
algorithm to inspect the characteristics of rice, and it is a thriving
direction currently, because of its potential flexibility and the ex-
tra cost is unnecessary. This is because one can use portable devices
such as mobile phones[7] to take images and validate their algorithm
on such images.

Traditional rice property testing is mainly based on large analyt-
ical instruments in laboratories and the result is used in agricultural
research. Before the rapid development of Internet of Things (IoT),
lightweight rice characteristic analysis was difficult to apply to pro-
duction or life. However, with the popularity of smart rice cookers
and the establishment of IoT, the demand for rice analysis that relies
solely on pictures through computer vision and machine learning has
increased rapidly. This also puts forward requirements on how we
apply machine learning and computer vision technology.

Currently, directly using the traditional computer vision methods
to detect the appearance of rice basically focuses on judging whether
the rice is intact or broken with edge detection [4]. Such a case
always assumes that there is only rice in an image, this is not often
the case where the impurities and connected rice usually arise. The
traditional computer vision method cannot handle this challenge.

chalky ;

 length-width ratio;

broken rice;

intact rice;

Digital

Image

 ProcessIng

Characteristics

Extraction

Machine

Learning

Method

Cooking

Strategy

Figure 1: Application of rice characteristics extraction in smart rice
cooker

In this study, we, instead, explore an alternative direction, which
is to use machine learning to inspect the characteristics of rice. The
five characteristics of rice can be grouped into two sets. The first
group is chalky, it includes the percentage of chalky (The rice with
chalkiness / All rice) and the chalkiness (Amount of chalky pixels
/ Amount of all pixels). The chalkiness indicates the untransparent
region with a grain of rice. Although the chalkiness can measure
the quality of the rice, few computer vision studies focus on it. The

25

second group consists of the length-width ratio, the percentage of
broken rice (Broken rice / All rice) and intact rice (Intact rice / All
rice).

For calculating the chalkiness, we develop a new mathematical
variation formula to set a threshold to separate the chalkiness from
other components, given that the chalkiness is the untransparent re-
gion and other components are transparent. All components within a
grain of rice can be grouped into two aspects, the brightness and the
darkness. The former one indicates the chalkiness in our study while
the last one indicates other components. We can dynamically calcu-
late the difference between the brightness and the darkness with our
new formula. More details are shown in Section III.

For the second group of characteristics, we calculate them by us-
ing the clustering methods (e.g., K-Means or Spectral-Clustering
[10]), which have been widely used in image classification[9]. To
make a reasonable calculation, we consider the impurities and the
connected rice. we develop a new area calculation formula and make
it worked with the clustering method to cluster the four character-
istics. We can observe more details in Section III. Our proposed
method does not need an extra machine, and there is no need for
people to learn professional knowledge.

Our characteristics extraction technology has been adopted by the
world ’s largest home appliance manufacturer to manufacture smart
rice cookers. As shown in Fig.1, when rice pictures taken by mobile
phones are uploaded, digital image processing and machine learn-
ing methods designed by us are used for characteristics extraction.
Upload characteristics to the cloud service to request cooking strate-
gies to achieve the effect of intelligent cooking. By the way, cooking
strategies are provided by cooperative agricultural researchers.

In summary, the major innovations and contributions of this paper
are as follows:

• This paper casts light on applying machine learning to inspect
the rice characteristics. In particular, this paper introduces the
clustering method to the impurities, broken rice, intact rice and
connected rice.

• To the best of our knowledge, this paper proposes for the first
time to develop a new mathematical variation formula to dy-
namically inspect the chalkiness.

• Through comprehensive experiments on inspecting the charac-
teristics of rice, we demonstrate the effectiveness of the pro-
posed approach. Meanwhile, Our characteristics extraction
technology has been adopted by the world ’s largest home ap-
pliance manufacturer to manufacture smart rice cookers, thus
improving the quality of life for millions of people.

This paper is organized as follows. In Section II we discuss some
related work. In Section III, We will present our main idea. In Sec-
tion IV we will show our experiment results, and we conclude in
Section V.

2 Related Work
Many image acquisition instruments and image processing algo-
rithms are based on the computer vision method, and a lot of re-
searchers try to use these instruments and algorithms to inspect the
characteristics of foodstuff. Typically, we categorize them into two
aspects: image acquisition systems and image processing methods.

Image acquisition systems for food. When researchers want to
analyze the characteristics of food, the first step is to collect enough
available images. In current, although there are many instruments,
such as the USB-based camera, scanner, ultrasound, X-ray and near-
infrared spectroscopy, to be used to collect images in practice, it
still needs to design new machine, given that the food has different
shapes and colors. Peter et al. [16] design a line-scan camera to take

the photo to obtain precise information (foreign body) when the food
products pass through the camera, given that the food products can
always mix the foreign body during processing. The camera reaches
to 2000 times per minute. Besides, since some food products exist
special characteristics (e.g., core or bones), researchers try to use the
X-ray radiography to generate available images to analyze. Kim et
al. [11] use a two-dimensional (2-D) X-ray radiography to detect
whether an apple contains watercore or not, especially in the early
stages. Although the machines tremendously facilitate people to im-
prove the efficiency of agriculture product inspecting and handling,
those machines belong to professional equipment and the cost is ex-
pansive.

Image processing methods for food. Image processing is the
principal core for computer vision because the results from image
processing are directly related to the goal of a task. Such steps can
be categorized into two sub-steps, the pre-processing and process-
ing. In some cases, the pre-pocessing step has been adopted to re-
duce the noise in the image to improve the quality of the image for
inspection, with the method of enhancing the important features of
interest [3]. In the process of quality inspection, Dissing et al. [3]
use a rapid multispectral imaging device to quantify the degree of
spoilage for pork, given different qualities of pork display differ-
ent chromatic aberrations in spectral. It can classify 76.13% of the
meat samples correctly. Since different foods hold different colors,
Eddins et al. [8] use the histogram to calculate the threshold value
of different foods to classify. Those methods belong to low-level
image processing. As for high-level image processing, it involves
objection recognition and interpretation, and always requires more
complicated models. Ying et al. [17] use the Artificial Neural Net-
work (ANN) [2] to classify the Huanghua pears.

Instead of directly inspecting the characteristics of rice using the
computer vision method, we apply machine learning to inspect rice
characteristics. In next section, we would introduce the specific
technical details of our approach.

3 The proposed method
In this section, we will introduce how to apply the machine learning
method to inspect the characteristics of rice. Specifically, we will
discuss two important challenges: a new mathematical variation for-
mula for getting chalkiness of rice, and use the machine learning
method to get the quality measurements of rice(the broken rice ra-
tio and the intact rice ratio). Since our focus is on calculating the
characteristics of each rice, the first step is to extract rice from the
picture.

3.1 Preprocessing
Although we can easily observe the rice in an image with the naked-
eyes, it is a non-trivial thing for a computer since there are a lot
of observations(e.g., noise, broken rice and overlapping rice) in an
image, and we need to filter out what we expect. A picture with a lot
of rice is shown in Fig.2.

In Fig.2, the rice shown in sub-figure (a) is taken by the cell-
phone, while that shown in sub-figure (b) is from the camera with
high resolution. The red ellipse marks the chalky grain (this rice
is from the sub-figure (a). For illustrating the chalkiness we use a
specific camera to take the photo). Before framing the rice shown in
sub-figure (a) correctly, we need to know the position of each rice.
Here we adopt the edge detection method. If we can detect the edge
of each rice, we naturally find each rice. The clearer the edge is,
the better the inspection is. Since the sub-figure (a) is taken in the
natural scene, two major kinds of noise (the dust and the blot) are
inevitable. The edge detection method also detects the edge of noise,
which would affect the precision of framing rice. More details are
shown in Section experiment. In this way, we need to filter out the

26

(a) (b)
Figure 2: Sub-figure (a) is taken by the cell-phone, while sub-figure
(b) is from the camera with high resolution. The untransparent re-
gion marked by the red ellipse indicates the chalkiness.

noise within this image before calculating the characteristics of rice.
Because we do not want our algorithm mistakes the noise for rice. In
our study, we adopt the Bilateral filter method to filter out the noise,
because the Bilateral filter can preserve the edge of anobject,which is
important for our future calculation. Although other filters can filter
out more noise in some cases, they blurry the edge of the expected
object. The remaining noise can be separated in the next step by
clustering. We would use an example to demonstrate our point. We
choose different filters and apply them to the image shown in sub-
figure (a) of Fig.2, and the results are shown in Fig.3.

Figure 3: (a) indicates the original sample. (b) indicates the filtered
sample with Gaussian filter [1].(c) indicates the filtered sample with
Bilateral filter [15]. The filtered sample in sub-figure (d) is from the
Average filter while that in sub-figure (e) is from the Median filter.
From the results, we can see that the denoised result from Bilateral
filter is better than others.

In Fig.3, we can see that the sub-figures (b), (d) and (e) blurry
the edge of the rice even though they have denoised the noise. The
blurry edge would cause the edge detection method to detect the
wrong edge of rice. If this happened, the rice cannot be framed cor-
rectly, and we cannot calculate the true characteristic of rice. Despite
the performance of denoise shown in sub-figure (c) is weaker than
sub-figures (b), (d) and (e), the bilateral filter still eliminates most
of the noise and keeps edges as complete as possible. Given that in
most real cases the noise cannot be filtered out completely(even if
we use other filters), we must process the remaining noise in future
steps. So we choose the bilateral filter as the denoise filter. Besides,
some rice may be connected, which also hurts the calculation of the
characteristics but still do not get any treatment. Next, we will ex-
plore how to process the rice image further.

3.2 Frame the rice
First, we find out each rice edge and box it using the rectangle. We
use the Bilateral filter to denoise the noise, and we adopt edge detec-
tion with the Canny operator to detect the edge of rice for framing.
The results are shown in Fig.4.

From sub-figure (b) of Fig.4, we can see that the outlines of those
rice are plotted correctly, even for noise. What we need to do is to
track and find the smallest circumscribed rectangle of the individual
edges. We continue to frame the contour of rice using the tradi-
tional computer vision methods (e.g., topological structural analysis
method [6] [12]). This method uses the encoding method to give dif-
ferent integer values for different edges, the input image is a binary
image, and it uses a function f(i, j) to indicate each pixel value. The

value of f(i, j) would be updated when the method scans the image.
We frame each closed edge with the smallest circumscribed rectan-
gle. The results, after applying the topological structural analysis
method to the rice, are shown in sub-figure (c) of Fig.4.

Although those rice are framed correctly, there remain several
challenges needing to be addressed. 1). The noise has also been
framed. 2). Several rice grains overlapped are extracted by one
frame, for the framed algorithm thinks that the connection area is
integration. These two challenges affect the precision of calculating
the characteristics.

Our method is based on the edge-detection (See the sub-figure (b)
of Fig.4) because detecting the edge is necessary for understanding
the shape of one object. Since the traditional method holds the low
performance, we would introduce our model to improve the perfor-
mance in the next subsection.

3.3 Using clustering method to frame the rice
Although noise hurts the performance of characteristics inspection
of rice products, few studies focus on it. Researchers are just inter-
ested in how to find out the broken rice in a noise-free environment
and try to disperse the rice grains to each other to avoid overlap.
Sansomboonsuk et al. [14] use these features such as area, perime-
ter, circularity and shape compactness as criteria to classify the bro-
ken rice and intact rice. They also utilize the Fuzzy logic method to
organize and classify the class of each kernel. Comparing with hu-
man inspection, the proposed method reaches to 90% accuracy and
saves 70% of the time. However, there still exit challenges.

First, the required time may not be suitable for real-time process-
ing operations. Second, the proposed method could not separate the
line formed by touching kernels, which indicates that there may exist
errors [18].

When we use the common cell-phone to take a photo of rice un-
der the nature scene, the noise and the connected rice is inevitable.
Since the four characteristics (broken rice, intact rice, dust, and con-
nected rice) are different from each other in appearance, we try to
address those issues using the appearance feature. To this end, we
combine mathematical calculations with the clustering method to
inspect the noise and the rice. Our goal is to categorize the cir-
cumscribed rectangles of the individual edges (including noise) into
four categories (noise, broken rice, intact rice, and connected rice).
We make use of the clustering method (K-Means over the case) to
cluster these samples. We expect that a specific sample would be
clustered into the corresponding category (e.g., the noise would be
clustered around the noise category while the connected rice would
be clustered around the connected category). Because the areas of
noise are much smaller than that of intact rice, and the areas of con-
nected rice are much larger than that of normal rice, the performance
of the cluster can be guaranteed. More details are shown in section
experiments.

Next, we would use an example to demonstrate our clustering
method. Assuming there is a rice dataset (X1, X2, ..., Xm), m indi-
cates the number of rice. The function of Xi is shown as follows.

Xi =

[
Hi

Wi

]
(1)

In Eq.(1), Hi indicates the length of rice and Wi indicates the
width of rice. In the initial step, we randomly initialize four categor-
ical centers, which are marked as α1, α2, α3, α4, respectively. For
eachXi, we label it as αj in whichXi has the shortest distance from
αj . The function is shown in Eq.(2).

labeli = arg1≤j≤kmin(

√√√√ n∑
i=1

(Xi − αj)2) (2)

27

(a) (b) (c)
Figure 4: Sub-figure (a) indicates the original image taken by the cell-phone. In this image, we can see that there are much noise and
connected rice. (b) indicates that we adopt edge detection with the Canny operator to plot the outline of rice after using the Bilateral filter.
Although the Bilateral filter filters out most noises, there still remains noise. Sub-figure (c) indicates that we adopt the traditional method
(e.g., [18]) to frame the outline of the rice.

Figure 5: In the left sub-figure, the four red triangles indicate the
categorical centers, and the four red eclipses indicate the four clus-
ters (, broken rice, intact rice and overlapping samples). In the right
sub-figure, the green rectangle frames the intact rice, while the red
rectangle frames the broken rice. The other touched or connected
rice is not framed.

In Eq.(2), k indicates the number of cluster (here k = 4). We
proceed to perform the clustering method, the samples belonging to
the categorical center αj would be updated. The updated function is
shown in Eq.(3).

αj =
1

N(cj)

∑
i∈cj

Xi (3)

In Eq.(3), cj is such sample that holds the shortest distance from
αj , while N(cj) indicates the number of cj . We repeat the Eq.(2)
and the Eq.(3) until the change rate of the categorical center is less
than 0.0001 (the number can be randomly set. In this study, we
found that 0.0001 is enough to categorize all samples. The cluster-
ing results are shown in Section experiment. In this way, we can
filter out the impurities and the connected rice and just keep the bro-
ken rice and intact rice. If we can frame the rice correctly, we can
calculate the characteristics of length-width ratio and percentage of
broken rice as well as that of intact rice.

3.4 Designing new variation formula to inspect the
chalkiness

The chalkiness is an important criterion to measure the quality of
rice, because it can affect the quality of appearance and the economy
of rice. The chalkiness is caused by the insufficient accumulation of
albumen starch and protein granules. The larger region the chalk-
iness is, the less the nutrition of rice is. The image of chalkiness
is shown in sub-figure (b) of Fig.2. Fig.2 implicitly indicates that
inspecting the chalkiness of one rice can rely on the color change.

An intact white-rice is actually translucent (the colored rice is not
translucent so it has no chalkiness) when we observe it with naked-
eyes. The chalky grain is the opaque region (See the marked eclipse
of sub-figure (b) of Fig.2) and it stops the light transmission, while
other regions allow the transmission of scattered light. Based on
these characteristics, Fang et al. [4] hypothesize the chalky grain
is brighter than other parts within a grain of rice, and they set a
threshold to identify the chalkiness. However, there still exist some
issues. 1). The threshold in [4] is fixed, and there are no more de-
tails to demonstrate how to find out such threshold. If the threshold
is fixed, it is hard to distinguish the chalkiness under different chro-
matic aberrations which could affect the performance of the com-
puter vision algorithm. 2). Although the threshold is related to the
gray-level, the number of levels is hard to define because the fewer
levels cannot distinguish the chalkiness and the larger levels could
cause the loss of chalkiness. 3) The color of chalkiness also holds
differences in practice. Also, the different shooting scenes could
cause different color distributions in gray-level(especially shooting
scenes by cell-phone). Thus, we propose our idea to inspect the
chalkiness.

We use the chromatic aberration strategy to calculate the chalki-
ness instead of using a fixed threshold. The difference between our
idea and traditional method [4] is that we first dynamically divide the
rice pixels into two aspects (brightness and darkness), and then find
out whether the difference between the two parts is significant, given
that the shooting scenes are different. Even though the rice belongs
to white rice, the white color is also different (See sub-figure (a) of
Fig.2). Therefore, we need to determine the boundary dynamically.

Moreover, when the rice has been divided into two parts (bright-
ness and darkness), the brightness cannot guarantee that it is real
chalkiness (because when we divide the rice into two parts, it does
not care about whether it exists the chalkiness or not. The brightness
is only relative to the darkness, it may just a little lighter than dark-
ness). The method shown in [4] does not care this detail. Here we
make use of the maximum inter-cluster variance (the larger the inter-
cluster variance, the more the difference) and the minimum intra-
cluster variance (the smaller the intra-cluster variance, the closer the
color of intra-cluster) to find out the optimal Boundary Value (BV)
to distinguish the two parts. The proof of formulation is as follows.

u = w0 × u0 + w1 × u1 (4)

In Eq.(4), u indicates the number of pixels in an image, w0 indi-
cates the bright pixels proportion to whole image and w1 indicates
the dark pixels proportion to whole image. u0 indicates the average
of bright pixels while u1 indicates the average of dark pixels. The

28

variation of two parts is shown in Eq.(5).

V = w0 × (u− u0)
2 + w1 × (u− u1)

2 (5)

In Eq.(5), u indicates the average gray of rice. We integrate the
two equations into a new formula, which is shown in Eq.(6).

V = w0w1(u0 − u1)
2 (6)

The mean square deviation of bright pixels is shown in Eq.(7)
while that of dark pixels is shown in Eq.(8).

V0 =
1

w0

∑
0≤i≤BV

(i− u0)
2pi (7)

V1 =
1

w1

∑
BV≤i≤255

(i− u1)
2pi (8)

In Eq.(7) and Eq.(8), the pi indicates the frequency of ith gray
level. Thus, the boundary value can be formulated as follows.

BV = arg max
0≤BV≤255

V

V0V1
(9)

According to the boundary value (BV), we can divide the rice
into two parts (brightness and darkness) no matter what kind of rice
is or scene is. Then, we calculate the average value of gray levels
of the two parts. When the value reaches to a certain range (Here
we use the term T to indicate this range so T can be viewed as a
threshold), we can point out that the color difference between the
two parts is significant and the two parts can be distinguished. Note
it is feasible to use T as a fixed value here We define the brightness
part as the chalkiness (that is to say, |u0 − u1| > T). We empiri-
cally recommend that T ∈ [20, 30] is a good value for distinguishing
the chalkiness of the rice, the larger one or the smaller one cannot
distinguish the same thing. We can validate our idea in Section ex-
periment.

4 Experiments
To validate our approach, we choose four types of rice, which are
GangTeYou37 (red-brown rice), purple glutinous rice, red glutinous
rice, and Thai fragrant rice (white rice), respectively. We take the
traditional algorithms (e.g., [4], [18], [13]) as the baselines and com-
pare the baselines with our idea.

4.1 Inspecting broken rice and intact rice with
K-Means

length-width
ratio height width area

mean 2.2119 30.4385 14.8607 486.4525
std 0.5262 7.8109 6.8117 343.2865
min 1.0104 16.9706 9.8 191.9999
25% 1.7415 26.0325 11.303 286.6873
50% 2.4289 30.0744 11.7041 355.3846
75% 2.6057 32.9344 12.6196 405.2769
max 2.9706 52.6264 35.1187 1498.3458

Table 1: The four features (length-width ratio, height, width, area)
indicate the features of rectangle which is used to frame the rice.
All framed samples are 60. The mean, std, min, max indicate the
mean-value, variation, minimum value and maximum value of those
60 samples, while the 25%, 50% and 75% indicate the quantile [5].

From the visual perspective, we find that the connected rice has
been viewed as an intact object to be framed and the framed region
is larger than that of single intact rice, while the region of noise is
smaller than that of intact rice. To validate our hypothesis, we cal-
culate each framed region and the corresponding height and width.
The results are shown in Table.1.

In Table.1, the three quantiles indicate that they have similar val-
ues on height, width, and area, while the values of min or max dis-
play the abnormally small or large value, which could be noise or
connected samples in the original image. Therefore, we think that if
we set a categorical center for noise or connected samples, and the
small values or larger values are clustered into this center, we can
filter out the noise or connected samples. In this way, we adopt the
K-Means to cluster these samples. K-Means is one of the simplest
clustering strategies. If we can get good performance on K-Means,
we can also get good performance on other clustering strategies.

In K-Means, the number of clusters is set to 4 (k=4), which in-
dicates the noise, the broken rice, the intact rice, and the connected
rice, respectively. From Table.1, we can see that the minimum value
and maximum value are very different from the three quantiles. The
center point of each cluster is randomly set. Because the samples
within the four clusters hold different region values, K-Means can
guarantee that holding the same or similar region value would be
grouped into the same cluster after iteration. The parameters of K-
Means if default and the clustering processes are as follows.

• We view each frame as an object, and the length and width of
this object would be regarded as the features.

• We randomly initialize the central values of k.
• The rice would be grouped into a certain cluster with the short-

est distance.
• We use the Eq.(6) to repeat the last step until the change rate

of each categorical center is less than 0.0001, given that the
four categories have their special features on the shape (e.g.,
different lengths and widths).

The results are shown in Fig.5. In sub-figure (a) of Fig.5, the left-
bottom cluster, and the right-top cluster indicate the noise and the
connected samples, respectively. We then abandon the two abnormal
clusters using our proposed method, the results are shown in sub-
figure (b).

In comparison with sub-figure (c) of Fig.4, Fig.5 shows the excel-
lent effectiveness. We can see that the broken rice and the intact rice
are framed correctly with different colors, while the and connected
rice are filtered out. Because we abandon them during clustering,
they have not framed by the rectangle. In this way, we can calculate
the length-width ratio, the percentage of broken rice and intact rice.

4.2 Inspecting the chalkiness
We continue to inspect the chalkiness. In general, the chalky is the
opaque part of the rice, and we can observe it with our naked-rice
(See Fig.2). For inspecting the chalkiness, we need to pick up each
framed rice. Here we use the binarization method to collect the
framed rice from an image. After that, we continue to separate the
opaque chalky from the transparent region using Eq.(9). Here we
set T as 20 (we also test other values (from 21 to 30) of T , the re-
sults are similar. Larger T or less T would cause that we cannot
distinguish the chalky), and the separated results are shown in Fig.6.

In Fig.6, the sub-figure (a) indicates the original image. We set T
to 20 and we use Eq.(9) to separate the chalky from the intact rice,
the sub-figure (b) shows the separated result.

4.3 The results of characteristics
After that, We use our methods to calculate the five characteris-
tics (Length-Width Ratio (LWR), percentage of Intact Rice (IR),

29

Table 2: The traditional algorithms are viewed as baselines, and the results produced by the machine (Automated seeds and grains analyzer)
are viewed as the benchmark. The results show that our algorithm approaches the benchmark, which indicates the effectiveness of our
approach.

LWR IR (%) BR (%) Cky (%) Cki

Thai fragrant rice (machine) 3.41 96.13 3.87 18.32 3.33
Thai fragrant rice (our approach) 3.21 90.32 9.6 15.16 2.11

Thai fragrant rice (traditional approach) 2.84 75 25 10.92 0.5
Purple glutinous rice (machine) 2.632 90.42 9.58 0 0

Purple glutinous rice (our approach) 2.82 89.36 10.63 0 0
Purple glutinous rice (traditional approach) 3.52 96.88 3.12 0 0

Red glutinous rice (machine) 1.88 99.03 0.97 0 0
Red glutinous rice (our approach) 1.86 95.35 4.6 0 0

Red glutinous rice (traditional approach) 2.05 90.3 9.7 0 0
GangTeYou (machine) 2.811 93.89 6.11 0 0

GangTeYou (our approach) 2.79 91.63 8.36 0 0
GangTeYou (traditional approach) 3.06 92.04 7.95 0 0

Figure 6: The left sub-figure shows the original image, while the
right sub-figure shows the separated chalky with Eq.(9).

percentage of Broken Rice (BR), percentage of Chalky (Cky) and
Chalkiness (Cki)) on four types of rice (red-brown rice, purple gluti-
nous rice, red glutinous rice, and Thai fragrant rice), and the results
are shown in Table

In Table.2, the results from the traditional approaches ([4], [18],
[13]) are viewed as the baselines, and the results generated by the
machine (Automated seeds and grains analyzer) are regarded as the
benchmark. The results show that our algorithm approaches to the
benchmark and outperforms traditional algorithms, which shows the
effectiveness of our approach.

5 Conclusion
In this study, we’ve created a lightweight and high-precision method
to inspect the major characteristics of rice (length-width ratio, chalk-
iness, the percentage of chalky and the percentage of broken rice
and intact rice). We have achieved our goal by using a combination
of digital image processing and machine learning algorithms. Our
work can effectively extract the characteristics of rice from the pho-
tos taken by mobile phones. In the era of the IoT, we cooperate with
one of the world’s largest home appliance manufacturers to help in-
telligent rice cookers make more intelligent decisions based on the
rice characteristics extraction technology.

References
[1] Volker Aurich and Jörg Weule. Non-linear gaussian filters performing edge pre-

serving diffusion. In Mustererkennung 1995, pages 538–545. Springer, 1995.

[2] Judith E Dayhoff and James M Deleo. Artificial neural networks. Cancer,
91(S8):1615–1635, 2001.

[3] Bjørn Skovlund Dissing, Olga S Papadopoulou, Chrysoula Tassou, Bjarne Kjær
Ersbøll, Jens Michael Carstensen, Efstathios Z Panagou, and George-John Ny-
chas. Using multispectral imaging for spoilage detection of pork meat. Food and
Bioprocess Technology, 6(9):2268–2279, 2013.

[4] Changyun Fang, Xianqiao Hu, Chengxiao Sun, Binwu Duan, Lihong Xie, and
Ping Zhou. Simultaneous determination of multi rice quality parameters using
image analysis method. Food analytical methods, 8(1):70–78, 2015.

[5] Michael Frigge, David C Hoaglin, and Boris Iglewicz. Some implementations of
the boxplot. The American Statistician, 43(1):50–54, 1989.

[6] M. B. Fuchs. Topological structural analysis. Structural Optimization, 13(2-
3):104–111, 1997.

[7] Wenwen Gong, Lianyong Qi, and Yanwei Xu. Privacy-aware multidimensional
mobile service quality prediction and recommendation in distributed fog environ-
ment. Wireless Communications and Mobile Computing, 2018, 2018.

[8] Woods Gonzalez and Richard E Woods. Eddins, digital image processing using
matlab. Third New Jersey: Prentice Hall, 2004.

[9] Yi Hong and Weiping Zhu. Spatial co-training for semi-supervised image classi-
fication. Pattern Recognition Letters, 63(oct.1):59–65, 2015.

[10] Yi Hong and Weiping Zhu. Learning visual codebooks for image classification
using spectral clustering. Soft Computing, 22(6):1–10, 2017.

[11] S Kim and TF Schatzki. Apple watercore sorting system using x-ray imagery: I.
algorithm development. Transactions of the ASAE, 43(6):1695, 2000.

[12] Wei Li, Xiao Liu, Jin Liu, Ping Chen, Shaohua Wan, and Xiaohui Cui. On improv-
ing the accuracy with auto-encoder on conjunctivitis. Applied Soft Computing,
81:105489, 2019.

[13] Xu Li. Research on measurement of rice plumule ratio by machine vision [j].
JOURNAL OF JIANGSU UNIVERSITY OF SCIENCE AND TECHNOLOGY,
6:001, 1997.

[14] Siriluk Sansomboonsuk and Nitin Afzulpurkar. The appropriate algorithms of
image analysis for rice kernel quality evalution. In 20th conference of mechanical
engineering network of Thailand, Bangkok, Thailand, pages 18–20, 2006.

[15] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images.
In Computer Vision, 1998. Sixth International Conference on, pages 839–846.
IEEE, 1998.

[16] Peter Wallin and Peter Haycock. Foreign body prevention, detection and control.
Blackie Academic & Professional, 1998.

[17] Y Ying, H Jing, Y Tao, and N Zhang. Detecting stem and shape of pears using
fourier transformation and an artificial neural network. Transactions of the ASAE,
46(1):157, 2003.

[18] Hemad Zareiforoush, Saeid Minaei, Mohammad Reza Alizadeh, and Ahmad Ba-
nakar. Potential applications of computer vision in quality inspection of rice: A
review. Food Engineering Reviews, 7(3):321–345, 2015.

30

Modeling and Verifying
NDN-based IoV Using CSP

Ningning Chen1, Huibiao Zhu1,∗, Jiaqi Yin1, Lili Xiao1, Yuan Fei2,∗
1Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China
2 College of Information, Mechanical and Electrical Engineering,

Shanghai Normal University, Shanghai, China

Abstract—As a crucial component of intelligent transportation
system, Internet of Vehicles (IoV) plays an important role in the
smart and intelligent cities. However, current Internet architec-
tures cannot guarantee efficient data delivery and adequate data
security for IoV. Therefore, Named Data Networking (NDN), a
leading architecture of Information-Centric Networking (ICN), is
introduced into IoV. Although problems about data distribution
can be resolved effectively, the combination of NDN and IoV
causes some new security issues.

In this paper, we apply Communicating Sequential Processes
(CSP) to formalize NDN-based IoV. We mainly focus on its data
access mechanism and model this mechanism in detail. By feeding
the formalized model into the model checker Process Analysis
Toolkit (PAT), we verify four vital properties including deadlock
freedom, data availability, PIT deletion faking and CS caching
pollution. According to verification results, the model cannot
ensure the security of data with the appearance of intruders. To
solve these problems, we adopt a method derived from Blockchain
in our improvement. Through the analysis of the improved model,
we can truly guarantee the security of NDN-based IoV.

Index Terms—NDN, IoV, CSP, Blockchain, Modeling Verifica-
tion

I. INTRODUCTION
Internet of Vehicles (IoV) [1] arouses wide public concern

in both industry and academia sectors files. However, the cur-
rent Internet is a point-to-point communication and channel-
based security model. In IoV, the current Internet architectures
cannot ensure high-efficiency data distribution and sufficient
data security. To resolve this problem, Name Data Networking
(NDN) [2] is introduced into IoV. NDN is a crucial architecture
of Information-Centric Networking (ICN) [3]. NDN uses data
names instead of IP addresses to retrieve and identify data. Due
to this characteristic, NDN can better meet IoV’s demand for
big data processing.

There are some work on the related files of IoV. Abbas et al.
proposed an road-aware estimation model for path duration in
IoV [4]. In order to develop software-defined wireless network
in IoV, Chien et al. created a SFC-based access point switching
mechanism [5]. However, problems about data distribution and
data security still exist. Therefore, NDN was applied to IoV in
some researches. Su et al. presented a novel framework of a
content-centric vehicular network (CCVN) [6]. Chowdhury et
al. created a novel forwarding strategy CCLF [7]. Kalogeiton
et al. defined a geographical aware routing protocol using

∗Corresponding Author. E-mail address: hbzhu@sei.ecnu.edu.cn (H. Zhu),
yuanfei@shnu.edu.cn (Y. Fei).

directional antennas [8]. From these existing work, we find that
they mainly focus on routing and forwarding. Unfortunately,
there are still many security issues in NDN-based IoV.

In this paper, formal methods are used to verify and analyze
NDN-based IoV. This paper uses Communicating Sequential
Processes (CSP) [9] to formalize the system. Using Process
Analysis Toolkit (PAT) [10], we verify four properties (dead-
lock freedom, data availability, PIT deletion faking and CS
caching pollution). Under the interference of intruders, the
last three verification properties are invalid for the model.
This paper adopts a method based on Blockchain in the
improvement. All properties are satisfied for the improved
model.

The rest of this paper is organized as follows. Section II
presents an overview of NDN-based IoV and Blockchain. In
Section III, we formalize the model of NDN-based IoV. In
Section IV, we verify four properties and give improvement to
the model. Finally, conclusion and future work are described
in Section V.

II. BACKGROUND

This section gives a brief introduction of NDN-based IoV
and Blockchain, especially combinations of them. After that,
we also describe process algebra CSP.

A. NDN-based IoV

Some studies apply NDN to IoV to improve its security and
performance. To further improve its performance, a vehicle
may obtain much data by sending an interest packet. So we
must take separation of interest packets and aggregation of
data packets into consideration. Vehicles could be consumers
or it could be producers of data. This scheme contains the
following entities :
• Consumer and Producer: Consumers are vehicles who

request and consume data packets. As a producer, the
vehicle produces and provides data packets.

• RSU (Road Side Unit): An RSU forwards interest pack-
ets and data packets for vehicles. An RSUC and an RSUP
represent the behavior of an RSU which communicates
with a consumer and a producer separately.

• Router: Routers manage the access processes.
When a consumer wants to get a data packet, the following

sequence of actions occurs:

DOI reference number: 10.18293/SEKE2020-066
31

• A consumer sends an interest packet containing the
required data names to an RUSC.

• The RSUC transmits the interest packet to a router.
• The router addresses the interest packet with process

Interest Processing. If there is a data packet matching
this interest packet in its CS, the router returns this data
packet. Otherwise, this process goes to next step.

• A router obtains the corresponding data through network
propagation.

• Then it deals with received data packets through process
Data Processing and may forward a data packet made up
of all received data to corresponding RSUC.

• The consumer gets the data packet from the RSUC and
verifies the data packet.

The process of producing data is defined similarly, the
following sequence of actions occurs:
• A router gets an interest packet from the network and

disposes it with process Interest Processing.
• A special case is that the matching data packet can be

got from a producer managed by this router.
• The router sends the interest packet to an RSUP.
• The RSUP obtains the data packet from a producer.
• The RSUP returns it to the router.
• The router addresses this data packet with process Data

Processing.
• According to the verification results of this data packet,

it might be injected into the network.
As shown in Fig.1, the interest packets and data packets

forwarding processes are described as follows:
Interest Processing: Whenever a router receives an interest

packet, it queries CS (Content Store) to find out a data packet
matching received interest packet. If so, the data packet is
returned to the corresponding request entities and the interest
packet is discarded. Otherwise, the router finds matching
entries in PIT (Pending Interest Table). If it finds an entry,
it just adds the incoming interface of the interest packet
to that entry. If not, the router queries its FIB (Forwarding
Information Base) to find the outgoing interface for each data
name. If the router finds out all interfaces, it adds a new entry
to PIT including the data names and incoming interface of
the interest packet. Then it puts the data names of the same
forwarding interface into a new interest packet and forwards
those new interest packets. Otherwise, this received interest
packet is thrown away.

Data Processing: When a router receives a data packet, it
traverses PIT with packet’s name firstly. If there are interest
packets waiting for the data packet, the router saves the packet
into CS. If the router receives all the data required for a PIT
entry, the entry is deleted. The data packet containing all data
is emitted from the interfaces that the entry records. The data
packet is cached into the CS.
B. Blockchain

We bring Blockchain into NDN-based IoV in this paper.
The blockchain generation process contains two parts. On the
one hand, transactions are produced, forwarded and verified.

Fig. 1. Processing of interest and data packets in NDN [2]

Fig. 2. Transaction Fig. 3. Block

On the other hand, entities produce, forward, verify and store
blocks. In Section IV, we give a detailed description for
these two parts. The structures of transactions and blocks are
shown in Fig.2 and Fig.3 respectively. Data Packet represents
the result of our repeated hash calculation of hash values
(Data Name, Data Signature and Data Sign Information). A
producer signs these hash values using its private key. Those
components make up a transaction. A blockchain is composed
of blocks. A block contains Block Hash, Nonce, Previous
Block Hash, Time Stamp and Transaction List. Block hash is
the unique identifier distinguishing a block. All transactions
of this block are stored in Transaction List.

In the improvement of NDN-based IoV, the system under-
goes the following main changes:
• Producers create a transaction for each data packet and

transmit the transaction to other entities.
• If a transaction passes verification, routers store and

forward it.
• A router creates a block containing all transactions what

it has saved so far. Then the router adds the block into
its blockchain and forwards this block.

• According to verification results of a received block,
entities add this block into their blockchains and delete
their transactions that are repeated in this block.

• When an entity receives a data packet, it verifies received
data packet using its blockchain firstly.

C. CSP
This section is used to introduce CSP (Communication

Sequential Process). We give part of CSP syntax as follows:

P,Q ::= SKIP | STOP | a→ P | c?x→ P | c!u→ P | P ;Q |
| P ||Q | P�Q | P CB BQ | P [[a← b]] | P [|c|]Q

32

Fig. 4. Producer Modeling

• SKIP represents that a process terminates successfully.
• STOP indicates that a process runs into a deadlock state.
• a→ P denotes that a process P executes after event a.
• c?x → P represents that a process receives a value and

assigns it to the variable x before executing process P .
• c!x→ P describes that a process sends a value v through

channel c, then process P is executed.
• P ;Q represents that process Q is executed after process

P terminates successfully.
• P ||Q denotes that process Q and process P are executed

in parallel.
• P�Q stands for general choice. Selecting process P or

process Q depends on external environment.
• P CBBQ is a conditional choice. If boolean expression

B is true, process P will be executed. Otherwise, process
Q is executed.

• P [[a ← b]] indicates that a process changes event a for
event b.

• P [|c|]Q represents that processes P and Q execute the
concurrent events on the set c of channels.

III. MODELING NDN-BASED IOV MODEL
In this section, we model NDN-based IoV by using CSP.

This model is formalized based on Section II.
A. Sets, Messages and Channels

For convenience, this section gives some crucial information
about sets, messages and channels models used in our formula-
tion. Six sets are defined. Entity set contains entities including
Consumer, Producer, RSUC, RUSP and Router. Name set
denotes the names of data. PRKey set is composed of entities’
public keys. PUKey set includes entities’ private keys. The
set SigInfo indicates signature information. Content represents
other message contents.

In order to describe message packets transmitted between
entities, this section defines some messages based on those
definitions. E(k,c) indicates that key k encrypts content c .
Each message includes a tag from the set {msgint, msgdata1,
msgdata2}. The messages are transmitted among entities as
follows :

MSGint = {msgint.a.b.n | a, b ∈ Entity, n ∈ Name}
MSGdata1 = {msgdata1.a.b.n.E(K1−1, c).sigin |

a, b ∈ Entity,K1−1 ∈ PRKey,

n ∈ Name, c ∈ Content, sigin ∈ SigInfo}

Fig. 5. Consumer Modeling

MSGdata2 = {msgdata2.a.b.n1.n2.E(K1−1, c1).

E(K2−1, c2).sigin1.sigin2 |
a, b ∈ Entity,K1−1,K2−1 ∈ PRKey,

n1, n2 ∈ Name, c1, c2 ∈ Content,

sigin1, sinin2 ∈ SigInfo}
MSGdata = MSGdata1 ∪MSGdata2

MSG = MSGint ∪MSGdata

MSGdata and MSGint represent the messages of data
packets and interest packets respectively. MSG denotes the
messages between all entities.

To model the communication among components, we give
the definitions of channels.
• channels between consumers, RSUC, routers and RSUP

described by COM PATH:
ComCC,ComRS,ComRR,ComRP,ComPP

• channels of intruders intercepting consumers, RSUC,
routers and RSUP constituted by INTRUDER PATH:

FakeA, FakeB, FakeC, FakeD, FakeE

The declarations of the channels are as follows :

Channel COM PATH, INTRUDER PATH : MSG

B. Overall Modeling
We define a CSP model System0 without intruders. Sys-

tem0 is composed of SystemC and SystemP. SystemC and
SystemP indicate a system which consumes and produces
data respectively. The SystemC model is made up of three
main entities including Consumer, RSUC and Router. SystemP
model contains Producer, RSUP and Router. To take intruders
into consideration, we create SYSTEM based on System0.

SystemC =df

Consumer[|COM PATH|]RSUC

[|COM PATH|]Router

SystemP =df

Producer[|COM PATH|]RSUP

[|COM PATH|]Router

System0 =df

SystemC[|COM PATH|]SystemP

SY STEM =df

System0[|INTRUDER PATH|]Intruder
Consumer, Producer and Router denote the behavior of

the consumers, producers and routers respectively. RSUC and

33

RSUP describe the actions of an RSU which communicates
with a consumer and a product respectively. Considering
the existence of intruders, this part defines Intruder which
intercepts and fakes the messages. Fig.4 and Fig.5 describe
interprocesses communication between processes.

C. Router Modeling

In NDN-based IoV, a router is responsible for forwarding
interest packets and getting data packets. A router incisions
and distributes an interest packet on the grounds of its routing
information. For simplicity, each interest packet contains a
maximum of two data names in our formalization. Then the
router aggregates and forwards received data packets on the
basis of verification results. This section formalizes a process
Routerio without intruders.

Routerio(CSTablei, P ITTablei, F IBTablei) =df

Initia{inFIB = false; inCS = false; inPIT = false;

inFIB1 = false; inFIB2 = false; delPIT = false;

addcs = false; ininterface = 0; outface1 = 0; outface2 = 0}
→ ComRSi?B.C.dn1.dn2→ ininterfece := i→ (inCS = true)
C(∃entry ∈ CSTablei • entry.data1name == dn1
∧entry.data2name == dn2)B (inCS = false)

 ;

 (ComRSinterface!C.B.dn1.dn2.CSTablei[CSindex][2]
.CSTablei[CSindex][3].CSTablei[CSindex][4].
CSTablei[CSindex][5].CSTablei[CSindex][6])
C(inCS == true)B (NOCSi)

 ;

Routeri0

There are several variables appeared in the process. i is the
ID of a router and its channels. A router knows its CS table
CSTablei, PIT table PITTablei and FIB table FIBTablei.
inFIB, inFIB2 and inFIB2 represent querying results for FIB.
Similarly, inCS, inPIT and inPIT1 denote searching results
for CS and PIT respectively. delPIT indicates the router
deletes PIT entries. addcs represents the router adds a data
packet into CS. ininterface records the incoming interfaces
of interest packets. outinterface1 and outinterface2 are the
outgoing interfaces of interest packets.

First, the router receives an interest packet including the
names of required data and records the incoming interface
for the interest packet. Then the router checks its CS to find if
there is a data packet matching the interest packet. If the result
is positive, the data packet is returned to the corresponding
request nodes and the interest packet is discarded. Otherwise,
we define process NOCSi to address the situation in which
the desired data packet cannot be obtained from CS.
NOCSi =df

 inPIT = true;
AddPIT (dn1, dn2, entry.index,
interface, PITTablei)

C(∃entry ∈ PITTablei • entry.data1name == dn1
∧entry.data2name == dn2)B

(inPIT = false;NeedForwardi)

 ;

NOCSi traversals PITTablei according to the names in
the interest packet. If NOCSi finds a matching entry, the
router adds incoming interface of the interest packet into the
entry and discards the interest packet. If not, we give process
NeedForwardi to forward the interest packet.

NeedForwardi =df (inFIB1 = true; outface1 = entry2.outface)
C(∃entry2 ∈ FIBTablei • entry2.dataname == dn1)B
(inFIB1 = false;)

 ;

 (inFIB2 = true; outface2 = entry2.outface)
C(∃entry2 ∈ FIBTablei • entry2.dataname == dn1)B
(inFIB2 = false)

 ;

 (SKIP)C (!(inFIB1 ∧ inFIB2))B(
(AddPIT1(dn1, dn2, P IT length,
interface, PITTablei);Forwardi

) ;SKIP

NeedForwardi queries FIBTablei with the names of the
interest packet. If process NeedForwardi finds an outgoing
interface for each name, NeedForwardi adds a new entry
into PITTablei including the data names and incoming inter-
face of the interest packet. Then we define process Forwardi
to forward the interest packet according to query results
for each name. If NeedForwardi cannot find all outgoing
interfaces, the interest packet is dropped.
Forwardi =df

 ComRRoutface1!msgint.C.D.dn1.dn2→
ComRRoutface1?msgdataD.C.dn1.dn2.
E(prk1 Key, data1).E(prk2 Key, data2).
siginfo1.siginfo2→ Datapacketreceivei

C(outface1 == outface2)B

(ComRRoutface1!msgint.C.D.dn1→
ComRRoutface1?msgdataD.C.dn1.
E(prk1 Key, data1).siginfo1→
ComRRoutface2!msgint.C.D.dn2→
ComRRoutface2?msgdataD.C.dn2.
E(prk2 Key, data2).siginfo2→
Datareceivei

;SKIP

If all data can be got by one outgoing interface, Forwardi
transmits the interest packet from this interface and waits a
matching data packet. If not, Forwardi produces new interest
packets by putting the data names of the same outgoing
interface into a new interest packet. Then Forwardi forwards
each interest packet from corresponding outgoing interfaces
and waits data packets. Datareceivei deals with received data
packets.
Datareceivei =df

inPIT = true;Datasendi(entry3.index);
DelPIT (dn1, dn2, P ITTablei);
AddCS(dn1, dn2, E(prk1 Key, data1),
E(prk2 Key, data2),
siginfo1, siginfo2, CSTablei)
delPIT = true; addcs = true

C(∃entry3 ∈ PITTablei • entry3.data1name == dn1
∧entry3.data2name == dn2)B(

inPIT = false; delPIT = false; addcs = false
)

;

Before introducing process Datareceivei, we define two func-
tions. DelPIT function denotes that the router deletes entries
from the PITTablei according to the input data names. AddCS
function represents that the router adds a data packet into its CS.
When Datareceivei receives data packets, Datareceivei checks
PITTablei. If there is an interest packet waiting for these data
packets, the entry is deleted and these data packets are emitted
through Datasendi(index). Otherwise, the received data packets
are abandoned.

Datasendi(index) =df

Intail{interfacelist = PITTbale[index].interfcelist;

x = 0; y = #interfacelist; } →

34

(0 ≤ x < y)∗ ComRSinterfecelist[x]!msgdataC.B.dn1.dn2.
E(prk1 Key, data1).E(prk2 Key, data2).
siginfo1.siginfo2→ x = x+ 1

 ;SKIP

Datasendi(index) gets the entry of PTITablei with index
index. Then it records the incoming interface list interfacelist
of the entry. Variables x and y represent entries’ index variables
and lengths of interfacelist respectively. Datasendi(index)
queries interfacelist and sends a data packet, containing all
data, from the incoming interfaces recorded in interfacelist.

Routeri =df

Routerio[[

ComRSi!{|ComRSi|} ← ComRSi!{|ComRSi|},
ComRSi!{|ComRSi|} ← FakeCi!{|ComRSi|},
ComRSi?{|ComRSi|} ← ComRSi?{|ComRSi|},
ComRSi?{|ComRSi|} ← FakeCi?{|ComRSi|},
ComRRi!{|ComRRi|} ← ComRRi!{|ComRRi|},
ComRRi!{|ComRRi|} ← FakeCi!{|ComRRi|},
ComRRi?{|ComRRi|} ← ComRRi?{|ComRRi|},
ComRRi?{|ComRRi|} ← FakeCi?{|ComRRi|}]]

{|c|} denotes the set of all communications over channel
c. Whenever Readerio does an action on channel ComRS,
Readerio will execute actions on channel ComRS or channel
FakeC. Readerio carries out either actions on channel ComRR
or FakeC when Readerio performs actions on channel ComR-
R. Besides, Readeri performs the same actions as Readeri0.

D. Intruder Modeling

In order to take intruders into consideration, this subsection
builds Intruder process. It intercepts or fakes messages in the
communication via channel ComCC, ComRS, ComRR, ComRP
and ComPP.

At first, we define the set of facts which intruders might
learn.

Fact =df Entity ∪MSGout ∪Name

∪ {E(key, c)|key ∈ PRKey, c ∈ Content}

Intruder can derive new facts from the set of facts which
intruders have learned. Symbol F 7→ f is used to indicate that
the fact f can be deduced from the set F of facts.

{K,E(K−1, c)} → c

{K−1, c} → E(K−1, c)

F 7→ f ∧ F ⊆ F ′ =⇒ F ′ 7→ f

The first two rules denote decryption and encryption respec-
tively. The final rule represents that if a intruder can derive the
fact f from the known fact F , the intruder can also deduce
fact f from a larger set F ′.

We define Info function to describe that intruders can obtain
facts from messages, shown as follows

Info(msgint.a.b.n) =df {a, b, n}
Info(msgdata.a.b.n.E(K−1, c).sig) =df {a, b, E(K−1, c), n, sig}
Info(msgdata.a.b.c) =df {a, b, c}

where a, b ∈ Entity, n ∈ Name, K−1 ∈ PRKey,
c ∈ Content, sig ∈ SigInfo

We give a channel Deduce for intruders. Intruders can
deduce new facts via channel Deduce, shown as follows :

Channel Deduce : Fact.P (Fact)

A intruder overheads all messages transmitted between
entities. New facts can be deduced from the intruder’s known
facts. If a intruder gets all sub messages, it can fake some
messages and send those messages to other entities. We
formalize Intruder0 as below:

Intruder0(F) =df

m∈MSGoutFake?m→ Intruder0(F ∪ Info(m))

��m∈MSGout∩Info(m)⊆FFake!m→ Intruder0(F)

��f∈Fact,f /∈F,F 7→fDeduce.f.F → Intruder0(F ∪ {f})
This subsection uses set Fake to represent all channels

of INTRUDER PATH . In the first part, a intruder gets
messages via a channel of Fake. Then the intruder adds those
messages to its knowledge. In the second part, a intruder
fakes some messages according to its knowledge and sends
faking messages to other entities. In the third part, a intruder
can deduce some new facts from its knowledge via channel
Deduce. Then the intruder adds the speculative results to its
knowledge. We define IK to denote the initial knowledge of
the intruder:

Intruder =df Intruder0(IK)
IK =df {A,B,C,D,E, Ipk Key, Irk Key}

IV. VERIFICATION AND IMPROVEMENT

In this section, we use model checker PAT to verify
four properties, including deadlock freedom, data availability,
PIT deletion faking and CS caching pollution. According to
verification results, we improve the system by referencing
Blockchain.
A. Properties Verification

We use System() to denote the original model. This subsec-
tion uses Linear Temporal Logic (LTL) formulas to describe
four security properties. By using LTL formulas in PAT code,
we give some assertions to help our verification.
Property 1: Deadlock Freedom

#assert System() deadlockfree;

System() should not run into a deadlock state. In PAT,
there is a primitive to describe this situation.
Property 2: Data Availability

#define Data Arival Success dataarive == true;

#assert System() reaches Data Arive Success;

In NDN-based IoV, each entity should get the desired data.
In order to guarantee this situation, we give this assertion.
Property 3: PIT Deletion Faking

#define PITdelete Faking

getdatachange == true ∧ delPIT == true;

#assert System() | = []! PIT Deletion Faking;

If a intruder intercepts an interest packet, it returns a faking
data packet. When a router receives this faking packet, the
router deletes corresponding PIT entries. Even though the
router gets the legitimate data packet, it throws the data packet
away. Using always operator [], we define this assertion to
guarantee that routers are not vulnerable to such attacks.
Property 4: CS Caching Pollution

#define CSCaching Pollution

getdatachange == true ∧ addccs == true;

#assert System() | = []! CS Caching Pollution;

35

Fig. 6. Verification Result of Formalized Model

If a router receives a faking data packet, it may store the
packet. When the router obtains an interest packet which
contains the name of the faking packet, it returns the faking
packet directly. This assertion is given to ensure that a router
cannot store a faking data packet.

As shown in Fig.6, Property 1 (deadlock freedom) is valid.
In other words, model cannot run into a deadlock state.
Property 2 (data availability) is not satisfied for the system.
This means that entities cannot get desired data with intruders
intervention. Property 3 (PIT deletion faking) and Property
4 (CS caching pollution) are invalid. When a router obtains a
faking data packet, it may delete its PIT entities and add the
packet into its CS. Then the router can no longer obtain or
provide a legal data packet which has the same name as the
faking data packet.
B. Improvement

In order to ensure NDN-based IoV model to satisfy Property
2, Property 3 and Property 4, we improve this model by using
a method which is similar to Blockchain.

MSGdata11 = {msgdata.a.b.block,msgdata.a.b.trans |
a, b ∈ Entity, block ∈ Block, trans ∈ Transcation}

A new kind of message MSGdata11 is defined to describe
the transmission of blocks and transactions. After a producer
creates a data packet, it constructs and transmits a transaction
which includes some information about this data packet to an
RSUP. Then the RUSP sends the transaction to a router. If
the verification result of the transaction is positive, the router
stores and forwards it. Meanwhile, the router produces a block
which contains all transactions stored in it so far. Then the
router stores the block and forwards it to other entities. After
verifying this block, an entity adds it into its blockchain.
Then the entity deletes duplicate transactions and forwards
this block to others. Gradually all entities’ blockchains become
synchronous. When an entity obtains a data packets, its verifies
the packet with its blockchain firstly as follows:
Checkhashi(BlockTablei, dnhash, sighash, siginhash) =

dfIntail{check = fasle;x = 0; y = #BlockTablei;

packethash = Hash(dnamehash, sighash, siginhash)}
→ (0 ≤ x < y)∗

translist = BlockTablei[x].transcationlist; (check = true)C (∃transaction ∈ translist•
transaction.datanamehash == dnamehash∧
transaction.packethash == packethash)B
(checkpacket = false)

 ;

When the entity gets the data packet, it computes some
hash values of this data packet. It queries its blockchain
BlockTablei and gains some information about this data
packet. It verifies the received data packet by comparing hash
values obtained by calculation and results of querying. As we
can see from Fig.7, the verification results of all properties are
both valid for this model.

Fig. 7. Verification Result of Improved Model

V. CONCLUSION AND FUTURE WORK

NDN-based IoV is built by applying NDN into Internet of
Vehicles. In this paper, we have formalized NDN-based IoV
using CSP. Feeding the formalized model into PAT, we have
verified four properties (deadlock freedom, data availability,
PIT deletion faking and CS caching pollution). The last three
properties are invalid. It means that the security of data
has been compromised, once intruders appeared. In order to
solve these problems, we improved the model with a method
based on Blockchain. Then we verified the improved model.
According to the verification results, the improved model can
prevent intruders from invading the system.

In our future work, we will take the performance of NDN-
based IoV model into consideration. To ensure the correctness
and preciseness of the research results, formal methods will
be used again in future work. Some related algorithms will be
explored to improve the efficiency of this model.
Acknowledgements. This work was partly supported by Nation-
al Key Research and Development Program of China (grant no.
2018YFB2101300), National Natural Science Foundation of China
(grant no. 61872145), Shanghai Collaborative Innovation Center of
Trustworthy Software for Internet of Things (grant no. ZF1213), the
Fundamental Research Funds for the Central Universities of China
and the Opening Project of Shanghai Trusted Industrial Control
Platform (grant no. TICPSH202003007-ZC).

REFERENCES
[1] Juan Contreras-Castillo, Sherali Zeadally, Juan Antonio Guerrero Ibáñez:

Internet of Vehicles: Architecture, Protocols, and Security. IEEE Internet
of Things Journal 5(5): 3701-3709 (2018)

[2] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, Adaptive for-
warding in named data networking, Computer Communication Review,
vol. 42, no. 3, pp. 62C67, 2012

[3] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutsch-
er,Börje Ohlman: A survey of information-centric networking. IEEE
Communications Magazine 50(7): 26-36 (2012)

[4] Muhammad Tahir Abbas, Muhammad Afaq, Wang-Cheol Song: Road-
Aware Estimation Model for Path Duration in Internet of Vehicles (IoV).
Wireless Personal Communications 109(2): 715-738 (2019)

[5] Wei-Che Chien, Hung-Yen Weng, Chin-Feng Lai, Zhang Fan, Han-
Chieh Chao, Ying Hu: A SFC-based access point switching mechanism
for Software-Defined Wireless Network in IoV. Future Gener. Comput.
Syst. 98: 577-585 (2019)

[6] Zhou Su, Yilong Hui, Qing Yang: The Next Generation Vehicular
Networks: A Content-Centric Framework. IEEE Wireless Commun.
24(1): 60-66 (2017).

[7] Muktadir Chowdhury, Junaid Ahmed Khan, Lan Wang: Smart Forward-
ing in NDN VANET. ICN 2019: 153-154

[8] Eirini Kalogeiton, Domenico Iapello, Torsten Braun: A Geographical
Aware Routing Protocol Using Directional Antennas for NDN-VANETs.
LCN 2019: 133-136

[9] C. A. R. Hoare: Communicating Sequential Processes. Prentice-Hall
1985, ISBN 0-13-153271-5

[10] PAT, PAT: Process analysis toolkit. [Online]. Available:
http://pat.comp.nus.edu.sg/

36

Controller Synthesis for ROS-based Multi-Robot
Collaboration

Xudong Zhao1, Rui Li1, Wanwei Liu1, Hao Shi1, Shaoxian Shu2, Wei Dong1
1College of Computer Science, National University of Defense Technology, Changsha, China

2Hunan Institute of Traffic Engineering, Changsha, China
{zhaoxudong13, lirui18, wwliu, shihao14}@nudt.edu.cn, shushaoxian@163.com, wdong@nudt.edu.cn

Abstract—Given a multi-robot system and the high-level tasks
for the robots. How to ensure the correct behavior of robots to
complete their tasks is critical. In this paper, we design a frame-
work that can automatically generate correct-by-construction
controllers for multi-robot system. In this framework, we propose
a multi-robot specification based on the Temporal Logic Synthesis
Format (TLSF) to guarantee the robots’ behavior. And two
execution algorithms were proposed to abstract the synthesized
automata into high-level controllers. These controllers were
integrated into Robot Operating System (ROS) to control actions
and movements of robots in Gazebo, which is an open-source
3D robotics simulator. Based on this framework, we developed
a toolkit, which allows users to achieve system-level controller
synthesis and simulation capable to be used for research such as
mission planning, motion planning, automatic obstacle avoidance
and so on.

Index Terms—multi-robot system, robot operating system,
temporal logic synthesis format, controller synthesis

I. INTRODUCTION

In the past few years, the study of autonomous robots has
become increasingly appealing. Robots have been employed in
many application domains. Especially in the fight against the
novel coronavirus pneumonia that broke out in early 2020,
robots are widely used in various applications include food
delivery, medicine delivery, temperature measurement, disin-
fection, etc. Robots effectively replace humans for operation,
reducing the possibility of cross-infection. People increasingly
realize the importance and convenience of robots in human
life.

Multi-robot systems (MRS) is defined as a group of robots
coordinated to perform some complex tasks that cannot be
completed by a single robot [1]. Therefore, in some particular
scenarios, we usually need MRS to complete tasks. However,
in practice, most application scenarios are uncertain and dy-
namic, robots may behave unexpectedly in these scenarios.
How to ensure the correctness of robot behavior in these
dynamic environments is critical.

Based on these considerations, the researchers used formal
methods such as model-checking [2] and synthesis to ensure
the correctness of the robot’s behavior. One important ap-
proach is to use Linear Temporal Logic (LTL) [3] as the

Corresponding author: Wei Dong. This work was supported
by National Natural Science Foundation of China (No.61690203,
No.61532007) and National Key Reseach and Development Program
of China (No.2017YFB1001802).

DOI reference number: 10.18293/SEKE2020-082

specification to generate controllers of robots [4] [5]. Extensive
research has been carried out on how to translate the high-
level specifications into robot controllers. Finucane et al.
developed a toolkit called LTLMoP [6]. It can translate the
user-written LTL specification into a robot controller, and the
controller can be executed to simulate the behavior of the
robot in a two-dimension area. Their work successfully bridges
the gap between high-level specifications and low-level robot
controllers.

However, this tool only provides controller synthesis and
simulation for a single robot. To apply these studies in
multi-robot scenarios, we extend their work to MRS. In this
paper, we introduce a framework that automatically translates
the multi-robot specification based on the Temporal Logic
Synthesis Format (TLSF) [7] into high-level controllers for
the multi-robot system. These controllers can be integrated
into ROS [8], which is an opensource software architecture
that contains a variety of libraries and packages suitable for
robots. Then these controllers were executed by appropriate
packages and tools based on ROS. To better demonstrate the
experimental results, the behavior of robots is simulated in
Gazebo [9].

In order to prove the practicality of this framework, we
developed a toolkit for designing, executing, and simulating
multi-robot controllers generated automatically from the multi-
robot specification. Our contributions include the following
three aspects:

• First, the framework we proposed provides a complete
development process for multi-robot collaborative tasks,
including automata synthesis, generation and execution
of controllers.

• Second, we propose two algorithms that can more effi-
ciently abstract the synthesized automata into high-level
controllers.

• Third, we achieve system-level simulation in Gazebo with
ROS, which makes it easier to experiment with physical
robots.

The rest part of this paper is structured as follows: Section
II summarizes the theoretical basis of this paper; In section
III, we elaborate on the various components of this framework;
Then we present an example of collaborative task in section IV,
which briefly introduce how to use our toolkit; We conclude
this paper in section V.

37

II. PRELIMINARIES
A. Linear Temporal Logic

Linear Temporal Logic (LTL) is a modal temporal logic
which has been widely used to model the change of a reactive
system over time.

LTL Syntax. Let AP be a set of atomic propostions with
temporal logic X (next) and U (until), where p ∈ AP is a
Boolean variable. LTL formulas are defined according to the
follwing grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

LTL Semantics. Semantics of an LTL formula ϕ are defined
on an infinite sequences π = π1π2 · · · of truth assignment to
the atomic propostions p ∈ AP , where π(i) denote the i-th
element of π and π(i) ∈ 2AP . The satisfaction relationship |=
between π, i and a LTL formula ϕ is defined as follows:

π, i |= p iff p ∈ π(i)
π, i |= ¬ϕ iff π, i 2 ϕ
π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2

π, i |= Xϕ iff π, i+ 1 |= ϕ

π, i |= ϕ1 Uϕ2 iff ∃k > i with π, k |= ϕ2 and

∀i 6 j < k with π, j |= ϕ1)

The formula Xϕ means that ϕ is true in the next position of
the sequence. ϕ1 Uϕ2 indicates that ϕ2 will be true somewhere
in the future, and ϕ1 must be maintained as true until ϕ2 is
true.

The sequence π satisfies formula ϕ if π, 0 |= ϕ. The
temporal operators of LTL G(always), F(eventually):
• Fϕ ≡ trueUϕ;
• Gϕ ≡ ¬F¬ϕ;
Where Gϕ with always and Fϕ with eventually express the

properties that ϕ will always hold true in every position of the
sequence and ϕ will be true at some position of the sequence
in the future respectively. Further, GFϕ indicates that ϕ is true
infinitely often.

B. General Reactivity(GR(1))

LTL formulas are particularly suited to model the evolu-
tion of a reactive system where atomic propositions can be
divided into two parts: system input (environment) and output
(system). However, the realizability of LTL is 2-EXPTIME-
complete, which increases computational overhead.

To reduce the computational complexity into an acceptable
range, we consider a special class of temporal logic formulas
[10]. The GR(1) fragment of LTL specification consists of
environment assumptions and system guarantees. A GR(1)
synthesis problem is defined as a game between a system
player and an environment player. We expect the system
wins the game. In other words, we can always synthesize
controllers that generate behavior strategies satisfying given
specifications. A GR(1) game structure is organized as follows:
• X is the set of input variables controlled by environment,
X ′ is the value of X in the next state;

• Y is the set of output variables controlled by system, Y ′
is the value of Y in the next state;

• θe is an assertion over X characterizing the initial states
of the environment;

• θs characterizes an assertion over X ∪ Y characterizing
the initial states of the system;

• ρe characterizes transition relation of the environment
over X ∪ Y ∪ X ′;

• ρs characterizes transition relation of the system over X∪
Y ∪ X ′ ∪ Y ′;

• J e
i∈1..m is a set of justice requirements of the environ-

ment;
• J s

j∈1..n is a set of justice requirements of the system;
The acceptance condition is finally defined as:

(θe ∧ Gρe ∧ GFJ e)→ (θs ∧ Gρs ∧ GFJ s)

where Gρe and Gρs are safety conditions over the environment
and the system while GFJ e and GFJ s are liveness properties
over the environment and the system.

C. Robot Operating System (ROS)

ROS [8] is a framework for robotics research and develop-
ment. The core of ROS is communication mechanism. ROS is
a peer-to-peer network of nodes that communicate with each
other using custom ROS messages that are based on TCP/IP.
Each node can be used to control the behavior of the robot,
process the information obtained by the sensors, etc. In an
MRS, we regard each robot as a node, and all nodes are
connected to a ROS master. Through the master, each node can
locate and communicate with other nodes by three different
methods:
(1) Topic: For real-time and periodic messages, the topic is

the best choice. The node that subscribes to messages
from a topic is called the topic’s subscriber, while the
node that publishes messages to a topic is called the
topic’s publisher.

(2) Service: Service communication is two-way. It can send
messages and return feedback. The service consists of
two parts: the requester (Client) and the responder/service
provider (Server). The client sends a request, waits for
the server to process it and returns a reply. The entire
service communication is completed through a ”request-
response” mechanism.

(3) Actionlib: Actionlib is used to execute a long-term com-
munication process. The actionlib communication process
can be viewed at any time, and the request can be
terminated. Actionlib works in client-server mode and is
a two-way communication mode.

The ROS ecosystem includes some tools to analyze and
simulate robot behavior. Gazebo [9] is a three-dimensional
physics simulation platform with a powerful physics engine,
high-quality graphics rendering, convenient programming, and
graphical interfaces. Gazebo can add the physical properties
of the robot and the surrounding environment to the model,
such as mass, coefficient of friction, coefficient of elasticity,

38

GR(1)
algorithm

Execution
algorithms

Synthesis

ExecutionSlmulation

Tasks Multi-robot
Specification

Automata

Controllers

Fig. 1: Overview of the framework

etc. Therefore, we can simulate physical phenomena in the real
world and show them as much as possible in this simulation
environment.

III. CONTROLLER SYNTHESIS AND SIMULATION
FOR MRS

Given a multi-robot system and tasks to be completed by
the robots, the objective of our framework is to automatically
generate controllers for each robot and simulate the behavior
of robots in Gazebo. The framework consists of four parts,
the relationship between them is illustrated in Figure 1 and
the functions of them are introduced as follows.

A. Multi-robot specification

TLSF [7] is a high-level format for the specification of
synthesis problems. Compared with LTL, it is more read-
able, therefore, users can easily write and read expressive
specifications. Another advantage of TLSF is that it’s easy to
support by synthesis tools. After writing the specification, the
Synthesis Format Conversion Tool (SyFCo) can compile
TLSF specifications into LTL specifications.

In a multi-robot system, a robot regards other robots as
part of the environment. A robot’s environment propositions
can be sensed by its sensors and obtained by communicating
with other robots. To express the robot’s perception ability,
execution ability and communication relationship with other
robots, a tuple R = 〈S,A,C〉 for each robot in MRS was
defined:
• S is the environment variables gained by robot;
• A is the action variables performed by the robot’s actu-

ators;
• C is the communication node that are used to communi-

cate with each other through network.
Based on the advantages of TLSF and the tuple we difined,

we propose a multi-robot specification. Take two robots as an
example, where:

R1 = 〈{R2.act2}, {act1}, node1〉
R2 = 〈{R1.act1}, {act2, act3}, node2〉
The specification for these two robots are shown in Figure

2. Keywords env (environment), sys (system) are set of input
variables and output variables respectively and keywords asm
(assumption), gar (guarantee) characterize initial conditions,

transition relations and justice requirements for environment
and system respectively.

main R1 {
env { R2.act2;}
sys { act1;}
asm { GF(R2.act2);}
gar { G(R2.act2->X(act1));}}

main R2 {
env { R1.act1;}
sys { act2,act3;}
asm { GF(R1.act1);}
gar { G(R1.act1->X(act3));}}

Fig. 2: An example of multi-robot specification

The users could write the corresponding specification for
each robot in MRS according to the multi-robot specification
format we proposed. Based on the capabilities of the robot
and the collaborative task to be completed, the continuous
behavior of the robot should be abstracted into a finite set of
propositions by a discrete formalism (TLSF). These propo-
sitions consist of the sensor information the robot perceives,
the actions to be performed. The specification also includes
the topological information of the robot’s task area. Same as
a single robot, in an MRS, each robot has a corresponding
specification and its automaton that synthesized from these
specifications.

B. Specification to Automaton

Take two robots as an example, Figure 3 illustrates the
process of synthesizing, as mentioned in section II, we use
GR(1) as the synthesis algorithm and automatically synthe-
sisze automaton from the multi-robot specification by a tool
called JTLV [11].

SPEC

Region
Information

Synthesis
Algorithm

SPEC
Synthesis
Algorithm

Propositions

Propositions

Automaton1
Automaton2

Fig. 3: The synthesis of automaton

To more intuitively explain the process of synthesizing spec-
ification into an automaton, the following briefly introduces the
synthesis algorithm in [10].

As mentioned before, the synthesis algorithm was used
to solve the game between the robot and the environment.
Consider a game structure G: 〈X ,Y, θe, θs, ρe, ρs,J e,J s〉,
the initial state of robot and environment is sX∪Y where
sX∪Y |= θe ∧ θs. Then from the initial state, both the
robot and the environment make decisions that determine their

39

next states, the environment choose an input sX ′ such that
(s, sX ′) |= ρe and the system choose an output sY′ such
that (s, sX ′ , sY′) |= ρs. The winning condition for the game
is given as a GR(1) formula φ = (GFJ e → GFJ s), the
implication between justice goals Je of the environment and
Js of the robot. In other words, no matter what the environ-
ment does, the robot can always find a way to proceed and
satisfy the GR(1) formula φ, we say that the robot is winning
and an automaton can be synthesized from the specification.
Otherwise, we say that the environment is winning and the
specification is unrealizable. Once the task specification of the
robot is realizable, the synthesis algorithm is to find a winning
strategy that the robot should follow to complete the desired
task.

The strategy synthesised by the algorithm can be viewd as
an automaton A = (X ,Y,Q, Q0, γ, δ):
• X is the set of input (environment) propositions,
• Y is the set of output (robot) propositions,
• Q is the set of states,
• Q0 ⊂ Q is the set of initial states,
• γ : Q → 2X∪Y is the state labeling function where γ(q)

is the set of robot propositions and input propositions that
are true in state q, i.e., states hold the environment inputs.

• δ : Q → 2Q is the transition relation. If current state is
q and at next point environment inputs is sX , then q′ is
the successor state of q if and only if sX |= γ(q′).

A run of a strategy is sequence s = s0X , s
0
Y , s

1
X , s

1
Y , · · · , s.t.

∀i :
(
(qi, s

i
X , qi+1) |= δ

)
∧
(
siY = γ(qi)

)
∧
(
si+1
Y = γ(qi+1)

)
.

Based on this sequence, the discrete path of the robot can be
acquired which guides the robot to choose a region to go or
activate/deactivate the different robot actions.

C. Automaton to Controller

Match

Robot1

Sensor

ENV_PROP

Automaton1 SYS_PROP

A
ct
u
at
o
r

Command

Match

Robot2

Sensor

ENV_PROP

Automaton2 SYS_PROP

A
ct
u
at
o
r

Command

Communication

World

Output Output

In
p
u
t

In
p
u
t

E
xt
ra
ct

E
xt
ra
ct

Fig. 4: Turn automatons into controllers

We introduce that the continuous behavior of the robot is
abstracted into a discrete specification and then synthesized
into an automaton. This part introduces how to turn these
discrete automata into continuous controllers.

As shown in figure 4, an automaton is actually a finite state
machine (FSM). Different states include the robot’s perception
of dynamic environments and the actions that the robot should

perform. We propose an algorithm to deal with environment
propositions, which are gained by the sensors of robots and
the communication between robots. Furthermore, based on the
Boolean value of these propositions, this algorithm can match
the corresponding state in the automaton.

Algorithm 1: Discrete automaton to continuous con-
trollers
Input: Automaton A
CurrState← q0 ∈ Q0

SuccStateSet← δ(q0)
Actions← {a1, a2, · · · } ∈ γ(q0)
Execute(Actions)
while True do

InputV al← SenseOrInformed();
FoundState← False;
foreach qi ∈ SuccStateSet do

if InputV al |= γ(qi) then
NextState← qi;
Execution(CurrState,NextState);
CurrState← NextState;
SuccStateSet← δ(CurrState);
FoundState← True;
BREAK;

end
end
if Foundstate is False then

ERROR(’Invalid Input’)
end

end

As shown in Algorithm 1, in the beginning, the robot
is in its initial state, which is defined as the current state.
According to this state, the robot executes current actions and
get the successor states set. In each step, the robot obtains
its environmental information and determines input values
through its sensors or by communicating with other robots.
Based on these inputs and current state, we can get the
NextState in the successor states set. The robot then executes
the actions and complete the state transition, the execution
algorithm is illustrated in Algorithm 2. When the next state
is not found in the set of successor states, which means that
the environment violated its assumptions, the execution will
report an error and stop running.

When it comes to the cross-regional problem, we propose
some simple controllers. Generally, we define those control
robot’s actuators as execute controllers, which can complete
execution in a short time, while those control robot’s motion
are navigation controllers. Compared with the former, naviga-
tion controllers take a longer time to complete execution. The
process of executing these controllers is shown in Algorithm 2.
Take a transition between states as an example, when the
robot is in different regions between the current state and
the next state, the navigation controller should be executed
first, and then the execute controller. That is, the robot will
only execute the action when it reaches the designated region.

40

Robot movement is achieved through the navigation package
in ROS. When both states are in the same region, the action
is executed directly.

Algorithm 2: Execution
Input: Current state qi and Next State qi+1

CurrState← qi
CurrRegion← ri ∈ γ(qi)
NextState← qi+1

NextRegion← ri ∈ γ(qi+1)
Actions← {a1, a2, · · · } ∈ γ(qi+1)
if NextRegion 6= CurrRegion then

Navigation Controller(NextRegion);
Execute Controller(Actions);

else
Execute Controller(Actions);

end

D. Simulation

To simulate multi-robot missions in Gazebo, the experimen-
tal environment must be configured in advance. The various
components include the world model, map information, navi-
gation packages, and communication method for configuration
are elaborated as follows. To minimize the user’s workload as
much as possible, the corresponding navigation packages files
and the program for communication between robots will be
generated automatically according to the number of robots.

1) World: As shown in figure 4, the environment that
the robot simulates in Gazebo is called world. As the name
indicates, the world file is to simulate a real physical world. It
can simulate physical parameters, such as gravity, friction co-
efficient, elastic coefficient, etc. For the tasks to be completed
by the MRS, the user could build a corresponding world model
using Gazebo’s building editor, which allows the user to import
a floor plan and add walls, stairs, and doors relatively easily.

2) Map: After establishing the world model, we control the
robot to move in the world and use laser radar or depth camera
to generate laser data and convert it into the map. This is the
troublesome part of the simulation process. Then we manually
extract the topological information of the generated map.

3) Navigation: Navigation and localization are important
parts of the robot’s tasks. The robot performs navigation and
localization according to the established map. There are two
packages in ROS that can be used directly.

• move base: It can plan the global path according to a
given target position, and also plan a local path based on
nearby environments to avoid obstacles.

• amcl: It is a probabilistic localization system for a
robot moving in two-dimensional area. It implements the
adaptive Monte Carlo localization approach [12], which
can get the position of the robot by using a particle filter
against a known map.

IV. IMPLEMENTATION AND EXAMPLE

The toolkit we developed is modular and includes three
modules. For different collaborative tasks, users can configure
the number and propositions of robots to write multi-robot
specification. Then the realizable specification can be synthe-
sized into automata, finally, turn these automata into high-level
controllers and simulate in Gazebo. For the sake of clarity, we
introduce a robot collaboration experiment based on the home
service scenario. As shown in figure 5, we design a workspace
for robots. Then according to this sketch, we create a world
model in Gazebo.

HOUSE

Region1

Region2

Robot1

Robot2

Robot3

mailbox
Dustbin

Fig. 5: Example diagram

In this example, region1 is inside the yard while region2
is the outside of the yard. Three home service robots work in
these two areas, Among them, Robot1 is mainly responsible
for patrolling the region1, and is also responsible for handling
some chores in family life. For example, when there is mail
in the mailbox, it will fetch it, and when waste is detected on
the ground, it will pick it up and throw it into the dustbin
in region2. Robot2 is responsible for delivering the mail.
After delivering the mail, Robot1 will be informed. Robot3
is responsible for security tasks. When it detects that a thief
is trying to break into the house, it will send a warning and
inform Robot1 to come and defend. At the same time, robot2
is never allowed to enter region1.

As defined in section III, we formalize this multi-robot
system based on the capabilities of robots and the collaborative
tasks, where:

R1 : 〈{waste,R2.mail, R3.thief}, {pick, fetch, catch}, node1〉
R2 : 〈{mailbox}, {deliver, informR1 mail}, node2〉
R3 : 〈{thief}, {catch, informR1 thief}, node3〉
The multi-robot specification for robots is given in figure

6, where R2.mail means R1 gets mail proposition by com-
municating with R2, so is R3.thief . After synthesizing these
automata from the specification, we turn them into continuous
control commands and simulate in Gazebo. There are six
screenshots shown in figure 7.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a framework that can automat-
ically generate correct-by-construction controllers for multi-
robot system. To simulate the behavior of robots, these
generated controllers were executed in Gazebo with ROS,

41

which provides state-of-the-art algorithms for several known
problems in robotics. We develope a toolkit to implement
this framework. Because ROS targets at real robots and not
only 3D simulation, it is easier to embed these controllers
for simulation into real robots. Compared to experiments
using real robots, it is low-cost, convenient and extensible for
research.

In future work, we plan to provide a user-friendly interface
and experiment with real robots. Besides, we will combine
methods in the field of robot control to extend the functionality
of this framework as much as possible.

main R1{
env {

Waste;
R2.Mail;
R3.Thief;}

sys {
Pick;
Catch;
Patrol;
Fetch;}

asm {
!Waste;
!R2.Mail;
!R3.Thief;}

gar {
!Pick;
!CatchThief;
!Patrol;
!Fetch;
GF Patrol;
G(X Waste -> X Pick);
G(X R2.Mail -> X Fetch);
G(X R3.Thief -> X Catch);}}

main R2{
env {

Mailbox;}
sys {

Deliver;
InformR1_mail;}

asm {
!Mailbox;}

gar {
!Deliver;
!InformR1_mail;
G(X Mailbox -> X Deliver);
G(Deliver -> X InformR1_mail);
G !Region1;}}

main R3{
env {

Thief;}
sys {

InformR1_Thief;
CatchThief;}

asm {
!Thief;
GF Thief;}

gar {
!InformR1_Thief;
!CatchThief;
G(X Thief -> X InformR1_Thief);
G(X Thief -> X CatchThief);}}

Fig. 6: Specification for home service robots

REFERENCES

[1] A. Gautam and S. Mohan, “A review of research in multi-robot sys-
tems,” in 2012 IEEE 7th International Conference on Industrial and
Information Systems (ICIIS), Aug 2012, pp. 1–5.

(a) Mail delivery (b) Fetch mail

(c) Waste detected (d) Pick up and throw away

(e) Thief detected (f) Catch the thief

Fig. 7: Experimental run of the service robots scenario

[2] E. M. Clarke and B. Schlingloff, “Model checking,” in Handbook of
Automated Reasoning (in 2 volumes), 2001, pp. 1635–1790.

[3] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977, pp. 46–57.

[4] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray,
“Control design for hybrid systems with tulip: The temporal logic
planning toolbox,” in 2016 IEEE Conference on Control Applications
(CCA), Sep. 2016, pp. 1030–1041.

[5] H. Kress-Gazit, “Robot challenges: Toward development of verication
and synthesis techniques [errata],” IEEE Robot. Automat. Mag., vol. 18,
no. 4, pp. 108–109, 2011.

[6] C. Finucane, G. Jing, and H. Kress-Gazit, “Ltlmop: Experimenting
with language, temporal logic and robot control,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, October
18-22, 2010, Taipei, Taiwan, pp. 1988–1993.

[7] S. Jacobs, F. Klein, and S. Schirmer, “A high-level LTL synthesis format:
TLSF v1.1,” in Proceedings Fifth Workshop on Synthesis, SYNT@CAV
2016, Toronto, Canada, July 17-18, 2016, pp. 112–132.

[8] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
vol. 3, 01 2009.

[9] N. P. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan, September
28 - October 2, 2004, pp. 2149–2154.

[10] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,”
in Verification, Model Checking, and Abstract Interpretation, 7th Inter-
national Conference, VMCAI 2006, Charleston, SC, USA, January 8-10,
2006, Proceedings, pp. 364–380.

[11] A. Pnueli, Y. Sa’ar, and L. D. Zuck, “Jtlv: A framework for devel-
oping verification algorithms,” in Computer Aided Verification, 22nd
International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings, pp. 171–174.

[12] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization
for mobile robots,” in 1999 IEEE International Conference on Robotics
and Automation, Marriott Hotel, Renaissance Center, Detroit, Michigan,
USA, May 10-15, 1999, Proceedings, pp. 1322–1328.

42

Understanding Travel Patterns of Commuting Private Cars

using Big Data of Electronic Registration Identification of Vehicles
Junchao Lv1, Linjiang Zheng1, Yuhui Ye1, Chenglin Ye1

1College of Computer Science, Chongqing University, Chongqing, China

(cqu_ljc@163.com, zlj_cqu@cqu.edu.cn, yeyuhui@cqu.edu.cn, cqu_yechenglin@163.com)

Abstract—Commuting private cars are the most important
component of urban road traffic in the morning and the evening
rush hours. Identifying commuters from all private cars and
mining their travel pattern can provide promising solutions to
solve the urban road traffic congestion. However, current
research rarely involves private cars due to the difficulty in
obtaining the travel data of private cars. Electronic Registration
Identification (ERI) based on Radio Frequency Identification
(RFID), is an emerging vehicle identification technology to
collect travel data of individual vehicles. In this paper, we focus
on investigating travel patterns of commuting private cars using
ERI big data. A method of identifying commuters from all
private cars is presented based on the spatiotemporal similarity
measurement. Then regular travel behaviors are mined by
spatial and temporal clustering and the individual vehicle with
regular travel behaviors is identified as commuting private car.
In the experiments, real-world ERI big data from Chongqing is
employed into the proposed method. The group of commuting
private cars is discovered. We analyzed travel time distribution
and hot spot areas of commuting private cars. The results show
that the proposed method can accurately identify commuting
private cars, and the spatiotemporal characteristics of
commuting private cars can reflect commuting time and the
residence-workplace relationship.

Keywords—ERI data, Private cars, Commuter,
Spatiotemporal similarity, Regular travel behavior

I. INTRODUCTION

Urbanization’s rapid progress has modernized many
people’s lives but also engendered big issues, such as traffic
congestion, energy consumption and pollution [1]. Therefore,
many scholars have studied travel patterns using various types
of data, such as GPS data [3]–[8], smart card data [9]–[14].
However, the research on these types of data has limitations
due to the characteristics of the data. Most of the researches
on GPS data are on taxis, although taxis only account for a
small part of urban traffic. So their travel characteristics do not
represent the travel characteristics of other vehicles, such as
private cars, making the draw conclusions sometimes
inconsistent with the actual traffic situation [15]. Smart card
data is for public transport, but not all vehicles.

Among many studies on travel patterns, few of them focus
on the travel patterns of private cars, although private cars are
the most important part of urban road traffic (Taking China as
an example, as of the end of 2019, the car ownership of China
has reached 260 million, including 207 million private cars,
accounting for 79.62% of the total number of cars). This is
mainly because the travel data of private cars is difficult to
collect. This problem can be solved by Electronic Registration
Identification of the motor vehicle (ERI), which is an
emerging vehicle identification and tracking technology based
on Radio Frequency Identification (RFID) and can identify all

vehicles with high accuracy. In December 2017,China issued
the national standard on ERI, which was formally
implemented in July 2018. This indicates the broad
application prospects of ERI technology in China.

As a product of Urbanization, commuting is the process of
going there and back between home and workplace. It not only
reflects the long-term travel behavior of people [9], but also
relates to the home and workplace of individual commuters.
Commuting also engendered a series of problems, such as
traffic congestion and long commuting time. In addition,
commuting mainly occurs in the morning and the evening rush
hours, and the proportion of travel volume of private cars
during rush hours in the total travel volume of private cars is
very high (Taking Chongqing as an example, 53.03%).
Although it cannot be simply considered that the private cars
that travel during rush hours are all commuting private cars,
this can reflect that commuting private cars are an important
part of private cars. Therefore, understanding travel patterns
of commuting private cars from traffic data can not only take
targeted measures for the long-term travel behavior to
alleviate traffic problems during rush hours, but also provide
useful information for urban planning by reflecting the spatial
distribution of commuters’ home and workplaces.

This paper utilizes ERI data to study the travel patterns of
commuting private cars. To address this issue, this paper first
proposes a novel method to identify commuting private cars.
Then, according to the Origin-Destination information of
commuting private cars to analyze travel patterns. The main
contributions of our work are summarized as follows:

 We designed a method to identify commuting private
cars by combining trip information. This method
determines whether private cars have regular travel
behavior by measuring the spatiotemporal similarity
of travel behaviors, and identifies private cars with
regular travel behaviors as commuting private cars.

 We analyzed the travel pattern of commuting private
cars, including four aspects of departure time, arrival
time, origin and destination. We verified the nature of
land use at origin and destination at different times
according to the land use property map of Chongqing.
The results show that the travel patterns of commuting
private cars identified by our proposed method can
reflect the commuting time and the residence-
workplace relationship.

The remainder of this paper is organized as follows. In
Section Ⅱ, we discuss the related work. Section Ⅲ introduces
some preparations. In Section Ⅳ, we present the details of our
approach. Analysis of spatiotemporal characteristics is given
in Section Ⅴ, Finally, we conclude our work in Section Ⅵ.

DOI reference number: 10.18293/SEKE2020-085

43

II. DATA AND PREPARATION

In this section, we present the ERI data that we used for
our study, clarify basic definitions and do regional partition.

A. ERI principle

ERI is based on RFID. RFID is a non-contact information
transmission technology using radio frequency signal through
spatial coupling (alternating magnetic field or electron
magnetic field), and automatically identifies the object
through the information transmitted. It has many advantages,
such as long recognition distance, high recognition accuracy,
more information stored, fast reading speed, etc. The
characteristics make it very suitable for urban traffic
information collection. The RFID-based traffic information
collection is called Electronic Registration Identification of
the vehicles (ERI) in relevant international standards. In ERI
system, the collection of ERI data mainly relies on two devices:
RFID tags attached to the vehicle windshield and RFID
readers deployed on key urban road sections. The tag stores
the vehicle registration information, such as unique electronic
identification (i.e. EID), vehicle type, usage, etc. When a
vehicle passes through an RFID reader, the information in the
vehicle’s RFID tag is read and a travel record is generated.

B. ERI data

The content of ERI data is shown in Table Ⅰ. We can
determine the range of vehicle, such as private cars, using
“carType”, “plateType”, and “useProperty”.

C. ERI data in Chongqing

Chongqing is the earliest and only city in China that
requires all motor vehicles to be equipped with RFID tags. It
has realized that all legal motor vehicles have RFID tags, and
RFID readers are deployed in key sections of the city.
Combined with the real ERI data generated by 1198519 cars
from February 29, 2016 to March 6, 2016 in Chongqing (Note:
The electronic registration identification of private vehicles
has been masked or obfuscated to avoid leakage of privacy),
we have conducted classification statistics of motor vehicles.
The result shows that the number of private cars is 1082991,
accounting for 90.36% of the total number of motor vehicles.

For the convenience of the following discussion, we give
the related definitions based on ERI data.

Definition 1 (ERI Record). A record is a three-tuple
consisting of (EID, RID, Passtime), called R.

Definition 2 (ERI Segment). A segment is composed of two
adjacent Rs with the same EID. It is a six-tuple consisting of
(EID, Ot, Dt, ORID, DRID, Interval), called Seg.

Definition 3 (ERI Trajectory). The trajectory of the car is
consisting of all its Rs or all Segs, called Tra. That means a
car has at most one Tra, Tra can be obtained from (1).

 { | }i iTra R R EID eid �

Definition 4 (ERI Trip). The Tra of the car can be divided
into multiple Trips after trajectory segmentation [2]. The
composition of each Trip is the same as that of Tra, as shown
in (2), called Trip, Trip ⊆ Tra.

 { | }i iTrip R R EID eid �

According to the above definition, the relationship
between R, Seg, Tra and Trip is shown in Fig. 1.

Definition 5 (Travel behavior). The elements of a trip are
different in importance to individuals. Some elements are
essential and other are not. We define the essential part of
each a trip as travel behavior, called Tb,

 { | }i iTb R R EID eid �

The relationship between Tb and Trip is shown in Fig. 2. There
are two different Trips with same Tb. In terms of RID alone,
the two Trips are {A, B1, D, E1, F, G, H} and {A, B2, C, E2,
F, G, H}, and Tb is composed of areas circled by red circles.

D. Regional partition

As of April 2016, 688 RFID readers had been deployed in
Chongqing, but many RFID readers are adjacent in space,
which will generate Trips similar to Fig. 2. This causes some
deviation in extracting Tbs from Trips. In order to reduce the
deviation, we used the DBSCAN algorithm to partition
regions. The reason we choose the DBSCAN algorithm is that
the DBSCAN algorithm is able to automatically infer the

Figure 2. The relationship between Tb and Trip.

Figure 1. The relationship between R, Seg, Tra and Trip.

TABLE I. DATA DESCRIPTION.

Field name
Sample of field

value
Remarks

RID R228 Identification of the RFID reader

EID 838326 Identification of the vehicle

passtime
2016-03-06

15:15:58
Timestamp

carType K33
Vehicle Type., “K33” means a small

car

plateType 02
Plate type, “02” means a compact

car

useProperty A
Usage of the vehicle, “A” means the

vehicle is non-operating.

44

number of clusters. We used the Silhouette Coefficient as the
evaluation index of cluster results, it was determined that the
cluster effect was best when eps=0.190km and minPts=1.
Finally, 688 RFID readers were clustered into 320 regions.
We renumbered the clustered region as the new RID and
updated ERI data with new RIDs.

III. IDENTIFYING COMMUTING PRIVATE CARS BY

CLUSTERING IN SPATIAL AND TEMPORAL DIMENSIONS

Our main research goal is investigating travel patterns of
commuting private cars, so first, we need to determine which
cars are commuting private cars. In this section, we first give
a general review of identifying commuting private cars and
then elaborate the details.

A. Overview

Commuting is the long-term travel process of going there
and back between home and workplace. The phrase “long-
term” embodies regularity. That means commuters have
regular travel behavior in the process of going there and back
between home and workplace. Regular travel behavior should
have spatiotemporal similarity, and the spatiotemporal
similarity can be quantified by the repeatability of Tbs, or
more precisely, the spatiotemporal similarity of Tbs. So how
to measure the spatiotemporal similarity of Tbs is very critical.
In order to solve the problem, for two Tbs, here recorded as
Tb1 and Tb2, if the difference between Tb1(RID) and Tb2(RID)
is small and (4) is satisfied, we consider them to be similar.
The small difference represents spatial similarity, and when
(4) is satisfied, it represents temporal similarity.

1 2

2

1 2

, ,i i

i

i i

i Tb R RID Tb R RID

Tb R Passtime

Tb R Passtime Tb R Passtime

� � � �

� �

� � � �

Here we set α to 15min.

Therefore, considering most of commuting behaviors take
place at rush hours, we proposed a method to identify private
cars by clustering in spatial and temporal dimensions during
rush hours. The method includes two processes: (1) Extract
Tbs from Trips; (2) Measure spatiotemporal similarity (i.e.
regularity) of Tbs. The detailed procedures are as follows:

1) Extract Tbs according to individual Trips.

2) Divide Tbs into different TWs.

3) Measure the spatial similarity of Tbs in each TW. If
there is spatial similarity, execute step 4).

4) Measure the temporal similarity of Tbs in each TW.
If there is temporal similarity, the individual is
considered to have regular behavior within the TW.

5) Identify private cars with regular travel behaviors as
commuting private cars.

The process is based on the fact that over a long period of
working days, commuters using private cars will determine
the travel route according to their own travel habits combined
with new travel needs. Travel habits play a major role in this
process. The travel habit here is regular travel behavior.

B. Detailed Algorithms

In this section, we demonstrate in detail 1), 2), 3), and 4)
of the above process. And all steps are individual oriented.

1) Extract Tbs.
Step 1: Extract spatial information of Tbs (i.e. Tb(RID)).

According to Definition 5, Tb is an essential part of Trip.
So Tb(RID) must be set of RIDs individual passed through
frequently. We defined S(RID) to indicate whether a RID is
passed through frequently. S(RID) can be obtained from (5),

0,

1, 0.6

Dnum(RID)

Dnum(EID)
S(RID)

Dnum(RID)

Dnum(EID)

Where RID∈ Trip(RID). Then we can use (6) to get Tb(RID),

 { | 1, }Tb(RID) S(RID) Trip(RID)RID RID

If the number of RIDs in Tb(RID) is less than 20% of the
number of RIDs in Trip(RID), we consider that the individual
does not have regular travel behavior. The algorithm will be
terminated.

Step 2: Extract temporal information of Tbs.

For each Trip, we kept R whose RID part belongs to
Tb(RID), called nR, and Rs in nR was still an ascending
sequence. We used these Rs to reconstitute Segs.

After processing all Trips, we got SSeg. We proposed the
similar concept of two Segs here. When two Segs satisfied

, ;

, ,

i j i j

Seg

Seg ORID Seg ORID Seg DRID Seg DRID

Segi Segj S i j

� � � �

TABLE II. NOTATIONS.

Notations Description

Dnum(RID) The number of days an individual has passes a RID

Dnum(EID) The number of days an individual drives a private car

Trip(RID) The set of RIDs contained in Trips of an individual

Tb(RID) The set of RIDs contained in Tbs of an individual

S(RID)
Whether RID is often passed through, 0 means not often
while 1 means often.

SSeg The set of Seg

STb The set of Tb

DT(Trip) The departure time of a Trip, Passtime of the first R

DT(Tb) The departure time of a Tb, Passtime of the first R

AT(Tb) The arrival time of a Tb, Passtime of the last R

Tbmin Tb have the smallest value of DT(Tb) in STb

TW Time window

LTW The number of Tb in a TW, 1≤ LTW ≤ Dnum(EID)

BTW The beginning position of TW

ETW The end position of TW

eps One of the parameters of DBSCAN algorithm

minPts One of the parameters of DBSCAN algorithm

RoS The result of spatial clustering

45

, we call these two Segs similar. According to the similar
concept of Seg, we divided SSeg into multiple subsets
composed of similar Seg, and calculated the average value of
Interval for each subset. Next, for each nR, we changed the
Passtime of the first R in nR to the DT(Trip) of its
corresponding Trip, and then modified the Passtime of all Rs
based on the average of the Interval and the relationship
between R and Seg. After that, we got Tb.

2) Divide Tbs into different TWs.
In order to measure the spatial similarity of Tbs, we needed

to divide Tbs that occurred at the same time on different days
into a TW. We judged whether they occurred at the same time
according to the DT(Tb) of each Tb.

Step 1: Adjust time format.

We ignored the date part of time information in Tbs, kept
only the hour and minute part, and sorted Tbs into ascending
order according to DT(Tb). Then we divided 24 hours into 48
(0-47) time slices at an interval of 2*α (30 min), and used 0-
47 to adjust the time format of the sorting results.

Step 2: Determine STb during rush hours.

According to the definition of commuting, we determined
rush hours (06: 00–10: 00, 16: 00–20: 00). Then we selected
Tb whose DT(Tb) was at the rush hours to form STb.

Step 3: Divide Tbs in STb into different TWs .

Initialized a TW as an empty set, added Tbmin sorted first
in STb to the TW, and deleted it in STb. Then, for Tbi in STb,
added Tbi to the TW if Tb satisfied (7), then deleted it in STb.

 2i minDT(Tb) DT(Tb)

Equation (7) means we believe that Tb which differs from
Tbmin by a time interval (2*α) belongs to the same time with
Tbmin.

Step 4: Determine BTW and ETW of TW.

If there was no Tbi in STb that can satisfy (7) or if the
number of Tb in TW equaled to Dnum(EID), a TW was
determined. We took the minimum value of DT(Tb) in TW as
BTW and the maximum value of AT(Tb) in TW as ETW.

Step 5: Repeat Step 3 and Step 4 until STb is empty.

Step 6: Convert Tbs to a binary sequence.

Initialized a binary sequence whose number of bits was
determined by the number of RIDs in the Tb(RID), i.e. each
bit corresponded to one RID. All bit values were initialized to
bit 0. The transformation rules are as follows: (1) For TW
satisfying (8), LTW groups of binary sequences are initialized
according to its BTW, ETW and LTW, each group has (ETW - BTW)
binary sequences, and each sequence is numbered according
to a number in 0-47 according to BTW and ETW; (2) A Tb
corresponds to a group of binary sequences. Set the bit value
of corresponding position of the binary sequence to bit 1 based
on the RID and Passtime of R in the current Tb.

 * 0.6TWL Dnum(EID)

3) Spatial similarity measurement.
After 1) and 2), we got binary serialized Tbs, and each Tb

belonged to different TWs. The difference between the set of

RIDs in different Tbs is reflected in the binary sequence, i.e.
whether the values of corresponding bits are equal.

Next, we measure the spatial similarity of Tbs in TW.

Step 1: Get the spatial information of binary serialized Tbs.

We performed bitwise OR operation on (ETW - BTW) binary
sequences corresponding to each Tb in a TW, thereby
obtaining the spatial information after binary serialization.
After OR operation, for each TW, we got LTW binary
sequences. We denoted each binary sequence as Bs and the set
of Bs as SBs. Then we measured the spatial similarity between
LTW Bss based on Hamming distance, as shown in (9).

 _ (,)Bs Bsi jHamming dist threshold

Bsi ∈ SBs, Bsj ∈ SBs, i≠j. The threshold is given in next step.

Step 2: Using the DBSCAN algorithm to measure the
spatial similarity of Tb in each TW.

We chose Hamming distance as the distance measure of
DBSCAN algorithm. And set eps as Tb(RID)*0.3, minPts as
LTW*0.6, then conducted clustering on SBs. Since the data
cycle is five days, there are only two cases of clustering results:
(1) All Bss are identified as outliers. In this case, we believe
that the individual does not have regular travel behavior and
does not perform subsequent steps; (2) Part or all Bss are
clustered into a cluster. In this case, execute the next step.

Step 3: Adjust the clustering results as input to the
temporal similarity measurement.

Firstly, the number of Bss in the cluster was recorded,
denoted as L. Then the corresponding (ETW - BTW) Bs were
determined according to the clustering result. The (ETW - BTW)
Bss were denoted as B, and the set of B was denoted as RoS.
Took RoS as input to the temporal similarity measurement.

4) Temporal similarity measurement.
Here we adjusted according to (4). We first determined the

time, and then determined whether the performance of Tbs in
RIDs was consistent in a specific time slice, i.e. whether the
corresponding bit values were equal.

Temporal similarity measurement was similar to 3). We
set eps as Tb(RID)*0.3 and minPts as L*0.6. Unlike (9), we
did not directly use Hamming distance as the distance measure,
but (10) as the distance measure.

, ,

(,) { _ }max
B B RoS

B B B Bi j il jl
i j i j

dist Hamming dist(,)

Here. Bil ∈ Bi, Bjl ∈ Bj, BTW ≤ l < ETW.

There are also only two clustering results: (1) no clustering.
In this case, we believe that the individual does not have
regular travel behavior; (2) generate a cluster. In this case, we
believe that the Tbs corresponding to Bs of the cluster is
regular travel behavior of the individual and identify the
private car used by individual as commuting private cars.

IV. ANALYSIS OF THE CHARACTERISTICS OF SPATIOTEMPORAL

After experiment, our method identified 215716
commuting private cars from 1082991 private cars. We
analyze the travel patterns from the perspectives of individuals
and groups.

46

A. Individuals

For individuals, if they have regular travel behaviors
during rush hours, they are commuters. According to this
principle, we finally identify 215716 commuting private cars.
Next, we will show travel patterns of one commuter identified
by our method. The 5-day trajectory of the commuter during
the workday is shown in Fig. 3, the red marks in Fig. 3 are the
RFID readers it passes by, and the red lines are the travel
trajectories. It can be seen that the travel trajectory is almost
identical. After extracting the travel behavior, we get the
regular travel behavior (No1.08:04a--No2.08:08am--
No3.08:13am--No4.08:18am--No5.08:27am--No6.08:32am).
Combined with the actual scene, the commuter departures
from vicinity of the Sigongli interchange at about 08:00 every
morning, and arrivals vicinity of the Banan interchange after
half an hour's drive, while the neighborhood of the Sigongli
interchange is mostly residential area and the Banan
interchange is close to the Banan District government where
are many commercial offices nearby, meeting the condition of
from home to work in the definition of commuting.

B. Groups

According to the result, 1082991 private cars were divided
into two groups: commuting private cars (CPC) and non-
commuting private cars (NCPC). We first conduct their
statistical analysis on travel duration and travel distance, then
analyze the temporal characteristics of departure time and
arrival time. Finally, we analyze the spatial characteristics of
CPC at origin and destination, and verify their nature of land
use.

1) Statistical analysis
According to the Trips of CPC and NCPC, we conducted

statistical analysis from three aspects: average travel time,
average travel distance and average travel speed, the results
are shown in Table Ⅲ. It can be seen that CPC has a faster
average travel speed due to the strong purpose of travel
behavior.

2) Temporal characteristics analysis

a) Commuting private cars (CPC).

As can be seen from Fig. 4, CPC occur in two concentrated
periods in a day, i.e. morning rush and evening rush. 69.02%
of CPC occurred in rush hours, while 53.03% of Trips of
private cars occurred in rush hours. Compared with the
evening rush, CPC occurring in the morning rush are more
concentrated. In addition, the distribution of departure time
and arrival time is consistent with the normal distribution
during rush hours, and the distribution of them is similar.

b) Non-commuting private cars (NCPC).

As shown in Fig. 5, NCPC have a large number of Trips
in the rest of the time except for 00: 00 to 06: 00. The departure
time and arrival time of NCPC are not regular, and there is a
big difference in distribution between them.

3) Temporal characteristics analysis

Figure 4. Distributions of departure times and arrival times of CPC.

TABLE III. THE STATISTICAL INFORMATION OF THE CPC AND

NCPC.

Category
Number
of Trips

Average
travel time

(min)

Average
travel

distance (km)

Average
travel speed

(km/h)

CPC
2293342
(34.74%)

28.7 12.67 26.49

NCPC
4307712
(65.26%)

38.7 15.90 24.65

Figure 6. The typical origins and destinations and the land use property map of Chongqing.

Figure 5. Distributions of departure times and arrival times of NCPC

Figure 3. The 5-day trajectory of one commuter during workday..

47

Fig. 7 shows the hot spot areas distribution at the origins
of CPC and the traffic transfer information of CPC, during
rush hours. The visualization method of the hot spot areas of
origins combines the location information of the parking lot
and RFID readers, and divides the hot spot areas into three
grades, I, II, III according to the heat degree from high to low.
The traffic transfer information is the white line part in figures,
in which the intersection of white lines is the end of the traffic
transfer and also the destination of Trips. Combined with the
definition of commuting, we believe that morning rush travels
take the residence as the origin and the workplace as the
destination, while evening rush travels take the opposite, so
we focus on the analysis of level I hot spot areas and end
points of flow transfer, and observe their spatial distribution
characteristics.

As shown in Fig. 7, combined with the typical origins and
destinations in Fig. 6, we find that region 2, 3, 4, 5, 6, 7, 8, 10,
11, 12, 13, 14, 15, 16 belong to the level I both in Fig. 7a and
Fig. 7b, region 9 belongs to level Ⅰ only in Fig. 7a while region
1 belongs to level Ⅰ only in Fig. 7b. In Fig. 7a, end points of
traffic transfer are mainly located at 1, 2, 3, 5, 7, 8, 10, 11, 13,
14, 15, 16, 17, and in Fig. 7b, end points of traffic transfer are
mainly located at 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17. The
reason may be that region 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14,
15, 16, 17 belong to mixed commercial and residential land,
while region 1 is mainly commercial land and region 9 is
mainly residential land.

In order to verify the conjecture, we combine the land use
property map of Chongqing in Fig. 6, and find that 2, 3, 4, 5,
7, 8, 10, 13 are located in the business district with a high
proportion of mixed commercial and residential land, while 6,
11, 14, 15 are located near the business district, which is the
transportation hub connecting residential land and commercial
land such as Sigongli interchange. Region 1 is the area from
Qixinggang to Chaotianmen whose land use is mainly for
commercial land; Region 9 is near the main street of
Yangjiaping whose land use is mainly for residential land;
Region 17 is Yubei airport, with factories and houses nearby.

V. CONCLUSION

In summary, we identify commuting private cars based on
ERI data. ERI data is a new type of intelligent traffic data. In
view of the concentrated distribution of RFID readers, we use
the DBSCAN algorithm to cluster RFID readers into different
regions. On this basis, we propose a novel method to measure
the spatiotemporal similarity of Tbs to mine regular travel
behavior, then identify private cars with regular travel
behavior as commuting private cars. According to the results

of experiment, we analyze the temporal characteristics of CPC
and NCPC at departure time and arrival time. Finally, we
verify the nature of land use of CPC at origin and destination
during rush hours, and it proves that the travel patterns of
commuting private cars identified by our proposed method
can reflect the residence-workplace relationship. It should be
acknowledged that Origin-Destination (OD) information is
important in commuting behavior, so in the future, based on
the existing work, we will give different weights to OD points
and other points in the route to optimize the identification of
commuting private cars.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China (No. 2017YFC0212100), Key Research and
Development Program of Chongqing (No. cstc2018jszx-
cyztzxX0019) and University Research Program of Ford (No.
DEPT2018-J030.1).

REFERENCES

[1] S. Colak, A. Lima, and M. C. Gonzalez, "Understanding congested
travel in urban areas," Nature Common, vol. 7, no. 10793, Mar 2016.

[2] L. Zheng, D. Xia, L. Chen, and D. Sun, "Understanding Citywide
Resident Mobility Using Big Data of Electronic Registration
Identification of Vehicles," IEEE Transactions on Intelligent
Transportation Systems, pp. 1-15, 2019.

[3] B. Jiang, J. Yin, and S. Zhao, "Characterizing Human Mobility Patterns
in a Large Street Network," Physical Review E, vol. 80, pp. 1711-1715,
2008.

[4] L. Liu, C. Andris, and C. Ratti, "Uncovering cabdrivers’ behavior
patterns from their digital traces," Computers, Environment and Urban
Systems, vol. 34, no. 6, pp. 541-548, Nov 2010.

[5] G. Pan, G. Qi, Z. Wu, D. Zhang, and S. Li, "Land-Use Classification
Using Taxi GPS Traces," IEEE Transactions on Intelligent
Transportation Systems, vol. 14, no. 1, pp. 113-123, 2013.

[6] L. Zheng, D. xia, X. Zhao, L. Tan, H. Li and L. Chen, "Spatial–
temporal travel pattern mining using massive taxi trajectory data,"
Physica A: Statistical Mechanics and its Applications, vol. 501, pp. 24-
41, Jul 2018.

[7] C. Wan, Y. Zhu, J. Yu, and Y. Shen, "SMOPAT: Mining semantic
mobility patterns from trajectories of private vehicles," Information
Sciences, vol. 429, pp. 12-25, Mar 2018.

[8] Y. Huang, Z. Xiao, D. Wang, H. Jiang, and D. Wu, "Exploring
Individual Travel Patterns Across Private Car Trajectory Data," IEEE
Transactions on Intelligent Transportation Systems, pp. 1-15, 2019.

[9] X. Ma, C. Liu, H. Wen, Y. Wang, and Y.-J. Wu, "Understanding
commuting patterns using transit smart card data," Journal of Transport
Geography, vol. 58, pp. 135-145, Jan 2017.

[10] Y. Long and J.-C. Thill, "Combining smart card data and household
travel survey to analyze jobs–housing relationships in Beijing,"
Computers, Environment and Urban Systems, vol. 53, pp. 19-35, Sep
2015.

[11] L. M. Kieu, A. Bhaskar, and E. Chung, "Passenger Segmentation Using
Smart Card Data," IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 3, pp. 1537-1548, 2015.

[12] X. Ma, Y.-J. Wu, Y. Wang, F. Chen, and J. Liu, "Mining smart card
data for transit riders' travel patterns," Transportation Research Part C-
Emerging Technologies, vol. 36, pp. 1-12, Nov 2013.

[13] N. Lathia, C. Smith, J. Froehlich, and L. Capra, "Individuals among
commuters: Building personalised transport information services from
fare collection systems," Pervasive and Mobile Computing, vol. 9, no.
5, pp. 643-664, Oct 2013.

[14] G. Goulet-Langlois, H. N. Koutsopoulos, Z. Zhao, and J. Zhao,
"Measuring Regularity of Individual Travel Patterns," IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 5, pp.
1583-1592, 2018.

[15] Y. Zheng, L. Capra, O. wolfson, and H. Yang, “Urban computing:
Concepts, methodologies, and applications,” ACM Transactions on
Intelligent Systems & Technology, vol. 5, no. 38, pp. 1-55, Sep 2014

Figure 7. The hot spot areas distribution at the origins of CPC in rush

hours and traffic transfer information in rush hours.

48

DOI reference number: 10.18293/SEKE2020-087
*
Corresponding author

TIMESIGHT: Discovering Time-driven Insights

Automatically and Fairly

Yohan Bae, Suyeong Lee, Yeonghun Nam*

Samsung Research, Samsung Electronics

yhan.bae@samsung.com, sy710.lee@samsung.com, yeonghun.nam@samsung.com

Abstract— Exploratory data analysis (EDA) on time-series data is

an indispensable and important process for not only data analysts

but also non-expert users. It helps them make data-driven

decisions by discovering important patterns of a certain

phenomenon. However, it poses 2 challenges for data analysts

and decision-makers. First, although a lot of business intelligence

tools have been introduced that can help explore the data, they

require repeated analytic procedures and most of the procedures

rely on users’ intuition, knowledge, and efforts. Second, even

though there have been several attempts to quantify insights to

automatically detect interesting patterns, they do not consider

score fairness among detected patterns. Therefore, they are not

suitable when data has the heterogeneity of insight types,

attributes scales, and time intervals. We attack these challenges

by introducing our new proposed system Timesight, which

explores data through all possible time units and all attributes

automatically. Timesight evaluates various types of time-driven

insight, matching the fairness among each type of insight, each

attribute, and each time interval. We verify our system using an

internal application log dataset. Our experiment with data

analysts working on the same dataset shows that Timesight

alleviates tedious works and is effective in discovering insight.

Keywords-component; Data exploration; Insight discovery;

Data mining; Time-series data.

I. INTRODUCTION

Nowadays, efforts to make data-driven decisions are
continuously increasing in various industries [11] to reduce
costs or improve productivity. For instance, a manufacturer
who wants to increase productivity can adjust the time on the
assembly line, observing delays calculated from the data. After
introducing a solution to the bottleneck, the decision-maker
would measure the time of the process again to see if the
change results in time-saving. Thus, exploratory data analysis
(EDA) is an indispensable and important process to discover
potential meaning or important patterns (called insight) from a
data [12]. Based on the EDA process, data analysts are able to
understand the data to predict or prevent certain phenomenon
via building statistical methods or machine learning models. It
is also important for non-experts users who are in an important
position and should make a critical decision from the data
without any data scientific knowledge such as statistics and
probability theory.

TABLE I. CRIME DATASET

timestamp district # of victims crime category

2019-09-29

06:39:00
A3 12 firearm

2018-12-31

18:42:00
B2 24 knife

2017-03-05

13:15:00
C1 5 vehicle

Among many kinds of datasets, time-series data that
contains time information about certain events is more
valuable than other simple multi-dimensional data. Because, it
is important to discover striking patterns of specific
phenomena or events over various time units (e.g., year,
month, weekday, etc.) in many domains such as business,
manufacturing, healthcare, economy, sociology, and even
government.

Suppose that we have a crime in a city dataset with the
schema (timestamp, district, number of victims, crime
category) as shown in Table 1. Figure 1 presents some
examples of insights. It can be very helpful for people who are
looking for hidden insight in the data if we get the information
that the number of firearm accident has seasonality for each
quarter (as Figure 1(a)) or the number of victims is most
pronounced in the second day of the week as shown in Figure
1(b).

(a) # of firearm accidents for each quarter (b) # of victims by day of week

Figure 1. Example of insights

EDA Challenge. Although lots of business intelligence
tools like Tableau [9] and Qlik [10] have been introduced that
can help explore the data, they require repeated analytic
procedures and most of the procedures rely on users’ intuition,
knowledge, and efforts. Users have to repeat trial-and-error
procedures: building their own hypothesis, selecting
appropriate attributes and possible time units, entering the
formula, plotting results with suitable visualization, and
exploring remarkable patterns (e.g., trend, spike point). It has

49

timestamp

2019-09-29
06:39:00

2018-12-31

18:42:00

2017-03-05

13:15:00

(a)

Year month day hour
year-

quarter

year-

month

year-

month-day

2019 09 29 06 2019-3 2019-09 2019-09-29

2018 12 31 18 2018-4 2018-12 2018-12-31

2017 03 05 13 2017-2 2017-03 2017-03-05

(b)

the advantage of offering a high degree of freedom for
advanced users. However, it is mentally and physically tedious
and exhausting for both non-expert users and professionals in
data analysis. If the data has more than thousands of attributes
and millions of records, it becomes impossible to evaluate all
the assumptions, regardless of users’ expertise.

Fairness Challenge. Even though there have been several
attempts [1] [2] to quantify insights to automatically detect
interesting patterns, they do not consider score fairness among
detected patterns. It is difficult to match the fairness because
each type of insight needs different score function to calculate
interestingness, most real-world datasets have different scales
and units among attributes, and each time unit might have
different intervals. Thus, it is challenging to provide fair
scores that users can easily and reasonably accept.

We attack these challenges by introducing our new
proposed system Timesight, which explores data through all
possible time units and all attributes automatically. Timesight
defines and evaluates various types of time-driven insight,
matching the fairness among each type of insight, each
attribute, and each time interval. Therefore, the contributions
of this paper are:

 We demonstrate the way that automatically prepares
the time-series data to well extract hidden insights.

 We propose the normalization technique to make them
fairly comparable among diverse time intervals and
attribute scales.

 We define 4 types of time-driven insight and unified
formulation of each type to assess the magnitude of
interestingness.

The rest of the paper is organized as follows: Section 2
presents an overview of our data modeling procedure. Section
3 provides 4 types of insight and score functions and Section 4
describes the pseudo-code of Timesight and optimization
techniques. Section 5 demonstrates our experiment using a
real-world dataset. Section 6 discusses related work, followed
by the conclusion and future work in Section 7.

II. DATA MODELING

In this section, we present the data preparation procedures
to calculate data insights. It is assumed that a multi-
dimensional dataset D is given as a tabular format consisting of
a series of rows, and each row is represented by a set of
attributes (columns). We assume that D contains 3 types of

attribute sets T, N and C: T={t1,t2,…,tα} is a timestamp attribute

set, N={n1,n2,…,nβ} is a numerical attribute set, and

C={c1,c2,…,cγ} is a categorical attribute set where α, β, and γ

are the number of timestamp, numerical, and categorical
attributes, respectively. In this paper, the data modeling process
is divided into two phases: timestamp decomposition and data
aggregation and normalization.

Timestamp Decomposition. Suppose that each timestamp
attribute has ‘yyyy-MM-dd HH:mm:ss’ format. We define a set

O={o1,o2,…,oδ} that includes extracted time units according to

the analytics objective (in this section, it is assumed that there
is one timestamp attribute in D for the convenience of
derivation). We illustrate an example in Figure 2 where the
original timestamp attribute, and the extracted attributes are in
Figure 2(a) and Figure 2(b), respectively. In this paper, we
define 7 (i.e., δ=7) extracted attributes for each timestamp
attribute, i.e., O={‘yyyy’, ‘MM’, ‘dd’, ‘HH’, ‘yyyy-qq (year-
quarter)’, ‘yyyy-MM’, ‘yyyy-MM-dd’}. The elements of O
depend on the analytics objective and can be declared
dynamically (e.g., ‘yyyy HH’, ‘HH:mm’, etc.).

Figure 2. A timestamp decomposition example of (a) the original attribute,

and (b) the extracted attributes from (a).

Data Aggregation and Normalization. The data
aggregation and normalization techniques are applied to the
dataset to make it fairly comparable among diverse time units
and types of insight. In this paper, numerical as well as
categorical attributes are used for insight scoring (which is
different in that related works only consider numerical
attributes) because the pattern of categorical attributes can
contain important meaning after appropriate aggregations. For

the available aggregation functions agg ∈ {SUM, AVG,

COUNT, …}, we consider agg for the categorical and the

numerical attributes separately, because the available
aggregations for the categorical and numerical attributes are
different. For example, COUNT and PERCENTAGE are for
categorical, while SUM and AVG are for numerical attributes.
For the arbitrary time unit element ol in O (1≤l≤ δ), the
aggregated datasets can be obtained based on two cases.

Case1: For numerical attributes, the function GN(ol,nj)
groups D by ol with certain aggregation on the attribute nj,
which is presented as follows:

GN(ol,nj) ≈ SELECT agg(nj) FROM D GROUP BY ol

Case2: For categorical attributes, for the arbitrary ith
categorical attribute, let Ei denote the set of distinct elements of
the ci, assuming that |Ei|≥1 and ei,m the arbitrary mth element of
Ei (1≤m≤|Ei|). The function GC(ol,ei,m), which filters D with
value ei,m and groups D by ol with certain aggregation on the
attribute cj can be presented as follows:

GC(ol,ei,m)≈ SELECT agg(cj) FROM D WHERE cj= ei,m

GROUP BY ol

50

Thus, from the given GN(ol,nj) and GC(ol,ei,m), the result set
X can be derived as:

X= {
 ()

 on D

We obtain an aggregated result set X={x1,x2,…,xn} from

each categorical and numerical attribute considering multiple
time unit elements. Next, we normalize all values in the X
using min-max normalization [3]. It maps all values to the
range [0, 1], and helps us focus on the relative ratio, improving
the balance among other result sets that are measured by
different units. It also enhances fairness with different insight
types. There is another well-known normalization method
called standardization (or Z-score normalization) [3], but it
creates new data not bounded to a certain interval.
Consequently, we get a normalized result set Xnorm from X. An
example of normalization is illustrated in Figure 3 where
Figure 3(a) is the original result set X and Figure 3(b) is the
normalized result set Xnorm.

Xnorm {

 }

5 21 -1 32 -11 13 0 -7 19 29

(a)

0.37 0.74 0.23 1.0 0.0 0.56 0.26 0.09 0.70 0.93

(b)

Figure 3. A normalization example of (a) the original result set, and (b) the

normalized result set from (a) which is bounded in range [0, 1].

III. INSIGHT SCORE FUNCTIOIN

We define 4 types of time-driven insight: spike point,
change point, seasonality, and trend. We want to score and
rank interestingness of each insight based on the p-value to
discover important insight from the entire result set. In statistics,
the p-value is the probability of the observation from the null
hypothesis and commonly used to determine whether an
observation is statistically significant [4]. We use different
kinds of null hypotheses for different types of insight to
calculate the appropriate p-values. In this paper, we use the
Gaussian distributions N(μ,σ

2
) [5], where μ and σ

2
are constant

parameters to model the distribution of observational values of
each insight type. We use μ=0 and σ

2
=1 for all types of

insights for convenience, but each can be replaced with the
appropriate parameters in future studies.

Spike point. The Spike point means that a certain value in
Xnorm represents a notable difference from others. Data analysts
who are exploring a data are attracted by the significant
deviations from predictable patterns. The spike point can be
discovered by measuring how the certain point is noticeable
over other values. The distribution of various domains, such as
physics, biology, economics, social science, and other
numerous man-made phenomena often follow power-law
distribution [6]. Therefore, we set the null hypothesis of spike
point as:

H0: Xnorm follows power-law distribution.

Let Xnorm={xnorm,1,xnorm,2,…,xnorm,n} be the set of values in
the result of aggregation as mentioned previous section. We
sort Xnorm in the descending order and get the maximum value
xnorm,max. Then, from the xnorm,max, we evaluate the magnitude of
interestingness against the hypothesis H0 is true. Hence, we fit
values in Xnorm \{ xnorm,max } to the power-law distribution (i.e.,
a∙i

-b
). Next, from the xnorm,max’s prediction error emax = xnorm,max -

 norm,max, we calculate p-value pspike = P(e > emax| e ~ N(μ,σ
2
)).

Consequently, the score of spike point is 1 – pspike

scorespike = 1 – pspike

(a) Change point (b) Trend

Figure 4. Examples of change point and trend.

Change point. A change point generally indicates an
abrupt variation of values between the previous and subsequent
intervals [17]. Figure 4(a) shows an example of change point.
We use mean value on the window size K to obtain
representative value. Thus, the null hypothesis of change point
is:

H0: Difference of mean between before and after xnorm,i ≈ 0.

Let Xnorm={xnorm,1,xnorm,2,… ,xnorm,n} be the time series of
values and assume length of window size, K < n/2. By shifting
the window along the values, we calculate the mean for values
in left and right window of size respectively. And their
difference di is as follows:

∑

 ,

∑

 ,

 , .

Let dmax denote the maximum difference value. Then, we
calculate p-value pchange= P(d > dmax | d ~ N(μ,σ

2
)). Thus, the

score of change point is

scorechange = 1 – pchange

Seasonality. If the data show repetitive patterns or
fluctuation over a specific period, we can say it has seasonality.
We use the autocorrelation function (ACF) because it is
commonly used to determine whether the data has a
dependency on its past [7]. If the strongest correlation appears
at a particular period p for a given ol (e.g., 4 for ‘yyyy-qq’, 12
for ‘yyyy-mm’, etc.), we determine it has seasonality. Thus, we
set the null hypothesis as follows:

H0: a ∈ ACF(Xnorm) has maximum value amax at p.

51

Then, the p-value is pseasonality= P(a > amax | a ~ N(μ,σ
2
)). As

a result, the score of seasonality is 1 – pseasonality

scoreseasonality = 1 – pseasonality

Trend. It indicates that the data show continuously rising
or falling movement over time, like in Figure 4(b). Those who
want to discover explainable patterns in the data are well
obsessed when it has a very different slope from 0. Thus, we
set the null hypothesis as:

H0: Slope of the values in Xnorm over the entire time ≈ 0.

First, we fit Xnorm to a line by linear regression as shown in
Figure 4(b). We also normalize the x-axis values using min-
max normalization, for fairness with another result set. As a
result, we can concentrate on the change of values, not the
length (time interval) of the data. Then we calculate its slope s

*

and coefficient of determination, r
2
. The r

2
 represents how well

the line fits the data [8]. Also, we compute the p-value as ptrend
= P(s > | s

*
| | s ~ N(μ,σ

2
)). Finally, we can obtain the trend score

r
2
 * (1 – ptrend) where r

2
 is used to reflect the accuracy of the

regression.

scoretrend = r
2
 * (1 – ptrend)

IV. FRAMEWORK

In this section, we describe the full procedure of Timesight
using pseudo-code first, and then discuss the pruning-based
optimization techniques that can reduce search space and
running time, improving the overall performance of Timesight.

Algorithm 1 InsightDiscovery(T, N, C)

1: max-heap ℍ←{}

2: O← extract all possible time units from T

3: for ol in O do

4: for nj in N do

5: Xnorm ← normalize(GN(ol, nj))

6: CalculateInsights(Xnorm, ℍ)

7: for ci in C do

8: for ei,m in ci do

9: Xnorm ← normalize(GC(oi, ei,m))

10: CalculateInsights(Xnorm , ℍ)

11: return ℍ

 Function: CalculateInsights(X, ℍ)

12: for each insight type I do

13: scoreI ← calculateI(X)

14: insert (scoreI, X) to ℍ

A. Psuedo Code

Algorithm 1 presents the full procedure of our insight
discovery system. We assume that there is one timestamp
attribute in D for the convenience of derivation.

First, we initiate the max heap ℍ to store insights in
descending order (Line 1) and extract all possible time units
(Line 2). Then iterating over all time units (Line 3), we
repeatedly generate Xnorm to score insights for all numerical
attributes N (Lines 4, 5). At the same time, we generate Xnorm

for all categorical attributes C (Lines 7-9). Using the generated
result set Xnorm, function ‘CalculateInsights’ calculates scores
of all insight types and updates ℍ (Lines 12-14).

B. Pruning-Based Optimization Technique

Searching and computing all possible time units and all
attributes take a lot of time and degrade performance.
Therefore, we suggest the three pruning methods that can save
time performance.

1) We pass calculating the score if multiple Xnorm sets are
identical for different time units. For instance, if the data is
only for 2019, the result sets of ‘yyyy-mm’ and ‘mm’ have the
same values. This can be applied equally on ‘yyyy-qq’ with
‘qq’, ‘yyyy-MM-dd’ with ‘dd’ and so on.

2) If the length of Xnorm is too short, the data cannot
represent a particular pattern properly. As a result, we set the
minimum length ζ (e.g., ζ = 4, because ‘qq’ can have a
maximum length of 4.) and if the length of Xnorm is shorter than
ζ, then we do not calculate all insight score.

3) If |Ei| is too large, the search space grows exponentially
and the performance is degraded. Also, if |Ei| = 1, it may not be
meaningful to apply aggregation on ci. Consequently, we set
the minimum and maximum length θ (e.g., 70) and calculate
score only if 1<|Ei|<θ.

V. EXPERIMENT

TABLE II. SUMMARY OF EXPERIMENT DATA

Range of date 2009.06.26 00:29:12 ~ 2019.07.12 23:50:02

of rows 100000

of numerical attributes 10

of categorical attributes 49

In this section, we apply the real-world time-series data to

evaluate the effectiveness of Timesight. This data is an internal
application log dataset that is de-identified for research
purposes. The summary of the dataset is shown in Table 2. The
data has a timestamp attribute that represents the access date
for each user from 2009 to 2019. And 10 numerical attributes
and 49 categorical attributes contain a variety of information.

52

Figure 5 presents 12 result insights from Timesight.
Timesight analyzes time stamp attributes by decomposing it in
many ways such as year, quarter, year-quarter, month, year-
month, day, weekday, year-month-day, and so on. As a result,
users can examine the data from various time perspectives.
Each of A, B, C, D, and E is a service name in the application,
and each Y, Z is a device name that the user used to access the
application.

Figure 5(d) and Figure 5(g) show that the number of people
who accessed the application using device Z had a clear
seasonality for year-month and year-quarter. Also, we can see
that most people accessed the application using device Y on the
25

th
 of every month and every December, as shown in Figure

5(e) and Figure 5(l), respectively. Furthermore, Figure 5(k)
represents that the number of people who signed in through
service E had a significant change point before and after 2016-
01-15. The rest of Figure 5 shows us the clear tends of each
aggregated attribute for year, quarter, year-quarter, weekday.

It is very convenient for analysts and decision-makers in the
aspect of getting these insights from the data without the effort
to explore it in person. Furthermore, they can make immediate
decisions like: 1) From Figure 5(d) and Figure 5(g) they can try
to find out the reason that the usage of device Z has seasonality
and is most prominent in December and look for a solution that
can balance monthly usage to improve overall usage. 2) From
Figure 5(k), they can investigate why service E shows dramatic
changes in usage around 2016-01-15 and apply that factor on
other services. 3) From Figure 5(i), the decision-maker can
promote service D on weekends so that the usage of service D
does not decrease on weekends. Analysts who are working on
the same dataset observed the effectiveness of results in
alleviating their tedious works and discovering meaningful
insights.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Result of our experiments. The x-axis is each time unit and the y-axis is each aggregated result set.

The black lines indicate actual result set, and the red lines indicate fitted trends or periods of seasonality. The red points indicate spike points or change points.

53

VI. RELATED WORK

In this section, we discuss prior works from multiple areas
related to our research. We review the related works and
describe how they differ from Timesight.

Business Intelligence Tools. Business intelligence tools,
such as Tableau [9], Qilk [10], and Sisense [13] have recently
improved capabilities in EDA and gained in popularity. These
tools allow data analysts and decision-makers who lack
programming skills to easily select attributes and build
visualizations based on their abilities. However, they require
repeated analytic procedures and most of the procedures rely
on users’ intuition, knowledge, and efforts. Furthermore, if the
data has more than thousands of attributes, it becomes
impossible to evaluate all the assumptions regardless of users’
expertise. On the contrary, Timesight discovers insight
automatically, exploring all attributes and all time units based
on unified formulations of various insight types. Therefore,
Timesight alleviates the tedious trial-and-error process of users.

Automated Exploratory Analysis. There have been
several kinds of research that attempt to quantify insights to
automatically detect interesting patterns. The SeeDB [14],
which is the visualization recommendation system, identified
charts that are largely deviated from a given reference, and
considers them as insight. But, it is difficult to use for non-
expert users or service managers because they have to select
and put queries by themselves. Whereas Timesight extracts
insight automatically using unified formulations of various
insight types. In Foresight [1], the authors defined about 6
insight types and their score functions to facilitate the rapid
discovery of insights from large, high-dimensional datasets.
However, first, because they tried to define insights into the
general attribute domain, they did not consider time-driven
insights such as trends, change points, seasonality. Also, they
did not consider the difference between each attribute`s scales
that might affect a huge effect on calculated insight scores.
QuickInsight [2] [15] which is the most recent research, is
automatic insight discovering system released in Microsoft
Power BI [16]. QuickInsight proposed a unified formulation of
important patterns and introduced an insight mining framework
to automatically mine insight from given data. However, it also
did not consider fairness among detected patterns caused by the
heterogeneity of attribute scales, time intervals, and
formulations. On the other hand, Timesight normalizes
attributes and time intervals to provide fair scores that users can
easily and reasonably accommodate.

VII. CONCLUSION AND FUTURE WORK

We introduce a novel approach to automatically discover
interesting insight from multi-dimensional time-series data to
offer invaluable hidden information to both data analysts and
decision-makers. We decompose a timestamp attribute in
several ways to examine the data at various time perspectives
and use both numerical attributes and categorical attributes as
targets by applying appropriate aggregations. And we
normalize values in the result set to obtain fair scores between
each insight type, each attribute, and even each time interval.
And then, we define 4 types of time-driven insight and unified

score functions to assess the interestingness of each result set.
Furthermore, we demonstrate Timesight using pseudo-code and
propose several pruning techniques to improve the performance
of Timesight. Lastly, we present our experimental result based
on an internal service log dataset that helps data analysts to
discover hidden insight easily.

We want to advance this research through some direction of
future work. First, we will develop and supplement additional
types of insight such as the correlation between different Xs.
Second, we use uniformed μ and σ

2
 for distributions of all

insight types in the paper for convenience. But we will
investigate lots of datasets to find appropriate μ and σ

2
 for each

type of insight. Lastly, the limitation of our system is that as the
number of rows and attributes in the dataset increase, the
search space is extended together. This can increase the time
and space it takes to calculate the scores. We need an advanced
optimization method to solve these problems.

REFERENCES

[1] Demiralp. C., Haas. P.J., Parthasarathy. S., and Pedapati. T., “Foresight:
Recommending visual insight”, Proceedings of the VLDB Endowment,
Vol. 10, No. 12, pp. 1937-1940, 2017.

[2] Tang. B, Han. S., Yiu. M.L., Ding. R., and Zhang. D., “Extracting Top-
K Insights from multi-dimensional Data”, In: Proceeding of 2017 ACM
International Conference on Management of Data (SIGMOD `17), pp.
1509-1524. ACM, New York, NY, USA, 2017.

[3] Patro. S.G.K., and Sahu. K.K., “ Normalization: A Preprocessing Stage”,
International Advanced Research Journal in Science, Engineering and
Technology, Vol. 2, No. 3, pp. 20-22, 2015.

[4] Krzywinski. M., Altman. N., “Points of significance: Significance, p
values and t-tests.” Nature methods, Vol. 10, pp. 1041-1042, 2015.

[5] Lyon, A., “Why are Normal Distributions Normal?.” The British Journal
for the Philosophy of Science, Vol. 65, No. 3, pp. 621-649, 2014.

[6] Newman M. E. J., “Power laws, Pareto distributions and Zipf’s law.”
Contemporary Physics, Vol.46, No.5, pp323-351, 2005.

[7] Nopia. Z.M., Lennie. A., Abdullah S., Nuawi. M.Z., Nuryazmin. A.Z.,
and Baharin. M.N., “The use of autocorrelation function in the
seasonality analysis for fatigue strain data.” Journal of Asian Scientific
Research, Vol. 2, No. 11, pp. 782-788, 2012.

[8] Hamilton. D.F., Ghert. M. and Simpson. A.H., “Interpreting regression
models in clinical outcome studies.” Bone Joint Res, Vol. 4, No. 9, pp.
152-153, 2015.

[9] Tableau Homepage, https://www.tableau.com/, last accessed 2019/11/14.

[10] Qlik Homepage, https://www.qlik.com, last accessed 2019/11/14.

[11] Brynjolfsson. E., McElheran. K., “The Rapid Adoption of Data-Driven
Decision-Making.” American Economic Review, Vol. 106, No. 5, pp.
133-139, 2016.

[12] Yu, C.H., “Exploratory data analysis.” Methods 2, 2017, pp. 131-160.

[13] Sisense Homepage, https://www.sisense.com/, last accessed 2019/11/14.

[14] Vartak. M., and Rahman. S., Madden. S., “SeeDB: efficient data-driven
visualization recommendations to support visual analytics.” Proceedings
of the VLDB Endowment, Vol. 8, No. 13, pp. 2182-2193, 2015.

[15] Ding. R., Han. S., Xu. Y., Zhang. H., and Zhang. D., “QuickInsights:
Quick and Automatic Discovery of Insights from Multi-Dimensional
Data.” In: Proceeding of the 2019 International Conference on
Management of Data (SIGMOD `19), pp. 317-332. ACM, New York,
NY, USA, 2019.

[16] Microsoft Power BI Homepage, https://powerbi.microsoft.com/, last
accessed 2019/11/14.

[17] Aminikhanghahi. S., and Cook D.J., “A Survey of Methods for Time
Series Change Point Detection.” Knowledge and information systems,
Vol. 51, No. 2, pp. 339- 367, 2017.

54

https://www.tableau.com/
https://www.qlik.com/
https://www.sisense.com/
https://powerbi.microsoft.com/en-us/

Physical Artifacts for Agents in a Cyber-Physical
System: A Case Study in Oil & Gas Scenario

(EEAS)
1st Fabian Cesar Pereira Brandão Manoel

Federal Center for Technological Education (CEFET/RJ)
Rio de Janeiro, Brasil
0000-0003-0614-0592

3rd Leandro Marques Samyn
Federal Center for Technological Education (CEFET/RJ)

Rio de Janeiro, Brasil
0000-0002-0733-4172

2nd Carlos Eduardo Pantoja
Federal Center for Technological Education (CEFET/RJ)

Rio de Janeiro, Brasil
0000-0002-7099-4974

4rd Vinicius Souza de Jesus
Federal Center for Technological Education (CEFET/RJ)

Rio de Janeiro, Brasil
souza.vdj@gmail.com

Abstract—Physical devices have been integrated with artificial
intelligence to create Cyber-Physical Systems (CPS). Multi-Agent
Systems (MAS) can provide pro-activity and autonomy using
agents, social organizations, and environment modeling by means
of artifacts. Usually, some works that use MAS for interfacing
physical environments employ agents accessing directly all the
available data of the environment, which could overload this
agent. This issue could be avoided if there were tools to facilitate
the integration of sensors and actuators as artifacts into the
physical environment. Therefore, the objective of this work is to
create physical artifacts capable of accessing hardware devices
from a physical environment to be used by agents in a MAS. As
the Oil & Gas industry demands robustness in its equipment and
an ability to do predictive maintenance, a case study including
MAS and CPS was developed and some tests were carried out
to validate the functioning of physical artifacts.

Index Terms—Physical Artifact, Physical environment, Oil &
Gas Industry

I. INTRODUCTION

In the last years, the agent approach has been switching
from simulated to physical applications where Multi-Agent
Systems (MAS) have been used to interact and control devices
working in dynamic environments [1] [2] [3] [4]. In general,
some approaches define four dimensions that guide a MAS
implementation: agency, environmental, organisational [5], and
interaction [6]. Agents interact in an environment according
to their implemented beliefs, desire, and intentions (BDI);
Artifacts provide operational functions and observable prop-
erties for agents, and they represent non-cognitive entities
situated in workspaces; organizational dimension models the
society notion and the collective norms of the agent’s behavior;
interaction dimension models the interaction between the three
dimensions (agent, environment, and organization). In parallel,
when connecting computing elements to physical elements,
such as embedded computers connected in a network, it main-
tains a system known as Cyber-Physical Systems (CPS) [7].

When considering physical environments, rarely they are
explored considering other dimensions aside from the agent
one. In an agent application in the oil domain, only the agency
dimension is considered [8]. The agent performance depends
directly on the amount of information that an environment
has to offer. There is an approach called ARGO that allows
agents to collect data directly from sensors and process them
as beliefs in their Belief-Desire-Intention (BDI) reasoning
cycle [9]. This process requires reading all the sensors during
every cycle execution even if the data are not necessary
for the agent, at that moment. Some filtering techniques are
available, but they can only be applied after the data has been
collected [10].

Initial laboratory experiments for BDI agents in a Web-of-
Cell context [11] and a proposed model of many resources
of the factory following the A&A [1] are works that consider
physical environments using the notion of artifacts. However,
both implementations are domain-specific. Artifact is a suit-
able notion for agents to interact with physical objects in a
CPS. When MAS employs artifacts, agents are able to access
the physical environment according to their need. It avoids
the agents to collect unnecessary data. However, traditional
agent-oriented programming languages do not provide direct
approaches to access physical environment and they are lim-
ited to a particular application domain.

Some initiatives, like the Predictive Maintenance Program
(PMP) reveal the importance of collecting data from sensors
in the environment to perform predictive maintenance [12].
This importance can also be seen in the Oil & Gas industry
because predictive maintenance can minimize economic and
environmental losses from poor preventive maintenance.

The objective of this work is to provide physical artifacts
for interfacing hardware devices from a physical environment
to be accessed by MAS in a CPS. In order to develop
theses Physical Artifacts, it will be created an extension of

DOI reference number: 10.18293/SEKE2020-154
55

CArtAgO artifacts that communicates with microcontrollers
using serial interfaces. A case study will be presented in a
scenario considering a physical engine as an artifact in the
Oil & Gas field.

This paper is organized as follows: Section 2 presents the
theoretical background to understand the idea; Section 3 shows
the methodology used to implement Physical Artifacts, Cen-
tralized Layer, and the scenario of study; Section 4 presents
the related works and the Section 5 concludes this work.

II. THEORETICAL BACKGROUND

Multi-Agent technologies provide tools for distributed con-
trol, decentralization, adaptation, and openness. These char-
acteristics can be found in four MAS domains: (i) agent-
oriented programming languages, (ii) interaction languages
and protocols, (iii) environment frameworks, architectures and
infrastructure, and (iv) organizational systems. These perspec-
tives lead MAS to the four dimensions of development, such
as described by JaCaMo approach [13] and complementary
works [6]: organization, where rules and missions are defined
to ensure the society behavior; agent, where BDI agents
are implemented; and environmental, responsible to integrate
the external environment and agents using artifacts with
operational functions; integration, that represents program
languages responsible to ensure integration between agents,
artifacts and organization rules.

In the Multi-Agent field, artifacts are Activity Theory and
Distributed Cognition-based computational devices existing in
environments and capable of performing a particular function
or service that agents can explore. Regarding the agent/artifact
relationship, there are two different types of external objectives
attached to an artifact: (i) use value, where external goals
head the artifact selection by agents; and (ii) use, which is
associated with agent’s internal goals [14]. Therefore, three
distinct aspects characterize the relationship between agents
and artifacts: agents can select, use, and construct/manipulate
artifacts, where the latter occurs when the artifact does not
exist and needs to be created.

Artifacts are composed of four elements [13]: User Interface
(UI), Operating Instructions (OI), Function, and Structure
and Behavior. User Interface (UI) is a set of operations that
agents can call to use the artifact; Operating Instructions (OI)
describe how the artifact should be used to access its func-
tionality; Function is the purpose of the artifact’s existence;
and Structure and Behavior are the internal characteristics of
artifacts that define how it is implemented [15].

For programming the environmental dimension for agents,
there is the CArtAgO framework, which is based on three
main pillars. The (i) Agent Body is the part of an agent where
artifacts represent some behaviors that it can access and control
but it is not part of their internal reasoning; (ii) Artifacts
are the components identified in a Workspace that agents or
any part of their body can interact with; A (iii) Workspace
is used to define the desktop topology. Artifacts and Agent
Bodies are stored in these Workspaces, where the relation
between them is established. Then, artifacts must be within

a specific Workspace so that agents can use. Consequently,
events generated by these artifacts can only be seen by agents
living in the same Workspace [16].

Using artifacts that are only accessible within their
workspaces may not represent the best approach to be em-
ployed in dynamic scenarios since it restricts agents that are
not originally from these workspaces to access the environ-
ment’s resources. In dynamic scenarios agents can come and
go freely and they can compete for each available component.
Moreover, the environment should be open for any entity
that intends to enter it. However, even CArtAgO, and other
languages and frameworks that consider the development of
artifacts do not provide a distributed and open characteristics
for environments.

III. METHODOLOGY

In CPS, the use of environmental objects by computational
entities is an essential factor that helps these entities to
adapt to environments with dynamic characteristics. Besides,
these environments are increasingly demanding automation,
pro-activity, and cognition. While the agents layer promotes
computational intelligence and the Organization layer pro-
motes social rules, the Artifacts layer encourages the mod-
eling of objects from the external environment. Although the
environment layer is ideal for representing objects from the
external MAS environment, there are approaches that still
transfer this responsibility to agents. Therefore, this work
presents a solution to apply MAS in physical, dynamic, and
intelligent environments using Physical Artifacts to connect
MAS artifacts to ATMEGA microcontrollers. A scenario will
be presented with instrumented engines in the Oil & Gas
industry with a focus on predictive maintenance implemented
in MAS with Physical Artifacts.

A. Oil & Gas Engine Scenario

When it comes to equipment maintenance, the natural
approach is prevention, which aims to replace defective com-
ponents or parts from time to time. However, this type of
maintenance can be costly from a financial and environmental
point of view. From an economic point of view, the periodic
replacement of a specific component can make the process
more expensive; from the environmental point of view, the
equipment may present failure situations before the replace-
ment period and cause accidents to the environment. On the
financial side, prediction is better than prevention because
predicting that the equipment’s life cycle will be longer than
usual can avoid spending on unnecessary maintenance. On
the environmental side, predicting that equipment is being
damaged can result in support before it is damaged. Following
this idea, the Oil & Gas industry benefits in the economic and
environmental fields with predictive maintenance.

The Strategic Petroleum Reserve (SPR) - that is an Oil
emergency fuel storage unit - is composed of several engines
that supply power to the pumps that move a large amount
of oil in the unit. As the SPR does not have a continuous
operation, the motors do not remain connected at all times,

56

which hinders the temporal precision that is necessary to carry
out preventive maintenance. Therefore, prediction techniques
on engines such as vibration analysis, thermography, and oil
analysis can be useful to reduce maintenance costs and prevent
accidents. In addition to sensors for analysis, the motors have
actuators that define their operation and can also be activated
intelligently to minimize the risk of equipment degradation.

As a motivation to use prediction as an approach, the
Predictive Maintenance Program (PMP) proposed in 1994
sets targets for reducing maintenance costs by 20% by the
third year of operation of this PMP [12]. With PMP, it
is possible to offer accuracy to equipment operators as to
when intervention should occur. In this case, expenses with
unnecessary maintenance and the risk of accidents would be
reduced.

B. The Physical Artifacts

A Physical Artifact is an extension of the standard MAS
Artifact capable of integrating with a physical Device in
the environment to collect its sensor data or send actuation
commands to actuators. For Physical Artifacts, a Device is an
object in the physical environment composed of a microcon-
troller with sensors or actuators. Besides, a Device must have
communication functions between the microcontroller and
another external computational entity to provide readings on its
sensors and receive commands for its actuators. Therefore, to
become a Physical Artifact, an object in the physical environ-
ment must assume the characteristics of a Device. In this case,
the Operation Functions of this Artifact can be implemented
to read the sensors and operate directly on the actuators of
this Device. For example, in the scenario of engines in the Oil
& Gas industry, it is necessary a microcontroller in them that
sends the data from the vibration sensors, thermography and
oil to this Artifact.

To create Physical Artifacts, the Artifacts implementation
of CArtAgO framework was employed. We chose CArtAgO
because it is used to create the environmental dimension of
the JaCaMo framework for Jason and because both CArtAgO
and Jason are widely used in the academia. In the hierarchical
structure of CArtAgO, the Physical Artifact is a child class of
the Artifact class. Therefore, physical artifacts can also imple-
ment Observable Properties and Operations. It is expected with
this integration to allow MAS integration with CPS without
overloading agents.

Once incorporated as CArtAgO Artifacts, Physical Artifacts
must be able to communicate with Devices in the physical
environment. For this, the serial interface Javino [17] was
employed, which is a library that implements a protocol
for exchanging messages between low-level hardware (mi-
crocontrollers) and high-level software (Java). The choice for
Javino is justified because it is a serial communication library
that handles error detection, unlike libraries based on serial
ports, such as RxTx and JavaComm. The messages exchanged
between hardware and software follow a format composed of
3 fields: 2 bytes of a pre-scope that is used to identify the
beginning of the message, 1 byte to represent the size of the

main content of the message, and finally, 256 bytes containing
the content of the message to be passed. The loss or collision
of information from the past message is verified through the
pre-scope field and the size field: the receiver validates the
content in the pre-scope; if the preamble is correct, the size
field helps to verify that the message arrived at the correct
size. If all verification is validated, the message is used;
otherwise, the message is discarded. Javino offers three modes
of operation: Send, Request, and Listen modes. The Send
mode provides simplex message transmission from software
to hardware; the Request mode offers half-duplex message
transmission (the hardware responds to the message sent); the
Listen mode allows the transmission of simplex messages
from hardware to software. Another factor that justifies the
choice of Javino is the possibility that it is designed to be
multi-platform and can be used in ATMEGA, PIC, or Intel
Families microcontrollers.

The use of Javino as a connection bridge must be analyzed
both on the side of the abstraction (Physical Artifact) and
the embedded hardware (Device). On the Physical Artifact
side, the Javino implementation class for high-level software
is added as an attribute to the PhysicalArtifact class and
instantiated directly in the constructor. All child classes of
PhysicalArtifact must define, via abstract method, the fol-
lowing values: Serial Port that will be used to connect the
artifact to the microcontroller (method String definePort()),
a Number of Attempts to send a message (method int
defineAttemptsAfterFailure()), and Timeout in milliseconds
between one attempt to send a message and another int
defineWaitTimeout()). In addition, the class PhysicalArtifact
has the implementation of the String read() method, which
performs reading from a physical device in Javino Listen
mode; and also has implementation of the void send (String
message) method, which sends messages in Send mode to the
microcontroller. Figure 1 shows the architecture of Physical
Artifacts in a MAS communicating with a physical environ-
ment.

Fig. 1. The architecture of a MAS integrated with a physical environment
showing only the Agent level and the Environment level. At the Environment
level, Standard Artifacts are together to Physical Artifacts that connects to a
Device in the physical environment using Javino middleware.

57

C. Engine Scenario Prototype

To represent the engine scenario in the Oil & Gas industry
and test the Physical Artifacts approach, a prototype of an
instrumented engine with a sensor was created and connected
to a MAS that will control it, as shown in the Figure 3. The
physical prototype consists of a fan to represent the motor
actuator, a temperature sensor, and LEDs that indicate the state
of operation of the motor. An Arduino Mega was used as
a microcontroller that contains all the sensors and actuators
of the prototype. Besides, Arduino Mega is responsible for
exchanging messages with MAS. This physical configuration
configures the physical prototype as a Device that can be used
by a Physical Artifact.

The engine designed in the prototype has the following
operations: turn on, off, block use, unlock use. In particular,
the blocking operation is used by operators when the engine
is in an abnormal condition and should not be operated. In
this prototype, the motor has three possible states: Ready
to be Operated, represented in the first lower frame of the
Figure 3, where the prototype is turned off and unlocked;
On, represented in the second lower frame of the Figure 3
(represented by the connection of two of the three LEDs);
Blocked, represented in the third lower frame of the Figure 3,
where the motor is blocked for use (indicated by the red led).

On the Arduino side, the Javino library is imported and
used as a support in sending and receiving messages to the
Physical Artifact. The Arduino was programmed to send data
from the temperature sensor whenever a message arrives from
the Artifact that requests it. In addition, the Arduino operates
the engine whenever the Physical Artifact requests one of the
available forms of operation.

On the MAS side, the Motor Artifact described in Figure 2
was created that extend a Physical Artifact. In this Motor
Artifact, operations are implemented to read the temperature
sensor, turn on, off, lock, and unlock the motor. In addition,
an Agent Manager was created in MAS to control operations.
For this, this Agent creates the Artifact Motor and starts a
basic cycle of activities to test all the operations provided by
Artifact. In the upper left corner of Figure 3, the running agent
log is displayed.

When modeling the class diagram in Figure 2, a repre-
sentation of the engine for the system with the respective
registration information can be seen. Besides, a model of
sensors and sensor measurements was created to record the
data in a MySQL database. With this, an application was
developed to allow monitoring at the level of the engine
operator so that it can visually diagnose the engine situation.
In the upper right corner of the Figure 4, is showed a graph
with temperature measurements of the environment where the
prototype is located. These measures is in degrees Celsius unit
and are provided by the Physical Artifact that reads the engine.
The variation in the graph can be analyzed by an operator in
the field of work and serve as a variable in the generation of a
prediction diagnosis, for example, associating that the increase
in temperature crossed with other data, means loss of engine

life.

Fig. 2. Class diagram of the model made to represent the Engine scenario.

Fig. 3. Engine scenario in the Oil & Gas industry in execution: Agent
Manager performing control and monitoring of the Physical Artifact, and
prototype of the engine connected to the MAS.

D. Experimental Evaluation

From the elaborated scenario, tests were done to validate the
functioning of Physical Artifacts in the physical environment.
For this, the requirements of the framework were raised to
support the experiments: (i) the Physical Artifact must be able

58

Fig. 4. An application that displays a line graph with temperature measure-
ments of the environment in which the prototype is based on time, in degrees
Celsius, provided by the Physical Artifact. The X-axis is expressed in hours,
minutes, and seconds. The temperature measurement is an example, which
could be replaced by measurements from other sensors.

TABLE I
THE CASE STUDY DESIGN

Design Description
Objective Analyze the functioning of the MAS Physical Artifact in

a physical setting.
Case The Physical Artifact will be connected to an oil and gas

engine that must be monitored and controlled to perform
predictive maintenance.

Questions Is the Physical Artifact capable of sending and receiv-
ing information through Javino? Do physical Artifacts
respond to agents’ requests in up to one second? Do
Physical Artifacts stay running for a minimum of 24
hours?

Method Observation method with a low degree of researcher
interaction.

to send and receive information using Javino; (ii) the Physical
Artifact must be able to respond to agents’ requests within one
second, which is considered acceptable within the high-level
programming field; (iii) the Physical Artifact must be able to
function in a 24-hour period in the worst case.

Based on these premises, routine tests were carried out,
where the agent requested the operations to start, stop, restart,
lock, and unlock the engine. At each operation, the agent
requests data from sensors ten times. It was concluded that
the commands from the Artifact work normally. In addition, a
throughput test was carried out between the agent’s command
and the execution of the Artifact, and it was observed that the
waiting time is below one second. Finally, the Agent Manager
was kept in operation for 24 hours, where it was observed
that the Artifact continues to respond with a failure rate of
0%. Table I shows the case study analysis of this scenario and
Table II shows the results from tests.

IV. RELATED WORKS

Physical environments have been demanding computational
systems more proactive, autonomous, and adaptable to solve

TABLE II
EXPERIMENTAL EVALUATION RESULTS

Test Description Result
The connection between
Physical Artifact and
Microcontroller

Percentage of success (%)
when exchanging data with the
microcontroller

100%

Physical Artifact Re-
sponses to the Agent

Maximum time (milliseconds)
that an Agent takes to receive
data from the Artifact

1000ms

Physical Artifact execu-
tion time

Checks whether the Physical
Artifact remains running for
24 hours

Yes

increasingly complex problems. The community has been
developing some works using MAS in industry as an attempt
to increase pro-activity and autonomy in the production chain.
There is a work in the Oil & Gas industry which uses
BDI agents to filter alarms that are generated by different
conditions [8]. This filtering considers that an operator is
not able to observe a broad set of alarms and act on them.
Besides, excessive alarms can hide an important occurrence,
and therefore there must be an intelligent system capable of
filtering this data. For this, an alarm management system was
developed using agents able of reading sensors and act on
devices. However, agents were programmed directly connected
to environments — in case of agents responsible for only one
sensor or only one actuator — without using the notion of
artifacts. As a result, agents could face bottlenecks in their
reasoning due to the need to be continuously collecting data
without necessarily using it.

ARGO [9] is a customized Jason agent’s architecture that
allows interactions with physical devices such as sensors and
actuators. For this, a serial interface between microcontrollers
and Java programming language was developed to collect all
data from the environment to be added to the agent’s belief
base. The generated data flow overloads ARGO agents and
filtering techniques [10] can be employed to select which
perceptions the agent has to focus on. However, the sensors
and actuators are available only for a specific MAS and they
are not shareable. Besides, ARGO may experience a decrease
in computational performance as the amount of information
to be perceived increases. Both works could benefit from
an approach that exposes sensors and actuators as shareable
resources in the IoT.

Given the overload on the agents and aiming to take ad-
vantage of the MAS environmental modeling resources, some
works developed solutions applied to physical environments.
In the energy sector, a Web-of-Cell (WoC) approach [11] uses
MAS to help design and test distributed solutions. For this, the
Jason framework is used to develop BDI agents; environment
modeling is done using the CArtAgO framework, which allows
creating a bridge between the agent layer and the environment
layer. The communication between the modeled environment
and the physical environment was done by the communica-
tion infrastructure of the intelligent and configurable network
laboratory (SYSLAB). However, this communication bridge is

59

strongly linked to the SYSLAB structure, which still does not
help in the mission to facilitate implementations with MAS
that involve environmental modeling.

MAS heterogeneity has been increasingly required in chal-
lenges that integrate CPS with environmental resources. In
the Industry 4.0 concept, equipment and sensors must be
integrated into the same system using the most diverse com-
munication protocols. Camel Artifact [1] is a component
that uses Java-based message routing and mediation tech-
nology (Apache Camel) in artifacts. A CamelArtifact makes
it possible to transform physical devices into Artifacts in a
more generic way than the WoC approach because several
communication protocols can be used to create the bridge
between the physical and the computational environment. For
this, routing is done that directs the messages from a device
to the specific artifact. However, although this work does not
depend on a particular protocol of communication between
physical devices and MAS, there is still a strong dependence
on Apache Camel technology that guarantees message routing.
Perhaps, an approach that integrates artifacts with microcon-
trollers can offer even more heterogeneity because it will allow
configurations of these devices more directly and at a low
level. If these artifacts were shareable between different MAS,
the collected data would become resources of the environment
that agents from any MAS could exploit.

V. FINAL CONSIDERATIONS

Normally, MAS applications using physical environments
for CPS overloads agents with data coming from sensors and
actuators. Besides, when they are not overloaded, the connec-
tions to these kind of artefacts are bounded to the provided
solution. Based on that, this work presented an extension of
CArtAgO for providing Physical Artifacts without generating
overload to agents using a serial interface for communicating
with heterogeneous microcontrollers.

In order to create Physical Artifacts, several technologies
were employed such as Jason and CArtAgO frameworks,
the Serial Interface Javino, and microcontrollers. CArtAgO’s
Artifact was extended to allow Javino to interact with sensors
and actuators connected to microcontrollers. The proposed
extension was tested in an engine scenario for Oil & Gas
domain. The results showed that our approach is suitable for
designing CPS using MAS and Physical Artifacts.

A future issue to be considered is that the fact that artifacts
to be accessible only within their workspaces can make it
challenging to implement in dynamic scenarios because this
restricts agents that are not from this MAS. If artifacts could
be accessed by agents from another MAS, it could be possible
to create a multi-purpose layer of physical artifacts to be
consumed by different agents. As future works, we intend to
create a shareable layer of artifacts to be used along with the
Internet of Things. Agents from different MAS, or any other
technology, could compete for Physical Artifacts. Besides, we
will extend the scenario of motors for Oil & Gas to allow a
middle layer capable of managing plans and rules for some
situations when using those motors.

REFERENCES

[1] C. Amaral, S. Cranefield, J. Hübner, and M. Roloff, “Giving camel
to artifacts for industry 4.0 integration challenges,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 11523 LNAI,
2019.

[2] T. Sanislav, G. Mois, S. Folea, L. Miclea, G. Gambardella, and
P. Prinetto, “A cloud-based cyber-physical system for environmental
monitoring,” in 2014 3rd Mediterranean Conference on Embedded
Computing (MECO), pp. 6–9, IEEE, 2014.

[3] S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, “Towards smart factory
for industry 4.0: a self-organized multi-agent system with big data based
feedback and coordination,” Computer Networks, vol. 101, pp. 158–168,
2016.

[4] B. Vogel-Heuser, C. Diedrich, D. Pantförder, and P. Göhner, “Coupling
heterogeneous production systems by a multi-agent based cyber-physical
production system,” in 2014 12th IEEE International Conference on
Industrial Informatics (INDIN), pp. 713–719, IEEE, 2014.

[5] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi,
“Multi-agent oriented programming with jacamo,” Science of Computer
Programming, vol. 78, no. 6, pp. 747–761, 2013.

[6] M. R. Zatelli and J. F. Hübner, “The interaction as an integration
component for the jacamo platform,” in International Workshop on
Engineering Multi-Agent Systems, pp. 431–450, Springer, 2014.

[7] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), pp. 363–369, IEEE, 2008.

[8] N. Sanchez-Pi, L. Leme, and A. Garcia, “Intelligent agents for alarm
management in petroleum ambient,” Journal of Intelligent and Fuzzy
Systems, vol. 28, no. 1, pp. 43–53, 2015.

[9] C. E. Pantoja, M. F. Stabile Jr, N. M. Lazarin, and J. S. Sichman,
“Argo: A customized jason architecture for programming embedded
robotic agents,” Fourth International Workshop on Engineering Multi-
Agent Systems (EMAS 2016), 2016.

[10] M. F. S. Jr, C. E. Pantoja, and J. S. Sichman, “Experimental analysis of
the effect of filtering perceptions in bdi agents,” International Journal
of Agent-Oriented Software Engineering, vol. 6, no. 3-4, pp. 329–368,
2018.

[11] D. Issicaba, M. Rosa, A. Prostejovsky, and H. Bindner, “Experimental
validation of BDI agents for distributed control of electric power grids,”
in 2017 IEEE PES Innovative Smart Grid Technologies Conference
Europe, ISGT-Europe 2017 - Proceedings, vol. 2018-January, pp. 1–6,
2018.

[12] R. J. Murry and B. F. Mitchell, “Cost savings from a practical predictive-
maintenance program,” in Proceedings of Annual Reliability and Main-
tainability Symposium (RAMS), pp. 206–209, IEEE, 1994.

[13] A. Ricci, M. Viroli, and A. Omicini, “Programming mas with arti-
facts,” in International Workshop on Programming Multi-Agent Systems,
pp. 206–221, Springer, 2005.

[14] R. Conte, C. Castelfranchi, et al., Cognitive and social action. Garland
Science, 2016.

[15] A. Omicini, A. Ricci, and M. Viroli, “Coordination artifacts as first-class
abstractions for mas engineering: State of the research,” in International
Workshop on Software Engineering for Large-Scale Multi-agent Systems,
pp. 71–90, Springer, 2005.

[16] A. Ricci, M. Viroli, and A. Omicini, “Cartago: A framework for proto-
typing artifact-based environments in mas,” in International Workshop
on Environments for Multi-Agent Systems, pp. 67–86, Springer, 2006.

[17] N. M. Lazarin and C. E. Pantoja, “A robotic-agent platform for em-
bedding software agents using raspberry pi and arduino boards,” in 9th

Software Agents, Environments and Applications School, 2015.

60

Classifying Common Security Vulnerabilities by
Software Type

Onyeka Ezenwoye1, Yi Liu2, and William Patten1

1 Augusta University, Augusta, GA, USA, oezenwoye,wpatten@augusta.edu
2 University of Massachusetts Dartmouth, Dartmouth, MA, USA, yliu11@umassd.edu

Abstract—The National Vulnerability Database does not
identify a type for the software that is impacted by a specified
weakness. To gain some insight into the security vulnerability
landscape, we classify by software type a total of 51,110 vulnera-
bility entries from 2015 to 2019. The software types are operating
system, browser, middleware, utility, web application, framework,
and server. This classification shows the pattern of prevalence of
software weaknesses and the persistence of weaknesses as they
pertain to each software type.

Keywords: Software, Security, Vulnerability, Weakness, Tax-
onomy.

I. INTRODUCTION

Since 2002, the National Vulnerability Database (NVD) [2]
has maintained a list of exploitable security vulnerabilities
that exist in software. Each vulnerability entry in the list has
multiple attributes, one of which is the software weakness
(E.g., buffer error). An aggregate of common weaknesses over
time is available [3]. The vulnerability entries span many
thousands of products which range from the recognizable to
the very obscure. The database however does not specify a
software type for these products. Identifying the software type
is important in understanding the vulnerability landscape as it
pertains to each software type [9].

With the ubiquity of software comes the associated
developer-driven software weaknesses. Knowing the weakness
characteristics of the software type is important in devising tar-
geted fault avoidance and detection mechanisms which include
threat modeling, architecture review, risk analysis, training,
and policies for evolution and maintenance [5], [12]. To this
end, we are analysing vulnerability database entries. Part of
this effort includes classifying the vulnerabilities by software
type. Here, we report our findings thus far of classifying the
most recent five years of vulnerability data. With this, we seek
to provide answers to two questions:

1) Is the occurrence of the most common weaknesses
consistent across software types?

2) How well do weaknesses persist over years for the same
product?

With these answers, we provide some additional insight
into vulnerability weaknesses that isn’t available in existing
literature. The rest of this paper is structured as follows, our
approach is described in Section II. We present results in

DOI reference number: 10.18293/SEKE2020-047

Section III. Related work can be found in Section IV with
Conclusion in Section V.

II. APPROACH

The NVD catalogs security vulnerabilities in a list known
as Common Vulnerabilities and Exposures (CVE). Each entry
in the list contains attributes such as a unique identifier, the
product’s vendor, product name, description, severity score,
etc. Each CVE entry also contains a Common Weakness
Enumeration (CWE) name [1]. The CWE name identifies the
specific vulnerability type (E.g., Improper Authentication, and
Buffer Error). From here on, we refer to each CVE entry as
vulnerability and each vulnerability type as weakness.

Fig. 1. Total number of vulnerabilities reported Vs number of vulnerabilities
classified by software type

Each vulnerability contains the product’s vendor and name
(E.g., Microsoft and Windows 10) but not the product type
(E.g., Operating System). To answer the questions from Sec-
tion I, we decided to review all vulnerabilities from 2015 to
2019 and classify each vulnerability by a product type. We
classified each vulnerability into one of seven product types.
We use a database (of vendor, product name, and product
type groupings) to map each vulnerability to a product type.
We continue to update this database (with vendor, product
name, and product type groupings) in order to achieve 100%
classification for all years. Currently only 2018 is complete
(Figure 1). The product types are Web Application, Utility,
Server, Operating System, Browser (Web), Framework, and
Middleware. The types are loosely based on the taxonomy
proposed by Forward et al. [9]. We briefly describe each type:

• Web Application: web-based (or cloud-based) software
such as content management systems, information man-
agement systems, transaction processing systems, etc.

61

• Utility: standalone applications such as productivity, cre-
ativity, antivirus, scripts, non-web clients, etc.

• Server: system servers (including cloud-based) such as
database, email, proxy, web, FTP, DNS, load balancers,
network monitors, etc.

• Operating System: firmware, device drivers, virtual ma-
chines, and all types of operating systems.

• Browser: all types of web browsers.
• Framework: software components such as libraries, plu-

gins, and extensions.
• Middleware: enterprise transaction platforms such as

message queuing, object storage, and identity manage-
ment systems.

Of the 58,781 unique vulnerabilities over that period, we
have classified 51,110 (87%), including 100% of all vulnera-
bilities from 2018. Figure 1 shows a comparison of the number
of vulnerabilities from each year and the number of those that
have been successfully classified by product type, so far. We
are confident that at this point, the results from the number
that have been classified should be fairly representative of the
total. To support this argument, Figure 2 shows a comparison
distribution by software product between 2018, which has
been 100% classified, and all other years. The chart shows
a similarity in distribution across product type. It also shows
that operating systems and utilities account for about half of
all vulnerabilities.

Fig. 2. Relative vulnerability count by software product type

From our classification, we found that there are a total of
169 distinct weaknesses across all product types. Figure 3
shows the most common of these weaknesses. By most com-
mon we mean that each weakness has a count that is at least
3% of all vulnerabilities classified (51,110). Collectively, these
7 weaknesses account for just over 53% of all vulnerabilities,
the other 162 weaknesses account for the rest. The chart shows
that buffer errors and cross-site scripting are the two most
individually occurring security weaknesses in general.

III. RESULTS

In this section we offer some answers to the questions
discussed in Section I.

Fig. 3. Most common weaknesses across all vulnerabilities (2015-2019)

A. Is the occurrence of the most common weaknesses consis-
tent across software types?

To help answer this question, we present a breakdown of
the most common weaknesses by each product type. Figure 4
shows the most common weaknesses for the Browser type.
For this type, there were 74 different weaknesses across a
total of 2,897 vulnerabilities. These 8 weaknesses account for
75.5% of all vulnerabilities. Buffer error is the most occurring
weakness, which is consistent with Figure 3.

Fig. 4. Most common weaknesses for the Browser type

Figure 5 shows the most common weaknesses for the type
classified as Framework. There are a total of 129 weaknesses
across 8,444 vulnerabilities. These 9 weaknesses account for
59.6% of all vulnerabilities. The two most common weak-
nesses are buffer errors and cross-site scripting. This could
be explained by the fact that many of the products that fall
into this type are frameworks for web applications and other
downloadable program libraries. The two most common here
is somewhat consistent with Figure 3.

Figure 6 shows the most common weaknesses for the
Middleware product type. There are a total of 59 weaknesses
across 441 vulnerabilities. These 9 weaknesses account for
54.6% of all vulnerabilities. Although present, buffer errors, a
typically common weakness (Figure 3), don’t feature promi-
nently here. Figure 7 shows the most common weaknesses
for Operating systems. There are a total of 148 weaknesses
across 13,670 vulnerabilities for this product type. These 7
weaknesses account for 54.1% of all vulnerabilities. All of
these weaknesses are the same that appear as the most common

62

Fig. 5. Most common weaknesses for the Framework type

in Figure 3. This is partly due to prominence of the Operating
System type in the classification (Figure 2).

Fig. 6. Most common weaknesses for the Middleware type

Fig. 7. Most common weaknesses for the Operating System type

Figure 8 shows the most common weaknesses for the Server
product type. There are a total of 118 weaknesses across
5,840 vulnerabilities for this type. These 9 weaknesses account
for 59.8% of all vulnerabilities. All of the most common
weaknesses (Figure 3) feature prominently here, in addition
to the SQL Injection and Path Traversal weaknesses. Figure 9
shows the most common weaknesses for the product type
classified as Utility. There are a total of 124 weaknesses across
8,878 vulnerabilities for utilities. These 9 weaknesses account
for 61% of all vulnerabilities.

Figure 10 shows the most common weaknesses for Web
applications. For this product type, there are 105 weaknesses

Fig. 8. Most common weaknesses for the Server type

Fig. 9. Most common weaknesses for the Utility type

across 7,595 vulnerabilities. These 8 weaknesses account for
72% of all vulnerabilities for Web applications. We note that
the most common weaknesses for the Web application type
are similar to those of the Server type (Figure 8), allbeit at
different degrees. The results show that the most common
weaknesses (Figure 3) do not appear consistently across all
software product types. Of the 7 weaknesses, only Input Val-
idation, Cross-site Scripting, and Information Exposure occur
at a high enough rate (3%) for every product type. The Buffer
Error weakness met this threshold all types but Middleware.
Buffer Error was recorded at 1.6% of all vulnerabilities for
the Middleware type. Also, the rate at which each weakness
occurs does vary greatly across product types.

Fig. 10. Most common weaknesses for the Web Application type

63

B. How well do weaknesses persist over years for the same
product?

We reviewed the data to determine whether the same weak-
ness (E.g., Buffer Error) for a given product (E.g., Microsoft
Windows 10) occurs again in subsequent years for the same
product. Our results show that only a small percentage (less
than 5%) of weaknesses repeat for the same product and the
rate at which they reoccur does decrease over time (Figure 11).
A reasonable assumption here is that a majority of the weak-
nesses get repaired. Also, over time, some products get discon-
tinued or evolve into a different product. Products that have
evolved into a different product (name) would not show up in
the data as repeating. Figure 12 shows that Web applications
account for the most occurrences of repeating weakness. It
is important to note that the Operating System type which
accounts for a high number of vulnerabilities (Figure 2) does
not have as high a rate of repeating weaknesses, relatively.
The results here highlight the importance of updating existing
software installations.

Fig. 11. Number of weaknesses that repeat for the same product over time

Fig. 12. Distribution of repeating weaknesses by software type

IV. RELATED WORK

Some existing works have looked at analyzing vulnerability
data from the NVD. None that we know of classify software
weaknesses by product type. Santos et al. [8] devised a
Common Architectural Weakness Enumeration as a means to
catalog the common types of architectural weaknesses that
generally exist in software. Na et al. [13] discuss a technique
for analyzing vulnerability entries that do not have identi-
fied weaknesses. Their techniques attempts to identify the

weakness using existing information in the vulnerability entry.
Neuhaus et al. [14] analyzed vulnerability entries to identify
trends in topics such as PHP and Format Strings that appear in
the entries. Chang et al. [7] analyzes vulnerability entries from
trends in the frequency and severity of vulnerability types.
Others [4], [6], [10], [11], [15], [16] take a similar approach
by analyzing existing texts for vulnerability trends.

V. CONCLUSION

To gain further insight into reported software security
vulnerabilities, we analyzed 51,110 vulnerabilities from 2015
to 2019. We classify these vulnerabilities by software type.
Our analysis shows that the occurrence of weaknesses across
software types does vary greatly both in the type of weakness
and rate of occurrence for each software type. We also show
that the rate at which identified weaknesses repeat for the same
product is significantly reduced over time. As we continue to
analyze the data, we believe that our findings here will help
inform approaches to the avoidance and detection of software
weaknesses as well as inform strategies for software evolution
and maintenance.

REFERENCES

[1] The common weakness enumeration. https://nvd.nist.gov/vuln/
categories, Retrieved February, 2020.

[2] National vulnerability database. https://nvd.nist.gov/, Retrieved
Febraury, 2020.

[3] Relative vulnerability type totals by year. https://nvd.nist.gov/vuln/
visualizations/cwe-over-time, Retrieved February, 2020.

[4] S. Alqahtani and J. Rilling. Semantic modeling approach for software
vulnerabilities data sources. In Proceedings of the 17th International
Conference on Privacy, Security and Trust. IEEE, 2019.

[5] E. Amoroso. Recent progress in software security. IEEE Software, 35(2),
2018.

[6] F. Bulut, H. Altunel, PMP, and A. Tosun. Predicting software vulner-
abilities using topic modeling with issues. In Proceedings of the 4th
International Conference on Computer Science and Engineering, 2019.

[7] Y.-Y. Chang, P. Zavarsky, R. Ruhl, and D. Lindskog. Trend analysis of
the cve for software vulnerability management. In Proceedings of the
IEEE Third International Conference on Social Computing, Oct 2011.

[8] J. C. da Silva Santos, K. Tarrit, and M. Mirakhorli. A catalog of security
architecture weaknesses. In Proceedings of the 2017 IEEE International
Conference on Software Architecture Workshops, 2017.

[9] A. Forward and T. Lethbridge. A taxonomy of software types to facilitate
search and evidence-based software engineering. In Proceedings of the
2008 Conference of the Center for Advanced Studies, 2008.

[10] D. Gonzalez, H. Hastings, and M. Mirakhorli. Automated characteriza-
tion of software vulnerabilities. In Proceedings of the IEEE International
Conference on Software Maintenance and Evolution, 2019.

[11] T. H. M. Le, B. Sabir, and M. A. Babar. Automated software vulnera-
bility assessment with concept drift. In Proceedings of the IEEE/ACM
16th International Conference on Mining Software Repositories, 2019.

[12] G. McGraw. Silver bullet talks with Ksenia Dmitrieva-Peguero. IEEE
Computing Edge, February 2019.

[13] S. Na, T. Kim, and H. Kim. A study on the classification of common
vulnerabilities and exposures using naı̈ve bayes. In Proceedings of
Advances on Broad-Band Wireless Computing, Communication and
Applications. Springer, 2016.

[14] S. Neuhaus and T. Zimmermann. Security trend analysis with cve topic
models. In Proceedings of the 21st IEEE International Symposium on
Software Reliability Engineering. IEEE, November 2010.

[15] M. Williams, R. Camacho Barranco, S. M. Naim, S. Dey, M. Hossain,
and M. Akbar. A vulnerability analysis and prediction framework.
Computers Security, February 2020.

[16] X. Wu, W. Zheng, X. Chen, F. Wang, and D. Mu. CVE-assisted large-
scale security bug report dataset construction method. Journal of Systems
and Software, 160, 11 2019.

64

Modeling Relation Path for Knowledge Graph via
Dynamic Projection

Hongming Zhu†, Yizhi Jiang†, Xiaowen Wang†, Hongfei Fan†, Qin Liu∗†, and Bowen Du∗‡
†School of Software Engineering, Tongji University

‡Department of Computer Science, University of Warwick
Email: {zhu hongming, 1931566, 1931533, fanhongfei, qin.liu}@tongji.edu.cn, B.Du@warwick.ac.uk

Abstract— The application of representation learning in knowl-
edge graphs has been a hot topic in recent years. Using represen-
tation learning methods, the semantic information contained in
knowledge graphs can be embedded into low-dimensional dense
vector spaces to achieve the purpose of efficiently processing
knowledge graphs. A large number of research results have
proved the advantage of the representation learning model
represented by the translation model in processing knowledge
graph related tasks. However, most translation models focus
on the direct relation between entities and ignore the multi-
hop relation between entities in the knowledge graph. In this
paper, the relation path between entities in the knowledge graph
is modeled. Considering the diversity of entities and relations
in the knowledge graph, we embed entities and relations into
different semantic spaces, and project the embedding results to
the same space dynamically, while maintaining the consistency
of the relation path between entities. We use benchmark datasets
to evaluate the performance of the proposed model on the task
of knowledge completion. The experiment shows that the model
proposed in this paper is of great significance to solve the problem
of knowledge completion in the knowledge graph.

Index Terms—knowledge graph, dynamic projection, relation
path

I. INTRODUCTION

The knowledge base is a systematic and structured em-
bodiment of human knowledge and is an important basic
technology for intelligent information service applications
such as intelligent search, intelligent question answering,
and intelligent recommendation. Major search engines and
organizations have also established multiple large knowledge
bases to serve their products. Common English knowledge
bases include Wikipedia, Probase, language knowledge base
WordNet [1], and world knowledge base Freebase [2]. Chinese
knowledge bases include Baidu Encyclopedia, Sogou Encyclo-
pedia. Knowledge graph is a way to sort out and store infor-
mation. It was first proposed by Google in 2012. Its essence
is a knowledge base of the semantic network. Knowledge
graphs have strong semantic expression capabilities, flexible
modeling, a human-recognizable, machine-friendly way of
expressing knowledge. It’s the mainstream form of knowledge

This research has been supported by the National Key R&D Program of
China (No. 2018YFB0505000), the Science and Technology Commission of
Shanghai Municipality (No. 17511107303, No. 17511110202), the National
Natural Science Foundation of China (No. 61702374), the Shanghai Sailing
Program (No. 17YF1420500) and the Fundamental Research Funds for the
Central Universities.
∗Corresponding Author

base. However, in the form of network representation, people
need to design a special graph algorithm to store and utilize
the knowledge base, which has the disadvantage of being time-
consuming and laborious and is plagued by the problem of
data sparseness.

Faced with this problem, representation learning in the field
of deep learning has attracted people’s attention. Representa-
tion learning is to represent the semantic information of the
studied object as a low-dimensional dense real-valued vector,
and in this space, the two objects with higher semantic simi-
larity are closer. In the field of knowledge graphs, researchers
can use representation learning to embed the entities in the
knowledge graph and the relations between entities into a
low-dimensional dense space, while retaining the semantic
relations in the knowledge graph as much as possible. This
method can improve the utilization efficiency of graph data
and alleviate the problem of data sparseness.

By using representational learning to model the knowledge
graph, people can easily achieve the task of completing the
knowledge graph and discover the implicit relations among
entities to expand the knowledge graph. However, most of the
existing models cannot effectively use the multi-hop relation
in the knowledge graph, and to some extent, the information
hidden in the data is ignored.

This paper explores the application of representation learn-
ing in knowledge graphs, focusing on the effects of translation
models on knowledge graph completion, and proposes a new
model of the relation path between entities in the knowledge
graph. The main contributions include:

1) This paper studied and summarized common translation
models, and compared the advantages and disadvantages
of different models.

2) We combine the construction ideas of PTransE [3] and
TransD [4] to model the relation paths in the knowledge
graph and proposed a new translation model, PTransD.

3) By evaluating the result of the knowledge completion
task with the PTransD model in the benchmark data set,
we verify the effectiveness of the model.

The rest of the paper is organized as follows. Related
work is presented in Section II. In Section III, we detail our
approach. The experiments and results of the proposed model
will be introduced in Section IV. The conclusion we draw and
feature work is presented in Section V.

DOI reference number: 10.18293/SEKE2020-054
65

II. RELATED WORK

In the field of knowledge graphs, translation models using
representation learning are mainly used to solve the problems
of knowledge representation and reasoning. The translation
model mainly learns the structural features of the knowledge
graph, namely (head entities, relations, and tail entities) triples,
embeds entities and relations into low-dimensional dense
spaces, and uses vectors to represent entities and relations.
Since the TransE model [5] was proposed in 2013, a series
of models have been produced to improve and supplement the
TransE model, such as TransH [6], TransR [7], TransD [4],
PTransE [3] and so on. This section mainly introduces these
models.

A. TransE

In the TransE model, triples in the knowledge graph are
denoted by (h, r, t). Correspondingly, their column vector are
denoted by h, r and t. The mean idea of TransE is that
the relation r is considered as the translation from h to t.
Therefore, the goal of the TransE model is to make t− h
equal to r as much as possible. The score function is defined
as

fr(h, t) = ‖h + r− t‖L1/L2
(1)

where L1/L2 represents the 1-norm or 2-norm.
However, the TransE model embeds entities and relations

into the same space, and for the same relation, different
head and tail vectors may be close in distance. Therefore,
the TransE model encounters difficulties when dealing with
complex relation modeling.

B. TransH

The TransH model [6] overcomes the shortcomings of the
TransE model’s insufficient processing capacity for complex
relations and makes the same entity vector have different
representations under different relations.

The TransH model assumes that there is a corresponding
hyperplane for each relation r, and the relation r falls on the
hyperplane. Each entity can be projected onto the hyperplane
where the relation r is located. Then the translation process
similar to the TransE model will be performed on this hyper-
plane.

Let h⊥ and t⊥ represent the projected vector of head entity
and tail entity respectively. The score function of the TransH
model is defined as

fr(h, t) = ‖h⊥ + r− t⊥‖L1/L2
(2)

Although the TransH model makes the same entity have
different representations through projection under different
relations, the model assumes that entities and relations are
in the same semantic space, which limits its representation
ability to a certain extent.

C. TransR

Both the TransE and TransH models assume that entities and
relations are vectors in the same semantic space so that similar
entities will be in similar positions in space. The TransR
model believes that each entity can have many aspects, and
different relations focus on different aspects of the entity, so
different relations should have different semantic spaces. For
each relation r, a transition matrix Mr is set. Entity vectors
will be projected to the relation space with these matrices. The
score function of TransR is

fr(h, t) = ‖Mrh + r−Mrt‖L1/L2
(3)

The TransR model separates the original single semantic
space into entity space and relation space, which improves the
model’s representation ability. However, the transition matrix
is only relevant to the relation, and the matrix multiplication
increases the complexity of operations.

D. TransD

By using the dynamic mapping matrix, TransD [4] over-
comes the above shortcomings of the TransR model to some
extent. It uses different mapping methods to project entity
vectors to the relation space. Besides the embedding vector,
TransD constructs a projection vector for each entity or
relation to build the dynamic mapping matrix. When the
dimension of entity space and relation space is set to be the
same, the score function of TransD can be simplified as

fr(h, t) =
∥∥h + r + (hT

p h− tTp t)rp − t
∥∥
L1/L2

(4)

where subscript p marks the projection vectors.

E. PTransE

The PTransE model [3] believes that in addition to direct
relations in knowledge graphs, indirect relations reached be-
tween entities through other entities should also be of great
significance for completing completion tasks in the knowledge
graph. Therefore, PTransE models the relation paths between
entities and gives quantitative calculations for the reliability of
different relation paths. Using the relation paths, the PTransE
model uses ideas similar to the TransE model to perform
semantic relations in the knowledge graph Learn and complete
the embedding of the knowledge graph.

PTransE solves two important challenges of using relational
paths: i) the reliability calculation of relational paths, and ii)
the semantic representation of relational paths. The PTransE
model proposes a PCRA (Path-constraint Resource Allocation)
algorithm based on the resource allocation algorithm in the
network [8] and calculates the reliability of the relational path.
The basic idea of the algorithm is that on a subgraph with
entity h as the starting point and entity t as the ending point,
it is assumed that a certain amount of resources flow out from
h through the relation path, and the number of resources that
can finally reach t reflects the reliability of the relation path.

66

Fig. 1. Simple illustration of PTransD. Each shape represents an entity. There exists a relation path p between entity e1 and entity e3, which is denoted as
p = (r1, r2). With the auxiliary vector pa of p, entities corresponding to p are projected from entity space to relation space. Notice that projections of e2
changes according to its corresponding relation r1 and r2.

III. OUR METHOD

In the TransD model, the entities and relations of the
knowledge graph are embedded in different semantic spaces,
and the entity vector is projected into the relation space by
using a projection matrix. In the relation space, the equation
h + r = t holds approximately. Since the projection matrices
corresponding to the head entity and the tail entity are related
to the entity itself and the relation, and the mathematical
operation of the projection operation can eliminate the matrix
multiplication operation, the TransD model becomes a more
advanced model in the translation model.

The TransD model only considers the direct relation be-
tween entities when using knowledge graph data. The PTransE
model is the first to propose the use of multi-step relations
between entities in the knowledge graph. By setting the
credibility of the relation path between entities, the PTransE
model has also shown its importance in many translation
models.

We draw on the advantages of the above two models and
propose the PTransD model.

A. Model Description

For knowledge graph G, the semantic space to which the
entity is mapped is Ek, the semantic space to which the
relation is mapped is Rk, where k represents the spatial
dimension. There are entity semantic vectors h, t ∈ Rk and
relation vectors r ∈ Rk. To project the entity vector to the
semantic space where the relation vector is located, and make
use of the information on the structure of the knowledge graph,
similar to the TransD model, PTransD model set auxiliary
vectors ha, ta, and ra for each semantic vector to construct a
mapping matrix.

First we consider the case where the length of the relation
path is 1, that is, the relation path between the head vector h
and the tail vector t is the direct relation r between them. We
will deduce this to a more general case.

Let xf = xT
a x be the feature value corresponding to each

entity. The PTransD model constructs a mapping matrix under
the relation r for each head entity and tail entity by

Mrh = rah
T
a + I

Mrt = rat
T
a + I

(5)

where I represents the identity matrix. Then using a mapping
matrix, the projection of the head and tail entities in the
semantic space where the relation r is located is:

h⊥,r = Mrhh = hfra + h

t⊥,r = Mrtt = hfra + t
(6)

The goal of PTransD is to make the equation h⊥,r +
r = t⊥,r approximately true. When the Equation (5) and
Equation (6) holds, we have that

r = (tf − hf)ra + t− h (7)

More generally, for the triplets in knowledge graph
(h, r0, x1), (x1, r1, x2), . . . , (xl, rl, t), the relation path from h
to t is marked as pr = (r0, r1, . . . , rl). Let x0 = h, xl+1 = t,
the entity path from h to t is marked as pe = (x0, x1, . . . , xl+1.
The vector of relation path is p = r0 ◦ r1 ◦ · · · ◦ rl, where ◦
is a binary operator. In the PTransD model, we use the plus
sign of vector as the binary operator. Under these conditions,
the relation path vector is

p =
l∑

i=1

ri (8)

With Equation (7) and Equation (8), we can infer that

p =
l∑

i=1

ri =
l∑

i=1

[(xf,i+1 − xf,i)ra,i + xi+1 − xi]

=
l∑

i=1

(xf,i+1 − xf,i)ra,i + t− h

= (tf − hf)pa + t− h

(9)

67

That is

pa =
1

(tf − hf)

l∑
i=1

(xf,i+1 − xf,i)ra,i (10)

The general goal of PTransD is to make the equation h⊥,p+
p = t⊥,p hold among different entities.

An important idea in the PTransE model is that differ-
ent relation paths have different degrees of reliability. The
PTransD model follows this idea. For a triplet (h, p, t) given
by the relation path p = (r1, r2, . . . , rl), the possible path
from h to t is S0

r1−→ S1
r2−→ . . .

rl−→ Sl, where S0 = {h}
and t ∈ Sl. For arbitrary entity m ∈ Si, the set of the
direct predecessor entities in Si−1 linked by ri is noted as
Si−1(·,m). For arbitrary entity n ∈ Si−1, the set of the direct
successor entities in Si linked by ri is noted as Si(n, ·). The
reliability degree is calculated with

Rp(m) =
∑

n∈Si−1(·,m)

1

|Si(n, ·)|
Rp(n) (11)

Let Rp(h) = 1, then Rp(t) will shows the reliability of path
p, noted as R(p|h, t). An example for calculating the reliability
of the relation path is shown in Fig 2. Then, the score function
of PTransD is defined as

fp(h, t) = ‖h⊥,p + p− h⊥,t‖L1/L2
(12)

The set of golden path triplets is noted as ∆p, which means
that for any triplet (h, p, t) ∈ ∆p, there exists a relation path
p from h to t, and the set of corrupt path triplets is ∆′p =
{(h, p, t′)|(h, p, t′) /∈ ∆p} ∪ {(h′, p, t)|(h′, p, t) /∈ ∆p}. We
define the loss function of PTransD as

L =
∑

h,p,t∈∆p

∑
h′,p′,t′∈∆′p

Cp[fp(h, t)− fp′(h′, t′) + γ]+

(13)
where Cp is the confidence of relation path p. Let P (h, t)

be the set of all relation path from h to t, Cp is calculated by

Cp =
R(p|h, t)∑

p∈P (h,t)R(p|h, t)
(14)

B. Relations among PTransD, TransD, and PTransE

It can be seen from the construction process of the PTransD
model that when the length of the relation path in the PTransD
model is limited to 1 and the reliability of the relation path is
ignored, the PTransD model degenerates into a special form
of TransD. At this time, the dimensions of the entity vector
space and the relation vector space are the same in the TransD
model.

Compared with the PTransE model, the PTransD model
believes that the direct relation between entities is also an
embodiment of the relation path. When calculating the model
loss, the direct relation and the relation path can be treated the
same, thereby simplifying the form of the loss function. The

PTransD model retains the calculation ideas for path reliability
proposed in the PTransE model and optimizes it. Besides, the
PTransE model embeds entities and relations into the same
space, while the PTransD model refers to the idea of the
TransD model to embed entities and relations into different
spaces, and complete the projection of the entity vector into
the relation space dynamically. Thereby, the semantic structure
of the knowledge graph can be modeled more clearly.

C. Knowledge Graph Completion

Although a common knowledge graph may have millions
of entities and hundreds of millions of relations, these graphs
may still be relatively sparse. Knowledge graph completion is
to discover new information through the existing knowledge
graph. According to the different objects in the triad of
knowledge graph to be completed, the completion task of the
knowledge graph is divided into three sub-tasks of head entity
completion, relation completion, and tail entity completion.
Head entity completion refers to when giving the relation and
tail entity in the triple, we need to give head entities that
can form reasonable triples with them. For example, give the
relation ”state of” and the tail entity ”U.S.A”, the possible head
entity of the condition can be ”California” or ”Texas”. The
relation completion and tail entity completion are the same. It
can be seen that in the completion task, the entity or relation
that can constitute a triple is not unique.

It is not difficult to use the trained PTransD model for
knowledge graph completion tasks. Taking the tail entity
completion task as an example, for a triplet T = (h, r, ?)
whose tail entity is missing, we need to find a suitable tail
entity t so that T becomes a valid triplet. Let e1, e2, · · · , en
represent the n entities of the knowledge graph, and put
them one by one into the missing position of T to form
candidate triplets, denoted as Ti = (h, r, ei). Through the
scoring function (12), the PTransD model gives the scores
of the n candidate triples. After that, the top k candidate
triples with the highest scores is taken as the model completion
results, where k is a manually set parameter.

IV. EXPERIMENTS AND RESULTS ANALYSIS

In this section, we illustrate our experimental result of
knowledge graph completion with the PtransD model.

A. Dataset

For the experimental data set, the public data set FB15k for
validation of the translation model effect. The FB15k dataset is
the largest commonly used single-language knowledge graph
studied in recent years [3] [4] [5] [6] [7]. It contains about
15,000 entities from Freebase [2] and related triples. The
detailed statistics of this data set are shown in Tab. I.

TABLE I
FB15K DATA SET STATISTICS

Relation # Entity # Train # Valid # Test
1345 14951 483142 50000 59071

68

Fig. 2. An example for calculating relation path’s reliability. Entities are represented by yellow dots and numbered from 1 to 8. Three kinds of relation r1, r2
and r3 are displayed with red, green and blue arrows, respectively. When calculating the reliability of the relation path p = (r1, r2, r3) between E1 and E8,
we assign 1 unit of resource to E1 and make the resource flow along the graph. Finally, we’ll obtain 0.5 unit of resource at E2, which means the reliability
of p is 0.5.

B. Experiments

In the experiment, the FB15k dataset is selected to evaluate
the PTransD model on the knowledge completion task. The
evaluation of the model is completed in three sub-tasks: i) head
entity completion, ii) relation completion, and iii) tail entity
completion. For each sub-task, the results of three indicators,
Mean Rank, MRR [9], and Hits@10, are given. Mean Rank
is the mean of correct entities’ or relations’ rank among the
completion result. The MRR indicator calculates the mean
value of ranks’ reciprocal. Hits@10 indicates the proportion of
valid entities or relations ranked in the top-10. In addition, we
also calculate the averages of the head entity completion and
tail entity completion on these three indicators, as the model’s
overall completion evaluation criteria. Literature [3] and [4]
summarize the results of common existing model evaluations,
and this paper refers to some of the results as a comparison
of this model.

When training the PTransD model, we used the mini-batch
SGD optimizer to optimize the loss function (13). The 2-norm
of the entity vector, the relationship vector, and each projection
vector is also limited to 1 to prevent the model from obtaining
a trivial solution by increasing the norm. All the parameters
of the PTransD model are initialized randomly. Corrupt triplet
used for training is generated by replacing the head entity
or the tail entity of the relation path. We found that there
is a large number of relations among entities. In the dataset
FB15k, the number of 2-hop relation paths is more than one
hundred million while the 3-hop relation path’s amount is more
than 60 times more. It’s very time consuming to consider all
the relation paths between certain two entities. To reduce the
amount of calculation, we limited the maximum length of the
relation path to 2. The confidence of each path was calculated
through the train set before training. We also discarded the
path whose reliability is less than 0.01 to speed up the training
process.

The PTransD model was verified on FB15k using multi-
ple parameters. The batch size was fixed to 4800 and the

maximum training epoch was set to 500. The average loss of
model’s completion on the validation set of FB15k was used
as the basis of the early stop. The best result occurs when
setting the margin to 1, the embedding dimension to 100, and
the learning rate to 0.01, see Tab. II for details. Tab. III shows
the detailed evaluation results of our model together with other
models in FB15k.

TABLE II
EVALUATION RESULS OF PTRANSD IN FB15K

Task Mean Rank MRR Hits@10%
head 190 0.266 50.4

relation 3 0.773 96.9
tail 189 0.271 54.6

total 189 0.268 52.5

TABLE III
EVALUATION RESULTS IN FB15K

Model Mean Rank Hits@10%
TransE [5] 243 34.9

TransH(bern) [6] 212 45.6
TransR(bern) [7] 198 48.2
TransD(bern) [4] 194 53.4

PTransE(ADD,2-STEP) [3] 200 51.8
PTransD(our) 189 52.5

Compared with common existing models, the PTransD
model in the FB15k data set has a lower Mean Rank than
TransD, and similar to the optimal result among these mod-
els on Hits@10, which shows that PTransD is effective in
considering multi-step relation and embedding schemes for
entities and relations. However, because the PTransD model
can learn a richer relation between two entities from the
relation path, its performance in accurately predicting missing
entities or relations is lower than that of the TransD model, so
its performance is slightly insufficient on the Hit@10 indicator.

69

V. CONCLUSION AND FUTURE WORK

This paper explores the application of representation learn-
ing in knowledge graphs, focusing on the effects of transla-
tion models on knowledge graph completion. We introduce
common translation models and compares the advantages and
disadvantages of different models. Inspired by the construction
ideas of the PTransE model and TransD, we proposed a
translation model PTransD based on relational paths and
dynamic projection. The PTransD model is a generalization
of the TransD model. When the relation path length is limited
to 1 and the reliability of the relation path is not taken into
consideration,, the PTransD model is converted into a form
in which the TransD model has the same dimensions in the
entity space and relation space. Compared with the PTransE
model, the proposed model embeds entities and relationships
into different spaces, and projects entities into the relationship
space dynamically according to the relations and entities
themselves, thereby making the model more expressive. We
verified the completion effect of the PTransD model in the
benchmark dataset FB15k. The result indicates the rationality
of PTransD for multi-step relations.

There is still much work to do for further research. At
present, our work is based on the Trans series of models.
These models are based on the structure and learning of
the knowledge graph, but the semantic information in the
knowledge graph is not only included in the structure, but
also the text itself. Our follow-up work will focus on how to
use the information in the knowledge graph to complete the
knowledge graph completion problem.

REFERENCES

[1] George A. Miller. Wordnet: A lexical database for english. Commun.
ACM, 38(11):39–41, 1995.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: A
collaboratively created graph database for structuring human knowledge.
In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, page 1247–1250, 2008.

[3] Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao, and S. Liu. Modeling relation
paths for representation learning of knowledge bases. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 705–714, 2015.

[4] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao. Knowledge graph embedding via
dynamic mapping matrix. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 687–696, 2015.

[5] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and O. Yakhnenko.
Translating embeddings for modeling multi-relational data. In Pro-
ceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, page 2787–2795, 2013.

[6] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding
by translating on hyperplanes. 2014.

[7] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and
relation embeddings for knowledge graph completion. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, page
2181–2187, 2015.

[8] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A
survey. Physica A: statistical mechanics and its applications, 390:1150–
1170, 2011.

[9] N. Craswell. Mean Reciprocal Rank, pages 1703–1703. 2009.

70

Modeling HiBrinto Ontology to Develop Knowledge

Management Portal for Highway Bridge Construction

Shanmuganathan Vasanthapriyan

Department of Computing and Information Systems,

Sabaragamuwa University of Sri Lanka,

Belihuloya, Sri Lanka

priyan@appsc.sab.ac.lk

Kuhaneswaran Banujan

Department of Computing and Information Systems,

Sabaragamuwa University of Sri Lanka,

Belihuloya, Sri Lanka

bhakuha@appsc.sab.ac.lk

Abstract—Highway bridges play an important role in traffic

reduction in main cities. Constructing, maintaining and repairing

highway bridges is a knowledge-intensive activity that inputs

knowledge from different sources to take timely and correct

decisions. Since these are knowledge-intensive activities, the

proper knowledge management (KM) system can help to make the

proper decisions, knowledge sharing, knowledge capturing, etc.

easier. The base for the KM system is the ontology which is an

explicit specification of conceptualization. In this paper, we

introduce a novel HiBrinto, a highway bridge ontology for

developing a KM portal for highway bridge construction,

maintenance, and repair. The field study of the KM portal clearly

emphasizes that the developed KM portal will pave the way for

seamless knowledge sharing and quick decision making for

highway bridge-related activities.

Keywords-Highway Bridge, Knowledge, Management, Ontology,

HiBrinto, Semantic Web.

I. INTRODUCTION

Bridges are part of the road infrastructure and are an
important link in a road network [1]. In this context, highway
bridges play an important role in reducing traffic. Highway
bridges are made of steel, reinforced concrete, or wood. Girders
are most often used in building steel highway bridges. The
preferred design of a highway bridge is with driving in the upper
part (Deck Bridge); this creates better traffic conditions for
automobiles and makes the bridge easier to maintain [2].

The Semantic Web is an extension of the current web to
allow computers and persons to share information (not data)
based on context (not hypertext). Ontology is one of the core
web features [3]. Knowledge Management (KM) is the process
of making the effective use of information and knowledge in an
organization to achieve the goals [4]. It allows people to access
and use the best knowledge when it is necessary and facilitates
learning [5, 6].[7].

For the creation of information systems, the development,
distribution, and use of common communication principles,
vocabulary and ontologies are essential. Therefore, we discuss
certain key topics in this paper relevant to our research such as
highway bridges and ontologies [7]. The overall objective of our
research is to develop a KM portal that can cater to the needs of
people who are related to highway bridge construction. The key
to achieving this objective is the ontology which we named as
HiBrinto (Highway + Bridge + Ontology)

The remainder of the paper is organized as follows. Section
2 discusses the literature review and related works. Section 3
describes the complete research design for the HiBrinto
ontology. Finally, Section 4 concludes this paper with directions
for future work.

II. LITERATURE REVIEW AND RELATED WORKS

Construction companies engaged in more routine and
repeatable work should also strive to make more effective output
of products, uniform procedures, preparation and so on [8].
Information needs to be quickly and easily communicated and
beneficial to others. Project teams and people within a company
should be empowered and be able to share their experiences with
others [3, 9].

Three areas of consideration that must be addressed for the
effective construction of highway bridges are; (i) artistic and
esthetic, (ii) analytical and (iii) scientific and realistic. Given that
most bridge projects currently being undertaken by
multidisciplinary teams, it is fairly easy to address the first two
concerns. The last one is often the most complicated. [2]. Project
periods for these bridges will have to shorten to respond to
public demand to minimize road congestion and the flow of
traffic during project, often within a few feet of workers and
equipment [8].

In, “Building an ontological knowledgebase for bridge
maintenance” by Ren, et al.[7], they have developed a system
that caters to all the phases in the bridge maintenance life cycle.
It covers the maintenance-related knowledge for all types of
bridges. In the work of J France-Mensah, et al. [10], they
developed Integrated Highway Planning Ontology (IHP-Onto)
which is a shared representation of knowledge about pavement
assets, M&R planning, and inter-project coordination. This is
work is done in high ways.

III. RESEARCH DESIGN

Our research design consists of two major parts; (i) Modeling
of HiBrinto ontology, (ii) Development of Highway Bridge KM
Portal. The high-level methodological roadmap for the
development of the KM portal for highway bridge decision
making is shown in Figure 1.

DOI reference number: 10.18293/SEKE2020-103

71

Figure 1. The high-level methodological roadmap for the development of the

KM portal for highway bridge decision making

A. Ontology Modeling

In this section, we present how the HiBrinto ontology is
developed which is going to act as the base for KM Portal
development in the next stage.

1) Data collection
Context refers to a representative item that enables the

external environment of a concept to be represented [11]. If any
data that gives information context to a person, entity or event is
known as contextual information. In our research, the targeted
users are; construction engineers, maintenance engineers,
quality engineers, RDA management, academic staff,
researchers, engineering undergraduates.

The data collection was done by using grounded theory [12].
Grounded theory is a technique that involves building
hypotheses through methodical data collection and analysis. In
comparison to the hypothetical-deductive model of the scientific
method, this approach employs inductive reasoning. Research
with the grounded theory is likely to start with a query or even
with qualitative data collection [13].

Since the researchers’ are not experts in the construction
domain, the relevant data were obtained through formal and
informal expert collaboration and extensive literature surveys.
Five construction engineers who mainly deal with the highway
bridge construction over many years under different projects and
three academic lecturers from the reputed university of Sri
Lanka participated in the process of data collection. They have
been interviewed formally and informally several times during
the whole research period. Besides, thirty personalities from the
construction site with different job roles and thirty academic
students also participated in the process of identifying the
problems faced by them (i.e., the actual need for the research is
realized by them). Further, construction manuals [14-17] and

several works of literature [3, 8, 18-24] were surveyed
throughout the research period.

2) Competency Questions
The Competency Questions (CQs) are questions of natural

language which define and limit the scope of knowledge that is
represented in the ontology. [6]. CQs play a major role in the
lifecycle of ontology modeling as they reflect the ontology
requirements [25]. CQs work as a requirement’s specification of
the HiBrinto ontology. Table 1 shows part of the formulated CQs

TABLE I. COMPETENCY QUESTIONS

Competency questions for the HiBrinto ontology

What are the different types of highway bridges available?

What are the major components of a bridge?

What are the special components of a particular type of highway bridge?

Which are quality checks used to check the quality of a particular type of

highway bridge?

What are the activities conducted under each quality check?

In which duration each quality check procedures should be applied?

Which maintenance techniques can be the most suitable for a particular

type of?

What are the environmental concerns to be considered in the highway

bridge management process?

What are the remedies/actions to be taken if the quality check results fail?

3) Taxonomy Development
An extensive taxonomy had to be developed as a common

platform for interacting ontologies. Taxonomic relations (“is-a”,
“is-part-of”, “is-kind-of”, “is-a-type-of”) allow any sub-concept
to inherit the characteristics of its super-concept [3]. Computers
may derive new knowledge from existing knowledge by using
taxonomies [22].

At the end of the data collection, the taxonomy for HiBrinto
was created. Eleven super-classes were identified; Activities,
Actors, HighwayBridges, BridgeComponent, Divisions,
Equipment, Materials, ProsCons, Maintenance, Construction,
and Parameters. The sub-classes for the superclasses are also
identified. For example, “EnvironmentalConcerns”,
“QualityCheck”, “Duration”, “MaintenanceTechniques”,
“RepairTechnique”, “ManagementPractices” are sub-class of
“Maintenance” class. Further, the “QualityCheck” class contains
“QCCode” and “QCItem” as its sub-class. The high-level class
hierarchy of HiBrinto ontology is shown in figure 2.

Figure 2. The high-level class hierarchy of HiBrinto ontology

72

A glossary of about 3500 terms was compiled from well-
established sources, like building manuals, textbooks, research
papers, and informal expert interviews. It is not feasible to list
all taxonomy here. Some of the major domains are explained
below.

a) Bridge Components

Every bridge will have some basic components known as
“basic-components” such as “Superstructure”, “Bearings” and
“Substructure”. Each basic components will have some sub-
components. For example, “Superstructure” will have
“Bearing”, “Parapet wall”, “Flooring” etc. Further, some bridges
will have specific components. For example, “Arch” which is a
sub-component of “Superstructure” is used for arch bridge
construction and “cable” which is a sub-component of
“Superstructure” is used for suspension, cable-stayed bridge, etc.
[16].

b) Actors

There are many actors in the scene of bridge construction.
We broadly categorize them into Executive (Engineering and
professional), Semi Executive / Officer (Administration,
Finance, Developing program/ Duty concerning,
Implementation), and so on [26].

c) Divisions

Each actor identified is assigned to one or more “division”.
Some of the divisions identified are Planning Division,
Engineering Service Division, and Maintenance Management &
Construction Division, etc. [26].

d) Quality checks

Each bridge has to undergo some quality checks in certain
durations. Some of the quality checks identified are; tension
check for beam, bearing pad durability, foundation settlement
check, deck roughness, etc. If the results quality check fails, a
proper repair plan will be executed according to the severity
case. Each quality check has a quality check code and quality
check item.

4) Ontology Modeling
Modeling the ontology manually is a complex and time-

consuming task [27]. According to Vasanthapriyan [28], the
principles, methods, and tools for initiating, developing and
maintaining ontologies are investigated in the ontology
engineering approach. There are many different methodologies
proposed to model the ontologies in many works of literature
[29-32]. After reviewing all, we selected Grüninger and Fox’s
methodology [30] for our work as it publishes a formal approach
for designing the ontology and also it provides a framework for
evaluating the developed ontology [33]. Grüninger and Fox’s
methodology [30] focuses on building ontology-based on first-
order logic by providing strong semantics.

a) Classes

An ontology is a systematic definition of the architecture.
The concept is defined by classes and relationships. The classes
comprise category; subclass, superclass, intersection class,
union class, and complement class [34].

The taxonomies identified were converted into classes.
During the modeling of HiBrinto ontology, some special types
of axioms such as Instantiation, Assertion, Subsumption,
Domain, Range, and Disjointness are included. The classes have
been created in Protégé OWL Ontology Editor 5.5. Figure 3
shows the part of high-level classes modeled using Protégé
OWL Ontology Editor 5.5.

Figure 3. Part of high-level classes modeled using Protégé OWL Ontology

Editor 5.5

b) Object properties & Datatype properties

The associative relationships (object properties) are to
identify the concepts and relationships with meaningful relations
and to define the relationships and their inverse relationships.
For example, “BridgeComponent” isComponentOf,
“HighwayBridges”. The inverse isComponentOf of is
hasComponent. Another example is “QualityCheck”
hasDuration “Duration”.

A datatype property is defined as an instance of the built-in
OWL class owl:DatatypeProperty. The needed datatype
properties are also defined such as qualityCheckStatus,
hasDuration, hasLength, hasMinWorkers, hasMinSiteEngineer,
and hasMinSurveyor, etc.

c) Individuals

Various individual instances were added to the class
hierarchy. To use the reasoner to test our rules, we instantiated
3,857 individuals. Individuals which we created include bridges,
activities, equipment, actors and so on. To create them, we used
names such as bridge101, check_sealability, driller,
environmental_officer and so forth

d) Axioms

These major concepts (classes and sub-classes) and
relationships (properties) are also bound by some axioms. A set
of axioms have been also developed. The following sample
process illustrates some of the axioms used quality check.

 Each highway bridge has to conform highway bridge
quality check

∀𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐵𝑟𝑖𝑑𝑔𝑒𝑠∃𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑐ℎ𝑒𝑐𝑘
⊃ 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑠(𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝐵𝑟𝑖𝑑𝑔𝑒𝑠, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘)

 Each highway bridge quality check has a quality check
safety standard

∀𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘 ∃𝑆𝑎𝑓𝑒𝑡𝑦𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
⊃ ℎ𝑎𝑠(𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘, 𝑆𝑎𝑓𝑒𝑡𝑦𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑)

73

 Each highway bridge quality check has a checking
method that is either destructive or nondestructive
method

∀𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘 ∃𝑀𝑒𝑡ℎ𝑜𝑑
∈ (𝑑𝑒𝑠𝑐𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒, 𝑛𝑜𝑛𝑑𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒)
⊃ ℎ𝑎𝑠(𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘, 𝑀𝑒𝑡ℎ𝑜𝑑)

 Each highway bridge quality check has quality check
code (QCCode) and quality check item (QCItem)

∀𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘 ∃(𝑄𝐶𝐶𝑜𝑑𝑒 ∧ 𝑄𝐶𝐼𝑡𝑒𝑚)
⊃ ℎ𝑎𝑠(𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘, 𝑄𝐶𝐶𝑜𝑑𝑒, 𝑄𝐶𝐼𝑡𝑒𝑚)

e) DL Queries

Since we were designing with OWL 2 Web Ontology
Language [32] for the semantic web, we used Description Logic
(DL) which is a decidable fragment of FOL for our scenario. We
have evaluated the competency questions to see whether the
ontology meets the users’ requirements during the internal
design process. The DL expressions have been used to query the
ontology. For this purpose, we used the DL query facility which
is available in Protégé-OWL Ontology Editor 5.5.

B. KM Portal Development

Ontology and semantic web systems have strong logic
capabilities [35]. This segment discusses the construction of a
knowledge platform to share knowledge regarding highway
bridges. It was developed on the distributed system framework
of Java J2EE. The five layers of our knowledge framework are;
Ontology, Experience Sharing and Knowledge Validation,
Storage, Reasoning, and Knowledge Sharing Layer and they are
shown in Figure 4.

Figure 4. The architecture of KM Portal

1) Ontology Layer
Our developed HiBrinto ontology including its domain rules,

axioms, etc. is in the ontology layer. Using the Protégé-OWL

Ontology Editor 5.5, these concepts and their relationships were
partly described in section “Ontology Modeling”.

2) Experience Sharing and Knowledge Validation Layer
Through the Experience Sharing layer, the construction

engineers can annotate their highway bridge knowledge with the
support of the construction standard terms. The shared
knowledge is then transformed into the semantic data in a
machine-understandable format of the triple structure by the
semantic data generator.

3) Storage Layer
We used Triple-store, which stores RDF triples. Using

SPARQL the queries were made. Since Jena TDB is a
component of Jena for RDF storage and query, it was selected in
this study. It supports the full range of Jena APIs and can be used
as a high performance of the RDF store on a single machine.

4) Reasoning Layer
Highway bridge rules were generated with Protégé-SWRL

Editor. It is a plugin in the Protégé-OWL Ontology Editor 5.5
environment. It supports the Jess Rule Engine. The Semantic
Web Rule Language (SWRL) is based on a combination of
OWL with the Rule Markup Language. It provides inference
capabilities from existing OWL ontology.

5) HiBrinto Knowledge Sharing Layer
Knowledge Sharing Layer includes two functionalities that

use Semantic Web technologies: (1) basic search, and (2)
Advanced Search. SPARQL has been used as the query
language to retrieve highway bridge knowledge from the
semantic data storage. The basic search provides a simple triple
pattern matching service, which is one of the most frequently
used functions for searching documents in the Semantic Web.
Besides, Advanced Search Option includes, logical operators
(AND or NOT or OR), so that users can combine different
options to retrieve knowledge.

C. Evaluation of HiBrinto and KM Portal

The quality of the ontology is very much important for its
usefulness. To avoid the defects when using the ontology, its
quality should be verified and validated. We verified and
validated our ontology in different ways; (i) OOPS! - Online
ontology evaluator, (ii) Reasoner – Inbuilt tool in Protégé OWL
Ontology Editor 5.5, (iii) Ontology experts. We did not
incorporate domain experts fully in this phase because the
ontology can be understood by who is having computer science
knowledge. But whenever issues were identified they were
contacted to clarify the issues. The developed KM portal was
evaluated using field tests.

1) Tools

a) OOPS!

OOPS! is a web-based method for detecting possible
mistakes that could lead to modeling errors, independent of any
context for ontology development. This method is intended to
support ontology developers in the ontology validation process,
which can be separated into diagnostics and repairs. OOPS!
helps to identify some of the most common pitfalls in ontological
developments OOPS, for example

74

 Warns of when: the domain or range of a connection is
described as a two or more class intersection. In case
such classes could not exchange cases, this alert may
deter thinking issues.

 No naming convention is used in the ontology element
identifiers. In this situation, maintenance, usability, and
ontology consistency could be enhanced.

 In ontology, a loop between two classes is included in
the hierarchy. The identification of this condition may
avoid problems with modeling and reasoning.

Table 2 describes the part of the pitfalls identified for the
modeled ontology, description and solution proposed. Three
layers existed, including critical, important and minor. The
critical degree is very vital and must be fixed to prevent
ambiguity in the ontology. Both minor and important instances
have been updated to render ontology better.

TABLE II. PITFALL DESCRIPTION AND SOLUTION PROPOSED

Pitfall Description Solution

Missing annotations

(4850 cases | Minor)

Creating an ontology

element without

providing
understandable

annotations to it.

Included the

ontology
annotations

Missing domain or

range in properties
(65 cases |

Important)

Object and (or)

datatype properties
without domain or

range

Added the

missing domain

and range

Inverse relationships
not explicitly

declared

(186 cases | Minor)

Except for the
symmetric properties,

others do not have an

inverse relationship.

Included

missing inverse
relationships

Defining multiple
domains or ranges in

properties

(6 cases | Critical)

More than one domain

or range is defined for
a property.

Modified the
multiple

domains and

ranges

b) Reasoner

A semantic reasoner (also known as reasoning engine, rules
engine, or simply a reasoner), is a software able to infer logical
consequences in the modeled ontology from a set of asserted
facts or axioms. We utilized the FaCT++ inbuilt reasoner tool
available in the Protégé OWL Ontology Editor 5.5. According
to Tsarkov and Horrocks [36], “FaCT++ is a new sound and
complete DL reasoner designed as a platform for experimenting
with new tableaux algorithms and optimization techniques”.

2) Ontology Experts
With the support of two ontology experts we tested the

ontology with the deficiencies of the artifacts we used. The
expert is not an author and is not associated with our research
team. Several approaches for testing ontologies were present in
the literature. Our ontology experts considered (a) syntax (b)
structure, (c) semantics, (d) terminology, (e) meaning and (f)
representation to conduct the assessment. The primary goals of
the expert evaluation are: (a) whether the HiBrinto ontology
meets the requirements, norms, (b) coverage of the Highway
Bridge and (c) internal quality control. The remarks of the
ontology experts have also been revised.

Some of the comments given by the experts are; Manchester
syntax was followed, all concepts follow is-a relationships, the
whole ontology was viewed using OntoGraph, thirty-two
concepts and eight object properties do not have understandable
names, very few CQs were needed to be modified as highlighted
and so on.

3) Field Test
One of the most important tools to determine the validity of

the suggested ontology was the actual implementation and
testing with the end-users. Different categories of 20 end users
were selected for this purpose. First, a training session was
carried out with system end-users. The end-users were given a
brief introduction to the project and what is expected from them.
Then the demonstration for using the system was done. Finally,
they were allowed to use the system. Since we hosted the system
in the localhost, end-users were allowed to use the system in a
restricted environment. Proper facilities were made for their
comfort. The end-users were allowed to use the system for 4
hours.

Then, a survey was conducted which consists of a set of
questions to check whether developed ontology was able to (i)
express highway bridge knowledge (ii) support highway bridge
knowledge sharing (iii) support highway bridge knowledge
retrieval and (iv) user satisfaction. The survey uses a Likert scale
of 1 to 5, with 1 (worst) and 5 (best). Their assessment was
largely positive. More than two-thirds of the end-users
participated in the survey responded with 4, and 5 ratings. Some
of the questions asked and Mode (Likert scale) is shown in the
Table 3

TABLE III. QUESTIONS ASKED AND MODE (LIKERT SCALE)

Question
Mode (Likert

scale)

How easy was it to navigate in the system? 5

How representative are the terms used? 4

Can the system be used by the persons who do not

know the highway bridge construction field?
5

How did the system responsible for your search? 4

Are you satisfied with the system? 4

IV. CONCLUSIONS AND FUTURE WORKS

The otology has been utilized in many types of research in
different domains such as agriculture, medical, dental, software
testing, economics, etc. But a very few researches have been
done in the construction domain [3, 22]. But none of the
researches has been conducted in the highway bridge domain. In
this paper, we presented the HiBrinto ontology to represent
highway bridge domain knowledge which includes highway
bridge concepts, properties, and their relationships that can be
used to help decision making for the whole lifecycle of the
highway bridge. The full version of our ontology has 427
entities, 726 properties which include both object properties and
datatype properties, and 3,857 individuals.

Since our focus in this research was on highway bridges, the
HiBrinto ontology can be expanded further for the other types of
bridges as well. Further, reasoning engine with Query-enhanced
Web Rule Language (SQWRL) can be incorporated into

75

HiBrinto knowledge searching to support more accurate and
effective knowledge sharing.

ACKNOWLEDGMENT

We would like to thank the five construction engineers and
the three academic lecturers who were actively facilitating this
research since the beginning. Besides we would like to
acknowledge two ontology experts who verified and validated
the ontology. Also, we appreciate the help of site engineers,
surveyors, and engineering undergraduates who participated in
this research.

REFERENCES

[1] Chhim Phalla, You Dara, Sitthy Panhavuth, Nin Menakak, Eam Sovisoth,
Long Davuth, et al., "Bridge Inspection Manual," R. I. Department, Ed.,
ed: Ministry of Public Works and Transport, 2018.

[2] A. Pipinato, Innovative bridge design handbook: Construction,
rehabilitation and maintenance: Butterworth-Heinemann, 2015.

[3] T. E. El-Diraby and K. Kashif, "Distributed ontology architecture for
knowledge management in highway construction," Journal of
Construction Engineering and Management, vol. 131, pp. 591-603, 2005.

[4] R. Farooq, "A conceptual model of knowledge sharing," International
Journal of Innovation Science, vol. 10, pp. 238-260, 2018.

[5] H. S. Robinson, P. M. Carrillo, C. J. Anumba, and A. M. Al‐Ghassani,
"Knowledge management practices in large construction organisations,"
Engineering, Construction and Architectural Management, 2005.

[6] D. Wiśniewski, J. Potoniec, A. Ławrynowicz, and C. M. Keet, "Analysis
of Ontology Competency Questions and their formalizations in SPARQL-
OWL," Journal of Web Semantics, vol. 59, p. 100534, 2019.

[7] G. Ren, R. Ding, and H. Li, "Building an ontological knowledgebase for
bridge maintenance," Advances in Engineering Software, vol. 130, pp. 24-
40, 2019.

[8] C. Rossimel and J. Wong, "Accelerated bridge construction for level
crossing removal in a high-traffic metropolitan environment," in
Australian Small Bridges Conference, 9th, 2019, Surfers Paradise,
Queensland, Australia, 2019.

[9] J. H. A. Peeters, "Composite bridge deck and bridge construction," ed:
Google Patents, 2019.

[10] J. France-Mensah and W. J. O'Brien, "A shared ontology for integrated
highway planning," Advanced Engineering Informatics, vol. 41, p.
100929, 2019.

[11] A. Chebba, T. Bouabana-Tebibel, and S. H. Rubin, "Context in ontology
for knowledge representation," in Advanced Computational Methods for
Knowledge Engineering, ed: Springer, 2015, pp. 311-320.

[12] A. Strauss and J. Corbin, "Grounded theory methodology," Handbook of
qualitative research, vol. 17, pp. 273-85, 1994.

[13] J. Mills, A. Bonner, and K. Francis, "The development of constructivist
grounded theory," International journal of qualitative methods, vol. 5, pp.
25-35, 2006.

[14] H. E. Wahls, Design and construction of bridge approaches vol. 159:
Transportation Research Board, 1990.

[15] M. J. Ryall, N. Hewson, G. Parke, and J. Harding, The manual of bridge
engineering: Thomas Telford, 2000.

[16] W.-F. Chen and L. Duan, Bridge engineering handbook: construction and
maintenance: CRC press, 2014.

[17] S. Alampalli and W. J. Moreau, Inspection, evaluation and maintenance
of suspension bridges: CRC Press, 2015.

[18] C. Middleton and P. Thoft-Christensen, "Assessment of the reliability of
concrete bridges," 1997.

[19] A. H. Cooper and J. M. Saunders, "Road and bridge construction across
gypsum karst in England," Engineering Geology, vol. 65, pp. 217-223,
2002.

[20] S.-I. Yang, D. M. Frangopol, and L. C. Neves, "Service life prediction of
structural systems using lifetime functions with emphasis on bridges,"
Reliability Engineering & System Safety, vol. 86, pp. 39-51, 2004.

[21] C. Zhou and W. Wang, "Highway bridge construction process simulation
base on 4D visualization," in Asphalt Material Characterization,
Accelerated Testing, and Highway Management: Selected Papers from
the 2009 GeoHunan International Conference, 2009, pp. 138-145.

[22] A. Benevolenskiy, Ontology-based modeling and configuration of
construction processes using process patterns: Institut für Bauinformatik,
Fakultät Bauingenieurwesen, TU Dresden, 2016.

[23] R. M. Choudhry, "Risk Analysis Related to Cost and Schedule for a
Bridge Construction Project," in Perspectives on Risk, Assessment and
Management Paradigms, ed: IntechOpen, 2019.

[24] G. Morcous, M. Maguire, and M. K. Tadros, "High Performance
Materials for Concrete Bridge Construction," in International Congress
and Exhibition" Sustainable Civil Infrastructures”, 2019, pp. 48-63.

[25] C. Bezerra, F. Freitas, and F. Santana, "Evaluating ontologies with
competency questions," in 2013 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), 2013, pp. 284-285.

[26] J. I. C. A. (JICA), "Data collection survey on primary bridges on national
roads and maintenance system of bridges," 2013.

[27] A. I. Walisadeera, A. Ginige, and G. N. Wikramanayake,
"Conceptualizing crop life cycle events to create a user centered ontology
for farmers," in International Conference on Computational Science and
Its Applications, 2014, pp. 791-806.

[28] S. Vasanthapriyan, J. Tian, and J. Xiang, "An Ontology-Based
Knowledge Framework for Software Testing," in International
Symposium on Knowledge and Systems Sciences, 2017, pp. 212-226.

[29] M. Fernández-López, "Overview of methodologies for building
ontologies," 1999.

[30] M. Grüninger and M. S. Fox, "Methodology for the design and evaluation
of ontologies," 1995.

[31] N. F. Noy and D. L. McGuinness, "Ontology development 101: A guide
to creating your first ontology," ed: Stanford knowledge systems
laboratory technical report KSL-01-05 and Stanford medical informatics
technical report SMI-2001-0880, Stanford, CA, 2001.

[32] Y. Sure, S. Staab, and R. Studer, "On-to-knowledge methodology
(OTKM)," in Handbook on ontologies, ed: Springer, 2004, pp. 117-132.

[33] S. Vasanthapriyan and K. Banujan, "An Ontological Approach for Dental
Extraction Decision Making and Knowledge Dissemination–A Pilot
Study for Dental Extraction Forceps," 2019.

[34] A. T. Choksi and D. C. Jinwala, "A novel way to relate ontology classes,"
The Scientific World Journal, vol. 2015, 2015.

[35] S. Vasanthapriyan, J. Tian, D. Zhao, S. Xiong, and J. Xiang, "An
ontology-based knowledge management system for software testing," in
The Twenty-Ninth International Conference on Software Engineering and
Knowledge Engineering (SEKE), 2017, pp. 522-525.

[36] D. Tsarkov and I. Horrocks, "FaCT++ description logic reasoner: System
description," in International joint conference on automated reasoning,
2006, pp. 292-297.D. Tsarkov and I. Horrocks, "FaCT++ description logic
reasoner: System description," in International joint conference on
automated reasoning, 2006, pp. 292-297.

76

An Extended Knowledge Representation Learning
Approach for Context-based Traceability Link

Recovery
Guoshuai Zhao, Tong Li*, Zhen Yang

Beijing University of Technology
zhaogs23@foxmail.com, litong@bjut.edu.cn, yangzhen@bjut.edu.cn

Abstract—Software artifact traceability is widely recognized as
an essential factor for effectively managing the development and
evolution of software systems. However, such traceability links
are usually missed in practice due to the time pressure. Although
an increasing number of studies have been carried out to recover
such links, they all rely on calculating the textual similarity
between artifacts without appropriately considering the context
of each artifact. In this paper, we propose a novel approach
to recover requirements traceability links between use cases and
code, which extends Description-Embodied Knowledge Represen-
tation Learning (DKRL) model to comprehensively characterize
software artifacts by embedding both text information and
interrelationships. Such meaningful embeddings are then used
to train traceability link classifiers by using machine learning
and triple classification techniques. Experimental results show
that our approach is superior to existing approaches.

Index Terms—Traceability Link Recovery, Knowledge Graph,
Knowledge Representation Learning

I. INTRODUCTION

Software artifact traceability is essential for comprehending,
maintaining, and evolving software programs [1]. However,
creating traceable links is often abandoned due to time pres-
sures in practice. In addition, considering the ever-changing
requirements, continuously maintaining the traceability links
is even more time-consuming. As a result, there is a strong
need to automatically recover such links between existing
software artifacts with acceptably high accuracy. Considering
that software artifacts typically involve natural languages,
many researchers have investigated the automatic recovery
of traceability links by leveraging information retrieval and
natural language processing techniques [2], [3]. Specifically,
such approaches mainly rely on calculating text similarity
between software artifacts, but ignore the context information
of software artifacts.

Although the text-similarity plays an essential role in corre-
lating software artifacts, we argue that the context of software
artifacts also renders important clues for establishing the
traceability links among artifacts. In particular, the context of
software artifacts can typically be modeled as a graph, which
connects an artifact with related ones via certain relationships.
For example, a class diagram specifies the interrelationships
among classes, which can serve as the context of each individ-
ual class. Similarly, use case diagrams represent context of the

DOI reference number: 10.18293/SEKE2020-117.

involved use cases. Intuitively, representing software artifacts
(e.g., use cases) by incorporating its context would yield more
meaningful results. Description-Embodied Knowledge Repre-
sentation Learning (DKRL) [4] has been well recognized as
an efficient representation learning approach, which captures
both the structural information of explicit relationships and
the textual descriptions of entities. Considering the context
of software artifacts can be represented in terms of entities
and relations, DKRL would contribute to comprehensively
and meaningfully representing the context software artifacts
and eventually help with the identification of traceability links
among software artifacts.

In this paper, we propose a novel approach called Traceabil-
ity Link Recovery-Knowledge Representation Learning(TLR-
KRL)1 to recover requirements traceability links between use
cases and code based on Extended DKRL. Specifically, we
extends the DKRL model to comprehensively characterize
software artifacts by embedding both text information and
structural relationships. Such meaningful embeddings are then
used to train traceability link classifiers by using supervised
machine learning algorithms. All traceability link candidates
obtained from the classifier will be further screened to get
the final result. Overall, the contributions of this paper can be
summarized as below.

• Propose a systematic approach for recovering traceability
links between use cases and code based on knowledge
representation techniques, which can effectively charac-
terize the context of the software artifacts.

• Extend DKRL model with a systematic process for
developing negative samples in order to enhance the
embedding of software artifacts.

• Design and conduct a series of experiments to evaluate
our approach, the results of which show that our approach
is superior to existing approaches.

The remaining part of this paper is organized as follows. We
first review and discuss related work in Section II. We detail
our approach in Section III. In Section IV, we evaluate our
method through four experiments. In Section V, we conclude
this paper and discuss future work.

1https://github.com/Shniya3/TLR-KRL

77

II. RELATED WORK

1) Information Retrieval Technology: Information retrieval
techniques are widely used in traceability link recovery [5].
Scholars have adopted various methods based on information
retrieval: vector space model (VSM) [6], latent semantic index
(LSI) [7], Latent Dirichlet allocation (LDA) [8] etc. Some
researchers focus on other types of information of software
artifacts besides textual information. McMillan et al. recover
traceability links with textual and structural information ac-
cording to “related requirement share related source code
elements”. [2] Wang et al. model the source code as a graph
structure and mines the structural information in it through
the graph embedding model [3]. However, we believe that
there are multiple explicit relations between entities (such
as class and method in the source code graph) are more
suitable for mining structural information through knowledge
representation learning methods. Jin Guo et al. introduce
domain knowledge for word embedding, and predicte the
probability of link existence through RNN, in order to solve
the “the term mismatch” problem [9].

2) Knowledge Graph and Knowledge Representation
Learning: The main goal of the knowledge graph is to
describe the various entities and concepts that exist in the
real world and the explicit relationships between them. Re-
lations are used to describe the relationship between two
entities. The knowledge graph describes the knowledge in a
structured form. People usually organize knowledge in the
knowledge graph in the form of a network. Each node in
the network represents an entity (person name, place name,
etc.), and each edge represents the relationship between en-
tities. Therefore, most of the knowledge can often be triple
(entity1, relation, entity2) to represent, corresponding to an
edge and two nodes connected in the knowledge graph [10].
Although effective in representing structured data, the under-
lying symbolic nature of such triples usually makes KG hard
to manipulate [11].

Konwledge representation learning has been investigated as
an effective means to solve the above problems. The key idea
of knowledge representation learning is to embed the entities
and relationships in the knowledge graph into a continuous
vector space, simplifying the manipulation while preserving
the inherent structure of the KG [11]. After embedding,
the vector representation of entities and relations is useful
for downstream tasks, such as triple classification [12], KG
completion [4], and so on. Today, TransE and its extensions
are widely recognized in knowledge representation learning
research [13] [12] [4].

Xie et al. uses entity descriptions to extend the TransE and
proposes dkrl model [4]. DKRL model learn knowledge rep-
resentations with both triples and descriptions, i.e.,structure-
based representations and description-based representations.
Structure-based representations do better in capturing informa-
tion in gold triples of the Knowledge graph, while description-
based representations do better in capturing textual informa-
tion in entity descriptions [4].

III. TRACEABILITY LINK RECOVERY-KNOWLEDGE
REPRESENTATION LEARNING(TLR-KRL)

We focus on recovering the traceability links between use
cases and code case. Our proposed traceability link recovery
approach is shown in Figure 1. Firstly, preprocess the software
artifacts. We construct the software artifacts into the structure
of KG and get the description of the entities in KG. Secondly,
we extend the DKRL model to represent use cases and
code comprehensively. We use the extended DKRL model to
represent use cases and code cases. Thirdly, all traceability
link candidates obtained from machine learning classifier and
meaningful representation will be further screened to get the
final results.

Fig. 1. TLR-KRL Overview

A. Phase 1: Preprocess

1) Software Artifact Knowledge Graph Construction: In
order to capture the context information of software artifacts,
we construct software artifacts as knowledge graphs. First of
all, we define the entity types and relationships of the software
artifact knowledge graph based on [3], as shown in figure2.
Because our data set is developed in Java, the file name is
the same as the public class name in the file. So the code
case id is equal to the public class name in the code case.
Other entities connected through these relationships become
the context of a software artifact. We added member variables
and member methods of a class to make vector representation
of class more fine-grained. We add relations between use
cases to capture context information between use cases. The
construction process of the software artifact knowledge graph
is shown in figure 3. Next, introduce the flow of figure 3.

Fig. 2. Entity Type and Relation Definition in KG

• Extract Relation between Use Cases. In the use case, the
“event flow of system” part is linked to other use cases
through the use case name. So by comparing the use case
names, we obtain a set of triples with relation “Inherit”,

78

Fig. 3. Software Artifact Knowledge Graph Construction

“Include” and “Extend”. Because there are fewer use case
pairs with three kinds of relations, we call the relations
between use cases unified as ”Use Case to Use Case”.

• Source Code Parsing. We parse the code through the
source code parsing tool2 to obtain classes, member
variables, member methods, and their interrelations. Then
we build the knowledge graph according to Table 1.

• Traceability Link Tagging. We tag the links between
use cases and code. Tuples (Use Case, Class) without
traceability link are tagged as 0. Tuples (Use Case,
Class) with traceability links are tagged as 1. Tuples
(Use Case, Class) with traceability links are added to
the software artifact knowledge graph as (Use Case,
Traceability Relation, Class).

2) Entity Description Obtaining: The process of obtaining
entity description is shown in figure 4.

Fig. 4. Entity Description Obtaining

• Remove Character. Remove the title, number, punctua-
tion, and special characters in the use case to get use
case entity description.

• Extract Comment. We use regular expressions to get
comments in the code and map them to class entities and
method entities. Besides, the names of classes, member
variables, and member methods are also natural languages
with important meanings [14]. So the names are added
to the description of entities.

• Translation. ETour is developed in Italian. The software
artifacts contain Italian words, so we translate entity
description into English.

• Stemming. We transform the verbs, nouns, adjectives, and
adverbs in the entity description into prototypes. Software
developers usually use the abbreviation of words when
using common words. So we restore the abbreviations
of words into word prototypes. For example, “database”

2https://github.com/yeweimian21/AST JDT.

Table 1 Variable definitions.
Definition Description

S = {(h, r, t)} S represents training set
for Extended DKRL model.
(h, r, t) is a triple. h, t are
entity. r is a relation.

h, t ∈ E E represents entities set.

r ∈ R R represents relations set.

u ∈ U, c ∈ C U represents use cases set. C
represents code set.

rTrace rTrace represents the relation
which we name “Traceability
Relation.”

T ′ = {(u, rTrace, c)} T ′ represents the negative
samples set. These samples are
traceability links between u
and c tagged as 0 in prepro-
cess.

ud, cd ud, cd represents description-
based representation

us, cs us, cs represents structure-
based representation

is generally abbreviated to “DB”; “delete” is generally
abbreviated to “del.” At this point, we get the knowledge
graph of software artifacts and the description of entities
in the knowledge graph.

B. Phase 2: Software Artifact Embedding

The process of phase 2 and phase 3 is shown in figure
5. As shown in phase 2 of the figure 5, phase 2 embeds
the software artifact KG and its entity descriptions through
Extended DKRL model in order to obtain the meaningful
representation of software artifacts.

In general, the software requirements described by the use
case and the functionality of the software should be equal.
However, the application scenario described by a software
requirement is often completed by multiple classes. The
comments of the class describe the variables and methods
of this class, which results in software requirements and
textual information of the class being usually different. We
argue that the representation of software artifacts with context
information are helpful to recover the traceability links. So
we use the Extended DKRL model to mine the context
information and the text information of entity description in
the KG of software artifacts. After extended DKRL training,
the obtained software artifact vector contains its information
and context information, which is helpful for the application
of downstream tasks.

Extended DKRL represents the DKRL model that changed
the negative sample construction process. In the training pro-
cess of the DKRL model, we need to construct negative sam-
ples according to triples. Since negative samples are randomly
constructed, it is possible to construct false negative samples.
Because we tagged some traceability links in the preprocess,
we improved the negative sample construction process with
T ′(we give some definitions to help the following statement, as

79

Fig. 5. Phase 2. Knowledge representation learning and Phase 3. Recover Traceability Link

shown in Table 1). Our improved negative sample construction
process is as follows:

S′(h,r,t) =

{(h′, r, t) | (h′, r, t) ∈ T ′}∪
{(h, r, t′) | (h, r, t′) ∈ T ′}

if r 6= rTrace

{(h′, r, t) |h′ ∈ E} ∪ {(h, r, t′) |t′ ∈ E}
if r = rTrace”

(1)

The set of corrupted triples, constructed according to Equa-
tion (1). When constructing a negative sample of triple whose
relation is “Traceability Relation,” randomly select use cases
or classes to corrupt, we replace the use case with other use
cases or class with other classes and make the negative samples
belong to T ′. When the relation is not “Traceability Relation,”
training triples with either the head or tail replace by a random
entity.

C. Phase 3:Recover Traceability Link

1) Traceability Link Vector Definition: First, we represent
traceable links between use cases and classes as Equation (2).

tu,c = (cs − us)⊕ (cd − ud) (2)

“⊕” represents the stitching of two vectors. According to
the tagging results during Phase 1, if there is a traceability
link between u and c, tu,c is tagged as 1; otherwise, tu,c is
tagged as 0.

2) Train and Test Model: We train the classifier with all
tagged tu,c vectors. There are many common classifiers, such
as decision tree, gradient boosting decision tree, Gaussian
naive Bayes, and SVM(We use the sklearn3 library to call
the classifier). Identified traceability links are tagged with 1,
while others are tagged with 0 and will be further analyzed
by using triple classification.

3) Reclassification of Negative Label Samples: Knowledge
representation learning usually uses score function to calculate
the reliability of triples. Triple Classification is to confirm
whether a given triple (h, Traceability relation, t) is correct
or not according to its score, i.e., binary classification on a
triple [12]. The decision rule for classification is simple: for a

3www.scikit-learn.org

triple (h, Traceability relation, t), if the score (by the score
function fr) is below a relation-specific threshold σr, then
predict positive.

Specifically, we first calculate the average score of trace-
ability link triple in Extended DKRL train data. Then, if the
triple to be classified as a score below than average score

rate , the
triple is classified as 1 (with traceability link).

IV. EXPERIMENT

A. Dataset

The dataset of our Research is eTour4. It is an electronic
touristic guide developed by students in Italy. It contains 58
use cases, 116 code cases, and 366 correct traceability links.
(Use case, code case) without traceability link in eTour is
regarded as wrong link, totaling 6362. In our experiment, the
ratio of training set to test set is 4:3.

B. Research Questions and Experiment Design

• Question 1: Can the Extended DKRL model effectively
mine software artifacts textual information and the con-
text of software artifacts?
Experiment 1: We evaluate the embedding results based
on the visualization of entity vectors and traceability
vectors. Because the entity and the traceability vector
are both high-dimensional vectors, the high-dimensional
vectors need to be reduced in dimension. After the high-
dimensional vector is visualized, observe the distribu-
tion of the vector. There should be a clear demarcation
between different types of entity vectors. Traceability
link vectors should have clear demarcation or clustering.
Besides, the quality of the knowledge representation
learning method can be demonstrated through the per-
formance of downstream tasks.

• Question 2: Can SVM effectively recover traceability
links compared to other classifiers?
Experiment 2: We use the same train set and test set
to compare the classification results of multiple classi-
fiers, such as decision tree, gradient boosting decision
tree (GBDT) and Gaussian naive Beyes (Gaussian NB).

4http://www.cs.wm.edu/semeru/tefse2011/.

80

Experiment 2 compares multiple classifiers without per-
forming triples classification.

• Question 3: Can TLR-KRL effectively recover traceabil-
ity links?
Experiment 3: We compare our approach with
ML+Logical Reasoning [14], UD-CSTI(VSM) and UD-
CSTI(JS) [15]. These models are the best performing
models to use the same dataset. In addition, in order
to prove the validity of the modified negative sample
construction process, experiment 3 also add TLR-
KRL(DKRL) to the experimental comparison.

• Question 4: Can triple classification recover traceability
links effectively?
Experiment 4: We first fix the results of the extended
DKRL and SVM. Then experiment 4 observes whether
the triple classification is useful by changing the threshold
of triple classification.

C. Metric

We use well-known IR metrics to evaluate the performance
of traceability recovery methods [5].

precision =
|cor ∩ ret|
|ret|

% (3)

recall =
|cor ∩ ret|
|cor|

% (4)

F1-score =
2× precision× recall
precision+ recall

(5)

Specifically, cor represents the sets of correct links and ret is
the full set of retrieved links. Based on these two variables,
the metrics precision, recall and F1-score can be calculated,
which are shown in equation (3)-(5)

D. Analysis of the Results

Fig. 6. Entity Structure Vector Dimensionality Reduction Scatter Graph

1) Experiment 1: As we can see in figure 6, use case
structure vectors and classes structure vectors have a clear
demarcation. As we can see in figure 7, use case description
vectors and class description vectors have a clear demarcation.

Fig. 7. Entity Description Vector Dimensionality Reduction Scatter Graph

Fig. 8. Traceability Link Vector Dimensionality Reduction Scatter Graph

As shown in figure 8, traceability link vectors with different
labels are distributed on both sides of the figure. Traceability
link vectors that are tagged as 0 are well clustered on the
left side and can be clearly separated from the other type of
vectors, showing that our approach can effectively mine textual
information and the context of artifacts.

Fig. 9. Comparison of Multiple Classifiers

2) Experiment 2: As we can see in figure 9, the precision
of GBDT is slightly higher than SVM, but the recall is
significantly lower than SVM. The F1 − score of SVM
with the polynomial kernel is the best among the compared
classifiers because SVM can better classify linear inseparable
problems. Because F1− score comprehensively evaluates the
performance of the classifier, our subsequent experiments use
SVM as the classifier.

81

Fig. 10. The Precision-Recall Curves Graph

3) Experiment 3: When evaluating a traceability link re-
covery work, it is common to compare precision at different
recall level. Figure 10 shows the precision-recall curve
of ML+Logical Reasoning, UD-CSTI(VSM), UD-CSTI(JS),
TLR-KRL(DKRL) and TLR-KRL(Extended DKRL) respec-
tively. It can be seen that our method has a significant
improvement in the recall rate of 0.2-0.5. The performance of
our method is close to that of the ML+Logical approach within
the recall rate of 0.5-0.8. It shows that TLR-KRL(Extended
DKRL)s can recover traceability links effectively. In addition,
the improvement of the DKRL negative sample construction
process is also effective, because the precision-recall of
downstream tasks has been improved.

Fig. 11. F1-score at Different Rate of Triple Classification(TC)

4) Experiment 4: We fixed the hyper-parameter of Ex-
tended DKRL and SVM to explore whether the triple clas-
sification is effective. As shown in figure 11, the performance
only using SVM and only using triple classification is similar.
When we change the threshold of triple classification to 0.9,
the performance is improved. As the rate increases, F1−score
gradually decreases, because the threshold is gradually reduced
to reduce the recall. But TLR-KRL is still better than using
the only SVM. To sum up, triple classification can effectively
recover traceability links.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to recover
requirements traceability links between use cases and code
based on DKRL. our approach extends DKRL model in order
to embed software artifacts with regard to both of their textual

descriptions and their structural context. A series of experi-
ments have been conducted, the results of which show that
our approach has outperformed existing traceability recovery
approaches In the future, we first plan to further evaluate our
approaches with additional data sets. Moreover, we want to
apply our approach to recover traceability links among other
software artifacts, investigating whether our approach can be
generalized to deal with various software artifacts. Finally, we
envision an empirical case study with our industrial partners.

ACKNOWLEDGEMENT

This work is supported by National Key R&D Program of
China (No. 2018YFB0804703), National Natural Science of
Foundation of China (No.61902010), and Beijing Excellent
Talent Funding-Youth Project (No.2018000020124G039)

REFERENCES

[1] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Enhancing an
artefact management system with traceability recovery features,” 20th
IEEE International Conference on Software Maintenance, 2004., 2004.

[2] C. McMillan, D. Poshyvanyk, and M. Revelle, “Combining textual and
structural analysis of software artifacts for traceability link recovery,” in
2009 ICSE Workshop on Traceability in Emerging Forms of Software
Engineering. IEEE, 2009, pp. 41–48.

[3] S. Wang, T. Li, and Z. Yang, “Using graph embedding to improve
requirements traceability recovery,” in International Conference on
Applied Informatics. Springer, 2019, pp. 533–545.

[4] R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun, “Representation learning
of knowledge graphs with entity descriptions,” in Thirtieth AAAI Con-
ference on Artificial Intelligence, 2016.

[5] M. Borg, P. Runeson, and A. Ardö, “Recovering from a decade: A
systematic mapping of information retrieval approaches to software
traceability,” Empirical Softw. Engg., vol. 19, no. 6, p. 1565–1616, Dec.
2014. [Online]. Available: https://doi.org/10.1007/s10664-013-9255-y

[6] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
transactions on software engineering, vol. 28, no. 10, pp. 970–983, 2002.

[7] M. Lormans and A. Van Deursen, “Reconstructing requirements cov-
erage views from design and test using traceability recovery via lsi,”
in Proceedings of the 3rd international workshop on Traceability in
emerging forms of software engineering, 2005, pp. 37–42.

[8] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software trace-
ability with topic modeling,” in 2010 ACM/IEEE 32nd International
Conference on Software Engineering, vol. 1. IEEE, 2010, pp. 95–104.

[9] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced soft-
ware traceability using deep learning techniques,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE,
2017, pp. 3–14.

[10] L. Zhiyuan, S. Maosong, L. Yankai, and X. Ruobing, “Knowledge
representation learning:a review,” Journal of Computer Research and
Development, vol. 53, no. 2, pp. 247–261, 2016.

[11] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embed-
ding: A survey of approaches and applications,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 12, pp. 2724–2743, 2017.

[12] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in Twenty-Eighth AAAI conference on
artificial intelligence, 2014.

[13] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in Ad-
vances in neural information processing systems, 2013, pp. 2787–2795.

[14] S. Wang, T. Li, and Z. Yang, “Exploring semantics of software artifacts
to improve requirements traceability recovery: A hybrid approach,”
in 2019 26th Asia-Pacific Software Engineering Conference (APSEC).
IEEE, 2019, pp. 39–46.

[15] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto,
D. Poshyvanyk, and A. De Lucia, “When and how using structural
information to improve ir-based traceability recovery,” in 2013 17th
European Conference on Software Maintenance and Reengineering.
IEEE, 2013, pp. 199–208.

82

DOI reference number: 10.18293/SEKE2020-136

Identifying Security Concerns Based on a Use Case

Ontology Framework

Imano Williams, Xiaohong Yuna

Computer Science

North Carolina Agricultural and Technical State University

Greensboro, U.S.A

irwilli1@aggies.ncat.edu, xhyuan@ncat.edu

Abstract— Identifying security concerns in an application can be

difficult, especially if the analysts lack security knowledge. We

propose a use case ontology that can help to identify security

concerns based on the use case specifications. We demonstrate the

feasibility of the ontology by systematically applying the ontology

to use case specifications expressed in Web Ontology Language

(OWL). The proposed approach can help model the

interrelationship of concepts in the use case and possibly use

queries to group use cases that may have similar security concerns.

This approach could allow analysts to identify parts of the use

cases with similar security concerns and could potentially reduce

reoccurrences of known vulnerabilities in software applications.

Lastly, we discuss future work about creating an automated tool

for recommending attack patterns for the security requirements

process.

Keywords-Domain Ontology; Security Concerns; Use Cases;

Secure Software Engineering

 INTRODUCTION

Ontological modeling of software artifacts has been used in
the requirements and design phases to address security issues
[1]. Some ontologies have used software artifacts such as
security requirements [2] and use cases [3] to aid in knowledge
acquisition and the conceptualization of reusable domain-
specific software security information. According to Veres, et
al. [4], ontologies can be used to track the dependencies
between requirements as the project becomes realistically
complex. However, when ontologies are used to elicit security
requirements, the security requirements elicited depend on the
ontology that was used [5]. Furthermore, requirement analysts
may not have adequate security knowledge to choose the most
appropriate ontology and then use it correctly [6]. In addition to
security knowledge, requirement analysts also need domain
knowledge to identify security concerns. Therefore, the
modeling of the system based on an ontology can be difficult
for security requirement analysts.

In this paper, we introduce a use case ontology framework
to identify security concerns based on use case descriptions.
The following observations motivated us to build the ontology:
(1) Reports from Open Web Application Security Project
(OWASP) Top 10 [7] and Common Vulnerability Exposure1
(CVE) have shown the frequent reoccurrences of known

1 https://cve.mitre.org

vulnerabilities, such as SQL Injection and Cross-site Scripting.
(2) Many of the reported vulnerability exploits started from the
web interface of an application. (3) In a software development
team, different understandings of what to secure in software
under development (SUD) may lead to ambiguous, incomplete,
and inconsistent security concerns being identified by the
stakeholders.

We created the ontology framework for identifying security
concerns by (1) Identifying the Assets and Web Components of
a use case that can guide requirements analysts to raise security
concerns via use case steps; (2) Creating concepts and attributes
for the proposed ontology based on the results of steps (1); and
(3) Associate the use case steps (or flows) to specific security
concerns using semantic rules; (4) Based on this ontology,
semantic queries can be run to find similar use case flows that
may have similar concerns. This ontology framework can help
reduce reoccurrences of know vulnerabilities by identifying
similar security concerns across different functionalities of an
application and different applications.

The rest of the paper is organized as follows: Section II
presents the proposed ontology. Section III defines rules for
identifying security concerns. Section IV discusses how the
ontology can be used to identify security concerns. Section V
demonstrates how the ontology framework is used with a
specific example. Section VI discusses related work. Finally,
Section VII concludes the paper and discusses future work.

 THE PROPOSED USE CASE ONTOLOGY

The proposed ontology was developed using the steps
suggested by Noy and McGuinness [8] with an evolutionary
approach. These steps include defining the scope of the
ontology, reusing existing ontologies, enumerating important
terms, defining classes, defining properties, defining cardinality,
and creating instances (individuals). We adopted concepts that
are related to security concerns in [9], the Restricted Use Case
Model (RUCM) [10], and verb categories for web tasks from
[11-13] to develop the ontology. The RUCM is a use case
template that specifies 26 restriction rules on the natural
language, keywords for control structures, and that every flow
path in a use case should have a post-condition. In addition to
using a more restrictive use case template, we used a dialog
descriptive use case format. The dialog use case format includes
graphical user interface (UI) components in the use case flows.

83

The rationale for using dialog descriptive use case includes the
following: (1) the web components in the use case could guide
requirements analysts to raise security concerns; (2) use cases
are rudimentary software development artifacts that can
represent the system navigational structure from a graphical
user interface aspect; (3) according to Salini and Kanmani [14],
the user interface and navigational structure are the main
features of applications’ web interfaces that must be analyzed
and (4) currently, we focus on the constrained system where the
design of the interaction is more precise than just providing the
intent of the use case.

Figure 1 The proposed use case ontology for identifying security concern

Figure 2 Security concern subclasses

In Fig. 1, we have shown some of the major concepts that
were taken from different sources to build the proposed
ontology. Fig. 2 shows the concepts related to security concerns.
These security concern concepts were adopted from ISO/IEC
27001:2013 [15], ISO/IEC 27000:2018 2 , and [9]. Next, we
provide the definitions of some of the core concepts:

• Use Case: Represents the intended interactive steps

between an external entity and the system.

• Actor: Represents a human or an external system that

interacts with the system to accomplish the services of

the use case.

• Flow: It specifies the logical steps that an actor takes

to complete the services of the use case.

• Web UI Component: An interface component of the

application that actors interact with to complete the

services of the use case. In our ontology, we created

concepts for the button, link, web page, and modal

box.

2 https://standards.iso.org/ittf/PubliclyAvailableStandards/

• Flow Action: This is an operation that is performed by

the Actor or the SUD to complete a Flow. Some

examples are “The user updates the username.” and

“The system displays the ‘login’ web page.”

• Asset/Message: An intangible valuable resource, such

as a password that is worth protecting. Here we focus

on data the user provides via some user input.

• Security Concern: Matters of interest related to

security exploits that may affect use case flows based

on the action, web components, and the asset. The

subclasses are authentication, authorization,

confidentiality, integrity, non-repudiation, identity,

and security auditing.

• Security Requirements: Conditions that must be

satisfied to address a security concern.

An object property is represented as “o (D → R)”, which
means a class D (domain) is related to another class R (range)
by o, the object property. Some of the object properties are:

• hasFlow (FlowGroup → Flow)

• hasFlowBefore (Flow → Flow), an inverse of

hasFlowAfter (Flow → Flow)

• hasActor (Use Case → Actor)

• raise (Flow, Use Case, Post Condition → Security

Concern)

• display (System → Web Page, Modal Box, Message)

• validate (System → Asset)

• hasFlowObject (Flow → Web UI Component,

Message, Asset)
A data property is represented as, “d (C → r)”, which

means that class C has data property, d, with range r. Some of
the data properties are:

• hasActionType (Action → [“passive”, “active”])

• hasLinkParameter (Link → ["non-sensitive",

"sensitive", “both”, “none”])

• hasInformation (Asset, Web Page → ["non-

sensitive", "sensitive", “both”, “none”])

• hasAppLocation (Use Case → ["authenticated",

"unauthenticated", "both"])

• hasPurpose (Use Case → ["create", "read", "update",

"delete"])

• hasInteractionFlow (Use Case → ["multi", "single"])

• isValidationFlow (Flow, → ["yes", "no"])

To formally specify the classes (concepts), along with their
object properties, data properties, and quantifier restriction, we
used the Web Ontology Language (OWL) [16]. We used the
second level OWL 2, OWL-DL, which provides maximum
expressiveness while retaining the inference capabilities of an
ontology [17] and semantic queries over the knowledge.

 RULES FOR IDENTIFYING SECURITY CONCERNS

We defined rules using Semantic Web Rule Language
(SWRL) [18] to identify security concerns based on the assets,

84

web UI components, and the actions in the use case flow.
Currently, we defined eight rules for identifying security
concerns that are listed below. These rules are not exhaustive.

Rules for the use case flow concepts:

1) Asset <sensitive> && Save → Storage

Confidentiality, which means that an Asset instance

with a “sensitive” data property value that should be

saved has storage confidentiality.

2) Asset <sensitive> && Display → Display

Confidentiality, which means that an Asset instance

with a “sensitive” data property value should have

display confidentiality.

3) Asset && Validate → Multi-Step Bypass, which

means that an Asset instance that is being validated by

the system multi-step bypass. This security concern

occurs when a user can bypass some validation logic

to get to another flow in the use case.

4) Button <active> && Click → Non-Repudiation &&

Transmission Confidentiality, which means that a

Button instance with an active data property (i.e., it

makes changes to the system file system) associated

with a click action have non-repudiation and

transmission confidentiality.

5) Link <sensitive> && Click → Transmission

Confidentiality, which means that a click action on a

Link instance with “sensitive” parameter data property

value has transmission confidentiality.

6) Button, Link && Click → Information Disclosure,

which means when the system generates messages

(warning, error, or, confirm) because of an action on a

link or button has Information Disclosure.
Rules for the use case concept:

7) hasAppLocation <authenticated or both> →

Authentication, which means a Use Case instance with

authenticated or both boundary type has of

authentication.
Rules for the actor concept:

8) Conflicting Use Cases && Actor → Separation of

Duties, which means a use case that is followed by a

conflicting use case, should not have the same Actor.

Conflicting meaning that the same Actor cannot use

two or more use cases. This rule is an extension of

Rule 2.

Apart from having these eight rules, we can create informal

rules (not in SWRL) to be used as SPARQL Protocol, and RDF

Query Language (SPARQL) query, such as:

1) Non-Permitted Actor && Web Pages → Inaccessible

Web Pages means that a user role is not permitted to

view restricted web pages. .

 THE PROPOSED ONTOLOGY FRAMEWORK APPROACH

In this section, we describe how the ontology could be in a
framework to identify security concerns. Fig. 3 shows the three
major phases, along with the respective sub-phases.

3 https://protegewiki.stanford.edu/wiki/ProtegeReasonerPlugin

In the first phase, Identifying Instances, the instances based
on the use case concepts are identified along with their object
and data properties. We start by identifying the name of the use
case along with its data properties, and then we find the
instances that are related to the use case via its object properties.

Figure 3 The Proposed Ontology Framework

For example, we identify the Actor instance and then find
its data and object properties. Overall, we perform a depth-first
identification of the instances (via concepts) with the data and
object properties, then recursively perform a depth-first
identification on the next instance that is related to the current
instance via the object property. As a result, we identify the
Asset, Action, and Web UI Component from the flows of the
use cases along with their inter-relationships. For example, we
can specify the hasFlowBefore and hasFlowBefore object
properties for the current flow or the web pages that an asset is
located.

In the second phase, Creating Use Case Model, the output
of the first phase is used to create the semi-formal RDF triples
(subject, predicate, object) of use case descriptions. Next,
Protégé [19], the OWL 2 editor, is used to create the instances
and their relationships with their object and data properties that
were identified in the first phase in the ontology. During this
phase, the Pellet3 reasoner is run regularly to continually check
the consistency of the asserted facts being added in the ABox
(asserted facts about the use cases) of the ontology.

In the third phase, Running SPARQL Query, SPAQRL is
used to query the ABox to find security concerns based on the
inferred facts using the SWRL rules in Section III. For example,
if several Flow instances can be affected by Multi-Step Bypass,
the query will return the Flows. We use the approach proposed
by Uschold and Gruninger [20] to evaluate the ontology based
on motivating scenarios, informal competency queries, and
formal competence queries to help identify security concerns
for the modeled application. To run SPARQL queries, we use
Snap-SPARQL [21] plugin4 in Protégé that supports reasoner
inferences using the Pellet plugin. Pellet, an OWL reasoner
plugin in Protégé, is used to assist in answering the queries
about the security concerns.

4 https://github.com/protegeproject/snap-sparql-query

85

 DEMONSTRATING THE ONTOLOGY FRAMEWORK

A. A Case Study

We used a mock online 5 shopping web application to
demonstrate the ontology framework. The total number of
instances (individuals) modeled were 11 use cases, four actors,
22 web pages, 24 assets, 17 links, eight buttons, 90 flows, and
14 actions in the proposed ontology. We had to edit the use
cases to conform to the standards of the Restricted Use Case
Model [10]. The edited use cases and ontology file are located
at Use_Case_Ontology_for_Security_Concern6. Fig. 4 shows a
description of the “Create New Account” use case. In the use
case description, we used a double underline to mark the action
and single underline to mark the object in the sentence to be
modeled in the ontology as triples.

Figure 4 The Create New Account Use Case

In the Identifying Concepts phase, we identify the concepts
in the sequence of Use Cases → Actors → Preconditions →
Flow Groups → Flow (subject, predicate, object) →
Postconditions along with their data and object properties. The
has Boundary data property of the “Create New Account” use
case is on the “unauthenticated” side of the application. There
is only one Actor, Unregistered Customer, for this use case. To
initiate the use cases, the Actor would start from the “Home”
page. Next, we move onto the basic flow to identify the
predicate and object. The user is sending account information
that the system must validate in basic flow four before the user
can supply the signup username and password to complete the
use case (basic flow 5). Therefore, the interaction is a “multiple-
step” (temporal expression). We determine the Asset instance
based on the data the actor supplied to the system or vice versa.
The use case’s purpose is “active (inserting)” since the use case
is making changes to the file system to create the new account.
Fig. 5 shows the representation of basic flow six, along with its
object and data properties in the Protégé editor. The object
property hasFlowBefore has value basic flow five. Additionally,

5
https://personal.utdallas.edu/~chung/RE/Presentations07S/Team_3/

the inferred flows before and after are shown through the
dependsOnFlowBefore and subsequentFlow object properties.

Figure 5 Basic Flow in Protégé

Figure 6 Signup Information Web Page in Protégé

Fig. 6 shows the Signup Information Web Page from basic
flow six. The object property connectedBy shows the
navigational path to get to the web pages. In this case, it is the
“Create” button located in basic flow four. It could also be a
Link instance. Furthermore, the “Sign Up” button in flow eight
in Fig. 4 would have a buttonLocatedOn object property of
Signup Information Web Page in the ontology.

Once we have completed the Creating Use Case Model
phase for all the use cases, the next phase is Running SPARQL
Queries based on the defined SWRL rules. We used
SNAPSPAQRL to run the queries since it supports inferring
once a reasoner is running. The SWRL rule for rule 3, Multi-
Step Bypass is Flow (?f), Asset(?a), Action (Validate), has
Asset(?f, ?a), has Action(?f,Validate), Mult_Step_ByPass(?m)
→ raise (?f, ?m). We can then query ontology to find the
consequent of the SWRL rule once the antecedent is true. So,
we can have informal and formal queries to search:

1. Informal Query: Which flows are affected by the Multi-
Step Bypass security concern?

2. Formal Query SELECT ?useCase ?flow WHERE {
 ?useCase uc:hasFlowGroup ?flowGroup.
 ?flow uc:isPartOfGroup ?flowGroup.
 ?flow uc:raise uc:MultiStepBypass. }

Table I shows the partial results of running the above formal
query.

Table I Multi-Step Bypass Query Results

Use Case Flow Affected

UC11_Login UC11_MF5

UC3_Create_New_Account UC3MF5

UC3_Create_New_Account UC3MF9

6 https://figshare.com/projects/Use_Case_Ontology_for_Security_Concern/80330

USE CASE UC3: Create New Account
Actors: Primary – Unregistered Customer
Preconditions: The system is displaying a ‘Home’ Webpage to the user.
Basic flow:
1. The user clicks on ‘Create New Account’ link.
2. The system displays the ‘New Account Information’ screen.
3.The user enters the FirstName, Last Name, Street Address, City, State, Country,
Postal Code, Card Number, Card Type, and Card Expiry Date.
4. The user clicks on the ‘Create’ button.
5. The system validates that the FirstName, Last Name, Street Address, City, State,
Country, Postal Code, Card Number, Card Type, and Card Expiry Date are correct.
6. The system displays the ‘Signup Information’ webpage.
7. The user enters the username and password.
8. The user clicks on the “Sign Up” Button.
9. The system validates that the username does not exist.
10. The system displays the ‘Account Confirmation’ webpage along with the
FirstName, Last Name, Street Address, City, State or Province, Country, Postal
Code, Telephone Number, Card Number, Card Type, and Card Expiry Date.
11. The user clicks on the “Verification” button.
12. The system displays the ‘Account Information’ Page.
Post Condition: The system saves the FirstName, Last Name, Street Address, City,
State or Province, Country, Postal Code, Telephone Number, Card Number, Card
Type, and Card Expiry Date. The system is displaying the ‘Account Information’
Page to the user.
Bounded Alternate Flow: N/A
Global Flow: N/A
Specific Flow: N/A

86

The rules in Section III are not the complete SWRL ruleset.
Apart from running the queries based on the defined SWRL
rules, an analyst can also create and run new queries based on
reported CVEs. For example, CVE-2018-143987, an issue was
discovered in Creme CRM 1.6.12. The value of the cancel
button uses the content of the HTTP Referrer header and could
be used to trick a user into visiting a fake login page to steal
credentials. This vulnerability is related to a user clicking a
button component on the web page. Therefore, we can create a
SPARQL query to find the pages that involve users clicking a
button. The query would be the following:

1. Informal Query: Which flows display a button, and
which pages are these buttons located?

2. SPARQL Query: SELECT ?flow ?button ?webpage
WHERE {?useCase uc:hasFlowGroup ?flowGroup.

 ?flow uc:isPartOfGroup ?flowGroup.
 ?flow uc:hasFlowObject ?button .
 ?button a uc:Button ;
 uc:buttonLocatedOn ?webpage . }
From the query results in Table II, UC2_Search Catalog –

basic flow three, UC9_Make Online Payment – basic flow
(success path) six, UC3_Create New Account – basic flow four,
UC4_Update Account Information – basic flow five, and
UC8_Apply for Financing – basic flow six are affected by Rule
6 (information disclosure) when a user clicks a button. We can
run similar queries to find other parts of the system that could
be exposed to other CVEs.

Table II Button in Use Case Model Similar To CVE-2018-14398

Flow Button Web Page

UC9_BF6 Button_Submit Web_Make__Payments_Page

UC2_BF3 Button_Search Web_Main_Page

UC3_BF4 Button_Update Web_New_Acct_Information_Page

UC4_BF5 Button_Finish Web_Update_Acct_Information_Page

UC8_BF6 Button_Submit Web_Make__Payments_Page

B. Discussion

In section V.A, we demonstrate how the ontology
framework can be applied to a specific use case. The object and
data properties show that specific rules could be used to find
similar parts of different use cases that may share the same
security concern. So, we focus more on providing a modeling
process to find common security concerns through specific
scenarios inspired by reports from OWASP and CVE, where
the interface of the application is concerned.

In terms of performance, the instance Identification and Use
Case Model Creation phases of the framework are task
intensive. We had to take precautionary steps so that we did not
miss sub-tasks, such as extracting the information from the use
case description that is related to the concepts in the ontology.
Manually populating the ontology by copying the semi-model
from the document to the ontology via Protégé is tedious and
time-consuming. Also, it is easy for the ontology to become
inconsistent when using the wrong individual for the range of
an object property. Furthermore, an analyst may forget to add
information from the semi-model. It took more than 2 hours to
populate the ABox of the ontology for the 11 use cases. As a
result, an automated process to identify what to populate the

7 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14398

ABox of the ontology is needed to make the process take less
effort by a user.

 RELATED WORK

Gärtner, et al. [3] developed an integrative security
knowledge model that identifies vulnerabilities from software
requirements (use cases) based on reported security incidents.
They conducted a case study that showed how different use cases
were related to a similar misuse case, but their proposed
knowledge structure was not able to identify interrelationship
between use cases that may have the same misuse case. Rago, et
al. [22] used text mining to identify quality attributes such as
modifiability, performance, availability, security from use case
description. Their work aimed to help requirements engineers
skim through requirements documentation efficiently, in order
to identify potential quality attributes such as performance,
security, mobility, and testability. However, in terms of security
quality attribute, they did not delve into security concerns.
Wouters, et al. [23] proposed a semi-formal ontology for the
reuse of similar use cases by defining labels, concepts and
relations to create rules and queries in an inference machine to
find similar use cases. Our work is similar to theirs in the
conceptual model of user interaction with UI in use case.
However, our ontology includes more detailed UI components
concepts such as button, web page, URL. Couto, et al. [24]
automated the extraction of requirements patterns based on
stakeholders formalizing use case specification by using OWL
inference capabilities to address typical implementation
solutions. Dermeval, et al. [25] suggested that ontologies could
be used for representing requirements and architectural
knowledge and support reasoning through traceable links
between them. This paper does not focus on bridging the gap
between requirement and architectural design phases, but the
concepts such as web page, button, other web UI components
can be linked to artifacts in architectural design and subsequent
phases, which help with traceability. Decker, et al. [26] represent
use cases in a requirements document ontology to semi
formalize the representation of actors interacting with the system
through user story descriptions. Kang and Liang [9] developed a
security ontology for software development, a model-driven
approach, where security concerns play a role in the analysis,
design, implementation, testing, and maintenance stages of the
SDLC. Our approach is different from Kang and Liang [9] since
we focus on applying security concerns to use case instead of
representing use cases as ontologies for development.

Our work is different from the related literature in that it
mapped specific flows in use cases to security concerns based on
data and object properties.

 CONCLUSION AND FUTURE WORK

This paper introduced a preliminary work on using an
ontology framework during the early software development
phases to identify security concerns based on use cases. We have
manually and effectively created relationships between different
use case concepts. These relationships have the potential to
relate use case concepts to security concerns. Even though we
can use the ontology to identify security concerns, manually

87

representing the user case in the ontology can be time inefficient
for many use cases.

Also, this ontology currently works with a predefined set of
rules for identifying security concerns. CVE provides
information on many security attacks that are based on different
CVE scenarios. For example, different parts of the use case can
be exploited with XSS. New rules and queries can be developed
to find where in the use case that could be affected XSS.

In future work, we intend to develop a web-based tool to
automatically extract and populate the relevant information from
use cases into the ontology. As a result, the tool will semi-
automatically query ontology the parts of the use case that
matches the security concerns rule. The work presented in this
paper is a part of a larger project to help recommend relevant
attack patterns as part of the security requirements process. We
will evaluate the usability of the ontology framework in a user
study with the participants in software engineering courses and
the security requirements community.

ACKNOWLEDGMENT

This work is partially supported by NSF under grant CNS-
1900187. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

REFERENCES

[1]. A. Souag, R. Mazo, C. Salinesi, and I. Comyn-Wattiau, "Reusable

knowledge in security requirements engineering: a systematic mapping

study," Requirements Engineering, vol. 21, pp. 251-283, 2016.

[2]. C. Schmitt and P. Liggesmeyer, "Getting grip on security requirements

elicitation by structuring and reusing security requirements sources,"

Complex Systems Informatics and Modeling Quarterly, pp. 15-34, 2015.

[3]. S. Gärtner, T. Ruhroth, J. Bürger, K. Schneider, and J. Jürjens,

"Maintaining requirements for long-living software systems by

incorporating security knowledge," in Requirements Engineering

Conference (RE), 2014 IEEE 22nd International, 2014, pp. 103-112.

[4]. C. Veres, J. Sampson, S. J. Bleistein, K. Cox, and J. Verner, "Using

semantic technologies to enhance a requirements engineering approach

for alignment of IT with business strategy," in Complex, Intelligent and

Software Intensive Systems, 2009. CISIS'09. International Conference on,

2009, pp. 469-474.

[5]. A. Souag, C. Salinesi, R. Mazo, and I. Comyn-Wattiau, "A Security

Ontology for Security Requirements Elicitation," in ESSoS, 2015, pp.

157-177.

[6]. H. Guan, H. Yang, and J. Wang, "An ontology-based approach to security

pattern selection," International Journal of Automation and Computing,

vol. 13, pp. 168-182, 2016.

[7]. T. OWASP, "10 2017," OWASP Top 10 Application Security Risks–

2017, 2018.

[8]. N. F. Noy and D. L. McGuinness, "Ontology development 101: A guide

to creating your first ontology," ed: Stanford knowledge systems

laboratory technical report KSL-01-05 and Stanford medical informatics

technical report SMI-2001-0880, Stanford, CA, 2001.

[9]. W. Kang and Y. Liang, "A security ontology with MDA for software

development," in Cyber-Enabled Distributed Computing and Knowledge

Discovery (CyberC), 2013 International Conference on, 2013, pp. 67-74.

[10]. T. Yue, L. C. Briand, and Y. Labiche, "Facilitating the transition from use

case models to analysis models: Approach and experiments," ACM

Transactions on Software Engineering and Methodology (TOSEM), vol.

22, p. 5, 2013.

[11]. D. Ko, S. Kim, and S. Park, "Automatic recommendation to omitted steps

in use case specification," Requirements Engineering, pp. 1-28, 2018.

[12]. J. Jurkiewicz and J. Nawrocki, "Automated events identification in use

cases," Information and Software Technology, vol. 58, pp. 110-122, 2015.

[13]. S. Tena, D. Díez, P. Díaz, and I. Aedo, "Standardizing the narrative of use

cases: A controlled vocabulary of web user tasks," Information and

Software Technology, vol. 55, pp. 1580-1589, 2013.

[14]. P. Salini and S. Kanmani, "Security requirements engineering process for

web applications," Procedia engineering, vol. 38, pp. 2799-2807, 2012.

[15]. I. O. f. Standardization, ISO/IEC 27001: 2013: Information Technology-

-Security Techniques--Information Security Management Systems--

Requirements: International Organization for Standardization, 2013.

[16]. I. Horrocks, P. F. Patel-Schneider, and F. Van Harmelen, "From SHIQ

and RDF to OWL: The making of a web ontology language," Journal of

web semantics, vol. 1, pp. 7-26, 2003.

[17]. C. Welty, D. L. McGuinness, and M. K. Smith, "Owl web ontology

language guide," W3C recommendation, W3C (February 2004)

http://www.w3. org/TR/2004/REC-owl-guide-20040210, 2004.

[18]. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M.

Dean, "SWRL: A semantic web rule language combining OWL and

RuleML," W3C Member submission, vol. 21, p. 79, 2004.

[19]. M. A. Musen and T. the Protégé, "The Protégé Project: A Look Back and

a Look Forward," AI matters, vol. 1, pp. 4-12, 2015.

[20]. M. Uschold and M. Gruninger, "Ontologies: Principles, methods and

applications," The knowledge engineering review, vol. 11, pp. 93-136,

1996.

[21]. M. Horridge and M. Musen, "Snap-SPARQL: a java framework for

working with SPARQL and OWL," in International Experiences and

Directions Workshop on OWL, 2015, pp. 154-165.

[22]. A. Rago, C. Marcos, and J. A. Diaz-Pace, "Uncovering quality-attribute

concerns in use case specifications via early aspect mining," Requirements

Engineering, vol. 18, pp. 67-84, 2013.

[23]. B. Wouters, D. Deridder, and E. Van Paesschen, "The use of ontologies

as a backbone for use case management," in European Conference on

Object-Oriented Programming (ECOOP 2000), Workshop: Objects and

Classifications, a natural convergence, 2000.

[24]. R. Couto, A. N. Ribeiro, and J. C. Campos, "Application of ontologies in

identifying requirements patterns in use cases," arXiv preprint

arXiv:1404.0850, 2014.

[25]. D. Dermeval, J. Vilela, I. I. Bittencourt, J. Castro, S. Isotani, P. Brito, et

al., "Applications of ontologies in requirements engineering: a systematic

review of the literature," Requirements Engineering, vol. 21, pp. 405-437,

2016.

[26]. B. Decker, E. Ras, J. Rech, B. Klein, and C. Hoecht, "Self-organized reuse

of software engineering knowledge supported by semantic wikis," in

Proceedings of the Workshop on Semantic Web Enabled Software

Engineering (SWESE), 2005, p. 76.

88

Towards High Quality Recommendations: A Goal-

Oriented and Ontology-Based Interactive Approach

Ronaldo Gonçalves Junior, Robert Ahn, Tom Hill, Lawrence Chung

Department of Computer Science

The University of Texas at Dallas

Richardson, TX, USA

{ronaldo.goncalves, robert.sungsoo.ahn, chung}@utdallas.edu,tom.hill.fellow@gmail.com

Abstract—Recommender systems are aimed to offer good

recommendations when the search space is too big or even

uncertain. For example, when deciding on a movie to watch or a

restaurant to go. However, when users are not satisfied with such

results, they might spend a considerable amount of time

interacting with the system while being unsatisfied. Most

commercial recommender systems seem to lack methods to

understand user needs while guiding the user with an intelligent

human-like interactive process towards a high-quality

recommendation. In this paper, we present a goal-oriented and

ontology-based interactive framework for high quality

recommendations. Through a goal-oriented approach, the

recommender system address and define user needs by using

quality attributes, the so-called Non-Functional Requirements

(NFRs), such as responsiveness, efficiency, accuracy of the

recommendation, and so on. A list of potentially competing

recommendations, pertaining to a user interest, are evaluated

using machine learning (ML) algorithms, and, by following an

interactive approach, system and user exchange information

derived from the ontology in order to avoid problems related to

uncertain, vague, or even incorrect, user inputs. Results from the

assessment of a real online database (TMDb) combined with an

experimental study shows that the proposed approach is able to

guide the user towards high quality recommendations.

Keywords- Recommender Systems, Interactive Systems, Non-

Functional Requirements, Ontology, Goal-Orientated, Machine

Learning

I. INTRODUCTION

Recommender systems are aimed to offer good
recommendations to users (e.g., a good restaurant to go) and can
be especially useful in scenarios where it is difficult for the user
to evaluate options individually [1]. For instance, more than 500
hours of video are uploaded to YouTube every minute1. In the
absence of a systematic approach, a vast amount of content that
is potentially interesting to the user is likely to remain
unexplored. Many commercial systems, including streaming
platforms such as Amazon2 and Netflix3, have recommender
systems in place to help users navigate through a seemingly
boundless set of contents. Even though recommender systems
are more common and popular, many challenges still require
attention [2]. Some techniques have been proposed to better
understand users’ needs by making use of the communication

DOI reference number: 10.18293/SEKE2020-140
1 https://www.youtube.com/about/press/

between a user and the system [3][4], but most recommender
systems seem to lack methods to understand user needs while
guiding the user with an intelligent, human-like, interactive
process towards high quality recommendations.

In this paper, we present a goal-oriented and ontology-based
interactive framework for high quality recommendations.
System and user interact in order to increase the prospect of
satisfactory recommendations. Through a goal-oriented
approach, we consider important quality attributes, or the so-
called Non-Functional Requirements (NFRs), such as
responsiveness, efficiency, accuracy of the recommendation,
and so on. In this approach, a list of potentially competing
recommendations pertaining to a user interest are evaluated by
using machine learning (ML) algorithms, with the necessary
features coming from the ontology. Results from the assessment
of a real online database (TMDb) combined with an
experimental study shows that the proposed approach is able to
guide the user towards high quality recommendations.

II. BACKGROUND

Recommendation algorithms are typically divided into three
different approaches [5][6]: Collaborative Filtering (CF),
Content-Based (CB), and Hybrid systems. CF is one of the most
common types of recommender systems [7], where the similarity
between users is utilized to build recommendations [8].
Traditional CB recommender systems utilizes the similarity
between items to build recommendations and are less wide-
spread [9], but have been proven to contribute to the research
field [10]. Finally, Hybrid systems can provide other benefits
that the previous types do not offer [11][12]. For instance,
Hybrid recommender systems have been used to incorporate
justification in recommendations to achieve customer
acceptance and trust [13].

Some of the related work closest to our approach perform
item selection as a step in a conversational process and the
system inquiries about item attributions while waiting for user
response [14]. Other interactive approaches have similar
concepts for recommendations with different contributions
[4][15], such as knowledge based systems that use facts and
rules to improve recommendations [16][17]. However, to the
best of our knowledge, there is no consideration of user needs in

2 https://www.amazon.com/gp/video/getstarted
3 https://www.netflix.com/

89

a Goal-Oriented approach, where satisfactory recommendations
are modeled using NFRs and further analyzed using measurable
observations. Another important aspect is that there is limited
consideration of domain-dependent ontologies within the
interactive steps of the recommendation process.

III. THE PROPOSED APPROACH

The process of the proposed approach consists of four steps:
1) Model NFR Softgoals, 2) Build recommendations, 3) Explore
ontology-based concepts, and 4) Interact with the user. The
following sections describe each of these steps in further detail.

A. Step 1: Model NFR Softgoals

The proposed approach uses quality attributes, or the so-
called Non-Functional Requirements (NFRs), to define high
quality recommendations. In the context of recommendations,
high quality can be further decomposed into different NFRs in
order to better identify user needs. More specifically, a high
quality recommendation may be AND-decomposed into three
different NFR Softgoals: an efficient recommendation, a
responsive recommendation and an accurate recommendation.
Each of these Softgoals can be further decomposed and
connected to other NFRs. For instance, an efficient
recommendation may help a responsive recommendation, but an
accurate recommendation has some negative contribution to
responsiveness. An example of a complete model for high
quality recommendations is shown in Fig. 1. It is worth
mentioning that it is possible to make refinements to the graph
to include other quality attributes such as security, user-
friendliness, cost, and so on.

Note that it is important to define how these requirements
will be satisficed. Operationalization Softgoals are related to
external entities, such as ML algorithm results and user
interaction. Each Softgoal may be marked by the labels
satisficed, weakly satisfied or denied based on these external
observations. These labels will, subsequently, be propagated to
other goals bottom-up [18] until high quality recommendation
can be validated or invalidated.

B. Step 2: Build recommendations

Using a Machine Learning-Based approach, it is possible to
create prediction models that will help identify which items the
user might be interested in. Consequently, instead of showing a
list with all available items, we can show a reduced list with
items that exclusively pertain the interest of the user. The first
step in building recommendations is the acquisition of user data.
This may be done by using private databases, publicly available
datasets, etc. If user data is not available, it is possible to perform
a customer survey, purchase data from providers, and so on.
After acquiring user data, it is important to verify that undesired
information is removed, such as null values, unavailable entries,
and so on. Last but not least, the right format must be ensured.
The main input feature for the CF recommender system
algorithm utilized in this paper needs to be in the form of
{<userID, itemID, rating>}. This implementation of the CF
algorithm includes the computation of the distance between
different users, which can be done by using a Pearson
Correlation score, Cosine function, among others [5]. In other

words, these scores measure how similar two users are. The
scores for all users are stored in order to avoid repeated
computation. The execution of the recommendation algorithm
may take long periods of time, especially when dealing with
considerably large datasets. However, by storing these values
there is no need to re-execute the algorithm for the same data.

Fig. 1. A model for high quality recommendations.

C. Step 3: Explore ontology-based concepts

It is important to explicitly represented concepts such as
User, Softgoals, and Recommendation Model in a domain-
independent approach to avoid omissions while mapping Goal-
Orientation (Step 1) and machine learning (Step 2). In addition,
some concepts may be derived from a domain-dependent
ontology. A complete set of concepts and their relationships can
be found in Fig. 2. This ontology is domain-independent and can
be used for various domains. In this step, we want to identify
domain level concepts to guide the user for better
recommendations. The movie domain is the most common
domain for research in recommender systems [2]. For this
reason, Fig. 3 shows portion of a domain-dependent diagram for
the movie domain. The proposed approach uses each ontology
concept as options to interact with the user. Each ontology
concept is directly or indirectly connected to Movie, e.g., Genre
and Entertainment respectively. Let CN(a,b) be the proposition
that a is a conceptual neighbor of b, such that:

 𝐶𝑁(𝑎, 𝑏) ↔ ∃𝑐[(𝑎 ∈ 𝑐) ∧ (𝑏 ∈ 𝑐) ∧ (𝑐 ≠ 𝑀)] (1)

The propositional statement (1) states that a is a conceptual
neighbor of b iff there exists an arbitrary element c in the movie
domain, such that both a and b are members of c, and c is not

90

Movie (M). For example, both Information and Entertainment
and members of Genre, and Genre is not Movie (M). Thus,
CN(Information, Entertainment) evaluates to True. The next
section shows the usage of this definition during the interaction
with the user.

Fig. 2. Domain-independent ontology diagram for the proposed approach.

Fig. 3. An example of ontology concepts for the movie domain.

D. Step 4: Interact with the user

By interacting with a user, a recommender system may be
able to better understand the user needs. This step of the
proposed approach generates options derived from the ontology
and present them to the user towards more satisfactory
recommendations. To illustrate this step for the movie domain,
let us consider that a user is looking for movie recommendations
which are similar to the movie The Mission (1986). First, it is
necessary to monitor the user behavior to identify when help is
needed. Consider that the user defines a time threshold of 60
seconds for screen time, i.e., the time spent on a screen without
performing any actions, such as clicking, scrolling, etc. When
this threshold is reached, the system will attempt to gather
additional information from the user and provides options for

4 https://www.themoviedb.org/

selection. For the movie domain, we present the following set of
options: {Actor, Award, Country, Genre, …, Producer}. Note
that these are ontology-based options for the movie domain.
Different options would be available for a different domain. To
illustrate this step, let us assume that the user does not remember
the title of the movie, but selects Brazil as Country. Note,
however, that The Mission (1986) takes place in Argentina.

The system will filter recommendations from other
countries, except Brazil, and goes back to monitoring. The user
may provide information multiple times. However, if the user is
not able to provide additional information and help is still
needed, the system will suggest alternatives. At this point, the
system will evaluate each given option and modify the search
space to comprehend conceptual neighbors of each option, one
at a time. By using the conceptual relationships computed in
Step 3, the system adjusts the user input from Brazil to the
following set:{Argentina, Bolivia, Brazil, Chile, ..., Venezuela},
which is the set of conceptual neighbors of Brazil with respect
to South America. Now, instead of movies that took place in
Brazil, we also include movie recommendations that took place
in many other countries, including the correct country,
Argentina. This step can be executed multiple times, and through
each iteration, we go back to Step 1 of the proposed approach to
rebuild the NFR model and check if we achieved the goal of
high-quality recommendations.

IV. AN EXPERIMENT FOR THE MOVIE DOMAIN

In this experiment, we monitor the user screen time and, by
following the Step 1 of the proposed approach, we mark the
corresponding Softgoal in Fig. 1 as satisficed and mark the
others as denied. By following the label propagation process
[18], since at least one of the sub goals for Monitor user behavior
is satisficed, Responsive recommendation is marked as
satisficed. It is important to mention that, at this point, we cannot
verify if we achieved Efficient recommendation or Accurate
Recommendation. In this case, we leave these goals unlabeled
and proceed to the next step of the proposed approach.

The data used in Step 2 for this experiment is from a popular
dataset (MovieLens [19]) that was collected from The Movie
Database 4 (TMDb). This dataset contains more than 45
thousands of movies, 26 million ratings and 270,000 users. Note
that, due to space limitations, we show here the results for the
first iteration of the proposed approach by using the CF
algorithm, implemented in Java. With the similarity between
users stored, it is now possible to recommend movies to users.
By following the Step 3 of the proposed approach, all conceptual
neighbors for the movie domain are built and stored as
interaction options. Finally, by following the Step 4 of the
proposed approach, it is possible to see a significant reduction in
the search space. For instance, if a user selects Italian as
Language, the search space is reduced from 45,466 movies to
1,529. Multiple aspects are worth mentioning here. First,
different users will have different results based on the
interaction. Second, the recommender system does not
recommend the entire dataset, only movies predicted to be
satisfactory. However, the original input for the ML algorithm
will be reduced, which narrows the recommendations

91

significantly and lowers the amount of training examples being
used, decreasing the weight computation time.

Fig. 4. CF algorithm results by accuracy (RMSE and MAE).

Once step 4 is completed, we go back to Step 1 to check if
we achieved high quality recommendations in the NFR model.
Since the search space and weight computation time were both
reduced by a certain degree, we mark the corresponding
Softgoals as weakly satisfied. Finally, for an arbitrary selection
of users that rated movies, the first step of the proposed approach
increased the accuracy of the results. Note that both Root Mean
Squared Error (RMSE) and Mean Average Error (MAE) metrics
were reduced by a considerably small margin, as shown in Fig.
4. Hence, Increase prediction model accuracy is marked as
weakly satisficed. A complete iteration over the process of the
proposed approach will result in a model fully labeled as shown
in Fig 1. For this experiment, note that High Quality
Recommendation is marked as satisficed after the label
propagation process [18]. In other words, we can proceed to Step
2 once again to build more satisfactory recommendations. Note
that this process can be repeated indefinitely, by check if High
Quality Recommendation is satisficed or denied.

V. DISCUSSION AND FUTURE WORK

This work presented an approach that considers Non-
Functional Requirements (NFRs) as key drivers for helping
the user find good recommendations through an interactive
system. Results from the assessment of an online database
(TMDb) combined with an experimental study show that users
are guided towards high quality recommendations by using the
proposed approach. The work presented in this paper, to the best
of our knowledge, is one of the first to propose the usage of a
Goal-Oriented approach where satisfactory recommendations
are modeled using NFRs and further analyzed by measurable
observations. The outcomes of the proposed approach include:
1) a typical set of high quality goals and relationships between
them, as well as ways to achieve them; 2) a domain-independent
ontology for recommendations; and 3) an approach for the
interaction between user and system to guiding the user towards
more satisfactory recommendations.

Regarding our future work, we plan to to investigate ways to
improve accuracy in a more impactful manner, as well as
experimenting for different domains other than movies.
Moreover, we intend to implement a tool to support the approach
during all steps of the process for recommendations.

REFERENCES

[1] P. Resnick and H. R. Varian. Recommender systems. Commun. ACM,
40(3):56– 58, March 1997.

[2] D. Jannach, M. Zanker, M. Ge, and M. Gröning. Recommender systems
in computer science and information systems – a landscape of research.
In Christian Huemer and Pasquale Lops, editors, E-Commerce and Web
Technologies, pages 76–87, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[3] T. Mahmood and F. Ricci. Improving recommender systems with
adaptive conversational strategies. In Proceedings of the 20th ACM
Conference on Hypertext and Hypermedia, HT ’09, pages 73–82, New
York, NY, USA, 2009. ACM.

[4] L. McGinty and B. Smyth. On the role of diversity in conversational
recommender systems. In Proceedings of the 5th International
Conference on Case-based Reasoning: Research and Development,
ICCBR’03, pages 276–290, Berlin, Heidelberg, 2003. Springer-Verlag.

[5] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence,
UAI’98, pages 43–52, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

[6] C. He, D. Parra, and K. Verbert. Interactive recommender systems: A
survey of the state of the art and future research challenges and
opportunities. Expert Systems with Applications, 56:9 – 27, 2016.

[7] M. Zanker, M. Jessenitschnig, D. Jannach, and S. Gordea. Comparing
recommendation strategies in a commercial context. IEEE Intelligent
Systems, 22(3):69–73, May 2007.

[8] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. R. Grouplens:
An open architecture for collaborative filtering of netnews. In
Proceedings of the 1994 ACM Conference on Computer Supported
Cooperative Work, CSCW ’94, pages 175–186, New York, NY, USA,
1994. ACM.

[9] S. B. Ticha, A. Roussanaly, A. Boyer, and K. Bsaïes. User semantic
preferences for collaborative recommendations. In EC-Web, 2012.

[10] M. Gemmis, P. Lops, G. Semeraro, and P. Basile. Integrating tags in a
semantic content-based recommender. In Proceedings of the 2008 ACM
Conference on Recommender Systems, RecSys ’08, pages 163–170,
New York, NY, USA, 2008. ACM.

[11] R. Burke. Hybrid recommender systems: Survey and experiments. User
Modeling and User-Adapted Interaction, 12(4):331–370, Nov 2002.

[12] I. Cantador, A. Bellogín, and P. Castells. A multilayer ontology-based
hybrid recommendation model. AI Commun., 21(2-3):203–210, April
2008.

[13] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos. Providing
justifications in recommender systems. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 38(6):1262–1272,
Nov 2008.

[14] C. A. Thompson, M. H. Göker, and P. Langley. A personalized system for
conversational recommendations. J. Artif. Int. Res., 21(1):393–428,
March 2004.

[15] L. Ardissono, G. Petrone, and M. Segnan. A conversational approach to
the interaction with web services. Computational Intelligence,
20(4):693–709, 2004.

[16] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. An integrated
environment for the development of knowledge-based recommender
applications. Int. J. Electron. Commerce, 11(2):11–34, December 2006.

[17] F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems
handbook. In Recommender systems handbook, pages 1–35. Springer,
2011.

[18] L. Chung, B. A Nixon, E. Yu, and J. Mylopoulos. Non-functional
requirements in software engineering, volume 5. Springer Science &
Business Media, New York, NY, USA, 2012.

[19] F. M. Harper and J. A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, December
2015.

92

SHAMROQ: Towards semantic models of regulations

Patrick D. Cook, Susan A. Mengal, Siva Parameswaran

Department of Mechanical Engineering, Department of Computer Science, Department of Mechanical Engineering

Texas Tech University, Lubbock, TX 79409−3104

patrick.d.cook@ttu.edu, susan.mengel@ttu.edu, siva.parameswaran@ttu.edu

Abstract— Regulatory documents contain a rich set of provisions

that requirement engineers must observe in software

requirements. If a requirement engineer fails to accurately

interpret or include the provisions in the software requirements,

then a right, privilege, or obligation could be omitted or incorrectly

applied – resulting in a violation. When a violation occurs,

complaints are filed, penalties are imposed, and in some instances,

the responsible party goes to prison; thus, this paper introduces

SHAMROQ, a methodology to systematically acquire software

requirements from regulations, and demonstrates the

methodology using a section of the Health Insurance Portability

and Accountability Act (HIPAA). SHAMROQ is applied to a case

study to show that it is possible to use the basic activity pattern

with modality, description logic, and Hohfeldian legal concepts to

analyze, classify, and model the legal relationships to ascertain

meaning, context, and structure.

Keywords- Knowledge representation, Semantic Web, OWL,

Resource Description Framework, SHAMROQ

I. INTRODUCTION

Regulations contain a rich set of provisions that requirement
engineers must observe in software requirements [1]. However,
if requirement engineers fail to accurately interpret or include
provisions in software specifications, then a right, privilege, or
obligation could be omitted or incorrectly applied – resulting in
a violation [2]. When a violation occurs, a complaint is filed, a
penalty is imposed, and in some instances, the responsible party
goes to prison.

In fact, between April of 2003 and the end of January 2020,
The U.S. Department of Health and Human Services (HHS)
Office for Civil Rights (OCR) received more than 227,866
Health Insurance Portability and Accountability Act (HIPAA
complaints about violations of the Privacy Rule. As a result, civil
penalties of $116,203,582 were settled or imposed.1

Apart from over $116 million in penalties, building
regulatory compliant software systems presents several
challenges [3]. First, regulations may complement, overlap, or
contradict at the federal, state, and local levels. Secondly,
regulations are continually changing, plagued with ambiguity,
and often accompanied by previous administrative rulings,
reference handbooks, and other guidelines published to facilitate

1 https://www.hhs.gov/hipaa/for-professionals/compliance-

enforcement/data/enforcement-highlights/index.html?language=en

interpretation [4]. Third, the influence of case law (the
interpretation of the law by the judicial process) over statutory
law (the written law passed by the legislature) poses other
challenges because the courts could add new interpretations to
the statues from court rulings [5]. Additionally, regulations are
notable for frequent references to other sections, also known as
cross-references [6], and regulations contain domain-specific
language or jargon – sometimes called "legalese" [1].

Despite these challenges, researchers offer several
approaches to aid requirement engineers in building regulatory
compliant software systems. Approaches included logic models
[7, 8], extracting formal specifications from regulations [9],
goal-oriented approaches [10], production rules [11], machine
learning [12] and access control [13] . More recently, researchers
are using semantic web technologies to aid requirement
engineers in building regulatory compliant software systems
[14].

Semantic web technologies are promising because they
provide a common framework that facilitates interoperability
across applications, organizations, and jurisdictional boundaries.
Moreover, the semantic web offers a family of technologies that
enable requirement engineers to create data stores, construct
vocabularies, and write rules for dealing with data 2 . In this
research, we leverage semantic web technologies, in particular,
the Web Ontology Language (OWL) to aid requirement
engineers in systematically acquiring software requirements
from regulations.

The purpose of this descriptive, embedded, single-case study
is to develop and validate the SHAMROQ methodology. At this
stage in the research, SHAMROQ is generally defined as the
systematic process to examine all words and phrases written in
a regulatory document, classify patterns that correspond to
Hohfeldian legal concepts, and model the regulations using the
basic activity pattern with modality.

The remainder of this paper is organized as follows: Section
2 reviews the background and related work; Section 3 outlines
the methodology; Section 4 describes the case study; Section 5
presents the findings; Section 6 examines the threats to validity;
and Section 7 discusses the conclusion and future work.

2 https://www.w3.org/standards/semanticweb/

DOI reference number: 10.18293/SEKE2020-144

93

https://www.hhs.gov/hipaa/for-professionals/compliance-enforcement/data/enforcement-highlights/index.html?language=en
https://www.hhs.gov/hipaa/for-professionals/compliance-enforcement/data/enforcement-highlights/index.html?language=en
https://www.w3.org/standards/semanticweb/

Figure 1. SHAMROQ - Theoretical Framework

II. BACKGROUND AND RELATED WORK

In this section, the background and related work in
requirements engineering to extract software requirements from
regulations is considered.

A. Background

Our working definition of requirements engineering,
borrowed from Pamela Zave and generalized by Phillip A.
Laplante, is the following: “Requirements engineering is the
branch of engineering concerned with the real-world goals for,
functions of, and constraints on systems. It is also concerned
with the relationships of these factors to precise specifications of
system behavior and to their evolution over time and across
families of related systems” [15].

Laplante argues that software systems are bifurcated along
functional (i.e., what the system does) and nonfunctional (how
well the system does it under observable quality attributes)
requirements. SHAMROQ provides a means to address both,
however, this paper concentrates on nonfunctional.

Nonfunctional requirements are further broken down into
design/implementation constraints, economic constraints,
operating constraints, and political/cultural constraints. In this
work, we will focus on the political/cultural constraint; i.e., the
laws and regulations category, of nonfunctional requirements.

B. Related Work

 Researchers use a variety of approaches to extract
requirements from regulations and model them for system
development. A comprehensive survey of the approaches is
outlined by Otto [3]. Here, we concentrate on the related work
that directly influences the ideas in our research: Semantic
Parameterization [1, 2, 16-18], Frame-based [19, 20], and
Production Rules [11, 21, 22].

Semantic Parameterization [1, 2, 16-18] is a process to
represent a domain of interest in a structural way using
Description Logic [23]. This process happens over three phases.

In phase 1, phrase heuristics are applied to natural language
features, so that noun phrases, pronouns, intentional and
extensional synonyms, and polysemes are differentiated. In
phase 2, a dictionary is used to assign meaning to the words so
that the domain is grounded. In phase 3, the dictionary is used
to identify the tacit relationships to build a meta-model. As a
result, Restricted Natural Language Statements (RNLS) are
modeled using the basic activity pattern with modality. RNLS
are derived from the original text and are restricted to one
discrete activity. The RNLS is then represented by the basic
activity pattern using one unary relation and two asymmetric,
binary relations. The unary relation defines the root concept σ,
while parameters use associative relations α, and values use
declarative relations ẟ.

To further illustrate the point, Breaux uses the following
RNLS as an example: “The provider may share information.”
Figure 2 depicts the unary relation σ (activity1) in the shaded
region. The associated relations α (activity1, actor1), α (activity1,
action1), α (activity1, object1), is captured by the shaded region
and oval. The declarative relations ẟ (actor1, provider), ẟ
(action1, share), ẟ (object1, information) is captured by
connecting the directed arrow between the oval in the shaded
region with the ovals outside of it.

Figure 2. Basic Activity Model

94

Breaux contends that these three relations represent a
complete parameterization process when all words and phrases
written in a regulatory document are assigned or subsumed by a
parameter or value. In instances where parameter values require
concepts with additional parameters, then a second
parameterization takes place with an additional associative and
declarative relations.

In figure 3, we see the additional associative relations α
(activity1, purpose1), and the additional declarative relations ẟ
(purpose1, activity2) that represents the RNLS: “The provider
may share information to market services.” Note, the
preposition “to” is indicative of an additional associative
relation.

This research builds on Semantic Parameterization and
extends this work in the following ways. First, we codify the
unary relation, as a root node, with a Hohfeldian legal concept
[24, 25]. For example, the statement, “The provider may share
information to market services,” uses the modal verb “may,” to
establish the root node “Privilege Activity.”

Figure 3. Basic Activity Model with Purpose

Secondly, we reduce the steps presented by Breaux [16]from
UNLS, RNLS, Activity Model (3 steps) to UNLS, Activity
model (2 steps). Third, we combine the associate and declarative
relations and explicitly represent the activity as Resource
Description Framework (RDF) triples. Next, we add a meta-
data-model to the basic activity pattern that consists of the
following attributes: a unique identifier, category, title, priority,
and degree of necessity. We capture the triples in Figure 4.

Figure 4 shows the root node, PrivilegeActivity, and the
associate relations as predicates (i.e., hasActor, hasAction,
hasObject, and hasPurpose). Also depicted are the declarative
relations as objects (i.e., provider, share, information, and
PurposeActivity), and the meta-data-model as predicates.

The Frame-Based Requirements Analysis Method
(FBRAM) [19, 20], is another means of extracting requirements
from regulations. Breaux uses FBRAM to annotate the
regulatory document manually in order for a tool to parse the
annotations to extract the requirements. From this extraction,
three artifacts are produced: an upper ontology, a context-free
markup, and a document model.

The upper ontology is used to classify regulatory statements
and consists of three concepts: a statement-level used to
categorize individual regulatory statements, a phrase-level used
to categorize individual regulatory phrases, and an abstract
placeholder. The context-free markup describes the structure
using concepts and logical connectives. The analyst uses the
context-free markup to make some interpretation about the text
and aligns the upper ontology in a manner that removes
ambiguity.

The document model describes how the document is
organized using a hierarchical representation. Moreover, the
document model enables traceability between the requirements
and the section, subsections, and paragraphs of the original
regulations. The requirements are represented as HTML, in a
table format, and contain the frame type; i.e., the type of
requirement, the pattern, and the traceability information

Similarly, to FBRAM, we examine the natural language
features of regulatory documents and map concepts to an
ontology. However, our approach differs from FBRAM in that
we extract software requirements directly from the regulations
with natural language processing techniques and use Web
Ontology Language Description Logics (OWL-DL) to express
requirements as opposed to a document model to formalize the
legal syntax. Moreover, our work focuses on all eight
Hohfeldian legal concepts – not just rights and obligations.

The Production Rule Methodology [11, 21, 22] codifies four
sections of the HIPAA Privacy Rule (§164.520, §164.522,
§164.524 and §164.526) SWI-Prolog software application [21].
A production rule is a knowledge representation technique that
is stated using horn clauses connected by logical operators [22].
Each rule consists of a two-part structure: an antecedent and a
consequent. If the antecedent set of conditions resolves to true,
then the consequent set of actions takes place. A collection of
rules creates a knowledge base. The interaction with this
knowledge base requires the top-level query using an inference
engine; for example, backward chaining, as a reasoning strategy
to execute on the rules base [22].

Prior to getting started, the production rule methodology
requires an ontology and some legal text as input. Then, a
preparatory step (Create Rule Patterns of Ontological Concepts)
followed by two activities (Specify Production rules and
Refactoring, respectively) takes place. In the preparatory step,
production rule patterns are created from the ontology. The first
activity, specify production rules, requires five steps.

In step 1, normative phrase analysis is used to classify rules
based on the words and phrases used in the legislation. In step 2,
identify rule parameters, the objective is to identify the subject
of the statement, the relation the actor can change, the action the
actor has the right or obligation to perform, and the source of the
rule. In step 3, identify preconditions, the legal preconditions

95

Figure 4. Semantic Web Parameterization

that enable the rule to be true are captured. In step 4, remove the
rule, disjunctions, the statements in the legislation that are
separated by an "or," are split into separate statements. Finally,
in step 5, identify rules implied by the ontology, the software
engineer may deduce other facts. After the completion of the
first activity, a complete production rule model exists. However,
the second activity, which refactors the rules base to remove
duplicates, provides an opportunity to improve the design.

Like the production rule methodology, we use a multi-step
process to extract requirements from regulations. We evaluate
the natural language phrases and classify patterns that
correspond to Hohfeldian legal concepts. Unlike the production
rule methodology, we read the regulations directly from a file,
segment the sentences from the regulations, tokenize the strings,
tag the words with parts of speech, and chunk the sentences in a
manner that can be modeled with OWL-DL.

III. METHODOLOGY

The research methodology is borne out of a constructivist
worldview [26]. The philosophical idea around constructivism
is to seek understanding of the world in its real-world context
and is typically associated with qualitative research. Moreover,
constructivists interpret meanings others have about the world or
generate theory inductively as opposed to starting with theory.
This induction is directly in contrast to the postpositivist
worldview. The philosophical ideas of the postpositivist start
with a theory, collect data to support or refute the theory, then
revise, and are typically associated with quantitative research.

The constructivist worldview is necessary in this research
because we seek to understand a phenomenon in its real-world
context. Therefore, we adhere to the qualitative research design
and the case study strategy of inquiry. Yin [27] describes a case
study as an empirical method that takes an in-depth analysis of a
contemporary phenomenon within a real-world context. Case
study design includes four types: single-case embedded, single-
case holistic, multi-case embedded, and multi-case holistic. The
choice to use a single vs. multi-case study design is based on the
number of cases in a study.

A case is a centralized phenomenon that exists within a real-
life context. Within the context of software engineering, a case
may range from a software development project to a process,
product, team, technology, specific role, or policy [28].
Consequently, if only one case exists, then it is best to select a
single case study. However, if two or more cases exist, then it is
best to select the multi-case study design.

The choice to use an embedded vs. holistic is based on
whether the case study has multiple units of analysis; i.e.,
subunits, or the case study examines the global nature of a
phenomenon. Yin defines a unit of analysis as the actual source
of information (e.g., a person, organizational document, or an
artifact.)

Runeson [28] elaborates on the unit of analysis for software
engineering as a project, group, or a decision. In short, a unit of
analysis is the phenomenon within a case that is examined. On
the other hand, to examine the global nature of a phenomenon
means a holistic view of the case is assessed, and there are no
subunits. Therefore, if the case study has multiple units of
analysis, then one selects an embedded case study. If the case
study looks at the nature of the whole phenomenon, then one
selects a holistic approach.

This research employs an embedded, single-case study
research design as defined by Yin and as recommended for
software engineering by Runeson. This design is intentionally
chosen with a long-range strategy in mind. We intend to leverage
the results of this descriptive study to support future studies that
will be prescriptive in nature. In the next section, we outline the
case, units of analysis, research questions, theoretical
framework, and strategy for mitigating threats.

IV. CASE STUDY

1) Case Selection
This study purposely selects HIPAA regulation §164.510

(a)(1), as illustrated in figure 2, because this specific provision
of the regulation provides normative phrases, continuations,
exceptions, and parameter values that are concepts with other
parameters.

96

2) Units of Analysis
Yin defines the unit of analysis as the element within the case

study for which the data is collected [27]. For software
engineering research, Runeson stated that the unit of analysis
might be some element of the project, the methodology, or some
aspect of the ongoing development or maintenance [28]. Here,
the unit of analysis consists of the natural language features (i.e.,
the keywords, sentences, phrases, and clauses) that form the
parameters applied to the basic activity model.

3) Research Questions
Creswell declares that qualitative research questions are

central with associated sub-questions [26]. A central research
question takes a broad view and explores a central phenomenon.
In this study, the following main central question outlines a
broader view of the purpose statement to describe and explain
the SHAMROQ methodology. To what extent can SHAMROQ
be used to build a knowledge base? What is the SHAMROQ
framework? How does the SHAMROQ methodology work in
practice to extract requirements from regulatory documents?

4) Quality Assurance – Mitigating Threats to Validity
The quality of a case study is evaluated based on its ability

to identify and mitigate threats to validity. Yin outlines four tests
to assess the threats to validity. The four tests are construct,
internal, external, and reliability. This study addresses three out
of the four threats to validity. Internal validity applies to
explanatory or causal studies and does not apply to descriptive
or exploratory studies [27].

5) Theoretical Framework
SHAMROQ represents a contribution to the body of

knowledge formalized by a systematic literature review (SLR)
as outlined by Barbara Kitchenham [29] and meta-ethnography
synthesis as outlined by Noblit and Hare [30]. A meta-
ethnography synthesis (MES) uniquely and systematically
defines a qualitative process for generating theory, which
involves induction and interpretation. Meta-ethnography places
emphasis on maintaining alignment with the original research
articles and encourages researchers to extend beyond the original
ideas of the research [30].

A clear finding of the SLR and MES was that several
strategies are required to analyze, classify, and model
regulations. SHAMROQ is a manifestation of those strategies.
In the next section, we provide an overview of the SHAMROQ
and will answer the central research question, to what extent can
SHAMROQ be used to extract requirements from regulations.

V. FINDINGS AND DISCUSSION

This section presents the evolution of SHAMROQ and
answers the research questions.

A. What is the SHAMROQ Framework?

SHAMROQ is an acronym that embodies the strategies used
to build a knowledge base: semantic web parameterization,
Hohfeldian legal concepts, Artificial Intelligence, Metadata
Enrichment, Reasoning System, Ontologies, and Query
language. Collectively, these seven core strategies provide
requirement engineers a means to analyze, classify, and model
functional and nonfunctional requirements using the semantic

web. As illustrated in figure 1, there are four main artifacts that
influence SHAMROQ.

First, depicted in figure 1, are the laws that are established
by Congress. Secondly, are the regulations (i.e., rules) that
implement a statue or act as a guide. Third are the system
documents that represent the stakeholder's needs, goals,
deliverables, constraints, limitations, security, and performance
criteria. Some examples of system documents are a Statement
of Work (SOW), Software Requirement Specification (SRS),
and Concept of Operations (CONOPS). Finally, are the policies
that are an assortment of legal artifacts to include executive
orders and presidential actions.

The context depicted in figure 1 shows the people involved
and contends that they must be a part of the software
development lifecycle. The intervening conditions include the
characteristics that laws, regulations, and policy artifacts exhibit
that make them both beneficial and problematic; in particular,
the legal document structure, ambiguity, cross-references, and
frequent changes.

The next construct of the framework, strategies, are
reflective of the techniques to carry out the analysis,
classification, and modeling of the artifacts that influence the
framework – given the context and intervening conditions. As a
result, the strategies yield a set of consequences that make
legislative documents traceable, verifiable, searchable, absent of
contradictions, complete, precise, and amenable to change.

Given the number of strategies to unpack, we narrow the
scope of this paper to semantic web parameterization,
Hohfeldian legal concepts, and ontologies. In the next section,
we describe how the SHAMROQ methodology works in
practice to extract requirements from regulations.

Figure 5. §164.510 (a)(1) of HIPAA

B. How does the SHAMROQ methodology work in practice to

build a knowledge base of regulatory documents.

In this section, we describe the methodology that supports
the framework. The methodology aids practitioners in providing
a formal means to represent legal provisions, minimize

97

ambiguity, trace a requirement from its basic activity model back
to its origin, and enrich the data model with metadata. What
follows is a description of the automated process to analyze and
classify and the manual process to model. To illustrate, we use
the example of §164.510 (a)(1)(i)(A) of the HIPAA Privacy
Rule, to describe each phase.

1) Analysis
In the analysis phase, we download the XML version of the

regulations from the govinfo.gov website 3 and perform the
following automated processing on the text using the Python
programming language and Natural Language Toolkit (NLTK)
[31]. First, the XML file is scanned to obtain the root node of
the regulation. Secondly, preprocessing is performed on the
document by traversing the root node and extracting the
information associated with the node.tag, the node.attrib, and
node.text. The analysis phase concludes when the results are
stored in a python dictionary that contains the metadata, header,
and body structure.

2) Classify
 In the classification phase, the python dictionary is taken

from the analysis phase and NLTK aids in performing sentence
segmentation on the body of the python dictionary which
contains the regulatory text. Next, NLTK helps to segment the
regulatory text into sentences, to tokenize each sentence into
words, and to tag each word with a part of speech. Finally, a
grammar, illustrated in figure 6, helps to chunk the tagged words
into eight categories: section, topic, noun phrase, exception,
modality, conjunction, continuance, and action.

Figure 6. Grammar

Chunks, with a focus on noun phrases and verbs, are
inspected manually in the output to identify an actor, action,
object, target, exception, or constraint. A search for the modal
verb is performed to assign to the root activity. Table 1 outlines
the normative phrases [1] that align with Hohfeldian legal
concepts[24, 25].

Table 2 captures the predicates that are aligned with the
subject, verb, and object along with other attributes to support
building a model that represent the regulation. The
classification phase ends when all words and phrases written in
a regulatory document are mapped to a category.

TABLE I. HOHFELDIAN CLASSIFICATION

Serial

No.

Modality and Normative Phrase Correlation

Normative Phrase Concept

1 has a/the right to, retains the right to Right

3 https://www.govinfo.gov/content/pkg/CFR-2019-title45-vol2/xml/CFR-

2019-title45-vol2-sec164-510.xml

Serial

No.

Modality and Normative Phrase Correlation

Normative Phrase Concept

2
must, is required to, shall, may not,

is prohibited, is subject to
Obligation

3

may, may elect not to, is not required to,

requirement does not apply, is permitted to,

at the election of, is not subject to

Privilege

4 does not have a right to No-Right

5
authorize termination of, must obtain an
authorization, may revoke, may terminate

Power

6
provide that <actor> will/must, obtain

assurance
Liability

7 None Immunity

8 may not authorize Disability

The sentences are further examined manually to ascertain
continuances [32]. Continuances are clauses that break into
multiple constituent parts. The constituent parts are appended to
the base clause and must be classified and modeled separately in
the following manner [21].

TABLE II. ACTIVITY CLASSIFICATIONS

Serial

No.

Classification Scheme

Predicate Description

1 hasActor
The subject of the clause and answer the ICM

question who

2 hasAction
The verb of the clause and answers the question

what

3 hasModality
The auxiliary verb that corresponds to a
Hohfeldian legal concept

4 hasObject
The verb of the clause and answers the question

what

5 hasTarget The person, place, or thing receiving an action

6 hasPurpose The goal or objective of the clause

7 hasException Contains keywords that express an exception

8 hasConstraint Contains keywords that express a constraint

9 hasSource Contains the legislation source section

a) § 164.510 (a)(1)(i)(B)

Except when an objection is expressed in accordance with
paragraphs (a) (2) or (3) of this section, a covered health care
provider may: (i) Use the following protected health information
to maintain a directory of individuals in its facility: The
individual's location in the covered health care provider's
facility;

a) 164.510 (a)(1)(i)(C)

Except when an objection is expressed in accordance with
paragraphs (a) (2) or (3) of this section, a covered health care
provider may: (i) Use the following protected health information
to maintain a directory of individuals in its facility: The
individual's condition described in general terms that does not
communicate specific medical information about the individual;
and

98

https://www.govinfo.gov/content/pkg/CFR-2019-title45-vol2/xml/CFR-2019-title45-vol2-sec164-510.xml
https://www.govinfo.gov/content/pkg/CFR-2019-title45-vol2/xml/CFR-2019-title45-vol2-sec164-510.xml

Figure 7. Semantic Web Parameterization

b) § 164.510 (a)(1)(i)(D)

Except when an objection is expressed in accordance with
paragraphs (a) (2) or (3) of this section, a covered health care
provider may: (i) Use the following protected health
information to maintain a directory of individuals in its
facility: The individual's religious affiliation; and

3) Model
In this phase, the output of the classification phase is

inspected manually and protégé [33] is used to represent an
organized, logical representation of concepts and categories
using semantic web parameterization. The root activity
contains the assignment based on the modal verb in the
normative phrase. To provide more clarity, we continue with
the example of § 164.510 (a)(1)(i)(A).

In figure 7, the illustration shows the results of the
Semantic Web Parameterization process, in particular, the

assignment of the root activity σ’(PrivelegeActivity0). The
root activity is a privilege according to the phrase, “a covered
health care provider may:” A look in Table 1, serial 3 shows
the modal verb “may” maps to a privilege – the root activity.

The combined associate and declarative relations become

the following triples: α’(privelegeActivity0, hasActor0, some

Health care Provider), α’(privelegeActivity0, hasAction0,

some Use), α’(privelegeActivity0, hasObject0, some Name

Individual Activity), α’(privelegeActivity0, hasPurpose0,

some Purpose Activity), α’(privelegeActivity0, hasException0,

some CFR 164 (a) (2)_Activity), and α’(privelegeActivity0,
hasException0, some Exception_IAW_a_2_or_a_4)

VI. THREATS TO VALIDITY

In this paper, we used section §164.510 of HIPAA as a
descriptive, embedded, single-case study to develop and
validate the SHAMROQ methodology. To assess the quality
of a case study, Yin describes four criteria: construct validity,
internal validity, external validity, and reliability. Internal

validity is used for explanatory or causal case studies and not
for descriptive or exploratory studies [27]. Therefore, internal
validity is not tested here. In this section, we discuss construct
validity, external validity, and reliability.

Construct validity assesses the correctness of operational
measures by evaluating the means in which the researcher
collects data, builds, or validates theory, and reports results
[27]. Yin outlines three case study tactics to mitigate the
threats to construct validity: use multiple sources of evidence,
establish a chain of evidence, and use key informants to
review the draft case study [27].

Although the case study in this paper uses one section of
HIPAA, the basis of the SHAMROQ methodology is
grounded in the literature and based on prior theories of
semantic parameterization [16], description logic [23], and
Hohfeldian legal concepts [24, 25]. We establish a chain of
evidence by following our methodology and retaining copies
of all artifacts. Lastly, the authors listed here reviewed the
draft case study report.

External validity assesses whether the results are specific
to the phenomenon under investigation or are applicable more
generally [27]. We acknowledge several threats to external
validity in our case study. First, we only examine one legal
text within one regulatory domain - HIPAA. However, we
purposely selected §164.510 because this provision provides
normative phrases, continuations, exceptions, and parameter
values that are indicative of legal text. Further studies
modeling more legal texts across multiple domains will serve
to validate and refine the methodology.

Reliability assesses whether the research can be
independently verified, using the same methodology, to yield
the same results [27]. Researchers independently verifying
our case study are likely to use different grammar rules,
identify a different combination of noun phrases, and identify
a different ontology. Therefore, a small probability exists that
the exact results of our case study could be replicated.

99

However, reliability is improved by evaluating reliability
against our documented process and case-study database.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced SHAMROQ, a methodology
to examine all the natural language features in a regulatory
document, group the features according to their shared
characteristic, and model the features using the semantic web
parameterization. We analyzed HIPAA regulation §164.510,
which contained provisions with normative phrases,
continuations, exceptions, and cross-references that are
indicative of legal text. Our findings show that it is possible
to use the basic activity pattern with modality, description
logic, and Hohfeldian legal concepts to analyze, classify, and
model the legal relationships to ascertain meaning, context,
and structure.

Future work will include automating the manual steps to
generate a semantic model from the noun phrases produced by
the chunked grammar. Moreover, we will refine and validate
SHAMROQ with a more extensive legal corpus across
multiple regulatory domains and evaluate to what extent a
multi-class classification machine learning algorithm can
classify Hohfeldian legal concepts for semantic modeling.

REFERENCES

[1] T. D. Breaux, M. W. Vail, and A. I. Anton, "Towards

regulatory compliance: Extracting rights and obligations to align
requirements with regulations," in Requirements Engineering,

14th IEEE International Conference, 2006: IEEE, pp. 49-58.
[2] T. D. Breaux and A. I. Antón, "Analyzing regulatory rules for

privacy and security requirements," Software Engineering, IEEE

Transactions on, vol. 34, no. 1, pp. 5-20, 2008.
[3] P. N. Otto, A. Antón, and others, "Addressing legal

requirements in requirements engineering," 2007 2007: IEEE,

pp. 5-14. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4384161[O

nline]. Available: files/272/abs_all.html

[4] E. Kamsties, "Understanding ambiguity in requirements
engineering," in Engineering and Managing Software

Requirements: Springer, 2005, pp. 245-266.

[5] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P.
Hammond, and H. T. Cory, "The British Nationality Act as a

logic program," Communications of the ACM, vol. 29, no. 5, pp.

370-386, 1986.
[6] J. C. Maxwell, A. I. Anton, and J. B. Earp, "An empirical

investigation of software engineers' ability to classify legal

cross-references," in Requirements Engineering Conference
(RE), 2013 21st IEEE International, 2013: IEEE, pp. 24-31.

[7] L. E. Allen, "Symbolic logic: A razor-edged tool for drafting

and interpreting legal documents," Yale LJ, vol. 66, p. 833,
1956.

[8] T. J. Bench-Capon, G. O. Robinson, T. W. Routen, and M. J.

Sergot, "Logic programming for large scale applications in law:
A formalisation of supplementary benefit legislation," in

Proceedings of the 1st international conference on Artificial

intelligence and law, 1987: ACM, pp. 190-198.
[9] T. D. Breaux, A. I. Ant, and #243, "Mining rule semantics to

understand legislative compliance," presented at the

Proceedings of the 2005 ACM workshop on Privacy in the
electronic society, Alexandria, VA, USA, 2005.

[10] A. Antón, J. B. Earp, A. Reese, and others, "Analyzing website

privacy requirements using a privacy goal taxonomy," 2002
2002: IEEE, pp. 23-31. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1048502[O

nline]. Available: files/279/abs_all.html

[11] J. C. Maxwell, A. I. Ant, and #243, "The production rule
framework: developing a canonical set of software requirements

for compliance with law," presented at the Proceedings of the

1st ACM International Health Informatics Symposium,
Arlington, Virginia, USA, 2010.

[12] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker,

"A machine learning approach for tracing regulatory codes to
product specific requirements," presented at the Proceedings of

the 32nd ACM/IEEE International Conference on Software

Engineering - Volume 1, Cape Town, South Africa, 2010.
[13] M. J. May, C. A. Gunter, and I. Lee, "Privacy APIs: Access

control techniques to analyze and verify legal privacy policies,"

2006: IEEE, pp. 13-pp.
[14] P. Slootweg, L. Rutledge, L. Wedemeijer, and S. Joosten, "The

Implementation of Hohfeldian Legal Concepts with Semantic

Web Technologies," AI4J–Artificial Intelligence for Justice, p.
65, 2016.

[15] P. A. Laplante, Requirements engineering for software and

systems. CRC Press, 2017.
[16] T. D. Breaux and A. I. Antón, "Analyzing goal semantics for

rights, permissions, and obligations," 2005: IEEE, pp. 177-186.

[17] T. D. Breaux, A. I. Antón, and J. Doyle, "Semantic

parameterization: A process for modeling domain descriptions,"

ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 18, no. 2, p. 5, 2008.
[18] T. D. Breaux and A. Anton, "Deriving semantic models from

privacy policies," in Policies for Distributed Systems and
Networks, 2005. Sixth IEEE International Workshop on, 2005:

IEEE, pp. 67-76.

[19] T. D. Breaux and A. I. Antón, "A systematic method for
acquiring regulatory requirements: A frame-based approach,"

RHAS-6), Delhi, India, 2007 2007.

[20] T. D. Breaux, Legal requirements acquisition for the
specification of legally compliant information systems.

ProQuest, 2009.

[21] J. C. Maxwell and A. I. Anton, "A refined production rule
model for aiding in regulatory compliance," North Carolina

State University. Dept. of Computer Science, 2010.

[22] J. C. Maxwell and A. I. Anton, "Developing production rule
models to aid in acquiring requirements from legal texts," in

Requirements Engineering Conference, 2009. RE'09. 17th IEEE

International, 2009: IEEE, pp. 101-110.
[23] F. Baader, I. Horrocks, C. Lutz, and U. Sattler, Introduction to

Description Logic. Cambridge University Press, 2017.

[24] W. N. Hohfeld, "Fundamental legal conceptions as applied in
judicial reasoning," The Yale Law Journal, vol. 26, no. 8, pp.

710-770, 1917.

[25] W. N. Hohfeld, "Some fundamental legal conceptions as applied
in judicial reasoning," Yale Law Journal, pp. 16-59, 1913.

[26] J. W. Creswell, Research design: Qualitative, quantitative, and

mixed methods approaches. Sage, 2013.
[27] R. K. Yin, Case study research and applications: Design and

methods. Sage publications, 2017.

[28] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study
research in software engineering: Guidelines and examples.

John Wiley & Sons, 2012.

[29] B. Kitchenham and P. Brereton, "A systematic review of
systematic review process research in software engineering,"

Information and Software Technology, vol. 55, no. 12, pp. 2049-

2075, 12// 2013, doi:
http://dx.doi.org/10.1016/j.infsof.2013.07.010.

[30] G. W. Noblit and R. D. Hare, Meta-ethnography: Synthesizing

qualitative studies. Sage, 1988.
[31] E. Loper and S. Bird, "NLTK: the natural language toolkit,"

arXiv preprint cs/0205028, 2002.

[32] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt, "Automated
analysis of requirement specifications," 1997, pp. 161-171.

[33] M. A. Musen, "The protégé project: a look back and a look

forward," AI matters, vol. 1, no. 4, pp. 4-12, 2015.

100

On the Reuse of Knowledge to Develop Intelligent
Software Engineering Solutions

José Ferdinandy Silva Chagas
Federal Rural University of Semi-Arid
Intelligent Software Engineering Group

ferdinandy@ufersa.edu.br

Luiz Antonio Pereira Silva
Federal University of Campina Grande

Intelligent Software Engineering Group
luizantonio@copin.ufcg.edu.br

Mirko Perkusich
Intelligent Software Engineering Group

mirko@virtus.ufcg.edu.br

Ademar França de Sousa Neto
Federal University of Campina Grande

Intelligent Software Engineering Group
ademar.sousa@virtus.ufcg.edu.br

Danyllo Albuquerque
Intelligent Software Engineering Group

danyllo.albuquerque@virtus.ufcg.edu.br

Dalton Cézane Gomes Valadares
Federal Institute of Pernambuco

Intelligent Software Engineering Group
dalton.cezane@caruaru.ifpe.edu.br

Hyggo Almeida
Federal University of Campina Grande

Intelligent Software Engineering Group
hyggo@dsc.ufcg.edu.br

Angelo Perkusich
Federal University of Campina Grande

Intelligent Software Engineering Group
perkusic@dee.ufcg.edu.br

DOI reference number: 10.18293/SEKE2020-157

Abstract—Intelligent Software Engineering (ISE) is currently
a hot topic in research. Besides being a promising field, it brings
many challenges. Therefore, there is a need for guidelines to help
researchers to build an ISE solution. The goal of this study is to
identify patterns in developing ISE solutions. For this purpose,
we analyzed 42 studies, using a thematic analysis approach,
to understand how they reused knowledge and applied it to
solve a SE task. As a result, we developed a thematic network
composed of the main concepts related to knowledge reuse for
ISE. Further, we identified that researchers use external and
internal knowledge sources, and mostly rely on structured data
to develop ISE solutions. Despite this, there are alternatives such
as eliciting data from humans and literature to identify metrics
or build knowledge-based systems. Overall, we concluded that
there many research opportunities to guide the construction of
ISE solutions.

I. INTRODUCTION

The processing power of modern computers increased con-
siderably, enabling Artificial Intelligence (AI) to reach streets,
houses, cities, and people daily [22], [18]. Hence, AI advances
bring new challenges and opportunities, such as automating
or supporting the execution of Software Engineering (SE)
tasks [27], [10]. On the other hand, bringing AI systems to
the market also brings challenges that can be addressed by ap-
plying SE. As a consequence, recently, the field denominated
as Intelligent Software Engineering (ISE) has emerged. ISE
is an ambidextrous field focusing on (i) applying intelligent
techniques to solve SE problems and (ii) using SE to improve
AI systems [53], [44]. In this paper, we focus only on (i),
which, itself, is not a very recent phenomenon dating back
to the 1980s [37]. As the definition for what is an intelligent
technique, we follow Perkusich et al. [44], in which this term
was defined as: “the exploration of data (from digital arti-
facts or domain experts) for knowledge discovery, reasoning,

learning, planning, natural language processing, perception or
supporting decision-making”.

In industry, companies such as Facebook and Amazon
have been applying intelligent techniques (i.e., search-based
algorithms) to solve SE problems [41]. In academia, it is
a hot topic [44]. For instance, researchers have proposed
the application of NLP to manage requirements [28] and
the use of natural-language-based chatbots to improve the
productivity of developers [25]. Moreover, through ML, the
researchers can use accessible software repositories, with a
lot of available data, to continuously learn and improve the
software reuse [50]. Perkusich et al. [44] performed a system-
atic literature review on ISE in the context of agile software
development and highlighted the following research themes:
Search-Based Software Engineering (SBSE) [19], machine
learning for SE [55], recommender systems for SE [15],
Bayesian networks for SE [35], software analytics [34], Big
Code [2] and decision analysis for SE [56]. Among the
SE problems that researchers are addressing with intelligent
techniques, we can list: Effort Estimation ([48], [51], [13],
[23]), Risk Management ([9]), Software Testing ([29], [24],
[42], [31]), Team Formation ([30], [7]), and Requirements
Engineering ([47], [26], [38], [46]).

Developing an ISE solution is a complex task because it de-
mands knowledge regarding the SE task at hand and intelligent
techniques, and, to the best of our knowledge, there are few
proposals of conceptual models or general guidelines to de-
velop ISE solutions. The literature presents guidelines for ISE
subfields such as data mining for software engineering [54],
[17], machine learning for software engineering [33], Search-
Based Software Engineering [20], and data-driven solutions
for agile projects [10]. It also presents guidelines for applying
intelligent techniques for general purposes, such as building
Bayesian networks [39], [32]. Despite having their value,

101

the existing studies focus on a specific intelligent technique.
The problem is that defining the intelligent technique should
not be the starting point of defining an ISE solution. The
solution designer only selects the intelligent technique to be
applied after evaluating the existing available knowledge (e.g.,
data stored in CASE tools or repositories) and the software
engineering problem to be tackled (e.g., estimate effort for a
given task). Therefore, to help in the early stages of building
an ISE solution, we argue that there is a need for general
guidelines.

To address this need, we analyzed 42 studies, identified
by Perkusich et al. [44], that applied intelligent techniques
to several SE tasks to identify patterns and provide a holistic
view on how to develop ISE solutions from the perspectives
of Knowledge Management (KM) and reuse-driven software
engineering.

This paper synthesizes our findings by presenting a thematic
network and the identified patterns on how the applied intel-
ligent techniques relates to the reused knowledge. Further, it
discusses the implications for research and practice. The rest
of the paper is structured as follows. Section II presents the
applied methodology to perform the thematic analysis. Sec-
tion III describes the conceptual model. Section IV discusses
the model development challenges, application, and impact.
Section V lists main threats to validity. Finally, Section VI
presents our final remarks, emphasizing the research contribu-
tion and limitations, and suggesting future works.

II. RESEARCH METHODOLOGY

The goal of this study is to identify patterns in developing
ISE solutions. For this purpose, we model the problem of
developing ISE solutions from the perspective of knowledge-
reuse, in which we assume that an intelligent technique reuses
data, information, or knowledge, which might be available
through digital artifacts or domain experts, to solve SE prob-
lems. Given this, we defined the following research questions:

• RQ1 - How is knowledge reused in the context of ISE?
• RQ2 - What is the relationship between the type of reused

knowledge and the applied intelligent technique?
RQ1 focuses on classifying existing ISE solutions in terms

of the type of knowledge sources used and, if the case, what
are the knowledge transformation techniques employed by
researchers to feed intelligent technique algorithms.

RQ2 focuses on identifying patterns between the type of
reused knowledge and the applied intelligent techniques. The
answer to this research question might indicate trends, which
might serve as guide researchers and practitioners interested
in developing ISE solutions.

To answer the research questions, we employed a thematic
analysis approach following the guideline proposed by Cruzes
and Dyba [8]. The guideline proposes five research steps: (i)
data extraction, (ii) code data, (iii) translate codes into themes,
(iv) create a model of higher-order themes, and (v) assess the
trustworthiness of the synthesis.

As the data source for the first step (i), we used a subset of
the studies reported by Perkusich et al. [44], which identified
intelligent techniques applied to agile software development.

Despite restricting the scope to agile, Perkusich et al. [44]
report ISE solutions for diverse SE tasks such as effort
estimation, requirements prioritization, and risk management;
and using digital artifacts and humans expertise as knowledge
sources. Therefore, we judged that analyzing the ISE solutions
reported by Perkusich et al. [44] as being sufficient, given the
scope of this study.

To assure that our results are based only on high-quality
studies, guaranteeing the trustworthiness of the synthesis (step
v), we filtered the 104 papers following the quality scoring
performed by Perkusich et al. [44]. Perkusich et al. [44] used
the instrument proposed by Dyba and Dingoyr [11] to assess
the quality of the studies. We present the quality criteria in
what follows.

1) Is the paper based on research (or is it merely a “lessons
learned” report based on expert opinion)?

2) Is there a clear statement of the aims of the research?
3) Is there an adequate description of the research context?
4) Was the research design appropriate to address the aims

of the research?
5) Was the recruitment strategy appropriate to the aims of

the research?
6) Was there a control group with which to compare

treatments?
7) Was the data collected in a way that addressed the

research issue?
8) Was the data analysis sufficiently rigorous?
9) Has the relationship between the researcher and partic-

ipants been considered to an adequate degree?
10) Is there a clear statement of findings?
11) Is the study of value for research or practice?
For each quality criteria, Perkusich et al. [44] rated the

studies using a boolean scale in which “1” means “yes” and
“0” means “no”. Therefore, the quality score ranges in the
interval [0, 11], which is composed only of Integer numbers.
We only evaluated studies with a quality score equal to
seven or higher, resulting in 42 studies. The complete list of
evaluated study is made available here1.

After having identified the 42 studies to be used as our data
source, one researcher analyzed them and extracted publication
details (e.g., title and year), the applied intelligent technique,
SE task, level of automation [12] and segments of text relevant
given our research questions. Afterward (step ii), each segment
of text was analyzed and labeled by a researcher, generating
a set of codes. We used an integrated approach, in which
we defined a “start list” of codes based on our expertise
in the field, but we remained open for new concepts that
could become apparent. Another researcher checked the coded
segments to avoid researcher bias.

Examples of codes defined a priori are the type of knowl-
edge source (i.e., tacit, explicit, or both), and type of data (i.e.,
structured, non-structured, both). Conversely, as an example
of a code that became apparent during data analysis was
techniques to “transform” unstructured data into structured
data such as text mining, ontology, and qualitative analysis.
We discuss these concepts in Section III.

1https://bit.ly/2Q596MK

102

ISE Knowledge
Reuse

Knowledge
Transformation

Knowledge
Source Type

Location
Tacit to Explict

Unstructured to
Structured

Text mining (NLP)
Metrics
Qualitative Analysis
Ontology

External

Internal
Software Development Lifecycle
Project Management
Knowledge Management

Repositories (e.g., GitHub)
Literature

Tacit

Explicit
Structured
Unstructured

Fig. 1. ISE Knowledge Reuse thematic network

To define and structure the themes (steps iii and iv), the
researchers analyzed the codes during workshops. At the
end of this process, we developed a thematic network [3],
organizing the concepts related to knowledge reuse for ISE.
Afterward, we used the identified themes to classify the studies
and analyze our research questions.

III. THEMATIC NETWORK

This section discusses the thematic network, shown in
Figure 1, that resulted from analyzing the 42 papers from
Perkusich et al. [44], as discussed in Section II. The thematic
network focuses on structuring the concepts related to knowl-
edge reuse in the context of ISE. Therefore, the Global Theme
(represented as a rectangle in Figure 1) encompasses the ISE
solutions reuses knowledge.

During our analysis, two middle-order themes (represented
by ellipsis in Figure 1) emerged: Knowledge Source and
Knowledge Transformation. Every ISE solution, in some way
or another, uses knowledge for a SE task. The Knowledge
Source theme represents the possible types of sources in which
the solution designer or algorithm might collect the necessary
knowledge. We further refined this theme by identifying the
themes Type and Location.

The theme Type refers to the two possible types of knowl-
edge described in classical KM literature: Tacit or Explicit.
Tacit knowledge refers to knowledge that is only stored in the
minds of stakeholders (e.g., programmers, software engineers,
and project managers). Explicit knowledge refers to knowledge
that is codified and stored in digital (or physical) artifacts.
There are two types of explicit knowledge, Structured and
Unstructured. We defined that structured data refers to data
high-organized and easily processed by a machine (e.g., rela-
tional database search). Conversely, unstructured data cannot
be processed using conventional tools. In our context, mostly,

unstructured data refers to text (e.g., requirements, system
logs, and source code) but could include audio and video,
for instance.

The Location theme characterizes where the necessary
knowledge might be found. For this theme, we identified two
options: External and Internal. An external source refers to
sources that are external to a given organization, such as a
repository and the literature. Many researchers in data-driven
ISE use repositories such as GitHub [16] for data mining, but
the literature is an important source of knowledge for ISE. For
instance, Hearty et al. [21], Perkusich et al. [45] and Freire et
al. [14] identified features for their proposed models, partially,
based on information collected from the scientific and grey
literature.

Internal sources refer to knowledge that is available within
an organization. It is the case for data produced during the
Software Development Lifecycle, Project Management, and
Knowledge Management activities. Given this, it is vital to
notice that there are cases in which the necessary data is
not readily available to solve de SE task at hand. In these
cases, the ISE designer must develop tools to collect such
data and integrate it them existing processes followed by
the organization or evaluate the possibility of transforming
existing knowledge into usable data for intelligent techniques,
which is discussed in what follows.

The Knowledge Transformation theme refers to transform-
ing knowledge that is available, but not ready to be used for
ISE. It is the case when we have unstructured or tacit knowl-
edge that we wish to use. In the case of unstructured data, it is
necessary to transform it into structured. We identified such as
text mining (e.g., Natural Language Processing) [28], the use
of software metrics [36], qualitative analysis (e.g., coding) [49]
and ontology [6] for this purpose. In the case of having tacit
knowledge, it must be transformed into explicit. This process

103

Fig. 2. Frequencies of Themes.

might transform tacit knowledge structured or unstructured. In
the latter case, it is necessary to transform it into structured.
For instance, Perkusich et al. [43] elicited knowledge from
46 Scrum experts through the Delphi method and an online
survey to construct a Bayesian network for assessing Scrum
projects.

IV. DISCUSSION

This section discusses the research questions (see Sec-
tions IV-A and IV-B) presented in Section II and the implica-
tions for research and practice (see Section IV-C).

A. ISE Knowledge Reuse
We used the thematic network presented in Figure 1 to

classify the studies and identify the trends on knowledge reuse
for ISE. Figure 2 presents the frequencies for each theme,
as they were extracted from the studies. In what follows,
we discuss each of the results for each of the basic themes
(represented as rectangles with rounded borders in Figure 1
presented in the thematic network.

For the theme Location, 36 (86%) studies used some form
of external knowledge source, while 42 (95%) used internal
sources. Regarding the studies that relied on external sources,
19 studies used data from a repository and 16, from the
scientific literature. Regarding the studies that relied on inter-
nal sources, 13 studies collected data from artifacts produced
during the Software Development Lifecycle, 26 from artifacts
produced by the Project Management Process, and only 1

from Knowledge Management Processes. The collected data
indicates that researchers when developing ISE solutions, look
for wherever places necessary to find data. Despite this, care
should be taken when deploying ISE solutions in practice,
because having different data sources raises the complexity in
operating and maintaining them.

For the theme Type, 16 studies used tacit knowledge in
the development cycle of the ISE solution, mostly (89%)
eliciting it from ten or fewer experts. For the development
cycle, we included a potential evaluation of the developed ISE
solution by humans. Therefore, we considered that studies that
developed expert systems such as Perkusich et al. [45], Odzaly
et al. [40] and data-driven studies that evaluated their solution
with humans (e.g., Chaves-González et al. [4]) equally. The
reasoning applied is that either way, the tacit knowledge of
humans was used to develop the ISE solution. It is essential to
notice that we did consider here human knowledge regarding
the intelligent technique itself (e.g., knowledge to define the
fitness function of a genetic algorithm), but only related to the
SE task at hand.

Further, 35 (83%) used only structured data, while 7 (17%)
used both types of data (i.e., structured and unstructured). For
instance, Hearty et al. [21] used only structured data (i.e.,
metrics and rules in the form of probability functions) to
build a Bayesian network to predict the velocity of an XP
team. Conversely, Lucassen et al. [28] presents a tool that uses
metrics (i.e., structured data) as indicators of a well-written
user story and processes user stories (i.e., unstructured data),
calculating a quality score for them.

Regarding the theme Knowledge Transformation, we ob-
served that the most popular form to transform tacit knowledge
to explicit is in the form of questionnaires such as done by
Perkusich et al. [43]. Further, regarding the transformation of
unstructured to structured data, we observed that the most
popular procedure is to use software metrics (28 studies).
For instance, Abouelela and Benedicenti [1] define a set of
metrics and use them to build a Bayesian network to predict
the velocity and delivered quality of an XP team. A few
studies used Qualitative Analysis (3) and Text mining (2). For
instance, Lucassen et al. [28] process text from user stories
using Natural Language Processing algorithms. Therefore, we
identify a pattern, in the evaluated studies, to use software
metrics as the preferred means for knowledge transformation.

B. Relationship between type of reused knowledge and applied
intelligent technique

We triangulated the results of our classification (see Sec-
tion IV-B with the data collected by Perkusich et al. [44]
regarding the types of intelligent techniques applied by the
studies. As presented in Figure 2, 18 studies focus on, nec-
essarily, data-driven solutions, this is the case for Search and
Optimization and Machine learning. The remaining intelligent
techniques might be applied as a result of eliciting expert
knowledge or exploring digital artifacts. For instance, it is
the case for Bayesian networks, which can be constructed
solely based on expert knowledge, available data, or both.
Therefore, as expected, if there is enough structured data,
any of the intelligent techniques presented by Perkusich et

104

al. [44] might be used. Unfortunately, in practice, most of the
artifacts produced by the software development process are
unstructured; the case for requirements, test cases, source code,
and system logs. In these cases, researchers have used tools to
process unstructured data extracting metrics (e.g., Chidamber
and Kemerer metrics [5]) from it automatically or processing
them using text mining algorithms.

In the cases of not having enough data, there are two
alternatives: (i) elicit data from humans or literature to identify
metrics or (ii) build knowledge-based systems. For the first
case, after identifying the metrics that are crucial to solve the
SE task at hand, it is necessary to develop tools to, ideally,
collect them automatically during software development or
project management activities. Given that the necessary data is
available, a data-driven intelligent technology such as Machine
Learning can be used to infer new knowledge or make predic-
tions, for instance. The second option is to extract knowledge
from experts and develop, for instance, an expert system using
a Bayesian network or a Rules-based system (e.g., production
rules). In this case, ideally, it is necessary to develop a tool
that collects the input automatically or from humans to infer
whatever is necessary (e.g., estimate effort for a given task).

C. Implications for research and practice

This study has several implications for research and prac-
tice. For research, we have mapped how knowledge is used
for ISE solutions and identified patterns on how the type of
reused knowledge relates to the applied intelligent technique.
The reported information might guide researchers to develop
ISE solutions having a more holistic view of their development
process. Despite this, the analyzed studies focus on supporting
decision-making, not having a high level of automation, using
the classification described in Feldt et al. [12]. Therefore, we
believe that there is a need to further refine the presented
thematic network by analyzing studies with higher levels of
automation. Further, there is a need for more studies to define
guidelines for researchers in building ISE solutions, through
the form of checklists, catalogs, taxonomies or reference mod-
els; especially, focusing on the early stages of developing an
ISE solution, which, usually, relies on evaluating the available
knowledge to solve the SE task at hand.

Also, this study showed that researchers, when building
ISE solutions, rely on publicly available repositories. The
implications for this point are twofold: first, it demonstrates
the importance of having data available to build ISE solutions,
and second, to be able to validate and compare ISE solutions
focusing on the same SE task.

For practitioners, this study shows how knowledge is reused
by ISE solutions and can be an inspiration for them to use
tools and participate in research that helps to make explicit
knowledge available. As a consequence, better ISE tools can
be developed that can, potentially, make them more efficient.

V. THREATS TO VALIDITY

This section discusses this study’s threats to validity follow-
ing the classification proposed by Wohlin et al. [52]: construct,
internal, conclusion, and external validity.

• Construct validity: we analyzed the studies following a
thematic analysis approach, in which multiple researchers
participated to avoid bias. Despite this, it is possible that
the resulting thematic network (Figure 1) and extracted
data (Figure 2) are not representative of the are due to
subjective bias.

• Internal validity: to assure credibility in our find-
ings, multiple researchers checked the extracted coding,
themes, and the data presented in Figure 2.

• Conclusion validity: since we classified the study to
identify patterns using the developed thematic network,
there is the risk that, since there is a threat to the
construct validity of the thematic network, it influenced
the extracted data and, consequently, our conclusions
regarding the relationship between concepts.

• External validity: Moreover, since the analyzed studies
focus on supporting decision-making, they do not repre-
sent all types of ISE solutions. Therefore, the constructed
thematic network might not be representative of ISE
solutions with higher levels of automation. Despite this,
we believe that including ISE solutions with higher levels
of automation might identify more basic terms for high
granular, but would not have impact middle-order themes,
since they follow from classic KM concepts.

VI. CONCLUSION

In this study, we explored patterns in developing ISE solu-
tions, focusing on knowledge reuse by analyzing 42 papers. As
a result, we developed a thematic network that relates the main
concepts in this topic. Further, we identified that researchers
use external and internal knowledge sources, and mostly rely
on structured data to develop ISE solutions. Despite this,
we showed alternatives, such as eliciting data from humans
and literature to identify metrics and build knowledge-based
systems (e.g., expert systems) when structured data is not
readily available to be used for solving a SE task.

The main limitation of the study is only having evaluated
ISE solutions that focus on supporting decision-making. Fur-
ther, the study also identifies several opportunities for future
work, including refining the thematic network by analyzing
ISE solutions with higher levels of automation and defining
guidelines for researchers to build ISE solutions, especially,
giving instructions on the early-stages process of an ISE
solution conceptualization.

REFERENCES

[1] M. Abouelela and L. Benedicenti. Bayesian network based xp process
modelling. International Journal of Software Engineering and Applica-
tions, 1(3):1–15, 2010.

[2] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. A survey of
machine learning for big code and naturalness. ACM Computing Surveys
(CSUR), 51(4):81, 2018.

[3] J. Attride-Stirling. Thematic networks: an analytic tool for qualitative
research. Qualitative research, 1(3):385–405, 2001.

[4] J. M. Chaves-González, M. A. Pérez-Toledano, and A. Navasa. Software
requirement optimization using a multiobjective swarm intelligence evo-
lutionary algorithm. Knowledge-Based Systems, 83(Supplement C):105
– 115, 2015.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. Software Engineering, IEEE Transactions on, 20(6):476–493,
1994.

105

[6] R. Colomo-Palacios, I. González-Carrasco, J. L. López-Cuadrado, and
Á. Garcı́a-Crespo. Resyster: A hybrid recommender system for scrum
team roles based on fuzzy and rough sets. International Journal of
Applied Mathematics and Computer Science, 22(4):801–816, 2012.

[7] A. A. M. Costa, F. B. A. Ramos, M. Perkusich, A. S. Freire, H. O.
Almeida, and A. Perkusich. A search-based software engineering
approach to support multiple team formation for scrum projects. In
SEKE, pages 474–473, 2018.

[8] D. S. Cruzes and T. Dyba. Recommended steps for thematic synthesis
in software engineering. In 2011 international symposium on empirical
software engineering and measurement, pages 275–284. IEEE, 2011.

[9] H. K. Dam. Artificial intelligence for software engineering. XRDS:
Crossroads, The ACM Magazine for Students, 25(3):34–37, 2019.

[10] H. K. Dam, T. Tran, J. Grundy, A. Ghose, and Y. Kamei. Towards
effective ai-powered agile project management. In 2019 IEEE/ACM
41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), pages 41–44. IEEE, 2019.

[11] T. Dybå and T. Dingsøyr. Empirical studies of agile software devel-
opment: A systematic review. Information and software technology,
50(9-10):833–859, 2008.

[12] R. Feldt, F. G. de Oliveira Neto, and R. Torkar. Ways of applying
artificial intelligence in software engineering. In 2018 IEEE/ACM 6th
International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE), pages 35–41. IEEE, 2018.

[13] G. R. Finnie and G. E. Wittig. Ai tools for software development effort
estimation. In Proceedings 1996 International Conference Software
Engineering: Education and Practice, pages 346–353. IEEE, 1996.

[14] A. Freire, M. Perkusich, R. Saraiva, H. Almeida, and A. Perkusich. A
bayesian networks-based approach to assess and improve the teamwork
quality of agile teams. Information and Software Technology, 100:119–
132, 2018.

[15] M. Gasparic and A. Janes. What recommendation systems for software
engineering recommend: A systematic literature review. Journal of
Systems and Software, 113(Supplement C):101 – 113, 2016.

[16] G. Gousios and D. Spinellis. Mining software engineering data from
github. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pages 501–502. IEEE, 2017.

[17] M. Halkidi, D. Spinellis, G. Tsatsaronis, and M. Vazirgiannis. Data
mining in software engineering. Intelligent Data Analysis, 15(3):413–
441, 2011.

[18] M. Harman. The role of artificial intelligence in software engineering.
In 2012 First International Workshop on RAISE, pages 1–6. IEEE, 2012.

[19] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software
engineering: Trends, techniques and applications. ACM Comput. Surv.,
45(1):11:1–11:61, Dec. 2012.

[20] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software
engineering: Trends, techniques and applications. ACM Computing
Surveys (CSUR), 45(1):11, 2012.

[21] P. Hearty, N. Fenton, D. Marquez, and M. Neil. Predicting project
velocity in xp using a learning dynamic bayesian network model. IEEE
Transactions on Software Engineering, 35(1):124–137, Jan 2009.

[22] H. Hourani, A. Hammad, and M. Lafi. The impact of artificial
intelligence on software testing. In 2019 IEEE JEEIT. IEEE, 2019.

[23] S.-J. Huang, N.-H. Chiu, and L.-W. Chen. Integration of the grey
relational analysis with genetic algorithm for software effort estimation.
European Journal of Operational Research, 188(3):898–909, 2008.

[24] H. Jin, Y. Wang, N.-W. Chen, Z.-J. Gou, and S. Wang. Artificial neural
network for automatic test oracles generation. In International Conf. on
Computer Science and Software Engineering. IEEE, 2008.

[25] C. Lebeuf, A. Zagalsky, M. Foucault, and M.-A. Storey. Defining and
classifying software bots: a faceted taxonomy. In Proceedings of the 1st
Intern. Workshop on Bots in Software Engineering. IEEE Press, 2019.

[26] J. Lin, M. S. Fox, and T. Bilgic. A requirement ontology for engineering
design. Concurrent Engineering, 4(3):279–291, 1996.

[27] M. Lowry and M. R. Lowry. Knowledge-based software engineering. In
Handbook of Artificial Intelligence, volume IV, pages 241–322. Addison-
Wesely, 1989.

[28] G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper.
Improving agile requirements: the quality user story framework and tool.
Requirements Engineering, 21(3):383–403, 2016.

[29] D. J. Mala, V. Mohan, and M. Kamalapriya. Automated software
test optimisation framework–an artificial bee colony optimisation-based
approach. IET software, 4(5):334–348, 2010.

[30] L. S. Marcolino, A. X. Jiang, and M. Tambe. Multi-agent team
formation: diversity beats strength? In Twenty-Third International Joint
Conference on Artificial Intelligence, 2013.

[31] A. M. Memon, M. E. Pollack, and M. L. Soffa. Hierarchical gui test
case generation using automated planning. IEEE TSE, 2001.

[32] E. Mendes. Practitioner’s knowledge representation: a pathway to
improve software effort estimation. Springer Science & Business, 2014.

[33] T. Menzies. Practical machine learning for software engineering and
knowledge engineering. In Handbook of Software Engineering and
Knowledge Engineering: Volume I: Fundamentals, pages 837–862.
World Scientific, 2001.

[34] T. Menzies and T. Zimmermann. Software analytics: so what? IEEE
Software, 30(4):31–37, 2013.

[35] A. T. Misirli and A. B. Bener. Bayesian networks for evidence-
based decision-making in software engineering. IEEE Transactions on
Software Engineering, 40(6):533–554, June 2014.

[36] R. Moser, W. Pedrycz, and G. Succi. Incremental effort prediction
models in agile development using radial basis functions. In SEKE,
pages 519–522. Citeseer, 2007.

[37] J. Mostow. Foreword what is ai? and what does it have to do with
software engineering? IEEE Transactions on Software Engineering,
(11):1253–1256, 1985.

[38] J. Mylopoulos, L. Chung, and E. Yu. From object-oriented to goal-
oriented requirements analysis. Communications of the ACM, 1999.

[39] M. Neil, N. Fenton, and L. Nielson. Building large-scale bayesian
networks. The Knowledge Engineering Review, 15(3):257–284, 2000.

[40] E. E. Odzaly1 and D. S. Des Greer1. Lightweight risk management in
agile projects. 2014.

[41] I. Ozkaya. The golden age of software engineering [from the editor].
IEEE Software, (1):4–10, 2019.

[42] S. Parnami, K. Sharma, and S. V. Chande. A survey on generation of test
cases and test data using artificial intelligence techniques. International
Journal of Advances in Computer Networks and its Security, 2(1), 2012.

[43] M. Perkusich, H. O. de Almeida, and A. Perkusich. A model to detect
problems on scrum-based software development projects. In Proceedings
of the 28th Annual ACM Symposium on Applied Computing, pages 1037–
1042, 2013.

[44] M. Perkusich, L. C. e Silva, A. Costa, F. Ramos, R. Saraiva, A. Freire,
E. Dilorenzo, E. Dantas, D. Santos, K. Gorgônio, et al. Intelligent
software engineering in the context of agile software development:
A systematic literature review. Information and Software Technology,
119:106241, 2020.

[45] M. Perkusich, G. Soares, H. Almeida, and A. Perkusich. A procedure
to detect problems of processes in software development projects using
bayesian networks. Expert Systems with Applications, 42(1):437 – 450,
2015.

[46] F. B. A. Ramos, A. A. M. Costa, M. Perkusich, H. O. Almeida, and
A. Perkusich. A non-functional requirements recommendation system
for scrum-based projects. In SEKE, pages 149–148, 2018.

[47] H. B. Reubenstein and R. C. Waters. The requirements apprentice:
Automated assistance for requirements acquisition. IEEE TSE, 1991.

[48] K. Srinivasan and D. Fisher. Machine learning approaches to estimating
software development effort. IEEE TSE, 21(2):126–137, 1995.

[49] A. Turani. Applying case based reasoning in agile software development.
Journal of Theoretical and Applied Information Technology, 78(1):120,
2015.

[50] D. P. Wangoo. Artificial intelligence techniques in software engineering
for automated software reuse and design. In 4th ICCCA. IEEE, 2018.

[51] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang. Systematic literature
review of machine learning based software development effort estimation
models. Information and Software Technology, 54(1):41–59, 2012.

[52] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in software engineering. Springer Science
& Business Media, 2012.

[53] T. Xie. Intelligent software engineering: Synergy between ai and
software engineering. In Intern. Symposium on DSE. Springer, 2018.

[54] T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data mining for software
engineering. Computer, 42(8):55–62, 2009.

[55] D. Zhang and J. J. Tsai. Machine learning and software engineering.
Software Quality Journal, 11(2):87–119, Jun 2003.

[56] L. Zhu, A. Aurum, I. Gorton, and R. Jeffery. Tradeoff and sensitivity
analysis in software architecture evaluation using analytic hierarchy
process. Software Quality Journal, 13(4):357–375, 2005.

106

DOI reference number: 10.18293/SEKE2020-026 ©2020 IEEE

An Information Fusion based

Evolution Requirements Acquisition Method

for Mobile Applications

Yuanbang Li1, Rong Peng1*, Bangchao Wang1, Dong Sun2

School of Computer Science, Wuhan University, Wuhan, China

IT Management Department, Haitong Securities Co.Ltd, Shanghai, China

 (lybang,rongpeng,wangbc)@whu.edu.cn, 13362999@qq.com

Abstract—User feedbacks and market changes are both

important sources of requirements evolution. Accurately

capturing the evolutionary demands from user feedbacks and

market changes are extremely important for providers of

mobile apps to adjust evolutionary strategies of products.

However, many challenges, such as divergent demands and

conflicting demands, hinder the process of evolutionary

requirements acquisition from multiple sources. Thus, eliciting

and merging information from multiple sources is vital to

make intelligent evolution decisions. In this paper, an evolution

requirements acquisition method based on information fusion

is proposed, which comprehensively utilizes its functionality

statements, its online comments and its similar apps’ online

comments to refine evolutionary requirements. By evolution

point ranking and selection, it provides a feasible and

reasonable way to recommend the evolutionary requirements

for the next release of the mobile application.

Keywords information fusion; evolutionary requirements;

kernel concerns; mobile app; user comments.

I. INTRODUCTION

Since the launch of Apple App Store and Google Play in
2008, mobile applications have penetrated into multiple
aspects of people's daily life such as communication, games,
reading, shopping, social networking, scheduling, working
and so on [1].

Users are increasingly interested in downloading and
installing mobile applications (apps) to obtain convenient
services as more and more apps are published in app stores.
Meanwhile mobile apps are facing fierce market competition.
On the one hand, the proliferation of homogenous apps
brings great challenges to the sustainable development of
mobile apps [2]; on the other hand, user expectations are
becoming more and higher with the improvement of mobile
apps [3]. If mobile apps fail to respond demand changes
timely, they will be replaced by other apps soon. Therefore,
continuously paying attention to user feedbacks, market
changes and main competitors are vital for mobile apps to
stand out in fierce competition.

However, tracing, integrating and prioritizing the
demands elicited from user feedbacks, market changes and
main competitors are always huge challenges for providers
due to the cost and time constraints [4]. Hence, in this paper,
an information fusion based evolution requirement
acquisition method for mobile apps is proposed, which not
only provides a merge algorithm to synthesize the
information of its own feedback and similar apps’ feedback,
but also proposes a ranking method to evaluate the
importance of the evolutionary points, which provides a

feasible way to determine the priorities of the evolution
requirements of certain mobile application.

In this paper, Section 2 introduces the relevant work.
Section 3 to 5 introduces the whole method. Section 6
demonstrates the effectiveness of the method through a case
study. Section 7 summarize the paper.

II. RELATED WORKS

There are two main ways for mobile applications to
acquire evolutionary requirements: monitoring based
evolutionary requirements acquisition and application market
analyses based evolutionary requirements acquisition.

A. Monitoring Based Evolutionary Requirements

Acquisition

Monitor the changes of user behaviors and system
performance indicators, find problems or bottlenecks in time
are important for mobile apps to analyze evolutionary
requirements. Therefore, deploying various performance
monitoring tools to detect performance indicators such as
response time, resource utilization and data transmission rate
in real-time has become important means to guide system
improvement [6]. For example, Instagram deploys Munin to
fulfil network resource monitoring, Dogslow to fulfil process
monitoring, and Redis to fulfil database query traffic
monitoring [7]. However, monitoring-based evolutionary
requirements acquisition is prone to discovering system
anomalies and performance bottlenecks, but not suitable for
capturing evolutionary requirements arising from user
experiences or expectation changes.

B. Application Market Analyses Based Evolutionary

Requirements Acquisition

Basic information, technical information and market
information of a mobile app are needed when it is submitted
to app market to facilitate user retrieval. The basic
information of the application mainly includes the developers,
size, function description and characteristics description. The
technical information includes function interfaces, class
libraries and resource manifest files, which can be obtained
by reverse analysis. The market information consists of the
price, category, download records and reviews of the app.

The methods in this category can be divided into three
kinds: feature analysis, version engineering and commentary
analysis.

Feature analysis methods mainly focus on extracting
applied features from all the available information sources
include app descriptions and resource listing files, internal
functions, permission and comments by NLP, topic
modeling , clustering and other technologies[8-10]. The

107

methods have been widely used in app recommendation and
version evolution.

Version engineering methods focus on version
information and release strategies. The recommendation of
app and the formulation of version strategy are realized
based on the analysis of the relationship between version
external function interfaces, download volumes, comments
and sales volumes [11-13].

Comment analysis methods focuses on extracting useful
information from online comments of apps. These methods
categorize and summarize the comments with other
information such as version and download to understand the
concerns and complaints of users by using the technology of
classification, topic extraction, affective analysis, association
mining and regression analysis [14-16].

III. ACQUISITION PROCESS OF EVOLUTIONAL REQUIREMENTS

Evolutional requirements can be extracted from user
comments. However, effective comments from which
evolutionary requirements can be extracted are few because
they were written spontaneously by ordinary users with the

main purpose of describing their own feelings. Therefore, it
is not enough. The acquisition should be broaden to gather
the useful information from the comments of its similar apps,
namely the apps with similar functions and the apps from
competitors or potential competitors in the market.

As shown in Fig.1, a mobile application evolutionary
requirements acquisition process is designed to integrate user
requirements from multiple sources, which include the
application information, its user comments and the user
comments of its similar apps.

Firstly, Kernel Concerns (KCs) are automated extracted
from its own comments and its similar apps’ comments; and
then, they are used to generate a specific Scenario Model
Instance (SMI) for each comment; after that, Aggregated
Scenario Models (ASMs) are generated and merged
according to the similarity of the kernel concerns of SIMs
and ASMs; then, an association establishment algorithm is
utilized to establish the associations between the ASMs and
the Functional Structure Tree (FST) created according to the
application information; finally, a ranking strategy is
employed to prioritize the potential evolutionary points.

Fig. 1. Acquisition process of evolutional requirements

IV. MODEL DEFINITION

A. Definition of Functional Structure Tree

The app information registered in App Store is
represented in Functional Structure Tree (FST), which is
defined as follows:

Definition 1 Functional Structure Tree is modeled as T=
(N, R), where N = {N0, N1... Nn} denotes the set of function
nodes in T (n >=0) and N0 is the root node and represent the
whole system; each functional node Ni contains two
attributes: function name and function description, denoted
as Ni:=<Name, Description>; R={<Ni, Nj>, i ≠ j} represents
the set of relationships among function nodes in T, and <Ni,
Nj> indicates that Nj is a sub-function of Ni.

FST construction process is as following: firstly,
construct the app’s FST according to the basic and technical
information provided to App Stores; after that, supplement
the FST with the functions of its similar apps abiding by the
following rules:

Traverse the function description of each similar app: for
each function fi in the description:

⚫ If a matching node can be found in FST, record it as
an alias if the function name is inconsistency with
the node’s name;

⚫ Otherwise, if fi is a sub-function of the function fj
which has a matching node Nj is FST, add a new

node Ni for fi and establish a relation < Nj, Ni >;
otherwise, add a new node Ni for fi and establish a
relation < N0, Ni >.

An example is shown as Fig. 4.

B. Definition of Scenario Model Instance

Definition 2 Scenario Model Instance (SMI) describes in
which scenario the demand is needed or the defect happens.
Its core element is KernelConcern, which has the attributes
of HasTriggers, HasApperences, HasTerminal, HasOS and
HasAppV [17].

For space limit, we only shown an example of SMI for
the comment C1 “Quit without prompt after open the
positioning function” in Fig.2. The technical detail of how to
construct SMI can be found in [17].

Fig. 2. SMI for the Comment C1

Create SMI for each

comments

Establish and fix

the associations

SMIs

Create ASMs Construct FST

App

information

Merged ASMs FST

Ranking of potential

evolution points

App

comments

Similar Apps

comments

KCs automated

extraction

KCs
Similar Apps

information

Evolutionary

requirements

FST with

ASMs

App specific

ASMs

 Process defined in this paper

 Process defined in [17]

Artifacts used/generated by processes

Merge ASMs

《KernelConcerns》

KernelConcern= Quit

HasTriggers

<<HasApperence>>

Quit automatically

HasApperences

<<Trigger>>

Open the positioning

function

HasTerminal

HasOS

HasAppV 3.2

Apple iPhone XR

iOS

108

C. Definition of Aggregated Scenario Model

Definition 3 Aggregated Scenario Model (ASM) is an
aggregated model of multiple scenario model instances with
the same kernel concerns.

 The algorithm of ASM construction are also elaborated
in [17]. Therefore, we only show an example of ASM with
the kernel concern “Quit” in Fig.3. The model is integrated
by 15 SMIs whose kernel concerns are all “Quit”. And the
number in each rectangle represents the frequency of the
attribute appears. It is worth mentioning that the number of
trigger is not 15 because some of the comments do not
specify their trigger events.

Fig. 3. Aggregated scenario model

V. RANKING AND SELECTION OF POTENTIAL EVOLUTIONARY

POINTS

Ranking and selection of potential evolution points
should be related not only to the importance of a function or
the severity of a defect but also to the degree of the user
attention to them. Therefore, the following evolution points

The step of ranking for defect feedback evolution point
are as follows:

Step1: Construct FST for the app according to the
process described in section 4.1.

Step2: Construct SMIs and ASMs for the app and its
similar apps according to [17].

Step3: Merge the ASMs of all apps.
In this step, the ASMs of different apps are merged

according to the similarity of their kernel concerns, which is
judged by the requirements analyst. Once the analyst decides
which two ASMs can be merged, the merge algorithm can be
carried out automatically.

Algorithm 1: Merge algorithm of ASMs

Input: ASM M1, M2; M1, M2 are the ASMs to be merged

Output: ASM M

1: Initialize ASM M = M1

2: Initialize the counter of the kernel concern of M:

M.times += M2.times

3: for each a∈AttributesSet do

4: for each v∈M2.a.V do

5: if (v∈M.a.V) then

6: M.a.v.times += M2.s.v.times

7: else

8: M.a.V.add(v)

9: M.a.v.times= M2.s.v.times

10: end if

11: end for

12: end for

13: return M

The input of the algorithm is two ASMs, M1 and M2, and
the output is the merged M. M is initialize to M1 (Line 1),
and the counter of the KernelConcern of M is set to the sum

of the counters of the KernelConcern of M1 and M2 (Line 2).
For each attribute a in AttributesSet (Line 3), traverse each
value v in M2.s.V(Line 4): if v already exists in M.s.V, sum
M.s.v.times and M2.s.v.times (Line 5-6); otherwise, add v to
M.s.V, and assign M.s.v.times to M2.s.v.times (Line 7-9).

For example, as shown in Fig. 3,{Triggers, Appearances,
Terminals, OS, AppVersions} are the AttributesSet of the
ASMs; and the value set of the attribute “Terminals” is
{“Apple iPhone”, “HuaWei”}.

Step4: Establish the association between the ASMs and
the FST according to the following algorithm:

Algorithm 2: Association establishment algorithm between

ASMs and FST

Input: ASMSet MS, FST T;

Output: RelationSet RS

1: RS =NULL // Initialize the relation set RS to NULL

2: for each asm∈MS do

3: for each lnode∈T.leafNodeSet do

4: if (asm.KernelConcern.IsAssociatedWith(lnode))

5: then RS.add(asm.KernelConcern, lnode)

6: end if

7: end for

8: end for

9: return RS

Algorithm 2 aims to establish the association between
ASMs and FST. For each asm in the ASM set MS, traverse
each leaf node lnode of FST T (Line 2-3): if the kernel
concern of asm is associated with lnode which is determined
by analyst, add a relation between them to the relation set RS
(Line 4-5). Finally, the relation set RS is returned (Line 9).

Step5: Ranking of the ASMs
The importance of an ASMi G(ASMi) is measured by the

product of the importance of the model’s kernel concern
GA(ASMi), the importance of the function associated with
the model Gf(ASMi) and the user attention to the model
Gu(ASMi), as shown in formula 1.

G(ASMi) = GA(ASMi) ∙ GF(ASMi) ∙ GU(ASMi) (1)
GA(ASMi) is determined by requirement engineers and

can be divided into three levels{0.5,1,2}, which
represent{not serious, normal, serious}. GF(ASMi) is also
divided into three levels{0.5,1,2}, which represents
{unimportant, normal, important}. The value of GF(ASMi)
that is not associated with any functional of the ASM is set to
1 by default. Of course, requirements engineers can also set
other levels in the specific implementation process.

GU(ASMi) can also be divided into three levels{0.5,1,2}.
It is calculated by the number of times the user pays attention
to the concern, as shown in formulas 2- 4.

GU(ASMi)
= {

0.5 𝑖𝑓(Ti < minp)

1 𝑖𝑓(Ti ≥ minp&&Ti ≤ maxp) (2)

2 𝑖𝑓(Ti > maxp)

minp = min + (max − min)/3 (3)

maxp = min + 2 × (max − min)/3 (4)
Where Ti indicates the number of times ASMi is

concerned; max and min indicates the maximum and
minimum number of times a ASM is concerned, respectively;
minp and maxp divide the range between min and max into
three ranges on average.

Based on the score calculated of G(ASMi), the ASMs
with TOP n scores are recommended as the evolution
requirement points.

《KernelConcerns》

KernelConcern= Quit

Triggers

quit

Apperences

15

15

Navigation click 1

Terminals

OS

AppVersions

3.2 4

4.0 3

4.0.4 4

4.5 3

4.6 1

Apple iPhone 6

HuaWei 9

Android 9

iOS 6

109

VI. CASE STUDY

Take Baidu Map with the version of 4.6 as the sample
app, and take Amap with the version of 5.0 as its similar app.
840 user comments of Baidu Map and 960 user comments of
Amap are crawled as feedbacks.

The evolution points are selected according to the process
described in section V, which is specified as follows.

Step 1: The FST of Baidu Map was built as Fig.4.

Fig. 4. FST of Baidu Maps

Step 2: Seven feedback ASMs are constructed through
the analysis of the comments, namely “deviation”,
“inaccurate”, “slow”, “auto-exit, “flash-screen”, “down-time”
and “waste-of-slow”.

Step 3: "Inaccurate" and "deviation" are merged as they
indicate the same meaning. Finally, six ASMs are retained.

Step 4: The associations between these ASMs and the
FST are established using algorithm 2. The associations
between ASMs and function nodes of FST are built as
follow:<deviation, location>, <slow, location>, <auto-exit,
navigation>, <flash-screen. start>. No functions are
associated to the ASM with concern “down-time” and
“waste-of-flow”.

Step 5: Set the GA, GF value of each ASM under the
guidance of the analyst and calculate GU according to the
formula 2-4 based on the times of the feedbacks. Finally,
calculate the importance of each ASM by formula 1 and sort
them in descending order. The result is shown in Table 1.

Table 1. The result of the ranking of evolution points
N F R T GU GA GF G(ASMi)

1 Deviation Location 720 2 2 2 8

2 Slow Location 490 1 1 2 2

3 Auto-exit
Navigatio

n
150 0.5 2 2 2

4
Flash-

screen
Start 190 0.5 2 2 2

5 Down-time / 90 0.5 2 1 1

6
Network

flow waste
/ 160 0.5 1 1 0.5

Note: F indicates the kernel concern of the ASM; R indicates
the function associate with the ASM; T indicates the feedback times
of the kernel concern of the ASM; GU, GA and GF indicate
GU(ASMi), GA(ASMi) and GF(ASMi), respectively.

As shown in the table, the most important evolutionary
requirement is to settle the problem of “deviation” in the
“location” function; and the least important one is to settle
the problem of “Network flow waste”.

VII. SUMMARY

In this paper, a multi-source information fusion based
evolution requirements acquisition method for mobile apps is

proposed. It synthesizes the information provided to App
Stores, the feedbacks of the app and its similar apps to
acquire evolutionary requirements. By ranking the ASMs
according to their importance and user attention, most urgent
evolutionary requirements can be found. The case study on
Baidu Map show that the ranking is similar to its version
history, which verifies the effectiveness of the method.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Plan of China (No. 2017YFB0503702).

REFERENCES

[1] William Martin, Federica Sarro, Yue Jia, et al. 2016. A Survey of App
Store Analysis for Software Engineering[J]. Research Note of UCL
Department of Computer:1-56.

[2] Cuiyun Gao, Hui Xu, Junjie Hu, et al. 2015. AR-Tracker: Track the
Dynamics of Mobile Apps via User Review Mining[C]//Proceedings
of the Service-Oriented System Engineering (SOSE), 2015 IEEE
Symposium on. IEEE, 284-290.

[3] Claudia Iacob, Rachel Harrison. 2013. Retrieving and analyzing mobile
apps feature requests from online reviews[C]//Proceedings of the 10th
Working Conference on Mining Software Repositories (MSR).41-44.

[4] Lawrence Bernstein, C. M. Yuhas. 2014. Software Requirements[M].
Apress, 73-106.

[5] Xie zhongwen, li tong, dai fei, etc. 2011. A paraconsistent meta-model
of requirements for software evolution[J]. journal of Jiangsu
university(natural science edition), 32(5):562-568.
Doi:10.3969/j.issn.1671-7775.2011.05.013.

[6] Liyin Tang, Vinod Venkataraman, Charles Thayer. 2012. Facebook’s
Large Scale Monitoring System Built on HBase[C]//Proceedings of
the Strata Conference.

[7] Dong Sun, Rong Peng, Wei-Tek Tsai. 2014. Understanding
Requirements Driven Architecture Evolution in Social Networking
SaaS: An Industrial Case Study[C]//Proceedings of the Service
Oriented System Engineering (SOSE), 2014 IEEE 8th International
Symposium on. IEEE, 230-236.

[8] Borja Sanz, Igor Santos, Carlos Laorden, et al. 2012. On the Automatic
Categorisation of Android Applications[C]//Proceedings of the 9th
IEEE Consumer Communications and Networking Conference.149-
153.

[9] Jieun Kim, Yongtae Park, Chulhyun Kim, et al. 2014. Mobile
application service networks: Apple’s App Store[J]. Service Business,
8(1):1-27.

[10] Lavid Ben Lulu David, Tsvi Kuflik. 2013.Functionality-based
clustering using short textual description: helping users to find apps
installed on their mobile device[C]//Proceedings of the International
Conference on Intelligent User Interfaces.N/A.

[11] Diya Datta, Sangaralingam Kajanan. 2013. Do App Launch Times
Impact their Subsequent Commercial Success? An Analytical
Approach[C]//Proceedings of the International Conference on Cloud
Computing and Big Data.205-210.

[12] Israel J. Mojica Ruiz, Meiyappan Nagappan, Bram Adams, et al. 2016.
Analyzing Ad Library Updates in Android Apps[J]. IEEE Software,
33(2):74-80.

[13] Gunwoong Lee, T. S. Raghu. 2014. Determinants of Mobile Apps'
Success: Evidence from the App Store Market[J]. Journal of
Management Information Systems, 31(2):133-170.

[14] Ning Chen, Jialiu Lin, Steven C. H. Hoi, et al. 2014. AR-miner:
mining informative reviews for developers from mobile app
marketplace[C]//Proceedings of the 36th International Conference on
Software Engineering.767-778.

[15] W. Maalej, H. Nabil. 2015. Bug report, feature request, or simply
praise? On automatically classifying app reviews[C]//Proceedings of
the Requirements Engineering Conference.116-125.

[16] Guzman E, Aly O,Bruegge B. Retrieving diverse opinions from app
reviews//Empirical Software Engineering and Measurement (ESEM),
2015 ACM/IEEE International Symposium on. IEEE, 2015: 1-10.

[17] Sun D, Peng R. A Scenario Model Aggregation Approach for Mobile
App Requirements Evolution Based on User
Comments[M]//Requirements Engineering in the Big Data Era.
Springer Berlin Heidelberg, 2015: 75-91.

110

Detecting and Modeling Method-level Hotspots in
Architecture Design Flaws

Ran Mo, Shaozhi Wei, Ting Hu, Zengyang Li
School of Computer Science & Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning

Central China Normal University
moran@mail.ccnu.edu.cn, wsz@mails.ccnu.edu.cn, 826473959@qq.com, zengyangli@mail.ccnu.edu.cn

Abstract—In large-scale software systems, the majority of
change-prone files are usually architecturally connected, and
their architectural connections often exhibit design flaws, which
propagate change-proneness among files and increase mainte-
nance costs. Complementary to the identification and definition
of the files involved architecture design flaws, the automatic
detection at the method level is important for developers to
understand fine-grained contributors to the architecture flaws
that have incurred high maintenance costs. In this paper, we
propose an approach to identify method-level hotspots. Each
hotspot contains a group of evolutionarily connected methods or
attributes that participate in architecture design flaws and con-
tinuously accumulate maintenance difficulties. Our investigations
on six large-scale projects show that the attributes or methods
captured in method-level hotspots are more change-prone than
the others. The results also show that the growth trend of the
maintenance effort spent on each method-level hotspot could be
modeled and monitored by our approach, which sheds light in
the decision of design refactoring.

Index Terms—Software Architecture, Software Maintenance,
Fine-grained Code Change

I. INTRODUCTION

Software architecture has significant impacts on the main-
tenance of a software project. Numerous studies have been
proposed to investigate the software quality by examining
software architecture. For example, prior studies of Xiao et
al. [18] and Kazman et al. [13] have shown that the majority
of change-prone files are architecturally connected, and design
flaws in these connections could propagate change-proneness
among files. Consequently, it is difficult to eliminate files’
change-proneness without resolving the architecture design
flaws among them. The automatic detection of architecture
design problems has also been studied. Xiao et al. [19] pre-
sented four types of architecture debts which have significant
and long-term impact maintenance costs over time. Mo et
al. [14, 15] formally defined and automatically detected a suit
of architecture design flaws, which have a significant impact
on files’ change-proneness.

However, all of these studies are conducted at the file
level, none of them investigated method-level participants of
architecture design flaws. After identifying the files involved
in architecture design flaws, it is still worth for developers
to explore which attributes and methods are responsible for

DOI reference number: 10.18293/SEKE2020-051

the change-proneness of these involved files, especially, for
the files with hundreds of attributes or methods. This could
raise questions for developers or architects: Which attributes
or methods of the flawed files need to be fixed for maintenance
and refactoring? Can these ‘problematic attributes or methods
be detected automatically? How do the involved attributes or
methods evolve over time?

In this paper, we formally define the concept of Method-
level Hotspot: a group of evolutionarily coupled attributes or
methods that participate in architecture design flaws and con-
tinuously accumulate maintenance costs. To detect a method-
level hotspot, 1) our approach first extracts the attributes or
methods from the files involved in an instance of architecture
flaws that identified by the techniques in [14]; 2) based on
these extracted attributes or methods, and the fine-grained
history output by ChangeDistiller in [3], our approach will
automatically identify a method-level hotspot in a project.
Given a method-level hotspot, our approach will automatically
model its evolution trend in terms of maintenance effort spent
on its involved attributes and methods. We use three typical
regression models, linear, exponential and logarithmic models,
to model each hotspot’ evolution to monitor whether the
hostspot has been accumulating maintenance costs steadily,
dramatically or slowly.

We have validated the effectiveness of our approach by
using six large-scale projects. According to the evaluation
results, we have found that: 1) attributes or methods involved
in method-level hotspots are more change-prone than the other
attributes or methods; 2) most of the detected method-level
hotspots could be modeled by one of the three typical regres-
sion models, the modeling results are useful for developers to
understand the evolution trend for each hotspot.

The rest of this paper is organized as follows: Section II
presents the background concepts. Section III describes the
definition of the method-level hotspots. Section IV presents
our evaluation methods and results. Section V discusses.
Section VI shows related work and Section VII concludes.

II. BACKGROUND

We now introduce the basic concepts and techniques
behind our work.

111

A. Architecture Design Flaws

In [14], the authors defined and validated a suite of hotspot
patterns, the recurring architectural design flaws in software
systems. They presented that files involved in the detected
design flaws are really change-prone. Using the techniques
in [14], we identify four file-level architecture design flaws:
1) Unstable Interface – a highly influential file have a large
number of dependents and changes frequently with many of its
dependents in the revision history; 2) Modularity Violation –
the structurally independent files frequently change together
as recorded in the project’s revision history; 3) Unhealthy
Inheritance – a super class depends on its sub classes or a
client class depends on both a super-class and its sub classes;
4) Clique – a group of files forming a strongly connected
component are tightly coupled with cyclic dependency. In
general, each instance of the architecture design flaws capture
a group of files, and these detected files have caused high
maintenance costs. From each group of flawed files, we could
extract the attributes and methods that participate in each
architecture design flaw.

B. Method-level Changes

Revision history records maintenance activities of a project.
By examining the change history of attribute and methods, we
could get the data of evolutionary relations among attributes
or methods and investigate how they evolved. Following the
techniques in [3], we extract fine-grained changes from
a project’s revision. Furthermore, we categorize these fine-
grained changes into eight types of method-level change
operations on attributes or methods:

• ATTRIBUTE ADRT CHANGE: Adding, Deleting, Re-
naming an attribute or changing the type of an attribute.

• ATTRIBUTE MODIFIER CHANGE: Changing the mod-
ifier of an attribute, such as changing the accessibility of
an attribute or finalizing an attribute, etc.

• METHOD ADR CHANGE: Adding, Deleting or Renam-
ing a method.

• METHOD MODIFIER CHANGE: Change the modifier
of a method, such as changing the accessibility of a
method or finalizing a method, etc.

• METHOD PARAMETER CHANGE: Adding, Deleting,
Rename parameters, or changing the type or ordering of
parameters.

• METHOD BODY CHANGE: Change the body of a
method.

• METHOD RETURN CHANGE: Adding, Deleting or
Changing the type of a method return.

• DOCUMENT CHANGE: Adding, Deleting or Updating
the documentation of an attribute or a method.

Using the suite of method-level change operations, we capture
how an attribute or method was changed, and by how many
times.

III. IDENTIFICATION AND MODELING

To investigate method-level hotspots, our approach proceeds
as follows: 1) identifying method-level hotspots; 2) modeling

the evolution of identified method-level hotspots; 3) visualiz-
ing the identified method-level hotspots.

A. Method-level Hotspot Definition

Using the concepts and technique in [14], a set of file
groups flawed by architecture flaws will be detected from a
project. Although the attributes or methods in each file group
participate in an architecture flaw, not all of them contribute to
incurring maintenance costs into the group. For each file group
(an instance of architecture flaw [14]), we aim to identifying
their attributes or methods that propagate changes among the
group and cause maintenance costs. Therefore, we define a
Method-level Hotspot to be a group of evolutionarily coupled
attributes or methods that participate in architecture design
flaws and continuously accumulate maintenance difficulties.
The rationale is, first, if an attribute or method could always
be changed independently, then we consider this attribute or
method is not coupled with others in the group, changes
to it won’t influence the others; second, a hotspot should
continuously cause maintenance costs in the system. We don’t
need to worry about the methods or attributes that are inactive
with respect to changes, because they won’t cause maintenance
costs in the future.

Based on the definition, we formally calculate a method-
level hotspot as a sequence of tuples :

M − hotspot = (〈mSet1,mSetCost1〉, 〈mSet2,mSetCost2〉
, ..., 〈mSetm,mSetCostm〉)

(1)
where m is the number of history periods the hotspot has been
evolved through.

B. Method-level Hotspot Identification

Given an instance of architecture flaw, let F to be the set of
involved files, and M to be the universal set of all attributes
and method within these files. To identify the group of
evolutionarily coupled attribute or methods in M, we checked
the co-changes between the attributes or methods in M by
mining a particular period of revision history. If an attribute
or method hasn’t changed together with any other attributes or
methods in M during the period of history, we consider it is
evolutionarily independent to the others in M . Assume mSetk
is the maximal group of evolutionarily coupled attributes or
methods in M , then mSetk contains a subset of attributes and
methods in M , and these attributes or methods should satisfy:

mSetk : ∀mi ∈ mSetk,∃mj ∈ mSetk|cochange(mi,mj)
(2)

where i 6= j, i, j = [1, 2, 3, ..., n], n is the number of attributes
or methods in the mSetk. k means the kth period of history.
cochange(mi,mj) means mi and mj have been changed
together in the same commits. The co-changes between mi and
mj are calculated from the given periodk of revision history.

Based on each M of an architecture flaw instance, we
detected the method-level hotspot consisting of a sequence of
mSet and mSetCost by using different history periods. In
this paper, we back-forwardly decreased the history period by

112

a 6-month history interval. For example, if we have detected an
architecture flaw instance from a version of project A, which
was released in 2016-07 and its history began in 2015-09. Let
the universal set of attributes and methods involved in this
instance be Ma, to construct the hostpot, we calculated its
mSet sequence by using four history periods: 2015-03 - 2016-
07, 2015-03 - 2016-01, and 2015-03 - 2015-07. The number of
mSet in the hotspot may be less than 3, because attributes and
methods in M may not change together at the early history.
Besides, we also calculated the maintenance costs spent on
the attributes or methods in each mSet to be mSetCost by
using the same history period.

We consider a method-level hotspot that has been accumu-
lating maintenance costs, if two conditions are satisfied: 1)
the hotspot has been involved for an enough long time. In this
paper, since all of the projects have a long history, we required
that a hotspot should have evolved for 3 years, and we sampled
six months as the history interval; 2) attributes or methods
involved in the hotspot should continuously incur maintenance
costs. Let 〈mSet1,mSetCost1〉, and 〈mSetn,mSetCostn〉
be the first and last elements in a method hostopt, mSetCostn
should be larger than mSetCost1, where mSetCosti means
the total number of changes made on the attributes or methods
in mSeti by using corresponding history period.

C. Method-level Hotspots Modeling

Given a method-level hotspot, our approach automatically
models its evolution in terms of maintenance costs. In this
way, we could present the variation trend of these method-level
hotspots in terms of maintenance costs. Our approach uses
the sequence of mSetCost as an input, and searches the best
regression model for it. Since the selected history periods are
cumulative, we applies three typical regression models in our
approach, each type of regression models presents a different
maintenance evolution of method-level hotspots:

• Linear model, which describes the method-level hotspot
accumulates maintenance costs steadily over time.

• Exponential model, which describes the method-level
hotspot accumulates maintenance costs dramatically over
time.

• Logarithmic model, which describes the method-level
hotspot accumulates maintenance costs slowly over time.

D. Method-level Hotspots Visualization

For each method-level hotspot, we proposed a Method-level
DSM (M-DSM) to model each of its mSet. A M-DSM is
extended from the DSM, which is proposed by [1]. A DSM is
a square matrix whose rows and columns are labels with the
same elements in the same order. A cell in a DSM present the
structure or co-change relations between an element in row and
an element in column. Elements in the original DSM could be
files, classes or packages. We used the M-DSM to present the
attributes or methods and their relations. Instead of presenting
the co-change numbers in a cell, the cells in a M-DSM show
method-level co-change pairs. We define a Method-level Co-
change Pair to be a pair of change operations introduced in

Section II. Each co-change pair shows how two attributes or
methods changed together and the number of its occurrence.
Considering a M-DSM contains 2 method, method1 and
method2, 1) these two methods were both involved in a
commit, where method1’s parameter and method2’s body
were changed; 2) these two methods were involved in another
commit, where method1’s parameter and method2’s return
type were changed. Then, the method-level DSM will be
shown as in Figure 1.

Fig. 1: Example of M-DSM showing co-change pairs
MRC: METHOD RETURN CHANGE;

MPC: METHOD PARAMETER CHANGE;
MBC: METHOD BODY CHANGE

IV. EVALUATION

In this section, we report our evaluation subjects, methods
and results.

A. Research Question

To evaluate the effectiveness of our approach, we investigate
the following research questions:

RQ1: Are the attributes or methods involved in method-
level hotspot really change-prone?
A positive answer to this question would demonstrate that the
detected method-level hotspot really capture the change-prone
attributes and methods in the project, which deserve more
actions for refactoring.

RQ2: Could we model the evolution of detected method-
level hotspots? To answer this question, we are attempting
to investigate whether the evolution of method-level hotpots
could be effectively monitored. A positive answer to this will
enable us to understand how the detected method-level hotspts
evolve over time.

B. Subjects

Six Apache open-source projects have been chosen as
the subjects, which differ in size, domain and other project
characteristics: Camel is an integration framework; Cassandra
is a distributed NoSQL database management system; CXF is
a services framework; Hadoop is a tool for distributed Big Data
processor; OpenJPA is a Java persistence project; PDFBox is
a library for manipulating PDF documents.

We list the basic facts for each studied project in Table I.
The column “#Members” presents the total number of at-
tributes and methods in a project. The column “#Commits”
presents the number of revisions over the time period from
the begin to the selected release date for each project. All
projects’ revision histories are extracted from GitHub1. The
column “#History Length” shows the number of months from
the begin to the selected release date.

1https://github.com/

113

For each project, we first obtained its source code and
chose its stable version as our research subject. Then we
used Understand2 to generate a file dependency report. Given
the revision history and the file dependency file, we used
the toolset in Mo et al.’s work [14] to detected architecture
flaws. We used ChangeDistiller [3] to extract the method-
level revision history. Given all the flaws and method-level
history as inputs, our tool automatically detects all method-
level hotspots and fits them into regression models.

TABLE I: Researched Projects

Release #Members #Commits #History Length
Camel 2.15.5 84,734 24,933 113 months
Cassandra 2.1.13 41,767 19,333 89 months
CXF 3.0.9 54,210 11,160 96 months
Hadoop 2.6.3 70,054 12,506 86 months
OpenJPA 2.4.1 25,896 4,729 123 months
PDFBox 1.8.10 19,236 4,337 102 months

C. Evaluation Results

To quantify the maintenance effort, we use a typical history
measures: Change Frequency (CF), the number of times an
attribute or method has been changed in commits with a
given period of revision history.

RQ1: are the attributes or methods methods captured in
method-level hotspots notably change-prone?

For each project, we calculated the average change
frequency (avg CF) values for all the attributes or methods
involved in method-level hotspots and the attributes or
methods not involved in any method-level hotspot. Table II
reports the comparison results between two sets of average
values. “avg CF” means the average CF for attributes or
methods involved in method-level hotspots, “avg nCF”
means the average CF for the other attributes or methods.
”Inc.” means by how much the average value has increased
by comparing the attributes or methods in hotspot to the
attributes or methods not in hotspots. We calculated the Inc.
of change frequency as:

Inc. = (avg CF − avg nCF)/avg nCF × 100% (3)

From Table II, we can observe that all the avg CF values are
larger than the avg nCF. The greatest increase happens in the
CXF project. 147% means that, in this project, the attributes
or methods involved in method-level hotspots were changed
twice more often than the attributes or methods which are not
involved in any hotspot. The smallest increase is still as high
as 74% in the Cassandra project.

To rigorously validate this observation, we employ the
Wilcoxon signed-rank test, a non-parametric statistical hypoth-
esis test for comparing two related samples, to test whether
the population of avg CF is significantly larger than the

2https://scitools.com/

TABLE II: Comparison between avg CF and avg nCF

avg CF avg nCF Inc.
Camel 1.94 0.85 129%
Cassandra 2.92 1.68 74%
CXF 2.18 0.88 147%
Hadoop 1.98 1.05 89%
OpenJPA 1.85 0.78 138%
PDFBox 2.29 1.17 95%

population of avg nCF over the six projects. We defined the
hypotheses as follows:

Null Hypothesis: H0, the population of avg CF is not
significantly larger than the population of avg nCF.

Alternative Hypothesis: H1, population of avg CF is signif-
icantly larger than the population of avg nCF.

The p-value of this test is less than 0.05, thus H1 is
accepted. The results indicate that there exists statistically
significant differences between avg CF and avg nCF over
all 6 projects. Therefore, we can claim that that attributes
or methods captured in method-level hotspots will be more
change-prone, and hence cause higher maintenance costs in a
project.

RQ2: Could we model the evolution of detected method-
level hotspots?

A method-level hotspot captures a group of evolutionarily
coupled attributes or methods that accumulates maintenance
costs. We investigate this problem to answer whether we can
monitor the growth trend of the maintenance effort spent on
each method-level hotspot over time.

In this paper, we fit a hotspot’s growth trend of maintenance
costs to one of the three models: linear, exponential and log-
arithmic regression models, which indicating the attributes or
methods in a method-level hotspot accumulates maintenance
costs steadily, extremely fast or slowly respectively. For each
method-level hotspot, the regression model with highest R2

will be selected to be the best fit for it. Besides, the P-value of
each fitting model should be less than 0.05, which guarantees
that the derived model is significant.

Following the guidelines in the work of [10, 12], where
the authors described R2 = 0.75, 0.5 and 0.25 as substantial,
moderate and weak models, respectively, we summarized the
fitting results in Table III. Column “#Hotspot” means the
total number of method-level hotspots detected from a project.
Columns “Lin”, “Exp” and “Log” present the number of
hotspots that fit into linear, exponential or logarithmic models
respectively. The following “Pt.” columns show the ratios
to the total number of detected hotspots. In the column of
“0.5 ≤ R2 < 0.75”, “Num” means the number percentage of
hotspots fitted into a regression model with a R2 from 0.5 to
0.75. The last two columns shows the number and percentage
of hotspots which couldn’t or weakly fit into one of the three
regression models.

Using “Camel” as an example, we can see that there are
907 method-level hotspots were detected from this project,

114

and 69% of these hotspots can be substantially modeled by
the regression models (R2 ≥ 0.75). 48% of all detected
hotspots could fit into a linear model, means these hotspots
accumulate maintenance costs steadily. 8% and 13% of all
detected hotspots could fit into the exponential and logarithmic
models respectively. Only 69 hotspots, 8% of all detected
hotspots, couldn’t fit into a substantial or moderate regression
model.

The last row of Table III presents that, considering all the
detected method-level hotspots over all projects together, 67%
of them could be fitted into a substantial regression model.
52% of all hotspots could be modeled by linear models.
For both exponential and logarithmic models, there are 7%
of all hotspots follow a substantial fitting. Only 8% of all
the detected hotspots can not or weakly fit into a model.
In summary, our approach could model the growth trend of
maintenance costs for each hotspot..

Figure 2 shows the example of a linear fitting. We can
observe that the selected release date of this project is ”2015-
11”, and attributes or methods in this hotspot started to be co-
changed before 2010-07, but after 2010-01, since the history
interval is 6 months. The maintenance costs trend of this
hostspot is fitted into a linear model, which has a R2 = 0.98,
with a formula as: y = 64.2x+ 88.6.

Fig. 2: Hotspot fitted into a linear model
R2 = 0.98; Formula: y = 64.2x+ 88.6

D. Results Summary

Based on the evaluation results, we can positively answer
our research questions as follows:

RQ1: If an attribute or method is involved in a method-level
hotspot, it is more likely to have higher change-proneness.

RQ2: The majority of detected method-level hotspots could
be modeled by one of the three regression models, the mod-
eling results will help developers to understand the evolution
trend for each hotspot.

V. DISCUSSION

A. Threats to validity

First, we can not guarantee that change frequency is the best
proxies for maintenance effort. In our future work, we intend
to use more proxy measures for our analysis, for example, the
bug frequency, the time frame for each issue, the budget spent,

etc. Thus we could further demonstrate the effectiveness of our
approach and tool.

Second, we only applied our research on six Apache open
source projects, hence we can not claim that our results are
generalizable across all software projects. However, we chose
projects with different sizes and domains to partially address
this issue. A larger study employing more projects and more
metric types would improve the validity of our conclusions.

Third, the detection of our method-level hotspot needs to
mine the project’s revision history. We need to examine the
co-changes between attributes or methods. The availability
and accuracy of the method-level history information heavily
depends on the project’s protocols.

Finally, since the history periods are accumulative, we only
used three typical regression models to model the growth trend
of maintenance costs. We can not grantee the completeness of
our applied models. But our tool and our approach are scalable,
which enables easy additions for new regression models.

B. Future Work

We are planning to apply our approach on more projects
to further demonstrate the effectiveness of our approach and
detection tool. We also plan to investigate whether the method-
level DSM could help to examine underlying problems in a
project and help to explore the refactoring opportunities for
each method-level hotspot, such as splitting files, combining
methods, etc.

VI. RELATED WORK

In this section we compare our approach with the following
research areas.

Defect Prediction and Localization: There are numerous
studies [2, 5, 8, 9, 11] aimed at predicting and locating error-
prone/change-prone files by using file metrics, file change
history, or both. For example, Jones et al. [11] obtained the
ranking information of each statement and used the infor-
mation to assist fault location. Nagappan et al. [16] studied
different complexity metrics and demonstrated that a combi-
nation of these metrics are useful predictors for defects and
successful for defect prediction. Cataldo et al. [2] investigated
the density of change coupling and showed that it correlated
with failure proneness. Ostrand et al. [17] demonstrated that
a combination of files metrics and file change history can be
used to effectively predict defects.

However, all these studies treat the error-/change-prone files
individually but don’t consider the architectural connections
among these files. Consequently, even if the predicted files
were modified, the root causes of high-maintenance costs
would still exist there, because architecture design flaws
haven’t been eliminated. Our study focuses on the attributes
or methods participating in architecture design flaws.

Code and Architecture Quality: Gamma et al. [6] intro-
duced commonly occurring software design problems. They
presented design patterns as proven solutions to these recurring
problems. Fowler [4] introduced the concept of a “bad smell”
to identify code problems and provide refactoring references.

115

TABLE III: Distribution of Architecture flaws’ Regression Models

R2 ≥ 0.75 0.5 ≤ R2 < 0.75 Other
Project #Hotspot Lin Pt. Exp Pt. Log Pt. Total Pt. Num Pt. Num Pt.
Camel 907 437 48% 77 8% 116 13% 630 69% 208 23% 69 8%
Cassandra 737 477 65% 15 2% 16 2% 508 69% 209 28% 20 3%
CXF 712 344 48% 69 10% 43 6% 456 64% 167 23% 89 13%
Hadoop 924 668 72% 63 7% 40 4% 771 83% 121 13% 32 3%
OpenJPA 544 129 24% 15 3% 12 2% 156 29% 289 53% 99 18%
PDFBox 246 76 31% 62 25% 53 22% 191 78% 54 22% 1 0%
Total 4,070 2,131 52% 301 7% 280 7% 2712 67% 1048 26% 310 8%

Garcia [7] investigated and presented some bad smells from
architectural perspectives. These methods presented the con-
cepts and principles for the design solutions or problems, but
still leave much of the effort to developers, and depend on the
skill of the architecture analysts.

Automatic detection of architecture problems has been
widely studied. Mo et al.’s [14, 15] work formally defined
a suite of architecture hotspot patterns—recurring architecture
smells—in a project. Xiao et al.’s [18] work helps to detect
architecture roots, file groups where the constituent files are
architecturally connected and cause high maintenance costs.
However, all of this work focuses on file-level problems. Even
if we found the flawed connections among files, it still worth
for developers or architects to examine the details in the flawed
files. In particular, for large-scale and long-term projects, file
sizes increase as software evolves. What is worse, the larger
and complicated a file, and the more attributes or methods it
will have. In our approach, we automatically detect and model
the group of attributes or methods or fields which participate
in architecture flaws and accumulate maintenance costs.

VII. CONCLUSION

In this paper, we have formally defined the concept of
Method-level Hotspot, a group of evolutionarily coupled at-
tributes or methods that participate in architecture design
flaws and continuously incur maintenance difficulties. Our
approach could automatically detect method-level hotspots
from a project and model the evolution trend of the detected
method-level hotspots in terms of maintenance costs. Our
approach also uses method-level co-change pairs to visualize
the co-change details between attributes or methods in a
method-level hotspot.

From our analysis on six large-scale open source projects,
we have demonstrated that the attributes or methods involved
in method-level hotspots have significantly higher change-
proneness compared to the attributes or methods not involved
in any method-level hotspot. We have also presented that
our approach could model most of the identified method-
level hotspots into one of the three typical regression models.
The modeling results could help developers understand the
evolution trend of each hotspot and provide guidance for the
refactoring decisions.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China under the grant No. 61702377, and

the Fundamental Research Funds for the Central Universities
under the grant No. CCNU19TD003, and IBO Technology
(Shenzhen) Co., Ltd., China.

REFERENCES

[1] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1: The Power of
Modularity. MIT Press, 2000.

[2] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb. Software
dependencies, work dependencies, and their impact on failures. IEEE
Transactions on Software Engineering, 35(6):864–878, July 2009.

[3] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering, 33(11):725–743, 2007.

[4] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, July 1999.

[5] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based
on product release history. In Proc. 14th IEEE International Conference
on Software Maintenance, pages 190–197, Nov. 1998.

[6] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[7] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic. Identifying
architectural bad smells. In Proc. 13th European Conference on Software
Maintenance and Reengineering, pages 255–258, Mar. 2009.

[8] T. L. Graves, A. F. Karr, J. S. Marron, and H. P. Siy. Predicting fault
incidence using software change history. IEEE Transactions on Software
Engineering, 26(7):653–661, 2000.

[9] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty code
using failure-inducing chops. In Proc. 20th IEEE/ACM International
Conference on Automated Software Engineering, pages 263–272, 2005.

[10] J. F. Hair, C. M. Ringle, and M. Sarstedt. Pls-sem: indeed a silver bullet.
Journal of Marketing Theory and Practice, 19(2):139–151, 2011.

[11] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proc. 24thInternational
Conference on Software Engineering, 2002.

[12] J. Joseph F. Hair, G. T. M. Hult, C. Ringle, and M. Sarstedt. A Primer on
Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage,
Thousand Oak, 2013.

[13] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak,
and A. Shapochka. A case study in locating the architectural roots
of technical debt. In Proc. 37th International Conference on Software
Engineering, May 2015.

[14] R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns: The
formal definition and automatic detection of architecture smells. In
Proc. 12thWorking IEEE/IFIP International Conference on Software
Architecture, May 2015.

[15] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng. Architecture anti-
patterns: Automatically detectable violations of design principles. IEEE
Transactions on Software Engineering, 2019.

[16] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. In Proc. 28th International Conference on Software
Engineering, pages 452–461, 2006.

[17] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location
and number of faults in large software systems. IEEE Transactions on
Software Engineering, 31(4):340–355, 2005.

[18] L. Xiao, Y. Cai, and R. Kazman. Design rule spaces: A new form of
architecture insight. In Proc. 36rd International Conference on Software
Engineering, 2014.

[19] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng. Identifying and
quantifying architectural debt. In Proc. 38thInternational Conference
on Software Engineering, pages 488–498, 2016.

116

Threat and Security Modeling for Secure Software
Requirements and Architecture

Michael Shin, Don Pathirage, Dongsoo Jang

Department of Computer Science, Texas Tech University
Lubbock, Texas, USA

michael.shin@ttu.edu, don.pathirage@ttu.edu, dongsoo.jang@ttu.edu

Abstract – Most of the threat modeling approaches do not
stipulate when and what types of threats should be identified
and modeled in each software development phase. This paper
addresses a threat and security modeling approach in software
requirements and architecture. The threats to software systems
are classified and modeled as input and output, class and
message threats in software requirements, and message
communication threats in software architecture so that the
security countermeasures are modeled and designed against the
threats. The modeling of threats and security countermeasures
is described by means of the underlying meta-models of
software requirements and software architecture models. An
online shopping system is used to demonstrate the approach.

Keywords – Threat; Security Modeling; Meta-Model; Software
Requirements; Software Architecture.

I. INTRODUCTION
The identifying and modeling of threats to software systems

are the starting point of developing secure systems that protect
sensitive assets from the threats. A secure system is specified
and designed together with security countermeasures to
neutralize the threats. A secure system enables to defeat only
the attacks caused by the identified and modeled threats. A
security-sensitive system can be vulnerable to attacks if any
critical threats are not identified and modeled in software
development.

Several threat modeling approaches [Schneier99, Abi-
Antoun06, Torr05, Sindre05, McDermott99, Srivatanakul05,
Lund11, Shevchenko18] have been suggested to model the
threats to software systems. However, most of the threat
modeling approaches do not stipulate when and what types of
threats should be identified and modeled in software
development. The approaches might overlook the threats
unnoticed because they may require all threats to be identified
in only one development phase (e.g., requirements specification
or design).

This paper aims at developing a threat and security
modeling approach that describes when and what types of
threats are identified and modeled in software development as
well as the modeling of security countermeasures against the
threats. The approach to modeling threats and security is
described by means of the meta-model, which is a model of
software system models.

DOI reference number: 10.18293/SEKE2020-055

II. RELATED WORK
Threat Modeling. Threats in a system have been modeled

by several approaches, which include attack trees [Schneier99],
data flow diagrams [Abi-Antoun06, Torr05], and UML-based
modeling [Sindre05, McDermott99, Srivatanakul05]. Attack
trees [Schneier99] provide an approach to modeling and
analyzing the threats of systems, and the threats are analyzed in
terms of attacker’s capabilities. The design models in the
research [Abi-Antoun06, Torr05] are specified with data flow
diagram, and the threats to the models are identified and
analyzed using scenarios of each function in a system. Several
threat modeling approaches, such as misuse cases [Sindre05],
abuse cases [McDermott99], and HAZOP (Hazard and
Operability Analysis) [Srivatanakul05], have been developed
for object-oriented software systems. The approaches model
threats using the use case model in UML and capture security
requirements against the threats. The CORAS in [Lund11] is a
model-driven risk analysis that assesses the risks of assets in the
system. The authors in [Shevchenko18] describes threat
modeling methods that target different parts of the development
process.

Secure Software Development. The studies in
[Lodderstedt02] proposed a new modeling language based on
UML for the model-driven development of secure distributed
systems. The research in [Turpe17] describes the interplay of
three dimensions: threats, security goals, and system design.
Security patterns in [Fernandez13, Schumacher06] address the
broad range of security issues that should be considered in the
stages of software development lifecycle.

In earlier work by a coauthor in [Gomaa04], an approach
has been described to model complex applications by modeling
security requirements and designs separately from application
requirements and designs using the UML notation. In later work
by the coauthor in [Shin07], an approach has been described for
modeling the evolution of a non-secure application to a secure
application in terms of a requirements model and a software
architecture. The recent work of the coauthors proposes the
design of reusable secure connectors [Shin17a] and describes
security failure-tolerant requirements specification and analysis
[Shin17b, Shin18].

III. THREATS IN SOFTWARE REQUIREMENTS AND
ARCHITECTURE MODELS

The threats to systems are determined by considering the
sensitive assets that are described in software requirements and

117

mailto:michael.shin@ttu.edu
mailto:don.pathirage@ttu.edu

architecture. Fig. 1 depicts the threats to sensitive assets in
software requirements and software architecture. The threats to
input and output (I/O) are induced by an actor’s interactions
with a system, which are described in software requirements
specification that is modeled in this paper by means of the use
case model in the unified model language (UML) [Booch05,
Rumbaugh04, Gomaa11]. An actor’s sensitive input to and
output from a system can be compromised, whereas an actor’s
untrusted input can compromise the system.

The threats to classes occur when the objects of classes in
the static model for requirements analysis are engaged in
processing or storing sensitive data. The static model is used in
UML to depict the static structural aspects of a system by
defining the classes in the system, their attributes, and
relationships between classes.

A sensitive message passed between objects in the
communication model in requirements analysis can be
threatened. The dynamic aspect of a system is captured in the
communication model of UML through objects and the
messages passed between objects. The sensitive messages
passed between objects can be threatened.

The messages communicated between components in
software architectures can be compromised when the message
communication between components are insecure. A message
in software architectures is sent by a component to another via
a connector that encapsulates the detail of message
communication. Insecure connectors can breach the sensitive
messages communicated between components.

Fig. 1 Threats in software requirements and architecture

IV. THREAT AND SECURITY MODELING IN REQUIREMENTS
SPECIFICATION

The threats and security in requirements specification are
modeled by extending the underlying meta-model [Gomaa08] of
the use case model, which is depicted in Fig. 2 in which the threat
and security each are modeled as meta-classes. A meta-model is
described with the meta-classes and relationships between the
meta-classes. The meta-classes associated with threat and
security are highlighted in gray in Fig. 2.

The threats of requirements specification concentrate on the
threats to I/O that can be caused by the interaction between
actors and the system. An actor’s input to the system can contain
sensitive data, such as a user’s credit card number, which needs
to be protected. On the other hand, an attacker can exploit a
system with a suspicious input to the system, so the input must
be verified. Some actor’s access to a system must be
authenticated and/or authorized in order not to disclose sensitive
data in the system.

The threats to I/O are identified by means of analyzing the
use case description that describes an actor’s input to the system
and the system’s responses to the actor. The threat is described

[Shin17b, Shin18b] in terms of threat name, threat type, threat
point, security asset, description, and security need.

Fig. 2 Meta-Model of Use Case Model with threat and

security

A threat to I/O is modeled together with a use case (Fig.
2) in which the threat is represented using the use case
notation. Fig. 3 depicts an unauthenticated ID input threat,
which threatens the make order request use case at the order
request threat point. The make order request use case is an
application use case in an online shopping system
[Gomaa11], verifying a customer credit card payment and
processes a customer’s order request.

Fig. 3 Threat to Make Order Request use case

A security countermeasure against an I/O threat is specified

using a security use case [Gomaa04], separately from
application use cases (Fig. 2). When a system requires a security
countermeasure, the security use case extends the application
use case at an extension point. The check account password
security use case (Fig. 4) is taken for the make order request
use case against the unauthenticated ID input threat (Fig. 3).

Fig. 4 Security use case for Make Order Request use case

V. THREAT AND SECURITY MODELING IN REQUIREMENTS
ANALYSIS

A. Class Model
The threats and security in the static model for software

requirements analysis are described in the underlying meta-
model [Gomaa08] of the class model (Fig. 5b). The threats to
classes are described as the class threat meta-class that threatens
the class meta-class through the threaten meta-class. The
security countermeasures are described as the security class
meta-class that is specialized from the class meta-class. The

Threat

I/O
Threat

Class
Threat

Message
Threat

Communication
Message Threat

Use CaseActor
1 1..*Initiates

Extend

Participates in0..* 1..*
0..* Extension

Point
Has

1

Connected to

1

Security
Use Case

1

Threat
Point

Has1 0..*

Threaten

1..*

I/O
Threat

0..*

1

1

Has

Has

1

1

Has
1 1..*

Connected to

Make
Order Request

Unauthenticated
ID

«threaten» «I/O threat»

Customer

Order
Request

Customer

Make
Order Request

Check Account
Password

«security»

secure account

«extend»

[System requires
authentication]

118

class meta-class supports the use case meta-class in the use case
meta-model (Fig. 5a), which needs classes to implement the
functionality of the use case.

Class

Threaten Class
Threat

Has1 1

Has

1

0..*

Object

Security
Object

1

Instantiated
from

1..*

c) Meta-Model of
Communication Model

b) Meta-
Model of

Class Model

Relationship
2..* 0..*Has

Message0..*

1

Sends/Receives

Security
Class

Message
Threat

Threaten
Has

1 0..*

Has
1

1

Use Case 1..*
Supported by

1..*

1

Refined by

1..*

a) Meta-
Model of Use
Case Model

Fig. 5 Meta-Model of Requirements Analysis

The class threats are identified by considering the role of
each class, such as interface, entity, control, or application logic
[Gomaa11]. An interface class that interfaces to and interacts
with an actor must be secure to receive sensitive input from or
send sensitive output to the actor. An entity class that stores data
might have sensitive data (e.g., patient medical record) that
requires security. A control class that contains the system’s
sensitive state information or coordination logic might be
compromised. An application logic class that contains the details
specific to applications might be tampered with.

Part of the static model for make order request use case (Fig.
4) is depicted in Fig. 6a using the class diagram, which includes
the Customer Account class that stores customer’s account data
in the make order request use case (Fig. 4), and Account
Password Checker security class that verifies a customer’s
account password in the check account password security use
case (Fig. 4). A credit card disclosure class threat (Fig. 6b) is
identified and modeled for the make order request use case.
Also, the security countermeasure against the credit card class
disclosure threat is modeled with Encryption and Decryption
security classes (Fig. 6a). Fig. 6b depicts the class threat
description for credit card disclosure class threat.

Fig. 6 Credit Card Disclosure class threat and its description

B. Communication Model
The meta-model [Gomaa08] of the communication diagram

(Fig. 5c) describes the threats to messages passed between
objects and the security against the threats. The security object
meta-class is specialized from the object meta-class (Fig. 5c),
which is utilized to refine the use case meta-class in the use case
model (Fig. 5a).

The message threats in the communication model can be the
threats to confidentiality, integrity, or non-repudiation security
of messages from the application perspective. When a sensitive
message is sent by an object to another, the message must be
confidential or must not be tampered with. Also, non-
repudiation may be required to prove the message presence
between objects later. The message threats are determined by
examining the messages passed between objects on the
communication diagrams. The security objects against the
message threats are determined and incorporated into the
communication diagrams.

The Order Request Repudiation message threat is modeled
in Fig. 7a in which it threatens the order request message in the
make order request use case when the Customer Interface
object sends the order request message to the Delivery Order
entity object. Fig. 7b depicts the message threat description for
the Order Request Repudiation message threat. As the Order
Request Repudiation message threat is identified, a digital
signature is taken as a security countermeasure, which is
realized by means of the Digital Signature Generator security
class (Fig. 7a), and the Digital Signature Verifier security class
(Fig. 7a).

Fig. 7 Order Request Repudiation message threat and its

Description

VI. THREAT AND SECURITY MODELING IN SOFTWARE
ARCHITECTURE

The threats and security in software architecture are
described in the underlying meta-model of software
architecture model (Fig. 8b) in which a component sends a
message to or receives it from another through a connector. The
message communication threat meta-class threatens the
message meta-class between components. The secure connector
meta-class is specialized from the connector meta-class. The
component meta-class consists of object meta-class in the meta-
model of communication model (Figs. 8a and 5c).

The message communication threats are identified in terms
of integrity, confidentiality, non-repudiation, authentication
and authorization from the software architecture perspective.

Account
Password
Checker

Customer
Account

«entity»

Credit Card
Disclosure

«class threat»

«security»

Decryption

«security»

Checks Decrypts

«threaten»

Encryption

«security»

Encrypts

• Threat Name: credit card disclosure
• Threat Type: class threat
• Security Asset: credit card
• Description: credit card can be disclosed
• Security Need: confidentiality

a) Class Threat and Security Classes
for Customer Account class

b) Class Threat Description for
Credit Card Disclosure

«message threat»

«message»

«threaten»

Order
Request

«security»
Digital

Signature
Generator

Signs

«user interface» «entity»

«security»

Verifies

Digital
Signature
Verifier

Order Request
Repudiation

Delivery
Order

Customer
Interface

Sends Receives

• Threat Name: Order Request Repudiation
• Threat Type: message threat
• Security Asset: Order Request
• Description: Customer can repudiate an order

request.
• Security Need: Non-repudiation

a) Order Request Repudiation threat

b) Message Threat Description
for Order Request Repudiation

threat

119

The sensitive messages communicated between components
can be tampered with or can be disclosed. Fig. 9a depicts a
message communication threat to the order request message
sent by a Customer component to a Delivery Order component
in which the order request can maliciously be changed. Fig. 9b
depicts the message communication threat description for the
order request message.

Fig. 8 Meta-Model of Software Architecture

Fig. 9 Changed Order Request communication message threat

For countering the message communication threats, a secure

connector [Shin17a, Shin18a] is designed by separately
considering the message communication pattern and the security
patterns required by application components. A secure
connector (Fig. 8) is a distributed connector, which consists of a
secure sender connector for a sender application component, and
a secure receiver connector for a receiver application
component.

VII. CONCLUSIONS AND FUTURE WORK
This paper describes a threat and security modeling

approach for software requirements and architecture, which is
described by means of the meta-model of the use case model,
static model, communication model, and software architectural
model. The threats are classified and modeled as I/O threat,
class threat, message threat and message communication threat.
The security countermeasures are modeled as a security use
case for an application use case, a security class for an
application class, a security object for an application object, and
a secure connector for a simple connector.

This paragraph describes future research for the threat and
security modeling of software requirements and architectures.
A way of future research could be designing security fault-
tolerant secure connectors, which tolerate the breaches of
software architectures.

REFERENCES
[Abi-Antoun06] M. Abi-Antoun, D. Wang and P. Torr, “Checking Threat
Modeling Data Flow Diagrams for Implementation Conformance and
Security”, International Conference on Automated Software Engineering, pp.
392-396, Atlanta, Georgia, USA, November 6-9, 2007.
[Booch05] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling
Language User Guide”, 2nd Edition, Addison Wesley, Reading MA, 2005.
[Fernandez13] Fernandez, E. B., 2013. Security Patterns in Practice, Wiley.
[Gomaa11] H. Gomaa, “Software Modeling and Design: UML, Use Cases,
Patterns, and Software Architectures”, Cambridge University Press, 2011.
[Gomaa04] H. Gomaa and M. E. Shin, “Modeling Complex Systems by
Separating Application and Security Concerns” 9th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS 2004),
Italy, April 2004.
[Gomaa08] H. Gomaa and M. E. Shin, “Multiple-View Modeling and Meta-
Modeling of Software Product Lines,” IET Software, Volume 2, Issue 2, April
2008, pp. 94 – 122.
[Gomaa11] H. Gomaa, “Software Modeling and Design: UML, Use Cases,
Patterns, and Software Architectures”, Cambridge University Press, 2011.
[Lodderstedt02] T. Lodderstedt, D. Basin, J. Doser, “SecureUML: A UML-
Based Modeling Language for Model-Driven Security”, Fifth International
Conference on the Unified Modeling Language, pp. 426-441, Dresden,
Germany, September 30 – October 4, 2002.
[Lund11] M. S. Lund, B. Solhaug, and K. Stølen, “Model-Driven Risk
Analysis”, Springer Berlin Heidelberg, 2011.
[McDermott99] J. McDermott and C. Fox, “Using Abuse Case Models for
Security Requirements Analysis,” In Proceedings of 15th Annual Computer
Security Applications Conference (ACSAC`99), pp. 55-64, Phoenix, Arizona,
December 1999.
[Rumbaugh04] J. Rumbaugh, G. Booch, and I. Jacobson, “The Unified
Modeling Language Reference Manual”, 2nd Edition Addison Wesley, Reading
MA, 2004.
[Schneier99] B. Schneier, “Attack trees: Modeling security threats,” Dr. Dobbs
Journal, pages 21–29, December 1999.
[Schumacher06] Schumacher, M., Fernandez, E. B., Hybertson, D.,
Buschmann, F., Sommerlad, P., 2006. Security Patterns, Wiley.
[Shevchenko18] N. Shevchenko, T. A. Chick, P. O’Riordan, T. P. Scanlon, and
C. Woody, “Threat Modeling: A Summary of Available Methods”,
SEI/Carnegie Mellon University, July 2018.
[Shin07] M. E. Shin and H. Gomaa, “Software Modeling of Evolution to a
Secure Application: From Requirements Model to Software Architecture,”
Science of Computer Programming, Volume 66, Issue 1, pp. 60-70, April 2007.
[Shin17a] M. E. Shin, H. Gomaa, and D. Pathirage, “Model-based Design of
Reusable Secure Connectors,” 4th International Workshop on Interplay of
Model-Driven and Component-Based Software Engineering (ModComp2017),
September 17, Austin/Texas, USA, 2017.
[Shin17b] M. E. Shin and D. Pathirage, “Security Requirements for Tolerating
Security Failures,” 29th International Conference on Software Engineering and
Knowledge Engineering, Pittsburgh, USA, July 5-7, 2017.
[Shin18] M. Shin, D. Pathirage, and D. Jang, “Analysis of Security Failure-
Tolerant Requirements”, The 30th International Conference on Software
Engineering and Knowledge Engineering (SEKE2018), San Francisco Bay,
California, USA, July 1-3, 2018.
[Sindre05] G. Sindre and L. Opdahl, “Eliciting Security Requirements with
Misuse Cases,” Requirements Engineering, vol. 10, Issue 1, pp. 34-44, January
2005.
[Srivatanakul05] T. Srivatanakul, “Security Analysis with Deviational
Techniques,” PhD thesis, Department of Computer Science, University of
York, UK, 2005.
[Torr05] P. Torr, "Demystifying the Threat-Modeling Process," IEEE Security
and Privacy, vol. 03, no. 5, pp. 66-70, September/October 2005.
[Turpe17] S. Turpe, “The trouble with security requirements”, 25th
International Requirements Engineering Conference (RE), pp. 122-133,
Lisbon, Portugal, September 4-8, 2017.

Connector

Threaten
Message

Communication
Threat

Has1 1

Has
1

0..*

Component 2..* 1
Connects

Secure
Connector

Sender
Connector

Receiver
Connector

Message

Sends/Receives

0..*

1

Object

1..*

1
Consists of

a) Meta-Model for
Communication

Model
b) Meta-Model for

Software
Architecture

Order
Request

«message»

Changed Order
Request

«message
communication threat»

«threaten»
• Threat Name: Changed Order Request

Threat Type: Message communication threat
• Security Asset: Order Request
• Description: Customer’s order request can

be tampered with.
• Security Need: Integrity

a) Changed Order Request
Message Communication threat

b) Changed Order Request Message
Communication Threat Description

120

Knowledge-based Interface transition diagram for
SRS(Software Requirements Specification) in

mobile application*
Taeghyun Kang

Department of Computer Science
University of Central Missouri

Warrensburg, MO, USA
tkang@ucmo.edu

Hyungbae Park
Department of Computer Science

University of Central Missouri
Warrensburg, MO, USA

park@ucmo.edu

Venkata Inukollu
Department of Computer Science

Purdue University Fort WAYNE
Fort Wayne, IN, USA

inukollv@pfw.edu

Abstract—This paper presents a phased development of user
requirements for mobile applications. The usage of mobile appli-
cations has become increasingly prevalent and indicates the most
rapid and exponential growth. Nonetheless, the number of unsat-
isfactory apps has been growing owing to the miscommunication
between stakeholders and developers. Low-fidelity and prototype
tools help to define user requirements by visualizing the needs
of the users. However, a user who doesn’t have any foundation
in using prototype tools, will have difficulties in representing
the requirements sufficiently. In this paper, the authors have
proposed solutions to efficiently develop user requirements based
on their understanding of the application and prototype tool.
The authors of this paper suggest incremental developments
of requirements in accordance with the user’s knowledge in
expressing the requirements for a mobile application.

Index Terms—Interface transition diagram, UML, Require-
ment Engineering, mobile application.

I. INTRODUCTION

With the exponential rise in the number of mobile device
users, the demand for superior quality apps is also increasing.
The number of smartphone users is expected to reach up to 3.5
billion [1] and mobile apps are estimated to generate more
than 935 US billion dollars in revenues [2]. To develop high
quality mobile applications desired by the end users, the cus-
tomer requirements should be clearly defined and each element
of the application needs to be efficiently presented on a page.
Therefore, many software projects use a prototype to record
customer’s requirements and also ensure not to misrepresent
the requirements to the development team. Various prototype
software tools are used in the IT industry, however, the tools
need to be used differently based on the classification of the
software product. There are 2 fundamental types of Software
product:generic product and customized product.

Generic software products, such as gaming apps or apps that
provide a service to the users are marketed and sold to anyone
who need them. Software development team analyzes and
gathers the needs of the customers and processes the project
according to the requirements. The requirements and layout
of a generic product are usually defined by the development
team. Developers and Designers are required to invest time

in learning to use the prototype tool. Though, each prototype
software tool provides different interface and functionalities,
usage of the tool is not a big constraint given the diverse
experiences of the developers and designers.

In the case of the customized product, a user who does
not have the necessary programming skills, places a request
with the development company for the desired product. Re-
quirements in a customized product are defined outside of the
development team. Also, there are significant limitations for
the end user or customer to learn the prototype tool and deliver
the desired functions with the screen layout.

UML(Unified Modeling Language) has become the inter-
national standard to analyze user’s requirements and to define
static and dynamic model of an application [3]. Use case dia-
grams and use case descriptions are used to define customer’s
requirements. Class diagrams represent static structure of an
application and sequence diagrams depict dynamic interaction
between objects in an application. These diagrams are used
as a guide for software development. However, the survey
of UML practitioners shows considerable variation using the
above diagrams [4]. Various devices such as mobile devices,
self-driving cars, and digital machines, have been developed
and many types of software applications that come with it
also have varied, but there is no standard guide on which
UML diagrams should be used for each type of application
to improve the quality of an application. Also, while UML
diagram specification is released with time, there is no newly
introduced UML diagram which can support new devices and
paradigms like agile. In addition, the assumption that UML
design is not required in Agile, undermines the advantages of
using UML.

This paper describes an approach to define user require-
ments for mobile applications by considering the character-
istics of a user. Characteristics to develop good and efficient
requirements for mobile applications are defined, and, class
of users are identified based on the user’s knowledge in
expressing the requirements for mobile application. Different
levels of ITD (Interface transition diagram) are designed to
enhance communication between customers and developers.

DOI reference number: 10.18293/SEKE2020-065

121

II. RELATED WORK

The interviews and prototype are the most widely used
techniques to elicit requirements in mobile application [5]. the
literature review also shows that user participation is the most
common issue in the requirement gathering process.

Use Case diagram is introduced by Ivar Jacobson, it is
widely used to represent functional requirements [6]. The
functionality of an application is described using actors, use
cases, an association between actor and use case, and system
boundary. Use Case diagram provides an overview of the
system and defines key requirements [7]. However, there are
limitations in expressing interface layout and finger gestures,
which are key elements of mobile application.

The behavior of an application on mobile devices relies
on finger gestures, sensors, and location data unlike software
running on a desktop. Furthermore, due to the limited screen
size, screen layout and design have a significant impact
on the success of a mobile application [8], [9]. Therefore
when customers define their requirements, the requirements
engineering tool should encourage customers to consider the
characteristics of a mobile applications.

The software requirements specification describes the capa-
bilities of an application [10]. The SRS includes functional,
non-functional requirements and external interface require-
ments. Also, a separate interface specification document can
be developed for a critical aspect of an embedded system. It
describes the layout of an application, connections between
an application and other software components, an interface
between the software components and hardware, and commu-
nication functions such as email and network protocols.

R. Hennicker et al. [11] proposed UWE(UML-based Web
Engineering Approach) to design user interfaces. UWE con-
sists of three design phases: conceptual, navigation and presen-
tation design. The conceptual design shows internal structure
of an application and navigation design identify the instances
in an application and shows when they are used. The instances
which is identified in navigation space model, are used in the
presentation design which shows an abstract interface. The
author also proposed the UML profile to build an abstract
user interface and storyboarding scenarios from the navigation
space model [12].

P. Abrahamsson et al. [13] proposed The Mobile-D ap-
proach to overcome technical constraints of mobile environ-
ment. The approach is consist of well-known agile practices
such as continuous integration, pair programming, and user-
centered focus. However it does not provide detail guides how
user express their requirements.

III. CHARACTERISTICS OF GOOD REQUIREMENTS FOR
MOBILE APPLICATION

A. Agility

The Agile Manifesto was published for lightweight software
development and to focus on customer’s satisfaction [14].
The result of the study indicates that agile methods are
well suited for the development of mobile applications due

to the dynamic and incomplete requirements of the mobile
application [15]. Thus, quick response to customer request is
a key factor for a successful project. Similarly, customers must
communicate their requirements to the development team as
clearly and quickly as possible. Due to the limitation of the
screen size, the interface layout in an application and events
based on finger gesture need to be reflected in the requirement.
Many prototype applications have been developed and used
to express customer’s requirements, but customers are often
unfamiliar with the use of these prototype tools. Customers
therefore need a way of expressing their requirements which
is not constrained by a prototype tool.

B. Finger gestures in mobile application

Interacting with mobile devices is greatly different from
interacting with desktops or laptops. The desktop applications
mainly use keyboard and mouse. However, mobile applications
can be controlled by various finger gestures [16]. Therefore,
these finger movements should be represented at design phase.
The basic finger movements that control mobile applications
are explained in table I. Mobile platforms such as android,
IOS, and windows phone support more core finger gestures.
For example, Android uses two-finger swipe down to imme-
diately display switches for wi-fi, Bluetooth, mobile data, and
the like. Thus, clear and diverse finger gesture information
should be shared between customers and developers for repre-
senting customer’s requirements accurately. Furthermore, more
finger gestures can be defined according to the advancement of
the mobile device’s hardware. If the prototype tool does not
immediately reflect these new changes, the customer cannot
accurately reflect the desired requirements.

Gesture Description
Tap Press and release a portion of the screen
Double Tap Press and release same part of the screen

twice within a certain time(1second)
Long Tap Press and hold the same part of the screen

for a certain time (1second)
Drag Press a portion of the screen, then move

holding the finger on the screen and release
Flick Press a portion of the screen, Quickly move

and release.
Pinch in Pinch inward
Pinch out Pinch outward
Rotate Press a portion of the screen with two finger,

and rotate left and right
pan Hold a side of palm on the screen, then

Quickly move and release.
Shake Move a smartphone up and down or side to

side with rapid movements
Scroll Move one finger across the screen without

lifting. Drag a list up or down
TABLE I

BASIC FINGER GESTURES TO CONTROL MOBILE APPLICATION

C. Interface design

In mobile applications development, the UI design is con-
sidered as one of important phases in the development process
and the user requirements are highly dependent on the inter-
face design [17]. Thus, the layout of an application, the events

122

and detailed design should be considered together in tandem
to express user requirements. Text-based requirement specifi-
cations are not intuitive and often lead to misinterpretations.

IV. CLASSIFICATION OF USER GROUP

User requirements of a customized product are defined
outside of the development team. Unambiguous, clear, under-
standable and complete requirements should be delivered to
the development team. However, most end users are unfamiliar
with how to develop a good and requirements document. Thus,
a developer needs to know the characteristics of a user to
be able to distinctly understand the action items and what
information should be gathered from the customer. The char-
acteristics of a user in defining requirements is summarized in
Table II.

Type of software product Knowledge
of using a
prototype
tool (Y/N)

Determined
layout
(Y/N)

Detailed
Design
(Y/N)

Customized product (C1) N N N
Customized product (C2) N Y N
Customized product (C3) N Y Y
Customized product (C4) Y N or Y N
Customized product (C5) Y Y Y
Generic product (P1) N/A N/A N/A

TABLE II
CHARACTERISTICS OF CUSTOMER

The class of an user can be identified by five groups
for customized product and one group for generic product,
based on the knowledge of using a prototype tool and the
ability to design user interfaces. The first group in the cate-
gory of customized product, does not know how to use the
prototype tool. In addition, a layout and detailed design is
not determined. In the scenario of first group, the Customer
can only define functionalities of an application. The second
User Group also has no experience in using prototype tool.
Nevertheless, they have more specific requirements regard-
ing functionalities and layout of the application’s. Therefore,
detailed design choices are to be suggested by development
team. The user in the third group has detailed requirements for
design and interface layout. So they need a way of succinctly
communicating requirements without using a prototype tool.
Lastly, customers can express their requirements using a
prototype tool. Customer’s requirements can be changed in
the process of listening to developers and other design experts.
However, base requirements specifications and interface design
are determined by the customers and these tasks can be
omitted in the development process done by developers. The
detailed design cannot be developed without considering the
application’s layout. thus, such a user group is not classified
in the table.

The authority of requirements and interface design for
generic products are owned by the development team. They
develop an application to compete with other products in the
market. In order to understand the needs of customers in
the market, the development team can survey or interview a

selected group of users to define the required mobile applica-
tion characteristics. During the market research, the developer
requires a communication tool such as use case diagrams to
understand the needs of the users. However, use case diagrams
are not suitable for identifying the requirements related to
mobile application’s layout and detailed interface design.

V. INTERFACE TRANSITION DIAGRAM FOR REQUIREMENT
SPECIFICATIONS OF MOBILE APPLICATION

Various approaches are used to determine a customer’s
requirements. Nonetheless, there are still many constraints in
delivering accurate requirements. Use case diagrams assist in
visualizing user requirements and do not require long training
session to learn, but, use case diagrams cannot describe
detailed functionalities and user interface. Interview or survey
techniques are document based; thus the initial requirements
can be misleading over time. Requirements for a customized
product should be defined at the user’s level. Requirements of
mobile applications can be expressed using low, medium, and
high fidelity founded on the user’s knowledge of prototype
and design tools.

A. Low fidelity diagram

Low fidelity (LF) diagrams can be used for the C1 group
in the Table II. LF diagrams can express basic finger gestures
and interface transition according to them. Fig 1 depicts LF
diagram that is divided into three sections like class diagrams.
The first section identifies user interface using an interface
name. Second section is used to briefly describe the main
purpose of the page and last section contains element name,
type, and finger gesture. Finger gesture makes UI transition.
UI transition is represented using solid line with closed and
filled arrowhead.

Fig. 1. Low fidelity interface transition diagram for UI transition

The popup menu is indicated by (p) in the page name. If
the gesture on the element in the popup page triggers page
transition, it is represented by using solid line with closed
and filled arrow head as seen in Fig 2. On the other hand,
if the gesture closes the popup menu and gets the user to
remain on the page that opens the popup menu, the gesture

123

is represented using dashed line with closed and filled arrow
head. Relationship between elements is represented by a thick
solid line surrounding the elements group.

Fig. 2. Low fidelity interface transition diagram for grouping of element and
popup menu

If the finger gesture activates an action only when it satisfies
a specific condition, it is described by using diamond like
flowchart. The condition in the diamond symbol requires a
“Yes” or “NO” response and branch to the different user
interface accordingly (Fig 3).

Fig. 3. Conditional Transition of an interface

One finger gesture in a mobile application can trigger two
or more events and these actions can be represented with open
arrow and a solid line (Fig 4). The purpose of LF diagram is
to define elements, action, and finger gestures that trigger the
action without considering a layout and detailed design.

B. Medium fidelity diagram

Medium fidelity(MF) transition diagram is used to de-
termine the layout of an interface with information in LF
transition diagram. The C2 user group in table II, can use
MF diagram to define requirement specifications. Customer
places an element without considering the details and style
of the design. Events that trigger an interface transition are
described on the transition line (Fig 5). Type of transition line
and conditional events are expressed in the same way as LF.

If LF is already implemented and additionally customer
defines MF, customer defines a layout for each interface and

Fig. 4. A finger gesture can activate two different events

Fig. 5. Medium fidelity interface transition diagram

associates the page layout with LF using the page name and
the element name (Fig 6).

C. High fidelity diagram

User group C3 in the table II can use High Fidelity (HF)
diagram to define their requirements. C3 user group can
define and provide a basic design information such as size
of an element and color (Fig 7). However, most end users
do not have professional designing skills/knowledge. Thus, an
interface designer of the development team needs to provide
a detailed guide on the MF diagram.

VI. INTERFACE TRANSITION DIAGRAM FOR REQUIREMENT
SPECIFICATIONS OF MOBILE APPLICATION

Requirements specification is one of the primary and crucial
steps in the software development life cycle. Incorrectly de-
fined or misrepresented requirements are one of the key factors
that lead to the failure of the whole project. The following

124

Fig. 6. mapping between LF and MF

Fig. 7. A finger gesture can activate two different events

case study illustrates the process of defining user requirements
for a “Log In” page of a mobile application using LF, MF
and HF diagram. Customers with inadequate knowledge of
mobile application development, can define only functional
requirements using LF diagram.

Fig. 8. Low fidelity interface transition diagram for Login page

The functional requirements of the login page, can be
represented by defining element’s name, type and event (Fig
8). Development team needs to evaluate and clarify the cus-
tomer’s requirement and suggest a layout of the application
by using the MF diagram (Fig 9). If a customer has a desired
layout for an application, the customer can define functional
requirements and layout with the help of the MF diagram. In
this scenario, the development team can save time in defining
the interface layout. Nevertheless, in order to proceed with
the actual mobile application development, the requirements
of detailed design need to be specified and defined distinctly.

Fig. 9. Medium fidelity interface transition diagram for Login page

If a customer doesn’t have specific requirements on the de-
sign, the development team needs to elicit design requirements
with a prototype or HF diagram. HF diagrams are limited in

125

expressing detailed design, but, they can present basic designs
and facilitate collaboration with the design team.

VII. CONCLUSION

This paper has described an approach to define user require-
ments for mobile application based on the user’s knowledge
of using prototype tool. Most users are unfamiliar with the
prototype tool and often do not know how to express their
requirements.

Users can use Low fidelity, Medium fidelity or High fidelity
diagrams. LF diagrams can identify element and event on
the page. Users who have requirements of interface layout,
can use MF diagrams. Basic design elements such as color,
font, alignment, and size of element can be expressed using
HF diagram. Furthermore, LF, MF, and diagrams enable
incremental definition of requirements. Since the inputs and
outputs of each diagram are clearly defined, the developers
and users can easily identify their tasks to be done next.

This paragraph describes the future research for the interface
transition diagrams. The diagrams need to be validated by
further applying to different applications. Also, systematic
management of changed requirements need to be developed.

REFERENCES

[1] https://www.statista.com/statistics/330695/number-of-smartphone-users-
worldwide/

[2] https://www.statista.com/statistics/269025/worldwide-mobile-app-
revenue-forecast/

[3] Kobryn, C. (1999). UML 2001: A standardization odyssey. Communi-
cations of the ACM, 42(10), 29-37.

[4] Dimensions of UML Diagram Use: A Survey of Practitioners
[5] H. Dar, M. I. Lali, H. Ashraf, M. Ramzan, T. Amjad, B. Shahzad, ”A

systematic study on software requirements elicitation techniques and its
challenges in mobile application development”, IEEE Access, vol. 6, pp.
63859-63867, 2018.

[6] I. Jacobson, M. Christerson, P. Jonsson. and G. Overgaad, ”Object-
Oriented Software Engineering: A Use Case Driven Approach,”
Addison-Wesley, Wokingham, 1992.

[7] F. Alhumaidan, ”A Critical Analysis and Treatment of Important UML
Diagrams Enhancing Modeling Power,” Intelligent Information Manage-
ment, Vol. 4, No. 5, pp. 231-237, 2012.

[8] A.Wasserman, Software Engineering Issues for Mobile Application
Development, Proc. of the FSE/SDP workshop on Future of software
engineering research, FOSER 2010, IEEE Comp.b16 Soc. Press, pp.
397-400

[9] J. Dehlinger and J. Dixon, ”Mobile application software engineering:
Challenges and research directions,” in Proceedings of the Workshop on
Mobile Software Engineering. Springer, 2011, pp. 29-32.

[10] Wiegers KE (1999) Software requirements. Microsoft Press, Redmond,
WA

[11] Hennicker R., Koch N.: A UML-based Methodology for Hypermedia
Design. In Proceedings of UML 2000, Evans, A., Kent, S. (Eds), LNCS,
Vol. 1939. SpringerVerlag (2000) 410-424.

[12] HENNICKER R. and KOCH N. 2001. Modeling the User Interface
of Web Apllications with UML. In Practical UML-Based Rigorous
Development Methods, Workshop of the pUML-Group at the UML´01,
Gesselschaft für Informatik, Köllen Druck-Verlag

[13] P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J. Jäälinoja, M.
Korkala, J. Koskela, P. Kyllönen, and O. Salo, ”Mobile-D: An Agile
Approach for Mobile Application Development,” presented at OOPSLA
2004, Vancouver, Canada. 2004.

[14] Kent Beck, ”Manifesto for Agile Software Development”. Agile Al-
liance, http://agilemanifesto.org, 2001.

[15] Flora, H. K., Chande, S. V., Wang, X. (2014). Adopting an agile
approach for the development of mobile applications. International
Journal of Computer Applications, 94(17)

[16] C. Villamore, D. Willis and L. Wroblewski, Touch Gesture Reference
Guide, April 15, (2010)

[17] Kumar, N. A., Krishna, K. H., Manjula, R. (2016). Challenges and
best practices in mobile application development. Imperial Journal of
Interdisciplinary Research, 2(12).

126

Correct Software by Design for Software-Defined Networking: A Preliminary
Study

Liang Hao, Xin Sun, Lan Lin, Zedong Peng
Department of Computer Science, Ball State University, Muncie, IN 47306, USA

{lhao, xsun6, llin4, zzpeng}@bsu.edu

Abstract

We report our experience of applying rigorous software
specification and design methodologies to the development
of applications for the emerging software-defined network-
ing (SDN) paradigm. While much of the prior work in the
SDN space focused on creating novel algorithms and pro-
tocols, in this paper we take the position that the imple-
mentation of those algorithms and protocols on the SDN
platform is a hard problem on its own that deserves a sys-
tematic treatment from the software engineering perspec-
tive. Through a concrete case study of implementing an es-
sential switching algorithm as an SDN app, we expose the
challenges stemmed from the unique three-tier architecture
of SDN, and propose a rigorous approach that flows from
functional requirements through stepwise refinement to de-
sign and implementation. Our case study shows promises of
the proposed approach in supporting correctness arguments
for the software developed for the SDN platform.

1 Introduction

Software-defined networking (SDN) is an emerging tech-
nology that has completely transformed modern network-
ing, with widening adoptions in industries such as IT,
telecommunications, retails, and healthcare, to name a few.
At the core of the technology is the ability to apply software
solutions to hard, long-standing networking problems while
cutting the operation costs via automation.

Until very recently the focus of the SDN community was
on creating new and SDN-specific algorithms and proto-
cols that can take advantage of the unique capabilities of
SDN to solve sophisticated networking problems, such as
highly-dynamic, fine-grained traffic engineering and adap-
tive intrusion detection. However, little attention was given
to the software engineering aspects of app development, as
it was assumed that the implementation of those algorithms
and protocols was straightforward. More recently there has

been some work, including the authors’ own, on the test-
ing and orchestration of the SDN apps that leveraged tech-
niques from the software engineering discipline. But to the
best of our knowledge, there has not been a systematic in-
vestigation on the implementation of the SDN apps guided
by software engineering principles and methodologies.

In this paper we take the position that implementing
SDN apps is a hard problem on its own that deserves a sys-
tematic treatment from the software engineering perspec-
tive. We present a case study of implementing a basic yet
essential switching algorithm on the SDN platform. Our so-
lution takes two iterations of rigorous software specification
and design. It flows from functional requirements through
stepwise refinement to design and implementation. We re-
port our experience that shows promises of the proposed ap-
proach, which also supports correctness arguments for the
software developed for the SDN platform.

2 The MAC Learning Algorithm

We introduce in this section a preliminary case study,
i.e., the MAC learning algorithm. We first describe the al-
gorithm and its implementation on a traditional switch. We
then describe how the SDN architecture differs fundamen-
tally from the traditional network architecture, and expose
the challenges of migrating the same algorithm to SDN that
stem from the architectural difference.

2.1 On a Traditional Switch

The MAC learning algorithm is implemented on every
traditional switch, typically in the firmware. It is the core
switching algorithm that enables a switch to forward pack-
ets toward their destinations. The algorithm builds the
switch table and at the same time utilizes the table to deter-
mine the switch port to which a packet should be directed.
An entry in the switch table contains (1) the hardware iden-
tification number, termed Media Access Control (MAC) ad-
dress, of some host or router in the network; this address is

DOI reference number: 10.18293/SEKE2020-081

127

Figure 1. The learning algorithm working on
a traditional network

used as the key for indexing the table, (2) the switch port
leading toward that MAC address, and (3) a timer to delete
the entry in the future in case it becomes stale. The table is
stored in the memory and is initially empty. More specifi-
cally, the algorithm has the following components (also il-
lustrated in Figure 1):
• For each incoming packet received on a port, the switch
creates an entry in the switch table if such an entry does
not exist. The entry contains (1) the MAC address in the
packet’s source address field, (2) the port from which the
packet arrived, and (3) a timer set to expire after some pe-
riod of time. If such an entry already exists, the timer will
be refreshed. If there exists an entry with the same key (i.e.,
the MAC address) but a different port, the port will be up-
dated based on the new information, and the timer be reset.
• For each incoming packet, the switch uses the MAC ad-
dress in the packet’s destination address field to look up the
table. If the MAC address is listed, the switch will send the
packet out the associated port; otherwise, the switch will
flood the packet out all active ports except the incoming port
(the port the packet was received on).
• The switch deletes an entry in the table when the asso-
ciated timer expires. This is to handle potential topology
change, e.g., hosts being removed or relocated.

2.2 The SDN Architecture

The unique three-tier architecture of SDN (illustrated in
Figure 2) has important implications on the development of
software for SDN, so we briefly describe it here. At the
bottom tier are the hardware boxes, commonly called SDN
switches. Compared to hardware boxes (such as switches
and routers) in a traditional network, SDN switches are
much dumber (and also cheaper). A traditional switch or
router has the intelligence, provided by the device firmware,
to decide for itself how to handle incoming packets, as the
firmware implements various networking algorithms and
protocols. In contrast an SDN switch does not have such

Figure 2. The three-tier SDN architecture

intelligence; it relies on the controller (the middle tier in
the SDN architecture) to provide “instructions” (technically
called FlowMod messages or simply FlowMods) on how to
handle packets and then act accordingly. The controller is a
software platform that runs on any commodity PC server,
and can be viewed as the operating system for the net-
work. On the one hand the controller interacts with the
hardware boxes and provides instructions (i.e., FlowMods)
to them upon request. On the other hand it provides a set
of APIs that supports individual SDN apps running on top
of it. The SDN apps (the top tier) collectively implement
the intelligence of the network. Each app typically man-
ages/optimizes one aspect of the network, such as switch-
ing, routing, traffic engineering, intrusion detection, etc.
They obtain an abstract representation of the network state
(e.g., topology, traffic load) from the controller and out-
put to the controller instructions on how the network state
should be modified and how incoming packets should be
handled. The controller then compiles the instructions re-
ceived from all apps to generate FlowMod messages and
sends FlowMod messages to the SDN switches.

2.3 The Challenges of Migrating the Al-
gorithm to SDN

As explained above, in the SDN paradigm the MAC
learning algorithm is to be implemented as an app running
on top of the controller. This app will be responsible for
building the tables, one for each switch. The switches are
only capable of querying the controller (which in turn con-
sults the app) to obtain necessary instructions in the form
of FlowMod messages to forward incoming packets. Such
a query from a switch contains the source and destination
MAC addresses of the packet and the switch port on which
the packet was received. This allows the app to create or up-
date the entry corresponding to the source MAC address in
the querying switch’s table. A FlowMod message from the

128

controller back to the switch is in the format of “send any
packet with source MAC address s and destination MAC
address d to the port p” or “flood any packet with source
MAC address s and destination MAC address d”.

It is important to note that, the SDN architecture requires
the querying switch to cache any FlowMod message re-
ceived from the controller in a local table structure called
FlowMod table. The switch will then use the cached Flow-
Mod messages to process subsequent packets with the same
source and destination MAC addresses, without querying
the controller again. A switch may cache as many instruc-
tions as its memory space permits. As a critical measure to
save memory space, any cached instruction will be deleted
after it has not been utilized for a period of time. This
caching technique is critical to optimizing the packet pro-
cessing speed on the switches, as querying the controller
introduces significant delays. As an example, imagine that
a large file is being transmitted over a local-area network
from the host s to the host d. Tens of thousands of packets
will be transmitted, all with the same source and destination
MAC addresses. A switch w queries the controller when it
receives the first packet and caches the FlowMod message
from the controller. The switch will then use the cached
FlowMod to forward all subsequent packets of the same file
without querying the controller again. Hence the controller
will only see the first packet of that file.

The fact that the SDN controller, and consequently all
apps running on top it, only see a small fraction of all the
packets in the network has an important implication on the
implementation of the MAC learning algorithm, or more
specifically, on refreshing the timers associated with table
entries. Recall that an entry will be refreshed every time a
packet from the same source MAC address is received. Be-
cause the controller does not see most of the packets, it will
not be able to effectively refresh the timers. As a result,
many of the timers will unnecessarily expire, causing the
app to instruct the switches to flood much more frequently
than necessary. Continuing from the file transmission ex-
ample and imagining the switch w receives a new packet
with s as the destination MAC address shortly after the file
transmission. It queries the controller which in turn con-
sults the app. But the app has timed out the table entry cor-
responding to the MAC address s because it did not see any
of the subsequent packets of that file. Thus the app, through
the controller, will instruct the switch to flood the packet.
Clearly the flooding is unnecessary in this case because the
information contained in the expired table entry is still valid.
As flooding causes significant bandwidth overhead that de-
grades the network performance, it is highly undesirable.
(On the other hand, the switch does see all the packets of
the file. We will explore in Section 5 how this knowledge of
the switch may be leveraged to prevent the MAC learning
app from unnecessarily timing out table entries.)

3 Leveraging Rigorous Software Specifica-
tion and Design Methodologies

Developing a reliable SDN app, just as developing a re-
liable piece of any software, relies on rigorous methods for
code development and testing, and a development process
that is based on more than heuristics. In our opinion, each
SDN app should first be treated as a black box, and flow
naturally through a sequence of requirements specification,
design, implementation, and testing steps. In migrating the
MAC learning algorithm from traditional network to SDN,
we applied two rigorous methods for software specification
and design, i.e., Prowell and Poore’s sequence-based spec-
ification and stepwise refinement [10, 12, 13] and Exman’s
linear software models and the modularity matrix [8, 7].

Sequence-based specification was developed in the 90’s
by the University of Tennessee Software Quality Research
Laboratory. It converts ordinary, functional requirements to
a precise specification that defines software’s response to
any possible input sequence, through a systematic sequence
enumeration process. In this process, sequences of system
inputs are enumerated in length-lexicographic order and
mapped to software’s outputs, and grouped in equivalence
classes based on behavior described in (software) require-
ments. The completed enumeration encodes a formal model
in the form of a finite state machine (a Mealy machine) that
is refined into design and implementation [10, 12, 13].

Linear software models and the modularity matrix were
recently developed by Iaakov Exman in the study of real
software system composition, as a formal theory of mod-
ularity. He proposed that the composition of a software
system can be represented by a modularity matrix, whose
rows and columns represent functionals (a generalization
of methods) and structors (a generalization of classes), re-
spectively, and 1/0-valued matrix elements indicate asserted
links (associations) (or lack of) between rows (functionals)
and columns (structors). He proved that a standard mod-
ularity matrix, in which one has only linearly independent
structors and functionals, must be both square and block-
diagonal, with disjoint diagonal blocks representing inde-
pendent system modules. He showed that canonical sys-
tems strictly obey linear software models, and larger sys-
tems tend to agree with bordered linear software models
with a few outliers near the diagonal block borders. The
outliers point to areas of coupling that need to be resolved
in system design [8, 7].

We first applied sequence-based specification to derive a
rigorous specification from functional requirements for our
chosen case study, and refined it into a state-based specifica-
tion and design. Then we applied the modularity matrix to
validate the modular design refined from the formal specifi-
cation. We derived the specification in two iterations, with
new findings at the end of the first iteration, which we in-

129

corporated into the second iteration’s work product.

4 Our Solution: The First Iteration

We started with a natural language description of the be-
havior of the MAC learning algorithm, i.e., the software
requirements, as shown in Table 1. In developing the re-
quirements we also identified a system boundary that cuts
the interfaces between the software and its external entities
in the software’s environment, i.e., the switches (communi-
cation with the switches is through the SDN controller), the
memory (that stores the lookup tables for the switches), and
the timers. Figure 3 depicts our identified system boundary
for the first increment.

Table 1. MAC learning algorithm require-
ments: The first increment

Tag Requirement
1 On receiving a packet with source MAC address sa, destination

MAC address da from switch s and in-port p, if the lookup table
for s does not contain entries for either sa or da, the learning
switch should add a new entry (sa, p, t) to the same lookup
table, start timer t, and flood the same packet to all the ports of
s except the in-port p.

2 The output of the learning switch is solely determined by the
incoming packet information, the current lookup table status,
and the timer events, as encapsulated in the most recent input.

3 On receiving a packet with source MAC address sa, destination
MAC address da from switch s and in-port p, if the lookup table
for s does not contain an entry for sa but contains an entry for
da, the learning switch should add a new entry (sa, p, t) to the
same lookup table, start timer t, and forward the same packet to
the port of da as specified in the lookup table (for s).

4 On receiving a packet with source MAC address sa, destination
MAC address da from switch s and in-port p, if the lookup table
for s contains an entry for sa but does not contain an entry for
da, the learning switch should overwrite the entry (sa, p, t) to
the same lookup table, restart timer t, and flood the same packet
to all the ports of s except the in-port p.

5 On receiving a packet with source MAC address sa, destination
MAC address da from switch s and in-port p, if the lookup table
for s contains entries for both sa and da, the learning switch
should overwrite the entry (sa, p, t) to the same lookup table,
restart timer t, and forward the same packet to the port of da as
specified in the lookup table (for s).

6 On receiving a timer going off event for the MAC address sa in
the lookup table for switch s, the learning switch should delete
the entry (sa, p, t) from the same lookup table, and stop timer
t.

From the identified system boundary we collected soft-
ware’s inputs (stimuli) and outputs (responses), as shown in
Table 2 and Table 3.

The sequence enumeration proceeds as follows. One ex-
plicitly enumerates all possible stimulus sequences first ac-
cording to the length, and within the same length lexico-
graphically. For each enumerated sequence, one maps it to

Table 2. MAC learning algorithm stimuli: The
first increment

Stimulus (Parameterized) Shorthand
Packet(source MAC address, destination
MAC address, switch, in-port)

pa(sa, da, s, p)

Look up table(switch) lt(s)
Timer going off(switch, source MAC ad-
dress)

t(s, sa)

Table 3. MAC learning algorithm responses:
The first increment

Response Shorthand
Forward forward
Flood flood
Add a new entry to the lookup table add
Overwrite an existing entry in the lookup ta-
ble

overwrite

Delete an existing (expired) entry from the
lookup table

delete

Start timer start
Restart timer restart
Stop timer stop

a software’s response based on the requirements, and de-
clares it equivalent to a prior sequence if both sequences
take the software to the same situation (i.e., internal state).
If a stimulus sequence is operationally not realizable (for
instance, when a button-pressing event happens before the
power-on event), the sequence is mapped to a special ille-
gal response, otherwise, it is legal. If a sequence is declared
equivalent to a prior sequence, it is reduced, otherwise, it is
unreduced. One proceeds from Length n to Length n + 1
only extending both legal and unreduced sequences (by ev-
ery stimulus), until there are no more sequences to extend.
At that point the enumeration is complete.

SDN MAC
learning algorithm

Switches (through
SDN controller)

Memory
(lookup table)

Timers

packets

forward /
flood

command

read

write

going
off

start /
restart /

stop

system

Figure 3. The system boundary for the first
increment

An enumeration of the learning switch algorithm is
shown in Table 4. The columns are stimulus sequences,
their mapped responses, and requirements traces, respec-
tively. We omit the column that shows reductions to prior
sequences (as explained later, all the enumerated sequences

130

are reduced to the first sequence in the table). We started
with the empty sequence λ. All the others are Length 1 se-
quences with either an incoming packet (pa(sa, da, s, p)) as
the current input, or a timer going off event (t(s, sa)). When
a packet comes in, we used predicates (in square brackets)
to refine the condition based on the lookup table status, i.e.,
whether the source address sa and the destination address
da are in the lookup table for switch s, respectively, in order
to define the software’s unique response deterministically.
It turned out that all the Length 1 sequences are reduced
to λ, suggesting a stateless software control that maps cur-
rent input (with predicate refinement) to current output. We
held the following assumptions in sequence enumeration:
(1) The pa(sa, da, s, p) and t(s, sa) events are queued by
the SDN controller for processing, hence cannot happen si-
multaneously; and (2) All the timers are set to go off after
the same time interval once started/restarted.

Table 4. A MAC learning algorithm enumera-
tion: The first increment

Sequence Response Trace
λ 0 Method
pa(sa, da, s, p)[sa ̸∈
lt(s), da ̸∈ lt(s)]

add (sa, p, t) to lt(s), start t,
flood pa(sa, da, s, p) to all the
ports of s except p

1, 2

pa(sa, da, s, p)[sa ̸∈
lt(s), da ∈ lt(s)]

add (sa, p, t) to lt(s), start t,
forward pa(sa, da, s, p) to the
port of da in lt(s)

2, 3

pa(sa, da, s, p)[sa ∈
lt(s), da ̸∈ lt(s)]

overwrite (sa, p, t) in lt(s),
restart t, flood pa(sa, da, s, p)
to all the ports of s except p

2, 4

pa(sa, da, s, p)[sa ∈
lt(s), da ∈ lt(s)]

overwrite (sa, p, t) in
lt(s), restart t, forward
pa(sa, da, s, p) to the port of
da in lt(s)

2, 5

t(s, sa) delete (sa, p, t) in lt(s), stop t 2, 6

As one could observe, our first iteration of the specifica-
tion was a direct, intuitive migration of the traditional MAC
learning algorithm, replacing distributed intelligence with
centralized intelligence, solely based on the algorithm’s be-
havior. What were overlooked are the constraints enforced
by the unique SDN architecture, i.e., the different roles
taken by the controller and the switches, as well as the
caching of instructions (in the form of FlowMod messages)
on the switches. Without considering these requirements
the controller would see and handle every packet that goes
through every switch, making itself excessively “fat” and
causing unnecessary, significant delays to degrade network
performance. This observation led to our second iteration
of the specification to be discussed next.

5 Our Solution: The Second Iteration

In the second iteration we took into consideration im-
portant architectural differences introduced by SDN, i.e.,

Table 5. MAC learning algorithm require-
ments: The second increment

Tag Requirement
1 The SDN controller maintains a lookup table for each switch

mapping MAC addresses to ports on that switch. Each switch
maintains a FlowMod table that maps (source MAC address,
destination MAC address, in-port) to (out-port, timer value).
Recall from Section 2.3 that the FlowMod table contains the
cached FlowMod messages which are instructions from the con-
troller to the switch.

2 On receiving a packet with source MAC address sa, destination
MAC address da, in-port p of switch s, if the FlowMod table
of switch s has an entry for (sa, da, p), denoted by (op, t), the
switch will forward the packet to port op, and restart timer with
value t; otherwise, it will send the packet on to the controller
for processing.

3 When the controller receives a packet with source MAC address
sa, destination MAC address da from switch s and in-port p, if
the lookup table for s does not contain an entry for da, the learn-
ing switch should add/overwrite an entry (sa, p) to the lookup
table, and flood the same packet to all the ports of s except the
in-port p.

4 The output of the learning switch is solely determined by the
incoming packet information, the current lookup table status, or
the FlowRemoved message, as encapsulated in the most recent
input.

5 When the controller receives a packet with source MAC address
sa, destination MAC address da from switch s and in-port p,
if the lookup table for s contains an entry for da (with out-port
op), the learning switch should add/overwrite an entry (sa, p)
to the lookup table, forward the same packet on to port op, and
write a FlowMod message (s, sa, da, p, op, t, add) and its re-
versed FlowMod message (s, da, sa, op, p, t, add), where t is
the timer value, to switch s.

6 When a FlowMod table entry expires, the switch automati-
cally removes it from the FlowMod table, and sends a FlowRe-
moved message to the controller. When the controller receives
a FlowRemoved message from switch s, with source MAC ad-
dress sa, destination MAC address da, and in-port p, it deletes
the lookup table entry (sa, p) for s, and sends a FlowMod mes-
sage (s, da, sa, p, delete) to remove the reversed FlowMod ta-
ble entry maintained by s.

7 Any FlowMod table entry maintained by the switch that goes
stale (it only goes stale when the out-port becomes incorrect and
cannot reach the destination) must eventually time out (expire)
to prevent packet loss.

the two-level architecture in which the controller and the
switches take on different roles. We notice the following
for the SDN environment:
• Lookup tables are on the controller, rather than on the
switches, and are outside of the system boundary (of the
specified learning algorithm).
• The controller only sees the packets that the switches do
not know how to handle (forward).
• The controller sends the switches FlowMod messages
that are maintained by the switches. The FlowMod mes-
sages have different information packed than the informa-
tion packed in a lookup table entry.

131

• No timer is associated with lookup table entries. Timer
effect is simulated on the switches.

The new knowledge we learned contributed to our de-
rived requirements for the second increment shown in Ta-
ble 5. A new system boundary was identified as depicted in
Figure 4, from which we defined stimuli and responses in
Table 6 and Table 7.

SDN MAC

learning

algorithm

Switches

(through

SDN
controller)

Memory

(lookup

table)

unmatched
packet

flood command

forward command

FlowRemoved
message

read a lookup
table entry

write a lookup
table entry

FlowMod message

system

Figure 4. The system boundary for the sec-
ond increment

Table 6. MAC learning algorithm stimuli: The
second increment

Stimulus (Parameterized) Shorthand
Unmatched packet(switch, source MAC ad-
dress, destination MAC address, in-port)

pa(s, sa, da, p)

Look up table(switch) lt(s)
FlowRemoved message(switch, source MAC
address, destination MAC address, in-port)

frm(s, sa, da, p)

Table 7. MAC learning algorithm responses:
The second increment

Response Shorthand
Forward forward
Send a FlowMod message to the switch with
the following information: switch, source
MAC address, destination MAC address, in-
port, out-port, timer value, type (add or
delete)

flowmod(s, sa, da, ip,
op, t, add) or
flowmod(s, sa, da, ip,
delete)

Flood flood
Add/Overwrite a new entry to the lookup ta-
ble with the following information: switch,
source MAC address, in-port

add-lt(s, sa, p)

Delete an existing (expired) entry from the
lookup table with the following information:
switch, source MAC address, in-port

delete-lt(s, sa, p)

We completed a sequence enumeration for the second
increment in Table 8. Similarly all Length 1 sequences are
reduced to the empty sequence indicating a stateless soft-
ware control for this simple SDN app. This is because we
used predicates to refine the lookup table status, at a certain

level of abstraction, at the receipt of an unmatched packet
or a FlowMod message from the switch, to deterministically
identify software’s behavior while keeping the enumeration
productive.

Table 8. A MAC learning algorithm enumera-
tion: The second increment

Sequence Response Trace
λ 0 Method
pa(s, sa, da, p)
[da ̸∈ lt(s)]

add-lt(s, sa, p), flood
pa(s, sa, da, p) to all the ports of
s except p

1, 2, 3, 4

pa(s, sa, da, p)
[da ∈ lt(s)]

add-lt(s, sa, p), forward
pa(s, sa, da, p) to the port
of da in lt(s) (denoted by op),
flowmod(s, sa, da, p, op, t, add),
flowmod(s, da, sa, op, p, t, add)

1, 2, 4, 5, 7

frm(s, sa, da, p) delete-lt(s, sa, p),
flowmod(s, da, sa, p, delete)

1, 2, 4, 6, 7

Refinement of a sequence-based specification into de-
sign and implementation proceeds with selecting a software
architecture and capturing how to gather each stimulus, gen-
erate each response, and maintain each system state.

Towards the implementation of an SDN MAC learning
algorithm, we selected Mininet [1] as the network emula-
tor, and Floodlight [4] as the open SDN controller. There
is a learning switch already provided by Floodlight, which
we disabled and replaced with a simple learning switch
implemented from scratch based on our formal specifica-
tion. This consists of two Java files that define a class
and an interface: SimpleLearningSwitch.java and
ISimpleLearningSwitchService.java.

In Table 9 and Table 10 we show how one could write
Java code to gather each stimulus and generate each re-
sponse. No state data is needed for this simple stateless
control as identified by the specification.

We defined functionals from the requirements in Ta-
ble 11, and structors from our design (classes and methods)
in Table 12. Figure 5 shows a standard modularity matrix
for the MAC learning algorithm based on these definitions
that obeys linear software models. Due to the simplicity of
this app (a single class implementing the algorithm), struc-
tors correspond to a group of class methods rather than a
group of classes.

Testing of the SDN learning switch algorithm turned out
to be a trivial testing problem given the stateless (rather than
a stateful) software control. Using predicate refinement, we
were able to enforce a trajectory onto a specific lookup table
state, enabling a direct mapping from the current input (e.g.,
an incoming packet) to the current output, and exhaustive
testing of all scenarios of uses.

132

Table 9. MAC learning algorithm stimuli gath-
ering

Stimulus Design / Implementation
pa(s, sa, da, p) SimpleLearningSwitch.receive(IOFSwitch sw,

OFMessage msg, FloodlightContext cntx),
msg.getType() == PACKET IN, sw ⇒ s, cntx
⇒ (sa, da), msg ⇒ p

lt(s) Map⟨IOFSwitch, Map⟨MacAddress, OFPort⟩⟩,
SimpleLearningSwitch.macToSwitchPortMap,
macToSwitchPortMap.get(s)

frm(s, sa, da, p) SimpleLearningSwitch.receive(IOFSwitch sw,
OFMessage msg, FloodlightContext cntx),
msg.getType() == FLOW REMOVED, sw ⇒ s,
msg ⇒ (sa, da, p)

Table 10. MAC learning algorithm response
generation

Response Design / Implementation
forward SimpleLearningSwitch.pushPacket(IOFSwitch sw,

Match m, OFPacketIn msg, OFPort outport)
flowmod(s, sa, da,
ip, op, t, add) or
flowmod(s, sa, da,
ip, delete)

SimpleLearningSwitch.writeFlowMod(IOFSwitch
sw, OFFlowModCommand command, OF-
BufferId buffered, Match m, OFPort output),
sw ⇒ s, command ⇒ OFFlowModCom-
mand.ADD or OFFlowModCommand.DELETE, m
⇒ (sa, da, ip), outport ⇒ op, SimpleLearning-
Switch.FLOWMOD DEFAULT IDLE TIMEOUT
⇒ t

flood SimpleLearningSwitch.writePacketOutForPacketIn
(IOFSwitch sw, OFPacketIn msg, OFPort porttype)
Pass in OFPort.FLOOD as porttype

add-lt(s, sa, p) SimpleLearningSwitch.addToPortMap(IOFSwitch
sw, MacAddress sourceMac, OFPort inport)

delete-lt(s, sa, p) SimpleLearningSwitch.removeFromPortMap(IOF-
Switch sw, MacAddress sourceMac)

Table 11. MAC learning algorithm functionals

Functional Requirement
Processing in-packets: collecting information 3, 4, 5, 6
Processing in-packets: sending on to switches 3, 4, 5
Writing FlowMod messages on switches 2, 4, 5, 6, 7
Maintaining lookup table entries 1, 3, 4, 5, 6

6 Related Work

Software-defined networking is a new paradigm in com-
puter networking that is gaining significant momentum.
The key concept of softwarization was first introduced in
the seminal work [11]. For the next several years, the
research primarily focused on the technologies that en-
abled the core platform. This includes the development of
the controller software(e.g., Floodlight [4] and OpenDay-
light [2]), the communication protocol (called OpenFlow)
between the hardware boxes and the software controller [3],

Table 12. MAC learning algorithm structors

Structor Class Method
Retrieving relevant
information from
incoming packets

SimpleLearningSwitch.receive, createMatch-
FromPacket

Sending received
packets to switches

SimpleLearningSwitch.pushPacket, Simple-
LearningSwitch.writePacketOutForPacketIn

Writing FlowMod
messages to switches

SimpleLearningSwitch.writeFlowMod

Processing lookup ta-
ble entries

SimpleLearningSwitch.addToPortMap, Sim-
pleLearningSwitch.removeFromPortMap,
SimpleLearningSwitch.inLookupTable

Figure 5. A standard modularity matrix for the
SDN MAC learning algorithm

the pipeline packet processing on the hardware boxes [5],
and so on.

More recently and as the core SDN platform has been
established, the networking community has begun to shift
its attention to the development of SDN apps. The develop-
ment has largely focused on the creation of advanced net-
working algorithms and techniques that utilize the unique
capabilities provided by the SDN platform, such as direct
programmability and centralized control, to solve hard and
long-standing problems in networking, such as dynamic
traffic engineering [9], efficient and intelligent anomaly de-
tection [15], optimized energy efficiency [14], to name a
few. Unfortunately the problem of implementing those
algorithms and techniques into software applications is
largely overlooked, as it has been assumed that the imple-
mentation is straightforward. This paper takes the position
that the implementation is in fact a non-trivial problem, and
our major contributions are to shed light on the implemen-
tation complexity, and to propose and sketch an initial so-
lution. As such this work complements the prior research
well. To the best of our knowledge, no prior work has sys-
tematically addressed the software engineering problems in
SDN application development.

Finally, we wish to note that there has been effort (in-

133

cluding the authors’ own work) in applying software engi-
neering techniques in the SDN context, but mainly to the
testing [6, 16] and orchestration [17] of SDN apps. In con-
trast, this paper focuses on the implementation of those ap-
plications.

7 Conclusion

The emerging software-defined networking paradigm
revolutionizes computer networking and presents new chal-
lenges to the software engineering community. The ar-
chitecture enabled by SDN enforces re-examination of the
many assumptions (that have been taken for granted in de-
veloping traditional networking software), when one devel-
ops SDN control software. We propose a systematic and
methodical approach to SDN app development through rig-
orous software specification and design methodologies, that
can be applied to developing new SDN apps, or migrating
existing algorithms and protocols to the SDN environment.
We illustrate a preliminary case study of the MAC learning
algorithm that shows promises of achieving correct soft-
ware by design for software-defined networking, through
a sequence of refinement steps. Our future work includes
further validation of our approach via more case studies of
more sophisticated SDN apps to address scalability, and uti-
lizing/augmenting existing tool support.

Acknowledgments

This work was generously funded by Air Force Research
Laboratory(AFRL) through the NSF Security and Software
Engineering Research Center (S2ERC), and by the National
Science Foundation (NSF) under Grants CNS-1660569 and
1835602. Any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of AFRL,
S2ERC, or NSF.

References

[1] Mininet: An Instant Virtual Network on your Laptop (or
other PC). http://mininet.org.

[2] The OpenDaylight Project. http://opendaylight.
org.

[3] OpenFlow Specifications. https:
//www.opennetworking.org/
software-defined-standards/
specifications/.

[4] Project Floodlight: Open Source Software for
Building Software-Defined Networks. http:
//www.projectfloodlight.org/floodlight/.

[5] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKe-
own, M. Izzard, F. Mujica, and M. Horowitz. Forwarding

metamorphosis: Fast programmable match-action process-
ing in hardware for SDN. SIGCOMM Computing Commu-
nications Review, 43(4):99–110, 2013.

[6] M. Canini, D. Venzano, P. Perešı̀ni, D. Kostic̀, and J. Rex-
ford. A NICE way to test Openflow applications. In Pro-
ceedings of the 9th USENIX Conference on Networked Sys-
tems Design and Implementation, pages 127–140, San Jose,
CA, 2012.

[7] I. Exman. Linear software models: Standard modularity
highlights residual coupling. International Journal of Soft-
ware Engineering and Knowledge Engineering, 24(2):183–
210, 2014.

[8] I. Exman. Conceptual integrity of software systems: Ar-
chitecture, abstraction and algebra. In Proceedings of the
29th International Conference on Software Engineering and
Knowledge Engineering, pages 416–421, Pittsburgh, PA,
2017.

[9] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi,
K. N. B., C. Bhagat, S. Jain, J. Kaimal, S. Liang, and et al.
Before and after: Managing hierarchy, partitioning, and
asymmetry for availability and scale in Google’s software-
defined WAN. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, pages
74–87, Budapest, Hungary, 2018.

[10] L. Lin, S. J. Prowell, and J. H. Poore. An axiom system
for sequence-based specification. Theoretical Computer Sci-
ence, 411(2):360–376, 2010.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Open-
Flow: Enabling innovation in campus networks. Computer
Communication Review, 38:69–74, 2008.

[12] S. J. Prowell and J. H. Poore. Foundations of sequence-
based software specification. IEEE Transactions on Soft-
ware Engineering, 29(5):417–429, 2003.

[13] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore.
Cleanroom Software Engineering: Technology and Process.
Addison-Wesley, Reading, MA, 1999.

[14] M. Rahnamay-Naeini, S. S. Baidya, E. Siavashi, and
N. Ghani. A traffic and resource-aware energy-saving mech-
anism in software defined networks. In International Con-
ference on Computing, Networking and Communications,
pages 1–5, Kauai, HI, 2016.

[15] A. Santos da Silva, J. A. Wickboldt, L. Z. Granville, and
A. Schaeffer-Filho. ATLANTIC: A framework for anomaly
traffic detection, classification, and mitigation in SDN. In
IEEE/IFIP Network Operations and Management Sympo-
sium, pages 27–35, Istanbul, Turkey, 2016.

[16] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai,
E. Huang, Z. Liu, A. El-Hassany, S. Whitlock, and et al.
Troubleshooting blackbox SDN control software with min-
imal causal sequences. In Proceedings of the 2018 Confer-
ence of the ACM Special Interest Group on Data Communi-
cation, pages 395–406, Chicago, IL, 2014.

[17] X. Sun and L. Lin. Leveraging rigorous software specifica-
tion towards systematic detection of SDN control conflicts.
In Proceedings of the 31st International Conference on Soft-
ware Engineering and Knowledge Engineering, pages 193–
258, Lisbon, Portugal, 2019.

134

DOI reference number: 10.18293/SEKE2020-114

Dynamic Architecture-Implementation Mapping for
Architecture-Based Runtime Software Adaptation

Cuong Cu1, Rachel Culver2, and Yongjie Zheng2
1CyberSource Corporation, Austin, Texas, USA

2Department of Computer Science and Information Systems, California State University San Marcos, USA
csc823@gmail.com, culve005@cougars.csusm.edu, yzheng@csusm.edu

Abstract—Architecture-based software adaptation is a promising
method that adapts a software system by evolving its architectural
model, which is generally easier to understand and manipulate
than source code. The wide-scale practice of the method requires
an approach to automatically mapping adaptive changes that are
planned and deployed in the architecture to modifications of
running code. This involves two main challenges: maintaining
architecture-implementation conformance and dynamic software
updating. Existing approaches fail to address them simultaneously
to enable architecture-based adaptation. This paper presents a
novel approach combining an architectural variability
implementation mechanism with an architecture framework. The
approach automatically updates both source code and running
code during architectural evolution. As an initial assessment, we
applied the approach to the adaptation of a chat application.

Keywords—software architecture, architecture-implementation
conformance, software evolution

I. INTRODUCTION
A self-adaptive software [15] modifies its own behavior in

response to changes in its operating environment, such as end-
user input, external hardware devices and sensors, or program
instrumentation. Architecture-based adaptation [5, 12, 17] is an
important result from software architecture research. A software
system’s architecture is the set of principal design decisions
made about the system [19]. It is commonly modeled as a
configuration of components connected via interfaces, using an
architecture description language (ADL). Architectural models
do not contain implementation details and generally are easier to
understand and manipulate than source code.

Figure 1 shows an existing infrastructure of architecture-
based software adaptation that this research aims to support. It
separates adaptation activities into two simultaneous processes:
adaptation management (the upper half) and evolution
management (the lower half). Adaptation management monitors
and evaluates the application and its operating environment,
plans adaptation, and deploys change descriptions in
architectural terms (e.g., replacing a component) to the running
application. Evolution management is responsible for evolving
the application by mapping the deployed architectural changes
to modifications of the application’s running implementation,
while ensuring runtime conformance between the architecture
and implementation. This is our focus in this project, and it
primarily involves the following two challenges.

Fig. 1. An infrastructure of architecture-based runtime adaptation [17].

• Mapping changes in the architecture to automatic updating
of source code. Software architecture may be frequently
changed during architecture-based adaptation: a component
may be replaced by another component, and a new interface
may be added to a component. These changes affect the code
in various ways and at different degrees of granularity [4].
Existing architecture-centric approaches often solely rely on
code generation [6] to automatically update the code. This is
not sufficient because the manually developed code (i.e.,
user-defined code) also exists and is often mixed with
generated code. It is difficult under this circumstance either
to protect user-defined code from being overwritten or to
update user-defined code accordingly.

• Dynamically modifying running code after source code is
updated. This is essentially a problem of dynamic software
updating [13] that involves several issues, such as swapping
code and transferring application state (e.g., the current
values of program variables) to new code. None of the
existing architecture-implementation mapping approaches
[11, 14, 16, 22] addresses these issues. Existing dynamic
software updating techniques [1, 10, 13] are mainly for

135

language-level program adaptation. They typically require
extension of existing programming languages or the use of a
third-party middleware. These requirements may add to the
complexity of implementing architectures and thus are not
appropriate for architecture-based runtime adaptation.

In this paper, we present an architecture-implementation
mapping approach to supporting architecture-based runtime
adaptation shown in Figure 1. An important insight that we have
in this research is that the architectural elements that are
planned/anticipated to be changed (i.e., variable) should be
implemented differently from the stable or core elements. Their
implementations should be either loosely bound to the rest of the
system (e.g., in a separate module) or can be easily identified
and updated (e.g., via code annotations). This opens up the
opportunity of automatic updating of source code (including
user-defined code) when the variable architectural elements are
changed as planned during architectural adaptation.

The first contribution of our approach is a novel source code
model that implements different kinds of variable architectural
elements in specific ways. It extends an existing implementation
model that we developed for product line architecture [21, 22],
which also involves architectural variability. The original model
decouples the generated code and user-defined code of each
architecture component into independent code modules (e.g.,
classes). Our approach further divides the user-defined code into
modules that implement the component’s main logic and
variable interfaces respectively. Moreover, our approach uses an
annotative technique in the user-defined code to indicate code
fragments (e.g., a single line of code) corresponding to variable
architectural elements. When the architecture is changed, our
approach automatically updates both generated code (via code
regeneration) and user-defined code (via annotation processing)
to maintain architecture-implementation conformance.

Additionally, our approach includes a novel software
framework named DynaMyx that automatically updates running
code of a component when its source code is changed (e.g., as a
result of mapping architectural changes to source code described
above). DynaMyx extends an existing architecture framework,
Myx [9], which provides built-in implementations (e.g., APIs,
abstract classes) for implementing architectures. On top of that,
DynaMyx includes modules that encapsulate the logic (e.g.,
transfer state, swap code) of dynamic software updating from
the overlying application. This allows the developer to focus on
application-specific logic, while the DynaMyx framework
automatically monitors source code, detects its changes, reloads
the changed code, and migrates the runtime state to the new code
without stopping the running code.

We implemented a prototype of the approach in ArchStudio
[2], an Eclipse-based architecture development platform. As an
initial assessment, we applied the approach to the adaptation of
a chat application that has an explicit architectural model. We
changed its architecture while the application was running, and
observed that the running code was dynamically updated with
our approach. After that, we inspected both the source code and
the application’s behavior (e.g., functions, runtime data) to
assess whether the application functions appropriately and
whether its architecture and running code are consistent. We
created a video demo [7] to illustrate this process.

II. APPROACH
Figure 2 provides an overview of our approach. The

rectangle at the top represents different kinds of variable
architectural elements that the approach supports, including
replacement of a component, replacement of an interface, and
addition of an interface. We use an existing architectural
modeling approach and tool called ArchFeature [3] that we
developed in a prior project. ArchFeature supports modeling and
evolution of architectural variations using an existing XML-
based ADL, xADL [8]. Our focus in this project is on mapping
of architectural changes to both source code and running code.
The gray boxes in Figure 2 represent two main contributions of
the approach: (1) a source code model (supported by a code
generator and an annotation processor) that regulates the
implementation of an architecture component to enable
automatic modifications of source code; (2) the DynaMyx
framework that extends the Myx framework as mentioned in
Section I with the capability of automatic updating of running
code. Each is introduced in the following subsections.

A. Architectural Variability Implementation
Our approach includes a novel source code model combining

code generation, code separation, and an annotative technique in
the implementation of an architecture component. As shown in
Figure 2, the model divides a component’s source code into the
following three independent modules and uses a program
composition mechanism (e.g., method delegation) to integrate
the separated code. This enables a separation of decision space
within the implementation of each component and offers a novel
way to implement different variations in the architecture.

Generated Code: a module that is generated from the
component’s architectural specification. It contains routine
implementation of the externally visible information (e.g.,

. . .

Generated Architectural Code
(e.g., architecture topology, framework specifics)

User-Defined Core Code
(with annotations)

User-Defined Variability
Code (with annotations)

Myx Framework
Code

Monitor
Code

Reloader
Code

Wrapper
State

Manager

A
rc

hi
te

ct
ur

al

C
ha

ng
es

So
ur

ce
 C

od
e

 M
od

el
D

yn
aM

yx

Fr
am

ew
or

k

Executing Implementation (i.e., Running Code)

Adaptation
Finalizer

Code Generator and Annotation Processor

Fig. 2. Approach overview.

136

interfaces) of the component. The generated code encapsulates
knowledge about architecture topology and related variations
(e.g., implementation of an optional interface). It does not need
or allow manual modification, and implements the application-
specific methods (e.g., methods defined in the component’s
interfaces) by redirecting request to a separate module (i.e., user-
defined code modules explained below), where the methods are
manually implemented.

User-Defined Core Code: a module that contains manually
developed implementation details of the component’s main
logic. It implements a program interface including the methods
that generated code needs the programmer to develop. The user-
defined core code represents the internal implementation of the
component and encapsulates implementation-specific concerns
(e.g., use of code libraries and algorithms). It addresses related
architectural variations (e.g., replacement of a component for a
different implementation) by switching between alternative
user-defined modules, which are represented by the overlapping
boxes in Figure 2.

User-Defined Variability Code: a manual module that is
separated from the user-defined core code above. It contains
implementation details of a construct (e.g., an optional interface)
that can vary independently of the component. This reduces the
impact of the variation (e.g., inclusion/exclusion of the
construct) on the rest of the component’s user-defined code.
Similar to the core module, the variability module implements a
program interface, which only includes methods specific to the
construct. A library of variability modules containing different
implementation mechanisms may also exist.

Our approach also includes an architecture-based code
annotation technique that is used in the user-defined code
modules described above to indicate optional fine-grained code
fragments (e.g., a method, a line of code), which may be added
or removed corresponding to the adaptive changes made to the
architecture. An annotation is defined as a Java annotation (i.e.,
@Optional) wrapped by a block comment (i.e., /*…*/) as shown
below. It contains the name(s) of the feature(s) that the annotated
code is related to. Each feature is represented as a predefined
value of a Java enum named Feature (i.e., Feature.{feature-
name}). In particular, the Feature enum is generated from the
architecture (hence architecture-based) and includes the names
of all the features that are related to the corresponding
component in the architecture. Only the included names can
appear in an annotation used in the component’s code. In this
way, the programmer does not need to manually type in a feature
name. When the architecture is changed, the related code
fragments and annotations are automatically updated by the
annotation processor shown in Figure 2.

/*@Optional(Feature.{feature-name}, …)*/
Figure 3a shows an architecture example of a text-based chat

application. The architecture has four components (i.e.,
rectangles) that are connected via interfaces (i.e., triangles). All
the elements drawn using dashed lines are variable for three
features: sending system messages (e.g., a smiley face), saving
chat history using different mechanisms (e.g., file system,
database), and sharing files. Figure 3a also shows an example of
variability specification in the xADL language. It defines an
optional interface of Component Server for FileSharing.

Client Server

Chat
History

Message
Library

saveMsgloadMsg

sendMsg

fwdMsg
uploadFile

01 class ServerArch extends MyxComponent{
02 IServer _imp = getCoreImp();
03 IFileSharing fileImp = getFileImp();
04 IFwdMsg out1;
05 IChatHisotry out2;
06 public void init(){
07 out1= MyxUtils.getService(“FwdMsg”);
08 out2= MyxUtils.getService(“ChatHistory”);
09 }
10 public void destroy(){}
11 … //other lifecycle methods
12 public void sendMsg(String msg){
13 _imp.sendMsg(msg);
14 }
15 public void uploadFile(File f) {
16 fileImp.uploadFile(f);
17 }
18 }

01 interface IServer {
02 public void sendMsg(String msg);
03 }

01 interface IFileSharing {
02 public void uploadFile(File f);
03 }

01 class ServerImp implements IServer{
02 ServerArch _arch;
03 public void sendMsg(String msg){
04 _arch.out1.fwdMsg(msg);
05 /*@Optional(Feature.ChatHistory)*/
06 _arch.out2.saveMsg(msg);
07 }
08 }

01 /*@Optional(Feature.FileSharing)*/
02 class FSImp implements IFileSharing{
03 ServerArch _arch;
04 public void uploadFile(File f){...}
05 }

(a)

(b)

01 <interface id=”i03”>
02 <optional>
03 <feature>
04 FileSharing
05 </feature>
06 </optional>
07 </interface>

Fig. 3. (a) Architecture example of a chat application; (b) Code example of Component Server.

137

Figure 3b shows the code example of Component Server
implemented using our approach. The generated code (Class
ServerArch) includes references to user-defined modules (Lines
2-3), references to connected components (Lines 4-5), lifecycle
methods and APIs required by the DynaMyx framework
(introduced in the following subsection), and application-
specific methods (Lines 12-17) that are implemented by calling
the corresponding user-defined module. The user-defined core
code (Class ServerImp) and variability code (Class FSImp) each
implements a program interface (IServer and IFileSharing) that
is also generated and includes the methods to be manually
developed. The user-defined code modules contain architecture-
based annotations that are attached to optional code fragments
(Line 6 of Class ServerImp). Note that the user-defined code
may call the methods of other components via its generated code
(e.g., Lines 4 and 6 of Class ServerImp).

B. DynaMyx Framework
Myx is an existing architecture framework written in the

Java programming language. It includes a set of modules as
built-in implementations of key architectural elements, which
are used to develop an architecture-based application. Myx also
encapsulates the logic for bootstrapping the application and
regulating interactions (e.g., method calls) between components.
This allows application developers to focus on developing
application-specific logic. DynaMyx inherits these capabilities
(i.e., supporting architecture implementation) from Myx. In
particular, DynaMyx maintains Myx’s interface (e.g., APIs and
lifecycle methods that are underlined in Figure 3b) to the
overlying application. All the applications originally built on
Myx can still be correctly executed with DynaMyx. This is
reflected in Figure 2 as all the DynaMyx modules are underneath
Myx and are invisible to the application code above.

DynaMyx extends Myx with the capability of dynamic
software updating and hides the related complexity from
implementing architectures. This represents a novel and
promising approach to supporting architecture-based runtime
adaptation. DynaMyx includes five new modules: Code
Monitor, Code Reloader, Code Wrapper, State Manager, and
Adaptation Finalizer as shown in Figure 2. It automatically
detects source file changes, complies the program from the
changed source files, starts it up alongside the old program,
transmits its state to the new program, and finally swaps the
initialized new program with the old program. The entire
process consists of the following five steps.

Step 1 – Detect code changes. DynaMyx works with an
program development tool (e.g., Eclipse) that automatically
complies source code when it is changed. The Code Monitor
module of DynaMyx monitors the modified dates of every
component’s compiled code files. If a change is detected in a
component, Code Monitor automatically triggers the steps
below to update the component’s running code. Other
components are not affected during this process.

Step 2 – Reload changed code into the running system. The
Code Reloader module includes a dedicated code loader, which
enforces reloading of a modified code file into the system (e.g.,
Java Virtual Machine). The code reloading will occur if the
component is inactive and is not communicating with other
components. This is determined based on Myx’s capability of
managing component communications as mentioned earlier.

Step 3 – Create new instances from reloaded code. The new
code instances are not bound to the system at this point.

Step 4 – Transfer application state to new code instances
and initialize them afterwards. State Manager processes user-
defined code to transfer state for the updated components.
During this process, it bypasses security scope, especially the
private and protected scopes, to access and copy state from old
stances to new instances. In particular, State Manager is able to
transfer state in a class hierarchy and support properties that are
inherited and defined in a parent class. After that, the Manager
will initialize new instances with the transferred state by calling
the component’s Myx lifecycle methods (e.g., init underlined in
Figure 3b).

Step 5 – Swap (i.e., bind) new instances into the running
system and discard old instances. A challenge involved at this
point is updating the references of other components to old code
instances, which will be swapped out of the memory. It is
difficult to detect all the related references as this is essentially
a problem of dynamic code analysis. DynaMyx addresses the
challenge by wrapping the implementation of each component
with Code Wrapper (implemented based on Java Proxy). The
Wrapper, instead of the component’s code, is referenced by the
code of other connected components. The Wrapper serves as a
delegate that intercepts and redirects the function calls from the
connected components. At the end of the adaptation, the
Adaptation Finalizer module updates the Wrapper to refer to
new instances of the component’s code and bind new instances
into the system.

Table 1. Mapping Runtime Architectural Changes to both Source Code and Running Code.
Runtime architectural changes Mapping to source code Mapping to running code

Component addition/removal Regenerate code to include/exclude the
component’s architectural code.

Load/unload code and
create/destroy instance.

Component replacement Regenerate code to switch to a different
user-defined core module.

Reload new code; create new
instance; transfer state; swap code.

Provided interface addition/removal Regenerate code to include/exclude the
interface’s architectural code.

Load/unload code and
create/destroy instance.

Provided interface replacement Regenerate code to switch to a different
user-defined variability module.

Reload new code; create new
instance; transfer state; swap code.

Required interface addition/removal Regenerate code; process annotations and
code fragments in user-defined modules.

Reload new code; create new
instance; transfer state; swap code.

Connection addition/removal Regenerate the bootstrapper program. Reload the bootstrapper program.

138

C. Mapping Architectural Changes to Code
Table 1 summarizes our approach’s capabilities of mapping

typical kinds of runtime architectural changes to both source
code and running code based on the implementation model and
DynaMyx framework presented in this section. It distinguishes
a provided (input) component interface from a required (output)
interface. A provided interface contains the methods
implemented within the component, while a required interface
contains the methods that are implemented by another
component and used by the current component. The connection
changes are handled by Myx as mentioned in Section II.B.

III. PRELIMINARY EXPERIENCE
We developed a prototype of the approach in the ArchStudio

open-source system as mentioned in Section I. The prototype
includes a code generator, an annotation processor, and the
DynaMyx framework. The code generator is built using the
Eclipse JET code generation engine [6] that follows a template-
based code generation paradigm. The code generation templates
capture routine implementations of software architecture. The
annotation processor is built using the ANTLR parser generator
[20]. It automatically identifies and updates code annotations
and code fragments corresponding to an architectural change.
We integrated these tools with the ArchFeature architectural
modeling tool mentioned in Section II. This provides us with a
platform where we can assess our approach.

We will consider the architecture-implementation mapping
approach presented in this paper successful if (1) it maintains
conformance between a software’s architecture, its source code,
and its running code when the planned architecture changes are
deployed; (2) the dynamically-updated running software
behaves appropriately (with the updated behavior) and
continuously (with the transferred state); (3) the overhead in
terms of executing time and memory requirement during
adaptation is acceptable. To validate our approach along all
these three dimensions, we applied the approach and tools to a
chat application.

The chat application was implemented by two Masters
students based on the approach presented in this paper. It has a
list of features (e.g., File Sharing, Game, and Template) and an
explicit architectural model developed using the ArchFeature
tool. It has around 15K SLOC, including generated code, user-
defined code, and code annotations. The architecture and code
are consistent with each other. This was validated using a
consistency checking tool of ArchStudio. We assessed the
approach by executing the chat application and exercising some
of its functions (e.g., chat) to generate runtime state (e.g., chat
messages). We then used the ArchFeature tool to change its
architecture while the application was running. We exercised
different kinds of architectural changes as discussed in the paper,
such as component removal and interface addition, which were
eventually reflected into the running code by our approach. In
the end, we checked architecture-implementation conformance
using the tool mentioned above. We also inspected the behavior
and application data of the updated chat application to validate
whether it still functions correctly.

Figure 4 shows screenshots of the chat application’s
architectural model (opened in our ArchFeature modeling tool)
and user interface (i.e., a chat client window). In one of the
experiments, we removed the Template feature (selected in the
feature list) and its related architectural elements while the
application was running. Our approach was then triggered to
automatically update the application’s source code (via code
regeneration and annotation processing) and running code (with
DynaMyx) without terminating its execution. When the
adaptation was completed, we noticed that a related user
interface element (e.g., the button circled in the figure)
disappeared since the corresponding code was dynamically
removed by our approach. Meanwhile, the application state
(e.g., chat messages) was successfully preserved. We created a
video demo [7] to illustrate the process described above.

Overall, our approach was able to automatically update both
the source code and running code of the chat application when
its architecture was changed at runtime. We validated

Fig. 4. Architecture-based runtime evolution of a chat application.

139

conformance between the updated architecture and
implementation after each evolutionary operation. The system’s
new behavior also matched the corresponding architectural
changes, and we did not notice any performance degradation
during the adaptations. A limitation of DynaMyx that we found
is that the new state must be determined and transferred from the
existing state. Our approach does not address inferring new state
information, which usually requires manual intervention (due to
lack of information). For example, it cannot automatically
transfer state to a new field added in the new code since this
information does not exist in the old code.

IV. RELATED WORK
Several architecture-implementation mapping approaches

exist, including programming language design [11], code
generation [6], and architecture frameworks [9, 16]. These
approaches successfully address the challenge of bridging the
abstraction gap between architecture constructs and program
elements during the initial development of a software system.
They can maintain conformance between the architecture and
source code along certain criteria, such as style conformance
[16], communication integrity [11], or quality concerns [14].
However, none of them addresses runtime conformance
between the architecture and running code in architecture-based
self-adaptation. Existing architecture frameworks, such as C2
[16] and Myx [9], provide fairly well understood source code
that assists developers in implementing systems conforming to
an architecture style. They do not support the mapping of
architecture changes to code and require an additional mapping
approach (e.g., the presented work) to maintain architecture-
implementation conformance.

Existing architecture-based runtime adaptation approaches
address some important issues in this area, such as adaptation
infrastructure [5, 12, 17] and architecture styles [18]. These
approaches reveal the benefits of a self-managed software
architecture. In terms of mapping architectural changes to
running code, they mainly rely on existing architecture-
implementation mapping approaches, such as architecture
frameworks and code generation, which are not sufficient as
described above. For example, existing approaches in this area
cannot support architectural changes (e.g., replace an interface)
involving the challenges of automatically updating user-defined
code and dynamic software updating.

V. CONCLUSION
This paper presents an approach that maintains runtime

conformance between the architecture and running system. This
is essential to architecture-based runtime adaptation, but fails to
be addressed by the existing approaches of dynamic software
updating and architecture-implementation mapping. The
approach has two main contributions: (1) a variability-specific
architecture implementation approach that enables automatic
modifications of source code (e.g., user-defined code) during
architectural adaptation, and (2) an architecture framework that
encapsulates dynamic software updating mechanisms and
enables automatic modifications of running code. The initial
assessment reveals that our approach is capable of supporting
architecture-based runtime software adaptation. We intend to
further evaluate the approach through a long-term study with a
large software system in the future.

REFERENCES
[1] A. Orso, A. Rao and M. J. Harrold, “A technique for dynamic updating of

Java software,” International Conference on Software Maintenance,
2002. Proceedings., Montreal, Quebec, Canada, 2002, pp. 649-658.

[2] Archstudio. An Architecture-based Development Environment.
http://www.isr.uci.edu/projects/archstudio/, Institute for Software
Research, University of California, Irvine.

[3] C. Cu, X. Ye, and Y. Zheng. “XLineMapper: a product line feature-
architecture-implementation mapping toolset”. In Proceedings of the 41st
International Conference on Software Engineering: Companion
Proceedings (ICSE 2019). IEEE Press, 87–90. 2019.

[4] D. Garlan, R. Allen and J. Ockerbloom, “Architectural mismatch: why
reuse is so hard,” in IEEE Software, vol. 12, no. 6, pp. 17-26, Nov. 1995.

[5] D. Garlan, S. Cheng, A. Huang, B. Schmerl and P. Steenkiste, “Rainbow:
architecture-based self-adaptation with reusable infrastructure,” in
Computer, vol. 37, no. 10, pp. 46-54, Oct. 2004.

[6] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework (2nd Edition). Addison-Wesley Professional, 2008.

[7] DynaMyx. https://youtu.be/2zCHz6jovX4
[8] E.M. Dashofy, A. van der Hoek, and R.N. Taylor, “A Comprehensive

Approach for the Development of Modular Software Architecture
Description Languages,” ACM Transactions on Software Engineering
and Methodology (TOSEM). 14(2), p. 199-245, April, 2005.

[9] E.M. Dashofy, Myx and myx.fw.
http://www.isr.uci.edu/projects/archstudio/myx.html.

[10] H. Seifzadeh, H. Abolhassani, and M.S. Moshkenani, “A survey of
dynamic software updating,” Journal of Software: Evolution and Process,
25(5), 535-568, 2013.

[11] J. Aldrich, C. Chambers and D. Notkin, “ArchJava: connecting software
architecture to implementation,” Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002, Orlando, FL, USA,
2002, pp. 187-197.

[12] J. Kramer and J. Magee, “Self-Managed Systems: an Architectural
Challenge,” Future of Software Engineering (FOSE '07), Minneapolis,
MN, 2007, pp. 259-268.

[13] M. Hicks, and S. Nettles, “Dynamic Software Updating,” ACM
Transactions on Programming Languages and Systems (TOPLAS) 27(6),
p. 1049-1096, 2005.

[14] M. Mirakhorli and J. Cleland-Huang, “Detecting, Tracing, and
Monitoring Architectural Tactics in Code,” in IEEE Transactions on
Software Engineering, vol. 42, no. 3, pp. 205-220, 1 March 2016.

[15] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst. 4, 2, Article 14,
42 pages, May 2009.

[16] N. Medvidovic, N.R. Mehta, and M. Mikic-Rakic, “A Family of Software
Architecture Implementation Frameworks,” In Proceedings of the 3rd
IFIP Working International Conference on Software Architectures.
Montreal, Canada, August, 2002.

[17] P. Oreizy et al., “An architecture-based approach to self-adaptive
software,” in IEEE Intelligent Systems and their Applications, vol. 14, no.
3, pp. 54-62, May-June 1999.

[18] R.N. Taylor, N. Medvidovic and P. Oreizy, “Architectural styles for
runtime software adaptation,” 2009 Joint Working IEEE/IFIP Conference
on Software Architecture & European Conference on Software
Architecture, Cambridge, 2009, pp. 171-180.

[19] R.N. Taylor, N. Medvidovic, and E.M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. 736 pgs., John Wiley & Sons, 2010.

[20] T. Parr, The ANTLR Parser Generator. http://www.antlr.org/.
[21] Y. Zheng, C. Cu and H. U. Asuncion, “Mapping Features to Source Code

through Product Line Architecture: Traceability and Conformance,” 2017
IEEE International Conference on Software Architecture (ICSA),
Gothenburg, 2017, pp. 225-234.

[22] Y. Zheng, C. Cu, and R. N. Taylor, “Maintaining Architecture-
Implementation Conformance to Support Architecture Centrality: From
Single System to Product Line Development,” ACM Transactions on
Software Engineering and Methodology. 27, 2, Article 8, 52 pages, June
2018.

140

http://www.isr.uci.edu/projects/archstudio/myx.html
http://www.antlr.org/

An Automated Goal Labeling Method
Based on User Reviews

Shuaicai Ren∗ Hiroyuki Nakagawa∗ Tatsuhiro Tsuchiya∗
∗Graduate School of Information Science and Technology

Osaka University, Suita, Japan
Email: {s-ren, nakagawa, t-tutiya}@ist.osaka-u.ac.jp

Abstract—Requirements analysis is an important step in a
software development process. Summarizing user reviews is an
efficient way of requirement elicitation. Nevertheless, it is difficult
to manually collect user reviews from app stores. In order to solve
this problem, we proposed a method that automatically elicits
requirements and establishes a goal model for visualization. To
improve the previous method, this paper proposes a method of
defining labels of goals. Experimental results demonstrate that
those labels can help developers understand requirements more
easily and precisely.

Index Terms—Requirements elicitation, goal modeling, user
reviews, labeling

I. INTRODUCTION

With the expansion of the mobile phone market, various
smartphone applications have been developed, such as SNS,
payment applications and social games. To ensure their at-
traction, developers have to collect feedbacks from application
users. In application stores, users can publish reviews to rate
applications, ask for a new function or report bug information.
Developers can investigate these reviews and extract important
requirements to improve applications from them. However, the
number of reviews is too large to extract requirements from
reviews.

In order to help developers understand user requirements,
we have reported a preliminary result of review clustering
and a goal model construction from user reviews [19]. The
goal model is one of requirements models, which describes
requirements as goals to be satisfied. In our previous paper,
the construction method structurally visualizes requirements
extracted from user reviews in a goal model. Nevertheless,
the tool has a problem: it is too difficult to understand what
these goals represent. To deal with this problem, we propose
a new labeling method in this paper.

The contribution of this paper is goal labels automatically
from user reviews. We use two methods to give weights
to user reviews and select useful sentences from reviews as
labels. Two experiments demonstrate the difference between
new labels and old ones. According to the results of the two
experiments, we report the evaluation of our method.

The structure of this paper is as follows. Section II explains
the background of our research; Section III describes the
previous construction method in detail; Section IV presents the
new labeling method; Section V evaluates the labeling method

DOI reference number: 10.18293/SEKE2020-134

and reports the challenges to improve the method; Section VI
covers the conclusion and future work.

II. RELATED WORK

Requirements analysis has always been an important step in
the software development life cycle. This step analyzes what
kinds of requirements need to be satisfied by the system. After
analyzing the requirements, developers can make documents
which describe the system capability. For better requirements
analysis, many methods have been proposed. Palmieri et
al. [17] proposed a tool-supported method that integrates a
goal-oriented requirement language and feature modeling to
handle regulatory goal model families. Bettenburg et al. [2] re-
ported a study about what kinds of information from users are
required by developers. That method helps users to improve
the quality of bug reports. Higashi et al. [7] provided a method
of improving the accuracy of LDA review classification. Chen
et al. [4] developed a tool called AR-miner, which can help
developers to filter some useless reviews and classify useful
ones. As a result, this tool shows the groups of the most
“informative” reviews via an intuitive visualization method.
Maalej et al. [11] collected massive reviews from Google Store
and App Store, and tried to classify them. They compared
several types of technologies for language processing and
some machine learning methods. In those machine learning
methods, Naive Bayes classifier had the best result. Unlike
these papers we focus on how to represent user requirements
via a goal model. Our work includes eliciting useful sentences
through user reviews and labeling goals from the goal model.

Goal models include KAOS [6], i* [23], NFR [14],
AGORA [9] and Tropos [21]. In goal models, requirements
are described as goals that demand to be achieved. Goals are
linked based on the relationship between them. Abstract goals
become the parent goals and detailed goals will become the
subgoals. For example, the goal “file operations provided”
could be a parent goal of the goal “files edit function pro-
vided.”

To high quality goal models, the requirements from users
are necessary.

Users submit requirements or bugs by writing reviews in app
stores. Some of these reviews are valuable for developers[16].
Nevertheless, there are also meaningless and low-quality re-
views. Due to large numbers of reviews, it is hard to find
useful reviews manually[8]. We have reported a preliminary

141

result of finding useful reviews and building goal models. This
preliminary method still has disadvantages. Normally goals
have manual labels that describe requirements. The prelimi-
nary method labels each goal with a word that is automatically
extracted from reviews. The word that seems to be the most
relevant to the goal is chosen as a label. Unfortunately those
labels may not clearly describe requirements. To make labels
more easy to understand, we propose a new method for
labeling goals in this paper.

III. GOAL MODEL CONSTRUCTION METHOD

In this section, we will briefly introduce the goal model
construction method that we have previously proposed in [19].
This modeling method is mainly composed of two steps:
clustering and goal labeling.

Step 1: Clustering. Algorithm 1 shows the process of clus-
tering. First, user reviews are broken down into text. Second,
we delete stopwords which appear frequently in reviews but do
not have meaning, such as “is, are, a, an, the”. Deleting those
stopwords is a common approach to process natural language.
This approach can help us to find words that show users’
requirements more easily. In this method, we added some other
words like “ur” (your) and “dis” (this) into the stopwords from
NLTK[3]. These words come from users’ oral habit and have
no relationship with users’ requirements.

Next, filtered words are added to a dictionary, and then
lists representing bag-of-words (BoW) [12] are generated from
the dictionary. BoW represents words in a document and the
number of their occurrences. Then, the generated lists of BoW
are stored in a matrix as vectors. For example, suppose a
document contains following two sentences:

• I cannot open any of my company documents now from
the app.

• It won’t let me open any preexisting documents.
Lists of BoW after lemmatization and filtering stopwords
are [“open”: 1, “company”: 1, “document” : 1, “app” : 1]
and [“open”: 1, “preexist”: 1, “document”: 1]. Finally, these
lists are stored in a matrix. After data preparation, Ward’s
method [22], a hierarchical clustering method, is applied to
the matrix and the result of review clustering is obtained. In
Ward’s method, the minimum variance criterion is used to
couple clusters:

dij = d({Xi}, {Xj}) = ‖Xi −Xj‖2 (1)

Since two BoWs have the same words “open” and “doc-
ument” in the above example, the distance between two
sentences becomes close by clustering.

Step 2: Labeling. We have reported a preliminary method
to label goals. Algorithm 2 shows the process of goal labeling.
In this step, we used document frequency to define goal labels.
For leaf goals, the goals that do not have subgoals, their
labels are clustered words’ weight. The weight comes from the
document frequency, which means that if a word frequently
appears in this cluster, it probably appears in the goal label.
For parent goals, their labels come from the words that appear
frequently in every subgoal. Through this way we can ensure

Algorithm 1 Clustering
1: Input: titles and texts of user reviews
2: array = array ofnumber of reviews ×

size of vocabulary
3: for review in reviews do
4: wordlist← lemmatized words not in stopwords
5: bows← bag-of-words (BoW) of wordlist /* generate

BoW */
6: for {word id, frequency} in bows do
7: array[# review][word id] ← frequency

8: apply Ward method to array
9: Output: a clustering result

Algorithm 2 Goal labeling
1: Input: a coupled cluster
2: cluster = cluster of reviews
3: wordlist = map of {review[word], DF} /* DF : docu-

ment frequency */
4: for review in cluster do
5: for word in review do
6: /* word does not occur in review yet */
7: if word is not in stopword and word is not counted

then
8: wordlist[word] += 1
9: exclude words that occur in two sibling goals

10: sort wordlist by DF of word
11: select top words from sorted wordlist
12: Output: a goal description

that parent goals are labeled with words which are from each
subgoal.

The previous method applies a clustering method for group-
ing reviews and constructing a hierarchical structure. However,
the goal labels obtained by the previous labeling method are
still hard to understand. For example, it is hard to know the
meaning of the generated label ”never, device, book, version,
day”. In order to solve this problem, we propose a new labeling
method in this paper.

IV. NEW LABELING METHOD

The new labeling method utilizes sentences as goal la-
bels. There are two approaches for automatically generating
sentences. One approach generates sentences directly from
documents. However, this approach has too many limitations,
which makes this approach difficult to use in practice. So this
paper adopts the second approach, which selects the sentences
contained in the documents as a representative. To prevent
from containing too many requirements in one goal, we select
only one sentence for one goal as the label.

The overview of our new construction method is illustrated
in Figure 1. Since the clustering method is the same as
the previous method (the green part), this section mainly
introduces the labeling method (the blue part). The overview
of our new labeling method is illustrated in Figure 1. The
labeling method is mainly composed of two methods: selecting
by TFIDF and selecting by cosine similarity. Those two have

142

Fig. 1. Overview of the construction method. The green part shows the
clustering method and the blue part illustrates the new labeling method.

Algorithm 3 Selecting by TFIDF
1: Input: titles and texts of user reviews
2: for review in reviews do
3: sentencelist ← divided sentences in reviews /*

segment reviews with periods, exclamation marks, and
question marks*/

4: for sentence in sentencelist do
5: for words in sentence do
6: TFIDFwordslist ← calculate TFIDF of words
7: TFIDFlist ← calculate TFIDF of sentence
8: sort TFIDFlist by TFIDF of sentencelist
9: Output: sentences list

different pretreatment process and effects. In pursuit of better
results, we decide to combine these two methods.

Step A: Selecting by TFIDF. TFIDF stands for term
frequency–inverse document frequency, which is the most
frequently applied weighting scheme [1] in text mining. This
technique can reflect the importance of a word to a document
in a corpus [20]. The importance of a word increases propor-
tionally with the times that this word appears in the document,
but it decreases inversely with the frequency that this word
appears in the corpus. TFIDF is appropriate for our purpose
to select keywords, as it gives a high weight to a word that
only appears in one cluster.

Fig. 2 illustrates the overview of step A. Algorithm 3
shows the algorithm for selection by TFIDF. First of all, with
preprocessing, these reviews are divided into sentences. The
general sentences end with periods, exclamation marks and
question marks. In order to prevent sentences from being too

Fig. 2. Overview of labeling by TFIDF.

long and containing more than one requirement in one goal
label, we segment reviews also with commas that separate
sentences in a compound sentence. Next, the TFIDF score for
each word is calculated, and then we average them to get the
score of the sentence:

TFIDFs =

ns∑
i=1

TFIDFi

ns
(2)

ns means the number of words of one sentence. TFIDFi

means TFIDF score of the ith word order. Finally, we sort
these sentences and select the sentence with the highest TFIDF
score.

Step B: Selecting by cosine similarity. In the previous step,
TFIDF score used to sort sentences. However, in some cases,
the first two sentences have the same score. We require to
find the one that is more similar to the cluster. For this we
use word embedding techniques. Word embedding is a general
name for a set of technologies to process natural language. One
method of word embedding is dimensionality reduction in the
word co-occurrence matrix [10]. According to this method,
a space with many dimensions per word is embedded into
a continuous vector space with a lower dimension, and each
word or phrase is mapped to a vector on the real number field.
Now there are some tools to achieve this method, for example,
the word2vector [13] and doc2vector. After getting the word
vector, we apply the cosine similarity, which is a measure of
similarity between two non-zero vectors of an inner product
space, to calculate the similarity between vectors, words or
sentences.

First, reviews were filtered by stopwords. Then, we ap-
ply doc2vec to achieve sentence embedding. According to
doc2vec, vectors of all sentences synthesize the vector of the

143

cluster so that the cosine similarity between sentences and the
cluster can be calculated. The vector with the highest cosine
similarity to the cluster will be selected.

V. EXPERIMENT AND EVALUATION

A. Purpose of Experiment

We focus on answering the following two research ques-
tions:

• RQ1: Do the labels correctly reflect the intent of the
goals?

• RQ2: Can the labels be properly understood by the
developers?

To answer the research questions, we made the goal models
first. Reviews for making models were taken from Google
Docs with the App Store. Due to the numerous reviews, goal
models contain a large number of goals. In order to facilitate
the experiment, we extracted a part of the goal model. In this
experiment, we used the part corresponding to reviews about
the cross-platform function of Google Docs. Three goal mod-
els’ labels came from manual, the previous labeling method
and the new labeling method. As we mentioned in Section IV,
we segmented reviews with commas that separate sentences in
a compound sentence. In this experiment, sentences that have
less than five words were not treated as independent sentences
in a compound sentence. The result of modeling and manual
labeling is illustrated in Figure 3. Those labels are correct
labels. To answer our research questions, two experiments
were conducted. We explained the detail of each experiment
below.

B. Experiment 1

Design of experiment 1. In the experiment 1, we enu-
merated the ideal labels made by hand, the labels of the
new method and the labels of the previous method. We
comprehend the gap between the two kinds of automatically
generated labels and the ideal labels and whether automatically
generated labels can be understood. This experiment used the
correctness rate with ideal labels and understanding rate to
evaluate both methods. The evaluation of the correctness rate
and understanding rate in the table was completed by the
authors.

Results of experiment 1. Table I demonstrates the difference
between the previous labels and the current labels. Experiment
1 illustrates that the correctness rate of the previous method
is 54%, while the understanding rate is 30%. As for the new
method, the correctness rate is 77% and the understanding rate
is 100%.

C. Experiment 2

Design of experiment 2. Experiment 2 aims at people
other than authors. To comprehend the effect of labels on
other people, we produced questionnaires for the examinees.
In each questionnaire, examinees were asked about what kind
of requirements were reflected. These examinees included four
professionals and four non-professionals. The answering order
of the questionnaires was random; some examinees were asked

to complete the previous labels questionnaires first, while
others were the opposite. As for the correctness rate of labels,
we also use correct labels to compare the labels obtained by
two methods.

Results of experiment 2.
The results of experiment 2 are illustrated in Table II. This

figure indicates that new labels have a higher correctness rate
in total.

D. Discussion

First, we answer RQ1: “Do the labels correctly reflect
the intent of the goals? ”. The experiment and questionnaire
results demonstrate that labels generated by using this method
have a higher accuracy rate. But there is one thing to be
noted. For abstract goals at the top layers of the goal models,
the correctness rate of new labels is lower. Normally, the
close to the root goal the label is, the more unreliable the
label is. We believed the reason is that we directly select
the sentences in the reviews as labels. Users prefer to give
feedbacks in detail, such as BUG reports and requirements, so
our method could accurately capture the sentences that express
these requirements as labels. In terms of sentences that can be
used as abstract goals’ labels, it is difficult to find them in
user reviews. To build more precise labels, we could use other
requirements mining methods. Conneau et al. [5] proposed
several probing tasks designed to capture simple linguistic
features of sentences. We can utilize different methods to deal
with top goals and bottom goals. When it comes to bottom
goals, we still extract sentences from user reviews as labels.
In terms of top goals, we could extract keywords and logical
relationships from sentences, and use word embedding and
vector synthesis to construct labels.

Here, we answer RQ2: “Can the labels be properly under-
stood by the developers?”. Compared to previously generated
labels, Table II demonstrates that examinees can better under-
stand the labels, but it is still difficult for non-experts. The
following improvements should be considered:

• Construction method needs improvement:
To classify reviews in more detail, we require to improve
our construction method. Our method uses the cluster
distance for determining the goal refinement level. When
the developers set the threshold to a small value, the
size of each coupled cluster becomes small, and then the
total number of goals increases in a model generated. In
other words, the proportion of the number of detail goals
becomes larger.

• Logical relationships need to be refined:
In this method, the relationship between the two sibling
goals is limited to AND-refinement. In other words, all
sibling goals demand to be achieved. But actually, there
are many logical relationships and they may be mentioned
in the reviews. Extracting these words from reviews will
help us improve the goal model construction method.

VI. CONCLUSION

In this paper, we reported the experience of an automated
labeling method on the basis of user reviews. Our method

144

Fig. 3. Labels generated by manual.

TABLE I
LABELS EVALUATION

No. Correct label Label type Label content Evaluation

1 operates across platforms Previous never, device, book, version, day -/-
New Also I never lose anything cause I can access it on any device C/U

2 text operation provided Previous apps, note, time, user, text -/-
New I just hope Google keeps these apps free -/U

3 file operation provided Previous download, platform, live, fact, weird -/-
New Download I hate the fact that you have to buy this -/U

4 highlight function problem Previous text, highlight, browser, copy/cut, superior -/-
New you can’t highlight your text C/U

5 useful in everywhere Previous work, school, docs, keep, save -/-
New School I use this for school and it works good -/U

6 can operate files everywhere Previous anywhere, allow, open, document, share C/U
New Easy to access your files anywhere and share with others C/U

7 difficult to download files Previous download, right, template, weird, number C/-
New Templates are annoying I have to download a template C/U

8 useful at school Previous school, ms, finish, right, box C/-
New Use it for school I love it honestly C/U

9 convenient but still have problems Previous note, time, life, feature, helpful C/U
New convenient and a great time saver C/U

10 edit anywhere Previous allow, open, document, share, platform C/-
New edit my documents everywhere that I go C/U

11 difficult to move files Previous live, updates, yesterday, move, adobe -/-
New can’t move over files adobe C/U

12 app need keeps free Previous keep, free, save, note, time C/U
New I just hope Google keeps these apps free C/U

13 spell check problem Previous spell, check, belittle, -i, become C/U
New Spell check I can’t right-click to fix a word underlined red (spell check) using

my chrome book
C/U

C: correct U: understandable -: incorrect or incomprehensible

TABLE II
LABELS CORRECTNESS RATE

Method & examinee type Labels correctness rate
Pervious method & non-professionals 26%

Pervious method & professionals 40%
New method & non-professionals 66%

New method & professionals 80%

weights each sentence and selects one of the sentences as
a label for a goal. In the evaluation part, we conducted on
experiment to evaluate the correctness of the previous method
and this method. Then, we used questionnaires to investigate

the developer’s understanding of the goal model. As for the
result of labeling, it is easier and more precise to understand
than the previous method generated labels. The correctness
rate of labels decreased from the bottom to the top, but the
general labels can correctly reflect the intent of the goal model.

For future work, we identify the following improvement
points:

• Abstract label readability:
To improve the goal description readability, first, we
should refine stopwords. If the number of stopwords is
too large or too small, we might miss some requirements.
Next, labels require to contain more useful information.

145

The experiment shows that this method works well with
the bottom goals, but as for some top goals, it is hard
to find one sentence to represent the goal. After all, it
is hard to find abstract sentences from user reviews, and
users prefer to report practical things. Furthermore, the
AND refinements are not clear from reading the goal
labels. For making more effective labels, we can make
a sentence instead of selecting a sentence from reviews.
Rolland et al. [18] provided a method in order to help
developers understand long documents. In that method,
some keywords and logical relationships are extracted
and used to generate sentences with some rules. We
believe that this is a feasible method to make labels.
Keywords and logical relationships also can be found in
user reviews. Keywords can help us to make labels while
logical relationships can help us to clear refinements.

• Other elements in the goal model need to be consid-
ered:
In the actual goal models, goals are not the only type of
goal model elements. Functional requirements have been
described as goals, while non-functional requirements
can be described as soft goals. A functional require-
ment defines a system or its component whereas a non-
functional requirement defines the performance attribute
of a software system. The goal models generated by this
method only have goals, which means that we cannot
classify goals, soft goals and bug reports. The final
objective of our research is to improve the automated
goal modeling method and to visualize not only goals
but also bugs and soft goals. To accomplish this objective,
we should introduce a mechanism for visualizing the goal
type, such as requirements or bug reports. Now we are
trying to find a method to judge goal type based on word
combinations. Maalej et al. [11] proposed the method
to classify reviews into four types, i.e., bug report, user
request, user experience, and rating. In users’ views, some
words combinations can help us to conduct this work. For
example, the words combining “can” and “not” often in
bug reports. If we can give enough weight to these word
combinations, perhaps we can allow types of labels to be
recognized more easily. To embed entities into the goal
model and to classify goals into hard goals and soft goals,
we plan to consider a goal model refinement process, such
as one described in [15].

ACKNOWLEDGMENTS

This work was supported by JSPS Grants-in-Aid for
Scientific Research (No. 17KT0043, No. 20H04167).

REFERENCES

[1] Beel, J., Gipp, B., Langer, S., Breitinger, C.: Research-paper recom-
mender systems : a literature survey. International Journal on Digital
Libraries 17(4), 305–338 (2016). https://doi.org/10.1007/s00799-015-
0156-0

[2] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmer-
mann, T.: What makes a good bug report? In: Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering. pp. 308–318. ACM (2008)

[3] Bird, S., Loper, E., Klein, E.: Natural Language Processing with Python.
O’Reilly Media Inc (2009)

[4] Chen, N., Lin, J., Hoi, S.C., Xiao, X., Zhang, B.: Ar-miner: mining
informative reviews for developers from mobile app marketplace. In:
Proceedings of the 36th International Conference on Software Engi-
neering. pp. 767–778. ACM (2014)

[5] Conneau, A., Kruszewski, G., Lample, G., Barrault, L., Baroni, M.:
What you can cram into a single vector: Probing sentence embeddings
for linguistic properties. Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)
(2018). https://doi.org/10.18653/v1/p18-1198

[6] Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed require-
ments acquisition. Science of Computer Programming 20(1-2), 3–50
(Apr 1993)

[7] Higashi, K., Nakagawa, H., Tsuchiya, T.: Improvement of user review
classification using keyword expansion. In: The 30th International Con-
ference on Software Engineering and Knowledge Engineering, Hotel
Pullman, Redwood City, San Francisco Bay, California, USA, July 1-3,
2018. pp. 125–130 (2018)

[8] Hoon, L., Vasa, R., Schneider, J.G., Grundy, J., et al.: An analysis of
the mobile app review landscape: trends and implications. Faculty of
Information and Communication Technologies, Swinburne University
of Technology, Tech. Rep (2013)

[9] Kaiya, H., Horai, H., Saeki, M.: Agora: attributed goal-oriented re-
quirements analysis method. In: Proceedings IEEE Joint International
Conference on Requirements Engineering. pp. 13–22 (2002)

[10] Lebret, R., Collobert, R.: Word embeddings through hellinger
pca. Proceedings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics (2014).
https://doi.org/10.3115/v1/e14-1051

[11] Maalej, W., Nabil, H.: Bug report, feature request, or simply praise?
on automatically classifying app reviews. In: Proc. of the 23rd IEEE
International Requirements Engineering Conference (RE). pp. 116–125
(Aug 2015). https://doi.org/10.1109/RE.2015.7320414

[12] Maalej, W., Kurtanović, Z., Nabil, H., Stanik, C.: On the automatic
classification of app reviews. Requirements Engineering 21(3), 311–331
(Sep 2016). https://doi.org/10.1007/s00766-016-0251-9

[13] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed
representations of words and phrases and their compositionality. In:
Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2. pp. 3111–3119. NIPS’13, Curran
Associates Inc., USA (2013)

[14] Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunc-
tional requirements: a process-oriented approach. IEEE Transactions on
Software Engineering 18(6), 483–497 (June 1992)

[15] Nakagawa, H., Ohsuga, A., Honiden, S.: A goal model elaboration
for localizing changes in software evolution. In: Proc. of 21st IEEE
International Requirements Engineering Conference (RE’13). pp. 155 –
164. IEEE CS (2013)

[16] Pagano, D., Maalej, W.: User feedback in the appstore: An empirical
study. In: 2013 21st IEEE international requirements engineering con-
ference (RE). pp. 125–134. IEEE (2013)

[17] Palmieri, A., Collet, P., Amyot, D.: Handling regulatory goal model
families as software product lines. In: International Conference on
Advanced Information Systems Engineering. pp. 181–196. Springer
(2015)

[18] Rolland, C., Achour, C.B.: Guiding the construction of textual use case
specifications. Data & Knowledge Engineering 25(1), 125 – 160 (1998).
https://doi.org/https://doi.org/10.1016/S0169-023X(97)86223-4

[19] Shimada, H., Nakagawa, H., Tsuchiya, T.: Goal model construction
based on user review classification. In: Joint Proceedings of REFSQ-
2019 Workshops, Doctoral Symposium, Live Studies Track, and Poster
Track co-located with the 25th International Conference on Require-
ments Engineering: Foundation for Software Quality (REFSQ 2019),
Essen, Germany, March 18th, 2019 (2019)

[20] Tripathy, A., Agrawal, A., Rath, S.K.: Classification of sentimental
reviews using machine learning techniques. Procedia Computer Science
57, 821–829 (2015)

[21] van Lamsweerde, A.: Goal-oriented requirements engineering: a
guided tour. In: Proceedings Fifth IEEE International Sympo-
sium on Requirements Engineering. pp. 249–262 (Aug 2001).
https://doi.org/10.1109/ISRE.2001.948567

[22] Ward Jr., J.H.: Hierarchical grouping to optimize an objective function.
Journal of the American Statistical Association 58(301), 236–244 (1963)

[23] Yu, E.S.K.: Towards modelling and reasoning support for early-phase re-
quirements engineering. In: Proceedings of the Third IEEE International
Symposium on Requirements Engineering, 1997. pp. 226–235 (January
1997)

146

A Co-evolutionary Method Between Architecture
and Code

Tong Wang∗, Bixin Li†,Lingyuan Zhu†
∗School of Computer Science and Technology, Anhui University of Technology, Maanshan, China

†School of Computer Science and Engineering, Southeast University, Nanjing, China

Abstract—Code evolution and architecture evolution are re-
spectively related to functional requirements and non-functional
requirements. According to the type of requirements, architects
or developers evolve one of them. That causes the unevolved
one is inconsistent with the evolved one. To solve the problem
of inconsistency, we propose a co-evolutionary method to keep
the consistency between architecture and code. In our method,
two evolutional scenarios are considered, including co-evolving
code based on evolved architecture and co-evolving architecture
based on evolved code. In the former method, we first convert
architecture change to code change based on mapping rules, then
modify code to implement the corresponding code changes. In the
latter method, we first modify the file dependency graph based on
mapping rules, then recover architecture based on the modified
file dependency graph. We conduct our experiments with eight
open source projects, the experimental results indicate that our
method can keep the consistency in the two evolutional scenarios,
so that, our co-evolutionary method between architecture and
code is effective.

Index Terms—Software architecture, code source, co-evolution

I. INTRODUCTION

In the software life cycle, architects and developers fre-
quently evolve code and architecture to keep competitiveness
and vitality of software [1]. Code is the actual implementation
of software, so developers evolve it for meeting new functional
requirements, such as new functions, high performance, and
so on. Architecture is the high abstraction view of software,
so architects evolve it for meeting new non-functional require-
ments, such as testability, maintainability [2], and so on [3].

According to the content of new requirements, developers
and architects decide which one should be evolved. When
developers or architects evolve code or architecture, another
one is not consistent with the evolved one. The problem
of inconsistent may cause the unevolved one to mislead
developers and architects. To solve the problem, many co-
evolutionary methods are proposed.

There are mainly four types of evolutionary methods, ar-
chitecture recovery [4], code automatic generation [5], multi-
view software evolution approach [6], and information fusion
approach [7]. However, not all the above methods have taken
all evolution scenarios into consideration, resulting in the
limitation of effectiveness.

For resolving the above problems, we propose a co-
evolutionary method to keep the consistency between architec-
ture and code. The contributions of the paper are as follows:

DOI reference number: 10.18293/SEKE2020-151

• The method supports the two-way co-evolution, that is,
it supports co-evolving code base on evolved architecture
and co-evolving architecture base on evolved code.

• More types of co-evolutionary actions are taken into con-
sideration to improve the effectiveness of co-evolution.

• We implement our method on eight open source projects,
the experimental results indicate that our method can keep
the consistency between code and architecture effectively.

The paper is organized as follows. Section II introduces
the two-way co-evolutionary method. In Section III, we im-
plement our method on open source projects to analyze the
effectiveness of our method. Section IV introduces related
work. Section V draws the conclusion and introduces the
future work.

II. OUR METHOD

Code and architecture belong to different levels of granu-
larity. According to new requirements, one of architecture and
code will be evolved first. According to the type of the evolved
object, our method is divided into two parts, the method of
co-evolving code based on architecture and the method of co-
evolving architecture based on code.

A. A Co-evolutionary Method of Code based on Evolved
Architecture

Architecture is represented by CDG, and CDG consists of
component nodes and dependency edges between nodes, so
architecture changes are reflected by component node changes
and dependency edge changes [8]. Code changes determine
file changes and dependency changes, that is, code changes
are reflected by FDG. So the relation between architecture
and code can be converted to the relation between CDG and
FDG.

To locate which parts of FDG need to be co-evolved, we
propose mapping rules to convert CDG changes to FDG
changes, then modifying code to implement these FDG
changes.

Edge changes of CDG contain the following types: adding
an edge, deleting an edge, increasing the weight of the edge,
and reducing the weight of the edge.

Adding an edge indicates that some functions are invoked
by another component, which can avoid the duplication of
functions in multiple components. The corresponding code
change is adding a dependency between files contained in the
involved components.

147

Increasing the weight of the edge means that several func-
tions are enhanced, and the corresponding code change is to
increase the dependency intensity between the corresponding
file sets.

Adding an edge is a special situation of increasing the
weight of the edge, that is, the dependency intensity is
increased from 0.

Deleting an edge means the relation between components
is removed. The corresponding code change is deleting the
corresponding dependency between corresponding sets of files.

Reducing the weight of the edge indicates that several
functions should be reduced to avoid mutual influence. The
corresponding code change is to find the corresponding file
sets, then the dependency which has the lowest dependency
intensity is deleted.

Deleting an edge is a special situation of reducing the weight
of the edge, that is, the dependency intensity is reduced to 0.

According to the above analysis, edge changes are related
to dependency intensity. Here, we introduce the definition of
dependency point.

Dependency point: If file A has a dependency with file B,
and the dependency is caused by that statement a of file A
has a dependency with statement b of file B, then statement
a and statement b are the dependency points.

We use slice technology detect the direct and indirect effects
caused by dependency points. Program slicing is an important
technology to analyze programs [9]. The core concern is the
slice criterion which is usual a tuple <s,v>, herein, s means
the location and v means a variable or a set of variables that is
defined or used in s. The slice of a program about a criterion
is the set of statements that potentially have influenced on v
of s or be affected by v of s [10]. The dependency point as
the slice criterion, then we use slice technology to extract the
related statements.

Node changes of CDG contain the following types: adding
a component-node, deleting a component node, merging com-
ponent node, and splitting a component node.

Adding a component node indicates that the software needs
to be added new functions where the corresponding code
change is adding highly cohesive files. These highly cohesive
files refer to increase the set of relevant files rather than the
isolated and fragmented files. A new component indicates a
new function, however, we cannot get the detail of code based
on CDG, so it is implemented by adding a set of files, then
the code is developed based on the detail of functions.

Deleting a component node indicates that a function needs
to be deleted where the corresponding code change is deleting
all files contained in the involved component.

Merging component nodes represent integrating related
functions of the software, and the corresponding code change
is increasing the dependency intensity between the correspond-
ing sets of files. The higher dependency intensity indicates that
the two sets of files can be clustered into a new component.

Splitting a component node indicates that the functions of
the component need to be refined. The corresponding code

change is splitting the set of files contained in the involved
component into two sets.

This operation contains two steps, splitting a set of files
into two sets of files, then reducing the dependency intensity
between the two sets of files.

We split the set of files based on the loss function. The loss
function is a function that maps random events or their related
random variables to non-negative real numbers to represent
the “risk” or “loss” of the random event. The coupling and
cohesion are the important metrics for software, so we define
the loss function based on cohesion and coupling as shown in
Formula 1.

L(θ, f) = α ∗D(f) + β ∗ S(f) (1)

In Formula 1, L(θ, f) is the loss function, θ represents
architecture change, f indicates a splitting scheme, D(f)
shows the impact of the splitting scheme on cohesion, S(f)
remarks the influence of the splitting scheme on the coupling,
and α and β are the weights of cohesion and coupling.

Formula 1 is refined to Formula 2.

L(θ, f) = α ∗
∑
p∈N

Dp(fp) + β ∗
∑

p,q∈N

S(f)(fp ̸= fq) (2)

In Formula 2, N represents the files contained in the split
component. f indicates a splitting scheme for these files N .
p and q are two files of N , fp represents the set to which
the split file p belongs, and Dp(fp) shows the loss resulting
from splitting p by f , which is inversely proportional to the
cohesion of the divided set of files, and S(fp ̸= fp) remarks
the loss resulting from the different belonging of p and q,
which is proportional to the coupling of the new sets after
division.

The weight of the dependency edge is proportional to the
dependency intensity. When the dependency intensity is low,
the weight is low, that is, the related two files can be classified
into different sets to obtain the minimal overall loss. The
algorithm is shown in Algorithm 1.

B. A Co-evolutionary Method of Architecture based on E-
volved Code

Architecture is a high abstraction view of FDG, and FDG
reflects the attributes of files and the dependencies between
files. So, the impact of evolved code on architecture depends
on whether the evolved code changes the files or the depen-
dencies between files. When the evolved code does not change
files, architecture does not need to be evolved, otherwise,
architecture needs to be modified based on code change. In
this paper, we only need to consider the latter situation.

The method consists of three steps: (1) Obtaining code
change by using a change detection method; (2) Modifying
FDG based on code change; (3) Recovering architecture based
on the modified file dependency graph.

We propose mapping rules from code change to FDG, then
according to code change, we modify FDG based on mapping
rules. Code changes can be divided into two types: edge
changes and node changes. The following types of changes

148

Algorithm 1 The algorithm of calculating the approximate
optimal solution of loss function
Input:

let CDG be the component dependency graph
let FDG be the file dependency graph
let req be the code change

Output:
let result be the divided set of files

1: Function partition(CDG,FDG, req)
2: node← findNode(CDG, req.comp)
3: k ← req.comp
4: /*Construct the local dependency graph named ldg formed by the files contained in

the split components */
5: ldg ← findLocalDG(FDG,node.files)
6: /* Combine the outgoing and incoming edges of nodes in the graph named ldg to

form an undirected dependency graph*/
7: udg ← transfer(ldg)
8: result← preclassify(udg, k)
9: /*add label nodes according the pre-classification result*/

10: addLabelNodes(udg, s1, s2, ..., sk, result)
11: curNum← 0
12: while curNum < k do
13: /* Renaming two label nodes with the largest weight by S and T respectively*/
14: < S, T >← renameLabelNodeWithLargestWeight(udg, s1, s2, ..., sk)
15: cutEdges← mincut(udg,< S, T >)
16: < n|n ∈ S, n|n ∈ S >← restorePartition(udg, cutEdegs)
17: if n|n ∈ S then
18: recordPartion(newComps, result)
19: return newComps
20: else
21: removeNode(udg, n|n ∈ S)
22: addPartition(newComps, n|n ∈ S)
23: curNum = curNum + 1
24: end if
25: end while
26: return newComps
27: Procedure mincut(udg,< S, T >)
28: cutEdges← Ø
29: maxflow ← 0
30: while findAugPath(S, T) = true do
31: maxflow ← maxflow + maxFlowByDfs(S, T)
32: end while
33: cutEdges← findCutEdgeByBfs(S, T)
34: return cutEdges
35: Procedure preclassify(udg, k)
36: /* The sum of weight of edge of each node is calculated */
37: Emap← calWeight(udg)
38: /* The first k nodes with the maximum weight are selected as central node */
39: centers← findKthNode(map)
40: disArray ← Ø
41: curNum← 0
42: while curNum < k do
43: < center, node, dis > = calDis(udg, centers)
44: curNum+ = < center, node, dis >.size
45: disArray = disArray ∪< node, center, dis >
46: end while
47: result← Ø
48: for each node ∈ udg.nodes do
49: /* The sum of weight of edges belongs to the node is calculated as totalW*/
50: totalW = calWeight(udg, node)
51: disMap← Ø
52: for each center ∈ centers do
53: dis← findDisWithNodesBelongCenter(disarray, center, node)
54: disMap← disMap∪ < center, totalW − dis >
55: end for
56: /*Find the target center with the minimum distance*/
57: targetCenter ← findTargetCenter(disMap)
58: result← result∪ < node, center >
59: end for
60: return result

are related to nodes. In this paper, we use a multiple-level
change detection method to extract changed code [11].

Adding a file corresponds to adding a file node in FDG. The
statements belong to the added file are the slice criteria, and
we obtain which files have dependencies with the new file,
then we add related dependency edges between the added file
node with other file nodes.

Deleting a file corresponds to deleting a file node from FDG,
and its related edges are deleted.

The following types of changes are related to edges.
Increasing dependency intensity between files corresponds

to increasing the weight of the edge, and the weight of the
edge is assigned based on the dependency intensity.

Adding a dependency between files corresponds to adding
an edge between two file nodes.

Reducing dependency intensity between files corresponds to
reducing the weight of the edge, and the weight of the edge
is assigned based on the dependency intensity.

Deleting a dependency between files corresponds to deleting
a dependency edge between two file nodes.

After modifying FDG, we use cluster methods to obtain
new architecture based on modified FDG. In this paper,
we adopted a cohesive hierarchical clustering method [12].
This clustering method initially treats each file in the file
dependency graph as a cluster, and then continuously merges
the clusters with a small distance between clusters, and updates
the distances between the new clusters and other clusters. The
algorithm is shown in Algorithm 2. Finally, we obtain new
architecture based on the evolved code by implementing the
above algorithm.

III. EXPERIMENTS AND EVALUATION

A. Experiment Setup

In the section, we conduct experiments to evaluate the
effectiveness of our method. We conduct our method with
eight open source programs to answer the following research
questions.

RQ1: is the co-evolutionary method of code based on
evolved architecture effective?

RQ2: is the co-evolutionary method of architecture based
on evolved code effective?

We randomly selected eight open source projects as the
experimental cases, and these projects contain Java projects,
C projects, and C++ projects. The information about these
projects is listed in Table I.

TABLE I
THE INFORMATION ABOUT EXPERIMENTAL CASES

Project Evolution process Language LOC

Apns 0.1.5→0.2.0 Java 3K
La4j 0.5.0→0.5.5 Java 9K
AssertJ 3.2.0→3.3.0 Java 19K
GoogleMock 1.5.0→1.6.0 C++ 16K
Filezilla 3.30.0→3.31.0 C++ 128K
Lua 5.0.0→5.0.1 C 11K
Libev 1.3.2→1.4.8 C 25K
Bash 4.4.12→ 4.4.18 C 103K

149

Algorithm 2 The hierarchical clustering algorithm
Input:

Let fg be the file dependency graph after evolution
Let reqs be the code change requirements
Let compLocsb be the collection of the lines of code for every components
Let locb be the total lines of code before evolution

Output:
Let cg be the component graph after evolution

1: Function clustering(fg, reqs, compLocsb, locb)
2: cg ← clone(fg)
3: nb ← size(compLocsb)
4: /* Calculate the number of components before evolution*/
5: loca ← locb
6: /* Calculate the expected number of components after evolution as stop condition*/
7: stopc← generateStopCondition(cg, reqs, compLocsb, locb, nb)
8: na ← nb

9: while na > stopc do
10: /*Find the edge with min distance from component diagram*/
11: < src, dest >← findMinDPair(cg)
12: merge(cg,< src, dest >)
13: na ← na − 1
14: end while
15: return cg
16: Procedure generateStopCondition(cg, reqs, compLocsb, locb, nb)
17: averageb ← locb/nb

18: for each req ∈ reqs do
19: if reqinstanceofAddComp then
20: loca← loca + averageb
21: else
22: if reqinstanceofRemoveComp then
23: loca ← loca − compLocb.get(req.comp)
24: end if
25: end if
26: end for
27: if loca ̸= locb then
28: stopc← loca/averageb
29: end if
30: return stopc
31: merge(cg,< src, dest >)
32: /* Find the node whose id is src from component graph remove the graph*/
33: nodeSrc← findNode(cg, src)
34: nodeDest← findNode(cg, dest)
35: inEdgeSrc← findInEdges(cg, src)
36: outEdgeSrc← findOutEdges(cg, src)
37: inEdgeDest← findInEdges(cg, dest)
38: outEdgeDest← findOutEdges(cg, dest)
39: nodeSrc.name← nodeSrc.name + nodeDest.name
40: inEdgeSrc← inEdgeSrc ∪ EdgeDest
41: outEdgeSrc← outEdgeSrc ∪ EdgeDest
42: cg ← cg − nodeDest
43: /*Remove the cluster named nodeDest from component graph*/

In our experiments, we take actual history versions as
experimental cases. Vb and Va are two software versions before
and after evolution. The actual code and actual architecture
of Vb are respectively denoted in Vb c and Vb a. Similarly,
the actual code and actual architecture of Va are respectively
denoted in Va c and Va a.

B. Results and Evaluation

RQ1: Is the co-evolutionary method of code based on
evolved architecture effective?

We conduct the following two experiments to analyze
the effectiveness of our method: (1) Is the co-evolved code
consistency with the actual architecture after evolution? (2)
Is the co-evolutionary content of co-evolved code consistency
with the actual code changes?

The first experiment is that, we analyze the consistency
between the actual code Va c with the co-evolved code which
is obtained by using our method base on Va a.

Code and architecture belong to different granularity levels,
and they cannot be compared directly. We measure the effec-

tiveness of our method based on architectural similarity. The
details of the experiments are as follows:

• Co-evolving code by using our method to obtain the new
FDG.

• Recovering architecture based on the new FDG to obtain
the new architecture.

• Calculating the architectural similarity between the actual
architecture and the new architecture.

We use component similarity to assess the similarity be-
tween the actual architecture and the new architecture. It is
calculated as Formula 3.

ComSimilarity(Ci, Cj) =
|Fi ∩ Fj |
|Fi ∪ Fj |

(3)

In Formula 3, ComSimilarity(Ci, Cj) is the component
similarity between the ith component Ci and the jth com-
ponent Cj , Fi is the set of files which belongs to the ith
component, and |X| is the number of elements of the set X .
Architecture similarity is the average value of all components
similarity.

The component similarity and the architecture similarity are
shown in Table II.

TABLE II
THE COMPONENT SIMILARITY AND THE ARCHITECTURE SIMILARITY

Project Actual New Component Architecture
component componet similarity similarity

La4j data1 decomposition 0.563

0.836
data2 matrix/source 0.619
operation operation 1
linear linear 1
matrixOperation matrixOperation 1

Filezilla interface1 interface#85 1

0.978

interface2 interface\setting 1
interface#1 interface#86 0.882
engine engine 0.961
putty putty 1
dbus dbus 1
interface#2 interface#5 1

Bash readline1 readline#13 1

0.977

readline2 termcap 1
[ROOT]#1 [ROOT]#32 0.931
[ROOT] [ROOT]#29 0.885
support suppport 1
examples\loadables examples\loadables 1
lib\sh lib\sh 1
lib\intl lib\intl 1

Libev libcork1 libcork\config 1

0.703

libcork2 libcork#50 1
libipset libipset 0.625
\ libipset\map 0
\ libipset\set 0
libcork#1 libcork#52 1
libev#47 libcork#52 1
libev libev#47 1

GoogleMock gmock1 gmock#10 1

1gmock2 gmock#15 1
src src 1
internal internal 1

Bash readline1 readline#13 1

0.977

readline2 termcap 1
[ROOT]#1 [ROOT]#32 0.931
[ROOT] [ROOT]#29 0.885
support suppport 1
examples\loadables examples\loadables 1
lib\sh lib\sh 1
lib\intl lib\intl 1

150

TABLE III
THE CO-EVOLUTIONARY CONTENT OF CODE AND THE ACTUAL CODE CHANGES IN LIBEV PROJECT

Architecture change The co-evolutionary content of code Actual code changes

Adding component named libipset Adding highly cohesive files Adding two directories named libipset\include\ipset and libipset
Adding method invocation depen-
dencies between the two compo-
nents named src and libipset

Adding method invocation dependencies between the files
contained in the two components named src and libipset

Adding method invocation dependencies between src\acl.c and li-
bipset\include\ipset\ipset.h.

Increasing include reference de-
pendencies between the two com-
ponents named src and libev

Increasing include reference dependencies between the files
contained in the two components named src and libve

1) Adding include reference dependencies between src\tunnel.h and
libev\ev.h. 2) Adding include reference dependencies between sr-
c\udprelay.h and libev\ev.h.

Splitting the component core into
core#1 and core#2

Splitting the files contained in the component named core
into two parts and reducing the dependencies between the
two parts.

1) Reducing dependencies between org.assertj.core.api and
org.assertj.core.condition. 2) Reducing dependencies between
org.assertj.core.api and org.assertj.core.util.

As Table II shows that, the average architecture similarity is
0.899. The similarity indicates that our method can co-evolve
architecture based on evolved code effectively.

Here, we take Libev as an example to show the cor-
responding relations between the co-evolutionary content of
code and the actual code change, the corresponding relations
are shown in Table III.

According to Table III, the co-evolutionary content of code
is consistent with the actual code change, so our method is
effective for co-evolving code.

RQ2: Is the co-evolutionary method of architecture
based on evolved code effective?

The co-evolutionary change method of architecture based
on evolved code aims at keeping the consistency between ar-
chitecture and the evolved code. We evaluate the effectiveness
of the method by analyzing the consistency between the co-
evolved architecture and the actual architecture change.

We conduct the following two experiments: (1) Is the co-
evolved architecture consistency with the actual architecture
after evolution? (2) Are the details of co-evolved architecture
consistency with the actual architecture changes?

The experiment is performed in the following steps:
• Obtaining the actual code change by using the change

detection method.
• Obtaining the co-evolved architecture by using our

method.
• Obtaining the actual architecture change by comparing

CDG before and after evolution.
• Analyzing the consistency between the co-evolved archi-

tecture and the actual architecture change.
The co-evolved architecture and the actual architecture

changes are about CDG, and the graph consists of the compo-
nent and the dependency edges between components, that is if
the co-evolved architecture is consistent with actual changes,
the number of changed nodes and changed edges of them are
the same. We summarize the number of changed nodes and
the number of changed edges of each project to analyze the
consistency, and the information is shown in Table IV.

Table IV shows statistical information about the number of
changed nodes and dependency edges. As the table shows that
the number of co-evolved objects is equal to the number of
actual changes, that is, our method can co-evolve architecture
which is consistent with the actual architecture changes. So

TABLE IV
THE NUMBER OF CHANGED NODES AND CHANGED EDGES.

Type La4j AssertJ Lua Libev Apns

Node Adding 2 23 4 2 6
Deleting 29 0 2 4 2

Co-evolved

Edge

Adding 30 231 10 124 15
objects Deleting 274 10 2 0 5

Increasing 3 44 9 8 13
Reducing 3 6 5 3 2

Node Adding 2 23 4 2 6
Deleting 29 0 2 4 2

Actual

Edge

Adding 30 231 10 124 15
change Deleting 274 10 2 0 5

Increasing 3 44 9 8 13
Reducing 3 6 5 3 2

the co-evolutionary method of architecture based on evolved
code is effective.

In the second experiment, we further analyze the detail
between actual architecture.

Here, we take La4j as an example to analyze the consis-
tency between the co-evolutionary content of architecture and
the actual change. The details are shown in Table V.

As Table V shows that, actual architecture change in the
actual evolution is ”Add org.la4j.Matrix node”, the corre-
sponding co-evolutionary content of the architecture is ”Add
org.la4j.Matrix node”, so the co-evolutionary content matches
the actual architecture change. The evolution of dependency
is mainly reflected in the addition or deletion of dependency
edges between nodes or changes in the weights of edges.
According to Table V, we know that, the actual architecture
change is consistent with the co-evolved architecture.

IV. RELATED WORK

At present, there are mainly four co-evolutionary methods
which are shown in the first column of Table VI.

Direction. The first two methods only support one-way
co-evolution, so the two methods support fewer application
scenarios than the other methods.

Representation. Most of these methods use the component
dependency graph as the representation of architecture, except
the multi-view method. The component dependency graph is a
widely acceptable representation of architecture. Considering
architecture and code may be used in other researches, we
think that the component dependency graph is more applicable
for representing architecture.

151

TABLE V
THE CO-EVOLVED ARCHITECTURE AND THE ACTUAL ARCHITECTURE CHANGES IN LA4J PROJECT

Actual Code change The co-evolutionary content of architecture Actual architecture change

Adding a file Matrix in the package org.la4j. Adding a new node org.la4j.Matrix. Adding a new node org.la4j.Matrix.
Deleting the file CCSFactory of the package
org.la4j.factory.

Deleting the node org.la4j.factory.CCSFactory. Deleting the node org.la4j.factory.CCSFactory
org.la4j.factory.

Adding 4 method invocation dependencies between
org.la4j.LinearAlgebra and org.la4j.Matrix.

Adding a new dependent edge between
org.la4j.LinearAlgebra and org.la4j.Matrix, and
the weight is 4.

Adding a new dependent edge between
org.la4j.LinearAlgebra and org.la4j.Matrix, and
the weight is 4.

Deleting the generalization dependencies between the
two files ArrayVectorSource and VectorSource which
are contained in the package org.la4j.vector.source.

Deleting the dependent edge between the two n-
odes org.la4j.vector.source. ArrayVectorSource and
org.la4j.vector.source. VectorSource.

Deleting the dependent edge between the two n-
odes org.la4j.vector.source. ArrayVectorSource and
org.la4j.vector.source. VectorSource

Increasing the parameter dependencies between the two
files org.la4j.linear.JacobiSolver and org.la4j.Matrix,
and the increased dependencies are 2 times.

Increasing the weight of edge between the two nodes
org.la4j.linear. JacobiSolver and org.la4j.Matrix by 2.

Increasing the weight of edge between the two nodes
org.la4j.linear.JacobiSolver and org.la4j.Matrix by 2.

Reducing the method invocation dependencies between
the two files AbstractSolver and LinearSystemSolver
which are contained in the package org.la4j.linear.

Reducing the weight of edge between the two nodes
org.la4j.linear.AbstractSolver and org.la4j.linear. Lin-
earSystemSolver by 1.

Reducing the weight of edge between the two nodes
org.la4j.linear.AbstractSolver and org.la4j.linear. Lin-
earSystemSolver by 1.

TABLE VI
THE COMPARISON BETWEEN RELATED METHODS

Method Direction Representation Technology Implementation

Architecture recovery One-way Component dependency graph Mapping rules, clustering algorithm Automatic
Generate code One-way Component dependency graph Mapping rules, clustering algorithm Automatic
Multi-View Two-way UML Mapping relations Automatic
Information fusion Two-way Component dependency graph Logic element programming, metadata, language development Artificial

Technology. The table shows that the mapping rules are
widely used in many methods. It indicates that the mapping
rules are effective for co-evolutionary methods.

Implementation. Most of these methods are implemented au-
tomatically, but the information fusion method is implemented
artificially. So the information fusion method is not suitable
for large-scale programs.

According to the above analysis of related work, we know
that the above four methods do not support the two-way co-
evolution automatically between component dependency graph
and code automatically. So, we propose a co-evolutionary
method to solve these problems.

V. CONCLUSION AND FUTURE WORK

In the paper, we propose a co-evolutionary method between
architecture and code, including the co-evolutionary method
of code based on evolved architecture and the co-evolutionary
method of architecture based on evolved code. In our method,
more types of change actions are taken into consideration,
and the changes are converted based on mapping rules, then
we use FDG as the intermediate level between architecture
and code to perform co-evolutionary algorithms. We conduct
the experiments with eight open source projects, and the
experimental results indicate that the co-evolutionary method
of architecture based on evolved code and the co-evolutionary
of code based on evolved architecture are all effective. In our
future work, we will combine our method with architecture
quality, then we improve architecture quality automatically.

REFERENCES

[1] Umberto Azadi, Francesca Arcelli Fontana, and Davide Taibi. Architec-
tural smells detected by tools: a catalogue proposal. In 2019 IEEE/ACM

International Conference on Technical Debt (TechDebt), pages 88–97.
IEEE, 2019.

[2] Daniel Link, Pooyan Behnamghader, Ramin Moazeni, and Barry Boehm.
The value of software architecture recovery for maintenance. In Pro-
ceedings of the 12th Innovations on Software Engineering Conference,
pages 1–10, 2019.

[3] Ana Paula Allian, Bruno Sena, and Elisa Yumi Nakagawa. Evaluating
variability at the software architecture level: an overview. In Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing, pages
2354–2361, 2019.

[4] Burak Uzun and Bedir Tekinerdogan. Domain-driven analysis of archi-
tecture reconstruction methods. In Model Management and Analytics
for Large Scale Systems, pages 67–84. Elsevier, 2020.

[5] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Ma, and
Jean Bernard Stefani. The fractal component model and its support in
java. Software Practice & Experience, 36(11-12):1257–1284, 2010.

[6] R. France and J. M. Bieman. Multi-view software evolution : A uml-
based framework for evolving object-oriented software. In Proceedings
IEEE International Conference on Software Maintenance. ICSM 2001,
pages 386–395, 2001.

[7] Pooyan Jamshidi and Claus Pahl. Business process and software
architecture model co-evolution patterns. In International Workshop on
Modeling in Software Engineering, pages 91–97, 2012.

[8] Mitchell A Potter and Kenneth A De Jong. Cooperative coevolution:
An architecture for evolving coadapted subcomponents. Evolutionary
Computation, 8(1):1–29, 2014.

[9] Amir Ngah and Siti Aminah Selamat. Using object to slice java program.
Journal of Engineering and Applied Sciences, 13(6):1320–1325, 2018.

[10] Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and
Steven Euijong Whang. Slice finder: Automated data slicing for model
validation. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 1550–1553. IEEE, 2019.

[11] Tong Wang, Dongdong Wang, Ying Zhou, and Bixin Li. Software
multiple-level change detection based on two-step mpat matching.
In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 4–14. IEEE, 2019.

[12] Nenad Medvidovic and Vladimir Jakobac. Using software evolution
to focus architectural recovery. Automated Software Engineering,
13(2):225–256, 2006.

152

An Empirical Study of Maven Archetype
Xinlei Ma† Yan Liu† ∗

†School of Software Engineering, Tongji University, Shanghai, China
∗ Corresponding Author

{1831592, yanliu.sse}@tongji.edu.cn

Abstract—Archetype is a Maven project templating toolkit. An
archetype is defined as an ”original pattern” of the representative
Maven project. Using archetypes enables Maven developers
to quickly work in a way consistent with the best practices
which demonstrate many Maven features and usage patterns
of Maven components. Nowadays, more and more developers
utilize archetypes to standardize development within their orga-
nizations. Despite the ever-growing use, there are still limited
experimental evidence and guidance on how to leverage the
power of archetype. Meanwhile, because of the enormous scale
and spotty quality of projects, it is incredibly challenging to
perform analysis on the whole Maven central repository. As
the simple ”artifacts” of the Maven best practices in many
diverse domains, Maven archetypes are ideal for studying the
”Maven Way” of configuration and the usage pattern of Maven
libraries. Therefore, we perform the first empirical study on
2,326 archetypes retrieved from the Maven central repository
to discover the archetype characteristics. Our results identify
the configuration schema patterns, structural patterns, the uses
of dependencies/plugins in archetypes, and summarize some
evolution characteristics of archetypes as well. The primary
archetype characteristics capture the potential research value
of archetypes. The guidance on how to configure the archetype
and utilize Maven libraries can be leveraged to maintenance,
automatic completion both for archetypes, and Maven projects.

Index Terms—Maven; Archetype; Configuration; Software
Analytics

I. INTRODUCTION

Apache Maven is a software project management and com-
prehension tool. Based on the concept of a project object
model (POM), Maven can manage a project’s build, reporting,
and documentation from a central piece of information [1], [2].

Archetype is a Maven project templating toolkit. It helps
archetype authors create Maven project templates for Maven
developers and provides developers with the means to generate
Maven projects from those project templates. An archetype
is defined as an ”original pattern” or ”model”, which helps
Maven developers get started as quickly as possible. More
encouragingly, it will introduce new users to the best practices
employed by Maven [3]. Nowadays, more and more develop-
ers adopt the archetypes to standardize development within
their organizations. Despite the ever-growing use, there are
still limited experimental evidence and guidance on how to
configure archetypes.

Maven central repository is one of the most popular and
widely used repositories of Maven projects, which contains

DOI reference number: 10.18293/SEKE2020-021

more than 2.8M Java Maven projects [4]. However, those
who want to analyze the whole Maven central repository
face challenges on an enormous scale and spotty quality of
projects [4]. As the simple ”artifacts” of Maven best practices,
archetypes also present the ”Maven Way” [5] of configuration
and some usage patterns of Maven libraries. Therefore, we
perform the empirical study on Maven archetypes in the
Maven central repository instead of all Maven projects. To our
knowledge, we are the first to perform the empirical study on
Maven archetypes [6]. Previous archetype-related researches
[7] paid more attention to its practical usage but failed to
leverage its hidden knowledge.

An archetype consists of the archetype metadata which
describes the contents of archetype and Maven project tem-
plates which can generate a working project [3]. These project
templates include pom.xml files, Java files, and other resource
files. In concept, the archetype is a code ”skeleton” or a
very simple ”artifact” [3]. Maven archetypes and projects are
configured by a POM, which is stored in a pom.xml file.
Since our research object is studying archetype configuration
and usage patterns of Maven libraries, we focus on POMs in
pom.xml files.

This work start with four research questions on the config-
uration levels, design appropriate analysis process to explore
archetype patterns, uses of dependency/plugin, evolution, and
obtain some interesting conclusions finally. The main contri-
butions of our work are as follows:

• Gaining novel insight into configuration-level analysis
across representative Maven projects.

• Presenting a first complete process on archetype analysis
with appropriate static and quantitative methodologies.

• Releasing a pre-processed datasets in https://zenodo.org/
record/3702349#.Xmd21JMzZQI, including all 2,326
archetypes which can be used for further research.

The remainder of this paper is organized as follows: Section
2 presents the terminologies related to this paper. Section
3 describes the methodology applied to conduct the analy-
sis. Section 4 presents the experimental results of the four
proposed questions. Section 5 presents the conclusions of
the study. Due to space limitations, all graphs and Table II
and Table III are available at https://drive.google.com/file/d/
1EhqU1GY1KBS5xipo4DkUtCiurMmE2pdS/view.

153

https://zenodo.org/record/3702349#.Xmd21JMzZQI
https://zenodo.org/record/3702349#.Xmd21JMzZQI
https://drive.google.com/file/d/1EhqU1GY1KBS5xipo4DkUtCiurMmE2pdS/view
https://drive.google.com/file/d/1EhqU1GY1KBS5xipo4DkUtCiurMmE2pdS/view

II. TERMINOLOGY

Maven artifacts such archetypes, dependencies, and plugins
are identified by the 3-tuple ”GroupId:ArtifactId:Version”,
where GroupId is the organization of this project, ArtifactId
is the name of this project, and Version is the version for this
project respectively. We provide some terminologies of POM
here to make readers understand better.

POM Tree. A POM is stored in a well-defined eXtensible
Markup Language (XML) file consisting of element tags,
which can be modelled as a rooted tree with element nodes:
the POM XML tree [8].

POM Relationship. POM relationships generally include
dependencies, inheritance, and aggregation [2]. POM Inher-
itance means that a POM extends its parent POM directly
and can inherit and override its parent. A Maven project can
be represented as a sub-module with its own POM. Through
POM, a multi-module or aggregator project can group many
sub-module projects [2].

Then, for better analysis, we give detailed definitions of
essential concepts in this paper.

POM XML Element Sequence. In a POM Tree, each
element node has a unique path from the root (”project”
element) to itself. Given a specific element Ele, we can
represent it as a tuple <Ele, Sele> where Ele is the tail
element of the sequence, and Sele is the prefix of this element
in the POM tree.

POM Inheritance Depth. It defined as the depth of the
given POM in the POM inheritance chain. In other words, it
is the number of POMs preceding a given POM in the POM
inheritance chain.

Evolution Type of Dependency and Plugin. We define
the following kinds of dependency changes: dep add, dep del,
dep add del, dep v, dep scope, and dep exclutions. The evo-
lution type of plugin is similar. We use dep, plu, v, and del to
denote dependency, plugin, version, and deletion.

III. METHODOLOGY

In this empirical study, firstly, we give some definitions for
some concepts related to our study. Then we propose four
archetype-based research questions, collect the dataset, and
design corresponding experiments. Based on the findings of
each experiment, we provide conclusions for each research
question or explanations of experimental results. The overall
workflow is presented in Fig. 1.

A. Research Questions

We propose four questions from the aspects of patterns, uses
of dependency/plugin, and evolution. The questions are:

• RQ0: What are typical configuration schema patterns in
archetype POMs?

• RQ1: How are structural patterns used in archetypes?
• RQ2: What is the usage pattern of dependencies and

plugins in archetypes?
• RQ3: How archetypes evolve during the lifecycle?

B. Dataset Preparation

1) Collecting raw dataset: We collect all the second latest
archetypes in JAR format from the Maven central repository,
which include 6,432 POM files and 11,050 Java code file.
Moreover, for archetype evolution study, our dataset contains
10,184 archetypes releases for a total of 2,326 archetypes,
which gives an average of 4 releases per archetype.

2) Processing raw dataset: In Maven projects or
archetypes, the pom.xml file specifies the project structure,
settings for different build steps, and libraries on which the
project depends. We decompress the JAR archetypes, retrieve
pom.xml files from decompressed archetypes, and parse them
to extract useful data (such as adopted dependency and pom
relationships). In this work, we mainly focus on the root
pom.xml files in archetypes except for the POM relationships
(which are extracted from the pom.xml file for archetype
generation process).

C. Technologies

Apriori [9] frequent itemset mining algorithm is used to
investigate what type of dependencies or plugins always work
along, with Confidence level (C), Support (S), and Lift (L) as
metrics.

IV. OBSERVATIONS AND FINDINGS

A. RQ0: What are typical configuration schema patterns in
archetype POMs?

As a configuration file, a pom.xml file should base on the
POM schema. Configuration Schema Patterns of POM are
useful for POM automatic completion. We define Configu-
ration Schema Pattern as a combination of frequent element
sequences to implement a configuration concern in POM. To
answer this question, we propose three subquestions:

• RQ0.1 Which element tags are frequently used in root
pom.xml files?

• RQ0.2 Which element sequences are frequently used in
root pom.xml files?

• RQ0.3 Which configuration schema patterns are fre-
quently used in root pom.xml files?

Figure 3 and Figure 4 illustrate the top frequently used
element tags and element sequences in the root pom.xml
files separately. Referring to these element sequences with
corresponding frequency, we summarize several typical
schema patterns by combining relational element sequences
into an element tree. Figure 2 displays some typical schema
patterns, and the root element of these patterns are build (the
top-level build element under project), dependency, plugin,
and profile. Regarding each element in the element tree, we
manually divide their direct suffix element tags into two
sets according to frequency. In Figure 2, the dotted lines
with boxes mean the set of highly frequently used element
tags, and the original lines with boxes mean the set of less
frequently used element tags. The orange box means the
non-leaf node, and the green box means the leaf node.

154

RQ0 We analyze the XML schema patterns used in POM
files to detect the recurring element tags and sequences.
For POM automatic completion, several configurations
patterns are detected and concerns principally the tags
build, dependency, plugin, and profile.

B. RQ1: How are structural patterns used in archetypes?

Our investigation of structural patterns in archetypes focuses
on aggregation and inheritance. POM aggregation is used
to manage a complex system which involves hundreds of
interrelated sub-modules. POM inheritance can effectively
reduce the repetition of configuration code and make it easier
to reuse configuration code. Some typical ”Maven Ways”, such
as centralized management of dependencies, predefining of
public components, can be used through POM aggregation and
POM inheritance. In this part, we propose two subquestions:

• RQ1.1 Which proportion of archetypes adopts POM
inheritance or POM aggregation in our dataset? Is the
POM Inherited Depth usually not more than one?

• RQ1.2 Are archetypes which adopt POM inheritance and
POM aggregation simultaneously in proportion in our
dataset?

TABLE I: Uses of POM inheritance and aggregation in pri-
mary dataset and extended dataset

Item Num Avg Mid Max Scope

inheritance 1,817 / / / primary
aggregation 1 / / / primary
inheritance depth / 2.18 2.00 7.00 primary
aggregation 491 / / / extended
aggregation submodule / 10.03 6.00 62.00 extended
inheritance & aggregation 1229 / / / extended

For RQ1.1, we find that 1,817 archetypes have the
specified parent, while only one archetype has sub-modules(it
has specified parent as well). The latter phenomenon is
unreasonable, and we infer it is because these archetypes are
sub-modules of other archetypes which are out of our study
range. Therefore, besides previous basic 2,326 archetypes,
we expand our study scope to parent archetypes upward
POM inheritance chains and find that 491 archetypes are
sub-module projects of their direct parent. Moreover, Table I
shows the average, median, and max POM Inherited Depth
for 1,817 child archetypes, and the average, median, and
max sub-module number for 1,296 archetypes which are both
multi-module and parent projects.

RQ1 Pom Inheritance is adopted by more than 2/3 of the
studied archetypes, and POM Inherited Depth is always
more than 1. About 1/5 of the studied archetypes are
sub-modules of their direct parent, which means POM
aggregation and inheritance are often used simultaneously.
When developers desire to scale up their archetypes, POM
aggregation and inheritance are encouraged to be utilized.

C. RQ2: What is the usage pattern of dependencies and
plugins in archetypes?

According to the principle about the wisdom of the crowds
in software engineering, referring to other developers’ de-
cisions on the library can avoid some pitfalls experienced
by other developers [10]. Therefore, we try to explore the
following subquestions:

• RQ2.1 What is the utilization distribution of dependencies
and plugins?

• RQ2.2 Which dependencies and plugins in archetypes are
frequently adopted, and in which scenario?

• RQ2.3 Which dependencies and plugins are frequently
adopted at the same time and why?

Figure 5a and Figure 5b present the utilization distribution
of dependencies and plugins, respectively, and each one of
distributions is right-skewed. The x-axis shows the number
of archetypes using a type from the dependency or plugin.
The y-axis shows the fraction of total dependencies or plugins
falling within that utilization number bin. It indicates that the
majority of dependencies or plugins show low utilization, and
this result is similar to the study about utilization distribution
of Maven Components among open-source Java projects [11].

For RQ2.2, Figure 6a and Figure 6b illustrate the top
20 frequently used dependencies (from overall 3,188 dis-
tinct dependencies) and the top 20 frequently used plu-
gins (from overall 444 distinct plugins) at the level of
GroupId. The most popular dependency is junit:junit appear-
ing in 536 archetypes, and the most frequently used plugin
is org.apache.maven.plugins:maven-compiler-plugin appearing
in 643 archetypes.

The result of frequent item-set mining shown in Table III
presents what types of dependencies or plugins are utilized
together in high frequency (RQ2.3). We remove the most
frequently used dependencies or plugins in this result like junit
since they nearly appear in every archetype. In Table III, the
tag means the category of dependency or plugin. And S, C,
L, D, P means support, confidence level, lift, dependency, and
plugin, respectively.

Moreover, we summarize three relationships based on the
mining result to explain why they always work along, which
are also indicated in Table III:

• Functionally Related. Functionally related dependencies
or plugins usually belong to the same Java function
module, such as log and test.

• Tool. Some dependencies (or plugins) may support others
as tools.

• Up-Down-Stream. The downstream dependencies (or
plugins) usually depend on the upstream dependencies
(or plugins) to realize interfaces.

155

RQ2 Very few dependencies or plugins are frequently used,
while most of them are hardly used. We make a two-
level classification for popular dependencies according to
their function and usage scenarios. The result of frequent
item-set mining gives a primary answer to what types
of dependencies or plugins always work along, and we
summarize the relationships to explain the mining result.

D. RQ3: How archetypes evolve during the lifecycle?

Configuration management includes controlling the changes
to the items such as dependencies in the system throughout
their life cycle [12]. In order to analyze the evolution of
archetypes during the life cycle of POM files, we try to answer
several subquestions as follows:

• RQ3.1 How often do archetypes release a new version?
• RQ3.2 Which are the most frequently changed items

when archetypes evolve?

TABLE IV: Overview of dependency/plugin addition and
deletion

Item Median Mean

Dependency Add Rate 0.25 0.46
Dependency Del Rate 0.25 0.31
Plugin Add Rate 0.50 0.79
Plugin Del Rate 0.50 0.50

Item Number

Dependency Addition 932
Dependency Deletion 683
Dependency Addition and Deletion 539
Plugin Addition 461
Plugin Deletion 298
Plugin Addition and Deletion 193

An archetype version number composes of major, minor,
incremental version and qualifier. We regard only major and
minor version number change as an iteration in this question
for incremental numbers and qualifiers are optional. In our
dataset, archetypes release a new version every 150 days on
average and have 7,018 iterations in total.

From the results in Figure 7, we can find that the majority
of change types are associated with dependencies and plugins,
especially their version. Fig. 8 shows the occurring ratio for
each evolution type. (In one iteration, it will be accumulated
when calculating, if the same item changes.)

We also notice that the high frequency of dependency and
plugin addition or deletion, so we calculate the added or
deleted number of dependencies/plugins and their rate for
each iteration. The added dependency rate is calculated as the
following equation:

rateadded dependency =
Cntadded dependency

Cnttotal
(1)

where Cntadded dependency is the number of added dependen-
cies and Cnttotal is the number of total dependencies in the

old version of archetype. The other three rates are similar to
this equation.

As shown in the first part of Table 9, the number of
added or deleted plugins is less than that of dependencies
in general, while the add rate (or del rate) of plugins is
slightly higher than that of dependency as shown in Table
IV. The second part of Table IV gives an overview of
the total number of addition and deletion behaviors for
dependency and plugin. It shows that almost half of addition
and deletion appear together. Figure 10a and Figure 10b
show the time of dependency/plugin addition and deletion
behaviors. Dependency addition and deletion become frequent
since 2007, while plugins since 2009.

RQ3 In general, archetypes release a new version every
2 to 5 months. For archetype iterations, the items about
dependencies and plugins change most often. The reason
is that archetype developers always update the dependency
and plugin information and add/delete dependencies and
plugins. This reflects the high-level attention on the de-
pendency/plugin management from archetype authors.

V. THREADS TO VALIDITY

In our study, we use the second latest version of archetype
to carry out our research, which may cause subtle deviations
in our research results. Another threat to validity concerns
the definitions of the archetype iteration, which may slightly
influence our findings. However, this will not change the trend
of overall results on how archetypes evolve.

VI. CONCLUSIONS

In general, Maven archetypes are the best Maven practices
which are well worth of research. This paper presents an
empirical analysis of 2,326 Maven archetypes hosted by the
Maven central repository. We focus on the Maven archetype
configuration from the aspects of patterns, uses of depen-
dency/plugin, and evolution, and provide some interesting
experimental results. We public our datasets, including 2,326
archetypes, 10,184 releases, and result data in this study. We
hope this paper will benefit further study on this topic.

REFERENCES

[1] Wikipedia, “Apache maven,” https://en.wikipedia.org/wiki/Apache
Maven, 2019.

[2] A. S. Project, “Apache maven,” https://maven.apache.org/
pom.html#What is the POM/, 2019.

[3] ——, “Apache maven archetype,” https://maven.apache.org/guides/
introduction/introduction-to-archetypes.html, 2019.

[4] A. Benelallam, N. Harrand, C. Soto-Valero, B. Baudry, and O. Barais,
“The maven dependency graph: a temporal graph-based representation
of maven central,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). IEEE, 2019, pp. 344–348.

[5] T. O’Brien and M. V. S. Inc., Maven: the definitive guide. O’Reilly,
2008.

[6] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, p. 81, 2018.

[7] T. J. Speicher and Y. Cheon, “Composing a cross-platform development
environment using maven,” in Proceedings of the RCCS+ SPIDTEC2
Workshop on Regional Consortium for Foundations, Research and
Spread of Emerging Technologies in Computing Sciences, Juarez, Mex-
ico, 2018, pp. 68–80.

156

https://en.wikipedia.org/wiki/Apache_Maven
https://en.wikipedia.org/wiki/Apache_Maven
https://maven.apache.org/pom.html#What_is_the_POM/
https://maven.apache.org/pom.html#What_is_the_POM/
https://maven.apache.org/guides/introduction/introduction-to-archetypes.html
https://maven.apache.org/guides/introduction/introduction-to-archetypes.html

[8] Y. Lu, J. Liang, Y. Xiao, S. Huang, D. Yang, W. Wang, and H. Lin,
“Xmlvalue: Xml configuration attribute value recommendation,” in 2017
IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC), vol. 1. IEEE, 2017, pp. 202–207.

[9] R. Srikant, “Fast algorithms for mining association rules and sequential
patterns,” Ph.D. dissertation, Citeseer, 1996.

[10] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and
software evolution (Evol) workshops, 2009, pp. 57–62.

[11] H. Sajnani, V. Saini, J. Ossher, and C. V. Lopes, “Is popularity a
measure of quality? an analysis of maven components,” in 2014 IEEE
international conference on software maintenance and evolution. IEEE,
2014, pp. 231–240.

[12] I. of Electrical and E. Engineers, IEEE Standard for Software Configu-
ration Management Plans. IEEE, 1990.

157

Evaluating the Usefulness and Ease of Use of an
Experimentation Definition Language

Florian Auer, Michael Felderer
University of Innsbruck

Innsbruck, Austria
florian.auer@uibk.ac.at, michael.felderer@uibk.ac.at

Abstract—Before any online controlled experiment, a hypoth-
esis has to be formulated. Moreover, the design, execution, and
analysis have to be planned. Given that the definition of an exper-
iment varies considerably amongst experimentation platforms,
no common experiment definition exists. Furthermore, there is
to the best of the authors’ knowledge no platform-independent
experiment definition model proposed in the literature.

Thus, we aim to propose an experimentation definition lan-
guage and evaluate its usefulness and ease of use. Therefore,
we developed a domain-specific language based on the results
of a previous study and conducted a technology acceptance
model study with 30 participants. It revealed that the proposed
experiment definition language is considered useful amongst the
majority of participants. Moreover, most of the participants rated
the language easy to use. Participants without prior knowledge of
the domain-specific language’s host language (JSON – JavaScript
Object Notation) rated the language considerably less easy to use.

To conclude, the proposed experimentation definition lan-
guage supports practitioners in their experimentation process
by providing them a structure and pointing them out to experi-
ment characteristics that could be considered. Furthermore, the
machine-readable definition of experiments represents a first step
for many research directions, like the automated verification of
experiments, or the development of an experiment knowledge
base.

Index Terms—continuous experimentation, domain-specific
language, technology acceptance model, online controlled exper-
iment definition

I. INTRODUCTION

Online controlled experimentation of software features al-
lows to quickly assess ideas and to make data-driven decisions
about them [1]. Furthermore, the technique of deploying a
change, exposing it to a subset of the users and collecting
telemetry about it, has the potential to be a vehicle for
software quality assurance [2] of modern technologies like
machine learning or the internet of things (IoT) that are
challenging for offline software quality assurance techniques
[3] like traditional software testing. Given the potentially large
impact of decisions that are based on experiments, the correct
execution and therefore, the reliability of experiments are of
great importance to organizations. Recent empirical studies
[4], [5] found that the majority of practitioners use in-house
built experimentation platforms. Thus, they use self-built tools
to execute their experiments. Although this seems to be a
reasonable choice to adapt the experimentation process to the

DOI reference number: 10.18293/SEKE2020-067

respective needs of an organization, it complicates the knowl-
edge and experience exchange within the community and the
development of platform-independent techniques. A platform-
independent experimentation definition language would repre-
sent a foundation for a more structured experiment definition,
static experiment verification, and software quality assurance
for modern technologies like machine learning or IoT –
independent of the concrete used experimentation platform.
Thus, this paper presents a tool-independent experimentation
definition language (EDL) based on the findings of [5]. The
language is evaluated on its usefulness and ease of use using
the technology acceptance model by Davis et al. [6].

The remainder of this paper is organized as follows. Sec-
tion II describes the proposed experimentation definition lan-
guage. Section III discusses the applied research methods and
their threats to validity. Section IV presents the findings and
discusses them. Finally, Section V concludes the paper.

II. AN EXPERIMENTATION DEFINITION LANGUAGE (EDL)

A domain-specific language to define online controlled
experiments needs to describe an experiment through all
its lifecycle phases to provide a complete definition of an
experiment. Fabijan et al. [4] present an experiment lifecycle
with three phases (see Fig. 1).

Fig. 1. Experiment lifecycle by Fabijan et al. [4].

In the first phase called the ideation phase, ideas are
formalized as treatment descriptions and their success crite-
ria (minimal viable hypotheses). Based on a hypothesis the
treatment is developed as a minimal viable product. Thus, the
implementation is tailored to meet the experiment’s require-
ments.

158

Identification Hypothesis Segmentation

Experiment ID Hypothesis Variant ID
Name Description Eligibility Condition

Guardrail Metrics Created Tags Allocation Expression

Metrics Description

Expected Movement Scope Owner

Documentation Application Name Variants
Feature Role Variant ID

Data Quality Metrics Area Contact Information Value Expression

Metrics Description

Expected Movement Scope

Documentation Implementation Type

Diagnosis Metrics Sizing

Metrics Related Experiments Telemetry Required Participants

Expected Movement Linked Experiments Required Telemetry Description

Documentation Exp. Exclusion List Trigger Conditions
Description Description Duration

Success Metrics Start

Metrics Iteration Alerting & Shutdown End

Expected Movement Prior Experiment Alert Conditions

Documentation Updater Shutdown Conditions Risk

Updated Known Risks

Description Decisions

Description

A
n

a
ly

s
is D

e
s

ig
n

Ideation

Execution

Experiment

Fig. 2. Experiment definition characteristics taxonomy [5].

In the next phase, the design and execution of an experiment
are addressed. The design of an experiment includes amongst
others, the segmentation of the customers and the size and
duration required for reliable findings. During the execution
of an experiment monitoring is necessary to detect harmful
experiments (e.g. through alert conditions).

Finally, in the last phase, the results are analyzed, decisions
based on the findings are made and lessons from an experiment
are shared. Therefore, the collected data of an experiment is
analyzed and metrics are computed. After the comparison of
the success criteria with the outcome of the experiment, data-
driven decisions are made. Finally, the lessons learned about
the experimentation process (e.g. execution) and the influence
of the change on metrics are shared within an organization.

Authors in [5] assembled a taxonomy of characteristics (see
Fig. 2) that is used to describe online controlled experiments
in each phase of the experimentation lifecycle. It contains in
comparison to other experiment models (e.g. [4]), properties
that define the experiment design for each phase. The study
considered the literature on online controlled experimentation,
experimentation platforms, and the opinions of industrial ex-
perts. The developed taxonomy consists of 17 characteristics
(e.g. experiment owner) and their properties (e.g. name, role,
contact). Based on these findings and the observations made
during the research, an experimentation definition language
was developed. The described taxonomy of experimentation
characteristics served as a domain model for the development
of the domain-specific language.

The analysis of open-source as well as proprietary exper-
imentation platforms in [5] revealed that the data exchange
format JSON was the preferred data format of most platforms.
Thus, it seemed reasonable to use JSON as host language given
its widespread use in the community and its mature support by
all common programming languages. As a result, the domain
model based on the taxonomy was translated into a JSON
schema that describes the experimentation definition language,

its objects, and properties. This decision has the advantage
that definitions written in the domain-specific language (DSL)
are not only machine-readable, but they can be validated with
standard JSON tools too. Listing 1 of an experiment defined
in the language shows that the structure follows the taxonomy
closely.

Listing 1. Structure of an experiment written in EDL.
{
"Ideation":{
"Hypothesis":...,
"Owners":...

},
"Design":{
"Variants":...,
"Segmentation":...

},
"Execution":{
"AlertingAndShutdown":...

},
"Analysis":{
"SuccessMetrics":...,
"GuardrailMetrics":...

}
}

Given that the taxonomy already considers the experimenta-
tion lifecycle, the structure of the taxonomy was transferred to
the language. Furthermore, the lifecycle-oriented arrangement
of the characteristics gives guidelines during the planning of
an experiment.

The second main technology used for the implementation
of the language, is the — according to the Stack Overflow
Developer Survey1 — popular code editor Microsoft Visual
Code2. It has a mature support for both JSON and JSON
schemas, including additional JSON schema constructs to add
online documentation, auto-completion of predefined partial
templates and instant validation of the JSON document accord-
ing to a JSON schema. Hence, in addition to the JSON schema,
online documentation, and partial templates for all properties
were developed. As a result, the editor allows language users
to explore the language through auto-completion (e.g. what
could be written at this location?) and provides rapid feedback
on the syntactical validity of the defined experiment (e.g. is
the experiment valid against the schema?).

As a result, the experiment definition language has the
following key characteristics:

• Human-readable: Given that experimentation involves
stakeholders from different functional expertise (e.g. UX
design, software engineering, business), the experiment
definition has to be easy to understand and readable
independent of the reader’s expertise.

• Machine-readable: The definition of an experiment is
based on a common data exchange format that can be
processed with standard tools.

• Living documentation: The definition of an experiment
should be the single point of truth concerning the respec-
tive experiment. Thus, it should serve the stakeholders as
a discussion base and plan of action, and it should provide

1https://insights.stackoverflow.com/survey/2019#development-
environments-and-tools, accessed 2020-02-25.

2https://code.visualstudio.com/

159

https://insights.stackoverflow.com/survey/2019#development-environments-and-tools
https://insights.stackoverflow.com/survey/2019#development-environments-and-tools
https://code.visualstudio.com/

all necessary properties for the experiment platform to
execute the experiment.

• Knowledge sharing: Lessons learned from the design,
execution, and analysis of the experiment are valuable
knowledge that should be captured and shared. There-
fore, the definition of an experiment includes comments,
decisions, and the reasoning behind them. Moreover,
properties like tags improve the structured archival of
experiment definitions.

III. RESEARCH METHOD

To evaluate the proposed language, the technology accep-
tance model (TAM) by Davis et al. [6] was applied. It is a
model based on the theory of reasoned action (TRA) [7] that
allows to assess the user’s technology acceptance behavior.
The used sets of questions (see Table I) were adapted from
[6], [8], and [9]. They measure the three main constructs
perceived usefulness, ease of use, and self-predicted future
use (see Fig. 3).

E1

E2

E3

E4

E5

E6

Perceived	
Usefulness	

(PU)

U1

U2

U3

U4

U5

U6

Perceived	
Ease	of	Use	
(PEOU)

Self-Predicted
Future	Use	
(SPFU)

S1

S2

Is	correlated	to

Belongs	to

Legend

Fig. 3. Model of usefulness, ease of use, and self-predicted future usage
(TAM). Abbreviations are defined in Table I.

A. Objective

The experiment was performed for two reasons. First,
to evaluate the usefulness of a platform-independent and
machine-readable experimentation definition language. Sec-
ond, to evaluate the ease of use of the proposed experimenta-
tion definition language.

B. Variables

The following variables were considered in this study:
• Perceived usefulness is the degree users expect that the

system will improve their job performance.
• Perceived ease of use is the degree users expect that the

system will be free of effort.
• Self-predicted future usage is the degree users expect to

use the system in the future.

C. Subjects

The subjects of the experiments were 30 graduate students
of the University of Innsbruck (Austria) that were enrolled
in a course on advanced concepts and techniques of software
engineering. The course is part of the computer science as well
as information systems master’s (where some students did a

TABLE I
SCALE ITEMS.

Perceived Usefulness
U1 Using the software in my job would enable me to accomplish

tasks more quickly.
U2 Using the software would improve my job performance.
U3 Using the software in my job would increase my productivity.
U4 Using the software would enhance my effectiveness on the job.
U5 Using the software would make it easier to do my job.
U6 I would find the software useful in my job.
Perceived Ease of Use
E1 Learning to operate the software would be easy for me.
E2 I would find it easy to get the software to do what I want it to

do.
E3 My interaction with the software would be clear and understand-

able.
E4 It was easy to become skillful using the software.
E5 It is easy to remember how to perform tasks using the software.
E6 I would find the software easy to use.
Self-predicted future usage
S1 Assuming the software would be available on my job, I predict

that I will use it on a regular basis in the future.
S2 I would prefer using the software to other forms for defining

experiments.

bachelor in business administration) program. Thus, the stu-
dents had a mixed background in computer science and busi-
ness. Given that online controlled experimentation involves
multiple stakeholders with different professional backgrounds,
either more technical or more business-oriented, the setting
seemed to be advantageous to represent potential users of the
language. To further classify the subjects, some demographic
questions about their prior knowledge on key technologies
used by the experimentation definition language were asked
(see Fig. 4). The results indicate that most participants (76%)
mentioned that they know JSON. In contrast, only a quarter of
all participants stated that they know the code editor Microsoft
Visual Code.

JSON ~ Visual Code

Visual Code

JS
O

N

Yes No

Ye
s

N
o

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

JSON Visual Code

Prior Knowledge

0
5

10
15

20
25

30

23

8

Fig. 4. Participants prior knowledge about the technologies JSON and
Microsoft Visual Code.

D. Running the experiment

Given that the students already learned about experimen-
tation in software engineering as part of the lecture, only a
quick repetition of this topic was given. Thereafter, current ap-
proaches to experimentation (e.g. experimentation platforms,
best practices) were discussed. After that, the development

160

and purpose of the experimentation definition language was
presented. Finally, a short introduction of the tool (Microsoft
Visual Code) was given. The language itself was introduced
by some example experiment definitions. Next, all students
received the same task to model an experiment in the language
based on a written description of an experiment. Finally,
the students submitted their written experiment definition and
filled out a questionnaire containing demographic questions,
the adapted TAM questions (see Table I), and a comment
question.

E. Threats to validity

Potential threats of the study’s validity [10] were considered
and minimized whenever possible.

Construct validity was improved by considering the technol-
ogy acceptance model [6] to evaluate the usefulness and ease
of use of the experimentation definition language. Moreover,
best practices and lessons learned from similar technology
acceptance model studies (e.g. [8]) were considered.

Internal validity threats are caused by faulty conclusions
that could for example happen because of mistakes in the
statistical analysis. To mitigate this, the statistical analysis
considers more than one measure (e.g. Pearson product cor-
relation and Spearman rank-order correlation). Besides, the
measurement instrument itself was analyzed regarding its
reliability (Cronbach’s alpha). Furthermore, the participants’
demography was considered during the statistical analysis to
draw more detailed conclusions of observations.

External validity covers to which extend the generalization
of the results is justified. Given that experiments with students
are usually considered to be of low external validity [11], the
possibility to generalize the results of the study is limited.
Nevertheless, this threat was slightly mitigated by considering
graduate students from a course that addresses the subject
online controlled experimentation and that have varying back-
grounds (computer science, business) that reassembles teams
in practice.

Reliability was improved by recording every step and deci-
sion of this study carefully and reporting the most important
decisions as well as the reasoning behind them. Moreover, all
questions of the study are reported.

IV. RESULTS AND DISCUSSION

A. Reliability

To test the reliability of the questionnaire, Cronbach’s alpha
is used commonly in empirical studies. Values above 0.8 are
typically considered indicating the questionnaire as a highly
reliable measurement instrument [12]. The analysis of the
answers revealed a Cronbach’s alpha of 0.967 for usefulness
and 0.962 for ease of use. This indicates that our questionnaire
is a reliable measurement instrument.

B. Factorial validity

In factor analysis it is examined whether the two factors ease
of use and usefulness form distinct constructs (see Table II).
The analysis clusters the variables together that tend to be

TABLE II
FACTORIAL ANALYSIS.

Usefulness Ease of use
Quick (U1) 0.92 0.03
Performance (U2) 0.96 -0.01
Productivity (U3) 0.92 -0.08
Effectiveness (U4) 0.91 0.03
Easy (U5) 0.91 -0.04
Useful (U6) 0.84 0.12
Easy to learn (E1) -0.05 0.91
Easy to do (E2) 0.00 0.89
Clear (E3) 0.13 0.90
Skillful (E4) 0.24 0.81
Remember (E5) -0.17 0.94
Easy to use (E6) -0.03 0.95

correlated and assigns them a factor loading that describes
the correlation of the variable to the factors. In Table II the
results for all variables are given. Like correlations, the factor
loading ranges from -1 (negative correlation) to +1 (positive
correlation). A variable should have at least a factor loading
of 0.7 to be a meaningful factor [13]. The results in Table II
indicate that there are two factors on which the variables
load. All variables associated with questions about usefulness
tend to be loaded on the factor usefulness. The same can be
observed for ease of use. The questions about ease of use tend
to load on the factor ease of use. Thus, the result confirms that
there are two factors ease of use and usefulness in the data.

C. Usefulness

In Fig. 5 the results for usefulness are shown. It presents
a box plot for each usefulness variable by the Likert scale
value that ranges from 1 (extremely unlikely) to 7 (extremely
likely). Note that according to the suggestion of Laitenberger
et al. [8] the middle option 4 (neither) was omitted because
this answer option would not give any information about
the direction a participant leans to. The summative results
range between 21 and 42 (ignoring the two outliers with
the sums 6 and 7) with a mean and median of about 33.
Given that the maximum possible rating is 42, the results
suggest that the participants consider the definition language
useful. Figure 5 gives a more detailed picture of the ratings.
It shows that across all six variables (U1 - U6) the median
rating is between 5 and 6. There are also some outliers visible
that show ratings below the Likert score value of 3 (slightly
unlikely). A more detailed analysis of these answers revealed
that two participants rated all variables with 1 (extremely
unlikely) or 2 (quite unlikely). All other participants’ ratings
were 3 (slightly unlikely) or above. In the final comments
question one of the two participants mentioned problems
with understanding the task description. The other participants
provide unfortunately no final comments. Given that their
responses differ considerably from the majority of participants,
the problem with the task description is not considered a
possible threat to all answers.

161

quick performance productivity effectiveness easy useful

1
2

3
4

5
6

7
Usefulness

Fig. 5. Usefulness results.

D. Ease of use

The results for ease of use are summarized in Fig. 6. The
summative results (excluding two outliers with a sum of 6
and 9) range between 15 and 42 (maximum score) with a
median of 34 and a mean of 31. These findings suggest that
the participants consider the presented solution easy to use.
However, the widespread of the summative results indicate
that the participants’ opinion on this varies.

easy to learn easy to do clear skillful remember easy to use

1
2

3
4

5
6

7

Ease of use

Fig. 6. Ease of use results.

The lowest rating were given easy to learn (E1), clear
(E3), and easy to use (E6). Reasons for this could be the
short introduction of the language by examples before to the
experiment.

Nevertheless, the majority of participants (see Fig. 6) gave
high ratings for the language to be easy to express experiments
(E1), easy to become skillful in it (E4) and easy to remember
how to perform tasks (E5). This seems to suggest that the
domain model fits well with the domain concepts.

A more detailed analysis of the answers revealed that the
ease of use ranking correlates with the participants’ prior
knowledge on the data interchange format JSON. Calculating
the correlation coefficients (see Table III) revealed that there
is a strong positive correlation between the participant’s prior
knowledge of JSON and the ease of use. Figure 7 shows the
influence of the participants’ prior knowledge of JSON on the
ease of use rating. Participants with prior JSON knowledge
rated every variable with a median of 6, whereas participants
without prior knowledge of JSON rated with a median of 3.
Also, the large spread of the ratings for participants without
JSON knowledge could indicate that there is some unknown
variable (maybe demographic) that could explain the data

TABLE III
PEARSON PRODUCT / SPEARMAN RANK ORDER CORRELATION

COEFFICIENTS OF THE RESPECTIVE SUMMATIVE RESULTS.

Usefulness Ease of use Self-pred. JSON
Usefulness 1.00 / 1.00 0.23 / 0.30 0.60 / 0.56 0.43 / 0.30
Ease of use 0.23 / 0.30 1.00 / 1.00 0.62 / 0.68 0.56 / 0.57
Self-pred. 0.60 / 0.56 0.62 / 0.68 1.00 / 1.00 0.75 / 0.67
JSON 0.43 / 0.30 0.56 / 0.57 0.75 / 0.67 1.00 / 1.00

more. Thus, it seems that the selection of the host language (in
our case JSON) has a strong influence on the user’s perceived
ease of use of the developed DSL. In the case of JSON
the researchers could observe during the experiment that the
concept of the brackets was difficult to some participants,
despite the provided auto-completion.

easy to learn clear remember

1
2

3
4

5
6

7

Ease of use, JSON was known

easy to learn clear remember

1
2

3
4

5
6

Ease of use, JSON was unknown

Fig. 7. Ease of use results by the participant’s knowledge about JSON. The
variables are from left to right: easy to learn (E1), easy to do (E2), clear (E3),
skillful (E4), remember (E5) and easy to use (E6).

E. Correlations

The analysis of usefulness (see Section IV-C) and ease of
use (see Section IV-D) showed that the participants seem to
consider the language useful and most of them consider it easy
to use too. Next we want to investigate the users’ acceptance
of the language by considering the correlations between the
factors’ usefulness, ease of use, and self-predicted future usage
(see Fig. 3). In addition, we considered the influence of
the participants’ prior knowledge of JSON on those factors.
Therefore, we want to investigate the correlation between the
summative results of usefulness, ease of use, self-predicted
future usage, and JSON knowledge. Table III shows the results
of this analysis. It contains the Pearson product correlation
coefficients together with the Spearman rank-order correlation
coefficients between the summative results.

Usefulness is relatively low positively correlated with ease
of use, which could mean that users that find the language
useful not necessarily find it ease to use. This interpretation
is supported by the observations made in Section IV-C and
Section IV-D that although almost all find the language useful,
not all participants find it easy to use.

Both factors usefulness and ease of use are similarly strong
positively correlated with self-predicted future usage. One
interpretation could be that both factors, the usefulness of
the software and its ease of use are strong drivers for the
participants to adapt the language. It seems that participants

162

TABLE IV
SIGNIFICANCE OF THE CORRELATIONS REPORTED BY THE P-VALUES
(PEARSON PRODUCT MOMENT CORRELATIONS / SPEARMAN RANK

ORDER CORELLATION COEFFICIENT). COMMON STAR NOTATION [15].

U(sefulness) E(ase of use) S(elf-pred.) J(SON)
U - ns/ns ***/** */ns
E .202 / .102 - ***/*** **/***
S <.001 / .001 <.001 / <.001 - ***/***
J .015 / .105 .001 / <.001 <.001 / <.001 -

can find the language useful, but not easy to use (and vice
versa) and still give a high rating for self-predicted future
usage. Thus, usefulness could compensate faults in ease of use
and vice versa. This would also explain the still high rating
of self-predicted future usage, although some participants did
not find the language easy to use.

An interesting fourth factor to include in the correlation
analysis is the participants’ prior knowledge of JSON. The
analysis showed that there is a positive correlation between
JSON knowledge, usefulness and ease of use. One explanation
for this result could be that the usefulness of a language
is more independent of the participants’ prior knowledge of
JSON than the ease of us. However, it also indicates the strong
influence of a host language for an internal DSL project.
The strong correlation between JSON and self-predicted future
usage further supports this interpretation.

In addition to the calculation of the correlation coefficients,
the significance of correlation among the four factors were
analyzed (see Table IV). They indicate that the correlation
between usefulness and ease of use is not significant, which
is consistent with the results of King et al. [14]. Furthermore,
all correlations to self-predicted future usage were statistically
significant. Thus, it seems that these factors are indicators of
the users’ acceptance of the language. Moreover, it supports
further the impact of the host language on the users’ accep-
tance of an internal DSL.

As a result the analysis of the answers suggests that the
participants consider the language useful and most of them
easy to use too. Besides, most of the participants would use
the language in the future and prefer it over other solutions.

F. Limitations

Even though possible threats to validity were considered
during the design and execution of the study, the findings of
this experiment have to be interpreted within their limitations.
The main limitation of the study is the selection of students
instead of practitioners as participants. This is in general con-
sidered to make results less generalizable. However, in the case
of this experiment the particular students have considerable
similarities with relevant industrial stakeholders, given their
mixed background of computer science and business as well
as their prior knowledge about experimentation in general and
the domain of experimentation in particular.

V. CONCLUSIONS

For organizations that practice experimentation, the relia-
bility of its experiments are of great importance, given the

large potential impact their results can have. Therefore, the
definition of an experiment as documentation and plan of
action is an important artifact for reliable experimentation.
Therefore, we proposed an experiment definition language
based on recent research about the definition of experiments.
Moreover, we conducted a technology acceptance study to
validate the usefulness and ease of use of it. The results
show that the majority of participants found the language
useful and most found it easy to use too. Interesting future
research directions are the development of a tool-chain for
this language. These tools could apply static analysis on an
experiment definition (e.g. answering whether for every variant
a segmentation is properly defined), synchronize the definition
with an experimentation platform, and even conduct some
dynamic analysis like interference with other experiments on
the experimentation platform.

REFERENCES

[1] R. Kohavi and R. Longbotham, “Online controlled experiments and a/b
testing.” Encyclopedia of machine learning and data mining, vol. 7,
no. 8, pp. 922–929, 2017.

[2] F. Auer and M. Felderer, “Shifting quality assurance of machine learning
algorithms to live systems,” Software Engineering und Software Man-
agement 2018, 2018.

[3] M. Felderer, B. Russo, and F. Auer, “On testing data-intensive
software systems,” in Security and Quality in Cyber-Physical Systems
Engineering, With Forewords by Robert M. Lee and Tom Gilb, S. Biffl,
M. Eckhart, A. Lüder, and E. R. Weippl, Eds. Springer, 2019, pp. 129–
148. [Online]. Available: https://doi.org/10.1007/978-3-030-25312-7 6

[4] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The online
controlled experiment lifecycle,” IEEE Software, 2018.

[5] F. Auer, C. S. Lee, and M. Felderer, “Characteristics of continuous
experimentdefinitions: Results from a systematic literaturereview, a tool
review and an expert survey,” submitted to 46th EUROMICRO SEAA
Conference, unpublished.

[6] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User acceptance
of computer technology: a comparison of two theoretical models,”
Management science, vol. 35, no. 8, pp. 982–1003, 1989.

[7] M. Fishbein and I. Ajzen, “Belief, attitude, intention, and behavior: An
introduction to theory and research,” 1977.

[8] O. Laitenberger and H. M. Dreyer, “Evaluating the usefulness and
the ease of use of a web-based inspection data collection tool,” in
Proceedings Fifth International Software Metrics Symposium. Metrics
(Cat. No. 98TB100262). IEEE, 1998, pp. 122–132.

[9] I. Steinmacher, T. Conte, C. Treude, and M. A. Gerosa, “Overcoming
open source project entry barriers with a portal for newcomers,” 05 2016,
pp. 273–284.

[10] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
Advanced Empirical Software Engineering. Springer London, 2008,
pp. 285–311.

[11] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,
and M. Oivo, “Empirical software engineering experts on the use of
students and professionals in experiments,” Empirical Software Engi-
neering, vol. 23, no. 1, pp. 452–489, 2018.

[12] E. G. Carmines and R. A. Zeller, Reliability and validity assessment.
Sage publications, 1979, vol. 17.

[13] J.-O. Kim, O. Ahtola, P. E. Spector, C. W. Mueller et al., Introduction
to factor analysis: What it is and how to do it. Sage, 1978, no. 13.

[14] W. R. King and J. He, “A meta-analysis of the technology acceptance
model,” Information & management, vol. 43, no. 6, pp. 740–755, 2006.

[15] J. O. Berger and J. Mortera, “Interpreting the stars in precise hypothesis
testing,” International Statistical Review/Revue Internationale de Statis-
tique, pp. 337–353, 1991.

163

https://doi.org/10.1007/978-3-030-25312-7_6

Time-Aware Models for Software Effort Estimation
Michael Franklin Bosu1, Stephen G. MacDonell2, Peter Whigham2

1Centre for Information Technology, Waikato Institute of Technology, New Zealand

{stephen.macdonell, peter.whigham}@otago.ac.nz
2Department of Information Science, University of Otago, New Zealand

Abstract—It seems logical to assert that the dynamic nature of

software engineering practice would mean that software effort

estimation (SEE) modelling should take into account project start

and completion dates. That is, we should build models for future

projects based only on data from completed projects; and we should

prefer data from recent similar projects over data from older

similar projects. Research in SEE modelling generally ignores these

recommendations. In this study two different model development

approaches that take project timing into account are applied to two

publicly available datasets and the outcomes are compared to those

drawn from three baseline (non-time-aware) models. Our results

indicate: that it is feasible to build accurate effort estimation models

using project timing information; that the models differ from those

built without considering time, in terms of the parameters included

and their weightings; and that there is no statistical significance

difference as to which of the two model building approaches is

superior in terms of accuracy.

Keywords-empirical software engineering, software engineering

decision support, software effort estimation, time-aware models

I. INTRODUCTION

Contemporary research efforts to address software effort
estimation (SEE) typically develop and evaluate models using
one, sometimes more, random split(s) of a secondary dataset of
project observations into training and testing sets. Models are
built using the training set and model accuracy is assessed on the
testing set. In practice, however, organizations accumulate data
over time as projects are worked on and are (hopefully)
completed. It could be expected, then, that this accumulating data
set would be the ‘training set’, used to build models to estimate
the effort of future projects as each new project is proposed. Thus
we have a disconnect between research and practice. Most effort
estimation models developed by the research community
disregard project start and/or completion dates [1]; as a result,
data from ‘future’ projects can be used to build predictive models
of effort for projects that occurred before them in time. To some
extent this may be due to the absence of the necessary time-
oriented features in the datasets [1]; however, even for datasets
that include timing information, this is widely ignored in SEE
research as only two (ISBSG and Finnish datasets) of the six
datasets in the public domain with timing information have so far
been used in developing software effort estimation models that
considers time. To the best of our knowledge, this is the first
study to develop time-aware effort estimation models using the
NASA93 and Desharnais datasets. In these datasets, the
completion dates of projects represent the timing information.
This study therefore explicitly considers the year of project
completion and uses only data from completed projects to
develop models to estimate the effort of projects completed in
subsequent years. Two time-aware approaches; Time-Aware
Sequential Accumulation (TASA) and Time-Aware Moving
Window (TAMW) are used in model development (see section
III for details).
 The performance of these time-aware models are then
assessed in an absolute sense and in a relative sense against three

 baseline ‘models’ – leave-one-out, mean and median.
 To the best of our knowledge, this study differs from all
previous effort estimation time-aware studies as this study
applies the TAMW approach and considers the stability of the
models. Our research questions are expressed as follows:
RQ1: Is it feasible to develop accurate effort estimation
models using project completion dates?
RQ2: Are the parameters and coefficients of time-aware
models stable or volatile?
RQ3: Which of the two time-aware modelling approaches, if
either, is superior in terms of accuracy?

The rest of this paper is organized as follows. Section II
presents the related work, our research method is presented in
section III, in section IV we present our results, section V
reports threats to the validity of our study, and section VI
comprises a discussion and draws conclusions.

II. RELATED WORK

Though numerous SEE models have been proposed (see
[2]) the number of studies that have considered project timing
information in effort estimation is negligible and attributed to
very few researchers. This section summarizes the few studies
that are related to this research.

Lokan and Mendes [3] applied a moving window of the
most recently completed projects to new projects in their effort
estimation studies. Their results indicated that the use of a
moving window of the most recently completed projects
contributed significantly to the accuracy of models. In a recent
study, Amasaki and Lokan [4] proposed a method that is able
to select whether to build a model based on time or to use the
growing portfolio of projects. MacDonell and Shepperd [5]
applied two timing methods – sequential accumulation of
project data over time and constant moving window of size 5
– on a proprietary dataset and obtained improved results over
managers’ estimates, especially for the moving window
approach compared to a LOO approach.
 This paper applies the two approaches used by MacDonell and
Shepperd [5] to two publicly available datasets, except that the
moving window approach, presented in the next section, is
dynamic as compared to the fixed window size used in [5] and in
earlier similar studies.

III. RESEARCH METHOD

 Data Grouping
 For each of the two datasets used in this study, an attempt is
 first made to work with the entire dataset before consideration is
 given to splitting the data into homogeneous subsets with a view

to developing models for each partition. The division of datasets
into homogeneous subsets is intended to enable us to identify
whether specific partitions of the data exhibit trends that are
different from those evident for other partitions, or across the
entire dataset. Partitions are typically based on factors such as the
type of application, the application domain of the project, and/or
the unit or department responsible for development.

 Partitions such as these are formed by relying on the
 visualization of boxplots and the use of Mann-Whitney tests to
 assess whether observations belong to the same distribution. In
 this study, data that fell outside the boxplot whiskers of
 distributions were considered as outliers and were not used in DOI reference number: 10.18293/SEKE2020-083

164

model building. A significance level of 0.05 is used for the
Mann-Whitney tests, so groupings that have a p-value greater
than 0.05 are taken to belong to the same distribution. Use of
these partitions will ensure that models are developed for datasets
that as far as possible share similar characteristics.

A. Datasets

NASA93 Dataset

 This dataset was collected by NASA and it comprises 93
projects undertaken between 1971 and 1987 (as downloaded from
the PROMISE Repository http://openscience.us/repo/). The
dataset is structured according to the Constructive Cost Model
(COCOMO81) developed by Barry Boehm [6]. It comprises 24
attributes of which 15 are the mandatory effort multipliers.

Preliminary analysis indicated that, due to the diversity of the

NASA93 projects, it was neither feasible nor sensible to build

time-aware models for the entire dataset, and as such the dataset

was split into four subsets. These four subsets are: NASA82,

comprising projects developed in 1982 and beyond; Center 2 (C2)

and Center 5 (C5) subsets, comprising projects developed at

NASA’s Center 2 and Center 5, respectively; and Semidetached

(SD), which includes projects of the semidetached development

mode. Due to space limitations the boxplots are not shown, but

they can be found at this link1. In addition to outliers being

evident in the boxplots, three other projects with atypical

characteristics were also not used – two projects with size values

greater than their effort values, and a project with a productivity

rate (i.e., effort divided by size) more than twice as high as that

for the project with the next highest productivity rate, and almost

eleven times the mean productivity rate.

Desharnais Dataset

The Desharnais dataset was collected by Jean-Marc Desharnais
from ten organizations in Canada [7]. The projects in this dataset
were undertaken between 1983 and 1988. The dataset consists of
81 records and twelve attributes, including size measured in
function points and effort measured in person- hours. We used the
version comprising of 77 projects as has been done by most
studies that used this dataset because there are four missing
records in the original Desharnais dataset. The Desharnais
dataset, like the NASA93 dataset, contains only the year of project
completion, and as such the training and test sets were formed in
the same way as for the NASA93 dataset (i.e., by using the year
of project completion).

According to Mann-Whitney analysis and associated boxplots,
the Desharnais dataset forms a single distribution. Models were
therefore built for the entire dataset along with a subset which
also forms a single distribution developed using a programming
language termed ‘Advanced Cobol’ (herein referred to as the
Adv.Cobol dataset). This subset is made up of 23 projects and is
identified in the Desharnais dataset as “category 2” under the
language attribute.

B. Effort Estimation Model Development
 In software effort estimation modelling (as in other fields) the

dataset is usually split into two, forming a training set and a test
set. The training set is used to develop the model and the
performance of that model is then evaluated on the test set. This
study follows a similar approach (see Analysis 1 and Analysis 2
in this section for model development algorithms). All models in
this study are developed using the statistical package R, v.3.5.2.

All models are developed using linear regression which has
enjoyed widespread use in software effort estimation studies. In

1 http://tinyurl.com/SEKE2020-TIME

 order to accommodate the diverse nature of the two datasets
 being used in this study, especially in regard to the number of
 variables, specific linear regression models are applied to each
 dataset (or partition) as described in the respective datasets
 section.

It should also be noted that the models developed in this
study are all well-formed models. That is, the degrees of freedom
are considered whereby a training set is formed only when the
number of projects is at least two plus the number of
explanatory variables being used for model construction.
Maxwell’s proposal [8] to identify influential observations using
Cook’s distance during model building was also adopted for this
study.

NASA93 Models

In estimating effort for projects completed in a given year,
equation 1, the COCOMO81 equation for effort estimation, is
used for all four partitions of the NASA93 dataset.

𝑒𝑓𝑓𝑜𝑟𝑡(𝑝𝑒𝑟𝑠𝑜𝑛𝑚𝑜𝑛𝑡ℎ𝑠) = 𝑎 ∗ (𝐾𝐿𝑂𝐶)𝑏 ∗ (∏ EMj). . . (1)
In order to develop a regression model, as in other
COCOMO81 effort estimation studies [6] [9], equation (1) is
linearized by logarithmic transformation, as indicated in
equation (2).

 ln(𝑒𝑓𝑓𝑜𝑟𝑡) = ln(𝑎) + 𝑏 ∗ ln(𝐾𝐿𝑂𝐶) + ln(𝐸𝑀1) + ⋯ (2)
Backward stepwise regression is applied in order to support the
inclusion or exclusion of variables, as previous studies have
established that not all the effort multipliers of the NASA93
COCOMO81 format dataset are influential in model building
[9].

Desharnais Models

Desharnais himself [7] identified the size and language
attributes as those that are influential in a regression model.
Kitchenham and Mendes [10] supported Desharnais’ claim by
proposing the use of the language attribute as a dummy
variable. This approach has been adopted here for the models
developed for this dataset, as shown in equation (3).

ln(effort) = ln(size) + language……(3)
This study used the adjusted function point value as the most
complete size attribute and treated the three-value language
attribute as a dummy variable, with the reference dummy value
being the Basic Cobol projects indicated as “1” in the
Desharnais dataset. The smaller Adv.Cobol dataset only uses
size as an explanatory variable in model development.

C. Analysis Procedure

The following procedures are applied to all datasets
modelled in this study.

Analysis 1: Time-Aware Sequential Accumulation (TASA)

1. For each dataset with timing information, select the first year

in which projects were completed as the training set – if the

first year of projects comprises fewer than the number of

observations needed to build a well-formed model, add the

next year(s) of projects, until the minimum requirement for a

well-formed model is satisfied. The subsequent year of projects

is then used as the test set.
2. Check for normality (using the Shapiro- Wilk test of normality)

in the distributions of the training data– if data follow a
normal distribution go to step 3 else step 2.1

2.1 Apply the appropriate transformation to make the data normal

 and recheck normality for verification as in step 2 above.
3. Build a regression model using the training data (where the

 form of the regression model will be specific to each dataset).

4. Apply the model obtained in step 3 to predict the effort values

 in the test set.

165

http://openscience.us/repo/)
http://tinyurl.com/SEKE2020-TIME

𝑖=1

5. Calculate the accuracy measures (see below) for the formulae.

6. Add the test year’s data to the training set; the subsequent

year’s data becomes the new test set.

7. Repeat steps 2 to 6 through to the estimation of the last year of

projects.
Analysis 2: Time-Aware Moving Window (TAMW)

This algorithm applies a moving window to the dataset used in

Analysis 1 thus accounting for the longevity of the projects in the

training set.

1. For each dataset used in Analysis 1, drop the oldest year’s

projects.

2. The ‘new’ oldest year’s projects now become the first year of

projects; apply step 1 of Analysis 1.
3. Apply steps 2-6 from Analysis 1.

4. Repeat steps 3 to step 6 of Analysis 1 until the training set

comprises projects from all years except the last year of projects.
5. Remove the oldest year’s projects from the training set.

6. Repeat steps 1 to 5 until there is only one year of projects in

the training set or until there is not enough data in the training set

to build a well-formed model.

Baseline Models

Three baseline models are developed for each dataset/subset used
in this study and their performance is compared with that of the
time-aware models. The baseline models are a leave-one-out
holdout (LOO – note that the ‘one’ in this case refers to all
projects in one year rather than a single project), the mean and the
median of the training set data. The mean and median effort
values are calculated over the training data and become the effort
estimates for the projects in the test set.

D. Measures of Accuracy

Accuracy measures used to evaluate the performance of the effort
prediction models are relative error, mean squared error and total
absolute error. Note that in all three cases lower values are
preferable.

Relative Error (RE) - The relative error is computed using the

following equation:
RE = variance(residuals)/variance(measured),where

measured is the test data. The relative error measure accounts for

the variability in data and as such it is robust to outlier data

points.

Mean Squared Error (MSE) - MSE is defined as:

MSE = 1 ∑𝑛 (𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒)2
𝑛

where n is the total number of test data points, actual is the

recorded effort used in developing the project and estimate is

the effort predicted by the model. The MSE measures the

general quality of the prediction model across all data points

and accounts for projects of varying size. It can be susceptible

to outliers; however, if a data set is largely free of outliers it

can provide a useful indication of a model’s overall accuracy.
Total Absolute Error (TAE) - TAE is defined as:

𝑛

𝑇𝐴𝐸 = ∑ |(𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒)|
𝑖=1

IV. RESULTS

The results of applying the modelling approaches to the two
datasets and their partitions are now presented. Due to space
constraints we include only some of the results – the complete
set of results may be found at the link specified previously.
NASA93 Dataset

It is evident from Table I that the accuracy measures are

themselves not consistent in terms of model performance.
That aside, it does seem to be feasible to build time-aware
models for this dataset based on projects completion dates, as
the worst model performance recorded (excluding the models
with the large prediction errors) in terms of relative error is
0.26 which is quite satisfactory. Also, in just two instances the
median baseline results are better than the time-aware models;
in all other cases the models are better than both the mean and
median baseline results.

TABLE I. NASA93 EFFORT ESTIMATION RESULTS

Time-Aware Sequential Accumulation

Time-Aware Moving Window

 Year RE MSE TAE RE MSE TAE/AE

N
A

SA
8
2

 1985 0.06 2136.52 243 - - -

1986 1717.8 3.4E+07 18151 - - -

1987 0.19 61.87 15 0.11 113.38 21

C
2

 1987 0.26 73.12 16 0.26 73.12 16

C
5

1983 - - 302 - - 302

1984 0.12 6256.95 278 0.12 6256.94 278

1985 - - 12 - - 8

1985* - - 12 - - 2

SD

1984 7.5E+05 6.1E+09 174344 - - -

1985 0.02 199.98 64 - - -

1986 849.93 1.7E+07 13996 1.6 8353.57 926

1986* 849.93 1.7E+07 13996 2738 5.4E+07 22513

1987 0.19 75.92 17 0.2 72.17 16

1987* 0.19 75.92 17 0.19 85.47 17

* number of additional TAMW models built for that particular year

‘-’ indicates no computation of a result for a specific accuracy measure

The LOO baseline results, however, is better than all the models

developed for this dataset (see previous link). The highlighted

results in Table I indicate large prediction errors. Manual

inspection of the NASA82 and Semidetached (SD) datasets

revealed that the effort multipliers of the training projects were

quite different from those of the projects being estimated.
To formally gauge whether one of the time-aware models

resulted in more accurate effort predictions, a two-tailed paired
samples Wilcoxon test was applied. The p-value results are 1 (due
mainly to the ties), 0.5839 and 0.5839 for RE, MSE and TAE,
respectively. This indicates that the differences in prediction
accuracy for the two models are not statistically significant.
Therefore, for this dataset, we conclude that either time-aware
approach could be used to estimate effort. The two time-aware
models consistently included size as an explanatory variable.
Beyond that, however, both the variables included in the effort
estimation models and their coefficients were quite dynamic, as
the models differed from one time period to another (see previous
link). There was no consistent pattern as to a decrease or increase
in the values of the coefficients of both model types developed for
the NASA93 dataset. All the predictive models developed for the
NASA93 datasets can be termed as sufficiently accurate as the
Adjusted R2 values fell between 0.89 and 0.98 (see previous link).

Desharnais Dataset
It is evident from Table II that it is again feasible to build time-

aware models for this dataset using projects completion dates,
with some of the results in terms of RE reaching 0.01. The
corresponding TAE results are equally satisfactory. Though the
worst result, for 1986 at 40727 hours, might appear large, it
equates to an average of 36 weeks per project since 28 projects
were completed in 1986. There are four instances where the
model results are better than their corresponding LOO(available at
the previous link) baseline models (2 for MSE and 2 for RE). A
two-tailed paired samples Wilcoxon test was applied to determine
the superior modelling method. The p-value results are 0.6698,
0.5566 and 1 for RE, MSE and TAE, respectively, indicating that
the two models are not significantly different. Therefore for this
dataset, either of the time-aware approaches could be used to

166

develop effort estimation models.
The models’ explanatory variables and coefficients are

consistent, as shown in Table III (TASA model) and Table VI
(TAMW model). All of the models built have Adjusted R2 values
of between 0.60 and 0.88 and as such could be termed as
reasonably accurate models.

TABLE II. DESHARNAIS EFFORT ESTIMATION RESULTS

 Time-Aware Sequential
Accumulation

Time-Aware Moving Window

 Year RE MSE TAE RE MSE TAE/AE

D
es

h
ar

n
ai

s 1986 0.65 4953913.7 39911 0.67 4964415.7 40727

1987 0.71 837535.2 7267 0.77 914156.4 7473

1987* 0.71 837535.2 7267 0.69 816717.2 7153

1987** 0.71 837535.2 7267 0.69 846571.1 8348

1988 0.02 196984.4 1326 0.02 153573.1 1182

1988* 0.02 196984.4 1326 0.01 134684.7 1293

1988** 0.02 196984.4 1326 0.01 102903.6 1394

1988*** 0.02 196984.4 1326 0.15 1437442 3765

A
d

v.
 C

o
b

o
l 1987 0.13 1393102.6 6515 0.13 1372071 6388

1987* 0.13 1393102.6 6515 0.13 1364820 6251

1988 - - 1205 - - 1015

1988* - - 1205 - - 1102

1988** - - 1205 - - 525

TABLE III. COEFFICIENTS OF TIME-AWARE SEQUENTIAL CCUMULATION

MODELS - DESHARNAIS DATASET

Dataset Year Intercept Size Lang2 Lang3 Adj.R2

Desharnais

1986 5.65 0.50 -0.50 -1.66 0.68

1987 3.78 0.82 -0.04 -1.49 0.74

1988 3.89 0.80 -0.04 -1.44 0.74

Adv. Cobol 1987 2.66 1.03 0.84

1988 2.62 1.04 0.83

TABLE IV. COEFFICIENTS OF TIME-AWARE MOVING WINDOW MODELS

- DESHARNAIS DATASET

Dataset Year Intercept Size Lang2 Lang3 Adj.R2

Desharnais 1986 5.65 0.51 -0.55 -1.71 0.71

1987 3.67 0.85 -0.05 -1.50 0.76

1988 3.81 0.82 -0.05 -1.45 0.75

1987* 3.59 0.85 0.001 -1.37 0.74

1988* 3.78 0.82 -0.002 -1.35 0.74

1987** 2.91 0.96 0.17 -1.12 0.88

1988** 3.65 0.83 0.10 -1.24 0.85

1988*** 4.76 0.62 -0.007 -1.06 0.60

Adv. Cobol 1987 2.74 1.02 0.84

1988 2.96 0.98 0.83

1987* 3.01 0.98 0.84

1988* 3.37 0.92 0.86

1988** 3.32 0.92 0.75

V. THREATS TO VALIDITY

The first threat to the validity of this study is the
generalization of our results, as the datasets used are convenience
sampled from the PROMISE repository. Though these datasets
cannot be representative of the entire software industry they have
become benchmarks datasets in software effort estimation
research. The age of the datasets might also raise concern,
however, these datasets are still increasingly being used in recent
software effort estimation studies. Another threat to validity is
due to the bias that could be introduced by considering only the
completion dates, however, we had little choice as these datasets
only have completion dates.

VI. DISCUSSION AND CONCLUSIONS

The results presented for the two datasets examined here
indicate that it is feasible to develop accurate effort estimation
models that are also time-aware based on projects completion
dates, positively answering RQ1. In most instances, the
performance of the models developed for the NASA93 dataset
was acceptable, with Adjusted R2 between 0.89 and 0.98 except
for the large errors shown in Table I.

The Adjusted R2 for the models built for the Desharnais in
this study all exceeded 0.60 (better than the models built by

Desharnais himself [7] which had Adjusted R2 of 0.54), most
were greater than 0.70, and the highest Adjusted R2 was 0.88.
These results suggest that performance improvements can
potentially be gained by building effort estimation models that are
time-aware. The results of this study also support Amasaki and
Lokan [3] notion that it is not in all cases that time-aware models
are superior. In the case of the NASA93 dataset, the LOO
baseline was in fact superior to all the time aware models whilst
for the Desharnais dataset, the result was mixed as the time-aware
models were superior to the LOO baseline in some cases and
vice-versa.

Our results regarding model stability were mixed. The
variables and coefficient values for the Desharnais dataset
models were generally stable, in sharp contrast to our results for
the NASA93 models. The dynamic nature of the NASA93
models can be attributed to the greater heterogeneity in the
NASA93 dataset – it consists of 14 different application types,
developed for 5 different NASA centers, principally by a
number of external vendors who may themselves have had
varied development practices. The relative stability of the
models built for the Desharnais dataset is somewhat surprising
because this dataset was collected from ten different
organizations in Canada over a period of 6 years. However, the
project types and development languages used were few. This
implies that it is possible that organizations working at the same
time on similar projects may well have similar practices, and as
such, models that are built to characterize their practice may be
more homogeneous than heterogeneous. Thus, in relation to
RQ2 we must conclude that the stability of the parameters and
coefficients of time-aware models largely depend on the
diversity of the dataset.

In terms of answering RQ3 as to which of the two time-
aware modelling approaches, if either, is superior in terms of
accuracy, the Wilcoxon tests indicate that there is no significant
difference in performance for either time-aware modelling
approach. Our results therefore indicate that, for these two
datasets, neither method is superior, and so either approach may
be used to create sufficiently accurate time-aware models.

REFERENCES

[1] M.F. Bosu and S.G. MacDonell, “A taxonomy of data quality challenges in

empirical software engineering,” 22nd Austral. Softw. Eng. Conf.,

ASWEC13, pp.97-106, 2013.

[2] M. Jorgensen and M. Shepperd, “A systematic review of software

development cost estimation studies,” IEEE Trans. Softw. Eng., vol. 33,

no. 1, pp. 33–53, Jan. 2007.

[3] C. Lokan and E. Mendes, “Applying Moving Windows to Software Effort
Estimation,” Third Int. Symp. Empir. Softw. Eng. Meas., ESEM09, pp.

111–122, 2009.

[4] S. Amasaki, and C. Lokan, “An Evaluation of Selection Methods for Time-
Aware Effort Estimation.” In 24th Asia-Pacific Software Engineering

Conference, pp. 624-629, 2017.

[5] S. G. MacDonell and M. Shepperd, “Data Accumulation and Software
Effort Prediction,” Proc. 2010 ACM-IEEE Int. Symp. Empir. Softw. Eng.

Meas., ESEM10, pp. 31–34, 2010.

[6] B. W. Boehm, “Software Engineering Economics,” IEEE Transactions on
Software Engineering, vol. SE-10, no. 1. Prentice-Hall, Englewood Cliffs,

NJ, Jan-1981.

[7] J.-M. Desharnais, “Statistical Analysis on the Productivity of Data
Processing with Development Projects using the Function Point

Technique,” Université du Québec à Montréal., 1988.

[8] K. Maxwell, Applied Statistics for Software Managers. Englewood Cliffs,
NJ,: Prentice-Hall, 2002.

[9] B. K. Singh, S. Tiwari, K. K. Mishra, and a. K. Misra, “Tuning of Cost
Drivers by Significance Occurrences and Their Calibration with Novel

Software Effort Estimation Method,” Adv. Softw. Eng., vol. 2013, no. 1,

pp. 1–10, 2013.
[10] B. A. Kitchenham and E. Mendes, “Why Comparative Effort Prediction

Studies may be Invalid,” Proc. 5th Int. Conf. Predict. Model. Softw. Eng.,

2009.

167

An Empirical Study on Issue Knowledge Transfer
from Python to R for Machine Learning Software

Wenchin Huang1,2, Zhenlan Ji3, Yanhui Li1,2,∗

1. State Key Laboratory for Novel Software Technology, Nanjing University, China
2. Department of Computer Science and Technology, Nanjing University, China

3. School of Management and Engineering, Nanjing University, China
*Corresponding author: yanhuili@nju.edu.cn

Abstract—Background: With the blowout of programming
languages, developers employ different languages to solve similar
problems (e.g., to implement machine learning algorithms) sep-
arately and frequently, which gives rise to knowledge transfer
across different language development. Since GitHub provides
an issue tracking system for developers and users to follow with
issues, knowledge about how to deal with issues is a main part
of available knowledge on GitHub. Such issue knowledge could
be directly transferred to help developers handle new issues on
current projects from similar projects in different languages.
Aims: Inspired by a large amount of developed and developing
machine learning software written in Python and R on GitHub,
we aim to discover how much issue knowledge can be transferred
from Python projects to R projects.
Method: We investigate totally 1161 issues from 15 popular
machine learning projects in R and 7496 issues from Scikit-
Learn in Python on GitHub. After computing the text similarity
between issues from R and Python projects, we match top 5
similar Scikit-Learn issues for each R issue and manually judge
1161×5 issue-pairs to label and group them.
Results: We observe that a) 13% (149/1161) of R issues can refer
to related Python issues; b) 47% (71/149) of related R issues can
be linked to Python issues by the text mining technique BM25 at
the very early stage; c) 83% (124/149) of related Python issues
support code and description about the similar machines learning
problems; d) reference knowledge is considered as the most useful
knowledge from Python issues.
Conclusion: We put forward the following suggestions: a) refer-
ring to the corresponding cross languages issues is an efficient
way for developers, especially there is the lack of related
information in current language; b) the text mining technique
BM25 is helpful for developers to start earlier for searching
similar issues cross languages.

I. INTRODUCTION

With the blowout of programming languages and the
widespread use of GitHub, software development has evolved
from a single language development to socio-technical ecosys-
tems, within which developers from different language com-
munities solve similar problems separately and frequently [1].
Knowledge gained across different language development as-
sists developers to find out how different languages implement
the same requirements, which greatly contributes to knowledge
acquisition about current requirements, and subsequently to
decisions about design, coding, test and maintenance [2].

DOI reference number: 10.18293/SEKE2020-102

Forward
Selection

Feature
importance

Random
Forest

ŏ

Machine Learning Related

ŏ
rsquaredacademy/blorr/issues/11

Scikit-learn/Scikit-learn/issues/6545

Feature: Forward
Selection method

Add forward selection
to scikit-learn

ŏ

Fig. 1. Two issues with similar topics from R and Python projects

Machine learning software is a category of libraries to im-
plement machine learning algorithms that allows users to ac-
curately predict outcomes without explicit programming (e.g.,
Scikit-Learn1), which consists of algorithm implementations
with similar topics and different languages: (a) machine learn-
ing algorithms (e.g., Random Forest) have clear specifications
of the functionality regardless of language implementation
[3]; (b) for most of machine learning algorithms, there are
existing libraries written in popular languages (e.g., Python)
with reliable performance for predictive modeling [4]; (c)
developers from a different language community (e.g., R) may
face the same or very similar requirements, and consequently
develop libraries to implement the same or very similar func-
tionality of algorithms in new languages [5]. During the new
language implementation of algorithms, knowledge transferred
(e.g., from Python to R) would be useful to accelerate current
software development.

Issue is a critical way for software projects to track the
progress of problems reported by developers and users during
developing, maintaining, or using, which could be a bug report,
a code document, a feature enhancement request, a task and so
on [6], [7]. Since GitHub provides an issue tracking system
for developers and users to handle issues, knowledge about
how to deal with issues is a main part of available knowledge
extracted from current projects on GitHub, which can be
transferred into the development of the similar projects in
different languages. Here we illustrate an example for a pair
of issues sharing the similar topics from the Python project
and the R project in Figure 1. From the topics of the issue

1Scikit-Learn is one of the most famous machine learning software in
Python. http://scikit-learn.github.io.

168

#6545 in Scikit-learn/Scikit-learn and the other issue #11 in
rsquaredacademy/blorr, we can observe that they both aim
to implement the specific algorithm of “forward selection”.
Obviously, when dealing with the new issue in R, developers
can gain knowledge from the old issue in Python.

Inspired by a large amount of developed and developing
machine learning software written in Python and R on GitHub,
we aim to discover how much issue knowledge can be
transferred from Python to R. In this paper, we select 15
popular R machine learning repositories and Scikit-Learn in
Python to extract their issue contents. By computing the text
similarity between 1161 R issues and 7496 Python issues, we
manually browse and label the issue-pairs (i.e., the older issue
in Python and the new one in R) to check similarity with a
top-5 similarity list. Finally, we extract 149 related issue-pairs
for further research.

To examine how knowledge can be transferred from Python
issues to R issues, we structure our study by addressing the
following three research questions (RQs):

RQ1 (Linking issues from R to Python): how can
developers link to the related Python issues when R
issues are just created? By experimenting three strategies
to search related Python issues at the very early stages of R
issues, we observe that BM25 search performs the best, which
successfully searches over 47% corresponding Python issues
for the R issues by only using the initial information (e.g.,
title and body) from issues.

RQ2 (Types of Knowledge): what kinds of knowledge
can developers learn from related Python issues? We ob-
serve that related Python issues offer 6 types of knowledge for
those R issues: description, reference, outer link, related issue,
code and code document. Among them, the most popular kinds
of knowledge are description and code.

RQ3 (Helpfulness of Knowledge): which type of knowl-
edge from Python issues is most helpful? Based on the
comparison of spearman correspondence and weighted mean
helpfulness, we observe that reference knowledge type turns
out to be the most helpful knowledge.

Our study makes the following contributions.

• Dimension. This study opens a new dimension in knowl-
edge transfer from Python to R in cross-language soft-
ware development.

• Study. This study includes an empirical study of cross
language knowledge transfer on 1161 issues from 15
repositories in R and 7496 issues from Scikit-Learn in
Python.

• Strategy. This paper puts forward BM25 search as an
efficient strategy to search for corresponding issues at
the early stage for cross language knowledge transfer.

The rest of this paper is organized as follows. Section II
describes our research methodology. Section III, Section IV,
and Section V present the results of three RQs above. Threats
to validity is discussed in Section VI. Finally, the conclusion
and future work is put forward in Section VII.

II. OUR APPROACH

In this study, we collect issues from 15 R repositories
as the newer language repositories and the famous Python
repository Scikit-Learn as the older language repository. Our
approach comprises three steps: first we collect the issues from
these repositories on the GitHub; after that, we compute the
similarity between issue-pairs by using the word embedding
technique; finally, we extract the related issue-pairs by manu-
ally judging their relationship.

A. Issues Collecting
We choose one of the most representative machine learning

packages Scikit-Learn as our studied repository in Python.
Besides, we take 15 open sources R packages into consid-
eration, which are all involved in machine learning and highly
recommended. We choose these R repositories according to
the following four principles:
• they implement widely used algorithms, such as Random

Forest, Naive Bayes and K-Nearest Neighbors.
• they are open source repositories on GitHub.
• they are listed on CRAN2.
• the time of first commit in these repositories should be

later than the time of first commit in Scikit-Learn.
Table I illustrates the detail of 15 R repositories we study.

The first column shows the names of R repositories. The URL
links to the repository are listed in the second column. The
numbers of issues and the first commit time are listed in the
third and fourth columns, while the algorithms implemented
are listed at the last. Though there are some repositories
with little stars or forks, even little issues and pulls, we still
choose them for the following two reasons: (a) to ensure the
variousness of algorithms, (b) to observe issue knowledge
transfer for these repositories from the very beginning.

To sum up, we collect 1161 issues from the R repositories,
including both open and closed issues, and 7496 issues from
Scikit-Learn.

B. Similarity Computing
After choosing the repositories and collecting the issues,

we compute the text similarities between 1161 issues from
R and 7496 issues from Scikit-Learn by employing the word
embedding dataset offered and pre-trained by Google [8]. It is
worthwhile pointing out that, we use the whole issue content,
including topic, question and discussion in each issue for
similarity computing. We only consider the natural language
text, and exclude the other parts, e.g., code. For issue pairs
〈IP , IR〉 from Python and R correspondingly, we consider IP
and IR as the sets of words appearing in them, and calculate
the similarity of them as follows.

(a) Given two words wP and wR appearing in IP and IR,
their semantic similarity is defined as the cosine similarity by
using their word embeddings:

sim (wP , wR) =
wT

PwR

‖wP ‖ ‖wR‖
2CRAN is the most popular online repository that store up-to-date versions

of R packages, including code and documentation. https://cran.r-project.org

169

TABLE I
AN OVERVIEW OF 15 STUDIED R REPOSITORIES

R repository URL #Issues First Commit #Watch/#Star/#Fork Classifier(Algorithms)
Arborist https://github.com/suiji/Arborist 42 31 Jan 2013 15/68/12 RF

benchm-ml https://github.com/szilard/benchm-ml 56 28 Mar 2015 155/1734/326 LR/SVM/RF/boosting/...
bigrf https://github.com/aloysius-lim/bigrf 20 15 Feb 2013 11/91/26 RF
blorr https://github.com/rsquaredacademy/blorr 71 15 May 2017 2/9/1 LR

classyfire https://github.com/eaHat/classyfire 17 11 Jul 2014 3/8/0 SVM
edarf https://github.com/zmjones/edarf 57 4 Sep 2014 12/61/10 RF

forestFloor https://github.com/sorhawell/forestFloor 33 5 Jul 2015 5/36/7 RF
ggRandomForests https://github.com/ehrlinger/ggRandomForests 32 4 Jan 2013 8/107/23 RF

grf https://github.com/grf-labs/grf 332 28 Jul 2014 41/359/99 RF
kknn https://github.com/KlausVigo/kknn 17 20 Apr 2015 3/15/5 KNN

lumberjack https://github.com/neurodata/lumberjack 88 15 Feb 2017 9/54/35 RF
naivebayes https://github.com/majkamichal/naivebayes 5 3 Jun 2017 2/14/4 NB

randomForestSRC https://github.com/kogalur/randomForestSRC 22 18 Nov 2016 8/48/8 RF
ranger https://github.com/imbs-hl/ranger 366 28 Jul 2014 42/507/114 RF

TFG https://github.com/Dani-Basta/TFG 3 31 Oct 2017 5/3/0 KNN
TOTAL 1161

which is calculated by the Euclidean norm of their vectors
using inner product.

(b) In order to compute the similarity between the issues,
we introduce the similarity calculation approach proposed by
Ye et al. [9], which modified the text-to-text similarity [10].
To calculate the similarity between a word w and the whole
context of the issue I, we compute the maximum similarity
between w and w′ in I:

sim (w, I) = max
w′∈I
{sim (w,w′)}

(c) Both the words with no word embedding and the words
not appearing in the target issues I∗ are ignored in the
following calculation. The asymmetric similarity from I to
I∗ can be computed as:

sim (I → I∗) =
∑

w∈P (I→I∗) sim (w, I∗)
|P (I → I∗)|

where P (I → I∗) = {w ∈ I|sim(w, I∗) 6= 0}.
(d) The final symmetric similarity sim(IP , IR) between

two issues IP and IR can be computed as the sum of two
asymmetric similarity.

sim (IP , IR) = sim (IP → IR) + sim (IR → IP)

For each R issue IR, we rank the issue pairs 〈IP , IR〉 from
large similarity values to small ones in order to find the most
related Python issue from Scikit-Learn. We remain the top 5
of the most similar issue pairs (totally 1161×5 issue-pairs),
which will be filtered to pick out the real related pairs by the
following manual check.

C. Manual Judgement

1) Preprocessing Candidate Issue-Pairs: Among these
1161×5 issue-pairs, some of the issues describe the issue
confusedly, some of them are simply notes for recording the
updating of repositories, and some of them are just discussing
the details in the code (e.g., XX lines in Y documents). These
issues are not included in our following consideration.

Before manual judgement, we divide the issue context into
two parts, the question part and the discussion part for the

following description. The question part contains the topic
and the body of the issues submitted by issue reporter on the
top of the issue content. The discussion part is the content
followed by the question part. Generally, we classify an issue
by browsing the whole issue context, including both question
part and discussion part.

2) Checking Related Issues: Our manual judgement is
conducted by three members of our research group. Each
of them scans the issue-pairs independently, and labels the
similarity as “related” or “unrelated”. Once we get different
results on classification, we will make a double check to ensure
whether the issue-pairs are related or not. If the results of the
double check are still different, the final label is determined
by voting. For example, if two participants vote “related” and
one votes “unrelated” for an issue-pair, we judge the issue-pair
as a related issue-pair. After manual judgement, there are 149
issue-pairs labeled as related. Notice that we exclude the issue-
pairs, in which the creation time of Python issues are later
than the creation time of R issues. To ensure the reliability of
human labeling, we also calculate the inter-rater (i.e., Cohen’s
Kappa [11]) for manual labeling, by comparing the final result
after voting and the independent result from each member.
The results show that for each member, the value of Cohen’s
Kappa is larger than 0.6, which means the related/unrelated
results are substantial [12].

3) Evaluating Related levels: Besides, we label the related
levels of these 149 issue pairs. In detail, we group the
knowledge transferred between these 149 issue pairs into three
levels manually.
• Direction-related level (88 issue-pairs). the correspond-

ing Python issues offer knowledge related to the R issues
in the same or very similar directions.

• Problem-related level (32 issue-pairs). In this level, the
two issues are probably discussing on the very similar
problems, however, Python issues have not given direct
solutions to R issues.

• Solution-related level (28 issue-pairs). The Python is-
sues offer direct solutions (e.g., pseudo-code and refer-
ence), which are most helpful knowledge to the newer R

170

TABLE II
THE SUCCESSFULLY SEARCHING RESULT FROM 4 DIFFERENT METHOD IN

THE TOP 10 LIST.

Searching Strategies Successfully Searched Rate
Topic Search 5.37% (8/149)
TF-IDF 20.13% (30/149)
BM25 47.65% (71/149)

issue. This kind of knowledge offered by Python issues
can almost be used in dealing with R issues directly.

III. LINKING ISSUES FROM R TO PYTHON

“How can developers link to the related Python issues when
facing R issues” may become a critical question of knowledge
transfer from Python to R. No matter in which situations,
developers desire to gain useful information to solve issues as
soon as possible. In this RQ, we focus on the question part
(see Section II-C1) of the 149 R issues, which contains the
topic and the body of issues submitted by issue reporters. The
question part of R issues represents the early information we
can get at the report time of R issues. Based on the question
part of R issues, we employ different strategies to search for
their related Python issues, by their topics and two popular
text mining methods TF-IDF and BM253.

Topic Search. Because of the limitation of searching APIs
available on GitHub, we can hardly search the corresponding
issues by using all the content of question parts. We select
the topics from the issues, which represent the main ideas
of issue reporters. We search for the corresponding issues in
Scikit-Learn repository by using searching API from GitHub
and check the top 10 results on the return list.

TF-IDF search. From two strategies mentioned above, we
observe that the available searching tool from GitHub can
hardly fulfill our needs. Therefore, we introduce a classic
strategy in natural language process, TF-IDF [13]. We abstract
word embeddings by TF-IDF with the question part of the
R issues and use these word embeddings vectors to match
10 most similar corresponding issues. Different with the text
similarity search we used before, we set up word embeddings
by TF-IDF instead of using the open source data [8]. In detail,
we implement the TF-IDF method by Scikit-learn4.

BM25 search. Though the strategy above improve a lot,
we still consider finding a more suitable way for raising
successfully searched rate. BM25 [14] is usually used in
evaluating the relationship between query and documents. This
strategy mainly computes the similarity by 3 parts, which are
the weight of words, similarity between words and documents,
similarity between words and queries. We employ BM25 to
compute the similarity between question parts from R issues
and Python issues. In detail, we reuse an implementation
of BM25 algorithm in the Python library Gensim5 with the

3Our dataset is constructed via cosine distance and the word embedding
set offered and pre-trained by Google (see Section II-B). To avoid the bias,
we introduce two different text mining methods TF-IDF and BM25 here.

4https://scikit-learn.org/stable/modules/feature extraction.html#text-
feature-extraction

5http://pydoc.net/gensim/3.2.0/gensim.summarization.bm25/

default parameter settings.
For each search strategy, we check the top 10 results on

the return list. Once the related Python issue from the issue-
pair occurs on the top 10 list, we count it as a “successful
search” and record the rank. Table II represents the results of
the above three search strategies. We can find that in Table II,
BM25 performs much better than the other strategies, which
can successfully detect almost half of the issue-pairs.

Answer to RQ1: by conducting three strategies to search
related issues at the very early stage of R issues, we
observe that BM25 search performs the best, which
successfully searches over 47% related Python issues for
the 149 R issues by only using the initial information
(e.g., title and question body).

IV. TYPES OF KNOWLEDGE

In the RQ above, we start from R issues of the related
issue-pairs, and find out how to link to Python issues. In the
following two RQs, we will focus on Python issues of the
related issue-pairs. Specifically, we are going to discover what
type of knowledge we can get from the Python issues in this
RQ. In order to make a summary of knowledge in Python
related issues, we classify the knowledge into 6 groups, which
are description, reference, outer link, related issue, code
and code document, as illustrated in Table III with numbers
of issues containing such kind of knowledge, brief introduction
and typical examples.

We choose an interesting example containing all 6 knowl-
edge types, as shown in Figure 2, which mainly discusses
about the implementation of Balanced Random Forest. Next,
we will present the description of these 6 kinds of knowledge
with help of the example.

Description type (147 Python issues): Almost all of
the issues are considered to have description, which offer
information in natural language directly. For example in Figure
2, the orange box is labeled as the description part. However,
not all issue with natural language are included, we exclude
two issues which only contain “thanks” in the content.

Reference type (28 Python issues): This type is the most
recognizable in these 6 groups. It offers the research papers,
related tutorial, etc. As shown in the green box of Figure 2, the
Python issue offers a research paper’s link, which mainly talks
about using random forest to learn imbalanced data. Though
this kind of knowledge may sometimes be complex, it is worth
reading for developers, which usually offers the original idea
of an algorithm.

Outer link type (97 Python issues): Python issues contain
various kinds of url links, which offer related packages or
datasets, or connect to different repositories on GitHub and
other open source platform. The purple box in Figure 2 gives
an example of outer link, which offers dataset.

Related issue type (74 Python issues): Referring to another
issue is also quite usual in issues. Those links with different
issue numbers in current repository or other repositories are all

171

TABLE III
TYPE OF KNOWLEDGE IN 149 RELATED PYTHON ISSUES

Group #Issues Brief introduction Example Issue
Description 147 Natural language description https://github.com/scikit-learn/scikit-learn/issues/1454
Reference 28 Research paper etc. https://github.com/scikit-learn/scikit-learn/issues/6545
Outer Link 97 A link to outer website e.g Wikipedia https://github.com/scikit-learn/scikit-learn/issues/448
Related Issue 74 Another linked issue https://github.com/scikit-learn/scikit-learn/issues/6473
Code 124 More than 5 lines of code/ Pulls https://github.com/scikit-learn/scikit-learn/issues/2089
Code Document 58 Tutorial of code https://github.com/scikit-learn/scikit-learn/issues/3735

Fig. 2. An example of issues with multiple kinds of knowledge from Scikit
Learn Project

involved in this type of knowledge. The black box in Figure
2 is an example of related issue knowledge.

These 4 types of knowledge described above can be learned
language-independently, which are more general. The fol-
lowing two kinds of knowledge may need Python skill to
understand and apply.

Code type (124 Python issues): Once a code part with more
than 3 lines occurs in the issue, we count it as an instance of
code knowledge. As illustrated in Figure 2, the red box is a
typical example of code part. Due to the different grammar
of different languages, this type of knowledge may be more
useful for those developers who can skillfully use Python.

Code document type (58 Python issues): Besides code
type, code document type will sometimes occur in the issues.
As shown in Figure 2, the blue box is an example of code
document.

Answer to RQ2: we observe that related Python issue
can offer 6 types of knowledge for those R issues:
description, reference, outer link, related issue, code and
code document. Among them, the most popular kinds of
knowledge are description and code.

V. HELPFULNESS OF KNOWLEDGE

In the above RQ, we discuss various types of knowledge
from Python issues. “Which type of knowledge from Python
issues is most helpful?” is the question we need to solve next.
Based on the related levels of the issue-pairs (see Section
II-C3), we mark the helpfulness H(IP) of corresponding
Python issues IP in the range from 1 to 3:

H(IP) =

1, if 〈IP , IR〉 is labeled as direction-related;
2, if 〈IP , IR〉 is labeled as problem-related;
3, if 〈IP , IR〉 is labeled as solution-related.

and use the helpfulness of Python issues to evaluate the most
useful knowledge type.

Spearman correspondence: First, we conduct a Spearman
corresponding test [15] between whether containing the knowl-
edge type and the helpfulness of Python issues, to select the
most useful knowledge type. The larger Spearman correspon-
dence shows the knowledge type with higher helpfulness. As
illustrated in Table IV, we can find that the reference type
gets the highest Spearman correspondence among 6 types of
knowledge. Besides, related issue type gets the second place.

Weighted mean helpfulness: Besides, we judge the help-
fulness of knowledge type by the following formulas. Let
T ={description, reference, outer link, related issue, code,
code document}. For t ∈ T , S(I, t) implies the set of Python
issues containing the knowledge in type t. H(IP) implies the
helpfulness (H(IP) ∈ {1, 2, 3}) of the Python issue IP . The
weighted mean helpfulness (Hw(t)) of type t are computed as
follows.

Hw(t) =

∑
IP∈S(I,t)

H(IP)

|S(I, t)|
Finally, we rank the value of Hw(t) for each knowledge type
in Table IV. We can find that reference type gets the first place
again. Also, the related issue type still follows.

172

TABLE IV
KNOWLEDGE TYPES RANKED BY SPEARMAN CORRESPONDENCE AND

WEIGHTED MEAN HELPFULNESS

Knowledge Type Spearman Ranksp Hw(t) Ranksc

Reference 0.16 1 1.89 1
Related issue 0.11 2 1.70 2
Description 0.09 3 1.60 5
Code document 0.04 4 1.61 4
Outer link 0.01 5 1.67 3
Code -0.02 6 1.58 6

According to the above results, we conclude that the ref-
erence part is the most important part in the related Python
issues of the cross language knowledge transferring. Once we
search for the cross language issues, scanning for the reference
type of knowledge is highly recommended.

Answer to RQ3: based on the comparison of spearman
correspondence and weighted mean helpfulness, we ob-
serve that reference knowledge type turns out to be the
most useful knowledge.

VI. THREATS TO VALIDITY

We select 15 of the open source R repositories from GitHub
which all come from machine learning classifiers category.
They do not cover the issues in all kinds of R repositories,
and new issues submitted after November 2018 are not in-
cluded. Nonetheless, these 15 repositories are popular and
well known which cover several classifiers. Furthermore, it
is recommended that more projects with more issues in R and
Python should be tested using our approach, and the result
may vary.

For each issue-pair, we browse their content, try to under-
stand their ideas, carefully judge the similarity levels and issue
groups. We then gather all the result from 3 members and do
the double-check job to ensure their correctness. Thus, we
believe that all the issue-pairs we extracted are true positive.
However, we compute the similarities by only using natural
language text, and excluded the code, chart, etc., which may
lead to lose some issue-pairs that might also be helpful for
cross-language referring.

Text similarity search uses the similar text mining method
with dataset extraction. Though we employ two different text
mining methods while doing the searching job in RQ1, there
might be some coincidence that some issues have no discus-
sion part, which may cause little higher of the successfully
searched rate.

VII. CONCLUSIONS AND FUTURE WORKS

Different languages are used to solve similar problems,
which gives rise to knowledge transfer across different lan-
guages development. In this paper, we discover knowledge
transfer between 15 machine learning R repositories and
Scikit-Learn by analyzing their issues on GitHub.

We extract 149 related issue-pairs from 1161 R issues
and 7496 Scikit-Learn issues manually. We experiment and
observe that text similarity search gains high successfully

searched rate and the perfect performance on ranking on
searching corresponding issues for just created issues. Then,
we abstract 6 types of knowledge from cross language issue,
which are presented in 149 issue-pairs. Finally, in order to
calculate the helpfulness, we rank the knowledge type by two
indicators.

In the future, we will extend the study by enlarging the
datasets from more different languages to conduct a more
complete investigation. At the same time, we will also improve
our similarity approach by recording more information (like
code), which is considered to be more helpful.

ACKNOWLEDGEMENTS

The work is supported by National Key R&D Program
of China (Grant No. 2018YFB1003901) and the National
Natural Science Foundation of China (Grant No. 61872177
and 61772259).

REFERENCES

[1] Y. Zhang, D. Lo, P. S. Kochhar, X. Xia, Q. Li, and J. Sun, “Detecting
similar repositories on github,” in 2017 IEEE 24th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
Feb 2017, pp. 13–23.

[2] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 364–374. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337267

[3] S. Athey, J. Tibshirani, S. Wager et al., “Generalized random forests,”
The Annals of Statistics, vol. 47, no. 2, pp. 1148–1178, 2019.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[5] M. N. Wright and A. Ziegler, “ranger: A fast implementation of random
forests for high dimensional data in c++ and r,” Journal of Statistical
Software, vol. 077, no. 1, 2015.

[6] T. F. Bissyande, D. Lo, L. Jiang, L. Reveillere, J. Klein, and Y. L. Traon,
“Got issues? who cares about it? a large scale investigation of issue
trackers from github,” in IEEE International Symposium on Software
Reliability Engineering, 2013.

[7] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071,
2016.

[8] Google, “A pre-trained dataset from google news, google-news-vectors-
negative300,” https://code.google.com/archive/p/word2vec.

[9] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th international conference on
software engineering. ACM, 2016, pp. 404–415.

[10] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and
knowledge-based measures of text semantic similarity,” Unt Scholarly
Works, vol. 1, pp. 775–780, 2006.

[11] L. M. Hsu and R. Field, “Interrater agreement measures: Comments
on kappan, cohen’s kappa, scott’s π, and aickin’s α,” Understanding
Statistics, vol. 2, no. 3, pp. 205–219, 2003.

[12] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[13] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining word em-
bedding with information retrieval to recommend similar bug reports,”
in IEEE International Symposium on Software Reliability Engineering,
2016.

[14] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate retrieval
of duplicate bug reports,” in IEEE/ACM International Conference on
Automated Software Engineering, 2011.

[15] D. J. Best and D. E. Roberts, “Algorithm as 89: The upper tail
probabilities of spearman’s rho,” Journal of the Royal Statistical Society,
vol. 24, no. 3, pp. 377–379, 1975.

173

http://dl.acm.org/citation.cfm?id=2337223.2337267
https://code.google.com/archive/p/word2vec

Quantifying the Relationship Between Health Outcomes and Unhealthy Habits

Swapna S. Gokhale
Dept. of Computer Science & Engg.

Univ. of Connecticut, Storrs, CT 06269
{swapna.gokhale}@uconn.edu

Abstract

Chronic health outcomes impact the quality of life of af-
fected individuals and their families and also lead to huge
health care costs. Most of the chronic health outcomes can
be attributed to few unhealthy behaviors, however, the ex-
tent to which these behaviors can explain the variation in the
common outcomes is not known. This paper explores the
relationship between: (i) unhealthy behaviors using princi-
pal components analysis; and (ii) unhealthy behaviors and
chronic health outcomes using multiple linear regression.
The 500 Cities data, released by the Center for Disease Con-
trol, forms the basis of this investigation. PCA suggests that
the unhealthy behaviors can be projected along two dimen-
sions, each punctuated by the common age of occurrence.
The results of linear regression are consistent with expecta-
tions for some outcomes, but reveal unexpected trends for
the others.

1 Introduction & Motivation

Chronic diseases are broadly defined as conditions that
last longer than a year or more and require ongoing medical
attention or limit activities of daily living or both. Chronic
conditions such as heart disease, cancer, and diabetes im-
pact the quality of lives of the affected individual as well
as their families. Moreover, they are the leading causes of
death and disability, and drivers of the nation’s $3.3 trillion
in annual health care costs. The CDC estimates that six in
ten adults in the U.S. have one chronic disease, and four in
ten adults have two or more [6].

Many chronic diseases may be attributed to a short list of
risky behaviors: (i) tobacco use and exposure to secondhand
smoke; (ii) poor nutrition, including diets low in fruits and
vegetables and high in sodium and saturated fats; (iii) lack
of physical activity; and (iv) excessive alcohol use [14]. The
association between these risk factors and chronic diseases
is known qualitatively. What is not known, however, is the
relationship of these unhealthy behaviors with each other,

and the extent to which these behaviors contribute to spe-
cific chronic health outcomes. It is crucial to quantify the
level of variance in the different health outcomes that can
be explained by risky behaviors; because then the search
for what leads to unexplained or residual variance can be-
gin in earnest. These additional causes, beyond unhealthy
or risky behaviors, may be found in other factors such as
environmental stressors and genetic predisposition.

In this paper, we explore the relationship among the
unhealthy behaviors themselves, and between unhealthy
behaviors and chronic health outcomes. The 500 cities
data [7], which provides city and census-tract level small
area estimates for chronic disease risk factors, health out-
comes, and clinical preventive service use for the largest
500 cities in the United States forms the basis of our in-
vestigation. Principal components analysis is used to study
how unhealthy behaviors cluster together, and multiple lin-
ear regression is used to relate these behaviors to the health
outcomes. Our results suggest that the five unhealthy be-
haviors can be mapped to two dimensions. The first dimen-
sion accounts for approximately 68% of the variation and
comprises of habits that may mostly develop around the
middle age, whereas the second dimension includes only
binge drinking which is more prevalent among the younger
population. The results of multiple linear regression con-
firm that a large percentage of variation in coronary heart
disease, stroke, high cholesterol, COPD, and diabetes can
be attributed to unhealthy behaviors. However, a relatively
lower percentage of variation in high blood pressure, which
is viewed as a risk factor for heart disease and stroke, and
asthma which is considered a risk factor for COPD can be
explained by unhealthy habits. Moreover, it appears sur-
prising that over 80% of the variation in arthritis and teeth
loss, two conditions that co-exist with aging-related dete-
rioration, is attributable to unhealthy habits. Finally, only
about 50% of the variance in cancer is explainable by un-
healthy behaviors, suggesting the presence of strong genetic
and/or environmental influences.

The rest of the paper is organized as follows: Section 2
summarizes the 500 cities data. Section 3 and Section 4

1DOI reference number: 10.18293/SEKE2020-116

174

discuss principal components and linear regression analysis
respectively. Section 5 compares related research. Section 6
offers concluding remarks and future research directions.

2 The 500 Cities Data

The 500 Cities Project is a collaboration between the
Center for Disease Control (CDC), the Robert Wood John-
son Foundation, and the CDC Foundation. The purpose of
the 500 Cities Project is to provide city and census-tract
level small area estimates for 5 unhealthy behaviors, 13
health outcomes, and 11 clinical preventive service use for
the largest 500 cities in the United States [7]. These mea-
sures include major risk behaviors that lead to illness, suf-
fering and early death related to chronic diseases and condi-
tions, as well as the conditions and diseases that are the most
common, costly, and preventable of all health problems [9].
These measures are estimated using the raw data from the
CDCs Behavioral Risk Factor Surveillance System [8], us-
ing a multi-level statistical modeling framework [10].

In this paper, we considered the 13 health outcomes and
5 unhealthy behaviors from the 500 Cities Project. Tables 1
and 2 offer a brief summary, significance, and mean preva-
lence of these measures. In Table 1, all the health outcomes,
except for mental and physical health, are formally diag-
nosed by medical professionals whereas estimates of (lack
of) mental and phsyical health are self-reported [9].

3 Principal Components Analysis

Principal Components Analysis (PCA) uses an orthog-
onal transformation to convert a set of observations with
correlated variables into a set of values of linearly uncorre-
lated variables called principal components [12]. The first
principal component has the largest possible variance, that
is, it accounts for as much variability in the data as possible.
Each succeeding principal component in turn has the high-
est variance possible under the constraint that it is orthog-
onal to the preceding components. PCA creates as many
new independent variables as there exist in the original data.
Usually, however, the first few independent variables can
explain a large percentage of the variation in the data and
are retained for analysis, while the others that contribute
very little to the variability are eliminated in favor of model
parsimony. PCA is therefore also referred to as a feature
extraction or dimensionality reduction procedure.

We apply PCA to uncover the relationships among the 5
unhealthy behaviors. The cumulative variability explained
by the principal components is represented using a scree
plot in Figure 1, which shows that the first two dimensions
account for about 84% of the variation. Focusing on these
two dimensions, our next step was to investigate the contri-
bution of unhealthy behaviors to each as shown in Figures 3

and 4. The contribution of each variable is represented as
a percentage, where the red dashed lines are reference lines
that correspond to the expected contribution if each vari-
able pitched uniformly. With 5 original variables, the ref-
erence lines are shown at 20%. Variables with contribu-
tions above the reference line are considered important for
that dimension. According to this heuristic, in the figure,
three variables, namely, lack of physical activity, obesity,
and smoking are important contributors to the first dimen-
sion. Of these, lack of physical activity and obesity con-
tribute predominantly, while smoking is just barely above
the reference line. Because lack of activity and obesity usu-
ally develop around middle age, we label this dimension
as “Midlife Crisis”. For the second dimension, only binge
drinking contributes more than 20%, which tends to occur
in younger adults, and hence, we label this dimension as
“Youthful Adventures”. The graph of PCA variables shows
the orthogonal projection of the five behaviors along the two
dimensions as shown in Figure 2. Figures 5 and 6 show
that the top 20 cities contribute more than the uniform 0.2%
towards each dimension. Contributors to Midlife Crisis
concentrate in the Midwest and Mountain States, whereas
Youthful Adventures cluster along the East and West coasts
as shown in Figure 7.

Figure 1. Scree Plot

4 Multiple Linear Regression

We postulate a linear relationship between health out-
come i, and unhealthy behaviors UB1, . . . , UB5 given by:

HOi = βi,0 +
5∑

j=1

βi,j ∗ UBj + ei (1)

The key assumption underlying least squares linear re-
gression models is homoskedasticity, which implies that the
variations for all the observations in a data set are equal.

2

175

Table 1. Chronic Health Outcomes: Significance & Prevalence
Health Outcome Mean

HO1 Arthritis: Reduces physical function, quality of life. 22.39
HO2 Asthma: ED visits, hospitalizations, missed work, comorbid depression. 9.18
HO3 Cancer: Still a leading cause of death, second to heart disease. 5.98
HO4 Chronic Kidney Disease: Ninth leading cause of death, but most affected don’t know. 2.75
HO5 Chronic Obstructive Pulmonary Disease (COPD): Impaired pulmonary function, which

often goes undiagnosed.
6.05

HO6 Coronary Heart Disease (CHD): Common form of heart disease, leading cause of death 5.73
HO7 High BP: Responsible for 20 − 30% CHD, 20 − 50% Stroke, cardiovascular complications. 30.39
HO8 High Cholesterol: Responsible for 30 − 40% CHD, 10 − 20% strokes. 31.35
HO9 Diabetes: Impaired glucose function, complications if not managed. 10.25
HO10 Mental Health: Not good for more than 14 days. Related to diabetes, cancer, cardiovascular

disease, asthma, obesity. Many risk factors; physical inactivity, smoking, binge drinking,
insufficient sleep also contribute to mental illness.

12.44

HO11 Physical Health: Not good for more than 14 days. Related to health-related quality of life. 12.57
HO12 Stroke: 1 out of 20 deaths, serious long-term disability. 3.05
HO13 Teeth Loss: Reduces quality of life, self-image, and daily functioning (>65 years old). 14.51

Table 2. Unhealthy Behaviors: Significance & Prevalence
Unhealthy Behavior Mean

UB1 Current Smoking: Greater than 100 cigarettes and smoke every day or most days. Increases
the risk for heart disease, stroke, multiple types of cancer, and chronic lung disease.

17.58

UB2 Binge Drinking: Five or more drinks (men), four or more drinks (women) at one time. Ac-
counts for over 40,000 deaths and 1 million years of potential life lost annually. Health and
social problems such as motor-vehicle crashes, violence, suicide, hypertension, acute my-
ocardial infarction, STDs, unintended pregnancies, fetal alcohol spectrum disorders, sudden
infant death syndrome.

16.53

UB3 No Leisure Time Physical Activity (LoPA): Other than their regular job, did not partici-
pate in any physical activities or exercises such as running, calisthenics, golf, gardening, or
walking. Improve the health and quality of life of all ages, regardless of chronic disease or
disability. Lower the risk for early death, coronary heart disease, stroke, high blood pressure,
type 2 diabetes, breast and colon cancer, falls, and depression.

25.86

UB4 Obesity: Body mass index (BMI) greater than 30.0 kg/m2. Increases the risk for multiple
chronic diseases, including heart disease, stroke, hypertension, type 2 diabetes, osteoarthritis,
and certain cancers.

29.31

UB5 Sleeping less than 7 hours (LoS): Insufficient sleep (< 7 hours), on an average, during a
24-hour period. Associated with chronic conditions such as diabetes, cardiovascular disease,
hypertension, obesity, and depression. May cause motor vehicle crashes and industrial errors,
causing substantial injury and disability. Reduces productivity and quality of life.

35.69

Most real-world data sets will probably be heteroskeas-
tic [15], but it is possible to use the least squares model
for large enough sample sizes, which is the case here. In
Equation (1), HOi’s are the predicted or response vari-
ables, and UB1, . . . , UB5 are the independent or predic-
tor variables, often known as regressors. The coefficients
βi,j , j = 0, . . . , 5 are estimated by minimizing the sum of
squared unexplained parts. The coefficient of determination
R2 is given by Equation (2), where ˆHOi,k is the estimate of

the health outcome i for the kth city produced by the model,
and ¯HOi is the mean value of the outcome i across all the
500 cities. R2 measures the proportion of variation in HOi

that can be explained by the regressors UB1, . . . , UB5.

Ri
2 =

ModelSS

TotalSS
=

∑500
k=1(ˆHOi − ¯HOi,k)2∑500
k=1(HOi,k − ¯HOi

2
)

(2)

For each health outcome, a p-value is also estimated by

3

176

Figure 2. Graph of Variables – PCA

Figure 3. Unhealthy Behaviors ==> Midlife Cri-
sis

Figure 4. Unhealthy Behaviors ==> Youthful
Adventures

the model for all unhealthy behaviors, which is compared
against the typical level of significance α = 0.05. If the
p-value is less than α, then the effect of that specific behav-

Figure 5. Cities ==> Midlife Crisis

Figure 6. Cities ==> Youthful Adventures

Figure 7. Cities ==> Dimensions, Geographi-
cal Spread

ior on the particular health outcome is significant. Table 3
shows the results of the regression model. For each health
outcome, the table lists the t-statistic and p-values for each
unhealthy behavior, and R2 which explains the total varia-

4

177

tion that can be attributed collectively to these behaviors.
We divide the outcomes into two groups I and II, these
groups respectively comprise of the outcomes for which
over 80% and less than 80% is explained by the unhealthy
habits. The results confirm certain expectations, but also re-
veal anomalies. Only for about 50% of the outcomes, all the
five unhealthy behaviors are statistically significant. These
include CHD, stroke, teeth loss, diabetes, cancer, asthma,
and physical health. High blood pressure and high choles-
terol, are the two common precursors to CHD and stroke,
however, these belong to first and second groups respec-
tively. Thus, although high blood pressure may be mostly
attributed to unhealthy behaviors making up the midlife cri-
sis, high cholesterol may have additional origins. Transi-
tioning from high cholesterol which is relatively benign, to
life threatening conditions such as stroke and CHD, how-
ever, may be precipitated by lifestyle choices. A similar re-
lationship can be seen between COPD and asthma, COPD
belongs to the first group, but asthma which is considered a
risk factor belongs to the second. Although all the unhealthy
behaviors are statistically significant for cancer and asthma,
collectively they explain only about 50% and 73% variation
respectively. This suggests that in cancer and asthma ge-
netics and the environment [5] may interplay with lifestyle
choices. A few additional significant and interesting ob-
servations include: Smoking is significant for all the health
outcomes except high cholesterol. Binge drinking is not sig-
nificant for high blood pressure and COPD. Lack of mental
health is not influenced by either binge drinking or lack of
sleep. Obesity is not significant for kidney disease. Finally,
although teeth loss and arthritis are mainly dominant in ag-
ing populations, they are also members of the first group.
This indicates that the influence of lifestyle choices is not
limited to metabolic conditions of high blood pressure, high
cholesterol and diabetes.

5 Related Research

The association between chronic diseases and lifestyle
choices is generally known, however, very few studies have
sought to quantify this association. Adaji et. al. [1] use lo-
gistic regression to identify the risk factors associated with
some common chronic conditions (arthritis, angina, stroke,
diabetes, and chronic lungs disorder) among people over 50
years in India. The model includes socioeconomic and de-
mographic factors and the interplay between the conditions.
A similar study by Ismail et. al. [11] is conducted for the
younger Indian population but only for coronary heart dis-
ease. Zhao et. al. [16] estimate the prevalence and corre-
lates of chronic diseases in an elderly population in Haikou.
Four major chronic conditions, namely, hypertension, dia-
betes, COPD and stroke and sociodemographic characteris-
tics and lifestyle factors are considered in the study. Regres-

sion analysis has been used in the context of chronic con-
ditions to estimate the various types of burdens, including
health care costs, absenteeism and employer costs associ-
ated with these conditions [3, 13]. In contrast, our research
analyzes how the variance in a variety of chronic conditions
can be attributed to five core unhealthy behaviors, regard-
less of the other socioeconomic and demographic factors.

6 Conclusions and Future Research

This paper explores the relationship among common un-
healthy behaviors, and their influence on prevalent chronic
health outcomes quantitatively. The analysis uses the 500
Cities data, which provides small area estimates of 27
health-related measures for 500 largest cities in the United
States. PCA is used to map the unhealthy behaviors to or-
thogonal dimensions to understand their co-occurrence, and
multiple linear regression is used to explore how these un-
healthy behaviors relate to chronic health outcomes. PCA
dimensions can be readily interpreted within the context of
age. However, the results of multiple linear regression ex-
pose some interesting, and unexpected tendencies.

Our future research involves relating the health outcomes
at the level of census tracts to demographic and socioeco-
nomic data available from the U.S. Census Bureau [4].

References

[1] E. E. Adaji, A. S. Ahankari, and P. R. Myles. “An
Investigation to Identify Potential Risk Factors Asso-
ciated with Chronic Diseases Among the Older Popu-
lation in India”. Indian J. Community Med, 42(1):46–
52, 2017.

[2] E. C. Alexopoulos. “Introduction to Multivariate Re-
gression Analysis”. Hippokratia, 14(Suppl 1):23–28,
December 2010.

[3] G. R. B. Asay, K. Roy, J. E. Lang, R. L. Payne, and
D. H. Howard. “Absenteeism and Employer Costs As-
sociated with Chronic Diseases and Health Risk Fac-
tors in the US Workforce”. Prev Chronic Dis, 2016.

[4] United States Census Bureau. “Census Data API User
Guide”. https://www.census.gov/data/
developers/guidance/api-user-guide.
html, June 2017. Accessed: 2019-01-21.

[5] Illinois Disability and Health Program. “What
is Chronic Disease? Important Things to Know
About Chronic Diseases for Persons with Dis-
abilities”. http://www.idph.state.il.us/
idhp/idhp_ChronicDisease.htm. Accessed:
2020-01-21.

5

178

Table 3. Results of Multiple Linear Regression Model
HO T-statistic, p-values F-statistic R2

Smoking Obesity LoS LoPA Binge
Group I: Over 80% Variation

Arthritis 1.04e− 08 < 2e− 16 < 2e− 16 0.948 < 2e− 16 < 2.2e− 16 0.8389
High BP 6.29e− 14 6.86e− 08 < 2e− 16 < 2e− 16 0.267 < 2.2e− 16 0.8621

CHD < 2e− 16 < 2e− 16 < 2e− 16 < 2e− 16 0.00016 < 2.2e− 16 0.8706
COPD 3.43e− 15 < 2e− 16 0.00101 0.02320 0.4887 < 2.2e− 16 0.903

Diabetes 3.29e− 12 1.43e− 09 < 2e− 16 < 2e− 16 < 2e− 16 < 2.2e− 19 0.8223
Stroke < 2e− 16 < 2e− 16 < 2e− 16 < 2e− 16 0.0263 < 2.2e− 19 0.8442

Teeth Loss < 2e− 16 < 2e− 16 0.00281 0.00180 1.06e− 09 < 2.2e− 19 0.8669
Group II: Less than 80% Variation

Cancer 0.04591 < 2e− 16 0.00312 2.34e− 15 < 2e− 16 < 2.2e− 16 0.517
Asthma 0.000209 < 2e− 16 3.07e− 05 5.78e− 12 2.62e− 15 < 2.2e− 16 0.641

High Chol. 0.1504 0.0673 < 2e− 16 0.4080 1.81e− 07 < 2.2e− 16 0.6354
Kidney 1.71e− 11 0.517 1.65e− 13 2.32e− 09 8.59e− 05 < 2.2e− 16 0.7317

Mntl. Hlth 5.89e− 08 < 2e− 16 0.694 < 2e− 16 0.140 < 2.2e− 16 0.7394
Phys. Hlth 3.65e− 11 2.13e− 10 0.0205 1.34e− 06 2.99e− 08 < 2.2e− 16 0.7372

[6] Center for Disease Control and Prevention. “About
Chronic Diseases”. https://www.cdc.gov/
chronicdisease/about/index.htm. Ac-
cessed: 2019-01-21.

[7] Center for Disease Control and Prevention. “500
Cities: Local Data for Better Health, About
the Project”. https://www.cdc.gov/
500cities/about.htm, November 2017.
Accessed: 2019-01-21.

[8] Center for Disease Control and Prevention. “Behav-
ioral Risk Factor Surveillance System”. https:
//www.cdc.gov/brfss/index.html, April
2017. Accessed: 2019-01-21.

[9] Center for Disease Control and Prevention. “The
500 Cities Project: Local Data for Better Health,
Measures Definition”. https://www.cdc.gov/
500cities/measure-definitions.htm,
November 2017. Accessed: 2019-01-21.

[10] Center for Disease Control and Prevention. “The 500
Cities Project: Local Data for Better Health, Method-
ology”. https://www.cdc.gov/500cities/
methodology.htm, November 2017. Accessed:
2019-01-21.

[11] B. Ismail and M. Anil. “Regression Methods for
Analyzing the Risk Factors for a Life Style Disease
Among the Young Population of India”. Indian Heart
J., 66(6):587–592, November-December 2014.

[12] K. Khan. “Principal Component Analysis - An
Introduction with R Implementation”. https:
//rpubs.com/koushikstat/pca. Accessed:
2020-01-21.

[13] H. H. Konig, H. Leicht, H. Bicket, A. Fuchs, and et. al.
J. Genischen. “Effects of Multiple Chronic Conditions
on Health Care Costs: An Analysis based on an Ad-
vanced Tree-Based Regression Model”. BMC Health
Services Research, 2013.

[14] W. C. Willett, J. P. Koplan, R. Nugent, C. Dusenbury,
P. Puska, and T. A. Gaziano. “Prevention of Chronic
Disease by Means of Diet and Lifestyle Changes”. In
D. T. Jamison, J. G. Breman, and A. R. Measham, ed-
itors, Disease Control Priorities in Developing Coun-
tries, 2nd Edition, chapter 44. he International Bank
for Reconstruction and Development / The World
Bank, 2006.

[15] C. Yobero. “Methods for Detecting and Resolv-
ing Heteroskedasticity”. https://rpubs.com/
cyobero/187387, June 2016. Accessed: 2020-01-
21.

[16] C. Zhao, L. Wong, Q. Zhu, and H. Yang. “Prevalence
and Correlates of Chronic Diseases in an Elderly Pop-
ulation in an Elderly Population: A Community Sur-
vey in Haikou”. PLoS One, June 2018.

6

179

The Reaction of Open Source Projects
to C++ Templates and Lambdas:
An Empirical Replication Study

Donghoon Kim
Department of Computer Science

Arkansas State University
Jonesboro, AR, USA

dhkim@astate.edu

Loc Ho
Department of Computer Science

Arkansas State University
Jonesboro, AR, USA

loc.ho@smail.astate.edu

Abstract—New language features are added into a program-
ming language to make high quality software. However, new
features are not always welcomed in the programming com-
munity since they have pros and cons. Templates and lambdas
have benefits so both features were added in many programming
languages, such as C++, Java, and C#. To find improvements,
the programming community wants to know how these features
are actually being used in projects. Researchers have conducted
these studies in different languages and different experimental
environments. In this study, we conduct an empirical replication
study with C++ open source projects in the same experimental
environment we’ve conducted with Java and C# to ascertain
what the community wants. Our framework of the static analysis
tool for Java and C# has been extended to analyze C/C++ open
source projects with quantitative data. We investigate how two
language features—templates and lambdas—are used in C++
open source projects. We found that C++ templates are used
widely by projects and developers, but C++ lambdas are not used
widely. These results of this study are similar to those in other
programming languages and in other experimental environments.

Index Terms—programming language, language feature, static
analysis tool, template, lambda expression, open source project,
quantitative data

I. INTRODUCTION

Programming languages have many language features for
producing good software. Whenever a new feature is intro-
duced for a language, it is thoroughly tested to see if it is
needed for the language [1], [2]. New features can bring
efficiency to programmers, improve program performance, and
provide benefits in many ways [3], [4]. On the other hand,
there are disadvantages to new features. Thus, new features are
not always welcomed in the programming community [5]–[7].

Generics feature (templates in C++) offers code reuse
without compromising static type checking so it can avoid
code duplication [8]. In addition, type checking in C++
templates can be conducted at compile time, rather than run-
time. However, C++ templates still have some limits with
low readability which can lead to difficulty for debugging
the codes when a project uses many templates [9]. Lambda

DOI reference number: 10.18293/SEKE2020-121.

expression (lambda), a core feature of functional program-
ming, makes concise syntax which may lead to reduce LOC
(Lines of Code) [10]. However, it may impact performance
for executable size and execution time as well as making the
code less readable [10]. These features—generics (templates
in C++) and lambdas—have clear benefits, but they also
have disadvantages that can make them difficult to use [11].
Thus, the programming community, including programming
language designers and educators, wonders how these features
are actually being used to find improvements for quality
software, and teaching programming languages [11]–[15].

This paper presents an empirical study of C++ templates and
lambdas. The work is a replication of previous studies with
C# and Java [5], [6], [16], [17]. Our previous studies analyzed
the usage of generics and lambdas, who used them, and how
their benefits appeared in open source projects. In this study,
the usage of two programming language features—templates
and lambdas—in 20 open source projects are investigated. The
results will be discussed by comparing the previous studies,
including our studies and other studies, such as C++ templates
by Chen et al. [14] and C++ lambdas by Uesbeck et al. [11].
More specially, the following two research questions (RQ) are
created to investigate each feature:

• RQ1: Is a language feature widely used in open source
projects?

• RQ2: Do project members in each project broadly use a
language feature after introduction into the project?

The contributions of this paper are as follows:
• Analysis of the usage of templates and lambdas in

C++: the open source projects written in C++ were
analyzed to determine if the features are used widely.
The following facts have been discovered: (1) the usage
of templates is much higher than that of lambdas, (2)
In many projects, templates were not used long after
the project started, and (3) For projects that don’t use
lambdas, the introduction of templates tends to be late.

• Analysis of the developers in open source projects:
this analysis results show that one or two developers used

180

a lot of templates in the projects. Developers who used
lambdas also used templates, but not necessarily those
who used templates used lambdas.

• An empirical replication study in major programming
languages: this study in C++ provides a consistent ex-
perimental environment with those in the other two pro-
gramming languages—Java and C#. Thus, it is possible
to consistently compare how language features were used
in the three programming languages—C++, Java, and C#.
The results in this study were also compared with other
studies; similar conclusions were drawn.

The paper is organized as follows. Section II illustrates
related works. Section III describes research questions and our
methodologies to conduct this study. Section IV answers to the
research questions with quantitative data. Finally, Section V
concludes this paper.

II. RELATED WORK

Researchers have investigated how language features are
used with a variety of methods [18], [19]. Asaduzzaman et
al. [18] discovered many developers, regardless of experience,
misuse exception handling in open source Java projects.

Siek and Taha [20] addressed that templates are a powerful
but poorly understood feature of the C++ language. Kim et
al. [5] conducted an empirical study of C# generics feature in
open source projects. They found that C# generics are used
widely. They compared the results with Java generics [17]
and explained several reasons for the different adoption rate
of generics feature between C# and Java. Wu et al. [12], [14]
analyzed how library templates influenced C++ programming
in open source systems. They listed most commonly-used
template libraries for C++ novices. Chen et al. [14] analyzed
how C++ templates are used in 50 open source systems. They
found that templates are useful for reducing code and C++
developers who prefer templates have no other programming
experience. This work is most related to our work. They
focused on the adoption of the different type of templates.
Our work focuses on how the features are adopted over time
and embraced by developers in open source projects.

Uesbeck et al. [11] conducted an empirical study of C++
lambdas and programmer experience. They analyzed partic-
ipants’ behaviors to solve programming tasks using lambda
expressions and iterators. They found that the students have
difficulty to use lambdas in programs and no benefits of
lambdas have been made. Likewise, our quantitative results
show that few developers are using C++ lambdas. Mazinanian
et al. [13] analyzed how lambda expression is adapted by
Java programmers. They found the reason why Java developers
use lambdas. The reasons are (1) making existing code more
succinct and readable and (2) avoiding code duplication. They
investigated the introduction rate of lambdas over time, starting
from the first commit and the last commit of the project.
Lambda expression in Java has an increasing trend in the
open source community. We also conduct similar methods with
C++ open source projects. Our results show similar trends in
C++ projects. However, not many C++ projects used lambdas

yet. Nielebock et al. investigated the adoption of lambdas in
2,923 open source projects and in three programming lan-
guages—C#, C++, and Java [19]. They found that developers
are significantly used more lambdas in C# than C++ and Java,
but the lambdas are not predominantly applied in concurrent
code. Like other studies [5], their study allows us to analyze
how a language feature affects usages when implemented
differently in different languages.

III. RESEARCH APPROACH

In this section, we explain the approach in this study.
Section III-A introduces our research questions. Section III-B
introduces the characteristics of 20 projects collected for
this study. Section III-C introduces the framework and the
procedure to analyze those projects with quantitative data.

A. Research Questions (RQ)

First, we investigate the adoption rate of each language
feature. As we explained the pros and cons in the Introduction
Section, two language features—templates and lambdas—have
similar pros and cons. Developers are responsible for using
language features to enhance the project’s performance if they
are useful. If language features are beneficial, their adoption
rate to be chosen by the developers must be high, which thus
leads to our first research question:

Research Question 1 (RQ1): Is a language feature
widely used in open source projects?

Our speculation was that more software developers use tem-
plates rather than lambdas due to several reasons: (1) The
template feature was added to C++ much longer than lambda
expression; and (2) The syntax of lambda expression is not
that easy.

C++ templates were added in 1998 as the standard C++
feature, which is relatively earlier than other major program-
ming languages such as Java (2004) and C# (2005). Lambda
expression has been adopted in many programming languages,
such as C# (2007), C++ (2011), and Java (2014). Many
software developers may know how to use lambda in C++.
After a project decides to use a compiler that supports these
features, the team can use the features or some individuals
may take the initiative on their own [5]. Thus, we want to
analyze how many project members actually use templates
and lambdas practically in project, which thus leads to our
second research question:

Research Question 2 (RQ2): Do project members
in each project broadly use a feature after
introduction into the project?

B. Projects Studied

To find out the answers for RQs listed above, we down-
loaded 20 open source projects from Black Duck Open
Hub (formerly Ohloh website). All of the projects have to
satisfy these requirements:

https://www.openhub.net/

181

https://www.openhub.net/

• Each project should have a high level of activity.
• Each project should have at least 100,000 lines of code

in C++ programming language.
• Each project should begin before C++ 11 (2011) was re-

leased, but ‘xLights’ is an exception because we couldn’t
find a project that meets the first two conditions.

Table I describes the information of 20 selected open-
source projects. Twenty projects seems small, but more than
several billions LOC has been analyzed in each project since
we analyzed the projects over time (e.g., each commit from
developers). For example, ‘Google’ has 1,322,907 LOC and
about 56,000 commits. For ‘Google’, more than 300 billions
LOC (= 0.65 millions LOC × 56,000 commits) has been
analyzed. We assume that the average LOC for ‘Google’ is
the half (0.65 millions LOC) of the last number of LOC (1.3
millions LOC). The table includes the name of each project,
and the number of total lines of code written in C++ measured
by Black Duck Open Hub on the date we downloaded for
analysis. The name in brackets is a short name for each project
that will be used in this paper.

Project LOC (C++)
Appleseed 410,994
Boost C++ Library (Boost) 3,222,155
deal.II (deal) 1,899,336
digikam 793,638
Dlib C++ Library (Dlib) 309,498
Fawkes Robot Software Framework (Fawkes) 475,294
Google V8 JavaScript Engine (Google) 1,322,907
ICU for C/C++/Java (ICU) 779,201
KDE Frameworks 5 (KDE) 1,037,464
libc++: The LLVM C++ Standard Library (libc++) 551,586
libMesh: A C++ Finite Element Library (libMesh) 685,658
LLVM/Clang C family frontend (LLVM) 1,276,127
mangos-classic (mangos) 350,519
Mantid 1,376,385
MITK 1,162,057
MongoDB 746,533
OpenMS 428,914
Orfeo ToolBox (Orfeo) 364,063
Point Cloud Library (Point) 1,035,913
xLights 343,268

TABLE I: The 20 C/C++ projects under investigation

C. Procedure

We have a framework of the static program analysis tool for
Java and C# [5]. The tool is used to analyze how language fea-
tures are used in open source projects. Recently, we extended
our existing framework to analyze C/C++ open source projects
with quantitative data. Our framework is written with several
programming languages such as python and C++ with llvm
library and the ws2_32 library. The new tool can extract
the information to answer our research questions, such as the
number of templates, lambdas, and developers. The following
is the overall steps to analyze open source projects. After
choosing projects that meet the requirements based on the
information from Black Duck Open Hub, we cloned each
project from its remote repository using Git and Subversion
to a local machine, check out every version of every file
from a project’s repository and store the different file revisions
in an intermediate format, and transfer this information to a

database; extract language features information from each file
revision and populate the information in the database server;
finally analyze the data in the database to answer each research
question.

IV. EXPERIMENTAL RESULTS

To get an overview of adoption of the template and lambda
expression features, we investigate the usage of both features
in the 20 selected projects. We measure the number of both
features to observe how those features are adopted. Table II
shows the overall data on how templates and lambdas are used
by developers. The title in each column indicates as follows:

• Start Date: Date the project started
• Developers: the number of developers involved in the

project
• First Date in Template and Lambda expression: the

first date when the first template or lambda was used by
a developer (N/A means no one used lambda expression
in the project.)

• Developers in Template and Lambda expression: the
number of developers who used templates or lambdas in
the project

• Usage in Template and Lambda expression: the
number of templates or lambdas used by developers in
the project

We observe that:
• The total number of templates is much higher than

lambdas in all projects. Lambdas are used in only 10
projects (out of 20 projects).

• Templates were used (adopted) in one year after the
projects started in 10 projects. On average, templates
were used on approximately 6.5 years after the project
started. On the other hand, lambdas are used (adopted)
in approximately five years after lambdas were added
in C++11 in the year 2011. For projects that don’t use
lambdas, such as deal, Fawkes, ICU, KDE, and libc++,
the introduction of templates tends to be late.

• The total number of developers who used templates is
higher than the total number of developers who used
lambdas.

A. RQ1: Usage of Language Features

RQ1: Is a language feature widely used in open source
projects?
Templates: We extracted the usage of templates over time.
Figure 1(a) shows the number of templates over time. libc++
used the most templates with 19,012 and Appleseed used the
second most templates with 3,930 in 20 projects. In most of
the projects, the numbers of templates increase sequentially.

As in Table II, you can find relatively large numbers in
templates’ usage rather than lambdas’ usage. However, it is
not easy to draw a conclusion if templates are used ‘widely’
or vice versa because there is a lack of clear criteria to discern
between ‘widely’ and ‘not widely’ with the number of usage.
For this reason, we investigate the usage of other language

182

Project Start Date Developer Template Lambda expression
First Date Developer Usage First Date Developer Usage

Appleseed 7/3/2010 39 7/3/2010 23 3,930 3/18/2018 3 20
Boost 7/7/2000 19 3/4/2004 15 154 7/6/2016 1 1
deal 11/24/1997 10 12/11/2009 3 190 N/A 0 0
digikam 5/5/2004 140 1/9/2007 22 155 N/A 0 0
Dlib 5/2/2008 25 5/2/2008 10 440 10/18/2015 7 40
Fawkes 1/3/2004 25 11/8/2011 4 39 N/A 0 0
Google 6/30/2008 7 10/9/2008 2 8 N/A 0 0
ICU 8/16/1999 72 10/3/2009 20 35 N/A 0 0
KDE 9/28/1999 47 10/18/2009 7 8 N/A 0 0
libc++ 5/11/2010 102 5/11/2010 78 19,012 7/31/2015 20 109
libMesh 1/9/2003 4 7/17/2012 3 959 N/A 0 0
LLVM 7/11/2007 181 8/7/2012 88 1,855 9/15/2014 31 130
mangos 10/13/2008 45 10/14/2008 27 166 N/A 0 0
Mantid 4/4/2007 137 10/26/2007 83 907 2/8/2016 32 29
MITK 9/6/1997 218 11/16/2002 77 840 6/3/2016 3 4
MongoDB 10/19/2007 283 12/11/2008 171 2,401 4/9/2015 127 307
OpenMS 6/11/2006 60 2/7/2014 30 128 12/13/2018 3 2
Orfeo 1/5/2006 33 5/15/2006 10 168 N/A 0 0
Point 3/2/2011 244 3/3/2011 82 382 7/4/2019 1 1
xLights 1/29/2013 31 9/26/2014 11 32 N/A 0 0

TABLE II: Software developers involved in the projects and the total usage of template and lambda expression

2011 2012 2013 2014 2015 2016 2017 2018 2019
0

5000

10000

15000

20000

Date

U
sa

ge

libc++

Template

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
0

50

100

150

200

250

300

350

Date

U
sa

ge

MongoDB

Lambda

Fig. 1: Usage of features over time: (a) Templates in libc++ (left), (b) Lambdas in MongoDB (right)

Project Template If Switch Lambda
Appleseed 3,930 7,027 56 20
Boost 154 38 0 1
deal 190 1,774 26 0
digikam 155 6,985 63 0
Dlib 440 581 17 40
Fawkes 39 1,968 31 0
Google 8 406 18 0
ICU 35 7,566 62 0
KDE 8 28 0 0
libc++ 19,012 1,722 20 109
libMesh 959 1,185 0 0
LLVM 1,855 1,308 58 130
mangos 166 7,690 48 0
Mantid 907 4,993 47 29
MITK 840 5,241 84 4
MongoDB 2,401 32,857 287 307
OpenMS 128 1,660 2 2
Orfeo 168 7,073 64 0
Point 382 12,472 126 1
xLights 32 1,898 32 0

TABLE III: Comparing the usage of language features with if
and switch statements

features to compare the relative numbers. if and switch
statements have been selected [21]. The If statement is the

most popular feature in projects from GitHub repositories
while the switch statement is less popular feature [21]. Ta-
ble III shows the numbers of language features (i.e., Template,
If, Switch, and Lambda) used in the projects. The number of
templates used by the Appleseed project is 3,930. The libc++
project is the highest number with 19,012 which is quite higher
than the number of if statement with 1,722. The template
feature can be one of popular features since the numbers
of templates have a similar relationship with If statement.
Overall, our results suggest that templates are widely used
in open source projects.
Lambdas: The numbers of projects using lambdas are much
smaller than the numbers of project using templates. 10
projects (out of 20 projects) used lambdas. MongoDB used
the most lambdas with 307 and LLVM used the second most
lambdas with 130 in 10 projects. Figure 1(b) shows the
number of lambdas over time in MongoDB. As mentioned
earlier, switch statements are a less popular feature [21].
When lambdas are compared with switch statements,
the number of lambdas is less than the number of switch
statements for most of the projects except Dlib, libc++,

183

Project All None Template Template only Intersection Lambda only Lambda
Appleseed 39 16 (41.0 %) 23 (59.0 %) 20 3 0 3 (7.7 %)
Boost 19 4 (21.1 %) 15 (78.9 %) 14 1 0 1 (5.3 %)
deal 10 7 (70.0 %) 3 (30.0 %) 3 0 0 0 (0.0 %)
digikam 140 118 (84.3 %) 22 (15.7 %) 22 0 0 0 (0.0 %)
Dlib 25 15 (60.0 %) 10 (40.0 %) 3 7 0 7 (28.0 %)
Fawkes 25 21 (84.0 %) 4 (16.0 %) 4 0 0 0 (0.0 %)
Google 7 5 (71.4 %) 2 (28.6 %) 2 0 0 0 (0.0 %)
ICU 72 52 (72.2 %) 20 (27.8 %) 20 0 0 0 (0.0 %)
KDE 47 40 (85.1 %) 7 (14.9 %) 7 0 0 0 (0.0 %)
libc++ 102 22 (21.6 %) 78 (76.5 %) 60 18 2 20 (19.6 %)
libMesh 4 1 (25.0 %) 3 (75.0 %) 3 0 0 0 (0.0 %)
LLVM 181 92 (50.8 %) 88 (48.6 %) 58 30 1 31 (17.1 %)
mangos 45 18 (40.0 %) 27 (60.0 %) 27 0 0 0 (0.0 %)
Mantid 137 53 (38.7 %) 83 (60.6 %) 52 31 1 32 (23.4 %)
MITK 218 140 (64.2 %) 77 (35.3 %) 75 2 1 3 (1.4 %)
MongoDB 283 89 (31.4 %) 171 (60.4 %) 67 104 23 127 (44.9 %)
OpenMS 60 30 (50.0 %) 30 (50.0 %) 27 3 0 3 (5.0 %)
Orfeo 33 23 (69.7 %) 10 (30.3 %) 10 0 0 0 (0.0 %)
Point 244 162 (66.4 %) 82 (33.6 %) 81 1 0 1 (0.4 %)
xLights 31 20 (64.5 %) 11 (35.5 %) 11 0 0 0 (0.0 %)

SUM 1,722 928 (53.9 %) 766 (44.5 %) 228 (13.2 %)

TABLE IV: Analysis of Developers

LLVM, and MongoDB. Overall, our results suggest that
lambdas are not widely used in open source projects.
Similar results were found in Java lambda expression [22].
Uesbeck et al. observed that lambdas don’t benefit developers
in terms of time to completion, or compiler errors [11].
However, as Mazinanian et al. found an increasing trend in
the adoption rate of lambdas [13], the adoption rate of C++
lambdas also shows an increasing trend in some projects
which used lambdas 1(b). This indicates that if we analyze
C++ lambda expression again in a decade, the answer may
be changed.

B. RQ2: Who used Language Features

RQ2: Do project members in each project broadly use a
language feature after introduction into the project?
Templates: As the answer to RQ1 , C++ templates are used by
most projects. However, few developers may take major usage
of templates or vice versa. To evaluate RQ2, we examined how
many developers used templates. Table IV shows the number
of developers who used templates and lambdas. Each title in
Table IV represents:

• All: the total number of developers involved in the project
• None: the number of developers who didn’t use both

template and lambda
• Template (Lambda): the number of developers who used

templates (lambdas)
• Template (Lambda) only: the number of developers who

only used templates (lambdas)
• Intersection: the number of developers who used both

templates and lambdas
In SUM in Table IV, 44.5% (766 out of 1,722) developers

used templates. More than 50% developers used templates in
8 projects. Boost is the highest project with 78.9% (15 out
of 19) of developers using templates. libc++ is the second
highest project with 76.5% (78 out of 102) of developers
using templates. These facts indicate that most developers
understand the benefits of the template feature. digikam is the
lowest project with 15.7% (22 out of 140) of developers using

templates. Fawkes is the second lowest project with 16.0% (4
out of 25) of developers using templates. In 13 projects, more
than 50% developers did not use both templates and lambdas.

Figure 2 shows the introduction and removal of both tem-
plates and lambda expressions by the top 5 developers per
project. Top 5 developers means 5 developers using the most
templates in a project. A dashed line represents the number of
templates while a solid line represents the number of lambdas.
We observed that one or two developers show higher usage
of templates in the projects. For example, Figure 2(a) shows
that two developers used significantly higher templates than
other developers; Al*** used more than 300 templates and
Jo*** used more than 150 templates. In the appleseed project
which is not in Figure 2, one developer (Fr***) used around
3,700 templates (out of 3,930) while other developers used less
than 100 templates. This pattern was observed in many of the
other projects such as appkeseed, Boost, digikam, dlib, Fawkes,
ICU, libMesh, and Orfeo. Overall, our results indicates that
templates are used by a small pool of developers. These
results are similar to other previous studies [5], [14], [17].

Lambdas: As can be seen by the analysis results in RQ1,
we recognize that not many project members used lambdas.
Table IV shows that 13.2% (228 out of 1,722) used lambdas.
In LLVM (Figure 2(a)), Al*** (who used the most templates)
used the most lambda. Jo*** (who used the second most
templates) used the second most lambdas. In MongoDB, 44.9%
(127 out of 283) used lambdas. Several developers (Be***,
Ma***, Ka***) used almost 100 templates; Be*** used 75
lambdas. In most projects, developers who used lambdas also
used templates, except MongoDB; In MongoDB, 23 developers
only used lambdas, not templates. Overall, C++ lambdas are
used by a very small number of project members. Nine
years have passed since lambda expression was added in C++
in 2011. We need to look at whether each project uses C++11
compiler (or higher version) to enable lambdas and when each
project begins to use C++11 compiler, but for now only a few
developers use C++ lambdas.

184

2014 2016 2018 2020

0
50

10
0

15
0

20
0

25
0

30
0

LLVM

Date

N
um

be
r

of
 T

yp
e

U
se

s

Al*** Template

Al*** Lambda

Ha*** Template

Ha*** Lambda

Jo*** Template

Jo*** Lambda

An*** Template

An*** Lambda

Aa*** Template

Aa*** Lambda

(a) LLVM

2010 2012 2014 2016 2018 2020

0
10

0
20

0
30

0
40

0
50

0

MongoDB

Date

N
um

be
r

of
 T

yp
e

U
se

s

Be*** Template

Be*** Lambda

El*** Template

El*** Lambda

Ma*** Template

Ma*** Lambda

Ka*** Template

Ka*** Lambda

(O*** Template

(O*** Lambda

(b) MongoDB

Fig. 2: Individual developers’ usage of templates and lambdas over time

V. CONCLUSION

Template and lambda expression features have benefits.
Throughout the empirical study with C++ open source
projects, we investigated the usage of templates and lambdas
and how these features are used by developers. We found that
templates are used widely by many developers in open source
projects. However, lambdas are not used widely in open source
projects, and not many developers use lambdas. These results
from quantitative data will help you create a new programming
language, add new language features into the programming
language, or teach programming with what priorities. Since
language features were added at different times, we recognize
that quantitative comparisons are limited. Further research
with qualitative data may be needed to analyze the reasons
for these conclusions.

REFERENCES

[1] G. Bracha, N. Cohen, C. Kemper, S. Marx, M. Odersky, S.-E. Panitz,
D. Stoutamire, K. Thorup, and P. Wadler, “Adding generics to the java
programming language: Participant draft specification,” 2001.

[2] J. Järvi, J. Freeman, and L. Crowl. (2008, Feb) Lambda functions
and closures for C++ (Revision 4), Technical Report N2550=08-0060,
ISO/IEC JTC 1, Information technology, Subcommittee SC 22,
Programming Language C++. [Online]. Available: http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf

[3] B. Stroustrup, “Evolving a language in and for the real world: C++
1991-2006,” in Proceedings of the third ACM SIGPLAN conference on
History of programming languages. ACM, 2007, pp. 4–1.

[4] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining billions
of ast nodes to study actual and potential usage of java language fea-
tures,” in Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014, pp. 779–790.

[5] D. Kim, E. R. Murphy-Hill, C. Parnin, C. Bird, and R. Garcia, “The
reaction of open-source projects to new language features: An empirical
study of c# generics.” Journal of Object Technology, vol. 12, no. 4, pp.
1–1, 2013.

[6] C. Liddell and D. Kim, “Analyzing the adoption rate of local variable
type inference in open-source java 10 projects,” Journal of the Arkansas
Academy of Science, vol. 73, no. 1, pp. 51–54, 2019.

[7] D. Kim and G. Yi, “Measuring syntactic sugar usage in programming
languages: an empirical study of c# and java projects,” in Advances in
Computer Science and its Applications. Springer, 2014, pp. 279–284.

[8] M. H. Austern, Generic programming and the STL: using and extending
the C++ Standard Template Library. Addison-Wesley, 1999.

[9] Á. Sinkovics and Z. Porkoláb, “Implementing monads for c++ template
metaprograms,” Science of computer programming, vol. 78, no. 9, pp.
1600–1621, 2013.

[10] J. Järvi and J. Freeman, “C++ lambda expressions and closures,” Science
of Computer Programming, vol. 75, no. 9, pp. 762–772, 2010.

[11] P. M. Uesbeck, A. Stefik, S. Hanenberg, J. Pedersen, and P. Daleiden,
“An empirical study on the impact of c++ lambdas and programmer
experience,” in Proceedings of the 38th International Conference on
Software Engineering. ACM, 2016, pp. 760–771.

[12] D. W. 0014, L. Chen, Y. Zhou, and B. Xu, “An empirical study on
the adoption of c++ templates: Library templates versus user defined
templates.” in SEKE, 2014, pp. 144–149.

[13] D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig, “Understanding
the use of lambda expressions in java,” Proceedings of the ACM on
Programming Languages, vol. 1, no. OOPSLA, p. 85, 2017.

[14] L. Chen, D. Wu, W. Ma, Y. Zhou, B. Xu, and H. Leung, “How c++
templates are used for generic programming: An empirical study on 50
open source systems,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 29, no. 1, pp. 1–49, 2020.

[15] A. P. Black, K. B. Bruce, M. Homer, and J. Noble, “Grace: the absence
of (inessential) difficulty,” in Proceedings of the ACM international sym-
posium on New ideas, new paradigms, and reflections on programming
and software. ACM, 2012, pp. 85–98.

[16] C. Saldivar, R. Clayton, and D. Kim, “The adoption rate of lambda ex-
pressions in java open source projects,” 31st Annual National Conference
on Undergraduate Research, 2017.

[17] C. Parnin, C. Bird, and E. Murphy-Hill, “Java generics adoption: how
new features are introduced, championed, or ignored,” in Proceedings of
the 8th Working Conference on Mining Software Repositories. ACM,
2011, pp. 3–12.

[18] M. Asaduzzaman, M. Ahasanuzzaman, C. K. Roy, and K. A. Schneider,
“How developers use exception handling in java?” in Proceedings of the
13th International Conference on Mining Software Repositories. ACM,
2016, pp. 516–519.

[19] S. Nielebock, R. Heumüller, and F. Ortmeier, “Programmers do not favor
lambda expressions for concurrent object-oriented code,” Empirical
Software Engineering, vol. 24, no. 1, pp. 103–138, 2019.

[20] J. Siek and W. Taha, “A semantic analysis of c++ templates,” in
European Conference on Object-Oriented Programming. Springer,
2006, pp. 304–327.

[21] M. J. Lemay, “Understanding java usability by mining github reposi-
tories,” in 9th Workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

[22] C. Mcdougal, B. Staufer, J. Reach, and D. Kim, “The evolution of java
involving lambda,” Fifteenth Annual Consortium for Computing Sciences
in Colleges Mid-South Conference In Cooperation With ACM/SIGCSE,
2017.

185

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf

Analyzing the Performance of Apps Developed by
using Cross-Platform and Native Technologies

Lucas Pugliese Barros
Informatics Coordination

Federal Institute of Alagoas
Maceió, Alagoas, Brasil

lucas.pugliese.barros@gmail.com

Flávio Medeiros
Informatics Coordination

Federal Institute of Alagoas
Maceió, Alagoas, Brasil

flavio.medeiros@ifal.edu.br

Eduardo Moraes
Informatics Coordination

Federal Institute of Alagoas
Maceió, Alagoas, Brasil

ecmoraes@gmail.com

Anderson Feitosa Júnior
Informatics Coordination

Federal Institute of Alagoas
Maceió, Alagoas, Brasil
andersonmfjr@gmail.com

Abstract—The number of mobile devices are increasing world-
wide and there are a number of new mobile apps being delivered
daily. When developing mobile applications, developers need to
support a number of platforms, such as iOS and Android. Many
cross-platform technologies appeared, including Flutter and React
Native, to avoid the need of developing different applications for
every platform. In this context, companies and developers have to
analyze different issues when selecting a cross-platform or native
technology. Both strategies have positive and negative points, and
one important aspect when choosing a technology is performance.
In this study, we perform a comparative study to analyze the
performance of mobile applications developed by using Flutter,
React Native, and iOS and Android native technologies. The
results show that native technologies are still a little faster for
most functionalities, but there are also a number of cases in
which Flutter and React Native perform statically equivalent
when compared to native technologies. Our study complements
previous work by including these two modern cross-platform
technologies that have not be considered in comparative studies
previously.

Index Terms—Mobile Development, Performance Analysis

I. INTRODUCTION

Mobile devices are currently a crucial part of our daily life.
We find mobile applications for a wide range of domains,
such as health, tourism, planning, and sports. There are many a
number of platforms that uses different Software Development
Kits (SDK) to build mobile applications, including iOS, and
Android. In this context, developers should provide their
solutions across those platforms. A number of cross-platform
technologies appeared, allowing developers to support differ-
ent platforms by using a single source code, such as React
Native, and Flutter [1–4].

In particular, when using native development, companies
need to develop different mobile applications for every
supported platform. Thus, the cost of native development
gets higher. For this reason, cross-platform development has
emerged as a potential alternative. On the other hand, cross-
platform technologies also have negative points [3, 5, 6]:

• Performance: it is one of the most important requirement
of an application, and it might be slower in applications
developed by using cross-platform technologies;

DOI reference number: 10.18293/SEKE2020-122

• Harder code design: developers have to adapt their design
and functionalities to handle the specific peculiarities of
every platform;

• Longer time for new features: every new feature for
Android or iOS takes some time to be available in cross-
platform frameworks.

To help developers and companies to select a technology for
their mobile applications, we performed a comparative study
to analyze the performance of cross-platform applications de-
veloped by using Flutter and React Native when compared to
native applications written in Java and Swift, for Android and
iOS devices respectively. This study complements previous
work by including two modern cross-platform technologies not
considered before [6–8]. The first on is Flutter, which has ap-
peared as a promising cross-platform technology that aims to
bundle mobile applications with performance improvements.
This technology has been used by many companies, including
Alibaba, and Google Ads. The second is React Native, which
is the most popular technology currently and it is also used by
many enterprises, such as Facebook, Airbnb, Tesla, Walmart,
and Uber.

To perform this comparative study, we define a set of
functionalities that are present in most mobile applications.
Then, we implemented these functionalities by using different
languages and technologies: (1) in Flutter by using the Dart
language; (2) in JavaScript with React Native; (3) in Java
for Android devices; and (4) in Swift for iOS devices. In all
implementations we use the same functionalities and layout,
and we strictly follow the documentation of each technology
to get the best benefits of each one. The functionalities
implemented include storing and retrieving information of
local storage, making HTTP calls, and rendering data as lists.
To answer our research questions, we use User Interface (UI)
Test [9, 10] to automatically run every implementation and
execute each functionality 100 times to compute the time of
execution in the different technologies.

Our study reveals that the applications developed by using
native technologies, i.e., Swift and Java, are still a little faster
for most functionalities. However, there are also cases in which
Flutter and React Native are statistically equivalent in terms
of performance, such as storing and retrieving data by using
local storage in Android and iOS devices.

186

The remainder of this paper is organized as follows. In
Section II, we present the settings of our comparative study
to analyze the performance of mobile applications. Section III
shows the results of our study with regards to Flutter, React
Native, and iOS and Android development. In Section IV,
we depict the threats to validity of our study, and Section V
discusses some implications to practice. In Section VI, we
present the related work, and we discuss the concluding
remarks in Section VII.

We provide all information about this comparative study,
including the source codes, and the result data in a comple-
mentary website.1

II. STUDY SETTINGS

In this section, we present the settings of our comparative
study to analyze the performance of mobile applications
developed by using cross-platform and native technologies.
To better structure our study, we use the Goal, Question, and
Metrics (GQM) approach [11].

A. Definition

The goal of this comparative study is to analyze implemen-
tations of a mobile application for the purpose of evaluation
with respect to verifying the performance of cross-platform
and native mobile technologies in the context of the languages
Dart (Flutter), JavaScript (React Native), Java, and Swift.
In particular, this study addresses the following research
questions:

• RQ1. What is the difference in terms of performance for
Android applications developed by using Java, Flutter
(Dart), and React Native (JavaScript)?

• RQ2. What is the difference in terms of performance for
iOS applications developed by using Swift, Flutter (Dart),
and React Native (JavaScript)?

To answer these two research questions included in our
study, we define four metrics:

• REMOTE: this metric computes the processing time to
make a request to an external Application Programming
Interface (API). It computes the time of the HTTP re-
quest, that is, the time to make the request and receive
all data by using the JavaScript Object Notation (JSON);

• RENDER: it computes the time to render the first five
items of a list by showing them on the screen for the
users;

• STORE: this metric computes the time to save one item
of a list in the local database;

• RETRIEVE: it computes the time necessary to retrieve
the information of five items from the local database.

B. Planning and Operation

In this section, we describe the subjects, instrumentation,
and operation of our study.

Our study uses Flutter (Dart) and React Native (JavaScript)
as the cross-platform technologies, and Java and Swift as

1http://cpsoftware.com.br/performance-study

the natives ones. The reason to select Flutter is because
it has appeared as a promising cross-platform technology
that aims to bundle mobile applications with performance
improvements. As performance is a negative point of cross-
platform applications, it makes sense to include Flutter in our
study. We choose React Native because it is the most common
framework in practice. In addition, both frameworks are used
by known companies, such as Alibaba, Facebook, Airbnb,
Walmart, and Uber. We select Android and iOS because they
are the two most common platforms for mobile devices.

To perform this comparative study, we developed four
implementations of an application by using different technolo-
gies: (1) Flutter; (2) React Native; (3) Java; and (4) Swift. The
implementations contain the same functionalities and layout,
and we developed the applications by strictly following the
documentation of each technology.

To compute metric REMOTE, we select the Google APIs
Explorer service because there is no authentication restriction
to access it, and because it is possible to return a considerable
amount of information (258 items) through a single request.
As the local database, we use the SQLite database because it
is compact as well as available in the Android, IOS, Flutter,
and React Native SDKs. In addition, the documentations of
the technologies recommend to use this database in practice.

In Figure 1, we can see one implementation of the appli-
cation written in Swift for iOS. On the left-hand side, we
see the list of items returned by the API. On the right-
hand side, we present the items retrieved from the SQLite
database. In Figure 2, we show the screens but considering
the implementation for Android, written in Java.

Fig. 1. Interface of one implementation of the application in iOS.

To answer our research questions, we created user interface
tests to execute the applications 100 times and to compute
the time to perform each functionality in the different tech-
nologies. The user interface tests repeat a sequence of steps
100 times on real devices, simulating the behavior of users.
Thus, instead of run the experiment manually, it was possible
to automate the complete process.

187

http://cpsoftware.com.br/performance-study

To compute the processing time for each metric, we create
a class in Java, Swift, JavaScript, and Dart, respectively
for Android, iOS, React Native, and Flutter. So that, the
logic was the same for all four implementations with the
purpose of avoiding influences on the processing time of
the metrics. These classes are responsible for managing all
metrics, calculating the processing time in milliseconds, and
formatting and printing the processing time of the metrics.
With the data collected, the next step was to format the data in
the Comma Separated Values (CSV) format to run the statistics
by using the R Project for Statistical Computing.

We execute the study on a MacBook Pro 2.4GHz dual-core
Intel Core i5 8GB, running Mac OS X 10.8 Mountain Lion.
Furthermore, we run the applications by using an iPhone 7
32GB 3GB RAM and a Samsung Galaxy S8 64GB 4GB RAM.
That is, we run the Android native application and the Flutter
and React Native versions for Android by using the Samsung
Galaxy, and the iOS native application and the Flutter and
React Native versions for iOS by using the iPhone. We perform
all the analyses by using the same network connection.

To run the experiment, we need several tools. We use
Android Studio 3.6, Android 10, Java 1.8, Flutter version
1.12.13, Xcode 11.3.1, Visual Studio Code 1.42, React Native
0.61, Volley 1.1.1, SQLite 3.31.1, Espresso 3.1.1, XCTest 5.2,
and Detox 15.4.2.

Fig. 2. Interface of one implementation of the application in Android.

Next, we interpret and discuss the results of this study to
analyze the performance of mobile applications developed by
using cross-platform and native technologies.

III. RESULTS

In the next subsections, we present the results of our
comparative study. Section III-A presents the results related
to the Android platform, and in Section III-B, we show the
results of the iOS platform.

A. Android

In this section, we answer RQ1 by presenting the results
for each metric by considering the applications running on
the Android device.

REMOTE: In Figure 3a, we show the mean and the con-
fidence interval (95%) for each technology regarding metric
REMOTE. The means are 1772, 1818, and 2295 milliseconds
for React Native, Android native, and Flutter respectively.

To check if the data is normal distributed, we use the
Shapiro-Wilk normality test (95%). The null-hypothesis of this
test is that the population is normally distributed. Thus, if the
p-value is less than the chosen alpha level (0.05), then the null
hypothesis is rejected and there is evidence that the data tested
are not normally distributed [12, 13].

• Null Hypothesis (H0): it tests if the population is normally
distributed;

• Alternative Hypothesis (H1): there is evidence that the
population is not normally distributed.

By running the Shapiro-Wilk normality test (95%), we find
that the data is not normal. Thus, we compare the groups of
data by using the Wilcoxon test [12, 13], which considers:

• Null Hypothesis (H0): there is not any difference in the
data sets, that is, the medians are equal;

• Alternative Hypothesis (H1): there is evidence that the
data sets are different in terms of median.

The results show that the performances of Android native
and React Native are statistically faster than the performance
of the application developed by using Flutter. That is, the
median values are different according to the statistical test.
In Table I, we present the statistical tests we run and their
respective results.

Test p-value (H0)
Shapiro-Wilk for Android 9.9e−13 rejected
Shapiro-Wilk for Flutter 2.9e−08 rejected
Shapiro-Wilk for React Native 5.7e−11 rejected
Wilcoxon for Android and Flutter 2.3e−13 rejected
Wilcoxon for Android and React 6.9e−04 rejected
Wilcoxon for Flutter and React 2.2e−16 rejected

TABLE I
STATISTICAL TESTS FOR METRIC REMOTE IN ANDROID APPLICATIONS.

RENDER: In Figure 3b, we present the mean and the con-
fidence interval (95%) for each technology regarding metric
RENDER. The means are 173, 247, and 277 for Android
native, Flutter, and React Native respectively.

The data is not normal here also according to the Shapiro-
Wilk test, as we can see in Table II. Android native is the tech-
nology with better performance with statistical significance.
It has the lowest median, which is different from the other
data sets according to the Wilcoxon test. On the other hand,
there is no statistical difference between the performance of
the technologies React Native and Flutter.

STORE: In Figure 3c, we show the results for metric Store.
We present the mean and the confidence interval (95%) for

188

Fig. 3. Results for metrics in Android.

Test p-value (H0)
Shapiro-Wilk for Android 0.3 accepted
Shapiro-Wilk for Flutter 9.2e−12 rejected
Shapiro-Wilk for React Native 1.1e−12 rejected
Wilcoxon for Android and Flutter 2.2e−16 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 1.3e−14 rejected

TABLE II
STATISTICAL TESTS FOR METRIC RENDER IN ANDROID APPLICATIONS.

each technology. The means are 15.59, 16.43, and 16.96 for
Flutter, Android native, and React Native respectively.

In Table III. we present the statistical tests and their results.
There is no statistical significance in the data sets. That is, the
performance of all technologies is statistically equivalent.

Test p-value (H0)
Shapiro-Wilk for Android 2.97e−10 rejected
Shapiro-Wilk for Flutter 2.486e−5 rejected
Shapiro-Wilk for React Native 4.038e−10 rejected
Wilcoxon for Android and Flutter 0.003335 rejected
Wilcoxon for Android and React 0.03211 rejected
Wilcoxon for Flutter and React 0.0096 rejected

TABLE III
STATISTICAL TESTS FOR METRIC LIKE IN ANDROID APPLICATIONS.

RETRIEVE: In Figure 3d, we show the results for metric Re-
trieve Data. We present the mean and the confidence interval
(95%) for each technology. The means are 8.35, 77, and 128.6
for Android native, React Native, and Flutter respectively.

In Table IV, we present the results of metric RETRIEVE.
The Android native technology is the fastest one with statis-
tical significance. On the other hand, the performance of the
technologies React Native and Flutter is statically equivalent.

Test p-value (H0)
Shapiro-Wilk for Android 6.24e−12 rejected
Shapiro-Wilk for Flutter 1.074e−11 rejected
Shapiro-Wilk for React Native 7.78e−13 rejected
Wilcoxon for Android and Flutter 2.2e−16 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 2.2e−16 rejected

TABLE IV
STATISTICAL TESTS FOR METRIC LIKE IN ANDROID APPLICATIONS.

SUMMARY

Regarding data rendering and retrieving data from local
storage, Android native is faster than Flutter and React
Native. However, performance is statistically equivalent
when considering accessing remote data and storing
data in local storage.

B. iOS

In this section, we answer RQ2 by showing the results of
our experiment in iOS. Next, we present the results for each
metric.

REMOTE: In Figure 4a, we show the mean and the con-
fidence interval (95%) for each technology regarding metric
REMOTE. The means are 45.35, 1,802.46, and 2,474.89 mil-
liseconds for iOS native, React Native, and Flutter respec-
tively.

In Table V, we present the statistical tests and their results.
In this metric, iOS native is statically faster than Flutter and
React. Further, React is statistically faster than Flutter.

Test p-value (H0)
Shapiro-Wilk for Android 0.002446 rejected
Shapiro-Wilk for Flutter 7.975e−11 rejected
Shapiro-Wilk for React Native 6.888e−15 rejected
Wilcoxon for Android and Flutter 2.2e−16 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 5.805e−12 rejected

TABLE V
STATISTICAL TESTS FOR METRIC REMOTE IN iOS APPLICATIONS.

RENDER: In Figure 4b, we present the mean and the con-
fidence interval (95%) for each technology regarding metric
RENDER. The means are 15.79, 56.71, and 72.91 for iOS
native, React Native, and Flutter respectively.

In Table VI, we present the statistical tests and their results.
In this metric, iOS native is also statically faster than Flutter
and React. Further, React is statistically faster than Flutter.

Test p-value (H0)
Shapiro-Wilk for Android 7.206e−15 rejected
Shapiro-Wilk for Flutter 2.2e−16 rejected
Shapiro-Wilk for React Native 2.042e−15 rejected
Wilcoxon for Android and Flutter 2.2e−16 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 2.2e−16 rejected

TABLE VI
STATISTICAL TESTS FOR METRIC RENDER IN iOS APPLICATIONS.

STORE: In Figure 4c, we show the results for metric STORE.
We present the mean and the confidence interval (95%) for
each technology. The means are 2.89, 5.73, and 6.23 for React
Native, iOS native, and Flutter respectively.

In Table VII, we present the statistical tests and their results.
In this metric, React Native is statically faster than iOS Native
and Flutter.

189

Fig. 4. Results for metrics in iOS.

Test p-value (H0)
Shapiro-Wilk for Android 1.346e−11 rejected
Shapiro-Wilk for Flutter 4.202e−08 rejected
Shapiro-Wilk for React Native 1.94e−13 rejected
Wilcoxon for Android and Flutter 0.5488 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 2.2e−16 rejected

TABLE VII
STATISTICAL TESTS FOR METRIC RENDER IN iOS APPLICATIONS.

RETRIEVE: In Figure 4d, we show the results for metric
RETRIEVE. We present the mean and the confidence interval
(95%) for each technology. The means are 0.38, 2.82, and
32.18 for Android native, React Native, and Flutter respec-
tively.

Here, the hypotheses of all statistical tests were rejected
with p− value = 2.2e−16. It is the lowest number that R can
represent, that is, the null hypotheses (H0) are all rejected with
a small p-value, as shown in Table VIII.

Test p-value (H0)
Shapiro-Wilk for Android 2.2e−16 rejected
Shapiro-Wilk for Flutter 2.2e−16 rejected
Shapiro-Wilk for React Native 2.2e−16 rejected
Wilcoxon for Android and Flutter 2.2e−16 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 2.2e−16 rejected

TABLE VIII
STATISTICAL TESTS FOR METRIC RENDER IN iOS APPLICATIONS.

SUMMARY

Regarding data rendering, accessing remote data and
retrieving data from local storage, iOS native is faster
than Flutter and React Native. However, performance
is statistically equivalent or faster when considering
storing data into local storage.

IV. THREATS TO VALIDITY

Construct Validity. It refers to whether the functionalities
that we choose are indeed relevant for mobile applications. We
minimize this threat by analyzing existing mobile applications.
The functionalities that we select, i.e., call remote API, render
items as lists, and store and retrieve data from database, are
present in almost all applications that we analyzed in our study.

Internal Validity. In our study, we implemented a specific
class in different languages, i.e., Java, Swift, JavaScript, and
Dart, to measure the time of performing the functionalities in
the exact way for each technology. Furthermore, we select a
stable internet connection to avoid differences when running

the applications in the different technologies. However, notice
that we may still face network differences. To minimize this
threat, we run the experiment for all technologies in an interval
of three hours.

External Validity. We analyze four functionalities that we
commonly find in existing applications. However, we have not
considered functionalities that use resources, such as GPS and
camera. Thus, we cannot generalize the results of this study
to this context.

V. IMPLICATIONS TO PRACTICE

The difference in terms of performance among React Native
and Flutter when compared to native technologies can be ex-
plained based on how these cross-platform technologies work.
In React Native, the source code is not compiled to C/C++ or
other native languages. Instead, the user interface components
are compiled into native equivalents and JavaScript is executed
on a separate thread (called bridge). In Flutter, the source
code is compiled to native language directly, but it also uses
an engine that goes together with the source code of the
mobile applications, and a platform channel is necessary to
access native resources, such as camera and GPS. That is, they
work as intermediates that may decrease performance also.
However, these technologies are evolving, they are used in
practice by many companies, and they can perform as fast as
native technologies for specific functionalities, such as storing
and retrieving data by using local storage, as we shown in our
comparative study.

Another important point to take into account is the costs for
development. When using native technologies, such as Java
and Swift, developers need to develop the same application
for every supported platform, making the development more
expensive and time-consuming. Thus, when performance re-
quirements are not extremely important, it makes sense to use
cross-platform technologies, as their performance is closer to
natives ones to most functionalities, as we have shown in our
current study.

VI. RELATED WORK

In this section, we compare our study with previous work.
Sommer and Krusche [8] performed a comparative study with
a number of technologies, including Titanium, Rhodes, and
PhoneGap. The authors recommend to use cross-platform
technologies in general, but they alert for high requirements
with regards to performance issues, usability or native user
experience. In [7], the authors compared the same three cross-
platform technologies and measured performance in terms of

190

memory, CPU usage and power consumption. The former
provided a similar result when comparing to our study in terms
of performance. In the latter study, the authors used a different
strategy to measure performance, as we computed the time of
execution in our study.

Heitkötter et al. [14] performed a study by comparing the
PhoneGap and Titanium Mobile technologies. The authors
compared the technologies by considering the native look
and feel, supported platforms, license and costs, as well
as the application speed at start-up and run-time. Different
from React Native and Flutter, the technologies used do not
generate native code, they use a Web app approach knows as
WebView [15], which let the application slower, as discussed
by the authors in their results. Furthermore, technologies that
use WebViews may cause security issues [16].

In the study of Xiaoping et al. [6], the authors compared the
Apache Cordova, Microsoft Xamarin, and Appcelerator Tita-
nium against the native technologies, that is, Android and iOS.
The study is similar to ours, it presents trade-offs of different
technologies and offer guidance in selecting an appropriate
technology based on performance requirements. Further, the
results are similar with our results, but the results of Flutter
and React Native seem to be closer to the performance of
native technologies.

In [17], the authors discussed the different strategies used
by cross-platform technologies, and mention the advantages
in productivity when using a model-driven approach. Our
study complements all these related work by considering two
modern cross-platform technologies for mobile development.

VII. CONCLUSIONS

In this study, we present a comparative study to analyze
the performance of cross-platform and native technologies for
mobile development. To run this study, we developed the same
application by using different technologies: Android (Java),
iOS (Swift), Flutter (Dart), and React Native (JavaScript).
Our results reveal that native technologies are faster, as we
expected, but the performance of the current cross-platform
technologies are pretty closer. In a number of cases, we could
not show statistical different among the performance of the
applications written in different technologies. For instance,
when storing and retrieving data by using local storage in An-
droid and iOS devices. As future work, we plan to implement
more functionalities in the applications to run the study again
considering different aspects, such including functionalities
that use geolocation, camera, and accelerometer.

REFERENCES

1. Latif, M., Lakhrissi, Y., Nfaoui, E. H. & Es-Sbai, N.
Cross platform approach for mobile application develop-
ment: A survey in International Conference on Informa-
tion Technology for Organizations Development (IEEE,
2016), 1–5.

2. Palmieri, M., Singh, I. & Cicchetti, A. Comparison of
cross-platform mobile development tools in International
Conference on Intelligence in Next Generation Networks
(IEEE, 2012), 179–186.

3. Javeed, A. Performance Optimization Techniques for
ReactJS in Int. Conf. on Electrical, Computer and Com-
munication Technologies (IEEE, 2019), 1–5.

4. Serrano, N., Hernantes, J. & Gallardo, G. Mobile Web
Apps. IEEE Software 30, 22–27 (2013).

5. Lin, H. & Lee, G. Building a Secure Cross Platform
Enterprise Service Mobile Apps Using HTML5 in In-
ternational Conference on Network-Based Information
Systems (IEEE, 2015), 162–166.

6. Jia, X., Ebone, A. & Tan, Y. A Performance Evaluation
of Cross-Platform Mobile Application Development Ap-
proaches in Int. Conf. on Mobile Software Engineering
and Systems (Association for Computing Machinery,
2018), 92–93.

7. Dalmasso, I., Datta, S. K., Bonnet, C. & Nikaein, N.
Survey, comparison and evaluation of cross platform mo-
bile application development tools in Int. Wireless Com-
munications and Mobile Computing Conference (IEEE,
2013), 323–328.

8. Sommer, A. & Krusche, S. Evaluation of cross-platform
frameworks for mobile applications in Software Engi-
neering - Workshopband (eds Wagner, S. & Lichter, H.)
(Gesellschaft für Informatik e.V., 2013), 363–376.

9. Daniel, F. et al. Understanding UI Integration: A Survey
of Problems, Technologies, and Opportunities. IEEE
Internet Computing 11, 59–66 (2007).

10. Tirodkar, A. A. & Khandpur, S. S. EarlGrey: iOS UI
Automation Testing Framework in International Con-
ference on Mobile Software Engineering and Systems
(IEEE/ACM, 2019), 12–15.

11. Basili, V., Caldiera, G. & Rombach, D. H. in Encyclo-
pedia of Software Engineering (Wiley, 1994).

12. Kanji, G. K. 100 statistical tests 3rd ed. (Sage Publica-
tions, 2006).

13. Boslaugh, S. & Watters, P. A. Statistics in a nutshell - a
desktop quick reference. (O’Reilly, 2008).

14. Heitkötter, H., Hanschke, S. & Majchrzak, T. A. Com-
paring Cross-platform Development Approaches for Mo-
bile Applications in Int. Conf. on Web Information Sys-
tems and Technologies (2012).

15. Shin, D., Yao, H. & Rosi, U. Supporting Visual Security
Cues for WebView-Based Android Apps in Proceedings
of the Annual Symposium on Applied Computing (ACM,
2013), 1867–1876.

16. Bao, W., Yao, W., Zong, M. & Wang, D. Cross-Site
Scripting Attacks on Android Hybrid Applications in
Proceedings of the International Conference on Cryp-
tography, Security and Privacy (ACM, 2017), 56–61.

17. Gaouar, L., Benamar, A. & Bendimerad, F. T. Model
Driven Approaches to Cross Platform Mobile Devel-
opment in Proceedings of the International Conference
on Intelligent Information Processing, Security and Ad-
vanced Communication (Association for Computing Ma-
chinery, 2015).

191

On the Use of Support Mechanisms to Perform Experimental Variables Selection

Lilian P. Scatalon*, Rogério E. Garcia†, and Ellen F. Barbosa*

*University of São Paulo (ICMC-USP), São Carlos-SP, Brazil
†São Paulo State University (FCT-Unesp), Presidente Prudente-SP, Brazil
lilian.scatalon@usp.br, rogerio.garcia@unesp.br, francine@icmc.usp.br

Abstract

The selection of variables in a given experiment is cru-
cial, since it is the theoretical foundation that guides how
data should be collected and analyzed. However, select-
ing variables is an intricate activity, especially considering
areas such as Software Engineering and Education, whose
studies should also consider human-related variables in the
design. In this scenario, we aim to investigate how a sup-
port mechanism helps on the variables selection activity
of the experiment process. To do so, we conducted a pre-
liminary study on the use of an experimental framework
composed by a catalog of variables. We explored the do-
main of the integration of software testing into program-
ming education. Participants were divided into two groups
(ad hoc and framework support) and asked to select vari-
ables for a given experiment goal. We analyzed the results
by identifying threats to validity in their experimental de-
sign drafts. Results show a significant number of threats of
type inadequate explication of constructs for both groups.
Nonetheless, the framework helped to increase the clarity
of concepts selected as variables. The cause of most raised
threats, even with the framework support, was an inaccu-
racy in selecting the values of such variables (i.e. treat-
ments and fixed values).

Keywords: Experimental design, Variables selection,
Support mechanisms and Experimental framework.

1 Introduction

The central idea in an experiment is a cause-effect re-
lationship of a given phenomenon. Naturally, the phe-
nomenon of interest may be affected by a sheer number of

DOI reference number: 10.18293/SEKE2020-146

variables, but the researcher is supposed to select the ones
related to the hypothesized cause-effect relationship. Such
variables make up much of experimental design, i.e. the
plan to conduct the experiment [8, 19].

Researchers usually rely on their personal experience
and the empirical literature as a source to help designing
their experiments [6]. In this sense, Borges et al. [4] identi-
fied several support mechanisms present in the literature of
Software Engineering.

Some mechanisms provide help in terms of method, by
delineating the experiment process and guidelines on how
to conduct its composing activities, such as [19, 8] and [9].
Still, an experimental framework is another kind of support
mechanism that provides help in the sense of promoting bet-
ter study designs.

An experimental framework usually includes models of
the domain of interest, providing the basic structure of ex-
periments in such domain [2, 7]. In this sense, it can help
to design new studies as a support mechanism to define
domain-specific elements.

In this paper we investigated the support provided by an
experimental framework to study designing. We explored
the domain of software testing integration into program-
ming courses, with a framework that we created in previous
works [16], named Step. More specifically, we were in-
terested in evaluating the support of Step while researchers
conduct the variables selection activity, which is part of the
planning phase in the experimental process.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the variables selection activity and the ex-
perimental framework Step. Section 3 presents other exist-
ing frameworks in the literature and similar studies that also
investigated research activities. The study protocol and the
obtained results are described in sections 4 and 5, respec-
tively. We discuss threats to validity in Section 6. Finally,
Section 7 presents conclusions and future work.

1

192

2 Background

The variables selection activity involves representing
the investigated cause and effect constructs as experiment
variables. The cause is represented by independent vari-
ables and the effect by dependent variables.

Juristo and Moreno [8] indicate in details the rationale to
select the variables of a given experiment. For all the iden-
tified “input” variables representing the cause construct, i.e.
independent or context variables, the researcher has to de-
termine whether each one is a factor, parameter or blocking
variable.

Similarly, the identified “output” variables representing
the effect construct are dependent variables. Such variables
hold quantitative result values and should be operational-
ized by means of a metric, if not directly measurable. Still,
the hypothesis states in a testable way the researcher’s guess
about how these selected variables will behave during the
experiment.

An experimental framework can provide support to iden-
tify and properly select such variables [2, 7, 17, 10]. In this
scenario, we created an experimental framework, named
Step, for studies on the integration of software testing into
programming education [16].

Step includes the model depicted in Figure 1, which con-
sists in a catalog of variables on such research domain. The
idea is to support researchers in the planning phase of the
experiment process [19], more specifically in the activities
of context selection, hypothesis formulation and variables
selection.

Independent variables
(Integration of software testing)

Dependent variables
(Outcomes)

Course materials
• Testing concepts

Programming assignments
• Programming process
• Testing activity

○ Testing tasks (design, automation,
execution, evaluation)

○ Testing levels (unit, acceptance)
○ Testing technique/criteria

(functional, structural, fault-based
techniques)

○ Test cases format (text
input/output, assert command,
XUnit test cases)

Supporting tools
• Submission and testing systems
• Testing frameworks/libraries
• IDE testing facilities
• Tutor systems
• Online judges
• Games

Student
• Prior programming experience
• Prior testing experience
• Motivation

Programming assignments
• Prerequisites
• Difficulty
• Scaffolding
• GUI
• Assessment

○ Feedback
○ Plagiarism

Program
• Size and density
• Code structure
• Code style
• Correctness

Tests
• Size and density
• Code coverage
• Mutation score
• All-pairs testing score
• Redundancy

Process
• Effort/time
• Productivity
• Submissions/snapshots

○ Δ LOC
○ Δ coverage
○ diffs/fixes

Student
• Grades
• Perceptions
• Behaviors

○ adherence to testing

Course
• Undergraduate program
• Programming paradigm
• Programming language
• Platform
• Topics

Other practices
• Pair programming
• Peer review
• Version control
• Live coding
• Debugging

Context variables
(Programming Education)

Figure 1. Experimental framework Step

3 Related Work

There are several proposals of frameworks in the Soft-
ware Engineering literature, all aiming to incorporate do-
main models. Authors use different names to refer to this
kind of frameworks: organizational framework [2], re-
search framework [7] and evaluation framework [18, 11].
Nevertheless, all of them include models of domain-specific

elements (e.g. variables) that should be defined when de-
signing an experimental study.

It is worth mentioning that the Computer Science Educa-
tion area presents an experimental framework for algorithm
visualization [12]. In this case, the authors explore one in-
dependent variable of the domain, i.e. students’ engagement
with visualization tools.

The aforementioned frameworks have been used as a ref-
erence to design studies in each respective domain, as their
authors demonstrate. In this work, we were interested in
evaluating the support of this kind of framework while re-
searchers conduct experimental activities.

To this end, we followed a similar approach to Rainer
et al. [14], Neto and Conte [13] and Ribeiro et al. [15],
which also evaluated researchers conducting research activ-
ities, such as applying guidelines, performing validity eval-
uation and conducting systematic reviews.

4 Method

We conducted an exploratory study on the use of Step
by researchers that were not involved with the framework
creation. Our goal, expressed using the GQM template [1],
is as follows:

Analyze the use of Step
for the purpose to characterize
with respect to validity of variables selection
from the point of view of the researcher
in the context of graduate students selecting variables and
formulating a hypothesis for a given research goal

As stated in the goal, we investigated the use of Step as a
support mechanism during the experiment process. We fo-
cused on the variables selection activity, providing an exper-
iment goal on our domain of interest (i.e. software testing in
programming education) as a starting point to participants.

4.1 Participants

There were seven participants in total, all graduate stu-
dents that completed the Experimental Software Engineer-
ing course at ICMC-USP. Hence, they all had knowledge on
the basics of experimentation and the experiment process.

We characterized their background experience both in
terms of experimentation and our area of interest (program-
ming education). Firstly, Figure 2 shows how many experi-
ments they have conducted (including definition, planning,
execution and analysis). Note that every participant con-
ducted at least one experiment and most were involved in
two or more experiments.

Since we aim to evaluate the use of Step during the ex-
periment process, we asked participants what other support

193

of participants

five or more
four

three
two
one

none

0 1 2 3

Figure 2. Number of experiments conducted
by the participants

mechanisms they usually consult while conducting experi-
ments. Borges et al. [4] identified several mechanisms used
by researchers to conduct empirical studies. We presented
the ones related to experiments as options to participants,
namely: [19], [9], [1], [8], and [2]. Nonetheless, they could
indicate other sources of information as well. There was
only one mention to another paper [3].

Figure 3 provides an overview of responses. We refer to
the options as the first author’s name, distinguishing the re-
peated ones by adding the main subject next to it. The book
of Wohlin et al. [19] is the most consulted one, followed by
the GQM model [1]. On the other hand, it is interesting to
note that nobody indicated the book of Juristo and Moreno
[8], especially considering that such book provides detailed
rationale on designing experiments.

of participants

Basili-Data
Basili-Families

Basili-GQM
Juristo

Kitchenham
Wohlin

0 2 4 6 8

Figure 3. Support mechanisms used by the
participants to conduct experiments

Regarding their background on our domain of interest,
we asked participants about their experience in program-
ming education. We provided options in terms of the roles
in which they could have performed activities in this area,
namely instructor, teaching assistant (TA), researcher and
none. As Figure 4 shows, most (85.71% – 6) had some kind
of experience in the area, whether in practice, as instructor
or TA of programming courses, or in theory, as researchers.

We also asked about their familiarity with the integration

of participants

researcher

TA

instructor

none

0 1 2 3 4

Figure 4. Experience in programming educa-
tion

of software testing into programming education. All had
some kind of familiarity on the domain, since the option
“none” was not selected by anyone. Some (42.86% – 3)
even have conducted empirical studies on the domain.

of participants

applied it in the
classroom

have publications

conducted empirical
studies

read research
papers

attended
presentations

none

0 2 4 6

Figure 5. Familiarity with the integration of
software testing into programming education

4.2 Procedures and materials

The study involved participants performing variables se-
lection in our domain of interest with two different ap-
proaches. They were thus divided into two groups: one us-
ing an ad hoc approach (G1) and the other consulting Step
(G2).

Firstly, participants filled out a consent form and then re-
ceived training on study designing, to recall basic concepts
such as independent, context and dependent variables.

Moreover, we reinforced the rationale to select which in-
put variables should be factors, parameters or blocking vari-
ables and which output variables should be the investigated
dependent variables in a given experiment. Only partici-
pants in G2 received additional training on the experimental
framework Step.

194

We handed out the training materials on experiment de-
signing to both groups and the overview of Step only to G2.
Then, we asked participants to fill out the characterization
form, which provided us information on participants’ back-
ground, as discussed in Section 4.1.

Finally, participants undertook the study task, generating
experimental design drafts. We asked them to perform vari-
ables selection and formulate a hypothesis for the following
experiment goal:

Analyze progressive assignments
for the purpose to evaluate
with respect to student’s testing performance
from the point of view of the researcher
in the context of introductory programming courses of
Computer Science at ICMC-USP.

We discussed the underlying scenario with participants,
highlighting the motivation to explore this particular goal,
which is the following. If students had a greater incentive to
ensure quality in their programs, maybe they would feel the
need to conduct software testing. One way to lead students
in this direction is conducting progressive assignments [5].

A sequence of assignments could be formulated in such
a way to configure the progression, i.e. all assignments, ex-
cept the first one, should have as a prerequisite the solution
of the previous one. Students would have to maintain their
code from previous solutions, instead of starting them all
from scratch.

To complete the study task, participants were supposed
to fill out a form, resulting in an experimental design draft.
The form was composed by the elements required in the ex-
periment activities we explored: hypothesis, independent
and context variables (factors with respective treatments,
parameters with respective values, blocking variables with
respective blocks) and dependent variables with respective
metrics/description.

We evaluated each experimental design draft by means
of the number of identified threats to validity. To do so, we
used the threats to validity presented by Wohlin et al. [19]
as a checklist. However, we only considered threats due to
the activities that participants performed, namely hypothe-
sis formulation and variables selection.

Furthermore, the selected threats have to do with how
well experiment variables represent the theory constructs
(construct validity) and whether the investigated relation-
ship is indeed causal (internal validity).

The remaining types are related to representativeness of
subjects and objects (external validity) and issues of the
statistical analysis (conclusion validity). Such threats are
raised due to decisions of other activities outside the scope
of this study (i.e. selection of subjects, instrumentation, ex-
ecution, hypothesis testing and so on).

5 Results

Table 1 shows occurrences of threats to validity for indi-
vidual participants. Each type of threat is labeled with an
id (T1, T2, and so on). A dash in a cell indicates that the
corresponding threat in the row had no occurrence for the
participant in the column. Similarly, each value indicates
the number of threat occurrences for a given participant.

These same results are summarized in Table 2 with the
average (Avg.) and standard deviation (SD) for each group.
Considering all threats to validity (i.e. total in the last
row), participants using Step presented less threats in av-
erage than the ones selecting variables ad hoc, respectively
3.25 against 5.66.

Looking at each threat that had occurrences, T1 was the
most frequent one, for both groups. In particular, partici-
pants s3 and s5, from distinct groups, presented high values
for this threat. Still, in average, Group 2 (2.75) presented
less T1 threats than Group 1 (5.00).

One example of such threat found in s2’s dependent vari-
ables, “student program quality”, whose description/metric
was “student programs will be assessed by instructors’ test
cases”. It is possible to note that it is not clear how quality
is going to be measured.

Another example, now on Group 2, from s6’s context
variables, “student previous knowledge” was selected as a
blocking variable, with blocks defined as “different levels of
knowledge in Java development”. However, it is not clear
what levels are these.

Next, T3 had one occurrence in Group 1 for s2, whose
selection of dependent variables included only one variable,
thus configuring mono-method bias. Again, the selected
variable was “student program quality”, without defining
how quality should be assessed.

All participants in Group 2 selected more than one de-
pendent variable. Moreover, s4, s5 and s6 selected many de-
pendent variables (more than five) without necessarily hav-
ing a direct relation with the hypothesis they formulated.

Threat T4 was the second most frequent one. For Group
1, s3 indicated that “C++ or Java” would be a context vari-
able, when in fact the correct construct would be “program-
ming language” instead.

For Group 2, s4 indicated “prior programming experi-
ence” as a blocking variable, whose blocks would be “up to
four completed programming courses” and “more than four
completed programming courses”. Such division seems ar-
bitrary, since, until completing four programming courses,
students can present very different levels of programming
experience.

195

Table 1. Occurrences of threats to validity
Group 1 Group 2
Ad hoc Step

id Threat s1 s2 s3 s4 s5 s6 s7
T1 Inadequate preoperational explication of constructs 4 4 7 1 7 3 -
T2 Mono-operation bias - - - - - - -
T3 Mono-method bias - 1 - - - - -
T4 Confounding constructs and levels of constructs - - 1 1 - 1 -
T5 Interaction of testing and treatment - - - - - - -
T6 Restricted generalizability across constructs - - - - - - -
T7 Ambiguity about direction of causal influence - - - - - - -

Total 4 5 8 2 7 4 0

Table 2. Summary of threats to validity occurrences
Group 1 Group 2
Ad hoc Step

id Threat Avg. SD Avg. SD
T1 Inadequate preoperational explication of constructs 5 1.73 2.75 3.09
T2 Mono-operation bias - - - -
T3 Mono-method bias 0.33 0.57 - -
T4 Confounding constructs and levels of constructs 0.33 0.57 0.5 0.57
T5 Interaction of testing and treatment - - - -
T6 Restricted generalizability across constructs - - - -
T7 Ambiguity about direction of causal influence - - - -

Total 5.66 2.08 3.25 2.98

6 Threats to validity

Regarding the external validity of our preliminary study,
we had a small sample size and the study task may not
represent how researchers conduct study designing in real-
world conditions.

Firstly, they worked alone only in a limited part of the
experiment process, when usually researchers conduct ex-
periments in a holistic and collaborative way. Nevertheless,
we believe it was thereby possible to isolate the use of Step.

Another threat to validity that could be raised is limit-
ing researchers to the concepts present in the experimental
framework. However, participants in Group 1 (ad hoc) pre-
sented design drafts that tended to be more incomplete than
Group 2 (Step), what can be verified by the higher num-
ber of threats T1 (inadequate preoperational explication of
constructs) in Group 1.

Also, it is important to highlight that threats to validity
are expected in a human-centered experiment. The presence
of a threat does not necessarily invalidate an experimental
design. Hence, only the number of threats may not fully
capture its quality. Nonetheless, we focused on two types
of validity (construct and internal), both related to theory
representation, whose corresponding threats should be care-
fully analyzed and, whenever possible, mitigated.

Finally, only one person, i.e. the first author, analyzed
the experimental design drafts and identified the threats to
validity. Therefore, we cannot address inter-rater reliability
nor discard the presence of bias in the results. Despite this,

the findings shed light on how researchers use an experi-
mental framework, along with possible benefits and draw-
backs in doing so.

7 Conclusion

In this paper we reported an exploratory study on the use
of the framework Step as a support mechanism to select ex-
perimental variables. Despite preliminary, we can point out
some interesting findings. The overall number of threats to
validity in average was lower for participants using Step,
what suggests that it does help to perform variables selec-
tion while designing an experiment.

However, there was a considerable amount of threats
T1 (inadequate preoperational explication of constructs) for
both groups. Looking at specific occurrences of this threat,
it is possible to observe different trends for each group.

Group 1 (ad hoc) tended to present less clarity when se-
lecting both the concepts for the variables and their respec-
tive values (i.e. treatments, values, blocks and metrics). On
the other hand, Group 2 (Step) tended to only present diffi-
culties on selecting the latter. Indeed, Step does not provide
much support towards defining variables’ values.

Another aspect that drew attention in results is that some
participants in Group 2 (Step), namely s5, s6 and s7, seem
to have aimlessly selected several variables from Step, in an
attempt to form a experimental design. However, not every
selected variable in this way had a clear relation with their
formulated hypothesis or the provided goal.

196

Hence, results suggest that Step helps to select vari-
ables on the domain with more clarity, but does not pro-
vide enough support to select their corresponding values
and metrics. Also, we observed a possible side effect of
novice researchers using an experimental framework, which
is the selection of unnecessary variables, in a kind of trial
and error behavior.

The purpose of Step is to help researchers to have an
overview of what has been done in the domain research,
allowing them to borrow useful concepts and to explore
“new” ones. More importantly, the organized overview of
concepts can help the researcher to clearly see the bound-
aries of the study being conducted in terms of domain con-
cepts. In this sense, the results on the use of Step allowed
us to observe how researchers not involved with its creation
would use it and their resulting experimental designs.

As future work, we intend to further investigate how
experimental designing is done in practice, especially by
novices. Also, we aim to propose a mechanism in terms of
method to support the conduction of variables selection and
validity evaluation in parallel.

Acknowledgments

We would like to thank the study participants and the
paper reviewers. This work was supported by FAPESP
(São Paulo Research Foundation) grants 2014/06656-8 and
2018/26636-2.

References

[1] V. R. Basili, G. Caldiera, and H. D. Rombach. Goal question
metric paradigm. In Encyclopedia of Software Engineering,
pages 528–532. John Wiley & Sons, 1994.

[2] V. R. Basili, F. Shull, and F. Lanubile. Building knowledge
through families of experiments. IEEE Transactions on Soft-
ware Engineering, 25(4):456–473, 1999.

[3] V. R. Basili and D. M. Weiss. A methodology for collect-
ing valid software engineering data. IEEE Transactions on
Software Engineering, SE-10(6):728–738, Nov 1984.

[4] A. Borges, W. Ferreira, E. Barreiros, A. Almeida, L. Fon-
seca, E. Teixeira, D. Silva, A. Alencar, and S. Soares. Sup-
port mechanisms to conduct empirical studies in software
engineering. In Proceedings of the 8th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and
Measurement, ESEM ’14, pages 50:1–50:4, New York, NY,
USA, 2014. ACM.

[5] H. B. Christensen. Systematic Testing Should Not Be a
Topic in the Computer Science Curriculum! In Proceedings
of the 8th Annual Conference on Innovation and Technology
in Computer Science Education, ITiCSE ’03, pages 7–10,
New York, NY, USA, 2003. ACM.

[6] L. Fonseca, S. Soares, and C. Seaman. Describing what ex-
perimental software engineering experts do when they de-
sign their experiments: A qualitative study. In Proceedings

of the 11th ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement, ESEM ’17,
pages 211–216, Piscataway, NJ, USA, 2017. IEEE Press.

[7] H. Gallis, E. Arisholm, and T. Dyba. An initial framework
for research on pair programming. In International Sym-
posium on Empirical Software Engineering (ISESE 2003),
pages 132–142, Sept 2003.

[8] N. Juristo and A. M. Moreno. Basics of Software Engineer-
ing Experimentation. Springer Publishing Company, Incor-
porated, 1st edition, 2010.

[9] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones,
D. C. Hoaglin, K. E. Emam, and J. Rosenberg. Preliminary
guidelines for empirical research in software engineering.
IEEE Transactions on Software Engineering, 28(8):721–
734, 2002.

[10] P. Morrison. A security practices evaluation framework. In
Proceedings of the 37th International Conference on Soft-
ware Engineering - Volume 2, ICSE ’15, pages 935–938,
Piscataway, NJ, USA, 2015. IEEE Press.

[11] P. Morrison. A Security Practices Evaluation Framework.
PhD thesis, North Carolina State University, 2017.

[12] T. L. Naps, G. Rossling, V. Almstrum, W. Dann, R. Fleis-
cher, C. Hundhausen, A. Korhonen, L. Malmi, M. McNally,
S. Rodger, and J. A. Velazquez-Iturbide. Exploring the role
of visualization and engagement in computer science edu-
cation. In Innovation and Technology in Computer Science
Education (ITiCSE, pages 131–152, New York, NY, USA,
2002. ACM.

[13] A. A. Neto and T. Conte. Identifying threats to validity and
control actions in the planning stages of controlled experi-
ments. In 26th International Conference on Software Engi-
neering and Knowledge Engineering, 2014.

[14] A. Rainer, T. Hall, and N. Baddoo. A preliminary empirical
investigation of the use of evidence based software engineer-
ing by under-graduate students. In Proceedings of the 10th
International Conference on Evaluation and Assessment in
Software Engineering, EASE’06, pages 91–100, Swindon,
UK, 2006. BCS Learning & Development Ltd.

[15] T. V. Ribeiro, J. Massollar, and G. H. Travassos. Challenges
and pitfalls on surveying evidence in the software engineer-
ing technical literature: An exploratory study with novices.
Empirical Software Engineering, 23(3):1594–1663, 2018.

[16] L. P. Scatalon. A framework for experimental studies on the
integration of software testing into programming education.
PhD thesis, University of São Paulo (ICMC-USP), 2019.

[17] L. Williams, W. Krebs, L. Layman, A. Anton, and P. Abra-
hamsson. Toward a framework for evaluating extreme pro-
gramming. In Assessment in Software Engineering (EASE),
2004.

[18] L. Williams, L. Layman, and P. Abrahamsson. On estab-
lishing the essential components of a technology-dependent
framework: A strawman framework for industrial case
study-based research. In Proceedings of the 2005 Workshop
on Realising Evidence-based Software Engineering, REBSE
’05, pages 1–5, New York, NY, USA, 2005. ACM.

[19] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell,
and A. Wesslen. Experimentation in Software Engineer-
ing. Springer Publishing Company, Incorporated, 2 edition,
2012.

197

Testing the Stationarity Assumption in Software

Effort Estimation Datasets
Michael Franklin Bosu1, Stephen G. MacDonell2, Peter Whigham2

1Centre for Information Technology, Waikato Institute of Technology, New Zealand

{stephen.macdonell, peter.whigham}@otago.ac.nz
2Department of Information Science, University of Otago, New Zealand

Abstract—Software effort estimation (SEE) models are typically

developed based on an underlying assumption that all data points are

equally relevant to the prediction of effort for future projects. The

dynamic nature of several aspects of the software engineering

process could mean that this assumption does not hold in at least

some cases. This study employs three kernel estimator functions to

test the stationarity assumption in three software engineering

datasets that have been used in the construction of software effort

estimation models. The kernel estimators are used in the generation

of non-uniform weights which are subsequently employed in

weighted linear regression modeling. Prediction errors are compared

to those obtained from uniform models. Our results indicate that, for

datasets that exhibit underlying non-stationary processes, uniform

models are more accurate than non-uniform models. In contrast, the

accuracy of uniform and non-uniform models for datasets that

exhibited stationary processes was essentially equivalent. The results

of our study also confirm prior findings that the accuracy of effort

estimation models is independent of the type of kernel estimator

function used in model development.

Keywords—Software effort estimation, software processes, sta-

tionarity, kernel estimators, weighted linear regression

1 INTRODUCTION

Software engineering datasets emanate from a complex and

dynamic ecosystem that involves numerous actions and

interactions of people and technologies over time. Data

collected about software projects are used to support decision

making during software development and the planning of future

projects. This paper focuses specifically on software

development effort data that may be used in the ongoing

management of the cost and/or schedule of current projects as

well as in the estimation of the effort required in future projects.

One such aspect is project timing – that is, when in time a

project and its constituent activities were undertaken. In

ignoring the timing of projects most current effort estimation

practices implicitly assume the underlying development

processes to be stationary over time. The adoption of the

stationarity assumption in SEE has culminated in the treatment

of all past data as equally relevant during the modeling process.

The key objective of this paper is to test the validity of this

stationarity assumption in the context of SEE.

The range of factors that can affect the effort required in

software development is vast such as the competence and

experience of the developers, the participation of the customer,

the commitment of top management, requirements ambiguity,

adequacy of tools support and communication among the

development team. The list of potential influences is practically

endless as demonstrated by the following studies.

Ten factors that have significant influence on the
development cost and productivity of software projects were
identified when 50 projects were analyzed in a Swedish bank
[1]. Wagner and Ruhe [2] divided software productivity
factors into two groups; soft factors are deemed to be
attributes that are influential over the way people work and
technical factors relate to the software itself. Maxwell and
Forselius [3] assessed the productivity factors of 206
software projects from twenty-six Finnish companies and
found the company and the type of business of the client
organization as being the most influential factors.

A potentially important additional aspect missing from
the above analyses is that which is in focus here – that is, the
stationarity of the development process. It is the contention
of this study that over some (unknown) period of time, an
organization’s software development processes will not
remain static. In this paper we therefore assess three
software effort estimation datasets to determine whether or
not their underlying processes remain stationary over time.
The rest of the paper is presented as follows. In Section 2 we
consider related work. Section 3 describes our research
design. Our analysis and results are presented in Section 4,
and in Section 5 is the threat to validity of the study. Section
6 is the discussion and conclusion.

2 RELATED WORK

Although numerous SEE models have been proposed (see

[4]) the number of studies that have considered project timing

information in effort estimation is negligible. This section

summarizes the few studies that are directly related to the

research reported here.

MacDonell and Shepperd [5] assessed the efficacy of two

time-aware estimation methods – sequential accumulation of

projects over time and a constant moving window of size five –

when applied to a proprietary dataset. They obtained improved

results over project managers’ effort estimates, especially for

the moving window approach [5].

Geographically Weighted Regression (GWR) is a method to

manage non-stationarity in spatial data. GWR was applied to

capture the non-stationarity of relationship in a landscape

fragmentation study [6]. GWR derives non-uniform estimates

in spatial data; that is, relationships are established in data that

belong to a specified (non-uniform) area, as opposed to ordinary

least squares regression (OLS) which outputs the estimates of

the average or uniform relationships among all observed data.

DOI reference number: 10.18293/SEKE2020-159

198

GWR relies on the assumption that entities that are near to each

other in a geographical area are more likely to exhibit similar

properties than those that are more distant. This assumption is

acted on by weighting nearer areas more than distant areas.

The study here employs a procedure similar to GWR

wherein non-uniform weightings are applied to software effort

estimation data over time. The use of kernel bandwidth values

also enables the determination of the stationarity of the process

underlying the data, except that instead of being applied to

parameters of space, the approach is applied to the parameters

of software projects.

In spite of the proposals of numerous estimation techniques,

process (non-)stationarity and its effect on SEE has received

minimal attention as reported by Smartt and Ferreira [7].

To the best of our knowledge there are just three prior studies

[8], [9], [10] in the software effort estimation domain that have

employed kernel estimators in a manner similar to that reported

in this paper.

The study presented here differs from that reported by

Kocaguneli, Menzies and Keung [9] in that a wider range of

kernel bandwidth values (between 1 and 100) is used in order

to discover the stationarity properties of the datasets, whereas

five selected kernel bandwidth values were used in [9]. In

addition, this study employs weighted linear regression to build

models based on the sequential accumulation of projects

according to their completion dates, while [9] used analogy-

based estimation and did not address data accumulation over

time. The work presented in this paper has greater similarities

with that of Amasaki and Lokan [8] in that it applies linear

regression to a growing portfolio of projects using the same set

of kernel functions; however, it differs in the use of a wider

range of kernel bandwidth values, as they are being applied in

this study to assess the stationarity of the datasets, and the

processes underpinning the data. The study reported here also

employs three datasets exhibiting different characteristics

whereas [8] used an extract from the ISBSG repository. Angelis

and Stamelos [10] also employed the kernel estimator in

software effort estimation based on analogies. They used the

kernel function in order to identify the distributions of effort

estimates that are not obvious (such as Normal or Lognormal).

They [10] used a fixed bandwidth whilst this study uses a range

of bandwidths.

The following specific research questions are addressed by

this study:

RQ1. Is there only a stationarity process underlying software

effort estimation datasets?

RQ2. Does non-stationarity of software effort estimation

datasets affect the accuracy of effort estimation models when

applied over time?

RQ3. Does kernel type affect the accuracy of software effort

estimation models?

3 RESEARCH DESIGN

In this section we first describe each of the three datasets to be

analyzed along with the particular computation of effort

estimation used in each case. We then describe our model

development and evaluation process before specifying how the

various kernel weightings are determined.

3.1 Dataset Descriptions

NASA93 Dataset

The NASA93 dataset was collected by NASA from five of its

development centers and it collectively represents fourteen

different application types. The entire dataset comprises 93

projects undertaken between 1971 and 1987. Projects were

completed in the years indicated in the version of the dataset

that is available from the PROMISE Repository

http://openscience.us/repo/. The dataset is structured according

to the Constructive Cost Model (COCOMO81) format

developed by Boehm [9]. It comprises 24 attributes of which 15

are the mandatory effort multipliers. Effort multipliers and

development modes are describe in detail in [9]. Effort

multipliers are assigned a range of predefined values which

were obtained from regression analysis of the original

COCOMO81 data. The other attributes of relevance are product

size, measured in thousands of lines of code (KLOC), and

effort, measured in calendar months (where one calendar month

is said to be equivalent to 152 person-hours of effort). The

computation of effort for COCOMO81 projects is given by

equation (1).

() () () (1)b

i i
effort personmonths a KLOC EM= ,

where KLOC is size measured in thousands of lines of code and

EM represents the effort multipliers. COCOMO81 projects are

classified into three development modes that each requires the

use of certain parameter values in the model the values of a and

b are domain-specific values dependent on the mode of the

project being developed.

Desharnais Dataset

The Desharnais dataset was collected from ten organizations in

Canada by Jean-Marc Desharnais. The projects in this dataset

were undertaken between 1983 and 1988. The dataset consists

of 81 records and twelve attributes, including size measured in

function points and effort measured in person-hours. In most

studies that employ this dataset, 77 of the 81 records are used

because of missing data in four records [11]. In this study, the

version with the 77 projects is therefore also used. The

Desharnais dataset, like the NASA93 dataset, contains only the

year of project completion and, as such, the training and test

data sets are formed in the same way as the NASA93 dataset

(i.e., by using the year of project completion).

Though there are twelve attributes in the Desharnais dataset,

analysis carried out by Desharnais identified the size and

language attributes as those that are influential in a regression

model. Kitchenham and Mendes [12] supported Desharnais’

claim by proposing the use of the language attribute as a dummy

variable. This approach has therefore been adopted in this study

for the models developed for this dataset, as shown in equation

(2).

ln() ln() (2)effort size language= +

This study used the adjusted function points value as the most

complete size attribute (rather than the raw function point

count) and treated the three-value language attribute as a

dummy variable, with the reference dummy value (being the

Basic Cobol projects) indicated as “1” in the Desharnais dataset.

Kitchenham Dataset

The Kitchenham dataset [13] was collected from the American-

based multinational company Computer Sciences Corporation

199

http://openscience.us/repo/

(CSC). This dataset contains information about 145 software

development and maintenance projects that CSC undertook for

several clients. There are 10 attributes considered, the size

attribute was measured in function points, and effort was

measured in person-hours. The attributes also include start date

and estimated completion dates, and the projects were

undertaken between 1994 and 1999. The attributes useful for

effort modeling (based on prior research evidence) are the size

attribute and the application type attribute. This study used the

application type attribute as a dummy variable with the

reference value being the “Development” type. Again following

prior work this study uses 105 records related to projects

developed for so-called ‘client 2’ [13].

As this dataset includes information about the actual start

date of projects and their duration in days, these values are used

to compute each project’s completion date. Training sets are

formed based on the years in which projects were completed, as

was done for the NASA93 and Desharnais datasets.

Composition of the test data sets follows a slightly different

process, however, because of the availability of actual start

dates: a test set consists of projects completed in the subsequent

year and started after the date the last project in the training set

was completed. This dataset consists of 67 perfective

maintenance projects and 38 development projects. The model

formulation is shown as equation (3).

ln() ln() (3)effort size type= +

3.2 Effort Estimation Model Development

In software effort estimation modeling, as in many other fields,

the (secondary) dataset is usually split into two, forming a larger

training set and a smaller test set. Models are then built using

the training set, and the unbiased performance of the models is

evaluated on the test set. This study follows a similar approach;

the specifics of how the training and test sets are formed are

described in the modeling algorithm subsection below. All

models in this study are developed using the statistical package

R (version 3.5.2). In preparatory testing the Shapiro-Wilk test

of normality was applied to the numeric variables in the training

sets. All such variables that failed the normality test were

logarithm transformed, meaning that in the associated models

developed, log(effort) (shown as ln(effort) in the equations)

would be the dependent variable and log(size) (ln(size)) one of

the explanatory variables. The estimated (natural log) effort

values are back-transformed to unscaled values prior to the

computation of any accuracy measures. All models are

developed using linear regression, considered to be a widely

used modeling approach in effort estimation [4]. The actual

linear regression equations for each dataset have been presented

in subsection 3.1. It should also be noted that the models

developed in this study are all well-formed models, that is, the

degrees of freedom are considered whereby a training set is

formed only when the number of projects is at least two plus the

number of explanatory variables being used for model

construction.

Modeling Algorithm
This paper generally follows the sequential accumulation
approach used by MacDonell and Shepperd [5] in forming
the training sets for the effort estimation models. As such,
the following procedures are applied to all datasets

modelled in this study:
1. For each dataset with timing information, select the first year

in which projects were completed as the training set – if the first

year of projects comprises fewer than the number of

observations needed to build a well-formed model, add the next

year(s) of projects until the minimum requirement for a well-

formed model is satisfied. The subsequent year of projects is

used as the test set.

2. Check for normality in the distributions of the training data –

if data follow a normal distribution go to step 3 else

2.1. Apply the appropriate transformation to make the data

normal and recheck normality for verification as above.

3. Build a regression model using the training data.

4. Apply the model obtained in step 3 to predict the values in

the test set.

5. Calculate the accuracy measures (see below) for the

prediction model.

6. Add the test year’s data to the training set, and the subsequent

year’s data becomes the new test set.

7. Repeat steps 2 to 6 through to the estimation of the last year

of projects.

Model Evaluation

We employ the relative error (RE) measure in evaluating each

of the models developed in this study. This is because the

relative error measure accounts for the variability in data and as

such it is robust to outlier data points [14]. Values of RE equal

to or greater than 1 indicate that the model is performing no

better than the prediction of a constant value [14], while values

approaching zero indicate an increasingly accurate prediction.

The relative error is computed using equation (4):
RE = variance(residuals)/variance(measured) (4),

where measured is test data

3.3 Generation of Kernel Weights

In order to apply a consistent approach to our analysis the

completion date of each project in the three datasets is the only

property of time considered in the determination of the kernel

weights in this section (even though the Kitchenham datasets

include project start and completion dates).

Table 1. Formulae of Kernel Types

Kernel Type Formula

Uniform Wij = 1, |t| < 1

Gaussian Wij = exp(-0.5 * t2), |t| < 1

Epanechnikov Wij = 1- t2, |t| < 1

Triangular Wij = 1- |t|, |t| < 1

Table 1 shows the four kernel estimators used in generating

weights applied to the datasets (where the Uniform kernel

serves as a non-weighted baseline). To find t, we used formula

(5):

 𝑡𝑖𝑗 = (𝑡𝑗 - t𝑖)/b (5)

 where tij is the period, or in this case, the number of years that

have elapsed between project i and the target project j (that is,

the project being estimated). Wij is the weight applied to

project(s) completed in year i with reference to projects in a

target year j, and b is the kernel bandwidth (discussed later in

this section).

The value of 1 is assigned to the oldest completion period in

each dataset and a yearly increment of 1 is applied thereafter.

200

The elapsed time periods are determined between a specific

year and the target year to be used in the application of the

formulae in Table 4 to derive the weights for projects in specific

years; each past year is subtracted from the target year and the

results indicate the elapsed time (in years) from the target year.

For instance, given two projects developed in different years; tij

= j – i. The weight is 1 when i is equal to j. The bandwidth

controls the weighting contribution of neighboring projects, that

is, projects from specific years [8].
Fig. 1 depicts the weights that are generated for selected

bandwidth values for the datasets based on the Gaussian kernel

used in this paper (Note that for clarity, it is impractical to show

all the bandwidth values between 1 and 100). For this study,

the bandwidths are set between 1 and 100 at increments of 1.

Fig. 1 shows that, as the bandwidth value increases, the weights

applied to all projects in the training set approach 1. Older

projects have smaller weights because the assumption is that the

underlying software process used in generating the data is

different to that used for current projects. It is also evident in

Fig. 1 that small bandwidth values such as 1 and 2 lead to a

rapid decline in the weights that are assigned to projects that

occur later in time from the target year.

Fig. 1. Weights generated for datasets using the Gaussian

Kernel

 However, the weight for larger bandwidth values declines

gradually and as such the weights for the data in the training set

become nearly the same irrespective of the completion date of

a project. Due to lack of space, all other graphs generated for

selected bandwidth values for all the datasets and kernel types

are not shown, however, they are available at this link1. The

concave nature of the Epanechnikov kernel for the NASA93

dataset curves corresponds to the expected shape of this

particular kernel [8]. In comparison to the Gaussian kernel

curves the weights decrease a little more gradually, for all

bandwidth values across the periods of project completion.

Finally, the weights generated for selected bandwidth values for

the datasets based on the Triangular kernel are linear for all

bandwidth values and across all periods. Just like the Gaussian

and the Epanechnikov kernels, the weights for larger bandwidth

values decline in a more gradual manner.

4 Analysis and Results
The kernel weights generated as per the procedure described in

subsection 3.3 are applied to effort estimation models for the

1 https://tinyurl.com/SEKE2020-Stationary-Analysis

three datasets. The relative errors of the models are computed

over the specified range of bandwidth. Use of the kernel

functions enables the application of non-uniform weights to the

projects in these datasets as they are used to develop effort

estimation models. In order to determine the stationarity or

otherwise of these datasets, effort estimation models are

developed according to the modeling algorithm of subsection

3.2. The modeling equations derived for each of the datasets in

subsection 3.1 are subsequently applied.

In order to determine whether or not a model exhibits a

stationary process, the weight graph (Fig. 1) above should be

considered alongside the graphs depicting prediction errors on

Fig. 2 and others available at the previously specified link. For

example, in the case of the Gaussian kernel, Fig. 1 is read in

combination with graphs of the models developed for each of

the three datasets that used the Gaussian kernel in weight

generation, shown in Fig. 2. The bandwidth at which

stationarity was attained is identified on the graph of the

respective dataset and then this bandwidth value is mapped onto

the corresponding Fig. 1 curve to determine the year at which

the models remained stationary. This process is repeated for all

kernel types and datasets (available at previously specified link)

in the interpretation of the results.

The accuracy measure of the models built using the weights

generated by the kernel estimators are shown on the plots as

‘train’, which is effectively the non-uniform model (applying

non-uniform weighting). The non-uniform model is then used

to predict the effort of projects in the test set, indicated as ‘test’

on the graphs. Similarly, the result of the uniform model (where

no weighting is applied) is indicated on the plot as ‘train global’,

and the model is then used to predict the effort of projects in the

test set, indicated as ‘test global’. The results are shown on each

graph to aid comparison of the models and to enable the

identification of models that are stationary or otherwise. It is

worth noting that, in presenting the results, emphasis is placed

on the training model outcomes because the intention is to

identify the stationarity status in the data. The results are

subsequently presented for each of the datasets in this section,

however, only Gaussian kernel for the NASA93 datasets will be

illustrated in detail due to lack of space. The other datasets and

kernel types follow the same procedure outlined in section 4.1.

4.1 NASA93 Dataset

The results of the models developed for the Gaussian kernel

modeling of the NASA93 dataset are shown in Fig. 2. The

graphs show the relative error against bandwidth values for

models built over the various time periods under consideration.

In Fig. 2(a), at approximately bandwidth 5, the non-uniform

model and the uniform model converge, meaning a stationary

process is achieved at this point. Looking at a bandwidth of 5

on Fig. 1(a) indicates that convergence would occur at about the

15th year of projects in the training set. Given that the training

set for this model is made up of only 7 years of projects, this

means there is effectively no convergence, implying that these

projects exhibit a non-uniform process. The underlying process

can therefore be said to be non-stationary. The results of the

model depicted in Fig. 2(c) are similar to those shown in Fig.

2(a). These two models, Fig. 2(a) and Fig. 2(c), converge at

201

https://tinyurl.com/SEKE2020-Stationary-Analysis

Fig. 2. Gaussian Models - Relative Error against

Bandwidth for the NASA93 Dataset.

about a bandwidth value of 5. According to Fig. 1(a), a

bandwidth value of 5 converges beyond the number of years

that constitute the entire NASA93 dataset, implying that the

model of Fig. 2(c) also exhibits a non-stationary process.

Fig. 2(d) indicates that at about bandwidth 14 the model

started converging and that actual convergence occurred at

bandwidth of 25, which according to Fig. 1(a) is well beyond

the number of years of projects that constitute the training set,

implying that all of the projects that constitute the non-uniform

model exhibited a non-stationary process.
The non-uniform model of Fig. 2(e) started approaching a

stationary process at a bandwidth value of about 17. If this is

mapped onto Fig. 1(a), it is beyond the number of years for

which convergence can be attained based on the training set,

implying that the model exhibits non-stationary characteristics.

The non-uniform models of Figs. 2(f) and 2(g) both started

approaching the curve of the uniform model at a bandwidth

value of around 20. The actual convergence of the non-uniform

models to the uniform models occurred at bandwidth of 30 and

35 respectively on Fig. 2(f) and Fig. 2(g). This again occurs

beyond the number of years of projects in the datasets (as

indicated on Fig. 1(a)) which implies that the projects used in

building the models exhibited non-stationary characteristics.

A model developed using the entire NASA93 dataset, as

shown in Fig. 2(h), started approaching the uniform model

curve at bandwidth 15 and actually converged to that of the

uniform model at about bandwidth 18. This convergence value

according to Fig. 1(a) requires more than the 14 years of

projects that constitute the NASA93 dataset, implying that the

process underlying this model is non-stationary.

Overall Fig. 2 indicates that the accuracy of the uniform

models is better than (that is, they exhibit lower relative error

values) the non-uniform models for the NASA93 dataset. The

curves also show the existence of non-stationary processes

underlying the projects of the NASA93 data set across the

different projects over time, evident in the rapid decline of the

relative error of the non-uniform models as the bandwidth value

increases.

4.2 Desharnais Dataset

The results for the Desharnais dataset using the Gaussian

kernel function indicate that, in general, the uniform models are

nearly the same as the non-uniform models in terms of their

accuracy, though the non-uniform models are marginally better

in two cases. For the model built with the entire Desharnais

dataset, the non-uniform and the uniform model results are

nearly the same, with both exhibiting an underlying stationary

process. Taken overall, the results of the Desharnais model

analysis generally indicate a nearly stationary process across the

different bandwidths and across time. For this dataset, the non-

uniform model and uniform model predictions are nearly the

same, for all the models. The predictions based on the models

(non-uniform and uniform) is similar to that described for the

NASA93 dataset in section 4.1, as some of the models’

predictions are better in terms of accuracy than others across

time. The results obtained for Epanechnikov kernel and the

Triangular kernel are largely similar to those obtained for the

Gaussian models.

The relative stationarity of the models built for the

Desharnais dataset is somewhat surprising because this dataset

was collected from 10 different organizations in Canada over a

period of 7 years. However, the project types and development

languages used were few. This perhaps implies that it is possible

that organizations working at the same time on similar projects

may well have similar practices and, as such, models that are

built to characterize their practices may be more homogeneous

than heterogeneous.

4.3 Kitchenham Dataset

The models developed using the Gaussian kernel when

applied to the Kitchenham dataset depicts a near stationary

process. The first models exhibits non-stationarity at lower

bandwidth values until they converge to a stationary process at

bandwidth values of between 4 and 10. Mapping these

bandwidth values onto Fig. 1(c) indicates that the models will

not attain stationarity in time – thus the process underlying the

second to fourth models are interpreted as being non-stationary.

The results for this dataset are therefore mixed – there is

evidence of a stationary process in one of the models while the

other three imply a non-stationary process. The predictions

based on the Gaussian model are relatively good for this dataset

as they all attained a relative error of less than 1.

The results of the models based on the Epanechnikov and

Triangular kernels are similar to their equivalent Gaussian

curves based on exact bandwidth values comparisons (they

exhibit similar stationarity and non-stationarity at the same

bandwidth values respectively). The accuracy of the models of

all three kernel estimators are similar for the Kitchenham

dataset. Both the respective non-uniform models and the

uniform models generated similar results in terms of the RE

measure. The predictions based on the models differ across time

as was observed for the previous two datasets.

The mixed results (both stationary and non-stationary

models) obtained for the Kitchenham dataset could be attributed

to the different practices associated with the development types:

it seems likely that the organization would have applied

different processes to new software development projects as

compared to their perfective maintenance projects. This could

explain the non-stationarity of some of the models. On the other

hand, the stationary model could be due to the fact that all

projects were developed by one organization for a single client,

and as such, similar general (organization-level) procedures

202

could have been applied.

5 THREATS TO VALIDITY

The first threat to the validity of this study is to the

generalization of our results, as the datasets used are

convenience sampled from the PROMISE repository. Though

these datasets cannot be considered as representative of the

entire software industry, those stored in the PROMISE

repository have rather become benchmark datasets in empirical

software engineering. Moreover, the three datasets were

selected in terms of their possessing different characteristics. As

such these results provide promising insights into the derivation

of the nature of processes underlying software engineering

datasets, and the effect of stationarity on the effectiveness of

non-uniform or uniform estimation models.

Another threat is the lack of detailed information for the

publicly available datasets. The absence of data detailing the

composition of the development teams, the experience of the

team and manager, the tools that supported the software

development process, the procedures applied at the different

development phases, and so on, means that we characterized

models as stationary or non-stationary due to the nature of their

curves when plotted. Whether the underlying datasets are truly

in keeping with this characterization cannot be determined from

the limited data available.

6 DISCUSSION AND CONCLUSION
Three kernel estimator functions have been applied to three

datasets in developing non-uniform models that identifies the

stationarity and/or non-stationarity process underlying SEE

datasets. Based on the results presented, the research questions

are answered as follows.

RQ1. Is there only a stationarity process underlying

software effort estimation datasets?

The result of this study indicates that for the datasets used in

this study, both stationary and non-stationarity processes

might be present in software effort estimation datasets. The

result further establishes that, it is even possible for one

dataset to exhibits both stationary and non-stationary process

over time as evidenced by the Kitchenham datasets.

RQ2. Does non-stationarity of software effort estimation

datasets affect the accuracy of effort estimation models

when applied over time?

In considering the above results we determine that the answer

to research question RQ2 is yes. For all datasets that exhibited

non-stationary processes the models (non-uniform models)

resulted in relatively large relative errors especially prior to

convergence to the uniform models. In contrast, the estimation

accuracy for datasets that exhibited stationarity is in almost all

cases the same as that obtained from the uniform models. These

results are observed for all kernel types. Thus, we would

conclude that the accuracy of effort estimation models is indeed

affected by the stationarity of the datasets.

RQ3. Does kernel type affect the accuracy of software effort

estimation models?

For the datasets that have been analyzed in this study the

evidence indicates that the type of kernel does not affect model

accuracy. The accuracy of the models as measured by the

relative error were mostly the same for the respective datasets

for all kernel types. The estimations based on the models using

the test sets were also the same for each dataset irrespective of

the kernel type that was used in the generation of the weights.

This study therefore reaffirms the result of the Kocaguneli,

Menzies and Keung [9] study that did not find variation in

model accuracy due the type of kernel. In terms of using

different kernel types to assess the stationarity of a dataset there

were just a few occurrences where the different kernel types

generated contrasting results, as presented in Section 4.

This study found that there is the possibility of both

stationarity and non-stationarity processes present in SEE

datasets. A further finding is that the stationarity or otherwise

of a datasets impacts on model prediction accuracy. The

evidence drawn from this study further suggests that the

accuracy of models is independent of the kernel type used in the

generation of weights for the non-uniform models. This is

observed in the fact that, for each dataset, all three kernel

estimators resulted in the same relative errors for all equivalent

models and their estimates for the test set observations.

Future work will apply the kernel estimators to other datasets

as well as assess the effect of bandwidth values on model

accuracy.

REFERENCES

[1] R. Lagerström, L. M. von Würtemberg, H. Holm, and O. Luczak,
“Identifying factors affecting software development cost and

productivity,” Softw. Qual. J., vol. 20, pp. 395–417, 2012.

[2] S. Wagner and M. Ruhe, “A Systematic Review of Productivity

Factors in Software Development,” Proc. 2nd Int. Work. Softw.

Product. Anal. Cost Estim., pp. 1–6, 2008.

[3] K. D. Maxwell and P. Forselius, “Benchmarking Software
Development Productivity,” IEEE Softw., vol. 17, no. 1, pp. 80–88,

2000.

[4] M. Jørgensen and M. Shepperd, “A Systematic Review of Software
Development Cost Estimation Studies,” IEEE Trans. Softw. Eng., vol.

33, no. 1, pp. 33–53, 2007.

[5] S. G. MacDonell and M. Shepperd, “Data accumulation and software
effort prediction,” Proc. 2010 ACM-IEEE Int. Symp. Empir. Softw.

Eng. Meas. - ESEM ’10, p. 1, 2010.

[6] J. Gao and S. Li, “Detecting spatially non-stationary and scale-
dependent relationships between urban landscape fragmentation and

related factors using Geographically Weighted Regression,” Appl.

Geogr., vol. 31, no. 1, pp. 292–302, 2011.

 [7] C. Smartt and S. Ferreira, “Advancing Systems Engineering in

Support of the Bid and Proposal Process,” Syst. Eng., vol. 14, no. 3,

pp. 305–326, 2011.
[8] S. Amasaki and C. Lokan, “On the effectiveness of weighted moving

windows: Experiment on linear regression based software effort

estimation,” J. Software-Evolution Process, vol. 27, no. 7, pp. 488–
507, 2015.

[9] E. Kocaguneli, T. Menzies, and J. W. Keung, “Kernel methods for

software effort estimation. Effects of different kernel functions and
bandwidths on estimation accuracy,” Empir. Softw. Eng., vol. 18, no.

1, pp. 1–24, Dec. 2013.

[10] L. Angelis and I. Stamelos, “A Simulation Tool for Efficient Analogy
 Based Cost Estimation,” Empir. Softw. Eng., vol. 5, no. 1, pp. 35–68,

 2000.

[11] M. Shepperd and C. Schofield, “Estimating Software Project Effort
 Using Analogies,” IEEE Trans. Softw. Eng., vol. 23, no. 12, pp. 736–

 743, 1997.
[12] B. Kitchenham and E. Mendes, “Why Comparative Effort Prediction

 Studies may be Invalid,” Proc. 5th Int. Conf. Predict. Model. Softw.

 Eng., 2009.
[13] B. Kitchenham, S. Lawrence Pfleeger, B. McColl, and S. Eagan, “An

 empirical study of maintenance and development estimation

 accuracy,” J. Syst. Softw., vol. 64, no. 1, pp. 57–77, Oct. 2002.
[14] P. A. Whigham, C. A. Owen, and S. G. Macdonell, “A Baseline Model

 for Software Effort Estimation,” ACM Trans. Softw. Eng. Methodol.,

 vol. 24, no. 3, p. 20., 2015.

203

Graph Machine Learning for Anomaly Prediction in
Distributed Systems

Sheyda Kiani Mehr, Wenting Sun, Xuancheng Fan, Nikita Butakov, Nicolas Ferlans
Ericsson, Santa Clara, USA

Email: sheyda.kiani.mehr@ericsson.com, wenting.sun@ericsson.com, xuancheng.fan@ericsson.com
nikita.butakov@ericsson.com, nicolas.ferland@ericsson.com

Abstract—Machine-learning based anomaly detection in dis-
tributed systems is a challenging task. With thousands of dy-
namically changing parameters, prediction of events requires
considerable effort on feature selection, feature engineering, and
training. For the unstructured and multi- dimensional data
in IT infrastructure, many traditional machine-learning meth-
ods are unsuitable and perform poorly. Graph-based machine
learning is a powerful tool capable of representing this data
without losing the temporal and logical connections that are
critical in making accurate predictions. Furthermore, graph-
based embedding can effectively reduce the data complexity,
without losing key relations. In this paper, we investigate the use
of graphs for representing IT infrastructure data, in particular
with the node2vec algorithm, and evaluate the performance of
a random forest model. The results show that the embedded
graph representation improves the precision and AUC, compared
to other conventional approaches, while significantly reducing
the memory needed for training and validation, thereby making
it more suitable for inference on edge devices, where compute
resources could be limited.

Index Terms—Graph, Embedding, Node2Vec, Random Walk,
Machine Learning

I. INTRODUCTION

Any distributed system must ensure high availability and
high consistency. To resolve performance degradations, which
cause dissatisfaction to users, detection and prediction of
anomalies can help engineers provide more reliable services,
and thereby save money and time. Anomaly detection has
a wide range of applications in detecting cyber-intrusion,
fraud, industrial damage, and safety issues . There are var-
ious approaches including classification, clustering, statistical,
information-theoretic, and spectral [1] approaches.

To effectively detect anomalies, data must accurately repre-
sent the logical dependencies, attributes, and domain character-
istics [2]. Graph data structures are a powerful tool to represent
data with strong inter-dependencies. For a system that can
be represented as a graph, the connectivity and interaction
between data points make the graph turn into a number of
linked paths for finding out these relations, to detect and
analyze an anomaly. Traditional graph analysis methods based
on graph statistics and features are helpful, but designing them
can be a time-consuming and expensive process [3].

Alternatively, a graph embedding approach can be utilized,
which automatically transforms graph into feature vectors.

DOI reference number: 10.18293/SEKE2020-010

This embedding will ideally contain all the relevant graph in-
formation. After optimizing the embedding space, the learned
embedding can be used as feature inputs for downstream
machine learning tasks [3].

In this work we present a graph-based machine learning
anomaly detection approach for identifying anomalies in the
response times of APIs in a distributed system. We propose
a Node2Vec approach for graph embedding, with Random
Forest Classifier method for anomaly prediction. We find the
graph-based ML approach shows improved performance, com-
pared to traditional approaches, with a significant reduction in
required compute resources.

Overall the contribution of this work includes:
• The graph representation of the data that keeps all the

knowledge intact.
• The graph dimensionality reduction, which enables faster

development of models
• Classification and labeling for an anomaly prediction

problem.
• Prediction performance improvement, compared to con-

ventional data approaches.
In Section 2, related work is reviewed. In Section 3, our new

methodology is presented. In Section 4, the implementation
process is explained. In Section 5, the approach is evaluated.
And in Section 6, we provide the conclusion.

II. RELATED WORK

There has been much recent work in anomaly detection on
graph-like data. Kandel et. al. [4] detect anomalies by using
the node attribute information, together with the structural
connectivity. To preserve closeness information, they consider
similarities between node values with multiple attributes. To
discover the similarity between attributes, they use discretiza-
tion, distance- based similarity measures, and a k-means
clustering approach.Ahmed et. al. [5] propose neighborhood-
structure-assisted negative-matrix-factorization (NMF) and its
application in unsupervised point anomaly detection. They
consider the incorporation of the neighborhood structural sim-
ilarity information, within the NMF framework, by modeling
the data with a minimum spanning tree.Tosyali et. al. [6]
proposed a cluster-based outlier score function to identify
outliers in citation networks based on NMF. They represent
citation data as a directed graph and cluster it into logical

204

groupings of nodes.Markovitz et. al. [7] propose pose clus-
tering for anomaly detection of human actions. They apply a
deep-embedded-clustering model with three parts: an encoder,
decoder, and soft clustering layer. Venkatesan et. al. [8]
propose graph-based unsupervised models for edge anomaly
and node anomaly detection in social network data. They
apply the HDBSCAN clustering algorithm for node anomaly
detection with various dimensionality reduction algorithms. Lu
et. al [9] proposes anomaly detection for container-based cloud
environments by monitoring the response time and resource
usage of components.

Our work is a supervised learning classification approach
for anomaly prediction in distributed systems. We represent
data with graphs and embed each to feature vectors. We
define labels based on the response time thresholds. Many
of these previous works use graph statistic information and
dimension reduction methods to modify the data and feed it
to an unsupervised learning algorithm for clustering anomaly
purposes. However, so far we did not find any other work that
use a graph embedding with neural networks [10] as input for
ML algorithm and dimension reduction, which keep all the
knowledge of the data. Most of the anomaly detection works
used unsupervised learning approach, however we define it as
a supervised learning problem with domain expert knowledge,
help to achieve more reliable performance than unsupervised
approaches.

III. METHODOLOGY

Distributed systems are time-sensitive. When a user makes
a request to an API, a response should be quickly received.
Identifying and predicting APIs with anomalous response
times help operators quickly resolve and prevent anomalous
behavior.

Our data is represented as a directed graph, with nodes
being various servers and APIs, connected to each other with
a weight equal to the response time (Fig. 1). Individual servers
are not connected to other servers, and APIs are not connected
to other APIs. As mentioned before, in this system, the
definition of an anomaly is when an API fails to respond in a
timely manner to a request. In the graph view, this corresponds
to an edge weight which exceeds a certain threshold.

The differences between the graph embedding algorithms
depend on the graph property being maintained. Different
graph embedding algorithms have different definitions of the
node, edge, substructure and whole-graph similarities. Node
embedding represents each node as a vector in a low di-
mensional space. Nodes that are similar to each other in the
graph have similar vector representations [3]. Our problem is a
node embedding problem, as we want to identify which node
is acting abnormally, and predict the anomalous behavior of
that node in the future. Graph embedding techniques, such as
Node2Vec, exploits the structure of the graph and can be used
for transformation of graphs into the necessary feature vector
space.

Fig. 1: A directed graph (of a two-minute snapshot) of a
distributed system (three APIs, multiple servers).

A. Node2Vec

Node2Vec is one of the most common approaches for
projecting nodes into feature vectors. In Node2Vec, nodes are
mapped into a low-dimensional space of features that max-
imizes the likelihood of preserving network neighborhoods
of nodes [10]. Node2Vec has two steps: random walk and
word2vect. The former creates a corpus of acyclic subgraphs.
The latter embeds this corpus to the feature vector space.

1) Random Walk: The parameters for the random walk step
include: number of walks to be generated from each node, the
number of nodes in each walk, the return parameter (p) and
the out parameter (q). The random walk starts with a random
node and proceeds through a path based on value of weight∗α
where α is 1/p or 1/q, depending on if the path navigation is
backward or forward.

2) Word2Vec: The output of the random walk step is a
corpus of subgraphs. Each random walk corresponds to a
sentence-like structure, in which each node corresponds to a
word. The Word2Vec model transforms this corpus into an
embedding, by using a SkipGram model with a neural-network
layer into an N-dimensional embedding.

B. Anomaly Prediction

Anomaly Prediction can be implemented by either su-
pervised classification algorithms or unsupervised clustering
algorithms. Classification-based techniques can be thought of
as operating in two phases. In the training phase the classifier
learns using labeled training data. In the validation phase the
classifier categorizes validation data as normal or abnormal.
Classification based anomaly detection techniques operate
under the general assumption that normal and anomalous
classes can be distinguished in a given feature space [2]. Based
on our data, we can define labels for each generated graph,
and thereby develop a supervised algorithm for graph label
classification. The random forest classifier is fast and easy to
implement. It can produce highly accurate predictions, handle
a very large number of input variables, and tolerate unbalanced
or missing data [11].

205

IV. IMPLEMENTATION

A. Dataset

The dataset consists of two-minute snapshots, over two days
of synthetic data, generated based on three months of real data,
from a distributed system. In each snapshot, there are multiple
servers and three APIs. Each API has its own response time
threshold, based on domain knowledge. In some snapshots
there may not be any response time, which means that API was
not been called in the two-minute snapshot. In other words,
there is no edge. For each series of graphs, their embeddings,
labeling, and predictions will be separately implemented for
each API.

To minimize the presence of overly-sparse graphs, we aggre-
gate three two-minute snapshot graphs into six-minute graphs.
These aggregated graphs are the input to Node2Vec, which
outputs the embedded feature vectors. We feed these into
the Python Sklearn Random Forest Classifier, which outputs
predictions.

1) Nature of Dynamic graphs: One of the challenges in
our work is the nature of time series data. The system gets
a snapshot for every two minutes of the processes, requests
and related latencies. In the graph representation, it will be
translated to the nodes and the connectivities with weights
on the edges, respectively. In each two-minute time slot, the
numbers of nodes connected (involved servers and APIs) and
latency of API requests (edge’s weight) in the system are
varying. In other words, the whole data set is a group of
consecutive dynamic graphs. The graph of each time stamp
might be very different compared to the graphs from the next
or previous time stamp. In this case, the cosine similarity of
an embedded node of the different graphs are high. With a
high cosine similarity between each pair of graph embedding
vectors, the prediction will not be accurate.

Graphs can be dynamic in number of nodes, connectiv-
ity/edges between nodes, edge directions, edge attributes, node
attributes and etc (Fig. 2). In our dataset the changes over time
in the graphs include the number of nodes, latency connectivity
or weight value of edges. For example, in time stamp 00:00:00
we might have servers that are calling specific APIs with a
very low latency and in the next time stamp 00:00:02, the
same servers and APIs might have connection but with some
different higher latency values on the edges which categorize
some APIs of that graph as anomalous APIs. In addition,
the variation of node numbers and connectivities in different
graphs is eliminated with aggregating the graphs; therefore,
all the six-minute graphs will have the same connectivity.

Fig. 2: Event detection in time Series of graph data [1].

Random walk is a good method if dynamic graphs with
different connectivity are used as data. Weight is used for

walking decision just per graph. In that case, random walks
of a graph with very high weight edges might be equal to
random walk of another graph with a way lower weight edges
containing the same links. Therefore, the embedding of the
two different graphs that has very different link weights will
be the same although one might not have anomaly and the
other one might have anomaly.

We make the data more informative when feeding it to the
Random walk. We modify each six-minute graph, we consider
an undirected graph and then we assumed all the edge weights
as 1 or 0 based on the threshold values of the APIs in the data.
The directed graph only guide each walk through the direction
from an server to an API and will not cover all the possible
nodes.

After implementing this method, we are able to lower the
cosine similarity between graphs as the similarity of the graphs
are not just based on the connectivity but also based on the
weight on the edges, which plays an important role to capture
the temporal dynamic information between graphs.

2) Two-minute graphs: We generate directed weighted
graphs of two-minute snapshots and add all the nodes and
edges with the assigned weights to each graph. In the case in
which a graph contains multiple overlapping edges, the edge
with the maximum weight (i.e. response time) is used. If any
response time in the graph exceeds the threshold, it is labeled
as 1, otherwise 0.

3) Six-miutes graphs: The two-minute snapshots are unnec-
essarily short intervals for anomaly prediction in this system.
Therefore, we consider each aggregated undirected six-minute
graph as the feature window, and the subsequent undirected
six-minute graph as the prediction window. The label of each
six-minute graph is the logistic OR of the label values in the
next immediate three two-minute graphs. The weights of the
edges in a six-minute graph is based on an API threshold,
if the weight is more than the API threshold that the graphs
have been generated and labeled for, then those edges will
have weight value 1 otherwise 0.

We consider a rolling window for feature and prediction
window, with no gap between feature windows and prediction
windows. For example, the first six-minute feature graph will
be the aggregation of three two-minute graphs from indexes 0
to 2 with the label, which is based on the prediction window
from two-minute graphs with indexes 3 to 5. And the second
six-minute feature graph will be the aggregation of two-minute
graphs indexes from 1 to 3 with the label, which is based
on the prediction window from two-minute graphs indexes
from 4 to 6. And the last six-minute feature graph will be
the aggregation of two-minute graphs from indexes n-5 to n-
3 with the label, which is based on the prediction window
from two-minute graphs indexes from n-2 to n. Mostly in the
six-minute graph, we have multiple edges between the same
pair of nodes, so we just consider edge with maximum weight
between the same pairs.

206

B. Node2Vec Embedding

Node2Vec uses a random walk algorithm and then word2vec
to create embedding of the random walks. We use the python
Node2Vec package, which takes as input a graph, the di-
mensionality N for Word2Vec neural network layer, the walk
length, the number of walks, the number of neural network
workers, and the p and q parameter values. For the six-minute
graphs, we find out the optimal values of these parameter by
trying various measurements. The random walk is a flexible
neighborhood sampling strategy which allows smooth inter-
polation between breadth-first-search and depth-first-search, in
which the p and q parameters guide the walk [10].

The optimal values for parameters which we find through
tuning are dimensions = 50, walklength = 20, numwalks =
20, p = 1, and q = 1. We should mention that although
increasing dimension will improve the accuracy, it can also
cause overfitting if the embedded dimension goes close or
beyond the original dimension. Algorithm. 1 explains all the
steps in more details.

V. RESULTS AND EVALUATION

Data is recorded every two minutes, with seventeen servers
that call three different APIs (Fig. 3). We group data by two-
minute snapshots in a way that each time stamp will have
one row in the data frame. To mitigate issues with sparsity,
we consider a six-minute feature and prediction window. The
reason we choose a window size of six minutes and not larger,
is that for larger sizes, the label does not have a reliable value,
and the models overfit.

Fig. 3: Initial data from distributed system with three APIs
and multiple IPs in each two-minute snapshot.

A. Original Data

We flatten the latency values of the APIs for all the servers
in each two-minute window to have one row, 51 columns for
each row by grouping the snapshot data (17 servers x 3 APIs
= 51 columns, Table. 4). For the six-minute duration feature
window, we flatten all the rows of three sequential two-minute
flattened rows to generate a row of six-minute snapshot (3
rows x 51 columns = 153 columns). The label column for a
six-minute snapshot row depends on all the label values in
the next three sequential two-minutes data. If any of the label
values of the three two-minute snapshot that show up in the
predict window is 1, then the label for six-minute snapshot
feature is 1 otherwise 0 (Fig . 5).

We should mention that, another reason that we consider
six-minute for feature and prediction window was that the

Algorithm 1 Anomaly detection with Graph Embedding for
node API1
Params:df=dataframe,k=100,d=50,num walk=50
length walk=50,p=1.5,q=0.5

Function MAIN()
API1← threshold API1
API2← threshold API2
API3← threshold API3
k ← 100
G2 list, label2 list← 2MIN-GRAPH(API1, API2, API3, df)
G6 list, label6 list← 6MIN-GRAPH(G2 list, label2 list)
EMB list← EMBED-GRAPH(G10 list)
Accuracy ← RANDOM-FOREST(EMB list, label6 list, k)

End Function

Function 2MIN-GRAPH(API1, API2, API3, df)
time list← GET-TIME(df)
For time in time list:

df2← df [time]
API list← GET-APIS(df2)
IP list← GET-IPS(df2)
For API in API list:

For IP in IP list:
latency ← GET-LATENCY(IP,API)
If latency >= API1:

G2← CREATE GRAPH(IP,API,wight = 1)
G2 list← APPEND-TOLIST(G2)

If AP1 threshold 2min >= API1:
label2← 1

else:
label2← 0

label2 list← APPEND-TOLIST(label2)
return G2 list, label2 list

End Function

Function 10MIN-GRAPH(G2 list, label2 list)
For (i = 0; i < size(G2 list); i++) :

G6← MERGE(G2 list[i]..G2 list[i+ 3])
G6 list← APPEND-TOLIST(G6)
If (OR(, label2 list[i].., label2 list[i+ 3]) == 1):
label6← 1

else:
label6← 0

label6 list← APPEND-TOLIST(label6)
return G6 list, label6 list

End Function

Function EMBED-GRAPH(G6 list)
For G6 in G6 list:

EMB ← NODE2VEC(G6, d, num walk, length walk, p, q)
EMB list← APPEND-TOLIST(EMB)

return EMB list
End Function

flattening of all the values of 10 and 20 minute feature window
is a much more computationally intensive aggregation for this
particular data set. In this case the number of feature columns
will be 5 rows x 51 columns = 255 rows and 10 rows x 51
columns = 510 rows for 10 minutes and 20 minutes feature
window, respectively.

B. Graph Represented Data

We create a graph for each grouped two-minute data, with
nodes including servers and APIs (Fig. 6). So, the type of the

207

Fig. 4: Flattened two-minute data

Fig. 5: Flattened six-minute data.

data is not a row of some values of response times anymore.
Each row represent a two-minute graph that keeps all the
connectivity and knowledge intact. All the represented links
have weight value 1 and the pairs of nodes with no link have
weight value 0 based on the threshold of the connected API
(or there was no request between the pairs in the beginning at
all). For six minutes duration, we aggregate three consecutive
two-minute graphs to one graph (Fig. 7) with a reduced
dimensionality compared to original flattened data (10, 20 and
50). The Six-minute graphs will be embedded by Node2Vec
algorithm (Fig. 8). Then the feature vectors are ready to be
fed to the prediction algorithm.

Fig. 6: A graph of a two-minute snapshot.

In the six-minute data aggregation, we shift the feature and
prediction windows by 1. So, the feature windows’ indices are

Approach AUC
original 0.49514
Grpah d=10 0.54983
Grpah d=20 0.50564
Grpah d=50 0.59208

TABLE I: Evaluation of original data and graph representation
of data for API1

Fig. 7: A graph of a six-minute snapshot.

Fig. 8: Embedding feature vectors of a six-minute graph.

from 0 to n-1 and the labels’ index are 1 to n. Then we applied
k-fold cross validation with k=100. We measure the AUC for
each API (Table. I). The threshold values of API1, API2, and
API3 are 16770, 2184 and 4635 milliseconds, respectively.

The result can be improved significantly if the proposed
approach is to be applied on the non-synthetic dataset. In
the real dataset, the number of calls is more various in each
snapshot window, and there are higher number of calls. The
variations of latency are higher, and the threshold of values
are more realistic.

This result also indicates that graph is a well-designed rep-
resentation that improves predictability by 19.58% for graph
d=50 compared to the original data (Table. I), by leveraging
the temporal and dynamic additional information embedded in
graph. We also present the training and inference time result
for the original flattened and graph data with six minutes, ten
minutes, and twenty minutes window times. The machine that
is used to run these experiments has Windows 10 64-bit OS
with core i7 CPU and 32GB RAM memory. For the largest
dimension of the graph data, fifty, Table. II shows that the
original data has higher training and inference time compared
to the graph data. The consumed time has been decreased

Approach 6 minutes 10 minutes 20 minutes
Flattend 0.47 0.6 1
Grpah d=50 0.42 0.42 0.42

TABLE II: Training and inference time (seconds) of original
and graph d=50 data for 6, 10 and 20 minute time window.

208

by 10.46% by using graph with six-minute window size. The
consumed time with the ten and twenty minute window size
decrease by 30% and 58% by using graph data, compared to
original flattened data. The reason is that graph representation
of the data always has 50 features, however, the original
dataset has 153, 255 and 510 for 6 minutes, 10 minutes and
20 minutes time window, respectively.

VI. CONCLUSION

We implement node2vec graph embedding for our simulated
distributed system data and compared it to the original data
with a random forest classifier. Node2vec has two parts:
random walk and word2vec. The random walk generates
subgraphs of the original graph, and by considering it as
a corpus, word2vec embeds the graph nodes to a desired
dimension size. We achieve the dimensionality reduction in
a way that all the relevant knowledge of the data remains
intact. We used classification machine learning algorithm to
predict a future anomalous event. The embedded graph shows
better AUC than raw data. For future work, we could use
graph representation to discover potential causality given that
a proper DAG (directed acyclic graph) can be derived based
on domain knowledge. In addition, edge and graph embedding
and prediction can be further explored to identify the system
dynamics from a different perspective. These can be interesting
areas for future work. Based on our experiment, the random
walk algorithm is not the best way to traverse a weight-
based dynamic graph and the anomalous event has a direct
relationship to an edge weight. We may be able to consider
additional data with different features other than response time
such as CPU, memory, and database event logs to enrich
the graph design, in hope of improving both adaptability and
prediction effectiveness.

REFERENCES

[1] L. Akoglu, H. Tong, and D. Koutra, “Graph-based anomaly detection
and description: A survey,” 2014.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[3] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

[4] P. R. Kandel, Node Similarity for Anomaly Detection in Attributed
Graphs. PhD thesis, Tennessee Technological University, 2019.

[5] I. Ahmed, X. B. Hu, M. P. Acharya, and Y. Ding, “Neighborhood struc-
ture assisted non-negative matrix factorization and its application in un-
supervised point anomaly detection,” arXiv preprint arXiv:2001.06541,
2020.

[6] A. Tosyali, J. Kim, J. Choi, Y. Kang, and M. K. Jeong, “New node
anomaly detection algorithm based on nonnegative matrix factorization
for directed citation networks,” Annals of Operations Research, pp. 1–
18.

[7] A. Markovitz, G. Sharir, I. Friedman, L. Zelnik-Manor, and S. Avidan,
“Graph embedded pose clustering for anomaly detection,” arXiv preprint
arXiv:1912.11850, 2019.

[8] M. Venkatesan and P. Prabhavathy, “Graph based unsupervised learning
methods for edge and node anomaly detection in social network,”
in 2019 IEEE 1st International Conference on Energy, Systems and
Information Processing (ICESIP), pp. 1–5, IEEE, 2019.

[9] C. Lu, K. Ye, W. Chen, and C.-Z. Xu, “Adgs: Anomaly detection and
localization based on graph similarity in container-based clouds,” in
2019 IEEE 25th International Conference on Parallel and Distributed
Systems (ICPADS), pp. 53–60, IEEE, 2019.

[10] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 855–864,
ACM, 2016.

[11] G. Biau, “Analysis of a random forests model,” Journal of Machine
Learning Research, vol. 13, no. Apr, pp. 1063–1095, 2012.

209

F(X)-MAN: An Algebraic and Hierarchical
Composition Model for Function-as-a-Service

Chen Qian∗ and Wenjing Zhu†
∗School of Computer Science and Technology, Donghua University

†Institute of Scientific and Technical Information of Shanghai, Shanghai Library
Email: ∗chen.qian@dhu.edu.cn, †wjzhu@libnet.sh.cn

Abstract—Function-as-a-Service promises a new era in which
functionalities are implemented, executed and managed on a
cloud platform with the aim of developing and launching appli-
cations. This paper puts forward an algebraic and hierarchical
model that has ability to construct composite services for cloud
applications. Our model brings many advantages, which are also
presented in this paper.

Keywords—Function-as-a-Service; algebraic composition; ser-
vice model.

I. INTRODUCTION

Over the past decade, cloud computing has been devel-
oped at an unprecedented speed, whilst cloud applications
have increasingly penetrated all areas of industry [1]. Cloud
computing service model allows user to tailor the off-the-
shelf services and adopt them nearly immediately, in spite of
sometimes such a service does not completely customize to a
user’s application.

In the context of cloud computing, conventional services are
developed and deployed in the form of monolithic computation
units, in which all the code is interwoven into one large
piece [2]. As a result, the monolith hinders the scalability
and efficiency of client applications, especially when the
number of participant services is increased. To address the
issue, Function-as-a-Service (FaaS) is proposed, by means of
structuring a serverless architecture that decomposes software
applications into fine-grained functions [3]. Such functions are
further invoked remotely at runtime.

At present, FaaS providers do not pay more attention to
the service modeling. Unfortunately, the lack of modeling
possibly (i) impairs the understanding of the system, (ii) blurs
the details of software design, and (iii) obstructs quick and
frequent changes in high levels of abstraction.

In this paper, we present a novel model specified for FaaS,
which composes services in an algebraic and hierarchical
manner.

II. RELATED WORK

With the growing of cloud computing, the concept of “ev-
erything is a service” has been formulated, such as Platform-
as-a-Service (PaaS), Infrastructure-as-a-Service (IaaS) and
Software-as-a-Service (SaaS) [4].

DOI reference number: 10.18293/SEKE2020-024

IaaS provides a base infrastructure for sale, e.g., virtual
machines and repositories, on which user must configure
and manage a platform before deploy applications on it.
PaaS provides a platform which is already installed in the
infrastructure. Hence, end user can develop and deploy the
applications based on the platform. In comparison with the
first two cloud services, SaaS is simpler. It enables cloud
applications for direct use.

FaaS is even more flexible than PaaS. It allows developer to
‘assemble’ an application from functions on the cloud. How-
ever, current FaaS providers such as AWS Lambda, Google
Cloud Functions, Microsoft Azure Functions and so forth
focus on the language support, single function execution time
and other properties, instead of the composition mechanism
and underlying modeling methodology.

III. F(X)-MAN SERVICE MODEL

In this section, we put forward a service composition model,
called F(X)-MAN, which is inspired by X-MAN component
model and its extensions [5]–[9]. In F(X)-MAN, we regard
both services and exogenous connectors as first-class entities.
Figure 1 illustrates the F(X)-MAN constructs which we further
describe below.

The F(X)-MAN model defines two types of services: atomic
or composite service, which are demonstrated in Figure 1(a)
and 1(b), respectively. An atomic service encapsulates a set of
methods in the form of an input-output function with a purpose
that different services can access, whereas a composite service
consists of sub-services (atomic or composite) composed by
exogenous connectors, which coordinate control flows between
sub-services from the outside. Therefore, services are unaware
they are part of a larger piece of behavior, which become
perfectly suitable for FaaS. Ideally, the services do not have
to be implemented by the same programming language.

Notably, F(X)-MAN model defines algebraic service com-
position [10]. This idea is enlightened by algebra where func-
tions are composed hierarchically into a new function of the
same type. Similarly, in F(X)-MAN, we utilize an exogenous
connector as an operator to hierarchically compose multiple
sub-services into a bigger service, while the resulting service
can be further composed with other services, yielding a more
complex one. The algebraic nature brings an advantage that
F(X)-MAN services can be designed, implemented, deployed
and remotely invoked with high flexibility. For instance, as

210

i oS1args feedback

firstMethod;
secondMethond;

(a) Atomic service.

i oS1 i oS2 i oS3

i o

S5S4

S6

S service exogenous connector i input o output

execution orderhorizontal
data routing

vertical
data routing

(b) Composite service.

Fig. 1. F(X)-MAN: Service model.

shown in Figure 1(b), when we deploy composite service S6

in a network, in fact all its sub-services, no matter atomic
(S1, S2, S3) or composite (S4, S5), are exposed and ready for
use.

In order to simulate the statements in computer program-
ming, we define three categories of exogenous connectors
in F(X)-MAN. Composition connectors compose multiple
services by coordinating control flows among them, whereas
adaptation connectors are applied to individual services with
the aim of adapting the received controls. In addition, a paral-
lel connector is specified to handle the concurrent invocation
of services.

We hereby list the most commonly used statements along
with their related connectors.

• If statement. The if statement (sometimes called if-
then statement) is common across major programming
languages [11]. If the expression is evaluated to true,
statements inside the body of if are executed. Accord-

i oS1

GUDicond

cond==true

Fig. 2. F(X)-MAN: Guard.

ingly, we define an adaptation connector called guard that
allows control to reach a service only if the condition is
satisfied, as Figure 2 shows.

• If-else statement. In if-else statement (sometimes called
if-elif-else statement), only the statements following the
first expression that is evaluated to true will be executed
[12]. Thus, we define a composition connector, namely
selector, with the aim of branching. Figure 3 presents an
example. If the input of selector has a value of 6, S3

will be invoked. It is worth noting that switch statement

i oS1 i oS2 i oS3

SEL
1 2 3
icond

cond<0 cond<5

Fig. 3. F(X)-MAN: Selector.

usually can be converted to an equivalent if-else statement
[13]. Therefore, we do not design another F(X)-MAN
connector for it.

• While statement. The while statement presents the basic
iteration [14]. In F(X)-MAN, we define an adaptation
connector called loop, as illustrated in Figure 4. The
loop connector repeatedly evaluates the expression, then
invokes the service if the evaluation result is true, or stop
the iteration if the evaluation result is false. Except for
the while statement, do-while statement and for statement
are also widely used, and both can be easily converted
to equivalent while statements. Hence, we suggest to use
the loop connector for all iterations.

• Parallel statement. The parallel statement, also known

i oS1

LOOPicond

cond<10

Fig. 4. F(X)-MAN: Loop.

211

as concurrent statement, indicates a certain synchro-
nization of concurrent activities [15]. Figure 5 shows a
composition connector called parallel that denotes con-
temporaneous execution of three services. Notably, when
parallel connectors are used in an F(X)-MAN service,
we must pay more attention to its underlying issues, e.g.,
deadlock [16] and race condition [17].

i oS1 i oS2 i oS3

PAR

Fig. 5. F(X)-MAN: Parallel connector.

• Block statement. The block statement, also known as
compound statement, is generally adopted to group a
sequence of multiple statements [18]. Therefore, F(X)-
MAN model provides a composition connector, namely
sequencer, which allows user to determine the execution
order.

i oS1 i oS2 i oS3

SEQ
1 2 3

Fig. 6. F(X)-MAN: Sequencer.

While the exogenous connectors coordinate the control
flows, the data channels coordinate the data flows. After a
composite service is structured, we need to add data channels
between services in order to define the direction of each data
flow. Such a channel links the input and output of services.
Figure 1(b) demonstrates two types of data channels in the
composite service: horizontal data routing and vertical data
routing [19]. The former is between two individual services,
which indicates a service passes the outcome data to another,
while the latter is data propagation between the services and
its sub-services, which illustrates the data received by the
composite service is passed to the first invoked sub-service,
whereas the outcome data of last invoked sub-service becomes
the output of the composite service. It is worth noting that we
use JSON as the data interchange format, because (i) JSON
has simple API that are available for many languages [20],
(ii) the name-value pairs provides consistent patterns that are
understandable by any user [21], and (iii) JSON provides faster
object serialization and deserialization with less resources in
comparison with other formats [22].

Next section presents how to use the F(X)-MAN composi-
tion semantic to construct FaaS.

IV. EXAMPLE

In this section, we present an example of using F(X)-MAN
service model for application development based on FaaS.

DeepCNN DeepCNN

Concatenation

Classification

Enhancement

CNN

Multi-label Learning Network

Feature Fusion Network

cranial caudal view mediolateral oblique view

dense

non-dense

Fig. 7. A brief overview of mammography reading system.

Over the past decade, artificial intelligence (AI) technolo-
gies have been developed at an unprecedented speed, whilst AI
applications have increasingly penetrated all areas of industry
[23], e.g., intelligent healthcare [24] and E-commerce [25].
As a nature consequence, developing such a practical AI
application commonly requires experts from various domains.
Moreover, realizing the built-in AI algorithms such as training
neural networks requires significant investment of time, effort,
data and computing resource. Therefore, to the companies who
want to focus on the core business whilst gain the benefits
from data, FaaS looks like a promising solution, by means of
a distribution model allowing AI services outsourcing offered
by third-party vendors [26].

We hereby use F(X)-MAN service model to construct a
mammography reading system (adapted from [27]) with the

i oS3
i oS2

i oS1

i oS3
i oS2

i oS1

S4

i oS2 i oS2 i oS3

S5

construct

deposit

construct

retr
ieve

deposit

deploy

i oSa

i oS4 i oS5

i oS3

i oS2i oS1

i oS5

i oS4

i oS5i oS4

retrieve

construct

Fig. 8. F(X)-MAN: Workflow.

212

MLL_Networki oFF_Networki o

SEQ
1 2

CC_DeepCNNi o MLO_DeepCNNi o

PAR

Classificationi o Enhancementi o

GUDi

SEQ
1 2

Concatenationi o i oCNN

SEQ
1 2 3 4 5

S2 S3S1

Fig. 9. F(X)-MAN: Mammography reading system.

ability to detect and label the lesions for breast cancer diag-
nosis. This system analyzes two-view mammography images
through several well-trained deep learning models, each of
which is a multi-layer neural network that processes medical
data in a hierarchical fashion. Figure 9 demonstrates the
primitive functional requirements.

At design-time, we firstly implement the relevant functions,
and use them to create atomic services. Then we deposit the
atomic services to a repository, and later retrieve them to
construct composite services. The resulting services can be
deposited again for further construction. After that, we can
deploy the services (atomic or composite) from the repository
to other developers and becomes a part of their programs at
run-time, or use these services as building blocks to construct
our own applications. The whole workflow of F(X)-MAN is
illustrated in Figure 8.

Accordingly, we construct the mammography reading sys-
tem, as shown in Figure 9. For the clarity, we omit the data
channels. It is worth noting that S1, S2 and S3 are services
developed and deployed by third-parties, which are seamless
connected to our system.

V. EVALUATION

This section provides an evaluation of our algebraic and
hierarchical composition model via several quality attributes,
i.e., low coupling, testability, scalability, reusability, maintain-
ability and evolvability.

A. Low Coupling

In software evaluation, coupling is a term used to measure
the degree of connection and the amount of interaction be-
tween modules [28]. The higher the coupling, the more likely
it is that changes to the inside of a module will effect the
original behavior of another one [29]. Thereby, low coupling
is one of the ultimate pursuits for software engineering.

There are six levels of coupling, as enumerated in increasing
order of malignity [30]: data coupling, stamp coupling, control
coupling, common coupling and content coupling. Our F(X)-
MAN service model only generates the loosest two couplings
in a system:

1) In data coupling, the communication between services is
limited, i.e., via scalar parameters, in which only simple

arguments are allowed to pass directly, e.g., variable and
array. The passed data is always used for an invocation
or a return of control [31].

2) Likewise, the communication in stamp coupling is also
limited. But it passes composite data item, which usually
is a entire data structure. Thus, sometimes a data struc-
ture may contain pieces of data that are unnecessary to
the recipient module [32].

The coupling has a huge impact on testability, scalability,
reusability, maintainability and evolvability.

B. Testability

Testability refers to the effort and time required to validate
the software against its requirement. Thus, a system with better
testability can be validated faster and easier [33]. However,
perform testing in a serverless environment is never a simple
task. An application using FaaS indicates that local code and
foreign code are tangling together. It is difficult to run such

Classification

Concatenation

S2

S3

S1

CC_DeepCNNMLO_DeepCNN

Enhancement

CNN

MLL_Network

FF_Network

Fig. 10. F(X)-MAN: Deriving a statechart.

an application locally, unless the local environment can fully
simulate the cloud environment [34].

Although the problem cannot be tackled once for all, we do
facilitate the testability of systems build by F(X)-MAN service
model. Firstly, such a system is completely modularized with

213

low coupling, which means every behavior implemented in
the local environment can be examined in isolation by means
of unit testing. Secondly, the control flows are coordinated by
the exogenous connectors, i.e., outside of the services, which
implies we can verify the system behavior through a statechart
directly derived by following the control flows, without take
the services (local and remote) into account. Figure 10 is the
statechart derived from the mammography reading system in
Figure 9.

C. Scalability

Scalability is a term that frequently appears in a variety
of computer science domains. Hence, we must explicitly
understand the scalability needed to be evaluated in the scope
of FaaS. In order to avoid the ambiguity, we hereby define the
scalability from two different aspects.

From the perspective of software engineering, scalability is
a fundamental quality referring to the impact of code expan-
sion [35]. In other words, the scalability of F(X)-MAN denotes
the effectiveness of F(X)-MAN when used on differently sized
problems. As presented in Section III and IV, F(X)-MAN pro-
vides outstanding mechanisms for partitioning, composition
and visibility control, which result in great scalability [36].
For example, the mammography reading system constructed in
Figure 9 can be regarded as another F(X)-MAN service, which
can be composed with other services, such as a mammography
report generator, to create a breast cancer auxiliary diagnosis
application, which can be further composed again for a very
large software.

On the other hand, scalability in the context of cloud
computing describes the capability of a system to increase
its throughput under an increased load, e.g., creating more
service instances [37]. As a matter of fact, comparing to
the traditional monolithic models, FaaS achieves much better
scalability. Figure 11 makes a comparison. As Figure 11(a)
shows, a monolithic model encapsulates all its functionalities
into a single process, and scales by replicating the entire
monolith. Contrariwise, current FaaS models put implemented
functionalities into separate services, and replicate the desired
services for scaling, as expressed in Figure 11(b). Apparently,
in FaaS, only services with higher demand will be scaled,
while the monolithic models anyhow waste resources.

Our F(X)-MAN model make a further improvement on
scalability. Except the advantages brought by general FaaS
models, F(X)-MAN also has a superb tailorability, which is
another way of assessing scalability [36]. For example, we can
directly instantiate the sub-services of a F(X)-MAN composite
service, and use them for new compositions, as illustrated in
Figure 11(c).

D. Reusability

Reusability is the capability of a previously implemented
service to be used again or used repeatedly in part or in its
entirely, with or without modification [38]. As aforementioned,
due to the loose couplings among F(X)-MAN services, for
a composite service, the reuse can happen at every level of

(a) (b)

(c)

Fig. 11. Comparison of scalability.

granularity, from the atomic services to itself. Hence, the
reusability of a concrete application also depends on the
software design, e.g., how many methods should be put in
a service. The details has been discussed earlier and demon-
strated in Figure 8.

E. Maintainability

Maintainability is a composition of three main subcharacter-
istics: analyzability, changeability, and understandability [39].
So, we perform the evaluation of maintainability based on
these three quality attributes, which are interpreted as follows:

• Analyzability. It describes the capability of model or
source code of a software to be diagnosed for deficiency.
In F(X)-MAN, a composite service can be analyzed from
two perspectives: the control flow can be identified by
its exogenous connectors, while the data flow can be
observed by data channels.

• Changeability. It refers to the possibility and ease of
modification in an application. Because of the low cou-
pling, we can change any service in an application
without effecting others, all we need to confirm is the
related data channels.

• Understandability. It indicates how easy to understand
an application by its developers and users. It becomes
obvious that an application constructed by F(X)-MAN is
a tree, whose structure visualizes the hierarchical compo-
sition of services. Moreover, every connector visualizes
a fixed semantic that can form a statement.

F. Evolvability

Evolution of software is inevitable in industry, due to the
changing requirements must be satisfied during the life cycle.
Thus, the cost of software mainly depends on the evolution in
long term. Thus, evolvability is the capability of an application
to enable its own evolution. In comparison with changeability,
evolvability refers to the change caused by new requirements.
As we presented before, the computational nature of F(X)-
MAN allows us replace any part of an F(X)-MAN architecture

214

with a new service in a simple fashion, while maintaining its
architectural integrity.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an algebraic and hierarchical compo-
sition model for FaaS. In the future, we plan to make an
empirical study for the evaluation of F(X)-MAN model and
implement a development tool.

ACKNOWLEDGMENTS

This work has been supported by the Initial Research Funds
for Young Teachers of Donghua University, the National Key
R&D Program of China under Grant 2019YFE0190500 and
Shanghai Engineering Research Center on Big Data Manage-
ment System.

REFERENCES

[1] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi,
“Cloud computing—the business perspective,” Decision support systems,
vol. 51, no. 1, pp. 176–189, 2011.

[2] M. Stigler, “Understanding serverless computing,” in Beginning Server-
less Computing. Springer, 2018, pp. 1–14.

[3] L. Carvalho and A. P. F. de Araújo, “Framework node2faas: Automatic
nodejs application converter for function as a service,” in Proceedings
of the 9th International Conference on Cloud Computing and Services
Science, vol. 1, 2019, pp. 271–278.

[4] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in 2009 Fifth International Joint Conference on
INC, IMS and IDC. Ieee, 2009, pp. 44–51.

[5] K.-K. Lau and S. di Cola, An Introduction to Component-based Software
Development. World Scientific, 2017.

[6] S. di Cola, C. Tran, K.-K. Lau, C. Qian, and M. Schulze, “A component
model for defining software product families with explicit variation
points,” in Proceedings of 19th International ACM SIGSOFT Symposium
on Component-Based Software Engineering. ACM, April 2016, pp. 79–
84.

[7] C. Qian and K.-K. Lau, “Enumerative variability in software product
families,” in Computational Science and Computational Intelligence
(CSCI), 2017 International Conference on. IEEE, 2017, pp. 957–962.

[8] R. Arshad and K.-K. Lau, “Reverse engineering encapsulated com-
ponents from object-oriented legacy code,” in Proceedings of The
30th International Conference on Software Engineering and Knowledge
Engineering. KSI Research Inc., July 2018, pp. 572–577.

[9] D. Arellanes and K.-K. Lau, “Exogenous connectors for hierarchical
service composition,” in Proceedings of 2017 IEEE 10th International
Conference on Service-Oriented Computing and Applications. IEEE,
2017, pp. 125–132.

[10] D. Arellanes and K.-K. Lau, “Algebraic service composition for user-
centric IoT applications,” in International Conference on Internet of
Things. Springer, 2018, pp. 56–69.

[11] I. Griffiths, Programming C# 8.0: Build Cloud, Web, and Desktop
Applications. O’Reilly Media, 2019.

[12] I. Kalb, “If, else, and elif statements,” in Learn to Program with Python
3. Springer, 2018, pp. 103–141.

[13] M. Ogihara, “The switch statements,” in Fundamentals of Java Pro-
gramming. Springer, 2018, pp. 245–261.

[14] S. Kedar, Principles Of Programming Languages. Technical Publica-
tions, 2008.

[15] C. Snow, Concurrent Programming, ser. Cambridge Computer Science
Texts. Cambridge University Press, 1992.

[16] W. Haque, “Concurrent deadlock detection in parallel programs,” In-
ternational Journal of Computers and Applications, vol. 28, no. 1, pp.
19–25, 2006.

[17] R. H. Netzer and B. P. Miller, “What are race conditions? Some issues
and formalizations,” ACM Letters on Programming Languages and
Systems (LOPLAS), vol. 1, no. 1, pp. 74–88, 1992.

[18] E. Organick, A. Forsythe, and R. Plummer, Programming Language
Structures. Elsevier Science, 2014.

[19] K.-K. Lau and C. Tran, “X-MAN: An MDE tool for component-
based system development,” in Proc. 38th EUROMICRO Conference
on Software Engineering and Advanced Applications. IEEE, 2012, pp.
158–165.

[20] B. Smith, Beginning JSON. Apress, 2015.
[21] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,

N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
computing: Current trends and open problems,” in Research Advances
in Cloud Computing. Springer, 2017, pp. 1–20.

[22] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison
of json and xml data interchange formats: a case study.” Caine, vol. 9,
pp. 157–162, 2009.

[23] S. J. Russell and P. Norvig, Artificial intelligence: A modern approach.
Malaysia; Pearson Education Limited,, 2016.

[24] P. Hamet and J. Tremblay, “Artificial intelligence in medicine,”
Metabolism, vol. 69, pp. S36–S40, 2017.

[25] F. J. Martı́nez-López and J. Casillas, “Artificial intelligence-based sys-
tems applied in industrial marketing: An historical overview, current and
future insights,” Industrial Marketing Management, vol. 42, no. 4, pp.
489–495, 2013.

[26] S. Parsaeefard, I. Tabrizian, and A. Leon-Garcia, “Artificial intelligence
as a service (AI-aaS) on software-defined infrastructure,” in 2019 IEEE
Conference on Standards for Communications and Networking (CSCN).
IEEE, 2019, pp. 1–7.

[27] X. Wang, J. Li, and C. Qian, “Semantic label prediction of mammog-
raphy based on CC and MLO views,” in Proceedings of 18th IEEE
International Conference on Machine Learning and Applications. IEEE,
2019, forthcoming.

[28] D. King, Current practices in software development: a guide to success-
ful systems. Prentice Hall, 1984.

[29] F. Coda, C. Ghezzi, G. Vigna, and F. Garzotto, “Towards a software
engineering approach to web site development,” in Proceedings of the
9th international workshop on Software specification and design. IEEE
Computer Society, 1998, p. 8.

[30] A. J. Offutt, M. J. Harrold, and P. Kolte, “A software metric system for
module coupling,” Journal of Systems and Software, vol. 20, no. 3, pp.
295–308, 1993.

[31] M. Hitz and B. Montazeri, “Measuring coupling and cohesion in object-
oriented systems,” 1995.

[32] G. Feuerlicht, “Simple metric for assessing quality of service design,”
in International Conference on Service-Oriented Computing. Springer,
2010, pp. 133–143.

[33] M. Mattsson, H. Grahn, and F. Mårtensson, “Software architecture
evaluation methods for performance, maintainability, testability, and
portability,” in Second International Conference on the Quality of
Software Architectures. Citeseer, 2006.

[34] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method
empirical study of function-as-a-service software development in indus-
trial practice,” Journal of Systems and Software, vol. 149, pp. 340–359,
2019.

[35] M. Anastaopoulos and C. Gacek, “Implementing product line vari-
abilities,” Fraunhofer Institut Experimentelles software Engineering,
Kaiserslautern, Germany, Technical Report IESE-Report No. 089.00/E,
Version 1.0, Nov. 2000.

[36] M. Laitinen, M. E. Fayad, and R. P. Ward, “Thinking objectively: The
problem with scalability,” Communications of the ACM, vol. 43, no. 9,
pp. 105–107, 2000.

[37] D. F. Garcia, G. Rodrigo, J. Entrialgo, J. Garcia, and M. Garcia, “Exper-
imental evaluation of horizontal and vertical scalability of cluster-based
application servers for transactional workloads,” in 8th International
Conference on Applied Informatics and Communications (AIC’08),
2008, pp. 29–34.

[38] S. Thakral and S. Sagar, “Reusability in component based software
development - a review,” World Applied Sciences Journal, vol. 31,
no. 12, pp. 2068–2072, 2014.

[39] E. Bagheri and D. Gasevic, “Assessing the maintainability of software
product line feature models using structural metrics,” Software Quality
Journal, vol. 19, no. 3, pp. 579–612, 2011.

215

Privacy-aware OrLa Based Access Control Model in
the Cloud

Pengfei Shao, and Shuyuan Jin∗
School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China

GuangDong Key Laboratory of Information Security Technology, Sun Yat-sen University, Guangzhou, China
Email: shaopf@mail2.sysu.edu.cn, jinshuyuan@mail.sysu.edu.cn

Abstract—In recent years, cloud computing has been widely
adopted by an increasing number of enterprises and individuals
because of its attractive features, such as its large scale, low
costs, and pay-per-use. Nevertheless, traditional access control
models cannot satisfy the security requirements of complex cloud
environments. In this paper, a privacy-aware access control model
(Pa-OrLaBAC) is proposed that emphasizes privacy protection
and flexibility. This model combines Organization based Ac-
cess Control (OrBAC) model with Label-based access control
(LaBAC) model and retains their respective advantages, making
it more suitable for the cloud. By introducing the concept of
purpose, the issue of lacking privacy protection is well addressed
and the problem of the separation of control and ownership
is alleviated to some extent. In order to get a more precise
access purpose, two methods (static declaration and dynamic
acquisition) and a negotiation module are also applied in this
model. Finally, we illustrate the use of Pa-OrLaBAC with a case
study and summarize this model.

Keywords—access control, cloud, privacy protection, flexibility

I. INTRODUCTION

There are many definitions of cloud computing, the most
widely accepted of which was proposed by the National Insti-
tute of Standards and Technology (NIST): “Cloud Computing
is a model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management
effort or service provider interaction” [1]. In recent years,
cloud computing has been adopted by an increasing number
of enterprises and individuals as a new computing model
because of its appealing characteristics, such as its ultra-large
scale, high scalability, high dynamics, low costs and pay-
per-use. In addition, users can obtain the required resources
through the network without geographical limitations. Despite
these benefits, the security of cloud computing remains a
major factor hindering its development. Therefore, ensuring
cloud security is one of the urgent tasks in cloud computing
environments [2].

Access control [3] is the fundamental security method for
the promotion and protection of network security and is used
to confirm or deny a request for one subject to access an object.
A proper access control model can prevent unauthorized
users from maliciously or unintentionally obtaining data [4].

DOI reference number: 10.18293/SEKE2020-038

Moreover, there are a huge number of users and a huge amount
of data in the cloud, making the traditional coarse-grained
access models based on pre-defined rules inappropriate.

The cloud-specific outsourcing business model separates
ownership and control. With the increasing number of com-
panies and individuals migrating their data to the cloud, the
protection of users' private information has become a major
focus in this field. Privacy is defined as the rights of individuals
to decide when, how, and to what extent their information
could be shared with others [5]. The Organisation for Eco-
nomic Co-operation and Development (OECD) Guidelines [6]
are the most widely adopted principles of privacy protection,
and they claim that purposes, conditions and obligations are
the key elements of privacy preserving access control models.
The primary concern of a privacy policy is the specific reason
why the data have been collected or used [7]. However, the
traditional access models are not designed to enforce privacy
policies and satisfy privacy protection requirements [8]. That
is because these models are based on guiding the operations
of the user on relative data [9].

Nevertheless, for now, few existing studies on access con-
trol models focus on both privacy protection and flexibility.
Considering the aforementioned reasons, the main aim of this
paper is to address the problem of privacy disclosures in
the cloud while ensuring the flexibility of the access control
model.

This paper proposes an extensible access control model for
privacy protection — the Privacy-aware OrLa based access
control model (Pa-OrLaBAC) — for cloud environments. The
features of this model are as follows.

1) Privacy-aware. By introducing the concept of purpose,
privacy protection is strengthened and the shortcoming,
which is the separation of ownership and control, of the
cloud is alleviated to some degree.

2) Flexibility. The presented model preserves the extensi-
bility of the Label-based access control model. In Pa-
OrLaBAC, other proper labels could be added according
to the specific requirements.

The rest of this paper is organized as follows: Section
II summarizes related works. Section III presents necessary
preliminaries to establish our model. Section IV details the
Pa-OrLaBAC model. Section V introduces a usage scenario.
Section VI concludes this paper and points out our future
direction.

216

II. RELATED WORK

Traditional access control models can be divided into three
main classes: discretionary access control (DAC) [3], manda-
tory access control (MAC) [10], and role-based access control
(RBAC) [9].

DAC restricts object access on the basis of the identity of the
subjects or the groups to which they belong. For now, it is the
most commonly used model in computer operating systems.
However, it does allow legitimate users to pass permissions or
rights to others, regardless of whether they are malicious or
not.

In MAC, only the system administrator or central authority
is responsible for designing and managing access control
policies that cannot be changed or granted by the users.
MAC is often used in military areas that require multi-level
security. Thus, this centralized authorization approach can
neither provide flexibility nor support the separation of duties
or Least Privilege.

RBAC was designed to solve the shortcomings of the
previous models. In RBAC, permissions are associated with
roles, and users gain accesses to objects by acquiring the
appropriate roles. RBAC satisfies the security needs of various
organizations and also improves the efficiency and reduces the
complexity of authorization management. However, due to the
many-to-many mapping relationships between roles and users,
when it is applied to the cloud, the role explosion problem
may occur, and the flexibility may be affected by the millions
of dynamic users and permissions that exist in commercial
networks [11].

As is shown above, traditional access control models are
not perfectly applicable to the cloud. Therefore, a variety of
new access control modes have been proposed. Among which
the attribute-based access control (ABAC) [12] model, the
organization based access control (OrBAC) [13] model, and
the label-based access control (LaBAC) [14] model are the
most representative.

In ABAC, access is granted or denied according to a set
of attributes that are associated with the subject, object and
environment. It does possess more granularity and flexibility
compared with traditional models. The main drawback of
ABAC is how to accurately select the attributes for access de-
cisions in a specific application environment such as the cloud
[11]. Otherwise, designing a rich computational language to
define attribute-based rules makes policy update and policy
review NP-complete or even indeterminate problems [14].

Mustapha Ben Saidi et al. [15] proposed an access control
model based on OrBAC that introduces the concept of the
Trusted Third Party. Their goal is to better control the external
connections of users with different accesses. To ensure a
continuity of critical infrastructures, Nawal AIT AALI et
al. [16] proposed an access control model based on trust
management using the OrBAC model. This model can both
manage different resource access policies from other organi-
zations and keep the trust between collaborating organizations.
By extending OrBAC with new entities and introducing a

new trust relationship among tenants, MA Madani et al.
[17] proposed an approach that ensures the access control
to the shared resources in a collaborative session in cloud
environments.

Roger E. Sanders [18] proposed a method for securing data
using label-based access control (LBAC) in which data are
protected by the security label. Only the administrator can
modify the labels. In [19], access is managed based on the
user label and the data label. Labels provide extra protection,
especially for sensitive data such as credit cards and Social
Security Numbers (SSNs). Chen et al. [20] proposed a novel
framework, the multi label-based access control model, which
uses different labels to provide access security for big data
applications. Chinnasamy P et al. [21] proposed a solution to
overcome data security defects by implementing multi label-
based scalable access control as a service for the cloud. This
model enables data owners to keep the authority over their
resources.

Although the OrBAC model considers the context when
making access requests and overcomes the limitation of di-
rectly binding permissions to roles, it is more suitable for
centralized structure because of lacking flexibility [11] and
it mainly restricts access control with respect to the subject.

LaBAC expresses authorization policies in the form of
enumeration, and it is a variable-grained access control method
that labels subjects and objects. Meanwhile the drawback,
the separation of ownership and control, that is caused by
cloud computing is alleviated. However, one concern about
this model is that the costs of storing the potentially large
number of enumerated tuples would be high [14]. Furthermore,
neither of them takes both privacy protection and the flexibility
of the access control model into account.

As we all know, utilizing multiple models with other en-
hancements may achieve a better result [22]. Inspired by this
thought, in this paper, we propose a new access control model
(Pa-OrLaBAC) for cloud computing. It could be an effective
method to ensure the security of data in cloud environments.

III. PRELIMINARIES

In this section, we introduce the required concepts that will
be used in the Pa-OrLaBAC model.

A. Organization based Access Control (OrBAC)

The core feature of OrBAC [13] is the organization, and it
defines a new level of abstract entities that are separated from
concrete ones. The entities of subject, action and object are
abstracted as role, activity and view, respectively. The other
entity is the context, which is used to specify the concrete
circumstances in which organizations grant role permissions
to perform activities on views. Unlike RBAC, in OrBAC,
after the subject is granted to the appropriate role, it no
longer immediately obtains the access permission to the object.
Instead, on the abstract level, the role obtains permission to
perform an activity on the view in a certain context. Then,
the access permission of the concrete level is derived from
the abstract one. To make this transition, OrBAC also defines

217

some relationships that associate abstract entities with concrete
ones. The framework of the model is shown as Figure 1.

• The Employ relationship
In this model, a Subject is an active entity, i.e., a user.
The entity Role indicates the status of the subject in the
organization. If org is an organization, s is a subject and r
is a role, then Employ (org, s, r) means that org employs
subject s in role r.

• The Use relationship
The entity Object is the resource being accessed. A View
corresponds to a set of objects that satisfy a common
property. If org is an organization, o is an object and v is
a view, then Use (org, o, v) means that org uses object o
in view v.

• The Consider relationship
The entity Action contains computer actions such as read,
write, and send. In some cases, different organizations
may decide that the same action comes under different
activities. Therefore, if org is an organization, α is an
action and a is an activity, then Consider (org, α, a)
means that org considers that action α falls within activity
a.

• The Define relationship
Contexts could be used to specify the concrete circum-
stances where organizations grant role permissions to
perform activities on views. If org is an organization,
s is a subject, o is an object, α is an action and c is a
context, then Define (org, s, o, α, c) means that within
organization org, context c is true among subject s, object
o and action α.

• The Permission relationship
This is the access authorization at the abstract level. If
org is an organization, r is a role, v is a view, a is an
activity and c is a context, then Permission (org, r, v, a,
c) means that organization org grants role r permission
to perform activity a on view v within context c.

• The Is permitted relationship
This is the concrete authorization that can be derived from
the abstract one. Is permitted (s, o, α) means that subject
s is permitted to perform action α on object o.

The procedure through which a subject can obtain permis-
sion to perform an action on the object is as follows:

Employ (org, s, r) ∧ Use (org, o, v) ∧ Consider (org, α, a)
∧ Define (org, s, o, α, c) ∧ Permission (org, r, v, a, c) −→
Is permitted (s, o, α).

Abstract Level

Concrete Level

Organization

Permission

Consider

Employ Use

Is_permitted

Activity Context

ViewRole

Subject

Action

Object

Fig. 1. Basic framework of OrBAC model.

B. Label-based access control (LaBAC)
The LaBAC [14] model expresses policies in the form of

enumeration. Every subject and object is tagged using labels.
A Label in LaBAC is a precise type of attribute. Values can be
assigned by the administrator. The basic framework of LaBAC
is shown in Figure 2.

In this model, the sets of users, objects and actions are
denoted by U, O and A, respectively. Users are associated
with a label function named uLabel, which maps the user to
one or more values from the finite set UL (user label values).
Similarly, the objects use oLabel to map the object label values
(OL). A policy consists of a subset of tuples from the set of
all tuples UL x OL. Only one policy can be defined for each
action, which is denoted as Policy a. If and only if the two-
tuples group (ul, ol) ∈ Policy a is true will the related action
be authorized.

An issue in LaBAC is that a complex access policy may
need many or a significantly large number of enumerated
policies to be defined. This may lead to a situation that the
number of labels is greater than the number of entities in the
system.

ObjectsPolicyUsers
UL

User label values

OL

Object label values

uLabel oLabel

Action

Fig. 2. Basic framework of LaBAC model.

C. Privacy protection
Typical privacy policies for data include purposes, condi-

tions and obligations. The obligation designates the actions
that must be followed after access is allowed. Conditions are
prerequisites that should be satisfied when any action can be
performed [23]. Purposes describe the reasons why the data are
collected or used [24]. Platform for Privacy Preferences (P3P)
defines the purposes as “the reason(s) for data collection and
use” and specifies a set of purposes (World Wide Web Con-
sortium). In commercial situations, purposes normally have
hierarchical associations, i.e., generalization and specialization
relationships. For instance, a group of purposes such as direct-
marketing and third-party marketing can be represented by
a more general purpose, marketing. We adopt the purpose
definition from Byun et al. [7].

Definition 1 (Purpose and Purpose Tree): A purpose de-
scribes the reason(s) for data collection and data access. A
set of purposes, which is denoted as Ω, is organized in a tree
structure, which is referred to as a Purpose Tree and denoted
as Φ. Each node in the Purpose Tree represents a purpose
in Ω and each edge represents a hierarchical relation (i.e.,
specialization and generalization) between two purposes.

Figure 3 shows an example of a purpose tree. For instance,
pi and pj are two purposes in Φ, and we say that pi is an
ancestor of pj (or pj is a descendent of pi) if there is a
downward path from pi to pj in Φ.

218

Service-Updates

General-Purpose

PurchaseShippingMarketing

Profiling

Admin

Third-Party Direct Analysis

D-EmailD-Phone

Special-Offers

T-PostalT-Email

Fig. 3. Purpose Tree.

For a set of purposes, R, in Φ, the following notations will
be used.
RN is the set of all nodes that are ancestors of the nodes in

R, including the nodes in R themselves.
RH is the set of all nodes that are descendants of the nodes

in R, including the nodes in R themselves.
R� is the set of all nodes that are either ancestors or

descendants of the nodes in R, that is, R� = RN ∪ RH.
Definition 2 (Access Purpose, AP): An access purpose is

used to access data objects, and it should be confirmed when
data are requested.

Definition 3 (Intended Purpose, IP): The intended purpose
is the data-related purpose that regulates data access. When
access is requested, the access purpose is checked against
the intended purposes. An intended purpose consists of two
components: the Allowable Intended Purposes (AIP for short)
and the Prohibited Intended Purposes (PIP for short).

Allowable Intended Purpose (AIP): Data providers explicitly
allow data access for a particular purpose.

Prohibited Intended Purpose (PIP): Data providers strictly
disallow data access for a particular purpose.

Therefore, an intended purpose (IP) is a tuple 〈AIP, PIP〉,
where AIP ⊆ Φ and PIP ⊆ Φ are two sets of purposes. We
adopt the denial-takes-precedence policy that PIP overrides
AIP if there are conflicts between the AIP and the PIP for the
same data element.

Definition 4 (Access Purpose Compliance): Let Φ be a
purpose tree. IP = 〈AIP, PIP〉 be an intended purpose and
AP be an access purpose that are defined over Φ, respectively.
AP is said to be compliant with IP according to Φ if and only
if the following two conditions are satisfied:

1. AP ∈ AIPH, and
2. AP /∈ PIP�.

IV. OUR PROPOSED MODEL

The access control model that is proposed in this work
combines the OrBAC with LaBAC and introduces the concept
of purpose. Its main framework is illustrated in Figure 4.

This paper only uses the “Purpose” label to protect pri-
vacy. By integrating the advantages of OrBAC and LaBAC,
flexibility and fine-granularity can be achieved. It should be
noticed that other proper labels could be added according to
the specific requirements. In the following statement, the same
parts that were previously depicted will not be described again,
and new components that are extended or modified in Pa-
OrLaBAC will be explained in detail.

Abstract Level

Concrete Level

Organization

Permission

ConsiderEmploy

Use

Is_permitted

Activity

Context
View

Role

Subject Action

Object

Purpose_comparePurpose_belong

Speculate

AP

APdy

IP

APst

Fig. 4. The main framework of Pa-OrLaBAC.

A. Context

In the traditional OrBAC, the actual circumstances in which
organizations grant role permissions to perform activities on
views could be clarified by using the entity context. In Pa-
OrLaBAC, contexts will be used to specify the concrete
conditions that organizations use to determine the dynamic
access purpose (APdy) of the role. The process of inferring
the APdy using the Context will be given later.

B. Access Purpose Authorization

a) Access Purpose: There are three possible ways to
confirm the access purpose [7]. First, the users can be required
to explicitly declare their access purposes along with the
requests. Obviously, this method is the easiest to implement.
Most privacy preserving access control models are based on
it. Nevertheless, it demands the complete trust of the subjects,
which is not suitable at all for an open environment. The
second possible method is that the system registers a special
access purpose for each application or stored procedure in
advance. It may not be used in complex applications or stored-
procedures scenarios in which subjects may access different
objects for multiple access purposes. The third is that access
purposes can be dynamically determined based on the current
context.

Considering that not all the users in the cloud are absolutely
trustworthy, in this paper, we use both the first and third
methods to identify the access purpose. Those access purposes
that are declared by users are named Static Access Pur-
poses (APst). Similarly, those purposes that are dynamically
determined are named Dynamic Access Purposes (APdy).
One thing that should be noted is that only the APsts are
dispensable.

Therefore, two new relationships and the Negotiation mod-
ule are defined as follows.

• The Speculate Relationship
This relationship is used to generate dynamic access
purposes. Speculate (org, c, r, APdy) means that if org is
an organization, c is the current context, and r is a role,
the dynamic access purpose APdy is true.
Suppose that an employee of a delivery company is
asking for access to a customer's address using a spe-
cific application during normal business time. We could

219

speculate that the APdy of this employee is shipping in
such a situation.

• The Purpose belong Relationship
Purpose belong(org, APst, APdy) → {True, False} is
used to determine the affiliation between APst and APdy .
If the user does not declare his own APst, we consider
that Purpose belong is always True. Under this circum-
stance, AP is APdy . Considering that this may lead to
a situation in which some malicious users could inten-
tionally hide their real access purposes, we introduce the
Negotiation module as a reward mechanism. Otherwise,
Purpose belong (org, APst, APdy) = True iff APst ∈
APHdy . Meanwhile, AP is APst.

• Negotiation module
This module is activated only when the user declares his
APst and APst /∈ APHdy . In this case, the data request is
not immediately terminated. Instead, the user can get a
second chance to modify his APst or the Context, which
means another opportunity to access the data item that
he is requesting.

Example 1. Suppose APdy = “Third-Party” is defined over the
purpose tree given in Figure 3.

Therefore, APHdy= {Third-Party, T-Email, T-Postal}.
1) If the user does not declare his APst, then his AP is “Third-

Party” by default.
2) If APst = “Direct” and APst /∈ APHdy , the Negotiation

module is activated, and the user will get a second chance
to modify his APst or the Context.

3) If APst = “T-Email”, APst ∈ APHdy , then Purpose belong
(org, APst, APdy) = True, the AP of the user would be
“T-Email”.

b) Intended Purpose: Before migrating data to the cloud,
a label named “intended purpose” is set for each item based
on the data owner's privacy preferences. As described above,
an intended purpose (IP) is a tuple 〈AIP, PIP〉.

Example 2. Suppose IP = ({Admin, D-Email}, {Third-
Party}) is defined over the purpose tree that is given in Figure
3. Thus,
AIPH = (Admin)H∪(D-Email)H = {Admin, Profiling, Anal-

ysis, D-Email, Special-Offers, Service-Updates}
PIP� = (Third-Party)� = {Third-Party, Marketing, T-

Email, T-Postal, General-Purpose}
c) Authorization: The relationship of Purpose compare

(org, AP, IP) → {True, False} is defined to determine the
compliance between the user's AP and the object's IP. The
access request could be allowed if and only if the AP satisfies
the pre-set rules of the intended purpose. That is, AP ∈ AIPH
∧ AP /∈ PIP�.

Example 3. Suppose AIPH and PIP� are discussed above.
Then, the access purposes that meet the authorization condi-
tions are {Admin, Profiling, Analysis, Special-Offers, Service-
Updates}.

C. Security Policy

We can now give the security policies that apply to such
an organization by adding our new entity AP to the access

policy. The relationship Permission(org, r, v, a, AP) means that
organization org grants role r permission to execute activity a
on view v based on the access purpose AP.

D. Concrete authorization

In Pa-OrLaBAC, the procedure through which a subject can
obtain permission to perform on the object is as follows:

Employ (org, s, r) ∧ Use (org, o, v) ∧ Consider (org, α, a)
∧ Speculate (org, c, r, APdy) ∧ Permission (org, r, v, a, AP) ∧
Purpose belong (org, APst, APdy) ∧ Purpose compare (org,
AP, IP) → Is permitted (s, o, α).

This means that if org employs subject s in role r, if org
uses object o in view v, if org considers that action α falls
within activity a, if organization org within the current context
c speculates the dynamic access purpose of role r is APdy , if
organization org grants role r permission to perform activity
a on view v for access purpose AP, if Purpose belong is
true, and if Purpose compare is true, then s has permission
to perform α on o.

V. A CASE STUDY

Medical informatization has become an inevitable trend of
modern medical care. Electronic medical record (EMR), as the
main carrier of medical information, plays an important role
in modern medical treatment. The EMR itself contains a large
amount of private information of the original owner, such as
name, date of birth, home address, and sensitive information
that is unwilling to be known to the outside world, such as
marital status and disease information. The leakage and illegal
use of this information may cause irreparable losses. However,
patients have limited control over their medical data, which
may lead to the disclosure of privacy information when EMR
is consulted.

The proposed method can help solve the above problem.
An Application Scenario: Hospital hosA uses this method

to manage its EMRs. John is treated in hosA whose attending
internist is Tim. Figure 5 shows the purpose tree of hosA.

Surgery Nursing

Care

General-Purpose

ArchiveMedical Treatment

Teaching

Research

Main Therapy Adjuvant Therapy Analysis

Health

Service

 Internal

Medicine

Consult

Fig. 5. The Purpose Tree of hosA.

Before submitting his EMR, John wanted to protect his
“personal information” as much as possible, so he set the
“intended purpose” label of it as ({Main Therapy, Archive},
{Research}). That is to say, for John’s personal information,
AIPH = (Main Therapy)H ∪ (Archive)H = {Main Therapy,

Internal Medicine, Surgery, Archive}.
PIP� = (Research)� = {Research, Teaching, Analysis,

General-Purpose}.
Tim is doing some researches at home. He requests access

to John’s EMR and declares his APst as “Medical Treatment”.

220

Meanwhile, hosA determines Tim’s APdy based on contextual
information that whether John is receiving treatment right now
or not, Tim’s geographic location, etc.

Assuming that the inferred APdy of Tim is “Teaching”.
Obviously, APst /∈ APHdy . Under this circumstance, the nego-
tiation module is activated. Tim could have a second chance to
modify his APst. If the condition is still not satisfied, access
will be denied. In the meantime, John’s “personal information”
could not be accessed by Tim. In other words, John’s “personal
information” was protected as he wished.

The proposed method can also help us protect our privacy
information from being leaked in other applications, e.g.,
banks and logistics. Depending on the actual requirement of
different usage scenarios, this access control model can be
adjusted dynamically by modifying the labels assigned to the
data which could be validity, security level, risk value, etc.

VI. CONCLUSIONS AND FUTURE WORK

For now, the access control models that are used by most
Cloud Service Providers are based on RBAC. As an extension
of RBAC, OrBAC overcomes the drawback that permissions
are directly bound to roles. However, lacking flexibility makes
OrBAC unsuitable for the cloud. In this paper, we presented
Pa-OrLaBAC, which integrates OrBAC with LaBAC and in-
troduces the concept of “purpose” as an effective means of
privacy protection.

Before data are migrated to the cloud, a label named
“intended purpose” is set for each data item based on the data
owner's privacy preferences. Only when the access purpose of
the subject is fully compliant with the intended purpose will
the request be allowed. As for access purpose, two approaches
and the Negotiation Module were applied to determine the
most reliable one.

Compared with the traditional access control models, Pa-
OrLaBAC alleviates the shortcomings of data control and
ownership separation while ensuring flexibility by introducing
purpose. Thus, it could be an effective method to protect
resources in cloud environments. However, obviously, the Pa-
OrLaBAC model still needs to be improved. In the future, we
plan to formally analyse the properties of the proposed model
compared to those of existing access control models, develop
an XACML profile of the proposed model and enable this
model to achieve dynamic access control.

VII. ACKNOWLEDGMENT

This research was supported by the following Grants:
the National Natural Science Foundation of China (Grant
No.61672494) and the Key Research and Development Pro-
gram for Guangdong Province (Grant No.2019B010136001).

REFERENCES

[1] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.
[2] M. A. AlZain, E. Pardede, B. Soh, and J. A. Thom, “Cloud computing

security: from single to multi-clouds,” in 2012 45th Hawaii International
Conference on System Sciences. IEEE, 2012, pp. 5490–5499.

[3] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”
IEEE communications magazine, vol. 32, no. 9, pp. 40–48, 1994.

[4] R. Sandhu, “Engineering authority and trust in cyberspace: The om-am
and rbac way,” in Proceedings of the fifth ACM workshop on Role-based
access control. ACM, 2000, pp. 111–119.

[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic databases,”
in VLDB’02: Proceedings of the 28th International Conference on Very
Large Databases. Elsevier, 2002, pp. 143–154.

[6] OECD, “Oecd guidelines on the protection of privacy and transborder
flows of personal data,” 1980.

[7] J.-W. Byun and N. Li, “Purpose based access control for privacy protec-
tion in relational database systems,” The VLDB JournalThe International
Journal on Very Large Data Bases, vol. 17, no. 4, pp. 603–619, 2008.

[8] S. Fischer-Hübner, IT-security and privacy: design and use of privacy-
enhancing security mechanisms. Springer-Verlag, 2001.

[9] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[10] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical
foundations,” MITRE CORP BEDFORD MA, Tech. Rep., 1973.

[11] J. Lopez and J. E. Rubio, “Access control for cyber-physical systems
interconnected to the cloud,” Computer Networks, vol. 134, pp. 46–54,
2018.

[12] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M.
Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone et al., “Guide
to attribute based access control (abac) definition and considerations
(draft),” NIST special publication, vol. 800, no. 162, 2013.

[13] A. A. E. Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miege, C. Saurel, and G. Trouessin, “Organization based
access control,” in Proceedings POLICY 2003. IEEE 4th International
Workshop on Policies for Distributed Systems and Networks. IEEE,
2003, pp. 120–131.

[14] P. Biswas, R. Sandhu, and R. Krishnan, “Label-based access control: An
abac model with enumerated authorization policy,” in Proceedings of the
2016 ACM International Workshop on Attribute Based Access Control.
ACM, 2016, pp. 1–12.

[15] M. B. Saidi, A. A. Elkalam, and A. Marzouk, “Torbac: A trust organi-
zation based access control model for cloud computing systems,” Int J
Soft Comput Eng, vol. 2, no. 4, pp. 122–130, 2012.

[16] N. A. Aali, A. Baina, and L. Echabbi, “Tr-orbac: A trust model for
collaborative systems within critical infrastructures,” in 2015 5th World
Congress on Information and Communication Technologies (WICT).
IEEE, 2015, pp. 123–128.

[17] M. A. Madani and M. Erradi, “How to secure a collaborative session
in a single tenant environment,” in 2015 International Conference on
Protocol Engineering (ICPE) and International Conference on New
Technologies of Distributed Systems (NTDS). IEEE, 2015, pp. 1–6.

[18] R. E. Sanders, “Securing data with label-based access con-
trol,” http://www.tridug.org/wp-content/uploads/2012/05/Understanding
LBAC.pdf, 2012.

[19] J. Leffler, “Label-based access control with ids cheetah,”
http://www.iiug.org/webcasts/replay/30may07.pdf, 2007.

[20] H. Chen, B. Bhargava, and F. Zhongchuan, “Multilabels-based scalable
access control for big data applications,” IEEE Cloud Computing, vol. 1,
no. 3, pp. 65–71, 2014.

[21] P. Chinnasamy and P. Deepalakshmi, “A scalable multilabel-based access
control as a service for the cloud (smbacaas),” Transactions on Emerging
Telecommunications Technologies, vol. 29, no. 8, p. e3458, 2018.

[22] A. Li, Q. Li, and V. Hu, “Access control for distributed processing
systems: Use cases and general considerations,” in 2017 IEEE 3rd
International Conference on Collaboration and Internet Computing
(CIC). IEEE, 2017, pp. 117–125.

[23] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C.-M. Karat, J. Karat, and
A. Trombeta, “Privacy-aware role-based access control,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 13, no. 3,
p. 24, 2010.

[24] E. Bertino, J.-W. Byun, and N. Li, “Privacy-preserving database sys-
tems,” in Foundations of Security Analysis and Design III. Springer,
2005, pp. 178–206.

221

Formal Modelling and Verification of
MCAC Router Architecture in ICN

Junya Xu1, Huibiao Zhu∗1, Lili Xiao1, Jiaqi Yin1, Yuan Fei∗2, Gang Lu1
1Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China
2 School of Information, Mechanical and Electrical Engineering,

Shanghai Normal University, Shanghai, China

Abstract—As Information Center Network (ICN) becomes a
candidate for the future Internet architecture, its security and pri-
vacy issues have aroused extensive attention. Mandatory Content
Access Control (MCAC) router architecture, which extends the
existing mainstream ones with hardware-rooted trust, is proposed
to implement MCAC protocol to protect privacy. Therefore, it
is necessary to study the security of this architecture from the
perspective of formal methods.

In this paper, we use the process algebra Communicating
Sequential Processes (CSP) to model and analyze MCAC router
architecture in ICN. By adopting model checking tool Process
Analysis Toolkit (PAT), we verify five important properties,
namely Deadlock Freedom, Key Faking, Level Mechanism, Data
Availability and Data Leaking. The results of verification show
the correctness and security of MCAC router architecture, from
which it can be concluded that this architecture is reliable.

Index Terms—MCAC Router Architecture, ICN, CSP, Model-
ing, Verification

I. INTRODUCTION

Information Centric Network (ICN) has been proposed as a
candidate for future Internet architecture [?]. It breaks the host-
centric pattern, replacing the traditional approach with end-
to-end connectivity and unique named data based on content
distribution architecture. Due to the fact that named data is
isolated from physical locations in the network, caching and
replication of data in ICN can more easily support network
storage and forwarding [?], [?]. Since ICN is attracting more
and more attention, security and privacy have also become the
important concern [?]. Some security and privacy issues have
been identified with current ICN architectures. For instance, as
one of the ICN architectures, Content-Centric Network (CCN)
[?] has been found that it still leads to data leaks, since it
allows that routers in the forwarding path can cache contents.

The traditional Mandatory Access Control (MAC) [?] pro-
vides confidentiality for the network by security level labels
mechanism. MAC is usually valid in a system, but not common
in large-scale distributed systems. Thus, it is difficult to be
applied in ICN. In order to address the issue, Li et al. [?]
have proposed Mandatory Content Access Control (MCAC) to
provide security protection for each component in ICN. Sim-
ilar to MAC, MCAC also provides security level mechanism
for different components to realize the security and privacy

∗Corresponding Authors. E-mail address: hbzhu@sei.ecnu.edu.cn (H. Zhu),
yuanfei@shnu.edu.cn (Y. Fei).

for data in ICN. Subjects including processes in routers and
objects such as contents and contest requests in MCAC, are
respectively labeled into four levels {h, n, d, p}, where the
relationship of label’s level is defined: h > n > d > p. In other
words, subjects in MACA can only read the objects with the
labels equal or lower than themselves.

Since MCAC policies are implemented by content routers
in ICN, Li et al. [?] proposed a design of MCAC router
architecture. This router architecture is based on the existing
router architecture and hardware-rooted trust, with the addition
of an authentication protocol. In previous work, A. Datta et al.
[?] have only verified the authentication protocol by using cord
calculus, but this architecture has not yet been modeled and
verified by using formal methods. In this paper, we propose
a formal verification of the security-related properties of this
architecture. First, we use CSP [?], [?] to model MCAC router
architecture in ICN. Then, we choose PAT [?] to verify some
properties of our system. The results of verification show that
the security of MCAC router architecture is still guaranteed
despite the presence of the intruder.

This paper is organized as follows. Section II gives a brief
introduction to MCAC router architecture and CSP. In section
III, we model the modules of one router in MCAC router
architecture in CSP. In section IV, we use PAT to implement
the model and verify five properties. Finally, we conclude this
paper and make a discussion on the future work in section V.

II. BACKGROUND

In this section, we give an overview of MCAC router
architecture and a brief introduction to CSP.

A. MCAC Router Architecture

To implement MCAC policies, routers need to make for-
warding decisions based on each content request and have the
function of storage to implement content caching. It mainly
consists of the following modules.
• Trusted Storage Module (TSM) is responsible for nego-

tiating secret keys with TSM on neighbor routers and
writing the secret keys into module TEM. In addition,
TSM also handles caching contents.

• Trusted Labeling Module (TLM) checks whether each
read operation and cache operation are legal by reading
the labels in content packets.

DOI reference number: 10.18293/SEKE2020-048
222

• Trusted Enforcement Module (TEM) provides private pro-
tection for some contents by encrypting the contents. In
addition, it also reclassifies the content labels according
to the reclassification rules.

The procedures of router communication based on MCAC
router architecture can be mainly divided into two stages: key
negotiation (Fig. 1) and transmission of content packets (Fig.
2).

Fig. 1. Process of Key Negotiation

As shown in Fig. 1, identity authentication is added to M-
CAC router architecture during the process of key negotiation.
In the beginning, all the modules should be verified for integri-
ty. Then TSM retrieves the private key ki. R1 as an initiator
sends the Diffie-Hellman exponent composed of private key to
R2. After receiving the message, the responder R2 sends its
own Diffie-Hellman exponent and signature including mutual
exponent and R1’s ID to R1. Then R1 replies a message with
signature to complete the authentication. R1 and R2 can get
the same key S by calculating the Diffie-Hellman exponents.
After generating their session keys, routers deliver these keys
to the corresponding TEM modules.

Fig. 2. Transmission of Content Packets

ContentProvider (CP) categorizes contents into four tag
levels before sending them. Thus each router in MCAC router
architecture needs to handle these contents in four situations
as shown in Fig. 2.
• In case (1), CP generates the content with label h and

sends the content to R1. After receiving the content, TLM

in R1 needs to check the label embedded in the content
at first. Because the label is h, the content is not sent to
TSM but directly forwarded to R2 after TEM encrypts it
using the key S. When R2 receives the content, it firstly
decrypts the content and repeats the process like R1.

• In case (2), the content labeled with n is provided by
CP for R1. TLM checks the label and sends the content
to TSM since the label is lower than h. Then, TEM
reclassifies the content by changing the content label from
n to h and encrypts the content before delivering to R2.
That is to say, R2 receives the content with label h and
performs actions like R2 in case (1).

• In case (3), CP generates the content with label d and
sends it to R1. After checked the label by TLM, the
content with label d means that the content is sent to
TSM and directly forwarded to R2 without encryption.
R2 performs the same actions in the process of the
communication.

• Case (4) is similar to case (3), the only difference is that
the content with label p can also be delivered to all the
applications.

B. CSP
CSP is a process algebra proposed by C. A. R. Hoare.

The language is mainly designed to describe and analyze
the behavior of concurrent systems and processes, which has
been successfully applied in modeling and verifying various
concurrent systems and protocols [?], [?].

We give the syntax of the CSP language used to describe
the process in this paper, where P and Q are processes, a
denotes the event and c represents the name of channel.

P,Q = Skip | Stop | a→ P | c?x→ P | c!x→ P |
P � Q | P ‖ Q | P C bBQ | P ;Q | P [|X|]Q

• Skip represents the process which does nothing but
terminates successfully.

• Stop denotes that the process does nothing and it is in
the state of deadlock.

• a→ P describes an object which first performs the event
a and then behaves like P .

• c?x → P receives a message through channel c and
stores the value in variable x and then the behavior is
like process P .

• c!x → P sends message x through channel c and then
behaves like process P .

• P � Q stands for the choice between process P and
process Q. The election is decided by the environment.

• P ‖ Q denotes that processes P and Q execute concur-
rently and are synchronized with the same communica-
tion events.

• P C b B Q indicates if condition b is true, the process
behaves like P , otherwise like Q.

• P ;Q describes that processes P and Q execute in se-
quence.

• P [|X|]Q denotes that the parallel composition of P and
Q performs the concurrent events on set X of channels.

223

III. MODELING

In this section, we formalize the model of MCAC router
architecture in Information Centric Networks.

A. Sets, Messages and Channels

In order to model the communication of routers and the
behaviors of the modules in a router, we give the definitions
of sets, messages and channels we use in this paper.

First, we introduce some sets we use in the model. Modules
set is composed of modules in the router including TSM, TEM
and TLM. Nonce set represents Diffie-Hellman exponents.
Key set consists of keys. Content set includes the contents
transmitted between the modules or routers. Label set defines
level of the content. ID set is the identity information of
routers, and Ack set contains acknowledgements.

Then, we define an encryption function E and a decryption
function D:

E(k,msg); D(k, emsg)

where the function E makes use of a key to encrypt the
message msg while the function D uses a key to decrypt the
encrypted message emsg. Therefore, we can get the following
conclusion:

D(k,E(k,msg)) = msg

Based on the above sets and functions, we describe the
following messages:

MSGdatE = {msge.g,msge.c,msge.E(k, c),msge.E(k, g, r)

| g ∈ Nonce, k ∈ Key, r ∈ ID, c ∈ Content}
MSGdatM = {msgm.m.n.k, msgm.m.n.c, msgm.m.n.l.c |

m,n ∈Module, c ∈ Content, l ∈ Label}
MSGack = {msgack.x | x ∈ Ack}
MSGpro = {msgpro.E(k1, g, r1).k.r, msgpro.E(k1, c1).k |

g ∈ Nonce, k ∈ Key, r ∈ Name, c ∈ Content}
MSGin = MSGack ∪MSGpro

MSG = MSGdatE ∪MSGdatM ∪MSGin

Here, MSGdatE represents messages transmitted between
the modules in adjacent routers. MSGdatM consists of mes-
sages sent between the modules in the same router. MSGpro

denotes messages delivered to a processing process and
MSGack represents the set of feedback information from the
processing process.

Next, we give the definitions of channels in this paper.
• channels of honest routers, using COMR PATH to rep-

resent:
ComTEM, ComTSM,

• channels of honest modules in the same router, using
COMM PATH to represent:

KeySet, ContentProcess, ContentCache
• channels of intruders who perform intercepting or faking

behaviors, defined by INTR PATH:
FakeTEM, FakeTSM

• channels of processing messages and feedback messages,
represented by PROC PATH:

CheckKey, GetData
• In addition, channels of normal communications, repre-

sented by COM PATH:
COM PATH = COMR PATH ∪COMM PATH

The declarations of channels are as follows:
Channel COM PATH, INTR PATH :

MSGdatE ∪MSGdatM

Channel PROC PATH : MSGin

B. Overall Modeling

In this paper, we focus on the messages transmission of
the modules inside a router and the external information
transmission with the modules on neighbor routers. Mean-
while, we also consider the presence of intruders in normal
communications. Note that in this paper, we allow intruders
to eavesdrop on or intercept communication messages between
routers, but these intruders are unable to obtain communication
message between modules within the same router. Fig. 3 shows
the communication between routers without intruders and Fig.
4 shows the communication with an intruder.

Fig. 3. Communication between Routers without Intruders

Fig. 4. Communication between Routers with an Intruder

Fig. 5. Communication between Modules in a Router

Since the structure and communication function of each
router are the same in MCAC router architecture, now we
present the model of one router. Therefore as described in
Fig. 5, any router can be abstracted as a system consisting
of three modules including TSM, TEM, TLM and a process
for internal information processing. That is to say, we do not
consider other internal components of the router in this router
architecture in this paper.

224

In order to take full account of the system security issues,
we also define the process INTRUDER to simulate intruders
who eavesdrop and tamper messages.

Based on the above descriptions, we formalize the whole
models System and SystemI as follows.

System() =df PROCESS() [|PROC PATH|] TEM0()

[|COM PATH|] TSM0() [|COM PATH|] TLM0()

SystemI() =df System() [|INTR PATH|] INTRUDER

Process System is composed of processes TSM0, TLM0,
TEM0 and PROCESS, which perform the concurrent events
on the sets PROC PATH and COM PATH of chan-
nels. Process SystemI consists of processes System and
INTRUDER, which perform the concurrent events on the
set INTR PATH of channels.

C. TSM Modeling
First, we formalize process TSM0 to describe the behaviors

of Trusted Storage Module in a router.

TSM0() =df Init{k = false,m = true} →
ComTSM !msge.g

k1 →
ComTSM?msge.g

k2 .E(k−1RB , (g
k1 , gk2 , RA))→

ComTSM !msge.E(k−1RA, (g
k1 , gk2 , RB)){kSA := (gk2)k1}

→ KeySet!msgm.s.e.kSA →
CheckKey!msgpro.E(k−1RB , (g

k1 , gk2 , RA)).kRB →
CheckKey?msgack.ack → (KeyFakingSuccess{k = true} → Skip)
Cack == Y ESB
(KeyFakingError{k = false} → Skip)

 ;

ContCache?msgm.l.s.c{l := GetLabel()} → (LevelMechanismErr{m = false} → Skip)
Cl == hB
(LevelMechanismCor{m = true} → Skip)

; TSM0()

The initial state of TSM0 is defined as m = true and k =
false, where m indicates whether the level mechanism is safe
and k expresses whether key is fake. The following actions
correspond to two parts including key negotiation and content
caching. By channel CheckKey, we check if the session key is
faked and GetLabel() is used to get the level labels of contents.

We need to take the possibility of intruder actions into
consideration, therefore, the messages on channel ComTSM
can be faked or intercepted. We apply the renaming to pro-
cess TSM0. TSM0 performs an action only on the channel
ComTSM , but TSM can perform an action either on channel
ComTSM or on channel FakeTSM .

TSM() =df TSM0()[[

ComTSM?{|ComTSM |} ← ComTSM?{|ComTSM |},
ComTSM?{|ComTSM |} ← FakeTSM?{|ComTSM |},
ComTSM !{|ComTSM |} ← ComTSM !{|ComTSM |},
ComTSM !{|ComTSM |} ← FakeTSM !{|ComTSM |}]]

D. TLM Modeling
TLM is responsible for identifying the labels in different

content packets. We formalize process TLM0 to describe the
behavior of Trusted Labeling Module in a router.

TLM0() =df ConPro?msgm.e.l.c {l := GetLabel()};
ConPro!msgm.l.e.h.c
Cl == hB

ContCache!msgm.l.s.c→ ConPro!msgm.l.s.n.c
Cl == nB
ConPro!msgm.l.s.c

;TLM0()

After receiving a content packet, TLM0 makes a judgement
about the label of the content packet and performs the corre-
sponding actions. Here, GetLabel() is used to get the level
labels of contents.

E. TEM Modeling
The process TEM0 describes the behavior of Trusted

Enforcement Module in a router which is formalized as follow.

TEM0() =df Init{a = false} → KeySet?msgm.s.e.kSA → (ComTEM?msge.E(kSB , c)
{c := D(kSA, E(kSB , c))} → ConPro!msgm.e.l.c)
�(ComTEM?msge.c→ ConPro!msgm.e.l.c)

 ;

GetData!msgpro.E(kSB , c)→ GetData?msgack.ack1→ (DataAcqcquisitionSuccess{a = true} → Skip)
Cackl == Y ESB
(DataAcqcquisitionError{a = false} → Skip)

 ;

(ConPro?msgm.l.e.h.c→
ComTEM !msge.E(kSA, c))
�(ConPro?msgm.l.e.n.c {n := h} →
ComTEM !msge.E(kSA, c))
�(ConPro?msgm.l.e.c→ ComTEM ! msge.c)

; TEM0()

We define the initial state of TEM0 as a = false, where
boolean variable a expresses data availability. At first, TEM0

receives a message including the negotiated secret key kS from
TSM0. Then if TEM0 receives the encrypted message from
its neighbor router, it makes use of the negotiated secret key
to decrypt the message and sends the content in the message
to TLM0 . If the content is not encrypted, it forwards the
content directly to TLM0. TEM0 can also check whether
the modules can get what it expects by channel GetData. In
addition, TEM0 needs to complete message encryption and
reclassification functions.

Similarly for TEM, we do this renaming to process TEM0.

TEM() =df TEM0()[[

ComTEM?{|ComTEM |} ← ComTEM?{|ComTEM |},
ComTEM?{|ComTEM |} ← FakeTEM?{|ComTEM |},
ComTEM !{|ComTEM |} ← ComTEM !{|ComTEM |},
ComTEM !{|ComTEM |} ← FakeTEM !{|ComTEM |}]]

225

F. PROCESS Modeling

Ultimately, we give PROCESS to simulate the internal
information processing procedure in a module.

PROCESS() =df

CheckKey?msgpro.E((k−1R1), gk1 , gk2 , R1).kR2 (CheckKey!msgack.Y ES → PROCESS())
CkR1 == kR2 && gk2 == gk2 fB
(CheckKey!msgack.NO → PROCESS())

�GetData?msgpro.E(kSB , c) (GetData!msgack.Y ES → PROCESS())
CkSB == kSA ‖ kSB == kS fB
(GetData!msgack.NO → PROCESS())

PROCESS is used to deal with whether the negotiated

session key is faked and whether the content can be transmitted
to the module requiring for it. Then it sends feedback messages
to TSM0 and TEM0 separately.

G. INTRUDER Modeling

We also regard INTRUDER as a process and it can
intercept messages transmitted on ComTSM and ComTEM
or fake messages on FakeTSM and FakeTEM at any time.

First, we define set FACT which contains all the facts that
can be learned by the intruder.

FACT =dfTSMs ∪ TLMs ∪ TEMs ∪MSGdatE

∪ {K,K−1,KS ,KS f} ∪ {N,Name}
∪ {E(key, content) | key ∈ {K−1,KS ,KS f},

content ∈ {N,Name,Content}}

Next, we define the rules to express how the intruder can
deduce new facts from what it has known, shown as follows:

{K,E(K−1, c)} 7→ c, {KS , E(KS , c)} 7→ c,

{KS f , E(KS f , c)} 7→ c, {K, c} 7→ E(K, c),

{KS , c} 7→ E(KS , c), {KS f , c} 7→ E(KS f , c),

F 7→ f ∧ F ⊆ F ′ ⇒ F ′ 7→ f

where, set F denotes the facts the intruder has known, and f
is the fact deduced from set F . F 7→ f represents that fact f
can be deduced from the set F .

The first three rules describe that the intruder can use the
corresponding key to decrypt the encrypted messages and get
some contents. In the same way, the next three rules represent
encryption. The ?nal rule is a structural rule, explaining that
the intruder can deduce fact f from a lager set F ′, if f can
be deduced from set F .

In addition, we define the Info function to represent the
facts which a intruder can learn from the intercepted and
eavesdropped messages:

Info(msge.g) =df {g} Info(msge.c) =df {c}
Info(msge.E(k, g, r)) =df {E(k, g, r)}

Info(msge.E(k, c)) =df {E(k, c)}
Info(msgm.m.n.k) =df {m,n, k}
Info(msgm.m.n.c) =df {m,n, c}
Info(msgm.m.n.l.c) =df {m,n, l, c}

where g ∈ Nonce, m, n ∈Module, k ∈ Key, r ∈ ID, l ∈
Label, c ∈ Content.

Finally, we declare a channel Deduce used for deducing
new facts:

Channel Deduce : Fact.P (Fact)
We allow that the intruder can overhear all the messages

transmitted between routers and learn all the facts from the
messages, but it cannot intercept the messages transmitted
between the modules in the same router. Meanwhile, the
intruder can fake a message if it has learned some facts and
deduce a new fact from known ones. Beyond that it can also
use a key that it knows in fake sessions.

Based on the above, now we give the formalization of
INTRUDER as below:

INTRUDER(F) =df

�m∈MSGE
FakeTSM?m→ INTRUDER(F ∪ Info(m))

��m∈MSGE∩Info(m)⊂FFakeTSM !m→ INTRUDER(F)

��m∈MSGE
FakeTEM?m→ INTRUDER(F ∪ Info(m))

��m∈MSGE∩Info(m)⊂FFakeTEM !m→ INTRUDER(F)

��f∈Fact,f 6∈F,F 7→fInit{e = false} → Deduce.f.F → (DaLeakSuc{e = true} → INTRUDER(F ∪ {f}))
C(f == c && f == h) || (f == c && f == n)B
(DaLeakErr{e = flase} → INTRUDER(F ∪ {f}))

When the intruder intercepts a message in MSGE , it can

deduce some information from this message, and it may also
replace some contents and send a fake message to other honest
entities.

IV. VERIFICATION

In this section, we use model checker PAT to implement the
formal model which has been formalized in section III. At the
same time, we carry out some security properties verification
of our system.

A. Security Specification
We want to check whether the intruder can intercept or fake

messages successfully in the whole system. Thus, we test if
our system is against the following specifications:

SPECTSM =df CHAOS (Σ− {|FakeTSM |})
SPECTEM =df CHAOS (Σ− {|FakeTEM |})

CHAOS(A) [?] is the most uncertain and divergent process
of alphabet A. It can perform any events from the alphabet
A, where Σ is the set of all events. For instance, if the
process TSM is allowed to perform any events except those
occurring on the channel FakeTSM , we can say that it
satisfies the specification SPECTSM =df CHAOS (Σ −
{|FakeTSM |}). If the system with the intruder refines these
specifications, it is indeed secure.

226

B. Properties Verification

In this subsection, we verify five properties: Deadlock
Freedom, Key Faking, Level Mechanism, Data Availability
and Data Leaking. As formalised above, SystemI() is used
to denote the model with an intruder and give the results of
verification at the end.
Property 1: Deadlock Freedom

#assert SystemI() deadlockfree;

The deadlock-free property is a primitive in PAT which
means a system can avoid the deadlock. This property verifies
whether our system can run into the deadlock state.
Property 2: Key Faking

#define Key Faking Success k == true;

#assert SystemI() reaches Key Faking Success;

We define Key Faking to denote the situation that the
intruder can break the mutual authentication between routers
and successfully tamper with the key.
Property 3: Level Mechanism

#define Level Mechanism safe m == true;

#assert SystemI() reaches Level Mechanism safe;

The property Level Mechanism means that contents can only
be processed and cached by higher-level processes in routers
to provide security and privacy.
Property 4: Data Availability

#define Data Acquisition Success a == true;

#assert SystemI() reaches Data Acquisition Success;

The property Data Availability represents that the contents
can be obtained by the modules which require these contents.
Property 5: Data Leaking

#define Data Leakaging Success e == true;

#assert SystemI() reaches Data Leakaging Success;

We say that a system satisfies this property, if an intruder
can intercept and crack the encrypted messages transmitted
between the honest entities. This property verifies whether the
content is leaked in the process of message transmission.

Fig. 6. Verification Result of the Properties in SystemI

As shown in Fig. 6, the properties Deadlock Freedom, Level
Mechanism and Data Availability are all valid, which means

that the system cannot run into the deadlock state and the
modules of routers can only process lower-level contents and
obtain what they want respectively. Meanwhile, we also find
the properties Key Faking and Data Leaking are invalid. These
two properties ensure the correctness of key authentication
and the security of data transmission in our model with the
intruder respectively. Therefore, we can get a conclusion that
data transmission in MCAC router architecture is safe.

V. CONCLUSION AND FUTURE WORK

This paper focuses on the security and correctness of
MCAC router architecture through formal methods. Firstly,
we have formalized three modules comprising TEM, TLM
and TSM in MCAC router architecture with CSP. Then we
verified five properties related to security through the model
checker PAT including Deadlock Freedom, Key Faking, Level
Mechanism, Data Availability and Data Leaking. Consequent-
ly, we can conclude that the correctness and security of
MCAC router architecture are guaranteed from the results of
verification.

In the future, we will follow with interest the other proper-
ties of MCAC router architecture. Meanwhile we will also
explore the way to model and verify other access control
solutions of ICN.

ACKNOWLEDGEMENT

This work was partly supported by National Key Research
and Development Program of China (grant no. 2018YF-
B2101300), National Natural Science Foundation of Chi-
na (grant no. 61872145), Shanghai Collaborative Innova-
tion Center of Trustworthy Software for Internet of Things
(grant no. ZF1213), the Fundamental Research Funds for
the Central Universities of China and the Opening Project
of Shanghai Trusted Industrial Control Platform (grant no.
TICPSH202003007-ZC).

REFERENCES

[1] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nick Briggs, Rebecca Braynard: Networking named content. Commun.
ACM 55(1): 117-124 (2012)

[2] Dinh Nguyen, Kohei Sugiyama, Atsushi Tagami: Cache the Queues:
Caching and Forwarding in ICN from a Congestion Control Perspective.
ITC 2016: 243-251

[3] Gavin Lowe, A. W. Roscoe: Using CSP to Detect Errors in the TMN
Protocol. IEEE Trans. Software Eng. 23(10): 659-669 (1997)

[4] Qi Li, Ravi Sandhu, Xinwen Zhang, Mingwei Xu: Mandatory Content
Access Control for Privacy Protection in Information Centric Networks.
IEEE Trans. Dependable Sec. Comput. 14(5): 494-506 (2017)

[5] PAT: Process Analysis Toolkit. http://pat.comp.nus.edu.sg/
[6] Anand Seetharam: On Caching and Routing in Information-Centric

Networks. IEEE Communications Magazine 56(3): 204-209 (2018)
[7] Towards seamless mobility in ICN : connectivity, security, and reliability.

(Vers une mobilit transparente dans le rseau ICN : connectivit, scurit, et
fiabilit). Pierre and Marie Curie University, France, 2018

[8] Stephen D. Brookes, C. A. R. Hoare, A. W. Roscoe: A Theory of
Communicating Sequential Processes. J. ACM 31(3): 560-599 (1984)

[9] Yuan Fei, Huibiao Zhu: Modeling and Verifying NDN Access Control
Using CSP. ICFEM 2018: 143-159

[10] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall,
Upper Saddle River (1985)

[11] Anupam Datta, Ante Derek, John C. Mitchell, Dusko Pavlovic: A
derivation system and compositional logic for security protocols. Journal
of Computer Security 13(3): 423-482 (2005)

227

Data-sparsity Service Discovery using Enriched

Neural Topic Model and Attentional Bi-LSTM

Li Yao, Bing Li, Jian Wang

School of Computer Science,

Wuhan University,

Wuhan, China

e-mail: jianwang@whu.edu.cn

Abstract—In recent years, the amount of Web services has

increased dramatically, and service discovery aiming to help users

identify appropriate services matching their requirements thus

becomes increasingly important. Many studies based on machine

learning techniques have been reported to improve the

performance of service discovery. A major obstacle in Web service

discovery is the data sparsity in service descriptions. Towards this

issue, in this paper, we propose a novel approach based on

enriched neural topic model (NTM) and attentional Bi-LSTM. To

alleviate the data sparsity issue, we enrich the semantics of each

word in service descriptions and queries using external knowledge

sources like Wikipedia and combine NTM and the attention

mechanism to minimize the noise brought in the enrichment

process. Experiments conducted on a real-world dataset show that

our approach outperforms several state-of-the-art methods.

Keywords-Web service; service discovery; attention mechanism;

neural topic model; Bi-directional LSTM

I. INTRODUCTION

Service-oriented architecture (SOA) facilitates a new
paradigm for system development and integration, where system
functionalities are encapsulated as loosely coupled and
interoperable services. A growing number of Web services or
cloud services have thus been created and published to meet the
interoperability and flexibility requirements of modern software
development in the cloud. The proliferation of Web services
offers convenience for developers; however, it also brings
difficulties in quickly selecting appropriate candidate services
from large scale service registries.

In existing service registries, Web services are usually
described in WSDL (Web Service Description Language) or
simple natural language texts. Since keyword matching adopted
in most service search engines may suffer from retrieving
irrelevant services or missing relevant ones, many efforts have
been made to address the service matching problem [1-5]. These
approaches could be approximately classified into two types.
The first group of approaches annotates services and queries
using domain ontologies and leverage ontology reasoning for
service matching. However, building such problem-specific
ontologies and annotating services is time-consuming and
sometimes impractical. The other group of approaches using
machine learning or deep learning techniques for service
matching. For example, topic models like Latent Dirichlet
Allocation (LDA) [8] are introduced to obtain the topic

distribution vectors of services and queries and calculate their
similarities. Topic models are also combined with word
embeddings [11] to alleviate the sparsity of semantic
information by leveraging the advantages of embedding models
in transforming words from discrete representations into high
dimensional continuous vector space. Furthermore, many
sequential models like LSTM [9] are also adopted as encoders
of input texts.

These machine learning or deep learning techniques have
made remarkable progress in many NLP (natural language
processing) tasks [3, 4, 17]. However, there are still many
obstacles to leveraging them in service discovery. On the one
hand, the words in service descriptions and queries are limited
and extremely sparse, which makes the complex models hard to
extract effective feature vectors from input texts. On the other
hand, the useful words extracted from service descriptions
represented in service description languages like WSDL can
hardly form a natural sentence and are lack of context
information, which are necessary for the model training of these
sequential models. To address this issue, we propose a novel
deep learning-based service matching model. In our model, we
enrich the semantics of each word in service descriptions and
queries using external knowledge sources (e.g., Wikipedia).
Because the enrichment process will inevitably bring noise, we
leverage a neural topic model to extract topic distributions from
enriched service descriptions and employ the attention
mechanism in weighing the various words in texts according to
their topic distributions. The contributions of this paper are
summarized as follows:

• We propose a novel service discovery approach by
combining Bi-LSTM and the neural topic model.

• We present a semantics enrichment technique to
generate better topic distributions for service
descriptions.

The rest of the paper is organized as follows. Section Ⅱ
discusses related work. Section Ⅲ introduces the details of our
approach, and Section Ⅳ shows the results of experiments.
Finally, Section Ⅴ concludes the paper and puts forward our
future work.

II. RELATED WORK

As a fundamental topic in services computing, Web service
discovery or matching has been extensively investigated in the

DOI reference number: 10.18293/SEKE2020-113

228

past decade. Web service discovery aims to identify appropriate
services according to user requirements, which could be
functional or nonfunctional. In this paper, we focus our attention
on matching functional requirements. Existing studies on service
discovery can be approximately categorized into two types:
ontology-based approaches, and machine learning or deep
learning-based approaches.

To overcome the limitation of keyword matching based on
the structure of WSDL documents, many ontology-based
matching techniques have been proposed. SAWSDL-MX [22]
and OWLS-MX [1] are the representatives of this type. These
approaches firstly annotate services and queries using domain
ontologies and then leverage ontology-based semantical
reasoning for service matching, which can obtain ideal discovery
performance based on ontological reasoning. However, the
major obstacle is the absence of appropriate ontologies for the
matching tasks since general-purpose ontologies will not work,
and it is time-consuming and sometimes impractical to construct
such problem-specific ontologies and annotate services and
queries using the ontologies.

With the prevalence of machine learning techniques, some
researchers leverage machine learning algorithms in service
discovery. At first, many clustering techniques are employed to
group similar Web services in advance. For example, Liu et al.
[3] and Elgazzar et al. [4] extracted functionality-related
elements, including content, type, message, port, and service
name from WSDL documents, which are regarded as the input
of subsequent clustering and matching processes. Zhang et al.
clustered service goals to improve discovery results [2, 5].
Recently, deep learning has become a mainstream tool for NLP
tasks, and there are also some attempts to employ techniques
such as word embedding in service discovery. For example, Tian
et al. [7] combined word embedding and LDA to improve the
performance of service discovery. Xiong et al. [17] leveraged the
strategy in service recommendation to generate textual features
from service descriptions.

To produce better feature vectors of service descriptions and
queries, attention mechanisms, together with LSTM, are also
widely adopted. For example, Cao et al. [15] applied attention
mechanisms and LSTM in Web service classification. Shi et al.
[16] leveraged attention-based LSTM in service
recommendation. In their work, service descriptions are
enriched internally to address the semantic sparsity. Besides,
Yang et al. [14] proposed a service classification approach by
combining CNN with LSTM.

Inspired by the studies that attempt to enrich service
descriptions and queries [6], in this paper, we introduce
explanations for each word according to its description on
Wikipedia into service descriptions and queries as the external
knowledge and enrich the descriptions to alleviate the data
sparsity problem. What’s more, in our model, a neural topic
model based on VAE (variational auto-encoder) [20] is
employed to extract topics, and an attention-based Bi-LSTM is
used as the encoder of service descriptions, which can help
obtain more accurate vector representations.

III. PROBLEM DEFINITION AND SOLUTION

In this section, we first state the problem to be studied. In
Section III.B, an overview of our approach is presented. In the
rest parts, we introduce modules of the proposed model in detail.
In Table I, we list the symbols frequently used in this section and
their corresponding meanings.

TABLE I. SYMBOLS USED IN THIS PAPER

A. Problem Definition

Suppose there are some candidate services in a registry.
Given a user query, the problem to be addressed in this paper is
how to properly match and rank services in the registry
according to the user query. During this process, descriptions of
services and queries (represented in WSDL or natural language
texts) are the only information we can leverage. More formally,
let 𝑂𝑞 denote the feature vector of a query 𝑞 and given a service

description 𝑠𝑖 (consisting of 𝐿 words) in 𝑆, the feature vector 𝑂𝑖
of 𝑠𝑖 can be extracted. The matching score between 𝑠𝑖 and 𝑞 is
𝑟�̂� =𝑐𝑜𝑠𝑖𝑛𝑒(𝑂𝑖 , 𝑂𝑞) . Consequently, the matching scores of all

services are 𝑅�̂� = {𝑟1̂, 𝑟2̂, … , 𝑟�̂�} , and our proposed approach
aims to return a list of services 𝑆𝑘 with 𝑘 highest scores.

B. Overview of Our Approach

Towards this problem, we proposed a Web service discovery
approach based on attentional Bi-LSTM and enriched NTM
(neural topic model), named as AENTM. As shown in Fig. 1,
our model consists of three parts:

1) Neural Topic Model
Each description of a service or a query is represented as a

bag-of-word vector 𝑋𝐵𝑜𝑊, and then the topic distribution 𝜃𝑠 is
generated from 𝑋𝐵𝑜𝑊 by a multi-layer perceptron. Besides, the
module needs to reconstruct 𝑋𝐵𝑜𝑊 from 𝜃𝑠.

2) Attention-based Bi-LSTM Encoder

A description of a service or a query, 𝑠𝑖, is converted into an
embedding matrix, and then fed into Bi-LSTM. The output is the
hidden state matrix 𝐻𝑠 , which contains the context feature of
each word in 𝑠𝑖.

Symbol Meaning

𝑆 A set of descriptions of services and queries

𝑠𝑖 A description of a service or a query

𝑋𝐵𝑜𝑊 The bag-of-words vector of 𝑠

𝐸𝑠 The embedding matrix of 𝑠

𝐻𝑠 The output hidden state matrix of 𝑠 in LSTM

𝐴𝑠 The weight vector of 𝑠

𝑂𝑠 The feature vector of 𝑠

𝜃𝑠 The topic distribution of 𝑋𝐵𝑜𝑤

𝐿 The number of words in 𝑠

𝑑𝑖𝑚 The dimension of word embeddings

𝑉 The size of the vocabulary in 𝑆

𝐾 The topic number in a topic model

𝑘 The number of top-ranked services in 𝑅�̂�

ℎ The hidden size of LSTM

𝑟�̂� The matching score of 𝑠𝑖 with a query

𝑅�̂� A list of matching scores of candidate services

229

Figure 1. The overall framework of the proposed model.

An attention mechanism takes 𝐻𝑠 along with 𝜃𝑠 as input, and
produces a weight vector 𝐴𝑠 for 𝑠𝑖 . Consequently, the feature
vector 𝑂𝑠 is produced by the multiplication of 𝐴𝑠 and 𝑂𝑠.

3) Similarity Calculation:
This module calculates the cosine similarity between feature

vectors of service descriptions and queries, and the results are
viewed as matching scores between them.

C. Enriched Neural Topic Model

NTM [20] is firstly proposed in a short text classification
model to address data sparsity. According to the successful
application of the neural variational inference mechanism in
topic modeling [18, 19, 21], topic distributions generated by the
neural topic model is analogous to Bayesian non-parametric
topic models. Inspired by [20], the neural topic model in our
approach is based on a variational automatic encoder trained on
the overall corpus composed by descriptions of services and
queries. Assume that the description of 𝑠𝑖 consists of words
{𝑤1, 𝑤2, … , 𝑤𝐿}, it is represented as a bag-of-word vector 𝑋𝐵𝑜𝑊
before being fed into the neural topic model. In the neural topic
model, the topic vector extracted by the model is represented as
𝜃 ∈ ℝ𝐾. Note that in this paper, we only describe the structure
and the data flow. More details can be found in [19, 20].

The first layer of NTM extracts hidden vector 𝜋, from which
the input of reparameterization is generated. Then, the latent
vector 𝑧 is the result of a reparameterization with parameter pair
(𝜇, 𝜎). Both 𝜇 and 𝜎 are generated from 𝜋 through a multi-layer
perceptron. To normalize 𝑧, a softmax function is applied to
generate topic vector 𝜃 ∈ ℝ𝐾. Given the vector 𝜃, the following
parts of the topic model are supposed to reconstruct the input
vector 𝑋𝐵𝑜𝑊, which will be employed as a decoder.

The calculation process of the neural topic model is
described as follows.

𝜋 = 𝑟𝑒𝑙𝑢(𝑾𝜋 ⋅ 𝑋𝐵𝑜𝑊 + 𝑏𝜋), (1)

𝜇 = 𝑟𝑒𝑙𝑢(𝑾𝜇 ⋅ 𝜋 + 𝑏𝜇), (2)

𝑙𝑜𝑔𝝈 = 𝑟𝑒𝑙𝑢(𝑾𝜎 ⋅ 𝜋 + 𝑏𝜎), (3)

𝐷𝑟𝑎𝑤 𝒛~𝓝(𝜇, 𝜎2), (4)

𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑟𝑒𝑙𝑢(𝑾𝜽 ⋅ 𝒛 + 𝑏𝜃)), (5)

�̂�𝐵𝑜𝑊 = 𝑟𝑒𝑙𝑢(𝑾𝝓 ⋅ 𝜃 + 𝑏𝜙), (6)

where 𝑾∗ and 𝒃∗ are parameters to be learned, 𝑟𝑒𝑙𝑢 is an
activation function, and softmax is the normalized function for
outputting topic distributions.

Due to the requirements of backward propagation, it is
important to adjust Equation (4) such that gradients of
parameters in the model are able to propagate. The
reparameterization can be described as:

𝑢 = 𝐷𝑟𝑎𝑤 𝑢~𝓝(0,1), (7)

𝑧 = 𝑢 ∗ 𝜎 + 𝜇. (8)

Equations (9) and (10) reveal the transformation from input
to a latent topic distribution, which is regarded as an encoder in
VAE. In addition, a decoder is employed to infer the output in
the form of bag-of-words from 𝜃. In our model, a multilayer
perceptron is treated as a decoder, and according to basic VAE,
the loss function is defined as:

ℒ = 𝐷𝐾𝐿(𝑞(𝑧)||𝑝(𝑧|𝑥)) − 𝔼𝑞(𝑧)[𝑝(𝑥|𝑧)], (9)

where 𝑝(𝑧|𝑥) represents the distribution of 𝑧 with the input 𝑥,
𝑞(𝑧) is the standard normal distribution, and 𝑝(𝑥|𝑧) is the
probability distribution output by the decoder when taking 𝑧 as
input.

As mentioned in the previous section, the descriptions of
services and queries are extremely sparse. To alleviate the issue,
we introduce explanations from Wikipedia for each word in the
description. In other words, for each word 𝑤𝑖 in a description,
our approach will search its corresponding explanation page in
Wikipedia and extract the first paragraph explaining 𝑤𝑖 . Note
that there are a few words that have no corresponding
explanation pages, and we ignore these cases and do not enrich
them.

The enrichment operation can thus bring auxiliary
information to the NTM module, which aims to improve the
quality of topic distribution as well as the attention module
further.

230

D. Attention-based Bi-LSTM

LSTM is widely applied in extracting features from texts.
Our model leverages a bi-directional LSTM (Bi-LSTM) to
capture information in the context of each word in the input
sequence. Furthermore, an attention mechanism is adopted to
weigh each word in the input sequence. More specifically, with
the latent topics induced by the NTM described previously and
the output of Bi-LSTM, the attention module produces a weight
vector in the output of Bi-LSTM. Finally, the weight vector 𝐴𝑠
and the hidden states 𝐻𝑠 are multiplied to obtain the feature
vector of the service description or query 𝑠𝑖 .

Figure 2. Attention-based Bi-LSTM Module

As shown in Fig 2, firstly, given a sequence of words 𝑠𝑖 =
{𝑤1, 𝑤2, 𝑤3, … , 𝑤𝐿}, we take the embedding of each word as the
input of Bi-LSTM. The output of Bi-LSTM is the hidden state
of each word. Next, hidden states of Bi-LSTM are concatenated
with topic distribution 𝜃𝑠 , and then processed into an
unnormalized weighted vector 𝑎𝑠 ∈ ℝ𝐿×1.

𝐸𝑠 = 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑠𝑖), (12)

(𝐻𝑠
 ⃖ , 𝐻𝑠

) = 𝐵𝑖𝐿𝑆𝑇𝑀(𝐸𝑠), (13)

𝐻𝑠 = [𝐻𝑠
 ⃖ , 𝐻𝑠

], (14)

𝑎𝑠 = 𝑾𝒂 ⋅ 𝑡𝑎𝑛ℎ(𝑾𝜽 ⋅ 𝜃𝑠 + 𝑾𝒉 ⋅ ℎ𝑖), (15)

𝐴𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑠), (16)

𝑂𝑠 = 𝐴𝑠
𝑇 ⋅ 𝐻𝑠, (17)

where 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 denotes the operation that maps words to
vectors using a pre-trained embedding model, and 𝐻𝑠 is the
result of the concatenation of two direction hidden states of Bi-

LSTM (𝐻𝑠
 ⃖ , 𝐻𝑠

). 𝐴𝑠 in Equation (16) is the normalized 𝑎𝑠 . As

the result of Equation (17), 𝑂𝑠 ∈ ℝ𝐿×2ℎ represents the feature
vector of 𝑠𝑖, which is fed into the similarity module subsequently.

Note that the encoder part of queries and services share the
same attention-based Bi-LSTM module.

E. Similarity Calculation Module

The similarity calculation module produces matching scores
from the input feature vectors of services and queries. Since the

corpus or words of queries and services can be processed
together, services and queries share the same NTM as well as the
same attention-based Bi-LSTM. We adopt the widely-used
cosine similarity to calculate their matching scores:

�̂� = 𝑅 ⋅ 𝑐𝑜𝑠𝑖𝑛𝑒(𝑂𝑠, 𝑂𝑞), (18)

where 𝑂𝑠 and 𝑂𝑞 denote the feature vectors of a service and a

query, respectively. In particular, the result of the cosine
function belongs to the interval [−1,1]. Nevertheless, in some
circumstances, different levels that measure the similarity
between the query and the service may exist. Here, 𝑅 is a
coefficient that scales the output of the cosine function to match
different situations.

IV. EXPERIMENTS

In this section, we evaluate our approach and explore the
factors that influence the performance of our model on a public
Web service dataset.

A. Experimental settings

1) Dataset Description: SAWSDL-TC1 is a WSDL

collection for the service retrieval test, which consists of 1080

Web services and 42 queries represented in WSDL documents.

These services belong to nine domains. A set of graded

relevance (ranging from 1 to 3) for each query is provided,

where 3 represents the highest relevance and 1 represents the

least relevance. We utilized several preprocessing steps,

including spelling correction, tokenization, stopword removal,

and lemmatization, to extract words from documents. We

employed the GooleNews2 as the pre-trained embedding.

Words absent in the dictionary of pre-trained embeddings were

removed in the descriptions. As mentioned before, we

leveraged Wikipedia to provide external knowledge for words

in descriptions.

2) Evaluation Metrics: We adopted several commonly used

evaluation metrics, including Precision, Recall, F1, and

Normalized Discounted Cumulative Gain (NDCG), to evaluate

the performance of our model. We evaluated the performance

of top k services in the ranking list, where k ranges from 5 to 30.

3) Competing Approaches: We compared our proposed

model with several state-of-the-art approaches.

• LDA [8]: LDA is a representative topic modeling
method. We employed LDA to generate topic
distributions for service descriptions and calculated the
cosine distances of topic distributions between queries
and candidate service descriptions.

• Lucene3: Lucene is a popular and high-performance text
search method, which is the basis of many search
engines. In our experiments, service descriptions were
indexed according to Lucene.

• Doc2Vec [13]: Doc2Vec is an unsupervised model
based on Word2vec. We trained a doc2vec model on
queries and service descriptions, and calculated the
cosine distance between their feature vectors.

1 http://projects.semwebcentral.org/projects/sawsdl-tc/

2 https://code.google.com/archive/p/word2vec/
3 https://www.elastic.co/

231

https://code.google.com/archive/p/word2vec/
https://www.elastic.co/

Figure 3. Performance comparison of different models

Figure 4. Impact of the topic number

• WMD [12]: WMD is a widely used method to
measure the similarity of two documents or sentences
based on a pre-trained word embedding. We used the
pre-trained embeddings trained on the GoogleNews.

• LSTM [9]: To explore the effect of the attention
mechanism and NTM module, we experimented on a
Bi-LSTM with the same configuration in our model.

• CNN+LSTM [14]: CNN is a popular encoder in text-
similarity calculation tasks [10]. In this experiment,
we encoded texts by two CNNs, and then sent the
output of the CNN encoder to a Bi-LSTM.

4) Parameter settings: The coefficient 𝑅 in Equation (18)

was set to 3 since the highest relevance level is 3. The

learning rate for the encoder part was set to 0.0003 and

trained with 30 epochs. The hidden size of Bi-LSTM was 150.

To ensure the reliability of our experiment, we conducted a

5-fold validation on the dataset.

B. Performance comparison

According to the result presented in Fig. 3, our approach
outperforms all competing methods across all ranking
positions, which shows the advantages of our approach in
addressing the data sparsity issue of Web services. More
specifically, as a representative IR technique, Lucene suffers
from a recall problem, and thus the performance decreases
when k increases. It is indicated that LDA addresses the issue
and achieves a good result in the precision, recall, and F1, but
it still suffers from lower NDCG scores. Compared with LDA,
deep learning approaches such as LSTM and WMD can
achieve similar performance on F1, while they show better
results on NDCG. Nevertheless, CNN+LSTM performs even
worse than LDA, which indicates that the architecture is not
very suitable for this task.

C. Impact of the topic number

We analyze the effects of parameter settings in our
approach. The topic number of a topic model is a vital
parameter that affects the performance as well as the quality
of the topic distribution. In our approach, the topic number is
still a hyperparameter that needs to be tuned on different
datasets. Fig. 4 shows the change of performance when the
topic number changes on the dataset. It is indicated that when
the topic number is set to 130, our approach can obtain the best
performance on all four metrics.

D. Response Time

Response time is an important consideration in service
discovery. The response time of all approaches is shown in
Table Ⅱ. Note that the deep learning methods were performed
with the help of a GPU (1080Ti), and other approaches were
calculated on a CPU (Intel Xeon E5-2630).

TABLE II. RESPONSE TIME COMPARISON

Method Response Time (ms)

LDA 428.74

LSTM 14.25

CNN+LSTM 23.36

AENTM 41.60

Lucene 2.29

WMD 4259.66

Doc2Vec 169.27

As shown in Table Ⅱ, as a proven high-performance
information retrieval technique, Lucene is the fastest approach.
WMD costs the longest response time due to its high time
complexity. The response time of LSTM, AENTM, and
CNN+LSTM is relatively low. Although our AENTM model
is relatively complicated, it does not take a much longer time
to match services.

232

E. Effects of enrichment

As mentioned before, the services in the dataset belong to
nine domains. To show the effects of the description
enrichment, we reduced the topic distributions of descriptions
(with 110-dimension vectors) generated by NTM to 2-
dimension vectors, and then clustered them into nine clusters,
as shown in Fig. 5. Moreover, the quality of clustering is
usually measured by the CH score. We found that after the
enrichment, the CH score increases from 2638 to 3180. Both
the CH score and the visualization can demonstrate that after
the enrichment of service descriptions, topic distributions
generated by NTM become more distinguishable and cohesive,
which further suggests that the enrichment can strengthen the
semantics of descriptions to a certain extent.

Figure 5. Change of topic clusters before/after the enrichment

V. CONCLUSIONS

In this paper, we propose a service discovery model by
integrating enriched NTM with attention-based Bi-LSTM. An
enrichment method is also adopted to leverage knowledge on
Wikipedia to alleviate the lack of sufficient semantics in
service descriptions. Experiments conducted on an open
dataset show that our approach outperforms several state-of-
the-art methods on discovery performance.

In the future, we plan to improve our approach from the
following aspects. Firstly, the enrichment in our model
employs the data on Wikipedia directly, which also brings lots
of noise. The explanation should be selected precisely, and it
may be helpful if techniques like attention mechanisms are
applied. Secondly, in our experiment, the NTM module is hard
to train due to the VAE part it leveraged, which needs to be
further investigated.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China (No. 2018YFB1402800), the National Natural
Science Foundation of China (No. 61832014), and the Natural
Science Foundation of Hubei Province of China (Nos.
2017CKB894 and 2018CFB511).

REFERENCES

[1] M. Klusch, B. Fries, and K. Sycara, “Automated semantic web service
discovery with OWLS-MX,” in Proceedings of the fifth international
joint conference on Autonomous agents and multiagent systems, May
2006, pp. 915-922.

[2] N. Zhang, J. Wang, K. He, and Z. Li, “An approach of service
discovery based on service goal clustering,” in 2016 IEEE International
Conference on Services Computing (SCC), June 2016, pp. 114-121.
IEEE.

[3] W. Liu, and W. Wong, “Web service clustering using text mining
techniques,” IJAOSE, 3(1), 2009, pp. 6-26.

[4] K. Elgazzar, A.E. Hassan, and P. Martin, “Clustering wsdl documents
to bootstrap the discovery of web services,” in 2010 IEEE International
Conference on Web Services, July 2010, pp. 147-154. IEEE.

[5] N. Zhang, J. Wang, Y. Ma, K. He, Z. Li, and X.F. Liu, “Web service
discovery based on goal-oriented query expansion,” Journal of Systems
and Software, 142, 2018, pp. 73-91.

[6] X. Hu, N. Sun, C. Zhang, and T.S. Chua, “Exploiting internal and
external semantics for the clustering of short texts using world
knowledge,” in Proceedings of the 18th ACM conference on
Information and knowledge management, November 2009, pp. 919-
928.

[7] G. Tian, J. Wang, Z. Zhao, and J. Liu, “Gaussian LDA and word
embedding for semantic sparse web service discovery,” in International
Conference on Collaborative Computing: Networking, Applications
and Worksharing, November 2016, pp. 48-59. Springer, Cham.

[8] D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, 3(Jan), 2003, pp. 993-1022.

[9] S. Hochreiter, and J. Schmidhuber, “Long short-term memory,” Neural
computation, 9(8), 1997, pp. 1735-1780.

[10] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A Convolutional
Neural Network for Modelling Sentences,” in Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics,
2014, pp. 655-665.

[11] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, “Efficient
estimation of word representations in vector space,” ICLR Workshop,
2013.

[12] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word
embeddings to document distances,” in International conference on
machine learning, 2015, pp. 957-966.

[13] Q. Le, and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning, 2014, pp.
1188-1196.

[14] Y. Yang, W. Ke, W. Wang, and Y. Zhao, “Deep Learning for Web
Services Classification,” in 2019 IEEE International Conference on
Web Services (ICWS), 2019, pp. 440-442. IEEE.

[15] Y. Cao, J. Liu, B. Cao, M. Shi, Y. Wen, and Z. Peng, “Web services
classification with topical attention based Bi-LSTM,” in International
Conference on Collaborative Computing: Networking, Applications
and Worksharing, 2019, pp. 394-407. Springer, Cham.

[16] M. Shi, and J. Liu, “Functional and contextual attention-based LSTM
for service recommendation in Mashup creation,” IEEE Transactions
on Parallel and Distributed Systems, 30(5), 2018, pp. 1077-1090.

[17] R. Xiong, J. Wang, N. Zhang, and Y. Ma, “Deep hybrid collaborative
filtering for web service recommendation,” Expert systems with
Applications, 110, 2018, pp. 191-205.

[18] Z. Cao, S. Li, Y. Liu, W. Li, and H. Ji, “A novel neural topic model
and its supervised extension,” in 29th AAAI Conference on Artificial
Intelligence, IAAI, 2015, pp. 2210-2216.

[19] Y. Miao, E. Grefenstette, and P. Blunsom, “Discovering discrete latent
topics with neural variational inference,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70, 2017, pp.
2410-2419. JMLR. org.

[20] J. Zeng, J. Li, Y. Song, C. Gao, M.R. Lyu, and I. King, “Topic Memory
Networks for Short Text Classification,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing,
2018, pp. 3120-3131.

[21] Y. Xiao, T. Zhao, and W.Y. Wang, “Dirichlet variational autoencoder
for text modeling,” arXiv preprint arXiv:1811.00135.

[22] M. Klusch, P. Kapahnke, and I. Zinnikus, “Hybrid adaptive web
service selection with SAWSDL-MX and WSDL-analyzer,” in
European Semantic Web Conference, May 2009, pp. 550-564. Springer.

233

Explainable Deep Convolutional Candlestick Learner

Jun-Hao Chen1 , Samuel Yen-Chi Chen2 , Yun-Cheng Tsai3 and Chih-Shiang Shur
1Department of Computer Science and Information Engineering, National Taiwan University

2Department of Physics, National Taiwan University
3School of Big Data Management, Soochow University

Corresponding Author: Yun-Cheng Tsai, pecutsai@gm.scu.edu.tw

Abstract
Candlesticks are graphical representations of price
movements for a given period. The traders can dis-
cover the trend of the asset by looking at the candle-
stick patterns. Although deep convolutional neural
networks have achieved great success for recogniz-
ing the candlestick patterns, their reasoning hides
inside a black box. The traders cannot make sure
what the model has learned. In this contribution,
we provide a framework which is to explain the rea-
soning of the learned model determining the spe-
cific candlestick patterns of time series. Based on
the local search adversarial attacks, we show that
the learned model perceives the pattern of the can-
dlesticks in a way similar to the human trader.
Keywords: local search adversarial attacks, ex-
plainable artificial intelligence, candlesticks, time
series encoding, financial vision.

1 Introduction
The candlestick patterns recognition lies at the heart of trad-
ing and the foundation of all technical analysis. Therefore,
understanding how to interpret candlestick is a critical step in
becoming a trader. Traders need a candlestick patterns recog-
nition tool to help them discover valuable information from
candlestick. Although object detection and pattern recogni-
tion technologies have been prevailed in the computer vision
field, traders generally cannot rely on these tools to gain in-
sights of the candlestick patterns due to the lack of acquiring
trading knowledge-based feature representations.

According to Tsai et al., they proposed an extended Con-
volutional Neural Networks (CNN) approach to recognize the
candlestick patterns automatically [4]. Even though the deep
learning based model has three significant advantages, in-
cluding non-linearity, robustness, and adaptive manner, the
traders cannot trust what the model recognizes the patterns
from these charts precisely without explainability. How-
ever, the deep learning based models have several disadvan-
tages, including lack of explanation capability [3] and diffi-
culty in designing models. These difficulties will hinder the
widely application of deep learning methodologies in critical

DOI reference number: 10.18293/SEKE2020-014

fields. We provide a framework based on adversarial attacks
to demonstrate the adaptiveness and robustness of our model.

1.1 Candlestick Pattern of Time Series
The candlestick draws in a coordinate system, with the hori-
zontal axis representing time and the vertical axis represent-
ing price. Time is from left to right on the X-axis. The near-
est candlestick is the latest corresponding period. Price is
from top to bottom on the Y-axis. The higher the position of
the candlestick, the higher the price in those markets at the
time. Conversely, the lower the position of the candlestick,
the lower the market price at that time. Following the chart
is drawn from historical prices according to specific rules.
These features help traders to see the price trend. The three
more common types of charts are histograms, line charts, and
the most widely used candlestick. The candlestick is origi-
nated from Japan in the 17th century and has been popular
in Europe and the United States for more than a century, es-
pecially in the foreign exchange market. As the most popular
chart in technical analysis, traders should have an understand-
ing of it. It is named after a candle, as shown in Figure 1.
Each bar of candlestick draws from open price, high price,

Figure 1: The shape of a candlestick.

lowe price, and close price. Open price is the first price during
the period. High price is the highest price during the period.
Low price is the lowest price during the period. Close price
is the last price during the period. If the close price is higher
than the open price, the candlestick follows the top of the can-
dle body is the close price; the bottom is the open price; and

234

the color is usually green or white. If the close price is lower
than the open price, the candlestick follows the open price
above the candle body; the close price below; and the color
is usually red or black. In some cases, the candlestick has no
hatching because the open or close price coincides with the
high or low price. If the candle is very short, the open and
close prices of the candlestick are very similar.

1.2 The 8 Most Powerful Candlestick Patterns
The trick is in identifying some commonly occurring candle-
stick patterns and then building a market context around it.
We provide the most eight common candlestick patterns to
analysis our explainable model as follows:

1. Morning Star is a visual pattern made up of a tall black
bar, a smaller black or white bar with a short body and
long shadows, and a third tall white bar. The middle
bar of the morning star captures a moment of market
indecision where the bears begin to give way to bulls.
The third bar confirms the reversal and can mark a new
uptrend. Figure 2 shows the morning star based on the
description.

2. Evening Star is a bearish candlestick pattern consisting
of the latest three bars: a large white bar, a small-bodied
bar, and a black bar. The pattern will be more visible
with a large black bar than with a small black bar. Fig-
ure 3 shows the evening star based on the description.

3. Bullish Engulfing forms when a small black bar is fol-
lowed the next bar by a large white bar, the body of
which completely overlaps or engulfs the body of the
previous bar.

4. Bearish Engulfing consists of an up white bar followed
by a large down black bar that eclipses or "engulfs" the
smaller up bar.

5. Shooting Star is a bearish bar with a long upper shadow,
little or no lower shadow, and a small real body nears the
low of the day. It appears after an uptrend.

6. Inverted Hammer looks like an upside down version of
the hammer candlestick pattern, and when it appears in
an uptrend is called a shooting star.

7. Bullish Harami is a black long bar followed by a white
smaller bar that the later one is completely covered by
the former. It indicates the end of a bearish trend.

8. Bearish Harami is composed of a long white bar and a
small black bar that the later one is completely covered
by the former. It indicates the end of a bullish trend.

1.3 Explain our Model
We use a Gramian Angular Field (GAF) time series encoder
to emphasize the time series features for the Convolutional
Neural Networks (CNN) model. The Gramian Angular Field
(GAF) is a new time series encoder proposed by Wang and
Oates [5]. It represents time series data in a polar coordi-
nate system and uses various operations to convert these an-
gles into the symmetry matrix. The GAF-CNN model is a
two-step approach including Gramian Angular Field (GAF)
time series encoder [5] and Convolutional Neural Networks

Figure 2: Illustration of Morning Star Pattern. The left-
hand side shows the appearance of the Morning Star pattern.
The right-hand side shows the critical rules of the Morning
Star pattern.

Figure 3: Illustration of Evening Star Pattern. The left-
hand side shows the appearance of the Evening Star pattern.
The right-hand side shows the critical rules of the Evening
Star pattern.

(CNN) model. Teh GAF encoder makes time series data
based on open, high, low, and close prices to GAF matrices.
Our GAF-CNN model can capture the 8 major candlestick
patterns with 90.0% accuracy. Then we would like to know
if the model learned the features as human seen. We use the
Local Search Attack Adversarial model [2] to attack the GAF
matrices. The attacked regions are on the main diagonal of
the GAF matrices. We defined these 10 bars based on the
rules. The last 3 bars form the OHLC patterns, and a trend
emerges in the rest of the bars. Figure 4 illustrates the attack
region on GAF matrix. 1500 GAF matrices were attacked in
each label. If most of the GAF matrices can be attacked suc-
cessfully, it means the region human seen is similar to what
the GAF-CNN model has learned.

Figure 4: The GAF matrix for the local search attack. In this
work, we attack the diagonal elements as these locations

235

2 Methods
2.1 GAF-CNN
The paper uses the summation version of the GAF. Each el-
ement of the GAF matrix is the cosine of the summation of
aspects. Our first step is to making a GAF matrix to normal-
ize the given time series data X into values between [0, 1].
The following equation shows the simple linear normaliza-
tion method

x̃i =
xi −min(X)

max(X)−min(X)
,

where x̃i represents the normalized data. After normalization,
our second step is to represent the normalized time series data
in the polar coordinate system. The following two equations
show how to get the angles and radius from the rescaled time
series data. Finally, we sum the aspects and use the cosine
function to make GAF = cos(φi + φj). Equation 1 and 2
show how to get the angles and radius from the rescaled time
series data. Finally, we sum the angles and use the cosine
function to make the GAF as equation 3.

φ = arccos(x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ X̃ (1)

r =
ti
N
, ti ∈ N (2)

GAF = X̃T · X̃ − (I − X̃2)
T
2 · (I − X̃2)

1
2 (3)

The GAF has two essential properties.The first, the mapping
function from the normalized time series data to GAF is bijec-
tive when φ ∈ [0, π]. In other words, normalize data to [0, 1]
can transform the GAF back into normalized time series data
by the diagonal elements. The second, in contrast to Carte-
sian coordinates, the polar coordinates preserve absolute tem-
poral relations. Once the GAF transform completed, the 3-d
data can be inputs for the CNN model training. The architec-
ture of our CNN model is similar to LeNet [1], including two
convolutional layers with 16 kernels and one fully-connected
layer with 128 densest.

2.2 Local Search Attack
There are several adversarial machine learning models to
study the robustness of trained deep neural networks (DNN)
models. The aim of these models are to generate input ex-
amples that are very close to the legitimate ones while caus-
ing the model to misclassify. There are two types of such
models. One of them is white-box attack, in which the at-
tacker know the complete model parameters. The other one
is the black-box attack, in this case, the attacker does not have
the model parameters, however, the attacker can try or query
this model and read its outputs. In general, it is harder to
attack a model if we do not have the information about it.
Surprisingly, it has been shown that it is possible to success-
fully attack a model without the knowledge of its parameters.
Further, it is even not necessary to perturb the whole input
image. In local search adversarial attack method [2], it is
possible to attack a handful of points in an image through the
local greedy search. With this in mind, we hypothesize that
if we can make the classifier to misclassify through perturb-
ing only a small number of pixels on the image, it is highly
possible that these pixels are crucial for the model to classify.

Algorithm 1 Local Search Attack
Load a single GAF two-dimensional array A
Set T = length of the time series
Keep a copy of A in memory D
Initialize the counter t = 0
for episode = 1, 2, . . . , R do

if t = 10 then
Reinitialize the A to the original value from memory D
Reset the counter t = 0

end if
for l = 1, 2, . . . , T do

Sampling a random perturbation scale rl from uniform
distribution [0.8, 1.2]

Calculate the perturbated result = rl ×A[l, l]
if rl ×A[l, l] ≥ 0.5 ∨ rl ×A[l, l] ≤ −0.5 then

A[l, l] keeps the original value.
else

Set A[l, l] = rl ×A[l, l]
end if

end for
t = t+ 1
Recalculate the time series from perturbated A and then en-

code into a new GAF matrix A′

if A′ is adversarial then returnA′

end if
end for

We apply the following scheme to investigate the possible
regions that are critical for the classification process. Logi-
cally, if a pixel is important in the final classification result,
then a perturbation of that pixel should result in a degrada-
tion of the confidence score or even a misclassification. To
achieve of this, we propose a method which is modified from
the local search attack [2]. First of all, we define the set of
points that can be perturbed. In this work, in order to maintain
the consistency of the original time series data and the GAF
matrix, we only perturbate the diagonal elements in the GAF
matrix. Once we obtain the perturbated diagonal elements,
we then calculate the corresponding values of non-diagonal
elements and output the perturbated GAF matrix. Secondly,
send this perturbated GAF into the CNN model to get the
classification results. If the perturbated input is not misclassi-
fied, simply repeat the procedure described above. The detail
of the algorithm is in Algorithm 1.

The parameters of our local search attack model are r =
uniform(0.8, 1.2); d = 0; t = 10; R = 150; and reset = 10.

3 Experimental Results
We use EUR/USD 1-minute open, high, low, and close price
data to produce our experimental results. The training data
is from January 1, 2010 to January 1, 2016. The testing data
is from January 2, 2016 to January 1, 2018. There are eight
patterns and each label includes 1500 samples. If the pattern
does not belong to any one of the eight patterns, we set the
kind of patterns as the label 0 and there are 3000 samples.
These data produce the following results. Figure 5 shows the
result of attacked morning star pattern and Figure 6 shows the
result of attacked evening star pattern. With the modified lo-
cal search attack model, we can reach 64.36% success attack
rate on average. Table 1 presents the full results with at least

236

40.0%. This result suggests that it’s plausible to focus attack
region on the diagonal. Our GAF-CNN model actually rec-
ognizes the diagonal patterns, where the last 3 bars form the
major patterns and the rest represent the trend. According to

8th 8th

(a) The first attack result example.

8th 8th

(b) The second attack result example.

Figure 5: The attack result example of morning star pattern.
The left hand side shows the original pattern, and the right
hand side shows the pattern after attack.

9th 9th

(a) The first attack result example.

9th 9th

(b) The second attack result example.

Figure 6: The attack result example of evening star pattern.
The left hand side shows the original pattern, and the right
hand side shows the pattern after attack.

subsection 1.2, the morning star composes a downtrend and
three-bar pattern, including a large black bar, a small-bodied
bar, and a white bar. Figure 5-(a) shows that most of the bars
change insignificantly after the perturbation. The front por-
tion of candlestick remains downtrend, but the 8th bar reduces
significantly. The changing of the 8th bar makes the pattern
violate the morning star rules and lead to misclassification.
In Figure 5-(b), there is some changing in the front portion,
but still, obey the downtrend rules. The 8th bar also reduces
significantly, causing the misclassification. The evening star
pattern composes of the uptrend and three-bar pattern: a large
white bar, a small-bodied bar, and a black bar. After the per-
turbation, the three-bar design violates the rules. Figures 6-
(a) and 6-(b) show that the 9th bar changes significantly, and

Label Success Rate Percent (%)
1 631 / 1500 42.1
2 972 / 1500 64.8
3 1079 / 1500 71.9
4 1319 / 1500 87.9
5 602 / 1500 40.1
6 932 / 1500 62.1
7 953 / 1500 63.5
8 1238 / 1500 82.5

Table 1: The attack ratio of local search attack for each label.

the last bar becomes smaller, making the whole pattern invis-
ible. The results show that our local search adversarial attack
approach can explain the GAF-CNN model learned as hu-
man has seen and understand how GAF-CNN model recog-
nize candlestick pattern. Our explainable GAF-CNN model is
trustworthy and reliable for traders compared to others with-
out knowing the underlying learning experience.

4 Conclusion
The paper has two contributions. The first is that our GAF-
CNN model constructs an innovation field of financial vi-
sion research for candlestick recognition. The second is
that we propose an approach based on the modified local
search adversarial attack to explain the reason for the GAF-
CNN model on how to determine the different candlestick
patterns. Our GAF-CNN model can identify eight types of
the candlestick and understands the feeling as a human has
seen. We can confirm that the GAF-CNN model has in-
deed learned the sense of the candlestick from the trader.
The GAF-CNN will be perfect for building a complete ex-
plainable trading model. We provide an open-source imple-
mentation and training data for the paper in the following
URL: https://github.com/pecu/FinancialVision.

References
[1] Y. LeCun et al. Lenet-5, convolutional neural networks.

URL: http://yann. lecun. com/exdb/lenet, page 20, 2015.
[2] N. Narodytska and S. Kasiviswanathan. Simple black-

box adversarial attacks on deep neural networks. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 1310–1318,
July 2017.

[3] W. Samek, T. Wiegand, and K.-R. Müller. Explain-
able artificial intelligence: Understanding, visualizing
and interpreting deep learning models. arXiv preprint
arXiv:1708.08296, 2017.

[4] Y.-C. Tsai, J.-H. Chen, and C.-C. Wang. Encod-
ing candlesticks as images for patterns classification
using convolutional neural networks. arXiv preprint
arXiv:1901.05237, 2019.

[5] Z. Wang and T. Oates. Encoding time series as images
for visual inspection and classification using tiled con-
volutional neural networks. In Proceedings of the 2015
Association for the Advancement of Artificial Intelligence
(AAAI) Workshops, pages 40–46, 2015.

237

https://github.com/pecu/FinancialVision

Conditional Normalizing Flow-based Generative

Model for Zero-Shot Recognition

Haiping Zhang, Xinwei Zhu, Dongjin Yu

School of Computer Science

Hangzhou Dianzi University, HDU

Hangzhou, China

zhanghp, zhuxinwei, yudj@hdu.edu.cn

Liming Guan, Zhongjin Li

School of Information Engineering

Hangzhou Dianzi University, HDU

Hangzhou, China

glm@hdu.edu.cn, lzjhdu@163.com

Abstract—Most existing studies on zero-shot recognition（ZSR）
are typically about learning a shared embedding space to allow

comparison of class prototypes by using nearest-neighbor methods,

which suffer from hubness and bias problem. Recent studies

attempted to directly synthesize samples of unseen classes by using

generative model and have not encountered the aforementioned

problems. However, their performance is limited by the inherent

problems of VAE and GAN, such as reconstruction loss, mode

collapse and unstable training procedure. In this paper, we explore

and exploit a novel architecture of the generative model for ZSR,

referred to as conditional normalizing flow-based generative

model (CNFG). The proposed model consists of a cascade of affine

couple transformations and can capture the low-distribution

modes of real data density by virtue of its stable and exact log-

likelihood maximum training procedure. Extensive experiments

and result comparisons of 5 benchmarks have indicated that the

normalizing flow-based model is superior to other generative

models for ZSR in generalized settings.

Keywords—zero shot recgnition, generative model, affine couple

transformation, hubness problem, model collapse

I. INTRODUCTION

Zero-shot recognition (ZSR) is a learning paradigm that
attempts to recognize one object without any (or with zero)
annotated data of the object in the training set. Motivated by the
learning paradigm of human cognition, ZSR uses auxiliary
semantic information of the category to train an effective model,
which is required to correctly recognize not only the categories
that appear in the training set (seen class) but also those that do
not appear in the training set (unseen class). The key point of
ZSR is to effectively explore and leverage the semantic
knowledge of category that are shared between the seen and
unseen class. Early studies on ZSR have mainly focused on the
identification of a discriminative semantic representation of
categories, such as semantic attributes or word embedding of
labels. Leveraging these semantic knowledges, a mapping
function from a visual/semantic embedding space to a shared
embedding space is learned in the training set and then applied
to the testing set. The data distribution of the two domains
considerably vary. Thus, several intrinsic problems of the
existing mapping-based methods are encountered.

Hubness Problem: [1] has theoretically and empirically
demonstrated that hubness curse is an intrinsic characteristic of

data distribution density in a high-dimensional space. That is,
some hub vector points, which are not similar to other vector
points, may be near many other points in a high dimensional
space if measured using the nearest-neighbor search methods.
The category label in the paradigm of mapping-based ZSR
methods is determined by using the nearest-neighbor classifier
to identify the most similar class prototype in the shared
embedding space. Thus, [2] argue that the hubness problem also
severely pollute the existing zero-shot method.

Domain Shift and Bias Problem: [3] argue that the
mapping function, which is learned from the seen class, is often
biased when applied directly to the unseen class because of
disjoint classes and the inconsistent manifestation of visual
attributes between training data and testing data. This occurrence
is referred to as the projection domain shift problem.
Coincidentally, [4] also empirically show that the learned
mapping function does not perform well in the generalized
setting because mapping functions are biased either toward the
seen class or the unseen class.

Generative models have recently shown great potential for
ZSR and have not encountered the aforementioned problems.
These generative model-based ZSR methods attempted to
synthesize samples of unseen classes conditioned by the
semantic information by using variational autoencoder (VAE) or
generative adversarial network (GAN) and cast zero-shot
problem as a traditional supervised recognition problem. In this
present study, we introduce a novel architecture of the generative
model for ZSR, referred to as conditional normalizing flow-

DOI reference number: 10.18293/SEKE2020-093

Figure 1. Overall pipeline of the proposed model

238

mailto:glm@hdu.edu.cn

based generative model (CNFG), which consists of a cascade of
affine couple transformations and can capture the low-
distribution modes of real data density by virtue of its stable and
exact loglikelihood maximum training procedure.

To summarize, the main contribution of this study is
threefold.

1) To the best of our knowledge, we are the first to explore
and exploit the normalizing flow-based generative model to
synthesize unseen data for ZSR problem.

2) We theoretically analyze and derive the formula of our
proposed model and argue that our model can capture the low-
distribution mode from real data density.

3) We also conduct extensive experiments and comparisons
on 5 benchmarks, which shown that the normalizing flow-based
generative model is superior to other generative models for ZSR
in generalized settings.

II. RELATED WORK

Most existing studies on ZSR are typically about learning a
shared embedding space to allow comparison of class prototypes
by using nearest-neighbor methods. The pioneering work [5] is
the first to propose embedding each class label into the space of
attribute vector and cast earlier attribute-based multi-task
learning as a label-embedding problem. ESZSL [6] argue that
existing approaches to ZSR are highly sophisticated and propose
a simple but effective compatibility function to model the
relationship between visual embedding and attribute vector by
explicitly regularizing the objective function. Prompted by the
encoder-decoder paradigm, SAE [7] present a novel architecture
consisting of two components. The encoder is responsible for
projecting a visual representation into the semantic space similar
to most existing ZSR models, and an additional decoder
performs the reconstruction from a semantic representation to
the visual space. Instead of embedding into a semantic space,
DEM [8] propose to use the visual embedding space as the
shared embedding space, which less frequently encounters the
hubness problem. [9]innovatively introduce graph convolutional
network (GCN) for predicting the class visual prototype by using
both semantic embedding and the categorical relationships, with
semantic embedding as input and visual embedding space as the
shared embedding space.

Moreover, generative models have recently shown great
potential for ZSR. GAMM [10] compare four different
architecture of conditional data generators and emphasize the
importance and efficiency of aligning the distributions of real
and fake data by using explicit measure metric of distribution
divergence, such as the KL divergence and maximum mean
discrepancy. CVAE [11] uses the vanilla conditional variational
auto-encoder (cVAE) model to directly generate samples
conditioned by the given attribute representation for the class.
SE-GZSL [12] further introduce a feedback-driven mechanism
for cVAE architecture, which is coupled with a multivariate
regressor to learn a projection from the cVAE decoder output to
the representation of attributes that help increase the
discriminative nature of the generated data. f-CLSWGAN [13]
enhances Wasserstein GAN by adding a classification loss to the
original generator loss for ZSR and enforces the model to

generate sufficient image features that are more suitable for
training a final multi-modal classifier. Inspired by cycle
consistency loss, [14] introduces a multi-modal cycle
consistency loss term that enforces better reconstruction from
the generated visual representations back to semantic embedding.
Using cyclic consistency loss and dual adversarial loss, [15] also
proposed a novel model, referred to as GDAN, which combines
visual-to-semantic projection, semantic-to-visual projection and
a metric learning module in a unified framework and boosts the
performance of ZSR. GMN [16] equip a conditional GAN with
the gradient matching loss, which can measure the quality of the
gradient signal acquired from the synthesized samples.

III. PRELIMINARY

Estimating the underlying distribution density 𝑝(𝑥) of the
dataset X is a classical challenging task in machine learning. To
learn the most representative generative model, the KL
divergence between real distribution 𝑝(𝑥) and estimation
distribution q(𝑥) has to be minimized

KL(𝑝(𝑥) ∥ 𝑞(𝑥)) = ∫ 𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

= 𝐸𝑥~𝑝(𝑥) [log
𝑝(𝑥)

𝑞(𝑥)
]

= 𝑐 − 𝐸𝑥~𝑝(𝑥) log 𝑞(𝑥) (1)

or equally, maximizing the likelihood function 𝐸𝑥~𝑝(𝑥) log 𝑞(𝑥).

The basic idea of the modern generative model is to introducing
a latent variable z and then convert q(𝑥) into an integral formula
of the following distribution

q(𝑥) = ∫ 𝑞 (𝑥, 𝑧)𝑑𝑧 = ∫ 𝑞(𝑧)𝑞(𝑥|𝑧)𝑑𝑧 (2)

where the prior distribution 𝑞(𝑧) of the latent variable z can be
set as a common distribution density, such as the standard
Gaussian density. The conditional distribution 𝑞(𝑥|𝑧) presents a
generative procedure, which can be conditional Gaussian
density or Fermi-Dirac density.

However, the integral Formula (2) is intractable to

optimization. Instead of minimizing KL(𝑝(𝑥) ∥ 𝑞(𝑥)) , VAE

introduce a posterior distribution p(𝑧|𝑥) , referred to as the
encoder procedure, and descend to minimize the KL divergence
of the joint distribution density

KL(𝑝(𝑥, 𝑧) ∥ 𝑞(𝑥, 𝑧))

 = KL(𝑝(𝑥)𝑝(𝑧|𝑥) ∥ 𝑞(𝑧)𝑞(𝑥|𝑧))

Figure 2. Pipeline of conditional affine coupling block(CACB)

239

= ∬ 𝑝(𝑥)𝑝(𝑧|𝑥) log
𝑝(𝑥)𝑝(𝑧|𝑥)

𝑞(𝑥|𝑧)𝑞(𝑥)
𝑑𝑧𝑑𝑥

= 𝐸𝑥∼𝑝(𝑥) [∫ 𝑝(𝑧|𝑥) log
𝑝(𝑧|𝑥)

𝑞(𝑥|𝑧)𝑞(𝑧)
𝑑𝑧]

 = 𝐸𝑥∼𝑝(𝑥)[𝐸𝑥∼𝑝(𝑧|𝑥)[− log 𝑞(𝑥|𝑧)] + 𝐾𝐿(𝑝(𝑧|𝑥) ∥ 𝑞(𝑧))] (3)

which is an upper bound of KL(𝑝(𝑥) ∥ 𝑞(𝑥)) and is usually easy

to calculate. The first item of Formula (3) is the reconstruction
loss, and the second item is the KL loss of VAE. One of the
problems of VAE is that the generated images are usually blurry.
Owing to the Gaussian assumption of p(𝑧|𝑥) and the upper
bound of optimization, the representation ability of VAE is
restricted. Moreover, [11] indicate that the generated image
features of VAE are unimodal, which means that VAE cannot
capture the low-distribution modes of the real probability
distribution density.

The normalizing flow-based invertible generative models
take a different way, which supposes the conditional distribution
q(𝑥|𝑧) as a Fermi-Dirac density

q(𝑥|𝑧) = δ(𝑥 − 𝐺−1(𝑧)) (4)

and tackle the aforementioned integral Formula (1) directly by a
well-designed G(z), which needs to ensure not only the
invertibility

x = 𝐺−1(𝑧) ⇔ 𝑧 = G(𝑥) (5)

but also, the tractable computability of Jacobian determinant

𝜕G(𝑥)

𝜕𝑥
(6)

If we set the prior distribution q(𝑧) as a standard multivariate
Gaussian density

q(𝑧) =
1

(2𝜋)𝐷 2⁄
𝑒𝑥𝑝 (−

1

2
‖𝑧‖2) (7)

estimation distribution q(𝑥) can be inferred by the integral
transformation under the assumption of what G(z) is invertible

q(𝑥) = q(𝐺(𝑥)) =
1

(2𝜋)𝐷 2⁄
𝑒𝑥𝑝 (−

1

2
‖𝐺(𝑥)‖2)

𝜕G(𝑥)

𝜕𝑥
(8)

whose logarithmic form is

log q(𝑥) = −
𝐷

2
log(2𝜋) −

1

2
‖G(𝑥)‖2 + log

𝜕G(𝑥)

𝜕𝑥
(9)

which is the objective function of the normalizing flow-based
invertible generative model. The invertibility is to satisfy the
generative procedure, and the tractable computability of the
Jacobian determinant is to facilitate the calculation of the loss
function. To meet the requirements, the strategy of the
normalizing flow-based invertible generative model is to use
affine coupling blocks to construct G(𝑥) . The method is
presented in detail in the following section.

IV. APPROACHES

Our goal is to directly synthesize samples of unseen classes
by explicitly modeling the underlying distribution of training
data by using a powerful CNFG model. We can then train an
ordinary supervised learning classifier by using synthesized

unseen data and real seen data. The classifier can be any off-the-
peg model, such as support vector machine (SVM) and SoftMax
classifier. The overall pipeline of our model is illustrated in
Figure 1.

A. Affine coupling block

The affine coupling block is the basic module of CNFG
model, which was proposed by NICE [17] and popularized by
Glow [18]. It is a combination of additive coupling block and
multiplicative coupling block. An affine coupling block first
splits the input 𝑥𝑖𝑛 into 𝑥1 and 𝑥2 , and then transforms
[𝑥1, 𝑥2] into [ℎ1, ℎ2] by applying the affine coupling
transformation

ℎ1 = 𝑥1

ℎ2 = 𝑥2 ⊗ 𝑒𝑥𝑝(𝑚2(𝑥1)) + 𝑎2(𝑥1) (10)

whose inverse is

𝑥1 = ℎ1

𝑥2 = (ℎ2 − 𝑎2(ℎ1)) ⊘ 𝑒𝑥𝑝(𝑚2(𝑥1)) (11)

and the lower triangular Jacobians matrix is

𝜕𝑓

𝜕𝑥
= (

𝕀, 𝕆

em⨂
𝜕𝑚2

𝜕𝑥1

⨂𝑥2 +
𝜕𝑎2

𝜕𝑥1

, 𝑒𝑚
) (12)

where em = exp(𝑚2(𝑥1)).

To improve the nonlinearity of transformation, [19] extends
the affine coupling block by introducing a more complex affine
transformation

ℎ1 = 𝑥1 ⊗ 𝑒𝑥𝑝(𝑚1(𝑥2)) + 𝑎1(𝑥2)

ℎ2 = 𝑥2 ⊗ 𝑒𝑥𝑝(𝑚2(ℎ1)) + 𝑎2(h1) (13)

The conditional variant of the affine coupling block was first
proposed by cINN [20]. Since the sub-transformation (𝑚𝑖 and
𝑎𝑖) of each affine coupling block is not inverted, cINN
concatenate the conditional information 𝑐 to the input of the sub-
transformation and does not violate the assumption of
invertibility. We can obtain the conditional affine coupling
transformation by simply replacing 𝑚𝑖(𝑥) and 𝑎𝑖(𝑥) with
𝑚𝑖(𝑥, 𝑐) and 𝑎𝑖(𝑥, 𝑐) in Formula (13), respectively. The
pipeline of the conditional affine coupling block is presented in
Figure 2.

B. Architecture of our model

Our model is built on the principle of the conditional affine
coupling transformation. The overall pipeline of the proposed
model is presented in detail in Figure 1. Specifically, several

TABLE I . STATISTICS OF FIVE BENCHMARKS

Dataset
Total
class

Seen
class

Unseen
class

Total
instance

Train
instance

Test instance
(unseen/seen)

Attributes

AwA1 50 40 10 30475 19832 5685/4958 85

AwA2 50 40 10 37332 23527 7913/5882 85

CUB 200 150 50 11788 7057 2679/1764 312

SUN 717 645 72 14340 10320 1440/2580 102

aPY 32 20 12 15339 5932 7924/1483 64

240

conditional affine coupling blocks can be cascaded and
constructed into a more complex and powerful generative model,
referred to as conditional normalizing flow-based generative
model (CNFG). Suppose each affine coupling transformation
denoted as 𝑓𝑖 , where i = 1,2, … , n , then we can obtain a
composite function

 z = 𝑓𝑛(ℎ(𝑛), 𝑐)

= 𝑓𝑛 (𝑓𝑛−1(ℎ(𝑛−1), 𝑐))

= ⋯
= 𝑓𝑛(𝑓𝑛−1(… 𝑓0(𝑥, 𝑐) …))

= 𝐺(𝑥, 𝑐) (14)

which is the conditional variant of the well-desired 𝐺(𝑥, 𝑐) in
Formula (4). We generally denote the encoding procedure of the
CNFG model as 𝐺(𝑥, 𝑐; 𝜃). The inverse or decoding procedure
of the network is denoted as 𝐺−1(𝑧, 𝑐; 𝜃) , representing the
generative procedure. Our goal is to optimize the network
parameters θ by maximizing the logarithmic form of q(x) in
Formula (9). The Jacobian matrix of affine coupling
transformation strictly adheres to the lower or upper triangular
form, as seen in Formula (12) and we can view it as a constant

𝜕𝑓

𝜕𝑥
= c (15)

The partial derivative with respect to x of G(𝑥, 𝑐) is also a
constant C.

𝜕G(𝑥, 𝑐)

𝜕𝑥
=

𝜕𝑓𝑛

𝜕𝑓𝑛−1

∙
𝜕𝑓𝑛−1

𝜕𝑓𝑛−2

… =
𝜕𝑓0

𝜕𝑥
= 𝐶 (16)

Thus, the objective function log q(𝑥, 𝑐) in Formula (9) can be
simplified as

 log q(𝑥, 𝑐) = −
1

2
‖𝐺(𝑥, 𝑐)‖2 + C (17)

The maximum log likelihood 𝐸𝑥~𝑝(𝑥) log 𝑞(𝑥, 𝑐) is equal to the

minimum of 1 2⁄ ‖G(𝑥, 𝑐)‖2. Finally, the maximum likelihood
training procedure can be implemented by simply minimizing
the mean square value of z = 𝐺(𝑥, 𝑐).

Encoder procedure: We first extract all image features from
real image instances by using the pre-trained ResNet101, then
designate the 2048-dim image features x of the seen class and
the corresponding attributes vector c as the inputs of the CNFG
model. The input image feature x is transformed into the latent
variable z via 12 conditional affine coupling blocks. The
optimization objective is to minimize the mean square of z.

Decoder procedure: Once the generative model is learned,
we can sample the latent variable z from the multivariate
Gaussian density and then combine z with the attribute vector c
of the unseen/seen class as the inputs of the generative model.
The output is the synthesized instance of the corresponding class.
We can generate any number of instances for the unseen/seen
class because the data distribution of the latent variable z and the
attribute vector 𝐴 of the seen/unseen class is already known.

Classification procedure: With the “pseudo” annotated data,
an off-the-peg supervised classification model can be trained. In
the proposed model, we use the SVM as the final classifier. In
the generalized setting, the classifier is biased toward the seen
class to a certain extent if we only use the original annotated
instance of the seen class and the synthesized instance of the
unseen class. Thus, we augment the original annotated instance
of the seen class with the synthesized instance of seen class as
well.

V. EXPERIMENT

We present experiments on the five publicly released

benchmarks: Animals with Attributes 1 (AWA1) [21] , Animals

with Attributes 2 (AWA2) [22], Caltech-UCSD Birds 200

(CUB) [23], SUN attribute database (SUN) [24] and aPascal &

aAyahoo (aPY) [25]. The statistical data for these benchmarks

is listed in Table I. In accordance with [22], we use the

harmonic mean average accuracy of the seen and unseen class

in the testing set as the evaluation metric, which is defined as

H = 2 ∗
𝑎𝑐𝑐𝑎𝑣𝑔

𝑠𝑒𝑒𝑛 ∗ 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛

𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 + 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛
(18)

where 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 and 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛 represent the average accuracy of

the seen and unseen class, respectively. We realize our model

TABLE II. RESULTS IN THE GENERALIZED ZSR SETTING

Method
SUN CUB AWA1 AWA2 aPY

𝑎𝑐𝑐𝑎𝑣𝑔
𝑠 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑠 H 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑠 H 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑠 H 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑠 H 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑠 H

CONSE 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0

CMT 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 1.4 85.2 2.8

DAP 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0

IAP 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6 10.4

SSE 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4

DEVISE 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2

SJE 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9

LATEM 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2

ALE 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7

SAE 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2 0.4 80.9 0.9

SYNC 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3

ESZSL 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6

GFZSL 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 2.5 80.1 4.8 0.0 83.3 0.0

CVAE - - 26.7 - - 34.5 - - 47.2 - - 51.2 - - -

SE-GZSL 30.5 40.9 34.9 53.3 41.5 46.7 67.8 56.3 61.5 68.1 58.3 62.8 - - -

GMMN 37.7 39.7 38.7 55.9 49.1 52.3 70.1 51.5 59.3 77.3 46.3 57.9 64.4 28.5 39.5

GDAN 89.9 38.1 53.4 66.7 39.3 49.5 - - - 67.5 32.1 43.5 75.0 30.4 43.4

CNFG (ours) 41.2 43.6 42.3 62.3 47.1 53.6 69.5 57.4 62.8 69.3 58.1 63.2 66.8 31.0 42.3

241

with the deep learning framework Keras. Specifically, we

construct CNFG model with 12 affine couple blocks. Each

affine couple block consists of the Shuffle, Split, Concat,

AffineCouple and Subnetworks modules. The Shuffle module

first disrupts the order of the input vector for fully mixing the

information and increasing the nonlinearity of transformation.

The Split and Concat modules are responsible for dividing the

input x into two parts before affine transformation and

reassemble it back after affine transformation. The

AffineCouple module is implemented with the corresponding

subnetworks 𝑎𝑖 and 𝑚𝑖 by using a multilayer perceptron with 3

or 5 hidden layers and receiving the attribute vector directly as

conditional information. The hidden layers have 1,024 units that

are half the dimension of the image features. All multilayer

perceptron subnetworks use ReLU activation function and

appropriate dropout layers to avoid over-fitting. In the training

procedure, we use Adam as our optimizer with the hyper-

parameters learning rate = 0.001 and momentum = (0.9, 0.999).

A. Results Analysis

In accordance with [22], we randomly divide all seen class

instances into 80% and 20% parts in the class level for the

generalized setting. The two parts are denoted as 𝑋𝑠𝑒𝑒𝑛
𝑡𝑟𝑎𝑖𝑛 seen

and 𝑋𝑠𝑒𝑒𝑛
𝑡𝑒𝑠𝑡 , respectively. We train our generative model on the

training set 𝐷𝑠𝑒𝑒𝑛
𝑡𝑟𝑎𝑖𝑛 , which consists of 𝑋𝑠𝑒𝑒𝑛

𝑡𝑟𝑎𝑖𝑛 and the

corresponding attributes representation 𝐴𝑠𝑒𝑒𝑛
𝑡𝑟𝑎𝑖𝑛, then synthesize

the pseudo instance of the seen and unseen classes by using our

trained generative model and denoting them as 𝑋𝑠𝑒𝑒𝑛
𝑝𝑠𝑒𝑢𝑑𝑜

 and

𝑋𝑢𝑛𝑠𝑒𝑒𝑛
𝑝𝑠𝑒𝑢𝑑𝑜

, respectively. We finally combine these pseudo

instances with the original seen data 𝑋𝑠𝑒𝑒𝑛
𝑡𝑟𝑎𝑖𝑛 to fit a multi-class

linear SVM as the final classifier. Once the final classifier is

fitted, we evaluate the performance of the fitted classifier on

𝑋𝑠𝑒𝑒𝑛
𝑡𝑒𝑠𝑡 and 𝑋𝑢𝑛𝑠𝑒𝑒𝑛

𝑡𝑒𝑠𝑡 using average accuracy metric and denoting

them as 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 and 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛 . Naturally, we calculate the

harmonic mean value by using Formula (18) and present all

𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 , 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛 and 𝐻 scores on each dataset, as seen in

Tables II.

Table II shows that the family of mapping-based methods

have pervasive higher 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛 scores and lower 𝑎𝑐𝑐𝑎𝑣𝑔

𝑠𝑒𝑒𝑛 , 𝐻

scores. These results demonstrate that the bias problem prevails

in mapping-based ZSR methods, and those methods are not

suitable for the generalized ZSR setting. Meanwhile, the family

of ZSR methods based on the generative model made a good

tradeoff between 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 and 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛 . The proposed CNFG

model improves over the mapping-based method by 25% on

AWA1/AWA2 benchmark and achieves the significant

performance on the other benchmarks. We attribute this

improvement to the efficiency of the generative model at

capturing the underlying distributions. We also compare the

proposed model with recent state-of-the-art methods based on

the generative models. As shown in the bottom area of Table II,

the proposed method outperforms most of the ZSR methods that

are based on VAE or GAN. This difference in performance is

attributed to the following: 1) the VAE and GAN have their own

inner limitations, which are stated in Section III. 2) the proposed

models can capture some low-distribution modes of real data

density by virtue of its stable and exact log-likelihood

maximum training procedure.

B. Number of Synthesized Instances

Although we can synthesize any number of instances for

each class by using the generative model, it is inadvisable to

arbitrarily generate large amounts of synthesized instances. In

this section, we conduct several control experiments to evaluate

the effects of NUM on the final classifier, which denotes the

number of synthesized instances per class. We generate 7

different numbers of synthesized instances for each class by

using the trained CNFG model. Specifically, we generate [15,

35, 55, 100, 150, 250, 350] instances per class for the CUB,

SUN, and aPY datasets, as well as [100, 200, 300, 400, 600, 800,

1000] instances per class for the AWA1/AWA2 dataset, which

is the large-scale dataset on the basis of the number of instances

per class. The result is shown in Figure 3. Observation based on

Figure 3 include the following: 1) With an increase in the

Figure 3. Analysis of the effects of the number of synthesized instances on 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛(us), 𝑎𝑐𝑐𝑎𝑣𝑔

𝑠𝑒𝑒𝑛(s) and H scores.

Figure 4. Analysis of the effects of the data augmentation on 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛(us), 𝑎𝑐𝑐𝑎𝑣𝑔

𝑠𝑒𝑒𝑛(s), H scores, where wo_* represent without data augmentation

242

number of synthesized instances, the average accuracy of the

unseen class 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛 improves significantly for all datasets.

This increasement is expected because there are no instances of

the unseen class exist in the beginning. By contrast, this evident

improvement demonstrates that the synthesized unseen data are

very close to the real testing data of the unseen class. Thus, this

increasement also indirectly proves the generative ability of the

proposed model. 2) As the number of synthesized instances

increases, the average accuracy of the seen class 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 mildly

decreases in the testing set. This result is expected because the

final classifier is trained on an increasing number of synthesized

unseen data. The higher 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 may be irregular in the

beginning, given that the final classifier is unintentionally

biased toward the seen class. 3) The harmonic mean score H

first increases rapidly but does not improve substantially upon

reaching certain level because the 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 score and 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛

scores change in opposite directions with an increase in the

number of synthesized instances. Thus, synthesizing numerous

instances is unnecessary.

C. Data Augmentation

In the generalized setting, we can fit the final classifier by

merely using synthesized unseen data and original seen data or

augment original seen data with synthesized seen data. To

evaluate the effectiveness of data augmentation, we trained two

different models for each benchmark with or without

augmented seen data in the generalized setting. As shown in

Figure 4, the accuracy of the seen class 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 is apparently

higher than that of the unseen class 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛 if we train the

final classifier only on original seen data and synthesized

unseen data. This mean that the final classifier is biased toward

the seen class to a certain extent. The gap between the

𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛and 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛 scores has been alleviated in the case of

data augmentation. The improvement is explained by the fact

that the synthesized seen data enlarging the decision space of

SVM not only for the seen class but also for the unseen class.

REFERENCES

[1] Miloš Radovanovic, Alexandros Nanopoulos, and Mirjana Ivanovi ´ c.
Hubs in space: Popular nearest neighbors in high-dimensional data.
Journal of Machine Learning Research, 11(Sep):2487–2531, 2010.

[2] Angeliki Lazaridou, Georgiana Dinu, and Marco Baroni. Hubness and
pollution: Delving into cross-space mapping for zero-shot learning. In
Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 270–280,
2015.

[3] Yanwei Fu, Timothy M Hospedales, Tao Xiang, and Shaogang Gong.
Transductive multi-view zero-shot learning. IEEE transactions on pattern
analysis and machine intelligence, 37(11):2332–2345, 2015.

[4] Wei-Lun Chao, Soravit Changpinyo, Boqing Gong, and Fei Sha. An
empirical study and analysis of generalized zero-shot learning for object
recognition in the wild. In European Conference on Computer Vision,
pages 52–68. Springer, 2016.

[5] Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and Cordelia Schmid.
Label-embedding for attribute-based classification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
819–826, 2013.

[6] Bernardino Romera-Paredes and Philip Torr. An embarrassingly simple
approach to zero-shot learning. In International Conference on Machine
Learning, pages 2152–2161, 2015.

[7] Elyor Kodirov, Tao Xiang, and Shaogang Gong. Semantic autoencoder
for zero-shot learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3174–3183, 2017.

[8] Li Zhang, Tao Xiang, and Shaogang Gong. Learning a deep embedding
model for zero-shot learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2021–2030, 2017.

[9] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot recognition via
semantic embeddings and knowledge graphs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6857–
6866, 2018.

[10] Maxime Bucher, Stéphane Herbin, and Frédéric Jurie. Generating visual
representations for zero-shot classification. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2666–2673, 2017.

[11] Ashish Mishra, Shiva Krishna Reddy, Anurag Mittal, and Hema A Murthy.
A generative model for zero shot learning using conditional variational
autoencoders. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 2188–2196, 2018.

[12] Vinay Kumar Verma, Gundeep Arora, Ashish Mishra, and Piyush Rai.
Generalized zero-shot learning via synthesized examples. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
4281–4289, 2018.

[13] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. Feature
generating networks for zero-shot learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5542–5551,
2018.

[14] Rafael Felix, Vijay BG Kumar, Ian Reid, and Gustavo Carneiro.
Multimodal cycle-consistent generalized zero-shot learning. In
Proceedings of the European Conference on Computer Vision (ECCV),
pages 21–37, 2018.

[15] He Huang, Changhu Wang, Philip S Yu, and Chang-Dong Wang.
Generative dual adversarial network for generalized zero-shot learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 801–810, 2019.

[16] Mert Bulent Sariyildiz and Ramazan Gokberk Cinbis. Gradient matching
generative networks for zero-shot learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2168–
2178, 2019.

[17] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear
independent components estimation. arXiv preprint arXiv:1410.8516,
2014.

[18] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with
invertible 1x1 convolutions. In Advances in Neural Information
Processing Systems, pages 10215–10224, 2018.

[19] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density
estimation using real nvp. arXiv preprint arXiv:1605.08803, 2016.

[20] Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and
Ullrich Köthe. Guided image generation with conditional invertible neural
networks. arXiv preprint arXiv:1907.02392, 2019.

[21] Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning
to detect unseen object classes by between-class attribute transfer. In 2009
IEEE Conference on Computer Vision and Pattern Recognition, pages
951–958. IEEE, 2009.

[22] Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot learning-the
good, the bad and the ugly. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4582–4591, 2017.

[23] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian
Schroff, Serge Belongie, and Pietro Perona. Caltech-ucsd birds 200. 2010.

[24] Genevieve Patterson and James Hays. Sun attribute database: Discovering,
annotating, and recognizing scene attributes. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 2751–2758. IEEE, 2012.

[25] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing
objects by their attributes. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1778–1785. IEEE, 2009.

243

An SNN Construction Method Based on CNN

Conversion and Threshold Setting

Ying Shang, Yongli Li, Feng You

 Department of Computer Science, Beijing University of Chemical Technology, Beijing, China

shangy@mail.buct.edu.cn, Liaibm@inbox.worktile.com, youf@mail.buct.edu.cn

Abstract—We present a method to converse the Convolutional

Neural Network (CNN) to the Spiking Neural Network (SNN), and

we post a threshold adjustment algorithm for SNN. First, the

adjustment strategy for CNN is introduced. Then after training,

the weight parameters in the model are extracted, which is the

corresponding synaptic weight in the layer of the SNN. Finally, a

new threshold-setting algorithm based on feedback is proposed to

solve the critical problem of the threshold setting of neurons in the

SNN. We evaluate our method on the Cifar10 data sets released by

Hinton's team. The experimental results show that the image

classification accuracy of the SNN is more than 98% of that of

CNN, and the theoretical value of power consumption per second

is 3.9 mW.

Keywords—Convolutional Neural Network; Spiking Neural

Network; Threshold Setting Algorithm

I. INTRODUCTION

CNN is an artificial neural network with human visual
processing as the model. It is the most successful network for
image classification, and it has been widely used in the fields of
target recognition, target detection, target positioning, and so on.
However, due to the limitations of CNN, it requires a lot of
computational power and training data. [1-3]

SNN is the neural network model closest to biological neural
network at present, with strong computing power, which makes
the application of SNN gradually increase, such as robot control,
pattern recognition, speech recognition [4-7], image recognition
[8-10], and target detection [11] and so on. SNN has similar
supervised learning strategies with the traditional artificial
neural network [12]. Still, the network model transmits the
spike-timing signal, and the error function is not continuously
differentiable, so it cannot use a monitoring algorithm for
network training like a traditional neural network. [13,14]

Therefore, using the mature algorithm and framework of
CNN to get the network model to solve related problems, and
then converse CNN to SNN, this has become a direction that can
be explored. In this way, both CNN and SNN can be considered,
and the training can be carried out with the help of the mature
CNN algorithm method, which also provides a solution for the
application of SNN.

The main contributions of this paper are summarized below.
First, we address a method to transfer the weight parameters in
the CNN model to the synaptic weight in the SNN and realize
the conversion from CNN to SNN. Second, a threshold-setting
algorithm based on feedback adjustment is proposed to set the
threshold of the neurons in SNN. Finally, experiment results

based on benchmarks show that the proposed method can
converse CNN to SNN, therefore to reduce the power
consumption and the threshold adjustment algorithm is effective,
which can improve the SNN classification accuracy.

The rest of this paper is organized as follows. In Section II,
related work is discussed. Section III introduces our proposed
method. In Section IV, we perform a comprehensive set of
experiments on image classification. Finally, we conclude our
work and suggest directions for future work.

II. RELATED WORK

SNN is a third-generation neural network, which can more
truly simulate the information transmission mechanism between
biological neurons. SNN is modeled using the synaptic
transmission mechanism of biological neurons. This mechanism
can describe various neuronal action potential triggers and
transitions, as well as electroweak sequence coding operations.
Based on this unique information transmission mechanism, we
can imitate the mechanism of neurons in the brain to process
information. Researchers proved that the SNN model has a
stronger sense of calculating think than the first generation and
second generation of the neural network. [15,16] Common SNN
models include HH model [17], IF model, SRM model [18],
Izhikevich model [19], etc.

min min

() (-1) ()

() , () 0

() , ()

V t V t L X t

IFV t produce pulse and V t

IFV t V reset V t V

 (1)

In the above equation, L is a constant parameter, and X(t) is
the sum of the inputs of all the synapses connected to the neuron
in time. Once V(t) exceeds the threshold, this neuron is activated
and generates a spike, and its membrane potential V(t) is reset to
0. The membrane potential of the neuron is not allowed to be set
lower than Vmin, and Vmin is usually set to 0, which conforms
to the biological characteristics of the neuron. Setting the
threshold is an important issue.

For a neuron in the convolutional layer, X(t) can be defined
as follows:

X(t)=∑A(t) K (2)

A(t) is the input spike from the previous layer, and it has a
value of 1 or 0; 1 represents spike input, 0 represents no spike
input; K is the weight of the convolution kernel connected to the
neuron.

DOI reference number: 10.18293/SEKE2020-112

244

In the SNN model, the spike-timing signal is transmitted, and
the error function is not continuously differentiable, which
makes it impossible to train the network with a supervisory
algorithm like the traditional neural network. However, CNN's
mature algorithm and framework are used to get the network
model to solve related problems, and then CNN is mapped to
SNN, which becomes a direction to be explored.

Some researchers have studied the conversion of CNN to
SNN. Cao and Grossberg [20] studied how the frequency-based
perceptual neural network model could be transformed into an
SNN model without losing performance, but they did not give a
specific implementation of this method. The pulse-like HMAX
method is the basic implementation of the original HMAX
algorithm [21], but it does not explain how to transform the
general HMAX structure into the pulse and CNN structure.
Masquelier and Thorpe used unsupervised STDP method to
learn unclassified features [22] and then used non-impulse
classifier to classify these features, which resulted in the fact that
the recognition results could not reach the accuracy of CNN
similar to them. Perez-Carrasco [23] USES kernel projection to
calculate convolution, but this method requires a lot of hardware
resources. Xing F’s method can be used to large-scale
employment of spiking networks [24].

To analyzing the neurons, network structure, and network
input of the two neural networks, the simulation of visual
processing can be realized on SNN. This paper proposes a
method to converse CNN to SNN. After CNN conversed to SNN,
the threshold value of the neuron group in SNN needs to be set
so that SNN can achieve the classification effect of CNN. In this
paper, cifar10's CNN recognition is taken as an example, and a
threshold setting method is proposed. After experimental
verification, the SNN achieves the classification result close to
that of CNN after applying the threshold setting method.

III. SNN CONSTRUCTION METHOD

In this section, we introduce our method to construct an SNN
model. First, build a CNN model, and obtain the number of
convolution kernels in the model, the combination of pooling
layers, the number of iterations, and the learning rate. To
skipping the difficult training problem of SNN, we map the CNN
model weight parameters to SNN to achieve CNN to SNN
conversion. To improving the accuracy of SNN classification,
the threshold adjustment algorithm based on feedback
adjustment is designed by using the idea of feedback adjustment
algorithm (BP) in SNN training to set the threshold of neuron
groups in impulsive neural networks. Create SNNs with high
computational power and high image classification accuracy.

A. Converting to a Spiking Neural Network

The differences between SNN and CNN are reflected in the
following three aspects:

1. Neuron: CNN's model is designed with biological neurons
as the model. The main operation on CNN is convolution
operation. The SNN model is the simulation of biological
characteristics of biological neurons and the real simulation of
biological neurons. The neurons participate in the complex
integration operation and can realize the simple operation of
convolution neurons.

2. Network structure: the structure of the CNN model is a
typical multilayer feedforward network structure, which is
similar to the feedforward network structure on the SNN model.
Therefore, a similar network structure with CNN can be realized
in the SNN model.

3. Input: CNN takes the pixel value of the image as the input
of the network, while SNN is the spike converted from the image.
A large number of studies have shown that the spike train
following the Poisson distribution can well simulate the
discharge of neurons, and the resulting spike train can be used as
the input of the feedforward neural network.

Figure 1. detailed structure of the adjusted CNN

Therefore, converse CNN to SNN, the parameters of the CNN

model must be applied to SNN. Since SNN processes spike

information, if the spike signal transmitted from the previous

layer is received, the synaptic weight coefficient of the neuron

245

is 1; otherwise, it is 0, so no negative value will appear in the

output layer of SNN. Therefore, the LRelu activation function

used by the convolution layer is replaced by the Relu function

of non-negative conversion. Then, no bias term is used in each

layer of CNN, and the value of bias is set to 0. Finally, to reduce

the errors caused by the increase in the number and complex

structure of neurons, the maximum pooling that requires the

two-layer group of neurons is realized through average pooling.

The adjustment of CNN is summarized as follows. Figure 1 is

the structure of the adjusted CNN.

B. Spike generation layer

In SNN, images need to be converted into spike signals in
order to be used as network input. Therefore, before the input
layer of SNN, there is the spike generation layer, whose function
is to convert images into spike signals.

The response function of the spiking neuron is defined as
follows:

ρ(t) = ∑ 𝛿(𝑡 − 𝑡𝑖)
𝑘
𝑖=1 (3)

K is the number of spikes in the spike train, and t is the arrival
time of the spike. According to the properties of the spike
function, the number of received spikes in a minor interval can
be calculated by the formula (4):

𝑛 = ∫ 𝜌(𝑡)𝑑𝑡
𝑡2

𝑡1
 (4)

The instantaneous discharge frequency of the spiking neuron
is expressed by the expectation of the neuron response function.

𝛾(𝑡) =
𝑑𝑛(𝑡)

𝑑𝑡
= 𝐸(𝜌(𝑡)) (5)

The mean value of the neuron response function within a
short time interval can be approximated as the firing frequency
of the neuron, as shown in formula (6):

𝛾𝑀(𝑡) =
1

𝑀
∑ 𝜌𝑗(𝑡)
𝑀
𝑗=1 (6)

If the spike generation is assumed to be independent of each
other, and the instantaneous discharge frequency is a constant.
Set the number of spikes in the period as k, and then the
probability of containing n spikes in the period can be expressed
by formula (7):

𝑃(𝑛, 𝑡1, 𝑡2) =
𝑘!

(𝑘−𝑛)!𝑛!
𝑝𝑛𝑞𝑘−𝑛 (7)

𝑝 =
(𝑡1−𝑡2)

𝑇
，𝑞 = 1 − 𝑝 , while k → +∞ and the average

discharge frequency is a constant, which can be substituted into
equation 4-5 to get formula 4-6:

𝑃(𝑛, 𝑡1, 𝑡2) = 𝑒−𝛾∆𝑡
𝛾∆𝑡𝑛

𝑛! (8)

The spike generation layer converts the input image into the
Poisson spike-timing signal, which is described as follows: Iijk
(k=1,2,3) is the image map of the input to the spike production
layer. At time t, if the spike production function spike()<c
Iijk(k=1,2,3) Where, the function of spike(j,j) is to generate a
number following the distribution (0,1), and c is a constant,
which is used to scale the spike frequency generated. Each
simulation time can be set to milliseconds. After passing through
the spike generation layer, the image is transformed into the
spike signal, and the gray images of R, G, and B can be obtained
after processing.

The adjusted CNN was trained several times to obtain a
better detection model, which was used as a model of the SNN.
The convolution kernel weight was mapped to the neuron
synapse value of the SNN. Figure 2 is the detailed network
structure diagram of the SNN.

Figure 2. detailed block diagram of the SNN

246

Figure 3. Eeffect of threshold values on neuron groups conv1, conv2 and

conv3 on output

C. Threshold Setting Algorithm

In SNN, the threshold determines the spike generation of
neurons. Only when the value of the neuron is greater than the
threshold value, the neuron will generate a spike and transmit it
to the lower neuron group. Therefore, the setting of the threshold
will also have an impact on the characteristics extracted from
SNN.

In Figure3, the horizontal axis is the threshold value, and the
vertical axis represents the number of spikes received by the
output neurons corresponding to the input. The higher the value
is, the more accurate the classification is. It shows that, for the
neuron group in SNN, when the threshold is too small, many
features will be transferred to the next layer, which will include
many features that have not been extracted, resulting in low
accuracy of the final classification results. However, when the
threshold is too large, the threshold, resulting in insufficient
feature information and low accuracy of classification results,
will filter out the features that can be used as classification.

Therefore, it is necessary to select an appropriate threshold
for the neuron group so that the classification can be completed
to the maximum extent, and the classification accuracy of the
network can be improved.

We apply the idea of the back-propagation algorithm to the
SNN threshold setting and propose a threshold adjustment
algorithm based on feedback. This algorithm combines the
threshold with the final classification effect. First, each layer is
initialized with a threshold, and the initial value is set to 0, then
set the maximum value for the neuron group to be adjusted, and
then use the binary search method to set the threshold. The
method to determine whether a threshold is optimal is:

Through the output feature map and convolution of the
current neuron group The neural network corresponds to the
output feature map, and observes whether the features of the
feature map in the CNN and the SNN are consistent, that is,
whether the brighter parts of the feature map are consistent;

Calculate the number of pulses of output neurons
corresponding to the image in the output result, and determine
whether the value is the maximum value;

Algorithm Threshold Setting Algorithm Based on

Feedback

Input: a category picture in the classification, the threshold

pi of the neuron group

Output: The ratio of the number of spikes of the

corresponding neuron to the total number of output spikes

1: function threshold setting (p1, p2, p3)

2: Initialize the three-layer threshold in the SNN to 0.1, 0.1,

0.1

3: Store the output of the network at max and n is the step

size of the threshold change

4: repeat

5: for all （p1, p2, p3） do

6: i = 1,2,3; // represents the number of neurons

7: Calculate the output result of the network max1

 when it is the conv layer conv[i] and

 the threshold p [i] = p [i] + n

8: if max1> max

9: Update threshold p[i] = p[i] + n

10: else p[i] = p[i] - n

11: end for

12: until the stop condition is reached

13: Output the threshold of the neuron group

14: end function

When the above two conditions are met, the threshold value
is determined to be the threshold value of the threshold group,
and then the next group of threshold group debugging until the
final debugging is completed. The algorithm is as fs.

IV. EXPERIMENT AND ANALYSIS

A. Experimental Design

We carried out experiments on the Cifar10 data set, which is
provided by the Hinton team. It is a common data set for
classification problems. It consists of 10 categories: aircraft, cars,
birds, cats, deer, dogs, frogs, horses, boats, and trucks. There are
60,000 images in the data set, which are divided into 50,000 train
image samples, 5,000 for each category. Test 10,000 image
samples, 1000 for each category. The size of the images in the
data set is 32*32, and they are all color images. Table list the
data set and the CNN classified result.

The experimental hardware environment was CPU Intel(R)
3.6GHz, RAM 32.00GB, the operating system was Ubuntu16.04,
and the program compilation environment was Python2.7. The
framework of CNN is Caffe.

B. Experimental Results and Analysis

This paper conducts experiments and analysis of the
following two research questions (RQ):

RQ1:In this paper, CNN conversed to SNN. Whether the
SNN consistent with CNN?

RQ2:What is the influence of the threshold-setting algorithm
based on feedback on the classification accuracy of SNN?

247

1) RQ1
The consistency of the network model refers to the statistical

analysis of the output results of the network model under the
same data set and the analysis of the number of correctly
classified and wrongly classified pictures on the data set. The
higher the number is, the higher the consistency of the model
will be. This section verifies the consistency of the unadjusted
CNN model, the adjusted CNN model, and the SNN model on
the test in the cifar10 data set.

Input a 32*32 RGB color image, when changing the image
into a spike signal, the RGB separately coded into three ones.
Figure 4 shows the feature map in the SNN. For the limitation of
length, this paper only lists the feature graphs and output results
of each layer in SNN. The characteristics of each layer feature
graph corresponding to CNN are consistent, and the prediction
trend of SNN results is consistent with that of CNN.

(a)input

(b)Conv1 feature map (c)Pool1 feature map

 (d)Conv2 feature map (e)Pool2 feature map

(f) Conv3 feature map (g)output

Figure 4. (a) ~ (g) are the output characteristics and results of each layer of

the SNN

2) RQ2
Through the threshold-setting algorithm, the threshold value

of the network is obtained, as shown in Table 1 below.

In order to verify the effectiveness of the threshold-setting
algorithm proposed in this paper, we randomly selected 100
pictures of each category in the test data set for the experiment.
The classification accuracy is shown in Figure 5, where the
threshold-setting algorithm is identified as C_SNN.

We found that after applying the threshold adjustment
algorithm, the classification accuracy of ship and truck was
slightly lower than that of no threshold setting, and the
classification accuracy of other categories was improved.

TABLE I. THRESHOLDS FOR EACH NEURON GROUP OF SNN

Neuron Threshold

Conv1 6.8

Pool1 0.75

Conv2 0.1

Pool2 0.75

Conv3 0.1

ip1 0.7

ip2 0.7

Figure 5. Accurate Classification of SNN before and after Threshold Setting

TABLE II. CLASSIFICATION ACCURACY OF ALL THE MODELS

CNN

(%)

Adjust CNN

(%)

C_SNN

(%)

C_SNN/CNN

(%)

airplane 83.5 82.3 82 98.2

automobile 85.8 85.2 84.7 98.7

bird 71.7 71.5 70.6 98.5

cat 67.5 66.9 65.8 97.5

deer 84.2 83.6 82.8 98.3

dog 73.2 71.8 71.5 97.7

frog 77.1 76.9 75.4 97.8

horse 79.5 79.3 78.9 99.2

ship 86.7 85.7 84.9 97.9

truck 94.7 92.8 91.5 96.6

Ave 80.39 79.6 78.8 98.04

248

Table2 shows the statistical accuracy of each network model.
The accuracy of SNN can reach 98% of that of CNN. The SNN
obtained by CNN conversion can achieve the target
classification problem and achieve good results.

Compared with CNN, the power consumption of SNN is
lower. The theoretical analysis of SNN energy consumption
shows that there are about 14200,000 synapses in the SNN
model in this paper, and each synapse consumes a small amount
of focus. Assuming that this model can process 742 pictures per
second, the power consumed per second of this model can be
calculated by the following formula:

PSNN =1.42×107×742×α W (9)

According to the data provided by Cruz-Albrecht, the energy
consumption of each neuromorphic circuit isα= 0.37 mJ, so

PSNN ≈ 3.9 mW (10)

Under the same hardware system, compared with the CNN,
the SNN consumes less energy and has higher efficiency.

V. CONCLUSION AND FUTURE WORK

This paper studies the problem of image classification using
CNN and SNN. A method of conversion CNN to SNN is
proposed, and an adjustment strategy is designed for CNN to
reduce the errors caused by the conversion. Through these
adjustments, the spike generation layer, convolution layer,
pooling layer, and output layer are constructed by using the
feedforward network structure. The weight parameters in the
adjusted CNN model are transferred to the synaptic weight in the
SNN to complete the construction of the network model and
realize the simulation of image classification. Finally, according
to the relationship between the threshold and the classification
results, a threshold-setting algorithm based on feedback is
proposed, which can improve the classification accuracy of the
pulse neural network.

In future work, the relationship between the threshold value
of neurons and the characteristic graph of the network in SNN is
deeply analyzed. The threshold value determines whether the
neuron is activated to achieve feature selection. Therefore, the
research on the relationship between the threshold value and
feature value can provide more guidance that is effective for the
threshold setting.

ACKNOWLEDGMENT

The National Natural Science Foundation of China under
Grant No. 61672085 supports the work described in this paper.

REFERENCES

[1] Cireşan D C, Meier U, Gambardella L M, et al. Deep, big, simple neural
nets for handwritten digit recognition[J]. Neural computation, 2010,
22(12): 3207-3220.

[2] Farabet C, Couprie C, Najman L, et al. Learning hierarchical features for
scene labeling[J]. IEEE transactions on pattern analysis and machine
intelligence, 2013, 35(8): 1915-1929.

[3] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep
convolutional neural networks[C]. Advances in neural information
processing systems. 2012: 1097-1105.

[4] Morri A L, Gomez F, Jimenez F Z. A spiking neural network for real-time
spanish vowel phonemes recognition [J]. Neurocomputing, 2017, 226:
249-261.

[5] Silva M, Vellasco M, Cataldo E. Evolving spiking neural networks for
recogition of aged voices [J]. J of Voice,2017, 31(1): 24-33.

[6] Dominguez M J, Jimenez A, Rois N A, et al. Multilayer spiking neural
network for audio samples classification using SpiNNaker[C]. The 25th
Int Conf on Artificial Neural Networks. Barcelona: IEEE, 2016: 45-53.

[7] Cerezuela E, Jimenez A, Paz R, et al. Sound recognition systems using
spiking and MLP neural networks[C]. The 25th Int Conf on Artificial
Neural Networks. Barcelona:IEEE, 2016: 363-371.

[8] Stromatias E, Soto M, Serrano G. An event-driven classifier for spiking
neural networks fed with synthetic or dynamic vision sensor data[J].
Frontiers in Neuroscience,2017, 11(28): 350.

[9] Sun Q, Wu Q, Wang X, et al. A spiking neural network for extraction of
features in colour opponent visual pathways and FPGA implementation
[J]. Neucocomputing, 2017,228: 119-132.

[10] Ltaief M, Bezine H, Alimi A M. Training a spiking neural network to
generate online handwriting movements[C].The 16th Int Conf on
Intelligent Systems Design and Applications. Porto: ISEP, 2016: 289-298.

[11] Matsubara T, Torikai H. An asynchronous recurrent network of cellular
automation-based neurons and its production of spiking neural network
activities [J]. IEEE Trans on Neural Networks and Learning Systems,
2016,27(4): 836-852.

[12] Knudsen E I. Supervised learning in the brain[J]. J of Neuroscience, 1994,
14(7): 3985-3997.

[13] Bohte S M. The evidence for neural information processing with precise
spike-times: A survey[J]. Natural Computing, 2004, 3(2): 195-206.

[14] Filp Ponulak and Andrzej. Introduction to spiking neural networks:
Information processing, learning and applications [J]. Polish
Neuroscience Society, 2011, 71: 409-433.

[15] Maass W. Networks of spiking neurons: The third generation of neural
network models [J]. Neural Networks, 1997, 10(9):1659 -

[16] Hodgkin A L, Huxley A F. A quantitative description of membrane

Bulletin of Mathematical Biology, 1989, 52(l - 2):25-71.

[17] Hodgkin A L, Huxley A F. A quantitative description of membrane
current and its application to conduction and excitation in nerve[J]． J
Physiol，1952，117(4) : 500-544．

[18] Gersterner w, Kistler W. Spiking neuron models [M]． Cambridge
University Press，2002．

[19] Izhikevich E M.Which model to use for cortical spiking neurons?" Neural
Networks [J]． IEEE Trans Neural Netw，2004，15(5) : 1063-1070．

[20] Cao Y , Grossberg S , Markowitz J . How does the brain rapidly learn and
reorganize view-invariant and position-invariant object representations in
the inferotemporal cortex?[J]. neural networks the official journal of the
international neural network society, 2011, 24(10):1050-1061.

[21] Folowosele, F., Vogelstein,R.J.,&Etienne-Cummings, R.Towards a
cortical prosthesis: implementing a spike-based HMAX model of visual
object recognition in silico. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems.516-525.

[22] Masquelier,T.,&Thorpe,S.J. Unsupervised learning of visual features
through spike timing dependent plasticity. PLoS Computational
Biology,3,0247-0257.

[23] Perez-Carrasco,J.A.,Serrano,C.,Acha,B.,Serrano-Gotaeerdona,T.,&
Linares-Barranco,B.Spike –based convolutional network for real-time
processing. In 2010 International Conference on Pattern Recognition
(pp:3085-3088).

[24] Xing F , Yuan Y , Huo H , et al. Homeostasis-Based CNN-to-SNN
Conversion of Inception and Residual Architectures[M]. Neural
Information Processing, 2019, 173-184.

249

DOI reference number: 10.18293/SEKE2020-142

Multi Classification of Alzheimer’s Disease using

Linear Fusion with TOP-MRI Images and Clinical

Indicators

Qiao Pan, Golddy Indra Kumara, Jiahuan Chu

School of Computer Science

Donghua University, Shanghai, China

panqiao@dhu.edu.cn, gikumara@outlook.com, 1944362@qq.com

Abstract—With the development of artificial intelligence,

computer-aided diagnosis plays an increasingly important role

in Alzheimer’s disease (AD). In this paper, a new multi-

classification diagnostic algorithm based on TOP-MRI images

and clinical indicators is proposed. The features of TOP-MRI

images and clinical indicators are fully exploited for multi-

classification diagnosis of AD. First, we design TOP-CNN-NN

model based on three VGGNet-16 convolutional neural

networks and a single hidden layer neural network to extract

the image feature vector of brain three orthogonal planes

(TOP) MRI images. Then we screen clinical data using

CfsSubsetEval evaluator to compose clinical feature vector.

Then, the image feature vector and indicator feature vector are

fused by using linear fusion method of multi-source data based

on canonical correlation analysis (CCA). Finally, the fusion

vector becomes the input for multi-classification classifier to

distinguish three stages of AD: control normal (CN), mild

cognitive impairment (MCI) and Alzheimer's disease (AD). The

proposed algorithm is validated using the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset. Experiments show a

good performance since the accuracy of the proposed algorithm

in the multi-classification of AD can reach 86.7%.

Keywords— Alzheimer’s disease; linear fusion; multi-source

data; multi-classification; deep learning

I. INTRODUCTION

Alzheimer's Disease (AD) is a neurodegenerative disease
characterized by progressive cognitive decline that
irreversibly affects all cognitive functions of human brain,
and ultimately leads to severe impairment or premature death
of the individual's daily activities [1]. According to [2], 50
million people are suffering from AD in 2018. About 8% of
the elderly aged 65 to 85, and 35% aged 85 and over are
affected by AD disease [3]. Clinically, AD is divided into
three stages: control normal (CN), mild cognitive impairment
(MCI), and Alzheimer's disease (AD). MCI is the early
manifestation of AD, the transition state from CN to AD [4].

Magnetic resonance imaging (MRI) is often used as a
basis for diagnosing AD due to its spatial resolution, high
accessibility, and good contrast [6]. Common methods for
computer-aided diagnosis of AD using MRI images are
extracting features based on 3D medical images, using region
of interest (ROI) to diagnose AD, and using image
segmentation to measure the morphology of hippocampus,
entorhinal cortex and amygdala to diagnose AD [8].

However, there are still problems in these methods including
difficulty in designing algorithms based on 3D medical
images due to their high dimensionality, noise and sparsity.

 This paper proposes a new multi-classification diagnostic
algorithm based on TOP-MRI images and clinical indicators.
The three orthogonal planes (TOP) is a tangent plane in three
directions centered on the spatial geometric center of the
brain, clinical indicators include demographic information,
neuropsychological assessment and biological detection. The
main contributions of this paper are as follows:

 There is no need to label and divide ROI in extracting
image feature vector by using TOP-CNN-NN model,
which reduces the difficulty of prior knowledge.

 Only three different planar MRI images are needed to
mine brain feature information. It avoids the difficulty of
representation and modeling, which also improves the
efficiency of model training and classification.

 CCA is used to fuse TOP-MRI image feature vector and
clinical indicator feature vector. Considering various
types of data, it conforms to the clinical reality. The
validity of the proposed classification model is verified by
using ADNI data sets.

II. RELATED WORK

Nowadays most methods of AD classification diagnostic
study is to pre-process MRI image, extract features from the
image and input the features into the classifier to predict
diseases. AD multi-classification is proposed by Hiroki
Karasawa using deep convolutional 3D neural network made
of 36 Convolutional Layers 1 Dropout Layer, 1 Average
Pooling Layer and 1 FC Layer in general [9]. Carlos Platero
et al. raised a Hippocampal segmentation based on patch
method and non-rigid registration label fusion method. ROI
was marked initially by means of non-rigid registration label
fusion method first, and then marked by means of patch
method [10]. Devvi Sarwinda used oriented gradients of three
orthogonal planes histogram to extract dynamic texture
features, then they took advantage of probability principal
component analysis (PPCA) for dimensionality reduction,
and sort AD, MC, NC using random forest classifier [7].
Tooba Altaf et al. present a classification method of
combined features, adopting MRI image textural feature

250

method with clinical data. In image textural feature
extraction, segmenting the image into three areas: gray
matter, white matter and cerebrospinal fluid, extracting
features by means of GLCM, SIFT, HOG and LBP
techniques, gaining clinical data by adopting characteristic
indexes of FAQ, NPI, GDS [11]. Tong T. et al. present a
nonlinear graph fusion (NGF) method to gain the
complementary information across modalities [12].

III. METHODS

The multi-classification diagnosis algorithm proposed
includes four modules: image feature extraction, indicator
feature selection, feature vector fusion and disease
classification diagnosis. Fig. 1 shows the framework of the
algorithm.

In the image feature extraction module, three MRI images
from the three orthogonal planes of the brain are selected. The
images are pre-processed and then input them into the TOP-
CNN-NN model to extract image feature vector. In the
indicator feature selection module, the clinical indicators are
selected by CfsSubsetEval evaluator and combined to form
indicator feature vector. In the feature vector fusion module,
image feature vector and indicator feature vector are linearly
fused by Canonical Correlation Analysis (CCA). In the
disease classification diagnosis module, input the fusion
feature vectors to the multi-classifier to distinguish the three
stages of AD: control normal (CN), mild cognitive
impairment (MCI), and Alzheimer's disease (AD).

A. Image feature extraction

In this module, TOP-CNN-NN model is constructed to
extract the feature vector from the MRI images. The model
consists of three VGGNet-16 convolutional neural networks
(CNN) and a single hidden layer network (NN). The
framework is shown in Fig. 2.

First, The MRI image is pre-processed, then it is extracted
to the VGGNet-16 convolutional neural network. Second, the
three preliminary feature vectors from the VGGNet-16 are
weighted by voting. Lastly, input the weight vector into the

single hidden layer network to generate the fusion feature
vector.

1) Image pre-processing

In this module, three orthogonal planes (TOP) MRI
images are selected as input of image feature extraction
model. TOP MRI images contains important information for
the diagnosis of AD, such as the hippocampus, entorhinal
cortex and amygdala.

Different planar images show that patients with AD have
atrophy, ventricular enlargement and other pathological
features compared with normal (CN) and mild cognitive
impairment (MCI) patients, as shown in Fig. 3.

Many problems on MRI images occurs from the detection
equipment and techniques such as irregularity, high noise,
different shade, etc. To solve these problems, this module
uses three steps to pre-process the image. The steps are as
follows:

a) Geometry transformation

The main purpose of geometry transformation is to
improve the spatial position of brain imaging area in MRI
images. It is used to correct the systematic errors of magnetic
resonance imaging (MRI) instruments and the random errors
of imaging position (e.g. imaging angle, perspective
relationship). In this module, translation and rotation are used
to solve the problems of image position offset and angle
deflection caused by imaging angle in brain MRI images.
Zoom is used to unify different size of brain images caused
by the difference of perspective relationship.

Fig. 1. Framework of Multi-Classification Diagnosis Algorithm

Fig. 2. TOP-CNN-NN image feature extraction model framework

Fig. 3. Different brain planes of patients’ MRI images with CN, MCI, AD

251

b) Image noise reduction

In this module, salt-and-pepper noise is processed by
median filter, and Gaussian noise is processed by Gaussian
filter. The median filtering technology makes the image
smooth by sorting the pixels in the field according to the gray
level, and then choosing the median value in the group as the
output pixel value. Gaussian filtering is a weighted averaging
process for the whole image. The value of each pixel is
obtained by weighted averaging of its own and other pixel
values in its neighborhood. The coordinates with domain size
of (2n+1)×(2n+1) are brought into (1) to calculate the pixel
values of the corresponding coordinates:

 (1)
where x, y is the coordinates of the pixels, σ are the values
that need to be set.

c) Standardization

The purpose of pixel value standardization is to scale the
original image pixel value and limit the pixel value to a
certain range. The standardization process is defined as:

 (2)
where MRI is the image matrix, μ is the image mean, σ is the
standard variance, and N is the number of MRI image pixels.
Consistent input data can be obtained by standardization,
which will avoid different shades and contrast problems. It
can improve the convergence speed of the model and the
accuracy of the classification diagnosis model.

2) Preliminary feature extraction

Convolutional Neural Networks (CNN) is a class of
feedforward neural networks with convolutional computation
and deep structure, which has been widely used in image
fields [13]. In this module, we use VGGNet-16 to obtain the
tangential images of the three orthogonal planes of the brain:
Axials, Sagittal, and Coronal. Then these three tangential
images are trained for XY-CNN, XZ-CNN and YZ-CNN.
These three CNN models are used to extract the preliminary
feature vector of the respective planes.

VGGNet is a deep convolutional neural network that
explores the relationship between the depth of the
convolutional neural network and its performance. By
repeatedly stacking 3*3 small convolution kernels and 2*2
maximum pooling layers, a convolutional neural network has
been constructed with 16-19 layers. In this module, the model
is based on VGGNet-16, which is shown in Fig. 4.

The input of VGGNet-16 is RGB image of 224 x 224 size.
In the process of image convolution, the feature map MRIi
representing layer i of VGGNet-16 is used. Assuming that

MRIi is a characteristic graph of convolution layer, its
generating process can be described as:

 MRIi = ƒ(MRIi‒1 ×Wi + bi) (3)

where Wi is the weight vector of the ith layer convolution
kernel. The operation symbol "×" is the convolution
operation of the convolution kernel and the (i‒1)th layer
image or feature map, and the output of the convolution and
the offset vector of the ith layer bi are added. The feature map
MRIi of the ith layer is obtained by the nonlinear excitation
function f(x). The VGGNet-16 model uses a 23-layer
convolution layer. The low-level convolutional layer of the
model extracts some low-level features such as edges and
lines. The high-level convolutional layer of the model
iteratively extracts more complex features from low-level
features. After each convolution layer, a max pooling layer is
added for more complete and important features. Assuming
that MRIi is the Max pooling layer, its generating process can
be defined as:
 MRIi = Maxpooling(MRIi‒1) (4)

For several image feature values extracted by filter, max
pooling only retains the largest pooling layer feature. This
operation can reduce the number of model parameters and
reduce the over-fitting problem. Finally, VGGNet-16 uses
the 3 fully connected layer to combine the extracted features.
Assuming that full connection layer has p parameters, x_n is
the input or n feature graphs, and its generating process can
be defined as:

 FCp = Wp1 * x1 + Wp2 * x2 + … + Wpj * xn + bp (5)

where p is the number of the full connection layer and w is
the weight matrix. Each neuron in the connective layer is
fully connected to all the neurons in the preceding layer. Full
connection layer can integrate local information with
category discrimination in convolution layer. The initial
eigenvector mentioned in this chapter is the output of the last
full connection layer in VGGNet-16. The dimension of
preliminary feature is 1000.

3) Fusion feature vector extraction
Since each planar image in three orthogonal planes (TOP)

of the brain has its own characteristics, there are differences
in the regions and expressions of interest in the VGGNet-16
feature extraction process. A voting weighted vector fusion
method as shown in Fig. 5 is adopted, which can highlight the
respective features and reduce the vector fusion problem
caused by feature differences.

Fig. 5. Voting weighting process of image preliminary feature vector

Fig. 4. Network parameters of VGGNet-16 model

252

Firstly, by counting the classification results
corresponding to the TOP. If the classification results are the
same, use it as the voting result, otherwise the higher
classification accuracy will be taken as voting result. Then,
each voting result corresponds to a weight vector. Assume
that the preliminary feature vectors of XY-CNN, XZ-CNN,
and YZ-CNN are C1={α1,…,α1000}, C2={β1,…,β1000} and
C3={γ1,…,γ1000}, respectively. Then the voting weighting
operation can be defined as:

 C = (nα1, …, nα1000, mβ1, …, mβ1000, kγ1, …, kγ1000) (6)

where n, m and k are weighting factors. After changing the
values of the weighting factors n, m and k, the proportions of
the three preliminary feature vectors in the fused feature
vector are no longer balanced. In the process of setting the
weighting factor, assuming that the classification result of
one of the planes is the same as the voting result, the
preliminary feature vector weight extracted by the plane is
increased.

Finally, input the voting weighted feature vector C into
the single hidden layer neural network. The single hidden
layer neural network will fuse the feature vector of three
orthogonal planes and output the fusion feature vector with
lower dimension, which is beneficial for the linear fusion on
the next step with the clinical indicator feature vector, and
avoid the over-fitting problem. The image feature vector
output by the TOP-CNN-NN model is the hidden layer output
of the single hidden layer network, and the dimension of the
fusion feature vector is 50.

B. Indicator feature selection

The ADNI dataset contains clinical information for each
subject, such as gene detection, demographic information,
neuropsychological assessment, biological detection, etc.

In this module, we use the CfsSubsetEval evaluator to
evaluate the classification capabilities and redundancy of
each indicator. During the evaluator's selection, the indicators
with high correlations with disease classification results but
low correlations with each other are selected. As long as the
subset does not contain indicators that are more relevant to
the current indicator, the indicators that are most relevant to
the disease classification results are continuously added. The
evaluator will use the missing value as a separate value, or it
can distribute the missing value count along with the other
values according to the frequency of occurrence. Selecting a
subset of indicators can also help eliminating irrelevant and
duplicate indicators. The relationship between the two
indicators I1 and I2 can be measured by symmetric
uncertainty, defined as:

 (7)
where the basis of the entropy function H is the probability of

each indicator. H（I1,I2) is the joint entropy of I1 and I2, it is

calculated from the probability of all combinations of I1 and
I2. The range of uncertainty is 0-1.

 Feature selection based on correlation determines the
superiority of an indicator set, defined as:

 (8)
where C is the category of AD, and Ii and Ij are all indicators
in the indicator set.

Through the CFS evaluator, this module selects 11
indicators as clinical indicators. There are 3 types of clinical
indicators: demographic information, neuropsychological
assessment, and biological detection. Demographic
information consists of patients’ gender and age.

The indicators for neuropsychological assessment are
Mini-Mental State Examination (MMSE), Clinical Dementia
Rating (CDR), Rey Auditory Verbal Learning Test
(RAVLT), and Functional Activity Questionnaire (FAQ).
MMSE is the most common scale for clinically examining
intelligence. It can comprehensively, accurately and quickly
respond to the mental state and the degree of cognitive
impairment of the subject. The patient's condition is reflected
by the total score of the scale.

The CDR is obtained by retrieving information from
patients and their families to complete the cognitive
impairment degree assessment, which will quickly assess the
severity of the patient’s condition. Areas of assessment
include memory, orientation, judgment and problem-solving
skills, work and social skills, family life and personal
hobbies, and the ability to live independently.

The RAVLT immediate and delayed test evaluates the
patient's speech memory. The patients will listen to a certain
amount of content in this test and then performs immediate
and delayed recall to judge their condition. Studies have
shown that RAVLT distinguishes AD from other
neuropsychological assessments [14]. Lastly, the details
regarding daily chores is measured in FAQ. Activities that
require higher cognitive abilities can prove to be quite useful
in assessing the condition of dementia subjects.

The indicators for biological detection are amyloidβ-
peptide (Aβ), Tau protein (Tau), water-soluble
phosphorylated Tau protein (P-Tau), and Apolipoprotein E
(ApoE 4). Amyloid β is the main component of senile plaque,
which is a characteristic of neuropathology of AD. The most
important Aβ are Aβ40 and Aβ42 [14]. The study found that
the amyloid beta protein in brain tissue of AD patients
increased significantly [17], therefore the detection of plasma
Aβ levels is helpful for detecting AD.

Tau protein is a microtubule-related protein with low
molecular mass, and is prone to form paired helical filaments
(PHFs) after abnormal phosphorylation and glycosylation,
and further constitute neurofibrillary tangles, which are the
characteristic pathological manifestations of AD [14]. The
level of tau protein in the cerebrospinal fluid of patients with
moderate to severe AD was significantly higher than the
normal CN subjects, and the increase of this index was earlier
than the occurrence of clinical dementia symptoms, which
can be used for the prediction of AD [15].

ApoE is one of the most important apolipoproteins in the
central nervous system. It is involved in the mobilization and
redistribution of cholesterol. It is also necessary to maintain

253

the integrity of myelin sheath and neuron cell membrane after
the development and injury of the nervous system [14], and
its protein level in plasma is affected by ApoE genotype.
Related studies have shown that patients with ApoE genotype
have a higher risk of progression from MCI to AD, thus ApoE
has a certain reference for the diagnosis of AD [16].

C. Feature vector fusion

Multi-source data fusion integrates data from different
data types through some data fusion rules, absorbs the
characteristics of different types of data, and extracts
standards from them. It is better and has more rich
information than single data.

Multi-source data can be fused at three levels: vector
level, feature level, and decision level. Decision-level fusion
is achieved by synthesizing the classification results of
multiple classifiers. However, decision-level integration is
not suitable for the fusion of images and indicators; Feature-
level fusion is a more common way, and descriptive that can
express the correlation between features better. However,
extracting the descriptive characteristics of medical images
requires a certain prior knowledge, which is a challenging
task. Therefore, this paper chooses to fuse MRI images and
clinical indicators at the vector level.

 A common vector-level fusion method aim is to connect
two feature vectors end-to-end to generate a new feature
vector. This method does not consider the relationship
between two feature vectors. Canonical correlation analysis
(CCA) is used in this chapter to analyze the correlation
between image and index feature vectors, which will generate
new fusion feature vectors. CCA is a statistical method for
dealing with the interdependence between two random
vectors. CCA plays a very important role in multi-source
statistical analysis and also a valuable multi-source data
processing method [18]. It is not only suitable for information
fusion, but also suitable for removing redundant information.

In Fig. 6, assume that the MRI image feature vector is x
and the clinical indicator feature vector is y. To extract typical
related features, it is recorded as αTx and βTy (one pair of
typical variables), where α = (a1,a2,a3,…,ad) and β =
(b1,b2,b3,…,bd). The projection directions α and β can be
obtained by maximizing the following criterion functions:

(9)
where Sxx and Syy is covariance matrix, Sxy is the covariance
matrix between x and y. The fusion feature vector can be
obtained by multiplying the image feature vector and the

indicator feature vector with their corresponding typical
variable α and β, as defined as follows:

 C=(α,β)T(x,y) (10)

where C is the fusion feature vector of image and indicator.

D. Disease classification diagnosis

This paper diagnoses Alzheimer's disease in three stages:
control normal (CN), mild cognitive impairment (MCI) and
Alzheimer's disease (AD), by inputting fusion feature vectors
of images and indicators into the classifiers.

The multi-classifier selected in this paper is decision tree.
Each internal node represents a test on an attribute, each
branch represents a test output, and each leaf node represents
a disease type. It represents a mapping relationship between
object attributes and object values, using algorithms ID3,
C4.5 and C5.0 spanning tree algorithm to use informatics
theory of entropy.

IV. EXPERIMENT

The experimental dataset used in this study was obtained
from Alzheimer’s Disease Neuroimaging Initiative (ADNI).
The dataset contains MRI images and clinical indicators.
There are 302 patients in 3 categories: 91 in control normal
(CN), 141 in mild cognitive impairment (MCI), and 70 in
Alzheimer's disease (AD).

The MRI image uses three orthogonal planes section
images obtained by T1 weighted and three-dimensional
magnetization preparatory gradient echo sequences. It has
high spatial and time resolution, high signal-to-noise ratio,
small artifacts, and good contrast to the internal structure of
the brain which is conducive to showing small brain changes.

There are 11 clinical indicators which come from
demographic information, neuropsychological assessment
and biological detection. The demographic information has
two indicators: gender and age. Table 1 shows that there is no
significant difference in the distribution of age, regardless of
gender, in the three stages of AD.

Neuropsychological assessment consists of four scales:
MMSE, CDR, RAVLT, and FAQ. Table 2 shows the
Neuropsychological statistical assessment of patients with
CN, MCI, and AD. The MMSE scores of patients from CN
to AD decreased significantly, while the values of CDR,
RAVLT and FAQ increased.

Biological detection consists of two amyloid proteins,
two Tau proteins and apolipoprotein E. The changes of
biomarkers were shown in Fig. 7. The levels of ABETA40
and ABETA42 in CN patients were lower than AD patients,
APOE volume, and the levels of tau and P-tau were higher.

The proposed algorithm is validated in terms of accuracy.
The accuracy is calculated as:

 Accuracy= T÷C×100% (11)

where T is the correct number of samples and C is the total
number of samples participating in the classification. The
accuracy of the experiment results is obtained by calculating
the average value of the five experiments.

Fig. 6. Feature vector fusion process based on CCA

254

A. Evaluation of image feature extraction module

In this module, a TOP-CNN-NN model is constructed to
extract the feature vector of MRI images. Table 3 shows the
comparison among multi-classification performance based
on different brain planar MRI images. The results show that
the classification performance based on TOP-MRI images is
better than that based on single plane MRI images. The
experimental results verify the rationality of using three
orthogonal planes MRI images in feature extraction module.

Table 4 shows performance comparison among multi-
classification models based on medical images proposed by
other papers and this paper. The experimental results show
that the performance of this model is better than Tong T’s
NGF method [12] and Liu M’s ISML method [19]. Although
the performance of the model established in this paper is not
better than the method based proposed by Zhe X [20], this
proposed model does not need prior knowledge and
clinicians' participation in the process of modeling.

B. Evaluation of indicator feature selection module

In this module, we use the CfsSubsetEval evaluator to
evaluate the classification capabilities and the redundancy of
each clinical indicator. This selected indicator is needed to
compose clinical feature vector.

Table 5 shows the comparison among multi-classification
performance of model using different types of clinical
indicators. The data of 11 indicators includes 3 types
(demographic, neuropsychology, biology). Performance of
classification by only using neuropsychological assessment
has almost similar performance compared to 11 merged
indicators and slightly better in KNN method. However,
using neuropsychological assessment alone is subjective.

C. Evaluation of feature vector fusion module

In this module, image feature vector and clinical feature
vector are fused by using linear fusion method of multi-
source data based on canonical correlation analysis (CCA).
Table 6 shows the comparison of multi-classification
performance among different combinations based on TOP-
MRI images and clinical indicators. The experimental results
show that performing linear fusion on TOP-MRI images and
clinical indicators based on CCA gives the best performance.

Note: values of each index in the figure have been normalized, and the difference in vertical
coordinates has no practical reference value. It mainly refers to the change of a single index.

Fig. 7. Breakdown Chart of Biological Detection Indicators Change

TABLE V. COMPARISON AMONG THE MULTI-CLASSIFICATION OF

PERFORMANCE USING DIFFERENT TYPES OF CLINICAL INDICATOR

Data Method Accuracy

DEMOGRAPHIC-2
D-TREE 38.3%

KNN 31.7%

NEUROPSYCHOLOGY-4
D-TREE 83.3%

KNN 81.7%

BIOLOGY-5
D-TREE 43.3%

KNN 45.0%

MERGE-28
D-TREE 78.3%

KNN 75.0%

MERGE-11
D-TREE 85.0%

KNN 78.3%

TABLE VI. MULTI-CLASSIFICATION PERFORMANCE COMPARISON

WITH DIFFERENT COMBINATIONS OF IMAGES AND INDICATORS

Data Accuracy

TOP-MRI 75.0%

CLINICAL 84.4%

MRI + CLINICAL 76.2%

TOP-MRI + CLINICAL + CCA 86.7%

TABLE I. DEMOGRAPHIC INFORMATION STATISTICS

 Gender Age

CN
Male = 49

75.7±5.0 [65.8-85.5]
Female = 42

MCI
Male = 95

74.1±7.6 [59.2-89.1]
Female = 46

AD
Male = 37

74.7±7.8 [59.2-90.2]
Male = 33

Note: Gender Unit - Subjects, Age Unit - Year (Quantile Statistics of T Distribution)

TABLE II. NEUROPSYCHOLOGICAL ASSESSMENT STATISTICS

 MMSE CDR RAVLT FAQ

CN
29.1±7.6

[27.1-31.1]

0.02±0.10

[-0.18-0.23]

3.35±3.0

[-2.60-9.30]

0.20±0.73

[-1.25-1.65]

MCI
27.1±1.8

[23.5-30.6]
1.61±0.93

[-0.23-3.45]

4.92±2.2

[0.54-9.30]

6.32±3.1

[-1.21-14.1]

AD
23.7±1.9

[19.8-27.5]

4.16±1.47

[1.24-7.09]

4.49±2.2

[0.46-8.51]

12.5±6.7

[-1.05-26.0]

Note: Scale Unit – Score (Quantile Statistics of T Distribution)

TABLE III. COMPARISON AMONG MULTI-CLASSIFICATION

PERFORMANCE USING FOUR DIFFERENT BRAIN PLANAR IMAGES DATA

Data Method Accuracy

AXIALS-MRI XY-CNN 48.3%

SAGITTAL-MRI XZ-CNN 58.3%

CORONAL-MRI YZ-CNN 51.7%

TOP-MRI TOP-CNN-NN 75.0%

TABLE IV. COMPARISON BETWEEN THE PERFORMANCES OF MULTI-
CLASSIFICATION MODELS BASED ON MEDICAL IMAGES

Author Data Method Accuracy

TONG T [12]
MRI NGF 56.3%

MRI + PET NGF 56.5%

LIU M [19] MRI + PET ISML 53.8%

Our Method MRI TOP-CNN-NN 75.0%

ZHE X [20] MRI SVM-RFE 85.6%

255

D. Evaluation of multi-classification algorithm

Table 7 shows the performance comparison between
multi-classification diagnosis model proposed by other
papers and multi-classification diagnosis model of fused
images and indicators proposed in this paper. The accuracy
of Tong T proposed graph-based non-linear fusion method
(NGF) using CSF and genotype fusion of MRI, PET and
clinical data was 53.8% [12]. The accuracy of Zhu X
proposed method of sparse discriminant feature selection
(SDFS) using MRI and PET images as experimental data was
61.1% [21]. In Altaf T proposed method by fusing the
features of MRI images and other clinical data (FF) [11], the
classification accuracy of fusion of whole brain images and
clinical data was 75%. Compared with the multi-
classification diagnosis model of Alzheimer's disease
proposed in other papers, the accuracy of the model proposed
in this paper can reach 86.7%. The experimental results verify
that the multi-classification diagnosis model of Alzheimer's
disease proposed in this paper is effective.

V. CONCLUSION

In this paper, we have presented a new multi-
classification algorithm using linear fusion with TOP-MRI
images and clinical indicators to diagnose AD. Experiments
show that our method has high accuracy and effective in
performing multi-classification diagnosis for AD.

 Influence of extraction position of three orthogonal

planes on classification performance can be explored more in

the future. The sensitivity and specificity of indicators for

differentiating types of diseases and improving the

classification accuracy of AD can also be studied.

ACKNOWLEDGEMENT

This work was supported by the Special Fund of Shanghai
Municipal Commission of Economy and Informatization
(2017-RGZN-01004, XX-XXFZ-02-18-2666, XX-XXFZ-
01-18-2604) and the National Key R&D Program of China
under Grant 2019YFE0190500.

REFERENCES

[1] Wang Yutong, Xuan Zhidong. Progress in Epidemiology of
Alzheimer [J]. Chinese Journal of Practical Neurological
Diseases,2015,18(20):118-119.

[2] Brookmeyer R, Johnson E Ziegler-Graham K et al. Forecasting the
global burden of Alzheimer’s disease[J]. Alzheimer’s and
Dementia,2007,3(3):186-191

[3] Dallas P S, Cara L R,Naveed S A review of epidemiological evidence
for general anesthesia as a risk factor for Alzheimer’s

disease[J].Progress in Neuro –Psychopharmacology & Biological
Psychiatry,2013(47):122-127

[4] Wee C Y, Yap P T, Zhang D, et al. Identification of MCI individuals
using structural and functional connectivity networks[J]. Neuroimage,
2012, 59(3):2045-2056.

[5] S. Wang, Y. Zhang, G. Liu, P. Phillips, T.-F. Yuan, Detection of
Alzheimer’s disease by three-dimensional displacement field
estimation in structural magnetic resonance imaging, J. Alzheimer’s
Dis. 50 (1) (2016) 233–248.

[6] T. Altaf, S.M. Anwar, N. Gul, N. Majeed, M. Majid, Multi-class
Alzheimer disease classification using hybrid features, Future
Technologies Conference, IEEE (2017) 264–267.

[7] Sarwinda D, Bustamam A. 3D-HOG Features –Based Classification
using MRI Images to Early Diagnosis of Alzheimer’s Disease[C]//
2018 IEEE/ACIS 17th International Conference on Computer and
Information Science (ICIS). IEEE Computer Society, 2018.

[8] Yuanyuan Chen, Haozhe Jia, Zhaowei Huang, Yong Xia:
Early Identification of Alzheimer's Disease Using an Ensemble of 3D
Convolutional Neural Networks and Magnetic Resonance
Imaging. BICS 2018: 303-311

[9] Karasawa H, Liu C L, Ohwada H. Deep 3D Convolutional Neural
Network Architectures for Alzheimer’s Disease Diagnosis[J]. 2018.

[10] Platero C, Tobar M C. Combining a Patch-based Approach with a
Non-rigid Registration-based Label Fusion Method for the
Hippocampal Segmentation in Alzheimer’s Disease[J].
Neuroinformatics, 2017, 15(2):165-183.

[11] Altaf T, Anwar S M, Gul N, et al. Multi-class Alzheimer’s disease
classification using image and clinical features[J]. Biomedical Signal
Processing and Control, 2018, 43:64-74.

[12] Tong T, Gray K, Gao Q, et al. Multi-Modal Classification of
Alzheimer's Disease Using Nonlinear Graph Fusion[J]. Pattern
Recognition, 2016, 63:171-181.

[13] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T.,
Wang, X., Wang, L., Wang, G. and Cai, J., 2015. Recent advances in
convolutional neural networks. arXiv preprint arXiv:1512.07108.

[14] Chen Yi, Zhang Baorong. Advances in core biomarkers related to
Alzheimer's disease [J]. life sciences,2014,26(01):2-8.

[15] Johannes, Schröder,Elmar, Kaiser, Peter, Schönknecht,Aoife,
Hunt,Philipp A, Thomann,Johannes, Pantel,Johannes, Schröder.[CSF
levels of total tau protein in patients with mild cognitive impairment
and Alzheimer's disease].[J].Zeitschrift fur Gerontologie und
Geriatrie,2008,41(6):497-501.

[16] Hsiung G Y R, Sadovnick A D, Feldman H. Apolipoprotein E
epsilon4 genotype as a risk factor for cognitive decline and dementia:
data from the Canadian Study of Health and Aging [J]. Cmaj, 2004,
171(8):863-867.

[17] Glenner GG, Wong CW. Alzheimer's disease: initial report of the
purification and characterization of a novel cerebrovascular amyloid
protein [J]. Biochemical and Biophysical Research Communications,
1984，120(3):885-890.

[18] Sun Quansen, Zeng Sheng-gen, Wang Ping-an, et al. Canonical
correlation analysis theory and its application in feature fusion [J].
Journal of Computer Science, 2005, 28(9).

[19] Liu M, Zhang D, Adeli E, et al. Inherent Structure-Based Multiview
Learning with Multitemplate Feature Representation for Alzheimer's
Disease Diagnosis[J]. IEEE Transactions on Biomedical Engineering,
2016, 63(7):1473-1482.

[20] Zhe X, Yi D, Tian L, et al. Brain MR Image Classification for
Alzheimer’s Disease Diagnosis Based on Multifeature Fusion[J].
Computational and Mathematical Methods in Medicine, 2017,
2017:1-13.

[21] Zhu X, Suk H I, Shen D. Sparse Discriminative Feature Selection for
Multi-class Alzheimer’s Disease Classification[M]/ Machine
Learning in Medical Imaging. 2014.

TABLE VII. COMPARING MULTI-CLASSIFICATION PERFORMANCE

OF VARIOUS MULTI-CLASSIFICATION DIAGNOSTIC ALGORITHMS

Author Data Method Accuracy

TONG T[12] MRI + CLINICAL NGF 53.8%

ZHU X [21] MRI + PET SDFS 61.1%

ALTAF T [11]
WHOLE MRI +

CLINICAL
FF 75.0%

THIS PAPER
TOP-MRI +

CLINCIAL

OUR

METHOD
86.7%

256

https://dblp.uni-trier.de/pers/hd/c/Chen:Yuanyuan
https://dblp.uni-trier.de/pers/hd/j/Jia:Haozhe
https://dblp.uni-trier.de/pers/hd/h/Huang:Zhaowei
https://dblp.uni-trier.de/pers/hd/x/Xia:Yong
https://dblp.uni-trier.de/db/conf/bics/bics2018.html#ChenJHX18

Deep Hashing with Large Batch Training

for Cross-modal Retrieval

Xuewang Zhang1,2 and Yin Zhou1*
1School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China

2School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China

zhangxw@cqupt.edu.cn , 646031898@qq.com

Abstract—Cross-modal hashing has attracted considerable

attention as it can implement rapid cross-modal retrieval

through mapping data of different modalities into a common

Hamming space. With the development of deep learning, more

and more cross-modal hashing methods based on deep learning

are proposed. However, most of these methods use a small

batch to train a model. Large batch training can get better

gradients and can improve training efficiency. In this paper, we

propose a deep hashing with large batch training (DHLBT),

which uses large batch training and introduces orthogonal

regularization to improve the generalization ability of our

model. Moreover, we consider the discreteness of hash codes,

therefore, we add the distance between hash codes and features

to the objective function. Extensive experiments on three

benchmarks show that our method achieves better

performance than several existing hashing methods.

Keywords: cross-modal hashing; large batch training;

orthogonal regularization; the distance between hash codes and

features

I. INTRODUCTION

With the rapid growth of multimedia data with different
modalities and the increasing demands of users, cross-modal
retrieval is becoming increasingly attractive. Modeling the
relationship between different modalities is the key of cross-
modal retrieval. The key challenge is a “heterogeneous gap”
between different modalities, where the similarity among
them cannot be measured directly [1]. However, cross-modal
hashing methods can effectively bridge the gap [2, 3]. The
hashing methods convert the high-dimensional features of
data into a fixed-length hash code. Semantically similar data
has similar hash codes. By XOR bitwise operation of hash
codes, the similarity of data can be quickly obtained.
Moreover, the storage space can be effectively reduced by
only storing the hash codes of the data, instead of storing the
high-dimensional features.

In recent years, deep learning has received good results in
image processing and natural language processing. Therefore,
more and more scholars have begun to apply deep learning
technology to cross-modal hashing methods [2-7]. However,
most of these methods use a small batch size to train the
model. For example, in [2, 3, 5], the batch size is 64, and the
maximum batch size is 128 [6]. However, when training a
model in small batch size, the loss function cannot get a good

gradient because of the limited number of samples in each
batch, which makes the parameter update not good enough
and affects the retrieval performance of the final trained
model.

Large batch training which means using large batch size
to train, e.g. 2048, 4096, or 8192, which is much larger than
64 or 128, can cover more samples each time when update
parameters, resulting in better gradients and shorter training
time per epoch. Therefore, more and more scholars in
different fields are studying large batch training to get better
performance [8-12], while no scholar has explored large
batch training in the field of cross-modal hashing. So, it
makes sense to study large batch training in the field of cross-
modal hashing. However, increasing the batch size will cause
the training extremely unstable [9], and then will easily lead
to a "generalization gap" problem [13]. Orthogonal
regularization will keep the norm of a matrix unchanged and
lead the gradients to faithful propagation which will prevent
the gradient from vanishing [10, 14]. In the field of image
generation, Brock et al. [10, 14] introduced orthogonal
regularization, which proves that orthogonal regularization
achieves better performance. In multimodal retrieval, Wang
et al. [15] also introduced orthogonal regularization, which
reduces the redundancy of hash codes and improves
performance. Moreover, hash codes are discrete. Relaxing the
discrete learning problem of hash codes into continuous
learning problem is the common practice of most cross-
modal hashing methods. However, when continuous real
value features of data are converted into hash codes,
information loss will occur, which affects the performance so
that the hash codes cannot represent the data well [5]. [5]
adds the hash code to the objective function and learns the
discrete hash code without relaxing. Inspired by these, we
propose a method called deep hashing with large batch
training (DHLBT). This method includes three major features,
which are 1) Large batch size is used to train the model; 2)
Orthogonal regularization is used to improve the
generalization ability of the model; 3) Distances between
hash codes and features are added to the objective function.

The rest of this paper is presented as follows. Section 2
introduces the proposed DHLBT approach. Section 3 shows
the experiments. Finally, conclusions are made in Section 4.

DOI reference number: 10.18293/SEKE2020-148

257

mailto:zhangxw@cqupt.edu.cn
mailto:646031898@qq.com

II. DEEP HASHING WITH LARGE BATCH TRAINING

In this section, we will describe the details of our
proposed method.

A. Notations

In this paper, we only consider image and text modal data.
Therefore, there are two kinds of retrieval tasks in this paper:
1) text query image task and 2) image query text task.

Assume that we have k training data, image modality is

denoted as 1{ }k

i iI I == , text modality is denoted as
1{ }k

i iT T == .

Then, we use
1{ , }

i i

k

I T iF F F == to denote the low dimensional

features of data, 1{ , }
i i

k

I T iq q q == to denote the query data,

1{ , }
i i

k

I T iH H H == to denote the hash codes of data, and

Frobenius
 to denote the Frobenius norm of a matrix,

respectively.

B. Network structure

Many cross-modal hashing methods based on deep
learning, e.g. SCH-GAN [2], use convolutional neural
networks (CNN) to extract the features of images as input
values for training. In this paper, we use VGG-19 [16] to
extract the features of the images and encode them as hash
codes through two fully-connected layers. While for texts, the
texts are represented by the bag-of-words (BoW) features and
are also encoded into hash codes through two fully-connected
layers. The whole DHLBT model is shown in Fig. 1.

Figure 1. The framework of our DHLBT model.

C. Feature Learning Part

We firstly map the extracted image or text features to a
common space through the fully-connected layer1 in the Fig.
1, then obtain the low-dimensional features through the fully-
connected layer2 in the Fig. 1. The activation functions for
the fully-connected layer1 and the fully-connected layer2 are
tanh function and sigmoid function, respectively. The process
can be represented as:

2 1 1 2

((tanh()))c c c cF sigmoid W W f B B= + + ()

where W are the weights, B is the bias,
1c denotes the

fully-connected layer1,
2c denotes the fully-connected

layer2. f denote the input value of VGG-19 [16] features

of images or BoW features of texts. The low-dimensional

features of images
IF and the low-dimensional features of

texts
TF have the same shape, which allows us to measure

the similarity between them. The hash code length is also the

same as the dimension of the low-dimensional features so

that the low-dimensional features F can be directly mapped

to the hash codes H by the threshold function:

1, 0.5

0, 0.5

if F
H

if F

=

 ()

D. Hashing Objectives

Our objective function is mainly divided into three parts,
which are: 1) the distance between the features of the images

IF and the features of the texts
TF , 2) the distance between

the features F and the hash code H , and 3) the regularization
items of W and B . The image query text task and the text

query image task are symmetric. Therefore, we take the text
query image task as an example to show the objective
function in the following parts.

The distance between
IF and

TF :

2

2
TiTi i i

qq I I
D F F+ += − ()

2

2
TiTi i i

qq I I
D F F− += − ()

where D denotes distance, iI +
denotes semantically similar

image and iI −
 denotes semantically dissimilar image with

text query
Tiq .

Ti iq I
D + are the distance between iI +

 and
Tiq .

Ti iq I
D − are the distance between iI −

 and
Tiq . We use a

margin-based hinge loss function to measure the loss, which
is shown below:

 1

1
max(0,)

Ti i Ti i

n

q I q I
i

L D D
n

 + −= + − ()

where is a margin parameter between
Ti iq I

D + and
Ti iq I

D − ,

and is an adjustable hyper-parameter. n is the number of

triplet (, ,)Ti i iq I I+ −
. While reducing the loss

1L ,
Ti iq I

D + will be

reduced and
Ti iq I

D − will be increased simultaneously. This

also conforms to the principle that small distance between
semantically similar data and the large distance between
semantically dissimilar data. In the process of training

optimization, we intend to decrease the value of
Ti iq I

D + and

increase the value of
Ti iq I

D − simultaneously. Therefore, the

optimization process can be transformed into a binary
classification problem, and then, we apply sigmoid cross-
entropy as the loss function on it. The sigmoid cross-entropy
formula for binary classification problem is shown below:

258

[ln(() (1)ln(1 ()))]

. . {0,1}

loss z sigmoid x z sigmoid x

s t z

= − + − −

 ()

where x represent a input value, and it can be assigned by

either
Ti iq I

D + or
Ti iq I

D − . z denotes a target value. For
Ti iq I

D + ,

we want
Ti iq I

D + as small as possible, that is, let 0z = , bring it

into (6), as shown in equation (7):

1 ln(1 ()) ln(1)q ITi i

Ti i

D

q I
loss sigmoid D e

+

+= − − = + ()

For
Ti iq I

D − , we want
Ti iq I

D − as large as possible, that is, let

1z = , bring it into (6), as shown in equation (8):

2 ln(()) ln(1)q ITi i

Ti i

D

q I
loss sigmoid D e

−

−

−

= − = + ()

By combining equation (7) and (8), we have our second
loss item:

2 1 2

1
()

n

i

L loss loss
n

= + ()

The distance between F and H :

Hash codes are discrete, and information loss will occur
in the process while converting real value features F to hash
codes H :

q q Ti TiTi Ti

H F q qD H F= − ()

I Ii i i i i i

H F I I I I
D H F H F+ + − −= − + − ()

where
q qTi Ti

H FD denotes the distance between the low-

dimensional features
TiqF of text query

Tiq and hash codes

TiqH of text query
Tiq .

I Ii i
H FD denotes the distance between

the low-dimensional features
IF of images I and hash codes

IH of images I . The following loss function can be obtained:

 3

1
()

q q I ITi Ti i i

n

H F H F

i

L D D
n

= + ()

In the optimization process, the loss function will make
hash codes more and more close to the features and will
reduce the information loss caused by the conversion process
from the features to hash codes.

The regularization items of W and B :

Large batch training has low stability while training. To
minimize the negative effect of the problem, we introduce the
orthogonal regularization as the penalty term of W . For B ,

we still use L2 regularization as a penalty term. The loss item
is as follows:

2 2

4

transpose

identity FrobeniusFrobenius
L W W I B = − + ()

where transposeW is the transpose of the weight matrix W and

identityI is an identity matrix. B denotes the bias. and

denotes the hyper-parameters.

By combining
1L ,

2L ,
3L and

4L together, we can get

the full objective:

1 2 3 4min L L L L L = + + + ()

where and denote adjustable hyper-parameters.

We also take the text query image task as an example to
show the training process of our method in Algorithm 1.

Algorithm 1 Training Process of DHLBT

Input: training data I, T

Output: weights W and bias B

1: initialize: Randomly initialize W and B, the batch

size is b and the number of training epochs is e;

2: for epoch = 0; 1; 2; :::;e¡1 do

3: if epoch%30 == 0 then

4: for qT=T1;T2;T3; :::;Tk do

5: Randomly sample m points from I+ and m

points from I¡ to make up a triplet set (qT ,I
+,I¡) as

training data.

6: end for

7: end if

8: for step = 1; 2; :::; dk¤m=be do

9: Train network and update parameters W and

B by equation (14);

10: end for

11: end for

III. EXPERIMENTS

In this section, we evaluate the performance of DHLBT
on two datasets, and compare the result with several current
state-of-the-art methods.

A. DATASETS

We use 2 datasets for experiments: Wikipedia [17] and
MIRFlickr [18], which are widely used public datasets in
cross-modal hashing. And to evaluate this method more fully,
we added a larger data set NUS-WIDE [19] for experiments.

Wikipedia dataset [17] is a popular dataset which
consists of 2866 text/image pairs divided into 10 categories.
Following [2], Wikipedia dataset is separated into two parts:
1) a training data of 2173 pairs which are also used as the
retrieval database and 2) a query set of 693 pairs. Each image
is represented by 4096 deep features extracted by the fc2
layer of 19-layer VGGNet [16] from Keras applications, and
each text is represented as a 1000-dimensional BoW vector.

MIRFlickr dataset [18] contains 25000 images that are
collected from the Flickr website and they are annotated with
some of 24 provided labels. Each image is described with
some textual tags. Therefore, each instance is a text-image
pair. Following [2, 20], firstly, we preprocess raw tags of
these images by removing punctuations and stop words. Then,

259

we count the number of times for each word appeared in
these tags. We only keep words that appeared at least 20
times and add them to the vocabulary of BoW. Furthermore,
we remove instances that do not contain the word of the
vocabulary and that do not have textual tags or labels. We
take 5% of instances in each category as the query set and the
rest of the instances as the retrieval database. In addition, we
sample 5000 data pairs from the retrieval database as the
training data. Each image is represented by 4096 deep
features extracted by the fc2 layer of 19-layer VGGNet from
Keras applications, and each text is represented as a 1386-
dimensional BoW vector.

NUS-WIDE dataset [19] contains 269648 images that are
collected from the Flickr website and they are annotated with
some of 81 provided labels. Each image is described with
some textual tags. Therefore, each instance is a text-image
pair. We select the 10 most common labels and the
corresponding 186577 text-image pairs. We take 2000 of
pairs in each category as the query set and the rest of the pairs
as the retrieval database. In addition, we sample 5000 data
pairs from the retrieval database as the training data. Each
image is represented by 4096 deep features extracted by the
fc2 layer of 19-layer VGGNet from Keras applications, and
each text is represented as a 1386-dimensional BoW vector.
Table 1 shows the number of samples in each set intuitively.

TABLE I. STATISTICS OF TWO BENCHMARK DATASETS

 Wikipedia MIRFlickr NUS-WIDE

Dataset Size 2866 20819 186577
Training Set 2173 5000 5000

Query Set 693 1041 2000

Retrieval Set 2173 19778 186577

labels 10 24 10

B. EVALUATION PROTOCOL

We perform two kinds of retrieval tasks for each dataset:

1) retrieving text by image query, termed image→text; and 2)

retrieving image by text query, termed text → image.

Following [2], we utilize Hamming ranking to evaluate
DHLBT and compared the result with the other state-of-the-
art methods. Specifically, we first obtain the hash codes of
images and texts, and then compute the Hamming distance
between query with all the retrieval database. After ranking
the Hamming distance list, we use 2 widely used assessment
standards to evaluate the retrieval performance, which are
shown below:

1) Mean Average Precision (MAP): The mean of all
queries’ average precisions (AP) called MAP.

1

1 n k

kk

R
AP rel

R k=
= is the definition of AP where R is

the amount of the related data in the retrieval database, n is

the amount of retrieval database,
kR is the amount of the

related data in the top k ranks of the Hamming distance

ranking list, and
krel is an indicator of relevance of the

Hamming distance ranking list which is set to 1 if the data at

k -th position is related and 0 elsewise.

2)Precision Recall curve (PR-curve): The precision at the
certain recall of the Hamming distance ranking list, that often
evaluates the performance of retrieval.

C. BASELINES AND IMPLEMENT DETAILS

We compare two non-deep learning methods: SePH [20]
and GSPH [21], which are both supervised methods. For
SePH and GSPH, they are kernel-based methods and both of
them achieved best results by using KLR which respectively
created in two ways: 1) k-means algorithm and 2) random
sampling. So, for these two hashing methods, we use KLR to
learn hash function and create kernel by using k-means
algorithm (klr+k) and random sampling (klr+r). In addition,
we also compare our methods to three state-of-the-art deep
learning-based methods, including SCH-GAN [2], UGACH
[3] and DCMH [5]. SCH-GAN is a semi-supervised method.
UGACH is an unsupervised method and DCMH is a
supervised method. In all experiments, two modal data of
image and text are used. When the data of one modal is used
as the query set, the data of the other modal is used as the
retrieval set. Source codes of all methods are kindly provided
by the corresponding authors. For the parameters mentioned
in all methods, we directly adopt the original parameter
settings used in their codes. For an objective comparison
between different methods, we use the same image and text
features as input data features for all compared methods.
Specifically, for Wikipedia and NUS-WIDE datasets, we use
the 4096 deep features extracted by the fc2 layer of 19-layer
VGGNet from Keras applications for images, and 1000-
dimensional bag-of-words features for texts; For MIRFlickr
dataset, we use the 4096 deep features extracted by the fc2
layer of 19-layer VGGNet from Keras applications for
images, and 1386-dimensional bag-of-words features for
texts. For DCMH, which is an end-to-end method, we add an
experiment which directly uses original image features as the

input value of the image network. 19DCMHvgg and

DCMHoriginal denote these two versions of DCMH,

respectively. For our method, we set 0.01 = , 0.01 = ,

0.0001 = and 0.01 = . Similar to [2, 3], for each data, the

corresponding data is selected to form 4 triplets for training,
that is, m in Algorithm 1 is set to 4. So, there

are 2173 4 8692 = triplets for Wikipedia

dataset, 5000 4 20000 = triplets for MIRFlickr and NUS-

WIDE datasets. The batch size is set to 8192. And the
learning rate for Wikipedia dataset is 0.08, the learning rate
for MIRFlickr dataset is 0.016 and the learning rate for NUS-
WIDE dataset is 0.016. The hash code bits are 16, 32, and 64,
and is 6, 8, and 10, respectively. We implement the

proposed DHLBT by Tensorflow applications. All the
experiments conducted on a server with hardware of
NVIDIA GTX 1080Ti graphic card, Intel(R) Xeon(R) E5-
2620 v4 2.10GHz CPU, 128 GB memory. The model was
built by Python3.5.2 and Tensorflow 1.11.0.

D. EXPERIMENTAL RESULTS

We demonstrate the MAP scores of all methods on
MIRFlickr, Wikipedia and NUS-WIDE datasets in Table 2,
Table 3 and Table 4. From the result, it can be observed that
our method achieves the best retrieval accuracy at 32-bit and
64-bit hash code length over all datasets. In general,
compared with the second-best method SCH-GAN, in the
task of image query text, our method is about 1.8%, 8.2% and
1.1% higher on MIRFlickr, Wikipedia and NUS-WIDE
datasets, respectively. And in the task of text query image,

260

our method is about 1.3%, 2% and 0.2% higher on MIRFlickr,
Wikipedia and NUS-WIDE datasets, respectively. This is
mainly because we use large batch size to train the model
which can get better gradients and use orthogonal
regularization to improve the generalization ability of our
model. And it is also because the distance between the hash
codes and the features of data is added to the loss function
which makes the hash codes are more realistic to represent
the features of data. From the results, we can see that the hash
code length has a remarkable impact on the MAP scores. For
16-bit hash code, the length is not enough to get sufficient
information. Although our method has achieved the best
results on Wikipedia dataset, it is only the second-best on
MIRFlickr and NUS-WIDE datasets, indicating that the hash
code length has a certain impact on MAP scores.

TABLE II. THE MAP SCORES ON MIRFLICKR DATASET

Methods
image→text text→image

16 32 64 16 32 64

SePHklr r+ [20] 0.7364 0.7367 0.7451 0.7486 0.7514 0.7573

SePHklr k+ [20] 0.7377 0.7459 0.7467 0.7522 0.7595 0.7599

GSPHklr r+ [21] 0.7279 0.7425 0.7541 0.7579 0.7693 0.7760

GSPHklr k+ [21] 0.7374 0.7485 0.7584 0.7614 0.7729 0.7798

UGACH [3] 0.6100 0.6045 0.5848 0.6278 0.6029 0.6101

DCMHoriginal [5] 0.7296 0.7363 0.7386 0.7639 0.7650 0.7703

19DCMHvgg [5] 0.7433 0.7527 0.7592 0.7669 0.7792 0.7837

SCH-GAN [2] 0.7203 0.7481 0.7609 0.7661 0.7851 0.7884

Ours 0.7410 0.7571 0.7718 0.7822 0.7915 0.7953

TABLE III. THE MAP SCORES ON WIKIPEDIA DATASET

Methods
image→text text→image

16 32 64 16 32 64

SePHklr r+ [20] 0.5009 0.5287 0.5393 0.5508 0.5955 0.6190

SePHklr k+ [20] 0.4997 0.5252 0.5413 0.5584 0.6009 0.6122

GSPHklr r+ [21] 0.5064 0.5289 0.5320 0.5701 0.6001 0.6237

GSPHklr k+ [21] 0.5117 0.5318 0.5390 0.5801 0.6036 0.6207

UGACH [3] 0.3332 0.3605 0.3688 0.3222 0.3323 0.3471

DCMHoriginal [5] 0.4503 0.4506 0.4120 0.7419 0.7238 0.6940

19DCMHvgg [5] 0.4387 0.4698 0.4809 0.8279 0.8457 0.7927

SCH-GAN [2] 0.5207 0.5370 0.5076 0.8352 0.8351 0.8288
Ours 0.5528 0.5712 0.5688 0.8426 0.8502 0.8572

TABLE IV. THE MAP SCORES ON NUS-WIDE DATASET

Methods
image→text text→image

16 32 64 16 32 64

SePHklr r+ [20] 0.6537 0.676 0.6792 0.6769 0.6857 0.6836

SePHklr k+ [20] 0.6625 0.685 0.6848 0.6681 0.6875 0.6886

GSPHklr r+ [21] 0.6703 0.6858 0.6961 0.676 0.6838 0.7028

GSPHklr k+ [21] 0.6746 0.696 0.7049 0.6756 0.6986 0.7052

UGACH [3] 0.6231 0.6296 0.6293 0.6152 0.6116 0.6152

DCMHoriginal [5] 0.6008 0.6419 0.6383 0.6439 0.6739 0.6709

19DCMHvgg [5] 0.6341 0.6552 0.6631 0.6803 0.699 0.7058

SCH-GAN [2] 0.6647 0.6909 0.7027 0.6862 0.7086 0.7128

Ours 0.6625 0.7007 0.7179 0.6848 0.7091 0.7189

Figure 2. The PR-curves on Wikipedia dataset.

Figure 3. The PR-curves on MIRFlickr dataset.

Figure 4. The PR-curves on NUS-WIDE dataset.

261

TABLE V. THE DIFFERENT BATCH SIZE TRAINING OF DHLBT ON WIKIPEDIA DATASET

Batch Size
Learning

rate
Ortho.

MAP (image → text) MAP (text → image)
The sum of MAP

(image→text and text → image)

Time of

 each epoch

16 32 64 16 32 64 16 32 64 16 32 64

512 0.02 N 0.5406 0.5506 0.5612 0.8280 0.8524 0.8432 1.3686 1.4030 1.4044 9.3s 9.6s 10.2s

512 0.02 Y 0.5588 0.5629 0.5691 0.8312 0.8576 0.8479 1.3900 1.4205 1.4170 16.0s 16.3s 16.8s

2048 0.04 N 0.5509 0.5594 0.5699 0.8231 0.8462 0.8326 1.3740 1.4056 1.4025 8.1s 8.2s 8.5s

2048 0.04 Y 0.5559 0.5668 0.5702 0.8380 0.8486 0.8545 1.3939 1.4154 1.4247 10.9s 11.0s 11.3s

8192 0.08 N 0.5487 0.5563 0.5649 0.8217 0.8431 0.8327 1.3704 1.3994 1.3976 7.5s 7.5s 7.9s

8192 0.08 Y 0.5528 0.5712 0.5688 0.8426 0.8502 0.8572 1.3954 1.4214 1.4260 8.2s 8.3s 8.6s

Figure 5. The changes of MAP during the training process with the batch size of 512, 2048 and 8192, respectively.

Figure 6. The changes of MAP in different value of the hyperparameter , and , respectively.

The PR-curves at 32- and 64-bit hash code length on
Wikipedia, MIRFlickr and NUS-WIDE datasets are shown in
Fig. 2, Fig. 3 and Fig. 4, respectively. The result shows that our
method performs better than other state-of-the-art methods.

In addition, we also compare the effects of different batch
sizes and orthogonal regularization on our model training on
the Wikipedia dataset. The batch size is set to 512, 2048, and
8192, respectively. When increasing the batch size, it is
necessary to increase the learning rate to ensure the
convergence speed, so the learning rates are 0.02, 0.04, and
0.08, respectively. N means that orthogonal regularization is
not used, and Y means orthogonal regularization is used. When
orthogonal regularization is not used, we replace it with L2
regularization, that is, equation (13) is replaced by:

2 2

4 ()
Frobenius Frobenius

L w B= + ()

We keep configuration for all parameter except the learning
rate. The result of the comparison is shown in Table 5. When
evaluating the performance, we need to consider not only the

map of image→ text, but also the map of text→ image.

Therefore, the map sum of text→image and image→text is

given in Table 5. It can be seen that using orthogonal
regularization can obviously achieve better performance when
using same batch size, but the training time of each epoch will
be increased. Extend the batch size will significantly increase
training speed. Simply increasing the batch size without using
orthogonal regularization does not achieve good performance.
When the batch size is 8192 and the orthogonal regularization
is used, we achieve the best performance.

We also analyze the training stability of our model. The
changes of MAP at 64-bit hash code length during the training
process with the batch size of 512, 2048 and 8192 on
Wikipedia dataset are shown in Fig. 5. “orth” means that
orthogonal regularization is used, and “no_orth” means

262

orthogonal regularization is not used. The result shows that the
changes of MAP are more volatile with the increase of batch
size. And the changes of MAP become stable and the model
can get better performance when used the orthogonal
regularization.

At last, we conduct sensitivity experiments for
hyperparameter , and . is set to 0.001, 0.01, 0.1 and

1.0, respectively. is set to 0.001, 0.01, 0.1 and 1.0,

respectively. is set to 4, 8, 12 and 16, respectively. When

performing sensitivity experiments on one hyperparameter,
other hyperparameters remain fixed. That is, we set

=0.01 when performing sensitivity experiments on or .

We set =0.01 when performing sensitivity experiments on

 or . We set =8 when performing sensitivity experiments

on or . Fig. 6 shows the changes of MAP at 32-bit hash

code length in different value of the hyperparameter , and

 on MIRFlickr dataset. The result shows that the changes of

MAP are not volatile when the value of or is set to

between 0.001 and 0.01. The changes of MAP are volatile in
different value of the hyperparameter . When the value of

is set to 8, we get the best MAP scores. For hyperparameter
0.0001 = and 0.01 = ,we follow [10] and [2], respectively,

which are the best parameters selected by the corresponding
authors through sufficient experiments. In order to reduce
hyperparameters, we set and to the same value of ,

which is 0.01.

IV. CONCLUSIONS

In this paper, we propose a deep hashing with large batch
training (DHLBT) for the cross-modal hashing retrieval.
DHLBT is the cross-modal hashing which uses large batch
training and uses orthogonal regularization to improve the
generalization ability of our model. Moreover, the distance
between hash codes and features is added to the objective
function which makes hash codes to represent data more
realistically. The effectiveness of DHLBT is demonstrated
through the experiments on three widely-used datasets:
Wikipedia, MIRFlickr and NUS-WIDE.

V. ACKNOWLEDGMENT

This work is supported by the Major Science and
Technology Project for “Innovation of Common Technology in
Key Industries” of Chongqing (cstc2017zdcy-zdzxX0013),
Technology Innovation and Application Development Project
of CSTC (cstc2020jscx-fyzx0212), and Basic and Advanced
Research Project of CSTC (cstc2019jcyj-zdxmX0008).

REFERENCES

[1] Y. Peng, X. Huang, and Y. Zhao, “An overview of cross-media retrieval:
Concepts, methodologies, benchmarks, and challenges,” IEEE Trans.
Circuits and Syst. Video Technol., vol. 28, no. 9, pp. 2372-2385, Sep.
2018.

[2] J. Zhang, Y. Peng, and M. Yuan, “SCH-GAN: Semi-supervised cross-
modal hashing by generative adversarial network,” IEEE Trans. Cybern.,
vol. 50, no. 2, pp. 489-502. 2020.

[3] J. Zhang, Y. Peng, and M. Yuan, “Unsupervised generative adversarial
cross-modal hashing,” in Proc. 32nd AAAI Conf. Artif. Intell., New
Orleans, Lousiana, USA, 2-7 February 2018, pp. 539-546.

[4] L. Wu, Y. Wang, and L. Shao, “Cycle-consistent deep generative
hashing for cross-modal retrieval,” IEEE Trans. Image Process., vol. 28,
no. 4, pp. 1602 - 1612, Apr. 2019.

[5] Q. Y. Jiang, and W. J. Li, “Deep cross-modal hashing,” in Proc. 30th
IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, 21-26
July 2017, pp. 3232–3240.

[6] Z. Ji, W. Yao, W. Wei, H. Song, and H. Pi, “Deep multi-level semantic
hashing for cross-modal retrieval,” IEEE Access, vol. 7, pp. 23667-
23674. 2019.

[7] G. Wu, Z. Lin, J. Han, L. Liu, G. Ding, B. Zhang, and J. Shen,
“Unsupervised deep hashing via binary latent factor models for large-
scale cross-modal retrieval,” in Proc. 27th Int. Joint Conf. Artif. Intell.,
Stockholm, Sweden, 13-19 July 2018, pp. 2854-2860.

[8] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A.
Kyrola, A. Tulloch, Y. Jia, and K. He (2017). “Accurate large minibatch
SGD: Training imagenet in 1 hour.” [Online]. Available:
http://arxiv.org/abs/1706.02677

[9] Y. You, I. Gitman, and B. Ginsburg (2017). “Large batch training of
convolutional networks.” [Online]. Available:
https://arxiv.org/abs/1708.03888

[10] A. Brock, J. Donahue, and K. Simonyan (2018). “Large scale GAN
training for high fidelity natural image synthesis.” [Online]. Available:
https://arxiv.org/abs/1809.11096

[11] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y.
Yang, L. Yu, T. Chen, G. Hu, S. Shi, and X. Chu (2018). “Highly
scalable deep learning training system with mixed-precision: Training
imagenet in four minutes.” [Online]. Available:
https://arxiv.org/abs/1807.11205

[12] Y. You, J. Hseu, C. Ying, J. Demmel, and C. J. Hsieh (2019). “Large-
batch training for LSTM and beyond.” [Online]. Available:
https://arxiv.org/abs/1901.08256

[13] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and T. P. T.
Ping (2016). “On large-batch training for deep learning: Generalization
gap and sharp minima.” [Online]. Available:
https://arxiv.org/abs/1609.04836

[14] A. Brock, T. Lim, J. M. Ritchie, and N. Weston (2016). “Neural photo
editing with introspective adversarial networks.” [Online]. Available:
https://arxiv.org/abs/1609.07093

[15] D. Wang, C. Peng, M. Ou, and W. Zhu, “Deep multimodal hashing with
orthogonal regularization,” in Proc. 24th AAAI Conf. Artif. Intell.,
Buenos Aires, Argentina, 26-27 July 2015, pp. 2291-2297.

[16] K. Simonyan, and A. Zisserman (2014). “Very deep convolutional
networks for large-scale image recognition.” [Online]. Available:
http://arxiv.org/abs/1409.1556

[17] J. C. Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G. R. G. Lanckriet, R.
Levy, and N. Vasconcelos, “On the role of correlation and abstraction in
cross-modal multimedia retrieval,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 3, pp. 521-35, Mar. 2014.

[18] M. J. Huiskes, and M. S. Lew, “The MIR flickr retrieval evaluation,” in
Proc. 1st ACM Int. Conf. Multimedia Inf. Retr., Vancouver, British
Columbia, Canada, 30-31 October 2008, pp. 39-43.

[19] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng. "NUS-
WIDE: A real-world web image database from national university of
singapore" in Proc. of the 2009 ACM Int. Conf. on Image and Video
Retr., Santorini, Fira, Greece, 8-10 July 2009, pp. 48-56.

[20] Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-Preserving Hashing
for Cross-View Retrieval,” in Proc. 28th IEEE Conf. Comput. Vis.
Pattern Recognit., Boston, MA, USA, 7-12 June 2015, pp. 3864-3872.

[21] D. Mandal, K. N. Chaudhury, and S. Biswas, “Generalized semantic
preserving hashing for cross-modal retrieval,” IEEE Trans. Image
Process., vol. 28, no. 1, pp. 102-112, Jan. 2019.

263

http://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1807.11205
https://arxiv.org/abs/1901.08256
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.07093
http://arxiv.org/abs/1409.1556

Algebraic Higher-Abstraction for Software
Refactoring Automation

Iaakov Exman and Alexey Nechaev
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel

iaakov@jce.ac.il, alosha82@gmail.com

Abstract— Software systems losing modularity along their life
cycle require refactoring to restore their understandability.
However, refactoring is very complex and expensive when done at
the lower abstraction source program level. This paper’s message
is: refactoring is both simpler and mathematically rigorous when
done at a higher-abstraction level. This work proposes a novel
algebraic approach to refactoring, done at a higher-abstraction
level, which is then back-translated to a refactored source
program level. The algebraic approach, combining the Modularity
Matrix and Laplacian Matrix representations of software, has two
advantages over conventional source program refactoring. First,
software higher-abstractions refactoring by a spectral approach is
amenable to automation. Second, the algebraic representation is a
reliable source of refactoring rules, with the potential of reaching a
rule set finally leading to full automation. The refactoring
technique is concisely analyzed and illustrated by case studies. 1

Keywords: Software Modularity; Spectral Refactoring; Algebraic
Higher-Abstraction level; Modularity Matrix; Laplacian Matrix;
Refactoring Rule Set; Refactoring Automation.

I. INTRODUCTION

Refactoring of legacy program code is necessary to recover
desirable qualities of software modularity: viz. to enable
software understanding and maintainability by software
engineers. Refactoring has often been done at source code level,
less frequently at a higher model level.

This work proposes that refactoring done at a higher
abstraction level of software is much more productive and
rigorous than the usual lower level approaches.

The higher abstraction level consists of the Linear Software
Models, an algebraic theory of modular software composition,
in which software systems are represented by matrices, such as
a Modularity Matrix and/or a Laplacian Matrix. Spectral
refactoring applied to these matrices is mathematically rigorous
and amenable to automation

Beyond the advantages of the higher model level for
refactoring in practice, the algebraic approach is a reliable
source of refactoring rules that may potentially lead to a
complete automation of refactoring.

DOI: 10.18293/SEKE2020-008

A. Overall Algebraic Higher-Abstraction Approach

The Algebraic Higher-Abstraction Refactoring is depicted in
the right-hand-side of Fig. 1.

Figure 1. Algebraic Higher-Abstraction Refactoring – Conventional refactoring
(left-hand-side of figure) works with complex source code. Algebraic Higher-
abstraction Refactoring (right-hand-side of figure) climbs to a Higher-
Abstraction level, where rigorous spectral tools resolve modules coupling in a
simpler way. Its 3 stages are: 1st: source code translation into Algebraic
Abstraction; 2nd: legacy abstraction modularized into a Refactored abstraction;
3rd: back-translation into Refactored source code. (All figures in color online).

Algebraic Higher-Abstraction Refactoring is simpler because
higher-abstraction focuses on software architecture, ignoring
source code clutter, irrelevant to modularity.

B. Algebraic Software Modularity

Within Linear Software Models, Modularity Matrix
columns stand for structors – generalizing object-oriented
programming classes – and rows stand for functionals –
generalizing class methods. A 1-valued matrix element structor
provides its functional, e.g. a class containing the
declaration/definition of a method, usable by other classes.
Otherwise, an element is zero-valued.

A schematic Modularity Matrix is seen in Fig. 2. It features:
• Linear independent Matrix vectors – true for structors

among themselves and functionals among themselves;
• Block-Diagonal Modules – structors/functionals vectors of

each module are orthogonal to other modules’ vectors.

264

The matrix in Fig. 2 is a standard Modularity Matrix, i.e.
square and without outliers. A Functional like F2 provided by
two Structors (S2 and S3) is due to inheritance.

Figure 2. Schematic Modularity Matrix – It has 4 structor columns (S1 to S4), 4
functional rows (F1 to F4) and 2 block-diagonal modules (light blue
background): a 3*3 upper-left block and a 1*1 lower-right block. Zero-valued
elements outside modules are omitted for clarity.

A Laplacian Matrix is obtained from the Modularity Matrix
through a bipartite graph [25]. Graph edges fit to Modularity
Matrix 1-valued elements: for instance, the 1-valued (S2,F1)
matrix element (Fig. 2) fits the graph edge from vertex S2 to
vertex F1 (Fig. 3). Bipartite graphs have two vertex sets with
edges linking only vertices in different sets.

Figure 3. Bipartite Graph from Modularity Matrix in Fig. 2 – It has two vertex
sets: an upper structors set (S1 to S4), and a lower functionals set (F1 to F4).
Arrows pointing down mean that structors provide functionals. Rectangles (light
blue) contain vertices belonging to a given module, a connected component.

The Laplacian Matrix [26] (in Fig. 4) is generated from the
bipartite graph (in Fig. 3), according to equation (1):

 L D A= − (1)

where L is the Laplacian matrix, D is the Degree matrix of the
graph vertices and A is the Adjacency matrix of vertex pairs.

Figure 4. Schematic Laplacian Matrix – This Laplacian is generated from the
bipartite graph in Fig. 3 by equation (1). Its diagonal is the Degree matrix D (in
green) displaying vertex’ degrees of the Bipartite graph. The upper-right
quadrant (identical to the Modularity Matrix with a minus sign) together with the
lower-left quadrant is the negative of the graph Adjacency matrix A.

C. A Running Example

We introduce a running example, to clarify the notion of
outlier and its relationship to refactoring.

Outliers are 1-valued matrix elements outside of any block-
diagonal modules. Outliers cause coupling of pairs of modules,
which require refactoring to decouple these modules.

Fig. 5 shows a Modularity Matrix of an actual software sub-
system of Intellij IDEA [15]. This matrix has two block-
diagonal modules, and one outlier element coupling these two
modules. Coupling means that the outlier Structor S5 belongs to
the lower-right module, while its Functional F1 belongs to the
upper-left module. This is an intermediate matrix: one knows the
outlier location, but it must still be refactored (see section V).

Figure 5. Intellij IDEA Modularity Matrix with single outlier – It has 5 structor
columns (S1 to S5), 5 functional rows (F1 to F5) and 2 block-diagonal modules
(light blue background): a 3*3 upper-left block and a 2*2 lower-right block.
There is one outlier element (F1,S5) (hatched red background) coupling the two
modules. Zero-valued elements outside modules are omitted for clarity.

D. Paper Organization

The remaining of the paper is organized as follows. Section
II mentions related work. Section III describes the Algebraic
Higher-Abstraction Refactoring. The refactoring software
architecture of the Re-Factory System is detailed in Section IV.
Section V illustrates and analyzes refactoring by means of a few
case studies. Section VI concludes the paper with a discussion.

II. RELATED WORK

This is a very concise review of the Modularity literature,
due to strict space limitations.

A. Linear Software Models

Linear Software Models, a rigorous linear algebra theory,
were developed by Exman et al. (e.g. [7], [8]), to solve the
problem of software system composition from sub-systems.
Software modularization by spectral methods highlights outliers
coupling modules. A procedure to improve software system
design is described in [9]. The Perron-Frobenius theorem (e.g.
Gantmacher [14]) is central for the Modularity Matrix theory.

Exman and Sakhnini [11] generate from the Modularity
Matrix a Laplacian Matrix, which obtains the same modules as
the Modularity Matrix, by similar spectral methods. The Fiedler
theorem [2], [13] is central to the Laplacian theory. The Fiedler

265

eigenvector, fitting the lowest non-zero Laplacian eigenvalue,
can be used to split too sparse modules and locate outliers.

B. Alternative Modularity Analysis

There are various less formal matrix techniques for
modularity. Baldwin and Clark describe a Design Structure
Matrix (DSM) in their “Design Rules” book [3]. DSM has been
applied to many fields including software engineering (see e.g.
Browning [5], Cai and Sullivan [6]). For alternative clustering
techniques of software modules see Shtern and Tzerpos [22].

C. Automated Modularity Refactoring

Surveys of the multitude of papers dealing with software
refactoring are found in [19], [20]. Fewer works strictly focus
on automated refactoring (e.g. [23]). The work of Bavota [4]
refactors software by rearranging Java packages, combining
two "machine learning" methods. The paper by Zanetti [27]
uses “networks theory”, with probabilistic class relocation,
depending on numbers of adjacent neighbors. An article by
Abdeen [1] automatically reduces packages coupling and cyclic
connectivity, using a “Genetic Algorithm”, minimally
modifying existing packages.

III. ALGEBRAIC HIGHER-ABSTRACTION REFACTORING

Our refactoring proposal, instead of dealing with a complex
source program, or using specialized algorithms, climbs the
software abstraction levels, and solves the problem in the
Higher-Abstraction level with rigorous and general linear
algebra. It returns to the source level the already refactored
software system.

In the algebraic representation of software systems, the
refactoring problem consists of recognizing each outlier which
couples a pair of modules, and by relocating each outlier to a
block-diagonal module, to decouple the pair of modules.

The approach essence is:
• Preserve overall functionality without change,

while changing/creating structors.

A. 1st Stage: Generate Laplacian and its modules

The Algebraic Higher-Abstraction Refactoring starts from a
Modularity Matrix obtained from classes/methods of a program
source – the SUD (Software Under Design) – and/or its
compiled code (see right-hand side of Fig. 1). The Modularity
Matrix generates a Laplacian Matrix by the following steps:

• extract a bipartite graph from the Modularity Matrix;
• generate the Laplacian from bipartite graph, by eq. (1);
• obtain module sizes and locations from the Laplacian

eigenvectors, fitting zero-valued eigenvalues;
• split sparse modules by the Laplacian Fiedler vector.

For the next stages (especially Back-Translation), the

Algebraic Higher-Abstraction Refactoring saves the SUD source
in a dedicated data structure: a three-columns table, whose
columns are 1- functional declaration; 2- name of structor
providing the functional; 3- functional implementation. The
table length is the number of functionals in the program.

B. 2nd Stage: Matrices Modularization

Next, Modularity Matrix outliers are found and decoupled.

C. 3rd stage: Back-Translation to Refactored Source

Back-Translation demands challenging actions:
a) Software matrices translation – attempting to foresee

every translation problem from a refactored matrix (e.g.
insertion of attribute values) into source code;

b) Gradual Collection of Generic Refactoring Rules –
instead of ad-hoc decisions, obtain a refactoring rule set,
the basis of a future potentially complete Algebraic
Higher-Abstraction automation refactoring.

The Back-Translation pseudo-code is shown next.

Algorithm 1 – Find-&-Decouple outliers

Input: Laplacian Matrix and its modules (from 1st Stage)

Preparation:
Module Info Vector – saves modules size and location;

 Modularity Matrix – insert Laplacian module boundaries
 into the Modularity Matrix;

Find Outliers: – by comparing Modularity Matrix with
 Module Info Vector;
 Create Matrix Outlier Vector – with names of structor
 and functional containing outliers;

Decouple Outliers: – Create new Columns/Rows for
 each outlier (group) – between coupled modules;
 Single Outlier Relocation – to new column/row element;
 Outliers Group Relocation – to new columns/rows group.

Output: Refactored Modularity Matrix & outliers.

Algorithm 2 – Back-Translation to Refactored Source
Program

Input: Refactored Modularity Matrix (from Algorithm 1)

Preparation: Create new source files – e.g. new .java
files;
 Insert untouched Structor Functionals into new files
 – structors from which no functionals were decoupled;
 Insert Decoupled Functionals (DF) into new files – by
 “Module Info Vector” and “Matrix Outlier Vector”;

Loop: (on all DFs) Search for DF Calls –
 Get resources used by DF – to be assembled;
 If (trivial resources) – attribute assignments as x=5,
 copy them from the original DF file, to the new file;
 Else if (non-trivial resources) – as another Function
 call, copy the “ Calling-line” from the original DF file
 to the new file and adjust the relevant path, if needed;
 In any case (including no resources) – write new
method call for the DF, in any class from which the DF
function is called;
 Possibly use consumer matrices [12]–to find DF calls;

Output: Refactored Source Program & its Modularity
 Matrix (for the software engineer convenience).

266

Some relevant issues are:
– Why create new source files instead of saving old files?

Since the structors having decoupled functionals ought to be
necessarily composed anew, it is desirable to have a single
uniform way of saving the original source, i.e. by the three-
columns table that was created in the 1st Stage (see sub-section
A “1st Stage: Generate Laplacian and its modules”).

D. Conjecture: Finite Refactoring Rule Set

A cardinal issue for the Algebraic Higher-Abstraction
refactoring potential automation is whether the refactoring rule
set is finite. Therefore we state the following conjecture.

The plausibility arguments for this conjecture are
1) The number of refactoring types is finite; these include:

• Single outlier – just a single unit to be relocated;
• Outliers Group – a finite small group of units to be

relocated, of the order of the sub-matrix size;
• Outliers Array (sequential data) and its access

functions – finite group of the order of the array size.

2) The number of refactoring checking cases for each type
referring to a group is finite; these include:

• Direct matrix check – of the order of a sub-matrix size;
• Saved source Check – existence of different specific

implementations, e.g. in an inheritance case with
overridden function, of the order of the group size;

• Conceptual semantic check – where algebraic check
alone is not sufficient, of the order of group size;

• Specific problems after decoupling – e.g. appearance
of empty classes, of the order of the matrix dimension.

Some of these refactoring types and cases will be illustrated
in section V of this paper.

IV. RE-FACTORY SYSTEM: SOFTWARE ARCHITECTURE AND

IMPLEMENTATION

Re-Factory is a prototype software system designed and
implemented to test case studies and the results of this work.

A. Re-Factory System: Software Architecture

The software architecture of the Re-Factory System,
schematically shown in fig. 6, is composed of four sub-systems:

a- Modulaser – based upon an up-to-date version of this
previously existing software tool [10], written in Java;
inputs .class or .jar files and outputs their Modularity
Matrix. In principle this tool may be adapted to deal with
programs in other Object Oriented languages;

Figure 6. Re-Factory System Software Architecture – It has four sub-
systems: a- an up-to-date version of the Modulaser tool outputs a Modularity
Matrix; b- the Laplacianer outputs the corresponding Laplacian Matrix; c-
the Decoupler finds and decouples outliers, then outputs SUD module sizes
and locations; d- the Back-Translator outputs the refactored SUD modules
back-translated to the source level, done in two steps: 1- inserting functionals
in untouched structors; 2- Loop inserting decoupled functionals in new files.

b- Laplacianer – new sub-system, added to the Modulaser,

generates the Laplacian and its eigenvalues/eigenvectors
from the Modularity Matrix. It was extended and tested
by functions of various linear algebra API libraries.

c- Decoupler – this sub-system has two components. One
finds outliers, by direct use of Fiedler eigenvectors [13].
The other one decouples outliers using the current set of
Modularity Matrix refactoring rules. More design details
will be provided in an extended version of this paper.

d- Back-Translator – this last sub-system is also
designed with two components. One of them
reconstitutes the untouched structors. The other one
performs a loop inserting decoupled outliers and
necessary resources composing new source files.

B. Re-Factory System: Implementation

The Re-Factory implementation throughout the system,
adopted the Modulaser Java language for compatibility. This
included some frequently used API linear algebra libraries,
also in Java, to calculate Laplacian eigenvalues/eigenvectors:

• JAMA (A Java Matrix Package) [21];
• LA4J (Linear Algebra for Java) [17];
• JBLAS (Linear algebra for Java, based upon BLAS

and LAPACK) [16].

V. CASE STUDIES: SINGLE AND GROUPS OF OUTLIERS

The Case Studies section illustrates and analyzes two
refactoring case studies with diverse characteristics.

A. Single Outlier Refactoring

The 1st case study is a Javac2 compiler sub-system of the
Intellij IDEA system [15]. This is an interesting case since the
initial Modularity Matrix (Fig. 7) is puzzling: it is difficult to
decide which the modules are and how many outliers are in this
system. Only the Laplacian splitting resolves the puzzle.

Conjecture 1 – Algebraic Higher-Abstraction Finite
Refactoring Rule Set

The number of refactoring rules in the Algebraic Higher-
Abstraction Software Refactoring is finite and small.

267

Figure 7. Intellij IDEA Javac2 Modularity Matrix with outliers – It has two
potential modules: one upper-left, another lower right (light blue background),
whose actual sizes are not known yet. The potential modules are coupled by one
or two outliers (F1,S4) and (F1,S5) (dark blue background). Coupling issues are
resolved in this work by calculating the eigenvectors of the fitting Laplacian.

From the Modularity Matrix in Fig. 7 a Laplacian was
generated. This Laplacian has a single zero-valued eigenvalue,
thus a single whole matrix module. The Laplacian eigenvectors
are shown in Fig. 8: the single module eigenvector and the
Fiedler eigenvector.

Figure 8. Intellij IDEA Javac2 Laplacian eigenvectors – The upper row has ten
vertex indices – functionals and structors – of the bipartite graph. The mid-row
contains a single whole matrix module equal elements’ eigenvector. The lower
row shows the Fiedler eigenvector elements. It splits the single module into two
smaller modules by the elements signs: negative (blue) and positive (green).

The Fiedler vector element signs split the Modularity matrix

into two modules: upper-left of 3*3 size (F1, F2, F4, S1, S2,
S4) and lower-right of 2*2 size (F3, F5, S3, S5). The unique
outlier (F1,S5) is revealed outside both modules, as seen in the
intermediate matrix (Fig. 5 in Running Example in section I).

Relocating the outlier (F1,S5) is now shown in Fig. 9. It has
been moved to the newly created row/column (F6,S6) diagonal
element. Please compare the neater refactored fig. 9 with fig. 7.

Figure 9. Refactored Intellij IDEA Javac2 Modularity Matrix – It has two
modules: a 3*3 upper-left and a 2*2 lower right (light blue). The outlier (dark
blue) has been relocated to a diagonal position (F6,S6) in the intersection of
newly created column and row, in between the previously coupled modules.
The previous (F1, S5) position is marked (hatched red).

Figure 10. Horizontal row case study – This matrix contains a single 8*8 big
module, since the horizontal row F7 filled with 1-valued matrix elements
couples all the smaller potential modules. The latter are five 1*1 diagonal
modules and one 3*3 lower-right block-diagonal module (light blue
background). The five horizontal matrix elements (dark blue hatched
background) in row F7 are the source of the coupling problems to be solved.

B. Outlier Group Refactoring: Horizontal Row

The 2nd case study, the horizontal row illustrates an outlier
group, with multiple usage of the same function. It is actually
found in several software systems, e.g. the “Modulaser” [10]
itself, and the “Tagger” software program [24]. This horizontal
row example, seen in Fig. 10, may cause 3 potential problems:

a) Non-implemented inheritance – the five 1-valued row
F7 matrix elements, from the left, are an outlier group to
be relocated to the main diagonal. Yet, the 1-valued row
of elements e.g. due to inheritance, may not be present in
the original source code, except the parent class. For
back-translation, an inherited but not overridden outlier
function should be referred to the parent class.

b) Need to check source code for overridden function –
one cannot distinguish which of the five 1-valued matrix
elements were overridden by just checking the matrix.

c) Inability to know if coupled related tasks should not be
decoupled – for example, the whole module in Fig.10
illustrates a Laplacianer task, computing eigenvalues and
eigenvectors by differing linear algebra APIs, (see sub-
section B of section IV); the five outliers perform the
same task in different ways and it is not clear whether
they should be decoupled. This is an example of a
conceptual problem.

VI. DISCUSSION

A. Comparison with other Refactoring Approaches

The case studies in section V illustrate important features of
the Algebraic Higher-Abstraction Refactoring approach:

• Neat Representation – the algebraic representation of
software systems by matrices clearly eliminates
irrelevant source code clutter;

• Generic Rigorous Procedure – the usage of Laplacian
eigenvectors for modularization is a generic rigorous
mathematical procedure, avoiding ad-hoc trial and
error and specialized refactoring algorithms;

268

• Exact Number of Relocations – no need to guess how
many outlier relocations should be performed; the
Fiedler vector reveals the exact number of outliers, as
illustrated in the Intellij IDEA case study.

• Refactoring Amenable to Automation – the rigorous
mathematical procedure, together with a finite and
small refactoring rule set, is amenable to automation.

On the other hand, there still are specific problems to be
solved on the way to complete automation.

B. Collecting an Algebraic Rule Set

The refactoring Rule Set collection can be seen under two
perspectives: 1- rule classification into groups, as was
tentatively done in sub-section D of section III; 2- rule
conceptualization possibly leading to a more formal (eventually
algebraic) comprehensive and self-consistent rule set.
Conjecture 1 on a plausible Finite Rule Set for Higher-
Abstraction supports the second perspective.

C. Algebraic and Conceptual Refactoring
Separability

This research has been performed under the assumption that
one can refactor software systems exclusively based upon
algebraic considerations, without conceptual semantic
considerations. Some case studies investigated in this work hint
that the assumption is not universal. But it could still be the case
that the assumption is valid in a significant majority of cases.

D. Future Work

The paper’s results, in particular the conjecture of the finite
refactoring rule set, deserve formal proofs and extensive
verification for a variety of software systems. These will be
presented in an extended version of this paper.

E. Main Contribution

This paper’s main contribution is an Algebraic Higher-
Abstraction refactoring, replacing conventional and less formal
approaches, and amenable to software refactoring automation.

REFERENCES
[1] H. Abdeen, H. Sahraoui, O. Shata, N. Anquetil and S. Ducasse, “Towards

Automatically Improving Package Structure While Respecting Original
Design Decisions”, in Proc. 20th WCRE Working Conf. on Reverse
Engineering, pp. 212-221, (October 2013). DOI:
https://doi.org/10.1109/WCRE.2013.6671296

[2] N.M.M. de Abreu, “Old and new results on algebraic connectivity of
graphs”, Linear Algebra and its Applications, 423, pp. 53-73, 2007. DOI:
https://doi.org/10.1016/j.laa.2006.08.017.

[3] C.Y. Baldwin and K.B. Clark, Design Rules, Vol. I. The Power of
Modularity, MIT Press, MA, USA, 2000.

[4] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk and A. De Lucia,
“Improving Software Modularization via Automated Analysis of Latent
Topics and Dependencies”, ACM Transactions on Software Engineering
and Methodology (TOSEM), Vol. 23, pp. 4, (February 2014). DOI:
https://doi.org/10.1145/2559935

[5] T.Y. Browning, “Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New
Directions”, IEEE Trans. Eng. Management, Vol. 48, pp. 292-306, 2001.

[6] Y. Cai and K.J. Sullivan, “Modularity Analysis of Logical Design
Models”, in Proc. 21st IEEE/ACM Int. Conf. Automated Software Eng.
ASE’06, pp. 91-102, Tokyo, Japan, 2006.

[7] I. Exman, “Linear Software Models”, Extended Abstract, in I. Jacobson,
M. Goedicke and P. Johnson (eds.), GTSE 2012, SEMAT Workshop on
General Theory of Software Engineering, pp. 23-24, KTH Royal Institute
of Technology, Stockholm, Sweden, 2012. Video:
http://www.youtube.com/watch?v=EJfzArH8-ls

[8] I. Exman, “Linear Software Models: Standard Modularity Highlights
Residual Coupling”, Int. Journal on Software Engineering and Knowledge
Engineering, vol. 24, pp. 183-210, March 2014. DOI:
10.1142/S0218194014500089

[9] I. Exman, “Linear Software Models: Decoupled Modules from
Modularity Eigenvectors”, Int. Journal on Software Engineering and
Knowledge Engineering, vol. 25, pp. 1395-1426, October 2015. DOI:
10.1142/S0218194015500308

[10] I. Exman and P. Katz, “Modulaser: A Tool for Conceptual Analysis of
Software Systems”, in Proc. SKY 2016, 7th Int. Workshop on Software
Knowledge, pp. 19-26, ScitePress, Portugal, 2016.

[11] I. Exman and R. Sakhnini, “Linear Software Models: Bipartite
Isomorphism between Laplacian Eigenvectors and Modularity Matrix
Eigenvectors”, Int. Journal of Software Engineering and Knowledge
Engineering, Vol. 28, No 7, pp. 897-935, 2018. DOI:
http://dx.doi.org/10.1142/S0218194018400107

[12] I. Exman and H. Wallach, “A Software System is Greater than its
Modules’ Sum: Providers & Consumers’ Modularity Matrix”, in
SEKE’2019 31st Int. Conf. on Software Engineering and Knowledge
Engineering, Lisbon, Portugal, pp. 75-81, July 2019. DOI:
https://doi.org/10.18293/SEKE2019-003

[13] M. Fiedler, “Algebraic Connectivity of Graphs”, Czech. Math. J., Vol. 23,
(2) 298-305, 1973.

[14] F.R. Gantmacher, The Theory of Matrices, Volume Two, Chelsea
Publishing Co., New York, NY, USA, 1959. Chapter XIII, page 53,
Available in the Web (out of copyright):
https://archive.org/details/theoryofmatrices00gant.

[15] Intellij IDEA – IDE for Java Virtual Machine (2020).
https://www.jetbrains.com/idea/

[16] JBLAS - fast linear algebra library for Java based on BLAS and LAPACK
(2010) - http://jblas.org/

[17] LA4J – Linear Algebra for Java library (updated 2015) - http://la4j.org/

[18] B. S. Mitchell and S. Mancoridis, On the automatic modularization of
software systems using the Bunch tool, IEEE Trans. Softw. Eng. 32
(2006) 193–208.

[19] T. Mens and T. Tourwe, “A Survey of Software Refactoring”, IEEE
Trans. Software Eng., Vol. 30, pp. 126-139, (2004). DOI:
10.1109/TSE.2004.1265817

[20] M. Mohan and D. Greer, “A Survey of Search-based Refactoring for
Software Maintenance”, J. Soft. Eng. Res. & Dev., (2018) 6:3. DOI:
https://doi.org/10.1186/s40411-018-0046-4

[21] NIST, JAMA: A Java matrix package (2012),
http://math.nist.gov/javanumerics/jama/

[22] M. Shtern and V. Tzerpos, “Clustering Methodologies for Software
Engineering”, in Advances in Software Engineering, vol. 2012, Article ID
792024, 2012. DOI: 10.1155/2012/792024

[23] G. Szoke, C. Nagy, R. Ferenc amd T. Gyimothy, “Designing and
Developing Automated Refactoring Transformations: An Experience
Report”, 23rd IEEE Int. SANER Conf., Vol. 5, pp. 693-697, (2016). DOI:
https://doi.org/10.1109/SANER.2016.17

[24] Tagger – software preprocessor from simple markup language to Adobe
InDesign input – provided by Daniel Jackson, CSAIL, MIT – personal
communication, August 2018.

[25] E. W. Weisstein, Bipartite graph (2020),
http://mathworld.wolfram.com/BipartiteGraph.html

[26] E. W. Weisstein, Laplacian matrix (2020),
http://mathworld.wolfram.com/LaplacianMatrix.html

[27] M.S. Zanetti, C.J. Tessone, I. Scholtes and F. Schweitzer, “Automated
Software Remodularization Based on Move Refactoring”, in Proc.
MODULARITY ’14, pp. 73-83, (April 2014). DOI:
http://dx.doi.org/10.1145/2577080.2577097

269

DOI reference number: 10.18293/SEKE2020-029

Reliable Compilation Optimization Selection Based

on Gate Graph Neural Network

Jiang Wu, Jianjun Xu, Xiankai Meng

College of Computer

National University of Defense Technology

wujiang_nudt@163.com, jjxu@nudt.edu.cn, mengxiankai12@nudt.edu.cn

Abstract—For different programs or applications, it is necessary

to select the appropriate compilation optimization pass or subse-

quence for the program. To solve this problem, machine learning

is widely used as an efficient technology. However, the most im-

portant problem in using machine learning is the extraction of pro-

gram features. How to ensure the integrity and effectiveness of

program information is the key to the problem. In addition, when

compiling and optimizing the selection problem, the measurement

indicators are often program performance, code size, etc. There is

not much research on program reliability which needs the longest

measurement time and the most complicated measurement meth-

ods. This paper proposes a GGNN-based compilation optimization

pass selection model. We extend the deep neural network based on

GGNN, and build a learning model which learns heuristics for pro-

gram reliability. The experiment was performed under the clang

compilation framework. The alternative compilation optimization

pass adopts the C language standard compilation optimization

passes. Compared with the traditional machine learning method,

our model improves the average accuracy by 5% ~ 11% in the op-

timization pass selection for program reliability. At the same time,

experiments show that our model has strong scalability.

Keywords- compilation optimization selection; AST; GGNN;

reliability; clang

I. INTRODUCTION

In the past few decades, compiler developers have designed
and implemented a large number of compilation optimization
options in response to compilation optimization needs in various
complex situations. In actual development, the standard compi-
lation optimization pass provided by the compiler is difficult to
adapt the requirements for the program to be compiled in com-
plex scenarios. On the one hand, the program to be compiled has
different semantics and compilation goals. It is difficult to obtain
the optimal optimization effect by using the standard compila-
tion optimization pass directly. If an inappropriate optimization
pass is used, it may even bring negative effects about program
performance, etc. On the other hand, with the continuous devel-
opment of the hardware architecture, the compilation environ-
ment becomes increasingly complex, and the compilation opti-
mization pass should be adjusted accordingly. Therefore, how to
choose the best compilation optimization pass for the program
to be compiled among the intricate optimization options. Be-
come a challenging scientific problem. The algorithms used in
this field mainly include heuristic search algorithms and ma-
chine learning algorithms. The heuristic search algorithm uses a
heuristic method to search the optimal compilation optimization

pass in the compilation optimization option combination space.
For example, the VISTA interactive compilation system [1] uses
a combination of genetic algorithms and human-assisted guid-
ance to search for optimal compilation optimization passes; the
open source framework “ OpenTuner ” [2] uses a variety of evo-
lutionary algorithms, including genetic algorithms, to get a
speedup of up to 2.8 times; Jantz et al. [3] use genetic algorithms
to select the optimal compilation optimization pass for the JIT
compiler. And some other selection schemes based on some
multi-objective optimization algorithms, for example, Lok et al.
[4] [5] use SPEA2, NSGA-II and IBEA to select the compilation
optimization pass for the program to be compiled that meets the
target code execution speed, scale and other goals.

However, the heuristic search algorithm can generate effi-
cient compilation optimization sequences, but it takes a lot of
time to run the entire iterative process. Gradually researchers be-
gan to use machine learning algorithms to select compilation op-
timization sequences. A large number of algorithms based on
SVM and LR are widely used. The work [6] used code runtime
characteristics to characterize the program to be compiled to
train the logistic regression model; Ashouri et al. [7] analyzed
the dependencies between optimization options in the compiler's
LLVM, using program dynamic characteristics to train the
Bayes network, then use this model to predict the optimization
options that should appear in the next stage until the prediction
is completed; the open source compiler "Milepost GCC" [8],
which is a modularized, modified form of GCC4.4 scalable com-
piler that supports static feature extraction of the program to be
compiled, trains machine learning models, and predicts the com-
pilation effect of the compiled optimization sequence. A large
number of machine learning algorithms perform feature extrac-
tion on programs, both dynamic and static features., it is difficult
to extract program information completely and efficiently. Most
work has tried to transfer natural language methods and does not
capitalize on the unique opportunities offered by code’s known
semantics. For example, long-range dependencies induced by
using the same variable or function in distant locations are often
not considered. Such models miss out on the opportunity to cap-
italize on the rich and well-defined semantics of source code.
Therefore, constructing a graph to represent complete program
information and training in conjunction with a graph neural net-
work is a more effective way to ensure the integrity of the pro-
gram information as much as possible.

In addition, from the perspective of compiling optimization
goals, most researches focus on the execution speed of the target

270

mailto:wujiang_nudt@163.com
mailto:jjxu@nudt.edu.cn

DOI reference number: 10.18293/SEKE2020-029

machine code [9] [10]. Statistics shows that the target code is
used in machine learning algorithms. The acceleration ratio as
the optimization target accounted for the vast majority of the re-
search, accounting for more than 80% of this part of the research.
Another optimization goal that researchers are concerned about
is the size of the target code [11] [12]. It is a very important op-
timization goal, especially in the case of the current widespread
application of embedded programs, reducing the storage space
as much as possible can bring significant benefits. However,
there is not much research on the use of machine learning for
compilation optimization orienting program reliability research.

In order to extract the program information as completely as
possible, while taking advantage of the advantages of machine
learning, we combine GGNN, program reliability analysis and
compilation optimization selection problems. We abstract the C
raw code into a graph with data flow and type hierarchies, and
then build a program optimization oriented graph neural network
for program reliability. Our work replaces the need for compile-
time or static code features, merging feature and heuristic con-
struction into a graph and send it to a graph neural network. Then
learning to get which clang standard compilation optimization
can bring the highest reliability gain for a specific C code. By
using the PIN [13] tool for verification, our model has an average
accuracy improvement of 5% ~ 11% compared to traditional ma-
chine learning algorithms without our extended GGNN. At the
same time, our model is also highly scalable and can adjust the
size of the output layers to solve different problems.

II. PROGRAM AS GRAPH

A. Abstract Syntax Tree

As an intermediate representation of the source code for
parsing and semantic analysis, AST [14] is a tree-structured data
describing the syntax rules and execution order of the code,
which is obtained after the code is parsed using irrelevant con-
text rules. In the AST, leaf nodes represent identifiers in the
source code, while non-leaf nodes represent syntactic structures.
As the parse tree of the source code, the AST basically covers
the following syntax structures: Selecting structure (IF,
SWITCH, etc.); Loop structure (WHILE, FOR, etc.); Sequence
structure (expressions, assignment statements, etc.). Therefore,
AST, as an intermediate representation of the source code, can
effectively retain the syntactic context information related to the
programming language.

B. Function Call Graph

FCG [15] is used to characterize information related to con-
trol flow in source code. Each node in a function call graph rep-
resents a function, and the edges in it represent the calling rela-
tionship between functions. Understanding the calling relation-
ship between functions is of great help to understand the hierar-
chical structure of the program, and clarifying the function call-
ing relationship is a key part of program analysis.

C. Data Flow Graph

DFG [16] explicitly contains the data logic of the two aspects
of data transfer and data processing in the source code. Nodes in
DFG represent entities, such as variable declarations, operands,

operators, structures, etc., and the edges in them represent the
data relationships that exist between these entities. DFG can de-
scribe the data logic and program functions of the source code
and is used to analyze the dynamic runtime data flow infor-
mation of the program. From the perspective of data transmis-
sion, DFG describes the movement and transformation of data
streams from input to output. Because it can clearly reflect the
logic that the program must complete, it has become one of the
most commonly used methods of program analysis.

int add(int m1)

{

int x1 = Foo(m2);

int y1 = 2;

y2 = x2 + 1;

return y3;

}

int Foo(int m)

{

int n = Square(m);

int k = Mod(m);

return n*k;

}

(a)

TranslationUnit
Decl

FunctionDecl
[add]

FunctionDecl
[Foo]

CompoundStmt

DeclStmt DeclStmt ReturnStmt DeclStmt

VarDecl
[y]

VarDecl
[x]

DeclRefExpr
[y]

DeclRefExpr
[y]

IntegerLite
[2]

CallExpr

ImplicitCastExpr

ImplicitCastExpr

DeclRefExpr
[Foo]

DeclStmt

BinaryOperator
[+]

IntegerLite
[1]

DeclRefExpr
[x]

ImplicitCastExpr

(b)

Figure 1. Example of the co-AST.

By comparing the characteristics of AST, FCG, and DFG, it
is clear that each different form of the intermediate expression
form only describes the program source code from a certain an-
gle. The AST only contains static information related to the
grammatical structure, and the latter two are used to describe the
runtime dynamic information related to the control flow and the
data flow. In particular, the angles of the latter two references
are different. FCG starts with a coarse-grained function, while
DFG starts with fine-grained variables, operators, and operands.
The source code is special executable text, and both static syntax
information and dynamic runtime information are important.
Therefore, the fusion of the code information carried in the AST,

Identify applicable sponsor/s here. (sponsors)

271

DOI reference number: 10.18293/SEKE2020-029

FCG, and DFG helps reduce the information loss caused by the
transformation of source code to intermediate expressions.

We have established a joint program analysis graph co-AST,
which combines the characteristics of AST, FCG, and DFG. As
shown in Figure 1, based on the source code of Fig. 1 (a), we
constructed the co-AST graph as Fig. 1 (b). The complete co-
AST graph has a total of seven types of edges. We introduce the
edges of FCG and DFG into the original AST structure. As
shown in Figure 1 (b), the solid arrow is the function call identi-
fier, and the dashed curve arrow is the identification of the data
stream This combination greatly enriches the information in the
program graph, thereby speeding up the spread of information in
GGNN and improving the effect of model training.

III. CONSTRUCTION OF EXTENDED GGNN

The graph model used in this paper involves a directed graph
𝐺 = (𝑉, 𝐸), where 𝑉 represents a set of nodes of size |𝑉| and 𝐸
represents a set of size |𝐸|. The nodes in 𝑉 are represented by
node number 𝑖, the directed edges in 𝐸 are represented by eij,

and eij represents the edge pointed by node 𝑖 to node j. For dif-

ferent types of edges in the graph, use the edge type set LK = {l1 ,
l2, ..., lk} to represent. The connection relationship between the
nodes in the graph is represented by the connection matrix 𝐴.
There are two design schemes for the dimension of 𝐴. The first

design is 𝐴∈ R|V|×2|V|, directed edge eij in the figure is seen as

two different types of access edges, one is the outgoing edge of
node 𝑖 and the other is the incoming edge of node j. The second

design is 𝐴∈ R|V|×|V|, it only considers the directed edge eij as

the incoming edge of node j. The connection matrix in this paper
uses the second scheme.

The element 𝐴ij in the 𝑖 row and the j column is a 𝑑 × 𝑑

matrix (𝑑 represents the node state vector dimension). 𝐴ij is also

called the propagation matrix on edge eij, which represents the

information propagation rules from node 𝑖 to node j. For exam-
ple, Fig. 2 (c) shows the connection matrix corresponding to the
data flow graph shown in Fig. 2 (b), where the two rectangular-
framed matrices are the propagation matrices corresponding to
e3y and eyz respectively.

In the assignment statement shown in Fig. 2 (a), we are con-
cerned about whether the number 3 can be passed to the variable
z, as shown in Fig. 2 (b). To this end, nodes 3 and z can be re-
garded as the source node and the target node respectively, and
their feature vectors are initialized as ℎ3

0 = [1,0] and ℎ𝑧
0 = [0,1]

(the first dimension of the two-dimensional vector is 1, which
means that 3 can reach the node), and the feature vector table of
node 𝑦 is initialized as ℎ𝑦

0 = [0,0]. The propagation matrix 𝐴ij

determines how the information of each dimension of node 𝑖 is
propagated to the various dimensions of node j. "0" represents
no propagation and "1" represents complete propagation. For ex-
ample, 𝐴3y in Fig. 2 (c) indicates that node 3 only passes the in-

formation of its first dimension to the first dimension of node y.
In this way, the result of multiplying vector ℎ3 and 𝐴3y is still

ℎy = [1, 0], indicating that the data has not been passed to the

target node z. However, 𝐴yz in Fig. 2 (c) indicates that the

information of the first dimension of node 𝑦 is to be transferred
to the first dimension of node z. Therefore, the result of multi-
plying vector ℎy and 𝐴yz is ℎz = [1,0], indicating that data can

reach the target node z.

y = 3

z = y

(a) Sample code

3

y z

(b) DFG

i j

0 0 1 0 0 0
0 0 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

3

y

z

3 y z

(c) Connection matrix

Figure 2. Example of connection matrix and propagation matrix.

In GGNN [17], the information propagation of nodes on dif-
ferent types of edges is achieved through different multilayer
perceptron, and the propagation matrix on the edges is repre-

sented by the trainable multilayer perceptron weights 𝑊e ∈

R𝑑×d. It should be noted that the connection matrix shown in Fig.
2 (c) only represents the weight of the multi-layer perceptron af-
ter the graph model has converged on the reachability task. The
GGNN model has an iterative t-round of node state information
propagation process, as follows: the state information of node 𝑖

is initialized to a vector ℎ𝑖
(1)

∈R𝑑. During the t-th round of iter-

ation, each central node 𝑖 gathers all neighbor node information

to get the node interaction context 𝑚𝑖
(𝑡)
∈R𝑑, as shown in (1)

(where 𝑁i represents the set of neighbor nodes of 𝑖). In response
to the current interaction context, the node 𝑖 updates its own state

information ℎ𝑖
(𝑡)

 after t round. The GRU unit is used in GGNN

different from GNN. The GRU unit considers the relationship
between node status information in different update rounds. That
is, when the node updates during the round t-th, the node hidden

layer vector expression ℎ𝑖
(𝑡)

 and the state information ℎ𝑖
(𝑡−1)

 of

the previous round have a time series relationship, as shown in
(2). GNN only uses edges as a means of propagation, but does
not distinguish the functions of different edges. And GNN does
not set independent learnable parameters for edges, which means
that some characteristics of edges cannot be learned through the
model. This is also the main reason we use GGNN as shown in
Fig. 3.

 𝑚𝑖
(𝑡)

 = 𝛴𝑗∈𝑁𝑖
 𝐴ij ∙ ℎ𝑗

(𝑡−1)
 ()

 ℎ𝑖
(𝑡)

 = GRU (ℎ𝑖
(𝑡−1)

, 𝑚𝑖
(𝑡)

) ()

Figure 3. Extended GGNN architecture

272

DOI reference number: 10.18293/SEKE2020-029

During the information propagation of the graph model,

𝑚𝑖
(𝑡)

 is the interaction context of node 𝑖 in the whole graph.

Whether it is GNN or GGNN, 𝑚𝑖
(𝑡)

 is obtained by directly ac-

cumulating the product of feature information ℎ𝑗
(𝑡−1)

 of the

neighbor node j and the propagation matrix 𝐴ij on the edge eij.

In the topology of the graph, different nodes have different prop-
erties in the topology. In the GNN and GGNN models, the top-
ological properties of the nodes are directly expressed as hidden
nodes. Based on this, in the substructure composed of the central
node 𝑖 and its neighbor nodes 𝑁i, our model abandons the way

of directly accumulating the product of ℎ𝑗
(𝑡−1)

 and 𝐴ij to calcu-

late 𝑚𝑖
(𝑡)

. We hope that the model automatically learns how to

calculate 𝑚𝑖
(𝑡)

 and that the central node could pay more atten-

tion to those neighbor nodes whose topology information is im-
portant, because these neighbor nodes determine the interaction
context of the node 𝑖 on the graph to a greater extent.

Therefore, we have extended GGNN. We assign different
weights to each neighbor node to characterize its importance to

the central node 𝛼ij，it gets function mapping through neural

network 𝑎 : R𝑑 × R𝑑 → R, 𝑎 calculates the correlation coeffi-
cient between the central node 𝑖 and its neighbor j, and uses the
𝑠oftmax function to normalize the correlation coefficients of all
neighboring nodes, such as (3) shown:

 𝛼ij = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑎 (ℎ𝑖
(𝑡−1)

, ℎ𝑗
(𝑡−1)

)) ()

The weight parameter of the neural network 𝑎 is only related
to the round of information propagation. The same round of in-
formation propagation, 𝑎 is shared by all nodes. Different prop-
agation rounds have different parameters for 𝑎. The uncertainty
of the number of neighbor nodes j of a node 𝑖 will result in a
variable number of 𝑎ij, and it is not possible to directly imple-

ment the 𝑠oftmax function provided by the framework Tennsor-
flow. This paper implements 𝑠oftmax to adapt to the changing
number of neighbor nodes:

 𝑎𝑖𝑗 = 𝑎𝑖𝑗 - max(𝑎𝑖1, 𝑎𝑖2, …, 𝑎𝑖𝑗) ()

 𝛼ij =
ⅇ

𝑎ij

𝛴𝑘∈𝑁i
ⅇ𝑎ik

 ()

So the interaction context 𝑚𝑖
(𝑡)

 of node in of our expanded
GGNN is shown in (7):

 𝑚𝑖
(𝑡)

 =∑ 𝛼ij ∙ 𝐴ij ∙ ℎj𝑗∈𝑁i
 ()

Because the selection of program compilation optimization
pass is to analyze the program according to the embedded ex-
pression of the program algorithm graph co-AST, after obtain-

ing the final graph node embedding vector expression ℎ𝑖
(𝑇)

, the
embedding vector ℎG of the entire co-AST graph needs to be
calculated. This paper proposes a node vector probability fu-
sion method, which generates a graph embedding vector from

the node embedding vector. As shown in (7), the f (ℎ𝑖
(𝑇)

, ℎ𝑖
(1)

)
is a fully-connected neural network, which learns the probabil-

ity that node 𝑖 will be fused based on node attributes ℎ𝑖
(1)

 and

topology information ℎ𝑖
(𝑇)

. The activation function in f uses

𝑠igmoid, whose final output is a value of [0, 1]. The g is also
implemented by using a fully connected layer neural network,
which uses the tanh function to activate the output. The calcu-
lation of ℎG is similar to (6). In the end, the program compila-
tion optimization pass selection 𝑙G is derived from the function
𝑠ofmax:

 ℎG = ∑ 𝑓 (ℎ𝑖
(𝑇)

, ℎ𝑖
(1)

) ∙ 𝑔(ℎ𝑖
(𝑇)

)𝑖∈V ()

 𝑙G = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎG) ()

In our extended GGNN, the computation of 𝛼ij of central

node and its neighbor nodes can be parallelized and computa-
tionally efficient. Moreover, it implements the calculation
method of the model automatically learning the interaction con-
text, without having to consider the number of neighbor nodes
that changes. If using neural networks to learn to calculate the
interaction context, it will definitely need to face the problem

Raw
Code

co-
AST

x1

x2
x3

x4
x7

x5 x6

z1

z2
z3

z4
z7

z5 z6

Message Propagation

Softmax

Embedding

Yg

273

DOI reference number: 10.18293/SEKE2020-029

that the neural network weight dimensions cannot be unified due
to the inconsistent number of neighbors in each node.

IV. EXPERIMENT AND ANALYSIS

In order to verify the effectiveness of the model proposed in
this paper in the selection of reliability-oriented program com-
pilation optimization pass, we not only evaluate the model from
the perspective of pass selection accuracy, but also analyze the
ability of the model to learn topology from the perspective of
co-AST graph node embedding expressions.

A. Configuration

In order to cover more program categories in our training set,
we have expanded on the standard C test suite MiBench [18].
We still adopt the program classification method of MiBench,
but we have made a lot of expansions in the number of programs.
We use the open source compilation tool clang to parse the raw
code to get the program's AST data set. We further add edges
representing data flow information and edges representing func-
tion call graphs to the AST tree for each program, and finally
obtain the final co-AST data set. In our experiments, the co-AST
data set is divided into a training set, a validation set, and a test
set according to a ratio of 8: 1: 1. We use the PIN tool to evaluate
the reliability of the program and generate the training set. Our
program reliability evaluation indicators refer to Sridhran [19].

The optimization algorithm used for model training is the
SGD of the ADAM optimizer [20]. The loss function uses cross
entropy. The weight parameter initialization in the model uses
Glorot [21] initialization method. In the experiment, the infor-
mation propagation layer (information iteration round) is set to
4 layers, and the number of neurons in each propagation layer,
that is the propagation matrix vector dimension 𝑑, is a hyperpa-
rameter. The choice of this hyper-parameter mainly considers
the speed of model convergence and the model's loss value. For
this reason, we determined after experiments that when the hid-
den layer vector dimension 𝑑 is 270, the model's convergence
loss value is relatively small, and the model training speed is
also relatively fast. Therefore, we set the hidden layer vector di-
mension 𝑑 to 270 to complete the subsequent experiments.

B. Result and analysis

In the experiment, we construct the classification task of 4.
The main content of this task is to judge, for a specific C raw
code, when using the clang standard compilation optimization
passes -O1, -O2, -O3, and -OS, which one is more reliable for
the program. This is different from many others that focus on
the impact of compilation optimization passes on program speed
and code size. The benchmark comparison experiment selected
in this experiment is TreeBased Convolution Neural Network
(TBCNN). To our knowledge, TBCNN is by far the best per-
forming work on source code classification tasks. In addition,
LSTM [22] is widely used in text classification tasks and our
model is aimed at the improvement of the GGNN model. We
also test the LSTM and GGNN models. The experimental re-
sults are shown in TABLE I, where exGGNN is our extended
GGNN. Therefore, there are four models in the controlled trial,
LSTM, TBCNN, GGNN and exGGNN.

TABLE I. ACCURACY OF OPTIMIZATION PASS SELECTION

Different

Model

Accuracy

Minimum Maximum Average

LSTM 82.2% 84.3% 83.9%

TBCNN 84.5% 88.6% 86.7%

GGNN 87.3% 93.5% 89.2%

exGGNN 87.9% 98.1% 94.1%

The experimental results in Table 1 show that the accuracy
of exGGNN in the code optimization pass selection problem has
improved significantly, indicating that our model has achieved
the expected results for this problem. Better than LSTM and
TBCNN shows that choosing GGNN to deal with such prob-
lems is a better choice, and better than GGNN shows that our
extension has played a important role. Then, in order to evaluate
whether the data flow edge and function call graph edge are use-
ful, we remove one of the 7 types of edges and use the exGGNN
model to learn the co-AST graph after deleting a certain edge to
implement the optimization pass selection. Observe the effect of
each edge on the selection accuracy of the program. The exper-
imental results are shown in TABLE II. The double underline
indicates the co-AST graph with this type of edge removed.

TABLE II. TABLE TYPE STYLES

Different

Edge

Program Category (MiBench)

auto-

mo-

tive

con-

sume

r

net-

work

of-

fice

secu-

rity

tele-

com

m

AST 0.99 0.02 0.09 0.95 0.06 0.09

Operand 0.92 0.07 0.07 0.92 0.02 0.05

LastUse 0.92 0.07 0.07 0.12 0.02 0.05

Compute 0.92 0.07 0.07 0.92 0.02 0.05

Return 0.94 0.07 0.07 0.92 0.02 0.09

Formal 0.99 0.08 0.08 0.05 0.02 0.05

Call 0.92 0.07 0.07 0.92 0.03 0.05

The experimental results show that for most program tasks
in MiBench, deleting a certain type of edge has little effect on
the accuracy of program optimization pass selection accyracy.
There may be information redundancy in the seven types of
edges, so any type of edge deletion will not have a significant
impact on the accuracy of program classification. But for some
programs, deleting these types of edges can significantly reduce
or improve the accuracy of program classification. Therefore,
the construction of co-EAST is effective and can further im-
prove the extracted program information.

We also compare the convergence trend of exGGNN /
GGNN / TBCNN loss values in the co-AST / AST intermediate
expression form. As shown in Fig.4, the graph model not only
has a smaller final convergence loss value, but also has a faster
convergence rate than TBCNN. The reason why the graph net-
work model converges faster is that the graph model has

274

DOI reference number: 10.18293/SEKE2020-029

stronger constraints on AST nodes than TBCNN. More specifi-
cally, in the TBCNN model, the convolution operation forces
one-way propagation of information from child nodes to the par-
ent node. While the graph model involves, for each node, it is
two-way information propagation between all neighboring
nodes. This information dissemination can gradually spread to
the entire graph structure.

Figure 4. Variation of loss values for the four models.

In order to select a highly reliable compilation and optimi-
zation pass, we propose a learning strategy through GGNN. The
experimental results show that our model achieves a higher ac-
curacy on the pass selection problem and is better than similar
neural networks models. As the first attempt to combine graph
neural networks with program reliability, we obviously
achieved our experimental goals. Although the program's run-
ning time and code size are important indicators of program
evaluation, the reliability of the program can not be ignored, es-
pecially in the booming aerospace field, the reliability of the
program is always the first consideration. We are working on
combining optimization sequence generation and graph neural
networks, hoping to find a better solution to the phase ordering
problem.

ACKNOWLEDGMENT

Thanks to my team for their help during the thesis comple-
tion process. Sincere thanks to Associate Professor Xu Jianjun
for his guidance on the ideas and theoretical basis of the thesis,
and to Dr. Meng Xiankai for his help in the experimental work.

REFERENCES

[1] Kulkarni P, Zhao W, Moon H, et al. Finding effective optimization phase
sequences[J]. ACM SIGPLAN Notices, 2003, 38(7): 12-23.

[2] Ansel J, Kamil S, Veeramachaneni K, et al. Opentuner: An extensible
framework for program autotuning[C]//Proceedings of the 23rd
international conference on Parallel architectures and compilation. 2014:
303-316.

[3] Jantz M R, Kulkarni P A. Performance potential of optimization phase
selection during dynamic JIT compilation[C]//Proceedings of the 9th
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments. 2013: 131-142.

[4] Lokuciejewski P, Plazar S, Falk H, et al. Multi-objective exploration of
compiler optimizations for real-time systems[C]//2010 13th IEEE

International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing. IEEE, 2010: 115-122.

[5] Lokuciejewski P, Plazar S, Falk H, et al. Approximating Pareto optimal
compiler optimization sequences—a trade‐off between WCET, ACET
and code size[J]. Software: Practice and Experience, 2011, 41(12): 1437-
1458.

[6] Cavazos J, Fursin G, Agakov F, et al. Rapidly selecting good compiler
optimizations using performance counters[C]//International Symposium
on Code Generation and Optimization (CGO'07). IEEE, 2007: 185-197.

[7] Ashouri A H, Bignoli A, Palermo G, et al. Micomp: Mitigating the
compiler phase-ordering problem using optimization sub-sequences and
machine learning[J]. ACM Transactions on Architecture and Code
Optimization (TACO), 2017, 14(3): 1-28.

[8] Fursin G, Kashnikov Y, Memon A W, et al. Milepost gcc: Machine
learning enabled self-tuning compiler[J]. International journal of parallel
programming, 2011, 39(3): 296-327.

[9] Martins L G A, Nobre R, Cardoso J M P, et al. Clustering-based selection
for the exploration of compiler optimization sequences[J]. ACM
Transactions on Architecture and Code Optimization (TACO), 2016,
13(1): 1-28.

[10] Ashouri A H, Mariani G, Palermo G, et al. Cobayn: Compiler autotuning
framework using bayesian networks[J]. ACM Transactions on
Architecture and Code Optimization (TACO), 2016, 13(2): 1-25.

[11] Foleiss J H, da Silva A F, Ruiz L B. The effect of combining compiler
optimizations on code size[C]//2011 30th International Conference of the
Chilean Computer Science Society. IEEE, 2011: 187-194.

[12] Plotnikov D, Melnik D, Vardanyan M, et al. An Automatic tool for tuning
compiler optimizations[C]//Ninth International Conference on Computer
Science and Information Technologies Revised Selected Papers. IEEE,
2013: 1-7.

[13] Luk C K, Cohn R, Muth R, et al. Pin: building customized program
analysis tools with dynamic instrumentation[J]. Acm sigplan notices,
2005, 40(6): 190-200.

[14] Shen V R L. Novel Code Plagiarism Detection Based on Abstract Syntax
Tree and Fuzzy Petri Nets[J]. International Journal of Engineering
Education, 2019, 1(1).

[15] Hassen M, Chan P K. Scalable function call graph-based malware
classification[C]//Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy. 2017: 239-248.

[16] Weyerhaeuser C, Mindnich T, Baeumges D, et al. Augmented query
optimization by data flow graph model optimizer: U.S. Patent
10,241,961[P]. 2019-3-26.

[17] Li, Yujia, Tarlow, Daniel, Brockschmidt, Marc, et al. Gated Graph
Sequence Neural Networks[J]. Computer Science, 2015.

[18] Guthaus M R , Ringenberg J S , Ernst D , et al. MiBench: A free,
commercially representative embedded benchmark suite[C]// Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop on.
IEEE, 2002.

[19] Sridharan V, Kaeli D R. Eliminating microarchitectural dependency from
architectural vulnerability[C]//2009 IEEE 15th International Symposium
on High Performance Computer Architecture. IEEE, 2009: 117-128.

[20] Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv
preprint arXiv:1412.6980, 2014.

[21] Glorot X, Bengio Y. Understanding the difficulty of training deep
feedforward neural networks[C]//Proceedings of the thirteenth
international conference on artificial intelligence and statistics. 2010:
249-256.

[22] Dyer C, Ballesteros M, Ling W, et al. Transition-based dependency
parsing with stack long short-term memory[J]. arXiv preprint
arXiv:1505.08075, 2015.

275

Trends in Software Reverse Engineering

Dr. Rehman Arshad

Research Associate, The Hut Group

M90 3DP, Manchester, United Kingdom

rehman.khan@thehutgroup.com

Abstract
The polymorphic domain of software reverse engineer-

ing varies since 90s due to multiple reasons. Some of the
primary reasons include the acceptance of new program-
ming languages, underlying technique of reverse engineer-
ing and the desired output notation of the reverse engineer-
ing that varies with evolution of software. The purpose of
this paper is to provide a trend-based taxonomy of reverse
engineering that can classify the differences and similari-
ties in the reverse engineering throughout the years.

Key Words —Reverse Engineering, Softwrae Comprehension1

1. Introduction
”Reverse engineering can be viewed as a process of

analysing a system to identify the system's components and
their interrelationships” [14]. This process is used to com-
prehend, or analyse a system in order to extract an archi-
tecture/notation for various purposes e.g., re-structuring of
legacy systems [2, 6, 31], understanding the code traces
[23], find out the feature locations [37, 51] and develop-
ing understanding of the systems with poor documentation
[19].

The purpose of this paper is to analyse the pros and cons
and to reason about the changes in the nature of reverse en-
gineering throughout the years. This paper can be used as
a reference document to understand the factors and reasons
that change the nature of software reverse engineering since
90s.

There are few factors that are responsible for the change
in nature of reverse engineering throughout the years i.e.,
targeted programming language, underlying technique to
reverse engineer software and the output notation of reverse
engineering. Most reverse engineering approaches try to
tackle the programming language that is considered legacy

1DOI reference number: 10.18293/SEKE2020-061

for a specific domain OR better upcoming options are on
the horizon for that particular domain. Therefore, most of
the approaches from 90s to early 2000s were applied on
COBOL and C code bases [18, 21] whereas, most of the
current ones are being applied on Java [6, 44]. Secondly,
the notation of retrieved output after reverse engineering
started as system documentation/comprehension [12] and
went through the concept-lattices/graphs and code traces
[9, 13] that can help in understanding the composition of
a system. Nowadays, reverse engineering is moving to-
wards architectural retrieval that can enable reusability of
resources [2, 29].

This paper only covers those approaches that deal with
transformation of source code from one notation to another.
The succeeding sections will discuss the framework of clas-
sification and discuss the reverse engineering approaches
with respect to the timeline since 90s.

2. Framework of Classification
The proposed framework and the approaches that we

cover are presented in Table. 12. The stated table has fol-
lowing parameters of classification.

• Timeline: Timeline has been classified into five inter-
vals. Starting from an interval of ten years3 followed
by the four intervals of five years each.

• Approaches: This column shows the total number of
reverse engineering approaches that we have covered
during each phase.

• Approach Name and Reference: As the name sug-
gests, these columns will show all the appraoches
along with their references.

2Table 1 Legend:
F: Feature Model, C: Re-structured Code, NEC: Non-Explicit Components
EC: Explicit Components, VB : View Based G: Concept-Lattices/Graphs, CT: Rank-Based Map-
ping/Code Trace
CO: COBOL, LI: Language Independent, J: Java, OO: Object-Oriented

3First interval consists of a decade rather than five years due to a smaller number of approaches
proposed in that specific timeframe.

276

Timeline Approaches Approach Name Reference
Technique Retrieved Notation Programming Language

Parsing
Based

Plan
Based Transformational Translational F C NEC EC VB CO C C++ LI J OO

G CT

90s-2000 5 RECAST [18] 3 3 3
Sub-System Identifi-
cation

[36] 3 3 3

Ward and Bennet’s
Approach

[48] 3 3 3

Burd and Munro’s
Approach

[12] 3 3 3

Design Components [29] 3 3 3

2001-2005 9 Concern Graphs [40] 3 3 3
Favre et al. [25] 3 3 3
Systematic Method
Approach

[31] 3 3 3

Dynamic Feature
Traces

[23] 3 3 3

Concept Analysis [21] 3 3 3
Trace Dependency
Analysis

[19] 3 3 3

Software Evolution
Analysis

[27] 3 3 3

Locating Features in
Source Code

[22] 3 3 3

Automatic Genera-
tion

[39] 3 3 3

2006-2010 21 Dependence Graph [40] 3 3 3
Javacompext [6] 3 3 3
Chouambe at al. [15] 3 3 3
Antoun et al. [2] 3 3 3
L2CBD [30] 3 3
CORE [32] 3 3 3
Bunch Tool [35] 3 3 3
Natural Language
Parsing

[1] 3 3 3

Source Code Re-
trieval

[34] 3 3 3 3

Combining FCA
with IR

[38] 3 3 3

STRADA [20] 3 3
Call-Graph [9] 3 3 3 3
Focused-view on Ex-
ecution

[10] 3 3 3 3

Scenario-Driven Dy-
namic Analysis

[42] 3 3 3

Featureous [37] 3 3 3
Static and Dynamic
Analysis

[41] 3 3 3

Heuristics Based Ap-
proach

[8] 3 3 3

Landmark and Barri-
ers

[47] 3 3 3

SNIAFL [52] 3 3 3
Cerberus [17] 3 3 3
Concern Identifica-
tion

[45] 3 3 3

2011-2015 13 RecoVar [51] 3 3 3
Semi-Automatic Ap-
proach

[46] 3 3 3

Archimetrix [16] 3 3 3
Quality-centric
Approach

[28] 3 3 3

Memory-constrained
Environment

[49] 3 3 3

Erdemir et al. [24] 3 3 3
Product Variants [50] 3 3 3
Evolutionary Algo-
rithms

[33] 3 3 3

Software Configura-
tions using FCA

[3] 3 3 3

Reverse Engineering
Feature Models

[44] 3 3 3

Component Oriented
Architecture

[4] 3 3 3

MoDisco [11] 3 3
Language Indepen-
dent Approach

[53] 3 3 3

2016-Current 3 Shatnawi et al. [43] 3 3 3
Alshara et al. [5] 3 3 3
RX-MAN [7] 3 3 3

Table 1: Trends in Software Reverse Engineering

277

• Technique: The parameter Technique is further classi-
fied based on the Gannod’s and Cheng’s framework as
follows [26]:

– Parsing Based: approaches use parsers like AST
(Abstract Syntax Tree) to capture a code base for
reverse engineering without losing any detail.

– Plan Based: approaches use heuristics and de-
fine abstraction models to capture the source
code.

– Transformational: techniques transform one no-
tation of semantics into another by specifying a
formal context.

– Translational: ones translate a program into an
equivalent formal specification e.g., creation of a
directed graph from source code.

• Retrieved Notation: shows us the output that each ap-
proach offers. This parameter has been classified into
feature models, restructured code, non-explicit com-
ponents (no defined composition), explicit components
(components that follow a component model) and view
based output (further classified into code traces and
concept-lattices/graphs).

• Programming Language: represents the targeted lan-
guage of a reverse engineering approach. The lan-
guages are classified into COBOL, C, C++, Java, OO
(work on any object-oriented code) and LI (language
independent approaches).

3. Trends in Software Reverse Engineering
Based on the proposed framework and 51 approaches

that we have covered in this paper (Table. 1), there is a
clear pattern that shows the variation of software reverse
engineering since 90s.

Almost all the covered approaches from 90-2000s are
parsing-based i.e., heuristics and plan-based reverse engi-
neering was not developed enough to conduct the process
of reverse engineering. All the approaches were applied
and designed for COBOL and C/C++ code bases i.e., Java
was becoming popular in late 90s and was not considered
because its code bases did not reflect legacy code in that
era. The popular notations of the output of reverse engineer-
ing were components or graphical representations that can
help in code comprehension although, the components’ no-
tations were not specified by some component model. Com-
ponents in that era were usually defined as loosely coupled
code chunks without proper definition of composition.

From 2001-2005, translation-based reverse engineering
was the preferred way instead of parsing-based reverse en-
gineering. Most of the approaches targeted object-oriented
legacy code4. An important change in this phase is the pre-
ferred output of reverse engineering i.e., code trace that can
help in finding the feature locations in a code base. Most

4Such approaches can be applied on any object-oriented code though most of them chose Java
as the targeted language.

approaches (e.g., [23] [27]) conducted dynamic reverse en-
gineering to map legacy code bases in terms of the features
of software.

From 2006-2010, the domain of reverse engineering was
all about heuristics i.e., reverse engineering was based on
plan-based or translation-based (translation via heuristics)
methodologies. This was the era of visualisation-based re-
verse engineering i.e., all the approaches produced either
code traces or concept lattices to visualise the dependencies
e.g., [9] [40]. Many established domains like IR (informa-
tion retrieval) and NLP (natural language parsing) were in-
volved in reverse engineering to produce better results from
heuristics (e.g., [1] [38]). In this phase, 61% of the covered
approaches targeted Java i.e., the trend moved specifically
towards Java rather than general OO. It was justified due to
the fact that by the end of this phase, many enterprise java
code-bases were started to be considered legacy code.

From 2011-2015, the parsing-based reverse engineering
was again on the rise i.e., 42% approaches from this phase
were based on parsing. It was due to the fact that most ap-
proaches extracted ADL-based components/architectural-
notations from the legacy code-bases. Such architectural
notations demand preservation of the functionality of an
original code base and heuristics cannot guarantee lossless
extraction of architecture. 21% of the covered approaches
were plan-based and a few of the approaches extracted fea-
tures/feature models (e.g., [3] [44]). 53% approaches con-
sidered object-oriented code-bases.

The current phase (2016-current) of software reverse
engineering still revolves around architectural re-usability.
Software reverse engineering is moving away from graphs
and code traces towards components. OO code in general
and Java in particular is the favourite choice of current ap-
proaches. Table. 15 shows the overall statistics of the trends
in software reverse engineering.
4. Conclusion

In this paper, we have covered more than 50 approaches
to determine the trends and variations in software reverse
engineering since 90s. Our framework shows that re-
verse engineering is moving from code comprehension and
graphs towards components and architectural notations.

The adaptation in the techniques of reverse engineer-
ing went through phases of parsing-based, translational and
plan-based reverse engineering whereas, most of the recent
reverse engineering approaches are again in favour of pars-
ing with an aim of architectural retrieval that requires the
preservation of syntactic code structure.
References

[1] Surafel Lemma Abebe and Paolo Tonella. Natural language
parsing of program element names for concept extraction. In
18th International Conference on Program Comprehension
(ICPC), 2010 IEEE, pages 156–159. IEEE, 2010.

5MoDisco is a framework and L2CBD is a methodology rather than concrete approaches there-
fore, no programming language/Technique is specified for them respectively.

278

[2] Marwan Abi-Antoun, Jonathan Aldrich, and Wesley Coelho.
A case study in re-engineering to enforce architectural con-
trol flow and data sharing. Journal of Systems and Software,
80(2):240–264, 2007.

[3] R Al-Msie’Deen, Marianne Huchard, A-D Seriai, Christelle
Urtado, and Sylvain Vauttier. Reverse engineering feature
models from software configurations using formal concept
analysis. In CLA 2014: Eleventh International Conference
on Concept Lattices and Their Applications, volume 1252,
pages 95–106, 2014.

[4] S. Allier, S. Sadou, H. Sahraoui, and R. Fleurquin. From
object-oriented applications to component-oriented applica-
tions via component-oriented architecture. In 2011 Ninth
Working IEEE/IFIP Conference on Software Architecture,
pages 214–223, June 2011.

[5] Zakarea Alshara, Abdelhak-Djamel Seriai, Chouki Tiber-
macine, Hinde Lilia Bouziane, Christophe Dony, and Anas
Shatnawi. Migrating large object-oriented applications into
component-based ones: Instantiation and inheritance trans-
formation. SIGPLAN Notices, 51(3):55–64, October 2015.

[6] Nicolas Anquetil, Jean-Claude Royer, Pascal Andre, Gilles
Ardourel, Petr Hnetynka, Tomas Poch, Dragos Petrascu, and
Vladiela Petrascu. Javacompext: Extracting architectural el-
ements from java source code. In 16th Working Conference
on Reverse Engineering, 2009. WCRE’09., pages 317–318.
IEEE, 2009.

[7] Rehman Arshad and Kung-Kiu Lau. Reverse engineering en-
capsulated components from object-oriented legacy code. In
Proceedings of The 30th International Conference on Soft-
ware Engineering and Knowledge Engineering, 2018. KSI
Research Inc., 2018.

[8] Fatemeh Asadi, Massimiliano Di Penta, Giuliano Antoniol,
and Yann-Gaël Guéhéneuc. A heuristic-based approach to
identify concepts in execution traces. In 14th European
Conference on Software Maintenance and Reengineering
(CSMR), 2010, pages 31–40. IEEE, 2010.

[9] Johannes Bohnet and Jürgen Döllner. Analyzing feature
implementation by visual exploration of architecturally-
embedded call-graphs. In Proceedings of the 2006 interna-
tional workshop on Dynamic systems analysis, pages 41–48.
ACM, 2006.

[10] Johannes Bohnet, Stefan Voigt, and Jurgen Dollner. Locating
and understanding features of complex software systems by
synchronizing time-, collaboration-and code-focused views
on execution traces. In The 16th IEEE International Confer-
ence on Program Comprehension, 2008. ICPC 2008., pages
268–271. IEEE, 2008.

[11] Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, and Frédéric
Madiot. Modisco: A model driven reverse engineer-
ing framework. Information and Software Technology,
56(8):1012–1032, 2014.

[12] Elizabeth Burd and Malcolm Munro. Investigating
component-based maintenance and the effect of software
evolution: a reengineering approach using data clustering. In
Proceedings of International Conference on Software Main-
tenance, 1998., pages 199–207. IEEE, 1998.

[13] Kunrong Chen and Václav Rajlich. Case study of feature
location using dependence graph, after 10 years. In 18th In-

ternational Conference on Program Comprehension. IEEE,
2010.

[14] Elliot J. Chikofsky and James H Cross. Reverse engineering
and design recovery: A taxonomy. IEEE software, 7(1):13–
17, 1990.

[15] Landry Chouambe, Benjamin Klatt, and Klaus Krogmann.
Reverse engineering software-models of component-based
systems. In 12th European Conference on Software Main-
tenance and Reengineering, 2008. CSMR 2008., pages 93–
102. IEEE, 2008.

[16] Markus Detten, Marie Christin Platenius, and Steffen
Becker. Reengineering component-based software systems
with archimetrix. Software Systems Model., 13(4):1239–
1268, October 2014.

[17] Marc Eaddy, Alfred V Aho, Giuliano Antoniol, and Yann-
Gaël Guéhéneuc. Cerberus: Tracing requirements to source
code using information retrieval, dynamic analysis, and pro-
gram analysis. In The 16th IEEE International Conference
on Program Comprehension, 2008. ICPC 2008., pages 53–
62. IEEE, 2008.

[18] Helen M. Edwards and Malcolm Munro. RECAST: Reverse
engineering from COBOL to SSADM specification. In Pro-
ceedings of 15th International Conference on Software En-
gineering, 1993, pages 499–508, May 1993.

[19] Alexander Egyed. A scenario-driven approach to trace de-
pendency analysis. IEEE Transactions on Software Engi-
neering, 29(2):116–132, 2003.

[20] Alexander Egyed, Gernot Binder, and Paul Grunbacher.
Strada: A tool for scenario-based feature-to-code trace de-
tection and analysis. In Companion to the proceedings of
the 29th International Conference on Software Engineering,
pages 41–42. IEEE Computer Society, 2007.

[21] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon.
Derivation of feature component maps by means of concept
analysis. In Fifth European Conference on Software Main-
tenance and Reengineering, 2001., pages 176–179. IEEE,
2001.

[22] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Lo-
cating features in source code. IEEE Transactions on Soft-
ware Engineering, 29(3):210–224, 2003.

[23] Andrew David Eisenberg and Kris De Volder. Dynamic fea-
ture traces: Finding features in unfamiliar code. In Proceed-
ings of the 21st IEEE International Conference on Software
Maintenance, 2005. ICSM 2005., pages 337–346. IEEE,
2005.

[24] Ural Erdemir, Umut Tekin, and Feza Buzluca. Object ori-
ented software clustering based on community structure. In
2011 18th Asia-Pacific Software Engineering Conference,
pages 315–321, Dec 2011.

[25] Jean Marie Favre, Frederic Duclos, Jacky Estublier, Remy
Sanlaville, and Jean Jacques Auffret. Reverse engineering
a large component-based software product. In Proceedings
Fifth European Conference on Software Maintenance and
Reengineering, pages 95–104, 2001.

[26] Gerald C Gannod and Betty HC Cheng. A framework for
classifying and comparing software reverse engineering and
design recovery techniques. In Proceedings of Sixth Work-
ing Conference on Reverse Engineering, 1999., pages 77–88.

279

IEEE, 1999.
[27] Orla Greevy, Stéphane Ducasse, and Tudor Girba. Analyzing

feature traces to incorporate the semantics of change in soft-
ware evolution analysis. In Proceedings of the 21st IEEE
International Conference on Software Maintenance, 2005.
ICSM 2005., pages 347–356. IEEE, 2005.

[28] S. Kebir, A. D. Seriai, S. Chardigny, and A. Chaoui. Quality-
centric approach for software component identification from
object-oriented code. In 2012 Joint Working IEEE/IFIP Con-
ference on Software Architecture and European Conference
on Software Architecture, pages 181–190, Aug 2012.

[29] Rudolf K Keller, Reinhard Schauer, Sébastien Robitaille, and
Patrick Pagé. Pattern-based reverse-engineering of design
components. In Proceedings of the 21st international confer-
ence on Software engineering, pages 226–235. ACM, 1999.

[30] Haeng-Kon Kim and Youn-Ky Chung. Transforming a
legacy system into components. In Marina Gavrilova, Os-
valdo Gervasi, Vipin Kumar, C. J. Kenneth Tan, David
Taniar, Antonio Laganá, Youngsong Mun, and Hyunseung
Choo, editors, Computational Science and Its Applications
- ICCSA 2006, pages 198–205, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[31] Soo Dong Kim and Soo Ho Chang. A systematic method to
identify software components. In 11th Asia-Pacific Software
Engineering Conference, pages 538–545, Nov 2004.

[32] Sameer Kumar and Promma Phrommathed. Research
methodology. Springer, 2005.

[33] Roberto Erick Lopez-Herrejon, José A Galindo, David Be-
navides, Sergio Segura, and Alexander Egyed. Reverse en-
gineering feature models with evolutionary algorithms: An
exploratory study. In Search Based Software Engineering,
pages 168–182. Springer, 2012.

[34] Stacy K Lukins, Nicholas A Kraft, and Letha H Et-
zkorn. Source code retrieval for bug localization using La-
tent Dirichlet Allocation. In Reverse Engineering, 2008.
WCRE’08. 15th Working Conference on, pages 155–164.
IEEE, 2008.

[35] Brian S. Mitchell and Mancoridis Spiros. On the automatic
modularization of software systems using the bunch tool.
IEEE Transactions on Software Engineering, 32(3):193–
208, March 2006.

[36] Hausi A Müller, Mehmet A Orgun, Scott R Tilley, and
James S Uhl. A reverse-engineering approach to subsystem
structure identification. Journal of Software: Evolution and
Process, 5(4):181–204, 1993.

[37] Andrzej Olszak and Bo Nørregaard Jørgensen. Featureous: a
tool for feature-centric analysis of java software. In 18th In-
ternational Conference on Program Comprehension (ICPC),
2010, pages 44–45. IEEE, 2010.

[38] Denys Poshyvanyk and Andrian Marcus. Combining for-
mal concept analysis with information retrieval for concept
location in source code. In 15th IEEE International Confer-
ence on Program Comprehension, ICPC 2007., pages 37–48.
IEEE, 2007.

[39] Martin P Robillard. Automatic generation of suggestions for
program investigation. In ACM SIGSOFT Software Engi-
neering Notes, volume 30, pages 11–20. ACM, 2005.

[40] Martin P Robillard and Gail C Murphy. Concern graphs:

finding and describing concerns using structural program de-
pendencies. In Proceedings of the 24th international confer-
ence on Software engineering, pages 406–416. ACM, 2002.

[41] Abhishek Rohatgi, Abdelwahab Hamou-Lhadj, and Juergen
Rilling. An approach for mapping features to code based on
static and dynamic analysis. In The 16th IEEE International
Conference on Program Comprehension, ICPC 2008., pages
236–241. IEEE, 2008.

[42] Maher Salah, Spiros Mancoridis, Giuliano Antoniol, and
Massimiliano Di Penta. Scenario-driven dynamic analy-
sis for comprehending large software systems. In Software
Maintenance and Reengineering, 2006. CSMR 2006. Pro-
ceedings of the 10th European Conference on, pages 10–pp.
IEEE, 2006.

[43] Anas Shatnawi, Abdelhak-Djamel Seriai, Houari Sahraoui,
and Zakarea Alshara. Reverse engineering reusable software
components from object-oriented apis. Journal of Systems
and Software, 131:442–460, 2017.

[44] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wa-
sowski, and Krzysztof Czarnecki. Reverse engineering fea-
ture models. In 2011 33rd International Conference on Soft-
ware Engineering (ICSE), pages 461–470. IEEE, 2011.

[45] Mircea Trifu. Improving the dataflow-based concern identi-
fication approach. In 13th European Conference on Software
Maintenance and Reengineering, CSMR 2009., pages 109–
118. IEEE, 2009.

[46] Marco Tulio Valente, Virgilio Borges, and Leonardo Pas-
sos. A semi-automatic approach for extracting software
product lines. IEEE Transactions on Software Engineering,
38(4):737–754, 2012.

[47] Neil Walkinshaw, Marc Roper, and Murray Wood. Feature
location and extraction using landmarks and barriers. In Soft-
ware Maintenance, 2007. ICSM 2007. IEEE International
Conference on, pages 54–63. IEEE, 2007.

[48] MP Ward and KH Bennett. A practical program transforma-
tion system for reverse engineering. In Reverse Engineering,
1993., Proceedings of Working Conference on, pages 212–
221. IEEE, 1993.

[49] Hironori Washizaki and Yoshiaki Fukazawa. Extracting
components from object-oriented programs for reuse in
memory-constrained environments. 2014.

[50] Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. Feature
location in a collection of product variants. In 19th Working
Conference on Reverse Engineering, (WCRE). 2012, pages
145–154. IEEE, 2012.

[51] Bo Zhang and Martin Becker. Recovar: A solution frame-
work towards reverse engineering variability. In 4th Inter-
national Workshop on Product Line Approaches in Software
Engineering, (PLEASE), 2013, pages 45–48. IEEE, 2013.

[52] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang.
Sniafl: Towards a static noninteractive approach to feature
location. ACM Transactions on Software Engineering and
Methodology (TOSEM), 15(2):195–226, 2006.

[53] Tewfik Ziadi, Christopher Henard, Mike Papadakis, Mikal
Ziane, and Yves Le Traon. Towards a language-independent
approach for reverse-engineering of software product lines.
In Proceedings of the 29th Annual ACM Symposium on Ap-
plied Computing, pages 1064–1071. ACM, 2014.

280

Do Experienced Programmers put too Much Confidence in Comments?

Elia Eiroa-Lledo, Abby Bechtel, Emily Daskas, Lily Foster,
Raha Pirzadeh, Katie Rodeghiero, Erik Linstead

Fowler School of Engineering, Chapman University
E-mail: mlatlab@chapman.edu

Abstract

We present the results of a small eye-tracking study of
novice and experienced programmers asked to deduce
the output of Python and Java code snippets. We observe
experienced programmers paying more visual attention
to code comments, and when the comments provided are
purposefully misleading, the experienced programmers
are more likely to incorrectly describe the code output
than their novice counterparts. While preliminary, these
results suggest that experienced programmers, who are
well-trained in the importance of documentation as part
of the software development process, may have an initial
tendency to put too much confidence in code comments
when faced with program comprehension tasks.

Keywords- program comprehension, eye tracking, code
comments

1. Introduction

As part of their formal training, software engineers
learn that well-commented, easily comprehensible code
is equally as important as code that runs efficiently and
correctly. This is reinforced in professional practice,
where software deliverables are accompanied by substan-
tial amounts of documentation, both inside the source code
as comments, and outside the source code as API specifica-
tions and reference manuals. Such documentation provides
valuable insight into the function and usage of code, and be-
comes a critical resource for programmers who must thor-
oughly understand pieces of existing code as part of soft-
ware development activities. This leads to two natural ques-
tions.

• How much attention do programmers pay to source
code comments when tasked with comprehending a
piece of code they did not write?

DOI reference number: 10.18293/SEKE2020-063.

• Does experience level impact the level of reliance or
confidence a programmer has in comments when faced
with a program comprehension task?

We conducted a small sample (N=14) eye-tracking study
to gain further insight into how developers read Python and
Java code and, in particular, what captures their visual at-
tention as part of program comprehension tasks. We ob-
served that when experienced programmers are presented
with code and asked to determine its output, they often fo-
cus on comments before moving on to code to formulate
their response. In contrast, novice programmers often fo-
cus on the source code itself. When subsequently asked to
verbally describe the purpose of a code snippet they had
just read, experienced programmers in our study were more
likely to base their answer on the comments accompanying
the code, even if the comments were wrong! In this pa-
per, we present some visual attention patterns of program-
mers of different skill levels from our study and explore
whether experience with programming and comfort reading
code can lead to too much faith in source code comments.
Our results, while preliminary, indicate that, on average, ex-
perienced programmers spend a significantly longer amount
of time focusing on documentation during a program com-
prehension task relative to novices and are more likely to be
initially mislead by comments that are technically incorrect.

2. Experimental Design and Data Collection

We recruited a convenience sample of 14 programmers
from a computer science department at a University. Hence,
all of our participants have had formal training in program-
ming and software development at the collegiate level. We
segmented our participants into two groups: novice and
experienced programmers. We defined a novice coder as
someone who has been coding for less than four years and
has not had industry experience as a software engineer. We
defined an experienced coder as someone who has had more
than four continuous years of programming usage and has
had industry experience as a software engineer. Our sample

281

was evenly split between novice and experienced program-
mers but, there was only one female programmer in each of
the categories.

All of the participants were comfortable with coding in
Java and Python. Our experts averaged 29 years in age
with an average coding experience of 12.3 years (median
= 7 years) and reported spending around 10 hours of their
free time coding per week. The novice coders averaged 21
years in age with an average coding experience of 1.9 years
(median = 1 year) and reported spending around 2 hours of
their free time coding per week.

To begin, each participant of the study took a survey
which included questions pertaining to their demographics,
educational background, and programming experience. Af-
ter answering the survey, each participant was set up at a
computer monitor where the test would take place and their
eyes were calibrated on the EyeLink 1000 Plus eye-tracker.
After this, a small set of instructions was read to the partici-
pant and the test began. There were four questions of inter-
est in our study, all of which contained a block of code with
an in-line comment. Three of the four questions had com-
ments which were intentionally misleading. Other types of
coding questions were randomly dispersed throughout the
test as well. Before viewing each block of code, the partic-
ipants read instructions which prepared them for what they
were about to see and how they were expected to answer.
The participants moved at their own pace, clicked through
the questions, and they answered verbally when they were
ready to move on. Their responses were recorded via a mi-
crophone. This allowed them to read the code at their own
speed and with their natural eye-gaze patterns, without any
time pressure or the need to write anything down.

The EyeLink 1000 Plus is a fast, high-precision, video-
based eye-tracking device which follows a person’s pupils
and tracks their eye-gaze. This data is then available for
data visualization via the EyeLink DataViewer. This data
allowed us to gather information beyond the verbal answers
given to us by the participants. We were able to observe,
for instance, if they ignored the comments and only looked
at the code or if they read both but, based on their verbal
answers, decided to put their trust in one over the other.
Ultimately, the data we collected was a compilation of the
eye-tracker data and the recorded responses from the partic-
ipants.

3. Analysis and Discussion

We asked our participants to describe the output of some
code snippets; what they did not know is that some of the
code had misleading comments. When inspecting the code,
novice coders tended to read both the code and the com-
ments before answering the prompt. Although some based
their answer on the misleading comments at first, most of

them either quickly backtracked their answer correcting it
or, after the first question, caught on to the fact that the
comments were not correctly describing the function of the
code. Some novice coders did fall for the comments ev-
ery time. This, we deduce, is because they either were not
making a concerted effort to correctly answer the questions,
or that they were unable to deduce the output of the code
regardless of the comments.

The experienced coders, on the other hand, were ex-
tremely confident in their answers and moved on as soon as
they answered for the first time. Furthermore, none of them
called out the misleading comments at any point in the ex-
periment. When discussing the experiment after it was over,
some expert coders claimed that they never read comments,
even though they had just responded to the questions in ac-
cordance with the comments.

Table 1

Question Proportion of Coders that were Mislead

Experts Novices

1 100.000% 57.143%

2 71.429% 28.571%

3a N/A N/A

4 85.714% 28.571%

a. this question was not misleading

Table 1 shows the percentage of participants who an-
swered each question according to the comments. The ma-
jority of experts followed the cues given by the comments
every time, whereas most of the novices did not. It is impor-
tant to note that this reflects the percentage of coders who
based their answer on the comments, not whether they got
the question wrong. Some participants answered incorrectly
but without using the comments.

When deciding whether a programmer based their an-
swer on the comments or not, we considered their verbal re-
sponses. Our misleading comments were either the opposite
of what the program was doing (figure 1) or contained unre-
lated keywords such as ”checking for prime numbers” that
were in fact not pertinent to the function of the code (figure
2). In the first case, if the participant said the program prints
a list of even numbers, we determined that they were mis-
led by the comment. In the second case, if the programmer
used these spurious keywords in their answer, it suggested
that they were basing their response on the comments. This
is because the keywords were chosen to be orthogonal to the
true function of the code being presented. Therefore, there
was no reason that the program should have triggered these

282

Figure 1: Example of a misleading comment being the op-
posite of the truth

Figure 2: Example of a misleading comment being com-
pletely different than the actual code

responses.
Our observations are further supported by looking at a

series of statistics from our participants. When looking
at the average proportion of time spent on comments ver-
sus the ”meat” of the code for each of the two groups, we
can see a big difference (Table 2). In all of the questions,
experts spent as much as 13.9% more time on comments
than novices. This is a big difference, especially when con-
sidering that experts spent less time, on average, on every
question. When looking at the average over all questions,
experts spent over 7% more time reading comments than
novices. It is notable to point out that although most novices
did not fall for the comments after the first question, they
still read the comments in every question. This could be
because they were curious to see if they were correct about
them being wrong.

The emphasis put on comments by our experienced par-
ticipants is further visualized by the aggregate heat maps
produced. Using EyeLink DataViewer, we produced heat
maps for the images inspected by each of the subjects. To
create these heat maps, we applied a two-dimensional Gaus-
sian distribution to each of the fixations. The center is
the location of the fixation. The width is regulated by a
sigma value of degrees of visual angle, making it so that the
area affected by the fixation increases as the sigma value
increases. The duration of the individual fixations then

Table 2

Question Relative Time Spent on Comments

Experts Novices Difference

1 63.519% 49.541% 13.978%

2 27.057% 26.936% 0.121%

3a 26.090% 15.242% 10.848%

4 17.461% 13.687% 3.774%

Average 33.532% 26.352% 7.180%

a. this question was not misleading

weighs the height of the Gaussian. This 2D Gaussian is
added to an internal map by adding weight to that area of
the map. This process is then applied to all fixation points
and is normalized.

Experts

Novices

Figure 3: Heat map showing where experts (top) and
novices (bottom) spent the most time looking for question 1

Figure 3 is the aggregate heat map for experienced and
novice coders for question 1. In this graph, it is quite ap-
parent that the experts paid significant attention to the com-
ment while paying little to no attention to the core of the
program. This bias toward the comment becomes more ap-
parent when we compare this map to the aggregate map for

283

the novice coders. In the novices map, we can appreciate the
attention that the subjects put on the source code as opposed
to the comments. The experts clearly read all three com-
ments and came up with their answer, whereas the novices
read the whole snippet but paid more attention to the func-
tioning parts of the code. Since these heat maps are for
question 1, the novices had not discovered that the com-
ments were misleading. If we look at the aggregate maps
for question 2, we see an even bigger difference in the vi-
sual pattern, although the proportion of time spent does not
differ much between the two groups.

Experts

Novices

Figure 4: Heat map showing where experts (top) and
novices (bottom) spent the most time looking for question 2

Figure 4 is the aggregate heat map for the experts and
novices for question 2. Here, it is clear that the experts
read the comment and scanned the code whereas the novices
spent most of their time on the actual code. Further, in
this specific question, it appears the experts read the first
few lines of code and the comment, and then they felt con-
fident enough to answer without analyzing the rest of the
code. The most common answer given by expert coders for
this question was “this program gives you every non-prime
number between n1 = 81 and n2= 153”. Taking a look at the
code it is obvious that this program is not checking whether

a number is prime or not. It is calculating the greatest com-
mon denominator of n1 = 81 and n2= 153. We determined
if a coder was misled by the comment if their answer con-
tained either of the key words “prime” or “non-prime”.

These results, while based on a small sample, are both
important and surprising. Before starting the experiment,
we hypothesized that the experts would look at the short
code snippets and would be able to easily determine their
functionality. We also thought that novices would be more
inclined to look at the comments because they are less com-
fortable with coding in general and would want the help
and insights that comments typically provide. Our obser-
vations indicated the contrary. These results are evidence
of the emphasis put on comments in a work environment.
Although all students are taught that comments are impor-
tant in their computer science classes, this importance does
not necessarily materialize in school-based activities cen-
tered on small-scale programming tasks. When in school,
students usually only look at and work on their own code.
In this style of working, code comments are not impera-
tive to integration activities. Comments become critical in
industry, however, where developers are expected to work
on code that they did not write, or code that they them-
selves wrote a long time before. Therefore, it makes sense
that professional developers would be more prone to look at
comments to guide their answer. This inclination to look at
comments is a good thing, so long as the comments are ac-
curate and up to date. Our results emphasize the importance
of updating comments when editing code, and to write accu-
rate comments when programming, as developers are quick
to trust comments that are technically unsound.

4. Related Works

Eye-tracking has been extensively used in modeling how
programmers visually process source code as part of soft-
ware development activities. In a survey paper exploring 63
studies published between 1990 and 2017 regarding eye-
tracking in programming, researchers found that the ma-
jority of eye-tracking studies could be categorized into five
general topics: code/program comprehension, debugging,
non-code comprehension, collaboration, and traceability
[9]. Additionally, researchers uncovered a pattern showing
that many of the published studies using eye-tracking are
based on the same concepts being retested with new data.
Our research incorporates each of these five themes, while
also introducing a new topic of inline comments.

A similar paper analyzed the various approaches to con-
ducting and using eye movement data in the context of
source code [5, 6]. When designing studies using eye
movement data, researchers concluded that methods yield-
ing qualitative data were just as important as methods yield-
ing quantitative data. Our research supports similar method-

284

ologies discussed in the paper by the utilization of eye-
tracking data as well as vocal recordings of each partici-
pant’s thought process. Another example in the research
compared expert and novice programmers and how linearly
they read source code [3]. The study found that while nat-
ural language is read linearly, novice programmers read
the source code less linearly, and expert programmers even
less linearly. Similarly, our research compared expert and
novice programmers, mainly focusing on how susceptible
programmers are to misleading comments.

Previously, researchers found that programmers review-
ing code skim the file until a snippet of code prompted them
to slow down and review a section more thoroughly. These
triggers included identifiers, inconsistent code changes, and
other confusing or incorrect code [2]. They also found a
correlation between the time of the initial scan of a program
and the efficiency of identifying errors within code reviews
[13]. The researchers concluded that programmers are of-
ten not thorough when reviewing code. Their findings show
that the eye tends to follow the source code left to right,
scan for methods, and jump around to keywords [11]. Ad-
ditionally, many programmers read about 73% of the code
within the first 30% of the review time. Those who took
more time scanning were able to identify the errors more
efficiently [13].

Another study found that the way a programmer read
code appeared to be done in a sequence of patterns such as
scanning, jumping ahead and back to look and verify details
[8]. This pattern is similar to how individuals read natural
text, with the exception that some programmers parse code
bottom to top opposed from top to bottom [11]. A workshop
analyzing how novices comprehend code also concluded
that the participants would approach the code as natural text
at first but then utilize more sophisticated patterns as they
become more familiar with Java [7].

Moreover, a study comparing differences in reading code
found that programmers were more likely to read from top
to bottom when they had formed a hypothesis about the
code and its function and from bottom to top when they
had no understanding of the code and needed to sift through
it. The expert programmers tended to focus more on a
broader block of code while the novice programmers read
line by line [1]. This is corroborated by our study where
novices read the whole code snippet, including comments,
even when they knew they were misleading. Opposed to
our experts that seemed to answer after reading a few lines
and the comments. In another study focused on analyzing
eye movement when reading Java code, researchers found
that the lines with a method call, an if statement, or a vari-
able were fixated on the most [10]. Moreover, attention was
focused on the understanding of operators, keywords, and
literals, while minimal time was spent on separators [4].

Researchers have been looking for a way to analyze the

cognitive processes of developers while they interact with
software artifacts. Eye-tracking allows for the visualization
of gaze pathways as programmers review code, but it lacks
a way to map physiological data to the source code. The
developers of VITALISE created a Javascript program that
allows researchers the ability to record biometric data from
EEG, fMRI, fNIRS, and other measurement devices, map-
ping it against data recorded in the form of heatmaps from
an eye-tracking device. This application of neuroimaging
opens doors to understanding the cognitive load on devel-
opers as they program [12].

5. Future Work

Due to the nature of the study, some limitations should
be noted. First, we used a convenience sample size of both
experienced and novice coders from the same institution.
It is possible that this sample is not representative of the
entirety of the target population and cannot be generalized
to other subject groups. Second, while the experiment was
conducted in a uniform manner across all 14 subjects, the
reality is that the small sample size is a restriction on the
certainty with which we are able to say that experienced
coders visually pay more attention to comments while read-
ing code snippets. Although we saw a statistically signifi-
cant difference in the percentage of experienced coders and
novice coders who were mislead by the comments, a larger
sample size will be necessary to further validate the prelim-
inary results reported here. These limitations are motivation
for continuing work in this area.

The results we obtained from this experiment have left
the door open for future adaptations and extensions of this
study. Using short, simple functions with single in-line
comments, we found that experienced coders have a ten-
dency to place a large amount of trust in comments, while
novice coders rely more on code. Would these results, how-
ever, remain the same if we changed the scope of the code
or the commenting style?

It could be interesting to investigate if the programmers
would utilize the comments in the same way if the scope
of the code changed from the short functions we used in
this experiment to longer, more complex programs. For in-
stance, it is possible that we would see that the same novice
coders who relied on the code in this experiment might be-
gin to rely more and more on comments as the code shifts
from straight-forward to increasingly more complex. How
much time and effort needs to be put into reading code be-
fore a coder who usually relies on code alone decides to
put their trust into comments? A future study revealing
whether there is a point in which the length or complexity
of a program changes the way a programmer utilizes com-
ments may produce informative results.

The scope of a program, however, may not be the only

285

factor worth investigating. It could also be noteworthy to
see if commenting style plays a role in the trust program-
mers place in comments. Would our experiment have pro-
duced the same results if we used descriptive block com-
ments at the top of each function instead of single, in-line
comments? Future works could lead us to exploring if com-
menting style is simply a preference and that comments are
ultimately utilized in the same way, by the same people, or
if it affects who reads them and the extent of which they are
trusted.

Finally, it may also be interesting to look into how aware
coders are of how they use comments. If at the conclu-
sion of this study, for example, we asked each participant
about how important comments are to them and how heav-
ily they rely on them, would their responses align with how
they performed? Perhaps experienced coders are so famil-
iar with reading code and comments that, especially when
the code is fairly straight forward, it becomes somewhat of
a mindless activity and they are not fully aware of the extent
to which they are using them. This would be yet another in-
teresting adaptation of this study which could provide more
information into why we obtained the results that we did.

6. Conclusion

We conducted a small study to gain insight into how pro-
grammers read code. In particular, we aimed to find how
much a coder relies on and, ultimately, trusts comments,
and whether this behavior is related to experience. Using
a research-grade, we found that experienced coders in our
sample were quick to base their knowledge of a program
according to the accompanying comments, even when the
comments are wrong. In some cases, they appeared to ne-
glect looking at source code completely. Novice coders,
on the other hand, were more likely to accurately describe
a program, as they prioritised scanning through and read-
ing the source code, even if they had previously read the
comments. Our experiment, while small, has shown that
experienced coders feel more confident in relying on com-
ments when working through a program comprehension
task, while novice coders tend to be more cautious and use
comments in careful conjuction with the source code itself.

References

[1] N. J. Abid, J. I. Maletic, and B. Sharif. Using devel-
oper eye movements to externalize the mental model
used in code summarization tasks. In Proceedings of
the 11th ACM Symposium on Eye Tracking Research
& Applications, pages 1–9, 2019.

[2] A. Begel and H. Vrzakova. Eye movements in code
review. In Proceedings of the Workshop on Eye Move-
ments in Programming, pages 1–5, 2018.

[3] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H.
Paterson, C. Schulte, B. Sharif, and S. Tamm. Eye
movements in code reading: Relaxing the linear order.
In 2015 IEEE 23rd International Conference on Pro-
gram Comprehension, pages 255–265. IEEE, 2015.

[4] T. Busjahn, R. Bednarik, and C. Schulte. What influ-
ences dwell time during source code reading? analysis
of element type and frequency as factors. In Proceed-
ings of the Symposium on Eye Tracking Research and
Applications, pages 335–338, 2014.

[5] T. Busjahn, C. Schulte, and E. Kropp. Developing
coding schemes for program comprehension using eye
movements. In PPIG, page 15, 2014.

[6] T. Busjahn, C. Schulte, B. Sharif, A. Begel,
M. Hansen, R. Bednarik, P. Orlov, P. Ihantola,
G. Shchekotova, and M. Antropova. Eye tracking in
computing education. In Proceedings of the tenth an-
nual conference on International computing education
research, pages 3–10, 2014.

[7] T. Busjahn, C. Schulte, S. Tamm, and R. Bednarik.
Eye movements in programming education ii: Ana-
lyzing the novice’s gaze. 2015.

[8] A. Jbara and D. G. Feitelson. How programmers read
regular code: a controlled experiment using eye track-
ing. Empirical software engineering, 22(3):1440–
1477, 2017.

[9] U. Obaidellah, M. Al Haek, and P. C.-H. Cheng. A
survey on the usage of eye-tracking in computer pro-
gramming. ACM Comput. Surv., 51(1), Jan. 2018.

[10] C. S. Peterson, N. J. Abid, C. A. Bryant, J. I. Maletic,
and B. Sharif. Factors influencing dwell time during
source code reading: a large-scale replication exper-
iment. In Proceedings of the 11th ACM Symposium
on Eye Tracking Research & Applications, pages 1–4,
2019.

[11] P. Rodeghero and C. McMillan. An empirical study on
the patterns of eye movement during summarization
tasks. In 2015 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement
(ESEM), pages 1–10. IEEE, 2015.

[12] D. Roy, S. Fakhoury, and V. Arnaoudova. Vitalse: Vi-
sualizing eye tracking and biometric data.

[13] H. Uwano, M. Nakamura, A. Monden, and K.-i. Mat-
sumoto. Analyzing individual performance of source
code review using reviewers’ eye movement. In Pro-
ceedings of the 2006 symposium on Eye tracking re-
search & applications, pages 133–140, 2006.

286

Formal verification of an abstract version of Anderson protocol
with CafeOBJ, CiMPA and CiMPG

Duong Dinh Tran, Kazuhiro Ogata
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Email: {duongtd,ogata}@jaist.ac.jp

Abstract— Anderson protocol is a mutual exclusion protocol.
It uses a finite Boolean array shared by all processes and
the modulo (or reminder) operation of natural numbers. This
is why it is challenging to formally verify that the protocol
enjoys the mutual exclusion property in a sense of theorem
proving. Then, we make an abstract version of the protocol
called A-Anderson protocol that uses an infinite Boolean array
instead. We describe how to formally specify A-Anderson
protocol in CafeOBJ, an algebraic specification language and
how to formally verify that the protocol enjoys the mutual
exclusion property in three ways: (1) by writing proof scores
in CafeOBJ, (2) with a proof assistant CiMPA for CafeOBJ
and (3) with a proof generator CiMPG for CafeOBJ. We
mention how to formally verify that Anderson protocol enjoys
the property by showing that A-Anderson protocol simulates
Anderson protocol.

Keywords-algebraic specification language; mutual exclusion
protocol; proof assistant; proof generator; proof score

I. INTRODUCTION

Anderson protocol [1] is a mutual exclusion protocol. The
protocol uses a finite Boolean array whose size is the same
as the number of processes participating in the protocol.
It also uses the modulo operation of natural numbers and
an atomic operation fetch&incmod. fetch&incmod takes a
natural number variable x and a non-zero natural number
constant N and atomically does the following: setting x to
(x+1)%N, where % is the modulo operation, and returning
the old value of x.

It is challenging to formally verify that Anderson protocol
satisfies desired properties, such as the mutual exclusion
property, in a sense of theorem proving. This is because
the protocol uses a finite array and the modulo operation of
natural numbers. Then, we make an abstract version of the
protocol by using an infinite Boolean array instead of a finite
Boolean array, using fetch&inc instead of fetch&incmod
and stopping use of the modulo operation, where fetch&inc
is an atomic operation that atomically does the follow-
ing: setting x to x + 1 and returning the old value of
x. The abstract version is called A-Anderson protocol or

This work was partially supported by JSPS KAKENHI Grant Number
JP19H04082.

DOI reference number: 10.18293/SEKE2020-064

A-Anderson. A-Anderson is formalized as an observation
transition system (OTS) [2], [3], the OTS is specified in
CafeOBJ [4] and it is formally verified in three ways that the
OTS enjoys the mutual exclusion property with CafeOBJ,
CiMPA [5] and CiMPG [5]. CafeOBJ is an algebraic speci-
fication language. Its processor is called CafeOBJ. The first
implementation of CafeOBJ was done in Common Lisp,
while the second implementation was done in Maude [6], a
sibling language of CafeOBJ. The second implementation
is called CafeInMaude [7]. CafeInMaude Proof Assistant
(CiMPA) is a proof assistant for CafeOBJ and CafeInMaude
Proof Generator (CiMPG) is a proof generator that takes
annotated proof scores in CafeOBJ and generates proof
scripts for CiMPA.

Proof scores can be written in a similar way to write
programs in a similar sense of Larch Prover (LP) [8]. The
proof score approach to formal verification is flexible in
this sense. This is one advantage of the approach. The
approach, however, has a disadvantage. Proof scores are
subject to human errors. What CafeOBJ essentially does for
proof scores is reduction. If human users overlook some
cases, CafeOBJ does not point them out. To get rid of the
disadvantage, CiMPA has been developed. Although CiMPA
is not subject to human errors, it is not flexible enough. To
make each advantage of proof score and CiMPA available,
CiMPG has been developed. Given proof scores that should
be annotated a little bit, CiMPG generates proof scripts that
are fed into CiMPA. If CiMPA can successfully discharge
all goals with the generated proof scripts, the proof scores
are correct for the goals.

The rest of the paper is organized as follows: Sect. II
mentions Anderson protocol and its abstract version. Sect. III
describes the formal specification of the abstract version
in CafeOBJ. Sect. IV describes the formal verification that
the abstract version enjoys the mutual exclusion property
by writing proof scores in CafeOBJ. Sect. V describes the
formal verification with CiMPA. Sect. VI describes the for-
mal verification with CiMPG. Sect. VII mentions simulation-
based verification between A-Anderson and Anderson pro-
tocols. Sect. VIII mentions related work. Sect. IX concludes
the paper.

287

II. ANDERSON PROTOCOL AND ITS ABSTRACT VERSION

We suppose that there are N processes participating in
Anderson protocol. The pseudo-code of Anderson protocol
for each process i can be written as follows:

Loop “Remainder Section′′

rs : place[i] := fetch&incmod(next ,N);
ws : repeat until array [place[i]];

“Critical Section′′

cs : array [place[i]],
array [(place[i] + 1)%N] := false, true;

We suppose that each process is located at rs, ws or
cs and initially located at rs. place is an array whose
size is N and each of whose elements stores one from
{0, 1, . . . ,N − 1}. Initially, each element of place can be
any from {0, 1, . . . ,N − 1} but is 0 in this paper. Although
place is an array, each process i only uses place[i] and then
we can regard place[i] as a local variable to each process i.
array is a Boolean array whose size is N . Initially, array [0]
is true and array [j] is false for any j ∈ {1, . . . ,N − 1}.
next is a natural number variable and initially set to 0.
fetch&incmod(next ,N) atomically does the following: set-
ting next to (next + 1)%N and returning the old value
of next . x, y := e1, e2 is a concurrent assignment that is
processed as follows: calculating e1 and e2 independently
and setting x and y to their values, respectively.

We also suppose that there are N processes participating
in an abstract version of Anderson protocol. The abstract
version is called A-Anderson protocol. The pseudo-code of
A-Anderson protocol for each process i can be written as
follows:

Loop “Remainder Section′′

rs : place[i] := fetch&inc(next);
ws : repeat until array [place[i]];

“Critical Section′′

cs : array [place[i] + 1] := true;

We use an infinite Boolean array array instead of a fi-
nite one and do not use %. fetch&inc is used instead
of fetch&incmod. fetch&inc(next) atomically does the
following: setting next to next + 1 and returning the old
value of next . We also suppose that each process is located
at rs, ws or cs and initially located at rs. Initially, each
element of place can be any natural number but is 0 in this
paper, array [0] is true, array [j] is false for any non-zero
natural number j and next is 0.

III. SPECIFICATION OF A-ANDERSON PROTOCOL

Each state of A-Anderson protocol can be characterized
by the following pieces of information: the location of each
process, the value stored in next , the value stored in each
element of place and the value stored in each element of
array . Therefore, we use the following observation func-
tions:

op pc : Sys Pid -> Label .
op next : Sys -> SNat .
op place : Sys Pid -> SNat .
op array : Sys SNat -> Bool .

where Sys is the sort of states, Pid is the sort of process
IDs, Label is the sort of rs, ws and cs, SNat is the sort of
natural numbers and Bool is the sort of Boolean values. We
do not use any infinite arrays in the specification. Instead,
we use the observation function array to observe the value
stored in each element that is given to array as its second
argument.

We use one constructor that represents an arbitrary initial
state:

op init : -> Sys {constr} .

init is defined in terms of equations, specifying the values
observed by the four observation functions in an arbitrary
initial state as follows:

eq pc(init,P) = rs .
eq next(init) = 0 .
eq place(init,P) = 0 .
eq array(init,I)
= (if I = 0 then true else false fi) .

where P is a CafeOBJ variable of Pid and I is a CafeOBJ
variable of SNat.

We use three transition functions that are also construc-
tors:

op want : Sys Pid -> Sys {constr}
op try : Sys Pid -> Sys {constr}
op exit : Sys Pid -> Sys {constr}

The three transition functions capture the actions that each
process moves to ws from rs, tries to move to cs from ws
and moves back to rs from cs, respectively. The reachable
states are composed of the four constructors.

Each of the three transition functions is defined in terms
of equations, specifying how the values observed by the four
observation functions change. Let S be a CafeOBJ variable
of Sys, P & Q be CafeOBJ variables of Pid and I & J be
CafeOBJ variables of SNat.
want is defined as follows:

ceq pc(want(S,P),Q)
= (if P = Q then ws else pc(S,Q) fi)
if c-want(S,P) .
ceq place(want(S,P),Q)
= (if P = Q then next(S) else place(S,Q) fi)
if c-want(S,P) .
ceq next(want(S,P))
= s(next(S)) if c-want(S,P) .
eq array(want(S,P),I) = array(S,I) .
ceq want(S,P) = S if c-want(S,P) = false .

where c-want(S,P) is pc(S,P) = rs. s of
s(next(S)) is the successor function of natural
numbers. The equations say that if c-want(S,P) is true,
the location of P changes to ws, the location of each other

288

process Q does not change, the P’s place changes to next ,
each other process Q’s place does not change, next is
incremented and array does not change in the state denoted
want(S,P); if c-want(S,P) is false, nothing changes.
try is defined as follows:

ceq pc(try(S,P),Q)
= (if P = Q then cs else pc(S,Q) fi)
if c-try(S,P) .
eq place(try(S,P),Q) = place(S,Q) .
eq array(try(S,P)) = array(S) .
eq next(try(S,P),I) = next(S) .
ceq try(S,P) = S if c-try(S,P) = false .

where c-try(S,P) is

pc(S,P) = ws and array(S,place(S,P)) = true

The equations say that if c-try(S,P) is true, the location
of P changes to ws, the location of each other process Q does
not change, place does not change, array does not change
and next does not change in the state denoted try(S,P);
if c-try(S,P) is false, nothing changes.
exit is defined as follows:

ceq pc(exit(S,P),Q)
= (if P = Q then rs else pc(S,Q) fi)
if c-exit(S,P) .
eq place(exit(S,P),Q) = place(S,Q) .
eq next(exit(S,P)) = next(S) .
ceq array(exit(S,P),I) =
(if I = s(place(S,P)) then true
else array(S,I) fi) if c-exit(S,P) .

ceq exit(S,P) = S if c-exit(S,P) = false .

where c-exit(S,P) is pc(S,P) = cs. The equations
say that if c-exit(S,P) is true, the location of P changes
to rs, the location of each other process Q does not change,
place does not change, next does not change, the Ith
element of array is set true if I equals s(place(S,P))
and each other element of array does not change in the state
denoted exit(S,P); if c-exit(S,P) is false, nothing
changes.

IV. FORMAL VERIFICATION WITH PROOF SCORES

Let S be a CafeOBJ variable of Sys, P & Q be CafeOBJ
variables of Pid and I & J be CafeOBJ variables of SNat.
One desired property A-Anderson protocol should satisfy is
the mutual exclusion property that is expressed as follows:

eq mutex(S,P,Q)
= ((pc(S,P) = cs and pc(S,Q) = cs)

implies (P = Q)) .

The expression (or the term) says that if there are processes
in the critical section, there is one, namely that exists at most
one process in the critical section at any given moment.

To prove that A-Anderson protocol enjoys the property,
we need to use the following lemmas:

eq inv1(S,P,Q)
= ((pc(S,P) = ws and array(S,place(S,P))

= true and (P = Q) = false)
implies
(pc(S,Q) = cs or (pc(S,Q) = ws and
array(S,place(S,Q)) = true)) = false) .

eq inv2(S,P)
= ((pc(S,P) = cs)

implies (array(S,place(S,P)) = true)) .
eq inv3(S,P,Q)
= ((place(S,P) = place(S,Q) and (P = Q)

= false)
implies (place(S,P) = 0)) .

eq inv4(S,P)
= (place(S,P) = next(S)

implies (next(S) = 0)) .
eq inv5(S,P)
= (place(S,P) < s(next(S))) = true .
eq inv6(S,P)
= (pc(S,P) = cs or (pc(S,P) = ws and

array(S,place(S,P)) = true))
implies array(S,next(S)) = false .

eq inv7(S) = array(S,s(next(S))) = false .
eq inv8(S,I,J)
= (array(S,J) = true and I < s(J))

implies array(S,I) = true .

where s used in s(next(S)) and s(J) is the successor
function of natural numbers.

We prove mutex(S,P,Q) for all reachable states S
and all process IDs P & Q by structural induction on
S. There are four cases to tackle: (1) init, (2) want,
(3) try and (4) exit. Let us consider case (3). What
to prove is mutex(try(s, r), p, q), where s is a
fresh constant of Sys representing an arbitrary state and p,
q and r are fresh constant of Pid representing arbitrary
Process IDs. The induction hypothesis is mutex(s,P,Q)
for all process IDs P & Q. Let us note that s is shared
by mutex(try(s, r), p, q) and mutex(s,P,Q),
while the variables P and Q can be replaced with any terms
of Pid, such as p and q.

Case (3) is first split into two sub-cases: (3.1)
pc(s, r) = ws and (3.2) (pc(s, r) = ws)
= false. Case (3.2) can be discharged, while it is
necessary to split case (3.1) into two sub-cases: (3.1.1)
q = r and (3.1.2) (q = r) = false. It is also
necessary to split case (3.1.1) into two sub-cases:
(3.1.1.1) p = r and (3.1.1.2) (p = r) = false.
Case (3.1.1.1) can be discharged, while it is still
necessary to split (3.1.1.2) into two sub-cases: (3.1.1.2.1)
array(s,place(s,r)) = true and (3.1.1.2.2)
array(s,place(s,r)) = false. Case (3.1.1.2.2)
can be discharged, but we need to split case (3.1.1.2.1)
into two sub-cases again: (3.1.1.2.1.1) pc(s,p) = cs
and (3.1.1.2.1.2) (pc(s,p) = cs) = false. Feeding
the proof scores of case (3.1.1.2.1.1) and case (3.1.1.2.1.2)
into CafeOBJ, CafeOBJ returns false and true,
respectively. Case (3.1.1.2.1.1) says that process p is
located at cs, process r (or q since q = r) is located
at ws and array(s,place(s,r)) = true. In case

289

(3.1.1.2.1.1), process r can move to cs, breaking the
property concerned because there are two processes p
and r located at cs. Therefore, we need to conjecture
a lemma to discharge case (3.1.1.2.1.1). Such a lemma
can be conjectured from the assumptions made in case
(3.1.1.2.1.1). We have conjectured inv1 as such a lemma.
The proof score of case (3.1.1.2.1.1) is as follows:

open INV .
op s : -> Sys . ops p q r : -> Pid .
eq pc(s, r) = ws . eq q = r .
eq (p = r) = false .
eq array(s,place(s,r)) = true .
eq pc(s,p) = cs .
red inv1(s,r,p)

implies mutex(s, p, q)
implies mutex(try(s, r), p, q) .

close

In order to discharge case (3.1.2), we need to split
it into two sub-cases: (3.1.2.1) p = r and (3.1.2.2)
(p = r) = false. If p and q are swapped, case
(3.1.2.1) becomes exactly the same as case (3.1.1.2). Hence,
case (3.1.2.1) can be discharged in the same way as case
(3.1.1.2). We also need to use inv1 as a lemma but
should use inv1(s,r,q) instead of inv1(s,r,p). The
proof score of a sub-case derived from case (3.1.2.1) that
corresponds to case (3.1.1.2.1.1) is as follows:

open INV .
op s : -> Sys . ops p q r : -> Pid .
eq pc(s, r) = ws .
eq (q = r) = false . eq p = r .
eq array(s,place(s,r)) = true .
eq pc(s,q) = cs .
red inv1(s,r,q)

implies mutex(s, p, q)
implies mutex(try(s, r), p, q) .

close

(3.1.2.2) is the only unresolved sub-case of case (3). Once
again, this case is split into two sub-cases: (3.1.2.2.1) p = q
and (3.1.2.2.2) (p = q) = false. The former can be
discharged, while we need to split the latter into two sub-
cases: (3.1.2.2.2.1) array(s,place(s,r)) = true
and (3.1.2.2.2.2) array(s,place(s,r)) = false.
Both cases can be discharged. Then, case (3) has been
discharged.

Case (4) can be discharged in a similar way as case (3)
is discharged. We can discharge case (2) without using any
lemmas. It is straightforward to discharge case (1). We need
to prove inv1 to complete the formal verification. The proof
of inv1 uses inv2, inv3, mutex and inv6 as lemmas.
inv2 and inv5 can be proved independently without use
of any other lemmas. The proof of inv3 uses inv4 as a
lemma. The proof of inv4 uses inv5 as a lemma. The
proof of inv6 uses inv1, inv4, mutex and inv7 as
lemmas. The proof of inv7 uses inv2, inv6 and inv8
as lemmas. The proof of inv8 uses inv2 as a lemma. Let

us note that although the proof of mutex uses inv1 as a
lemma and the proof of inv1 uses mutex as a lemma, our
argument is not circular. We use simultaneous induction to
conduct our proof.

To prove each invariant for an OTS by writing proof
scores in CafeOBJ, we first use simultaneous induction on
states and do the following: for the base case, it is usually
straightforward to discharge the case, and for each induction
case, we conduct case splittings and use instances of induc-
tion hypotheses (or lemmas) as premises of implications.

It took much less than 1s to run all proof scores with
CafeOBJ so as to formally verify that A-Anderson protocol
enjoys the mutual exclusion property. The experiment used
a computer that carried 3.4GHz microprocessor and 32GB
main memory. The same computer was used to conduct the
other experiments mentioned in the present paper.

V. FORMAL VERIFICATION WITH CIMPA

The proof score approach to formal verification does not
require to explicitly construct proof trees. The outcomes of
the approach are open-close fragments written in CafeOBJ
that correspond to leaf parts of proof trees. Conducing
formal verification by writing proof scores in CafeOBJ,
however, we implicitly construct proof trees. Once we have
completed formal verification by writing proof scores in
CafeOBJ, we must be able to conduct the formal verifica-
tion with CiMPA. We partially describe formal verification
with CiMPA that A-Anderson enjoys the mutual exclusion
property.

We first introduce the goals to prove for CiMPA with the
command :goal as follows:

open INV .
:goal{

eq [inv1 :nonexec]
: inv1(S:Sys,P:Pid,Q:Pid) = true .

eq [inv2 :nonexec]
: inv2(S:Sys,P:Pid) = true .

...
eq [mutex :nonexec]

: mutex(S:Sys,P:Pid,Q:Pid) = true .
}

where the six more lemmas should be written in the place
..., inv1, inv2 and mutex written in square brackets
are the names referring to the goals, respectively, and
:nonexec instructs CafeOBJ not to use the equations as
rewrite rules.

Then, we select S with the command :ind on as the
variable on which we start proving the goals by simultaneous
induction:

:ind on (S:Sys)
:apply(si)

The command :apply(si) starts the proof by simulta-
neous induction on S, generating four sub-goals for exit,
init, try and want, where si stands for simultaneous

290

induction. Each sub-goals consists of nine equations to
prove. We skip the sequence of commands that discharge
the first two sub-goals for exit and init. We partially
describe how to discharge the third sub-goal for try. To
this end, the first command used is as follows:

:apply(tc)

where tc stands for theorem of constants. The command
generates nine sub-goals, one of which is as follows:

3-9. TC eq [mutex :nonexec]:
mutex(try(S#Sys,P#Pid),P@Pid,Q@Pid) = true .

The command :apply(tc) replaces CafeOBJ variables
with fresh constants in goals. S#Sys and P#Pid are fresh
constants introduced by :apply(si), while P@Pid and
Q@SNat are fresh constants introduced by :apply(tc).

To discharge goal 3-9, the following commands are first
introduced:

:def csb3_9_1 =
:ctf {eq pc(S#Sys,P#Pid) = ws .}

:apply(csb3_9_1)
:def csb3_9_2 = :ctf {eq Q@Pid = P#Pid .}
:apply(csb3_9_2)
:def csb3_9_3 = :ctf {eq P@Pid = P#Pid .}
:apply(csb3_9_3)

Case splittings are carried out based on these three equations.
For one generated sub-goal in which we assume that the
three equations hold, we use the following commands:

:imp [mutex] by
{P:Pid <- P@Pid ; Q:Pid <- Q@Pid ;}

:apply (rd)

The induction hypothesis is instantiated by replacing the
variables P:Pid and Q:Pid with the fresh constants
P@Pid and Q@Pid and the instance is used as the premise
of the implication. Then, :apply(rd) is used to check if
the current goal can be discharged. The goal is discharged
in this case. The goal corresponds to case (3.1.1.1) in the
last section.

After that, the following commands are written:

:def csb3_9_4 =
:ctf [array(S#Sys,place(S#Sys,P#Pid)) .]

:apply(csb3_9_4)
:def csb3_9_5 =
:ctf {eq pc(S#Sys,P@Pid) = cs .}

:apply(csb3_9_5)

Case splittings are carried out based on one Boolean term
and one equation. For one generated sub-goal in which we
assume that the Boolean term is true and the equation holds,
we use the following commands:

:imp [inv1] by
{P:Pid <- P#Pid ; Q:Pid <- P@Pid ;}

:imp [mutex] by
{P:Pid <- P@Pid ; Q:Pid <- Q@Pid ;}

:apply (rd)

The lemma inv1 is instantiated by replacing the variables
P:Pid and Q:Pid with the fresh constants P#Pid and
Q#Pid and the instance is used as the premise of the
implication. Next, the induction hypothesis is instantiated by
replacing the variables P:Pid and Q:Pid with the fresh
constants P@Pid and Q@Pid and the instance is used as
the premise of the implication. Then, :apply(rd) is used
to check if the current goal can be discharged. The goal
is discharged in this case. The goal corresponds to case
(3.1.1.2.1.1) in the last section.

When CiMPA is used to formally verify invariant proper-
ties for an OTS, what to do is essentially the same as we do
formal verification by writing proof scores in CafeOBJ. The
difference is as follows: it is necessary to use the commands
given by CiMPA when CiMPA is used.

It took about 22s to run the proof scripts with CiMPA so
as to formally verify that A-Anderson protocol enjoys the
mutual exclusion property.

VI. FORMAL VERIFICATION WITH CIMPG
After writing proof scores that A-Anderson protocol en-

joys the mutual exclusion property, we can confirm that the
proof scores are correct by doing the formal verification with
CiMPA as described in the last section. Although we are
able to conduct the formal verification with CiMPA once we
have completed formal verification by writing proof scores
in CafeOBJ, it would be preferable to automatically confirm
the correctness of proof scores. CiMPG makes it possible
to automatically confirm the correctness of proof scores by
generating proof scripts for CiMPA from the proof scores.

To use CiMPG, we need to add one open-close fragment
to the proof scores. The open-close fragment is as follows:

open INV .
:proof(ander)

close

Moreover, we need to write :id(ander) in each open-
close fragment. For example, the first open-close fragment
used in Sect. IV becomes as follows:

open INV .
:id(ander)
op s : -> Sys . ops p q r : -> Pid .
eq pc(s, r) = ws . eq q = r .
eq (p = r) = false .
eq array(s,place(s,r)) = true .
eq pc(s,p) = cs .
red inv1(s,r,p)

implies mutex(s, p, q)
implies mutex(try(s, r), p, q) .

close

Feeding the annotated proof scores into CiMPG, CiMPG
generates the proof script for CiMPA. The generated proof
script is quite similar to the one written manually. Feeding
the generated proof script into CiMPA, CiMPA discharges
all goals, confirming that the proof scores are correct. It took
about 626s to generate the proof script with CiMPG.

291

VII. A-ANDERSON PROTOCOL SIMULATES ANDERSON
PROTOCOL

We can use “simulation-based verification for invariant
properties [9]” so as to formally verify that Anderson pro-
tocol enjoys the mutual exclusion property. To this end, we
first need to prove that the OTS formalizing A-Anderson
protocol simulates the OTS formalizing Anderson protocol
by showing that there exists a simulation relation from the
latter OTS to the former OTS. We next need to prove that the
simulation relation preserves the mutual exclusion property.
Then, since we have formally verified that A-Anderson
protocol enjoys the property, we can conclude that Anderson
protocol also enjoys the property. We will describe this part
in a longer version of the present paper.

VIII. RELATED WORK

Anderson protocol has been formally specified in
CafeOBJ and semi-formally verified with CafeOBJ [10].
Proof scores have been partially written and then all nec-
essary lemmas have not been conjectured and used. They
have used a simulation relation between Ticket protocol
and Anderson protocol, where the former is abstract, while
the latter is concrete. But, they have not used any precise
definitions of simulation relations.

In the paper [9] that proposes simulation-based verifica-
tion for invariant properties in the OTS/CafeOBJ method,
Alternating Bit Protocol (ABP), a communication protocol,
is used as an example. Two more abstract protocols are
used. The paper concludes that it is not very beneficial to
use the simulation-based verification technique in order to
formally verify that ABP enjoys desired invariant properties.
It is useful to use the technique so as to formally verify
that Anderson protocol enjoys the mutual exclusion property,
however, although the present paper does not describe the
part in detail.

Farn Wang [11] proves that it is impossible to auto-
matically formally verify that concurrent software systems
as processes running algorithms on data-structures with
pointers enjoy desired properties if there are an arbitrary
number of processes. Then, he proposes a new automatic
approximation method to tackle it. He uses the proposed
method to formally verify that a revised version of the MCS
mutual exclusion protocol [12] enjoys desired properties. It
is one piece of future work to formally verify with the Farn
Wang’s method that Anderson protocol enjoys the mutual
exclusion property and to compare his method with the
technique used in the present paper. It is another piece
of future work to formally verify that the MCS mutual
exclusion protocol enjoys the mutual exclusion property with
the technique used in the present paper.

IX. CONCLUSION

We summarize some lessons learned from the case study.
(1) Abstraction makes it possible to tackle the formal

verification task. Although we were not able to formally
verify that Anderson protocol enjoys the mutual exclusion
property by writing proof scores in CafeOBJ, we were able
to conduct the formal verification for A-Anderson protocol,
an abstract version of Anderson protocol. (2) Our experience
says that once we have written all proof scores to prove
that A-Anderson protocol enjoys the property, it is rather
straightforward to write the proof scripts for CiMPA. (3)
Although CiMPG can automatically generate the proof script
for CiMPA from proof scores in CafeOBJ, it takes time to
do so. One piece of our future work for (2) is to prepare
a gentle guide for non-experts to writing proof scripts for
CiMPA from their experiences of writing proof scores in
CafeOBJ. Another piece of our future work for (2) and (3)
is to come up with better annotations to proof scores for
CiMPG to more efficiently generate the proof scripts from
annotated proof scores.

REFERENCES

[1] T. E. Anderson, “The performance of spin lock alternatives
for shared-memory multiprocessors,” IEEE Trans. Parallel
Distrib. Syst., vol. 1, no. 1, pp. 6–16, 1990.

[2] K. Ogata and K. Futatsugi, “Proof scores in the OTS/CafeOBJ
method,” in FMOODS 2003, 2003, pp. 170–184.

[3] K. Ogata and K. Futatsugi, “Some tips on writing proof
scores in the OTS/CafeOBJ method,” in Algebra, Meaning,
and Computation, 2006, pp. 596–615.

[4] R. Diaconescu and K. Futatsugi, Cafeobj Report, ser. AMAST
Series in Computing. World Scientific, 1998, vol. 6.

[5] A. Riesco and K. Ogata, “Prove it! inferring formal proof
scripts from CafeOBJ proof scores,” ACM Trans. Softw. Eng.
Methodol., vol. 27, no. 2, pp. 6:1–6:32, 2018.

[6] M. Clavel, et al., Ed., All About Maude, ser. Lecture Notes
in Computer Science. Springer, 2007, vol. 4350.

[7] A. Riesco, K. Ogata, and K. Futatsugi, “A Maude environ-
ment for CafeOBJ,” Formal Asp. Comput., vol. 29, no. 2, pp.
309–334, 2017.

[8] S. J. Garland and J. V. Guttag, “An overview of LP, the larch
power,” in RTA-89, 1989, pp. 137–151.

[9] K. Ogata and K. Futatsugi, “Simulation-based verification for
invariant properties in the OTS/CafeOBJ method,” Electron.
Notes Theor. Comput. Sci., vol. 201, pp. 127–154, 2008.

[10] K. Ogata and K. Futatsugi, “Specification and verification of
some classical mutual exclusion algorithms with CafeOBJ,”
in OBJ/CafeOBJ/Maude Workshop at Formal Methods 1999,
1999, pp. 159–177.

[11] F. Wang, “Automatic verification of pointer data-structure
systems for all numbers of processes,” in World Congress
on Formal Methods 1999, 1999, pp. 328–347.

[12] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
scalable synchronization on shared-memory multiprocessors,”
ACM Trans. Comput. Syst., vol. 9, no. 1, pp. 21–65, 1991.

292

Plagiarism Detection of Multi-threaded Programs
using Frequent Behavioral Pattern Mining

Qing Wang1,2, Zhenzhou Tian1,2∗, Cong Gao1,2, Lingwei Chen3
1School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, China

2Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an, China
3College of Information Sciences and Technology, Pennsylvania State University, PA, USA

*Corresponding: tianzhenzhou@xupt.edu.cn

Abstract—Software dynamic birthmark techniques construct
birthmarks using the captured execution traces from running the
programs, which serve as one of the most promising methods for
obfuscation-resilient software plagiarism detection. However, due
to the perturbation caused by non-deterministic thread schedul-
ing in multi-threaded programs, such dynamic approaches opti-
mized for sequential programs may suffer from the randomness
in multi-threaded program plagiarism detection. In this paper,
we propose a new dynamic thread-aware birthmark FPBirth
to facilitate multi-threaded program plagiarism detection. We
first explore dynamic monitoring to capture multiple execution
traces with respect to system calls for each multi-threaded
program under a specified input, and then leverage Apriori
algorithm to mine frequent patterns to formulate our dynamic
birthmark, which can not only depict the program’s behavioral
semantics, but also resist the changes and perturbations over
execution traces caused by the thread scheduling in multi-
threaded programs. Using FPBirth, we design a multi-threaded
program plagiarism detection system. The experimental results
based on a public software plagiarism sample set demonstrate
that the developed system integrating our proposed birthmark
FPBirth cope better with multi-threaded plagiarism detection
than alternative approaches.

Index Terms—Software plagiarism, Dynamic birthmark,
Multi-threaded program, Frequent pattern

I. INTRODUCTION

As modern social coding platforms, such as GitHub and
CodeShare, have been emerging as one of the most vibrant
and important information sources to software programming
ecosystem, the incentive for the developers to copy or abuse
the ready-to-use codes from others to expedite their own
software developments increases as well. For example, as
revealed in 2018, Redcore, a Chinese startup’s “self-made”
web browser, was found to plagiarize substantial code from
Google Chrome. Due to the openness of Android, application
(app) plagiarism has become even more prevalent through
repackaging [2] such that about 13% of apps hosted in third-
party marketplaces are repackaged [19], which poses serious
threats to the healthy development of software industry.

In order to detect the evolving software plagiarism, dif-
ferent birthmarking techniques [10], [7], [12], [15], [4] have
been developed. In these methods, software birthmark, which
is a set of features, is first extracted from a program to
uniquely identify the programs, and then birthmark similarities

DOI reference number: 10.18293/SEKE2020-135.

are measured to determine the potential plagiarism between
the programs. Compared to the static birthmark analysis on
programs’ lexical, grammatical or structural characteristics,
dynamic birthmarking techniques [12], [15], [4] construct
birthmarks using the captured execution traces from running
the programs, which can depict the behaviors and semantics
of the programs more accurately and thus enjoy better anti-
obfuscation ability. However, due to the perturbation caused
by non-deterministic thread scheduling in multi-threaded pro-
grams, existing dynamic approaches optimized for sequential
programs may suffer from the randomness in plagiarism
analysis for multi-threaded programs [13]. For instance, given
an input, birthmarks extracted from multiple runs of the same
multi-threaded program can be very different; in the extreme
cases, such constructed birthmarks may even fail to detect pla-
giarism between a multi-threaded program and itself [11]. Two
dynamic birthmarking methods (i.e., thread-related system call
birthmark (TreSB) [11] and thread-oblivious birthmark (TOB)
[13]) have been proposed, yet they still suffer from either weak
universality or limitation of overall behavior understanding in
multiple threads.

To address the aforementioned challenge, we run a number
of multi-threaded programs, and analyze their behaviors, from
which we observe that the same input may generally enforce
the same program function execution, while not all parts of
the program get involved in thread interleaving, so that its
multiple execution traces under the same input may be similar,
but not identical. This calls for a sophisticated method to
characterize the behavioral patterns from multiple execution
traces. Inspired by the success of motif recognition in DNA se-
quence analysis where difference-tolerant motifs are extracted
to identify common patterns of DNA sequence variations.
In this paper, we would like to shift such a paradigm that
generalizes motif formulation to abstract the behaviors of the
multi-threaded programs through their execution traces. More
specifically, we first explore dynamic monitoring to capture
multiple execution traces for each multi-threaded program
under the same input, and then elaborate Apriori to extract
significant frequent patterns over execution traces, based on
which, we construct a thread-aware birthmark, called FPBirth,
to model the behavior of the multi-threaded program and
reduce the impact of interleaving threads. The contributions
of this paper are summarized as follows:

293

Execution

Traces

Candidate

set

generation

FPBirth

Frequent

pattern

mining

Frequent

pattern

reduce

Figure 1: Basic flow of FPBirth extraction.

• A new and dynamic behavioral representation learning
method for multi-threaded programs is proposed over their
multiple execution traces through candidate set generation
and frequent pattern mining. This allows a refined repre-
sentation to preserve semantics of execution traces while
tolerating differences among them as well.

• Based on extracted frequent patterns, a new thread-aware
birthmark FPBirth is constructed, which is leveraged to de-
sign a multi-threaded program plagiarism detection system.

• Comprehensive experimental studies on a public software
plagiarism sample set are conducted to demonstrate that
FPBirth is a reliable thread-aware birthmark, and plagiarism
detection system over it can achieve the state-of-the-art
results, which also outperforms TreSB and TOB.

II. PROBLEM STATEMENT

In this section, we first define the software plagiarism
detection problem. Given two multi-threaded programs p and
q, an input I and a thread schedule s to p and q, a thread-
aware dynamic software birthmark can be defined as a set
of characteristics f (p, I, s) extracted from program p when
executing p with the input I and schedule s if and only if
both of the following conditions are satisfied [14]:
- f (p, I, s) is obtained only from p itself when executing p

with input I and thread schedule s.
- Program q is a copy of p⇒ f (p, I, s) = f (q, I, s).

Obviously, this is an abstract guideline without considering
any implementation feasibility. In practice, even if there is a
plagiarism correlation between two programs, the constructed
birthmarks may not be exactly the same. Therefore, instead of
enforcing exact birthmark matching, we measure the similarity
between the original program p’s birthmark and the suspect
program q’s birthmark sim(f (p, I, s) , f (q, I, s)) to determine
the plagiarism. The higher the similarity, the more possible the
suspect program q copies code from the original program p.
We further set up a threshold ε to obtain the final results:

sim(pf , qf) =

≥ 1− ε q is a copy of p
< ε q is not a copy of p
Otherwise Inconclusive

(1)

III. PROPOSED METHOD

In this section,we present the detailed method of how we
construct thread-aware birthmarks for multi-threaded programs
over their execution traces, which is illustrated in Figure 1.

A. Candidate Set Generation

The thread interleaving in multi-threaded programs leads
to changes in the program execution traces. To capture
such unique behaviors so that the constructed birthmarks are

Execution

Traces
Pre-

Processor
Candidate

set

Slice

merging

Gram-

based Slice

Figure 2: Basic process of pattern candidate set generation.

difference-tolerant to the changes among execution traces, we
take as input multiple execution traces from a multi-threaded
program under the same input, and extract frequent behavioral
patterns over execution traces to formulate birthmark. To
improve the effectiveness of frequent pattern mining, pattern
candidate set is first generated through pre-processor, gram-
based slice, and slice merging, which is displayed in Figure 2.

1) Pre-Processor: The pre-processor is to prune the cap-
tured execution traces, consisting of system calls related to
program and thread operations, where each record in the
system call sequence is specified as system call number, name,
and return value. However, the raw execution traces are not
applicable for direct FPBirth extraction. First, those system
calls that fail cannot correctly reflect the program’s behaviors
[5], which should be considered noises to be filtered out using
their return values. Second, those system calls that are invoked
randomly may perturb the execution traces, which should be
also removed. For example, futex, providing a way to keep
the thread blocked until certain conditions are met, can be
only called when the expected blocking time is long enough;
another kind of system calls that are responsible for memory
management, such as mmap and brk, may be invoked only
when a particular chunk of memory is involved.

2) Gram-based Slice: Due to its simplicity and scalability,
k-gram model [8] in natural language processing is then used
to slice up the pre-processed execution traces to form different
subsequences of k continuous system calls. Given a pre-
processed execution trace s = (e1, e2, · · · , en), a series of
subsequences split by k-gram can be defined as grams(s, k) =
{gi|gi = (ei, ei+1, · · · , ei+k)} (1 ≤ i ≤ n − k + 1). In this
respect, execution traces can be transformed into a set of short
sequences to facilitate fast pattern mining while not signif-
icantly compromising their important semantic information,
which thus greatly ensures the integrity of trace contents.

3) Slice Merging: To generate the candidate set for frequent
pattern mining, we further merge all the short sequences
sliced by k-gram over multiply execution traces of each multi-
threaded program under the same input. In other words, one
multi-threaded program with one input will specify one pattern
candidate set. As such, given a multi-threaded program p
and an input I , a pattern candidate set can be defined as
CanSetIp =

⋃m
i=1 grams(si, k) where si is p’s ith execution

trace under input I and m is the number of execution traces.

B. Frequent Pattern Mining

Frequent pattern mining is an important research topic in
data mining [3], which searches for recurring relationships in
a given data set with frequency not less than minimum support
threshold, and thus leads to discovery of associations among
itemsets. Therefore, based on the generated candidate sets, we

294

explore a frequent pattern mining method Apriori [1] to dig out
the most representative behavioral patterns to birthmark each
multi-thread program, which not only preserve semantics of
execution traces, but also have strong ability to resist variations
caused by thread interleaving.

The key of Apriori is the apriori knowledge that all non-
empty subsets of a frequent itemset must also be frequent.
Therefore, Apriori algorithm follows the iterative steps that
frequent t-itemsets (i.e., itemsets that contain t items and have
frequency not less than minimum support σ) are generated
by joining frequent (t− 1)-itemsets with itself until no new
frequent itemsets are identified. In this way, given a candidate
set CanSetIp, the generated frequent pattern set over it can be
defined as FreSetIp = {fi|count(fi) ≥ σ, 1 ≤ i ≤ l)} where
fi is ith frequent pattern in CanSetIp, and l is the number of
frequent patterns in FreSetIp.

To perform frequent pattern mining, the length of the input
sequences k, which is decided by k-gram slices, must be
appropriately considered: (1) excessive length will lead to an
explosion in the number of iterations and itemset candidates,
and the burden of program running, while (2) the length
being too short may enforce short frequent itemset generation;
since we utilize frequent itemsets as patterns to construct
the birthmark, frequent itemsets being too short will not be
able to depict any specific patterns and thus degrade their
expressiveness and representativeness to execution traces and
the corresponding birthmark’s semantics and accuracy to the
multi-threaded programs. That is to say, given the input
sequences of length k, the length of frequent itemsets t may
directly impact on the validity of the constructed birthmark.
As such, the length of the input sequences k, and the length
range of the frequent itemsets t will be empirically evaluated
in the experiments on the sample data to find the best trade-
off between the effectiveness and efficiency for multi-threaded
program plagiarism detection.

C. Frequent Pattern Reduction

Using frequent pattern mining over CanSetIp, we may gen-
erate the frequent pattern set FreSetIp with a large number of
frequent patterns, where according to the implementation of
Apriori algorithm, the resulting patterns with shorter length
are obviously more than the ones with longer length. On
the one hand, shorter patterns are weaker than longer ones
in representing program-specific semantic behaviors for less
context; on the other hand, shorter patterns themselves may
be embedded in longer patterns, which has a major drawback
to cause the redundancy, and thus mislead the effect of the
constructed birthmark over frequent patterns. Therefore, the
removal of such short frequent patterns is indispensable.

More specifically, we here propose a pattern removing
method before constructing the birthmark, named insignificant
pattern removing, where all the frequent patterns that are
included in others as continuous subsequences are insignifi-
cant and should be removed. For example, given the pattern
“ABCDE”, the following pattern “ABC” becomes insignificant

because it is a complete substring and gives no extra infor-
mation, while the pattern “ADE” will be retained due to its
variation on “ABCDE”.

Finally, the refined frequent pattern set is used to con-
struct the thread-aware dynamic software birthmark for the
program. Note that, for dynamic birthmarks, the number of
pattern occurrences is related to the execution behavior of the
program to some extent; that is, birthmark similarity should be
measured over pattern frequency instead of pattern existence.
To facilitate such a similarity calculation, we further transform
the frequent pattern set into key-value pair set where the keys
represent the frequent patterns and the values refer to their
corresponding frequencies. This key-value pair set acts as the
program’s dynamic birthmark under a specified input, named
FPBirth. Accordingly, given a frequent pattern set FreSetIp,
FPBirth can be defined as FPBirthIp = {〈fi, sup(fi)〉|fi ∈
FreSetIp} where fi is ith frequent pattern in FreSetIp, and
sup(fi) is the frequency of pattern fi (i.e., support count).

IV. FPBIRTH-BASED SOFTWARE PLAGIARISM DETECTION

Using FPBirth, we can effectively and dynamically birth-
mark a multi-threaded program under a specified input. How-
ever, a FPBirth birthmark merely abstracts part of the seman-
tics and behaviors of the program under a single input, based
on which, the plagiarism detection decision is clearly biased
and not reliable. For instance, two different programs may
adopt the same standard exception handling mechanism, while
any inputs that invoke the exception handling will enforce
the same behavioral patterns for both programs. To address
this issue, we formulate different inputs and perform multiple
executions for each multi-threaded program under each of
these inputs to cover as many functional blocks as possible, so
that we can construct a series of FPBirth birthmarks to thor-
oughly represent the semantics and behaviors of the program.
Given an original program p, a suspect program q, and a set
of inputs {I1, I2, · · · , Id}, we accordingly generate a set of
FPBirth birthmark pairs for p and q, which can be denoted as
{(FPBirthI1p ,FPBirthI1q), · · · , (FPBirthIdp ,FPBirthIdq)}. Instead
of evaluating the similarity between a single pair of birth-
marks, we calculate the similarities for all pairs of birthmarks
and take their mean value as the measure of software similarity
between p and q, which can be denoted as follows:

sim (pf , qf) =
d∑

i=1

sim
(
FPBirthIip ,FPBirthIiq

)/
d (2)

Based on sim (pf , qf) and Eq. (1), we can obtain the final
plagiarism detection results, where the threshold ε is adjustable
for different sample data set. Note that we aim to outline a gen-
eral paradigm to explore the similarity between p and q, where
the measure models can be instantiated in different ways. In
this paper, we employ cosine similarity for measurement, since
it is commonly used in high-dimensional positive spaces with
the outcome being neatly bounded in [0, 1].

295

Table I: Benchmark multi-threaded programs

Name Size(kb) Version #Ver Name Size(kb) Version #Ver Name Size(kb) Version #Ver

pigz 294 2.3 21 chromium 80,588 28.0.1500.71 1 SOR 593.3 JavaG1.0 44
lbzip 113.3 2.1 1 dillo 610.9 3.0.2 1 blackschole 12.5 Parsec3.0 2
lrzip 219.2 0.608 1 Dooble 364.4 0.07 1 bodytrack 647.5 Parsec3.0 2

pbzip2 67.4 1.1.6 1 epiphany 810.9 3.4.1 1 fludanimate 46.4 Parsec3.0 2
plzip 51 0.7 1 firefox 59,904 24.0 1 canneal 414.7 Parsec3.0 2
rar 511.8 5.0 1 konqueror 920.1 4.8.5 1 dedup 127.2 Parsec3.0 2

cmus 271.6 2.4.3 1 luakit 153.4 d83cc7e 1 ferret 2,150 Parsec3.0 2
mocp 384 2.5.0 1 midori 347.6 0.4.3 1 freqmine 227.6 Parsec3.0 2

mp3blaster 265.8 3.2.5 1 seaMonkey 760.9 2.21 1 streamcluster 102.7 Parsec3.0 2
mplayer 4,300 r34540 1 Crypt 518.1 JavaG1.0 43 swaption 94 Parsec3.0 2

sox 55.2 14.3.2 1 Series 593.3 JavaG1.0 43 x264 896.3 Parsec3.0 2
arora 1,331 0.11 1 SparseMat 593.3 JavaG1.0 43

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

We evaluate the effectiveness of our proposed detection
system over FPBirth on a public software plagiarism sample
set [11], including 234 multi-threaded programs of different
versions, derived from a series of obfuscations (e.g., SandMax,
Zelix, UPX) over 35 benchmark multi-threaded programs,
which are shown in Table I. The parameter settings to im-
plement our model for evaluation are specified as: k = 6 for
k-gram slice, which is also the length of the input sequences
for frequent pattern mining, minimum support σ = 4, the
length of frequent patterns ranging in t ∈ [3, 6]; for each input,
m = 4 for the number of execution traces captured. As for the
baselines, we compare our approach with two multi-threaded
program plagiarism detection methods TreSB and TOB.

B. FPBirth Evaluation

With these settings, we mainly evaluate the resilience and
credibility of the thread-aware birthmark FPBirth [12], which
can be described as follows [7]:
• Resilience. Let p be a program and q be a copy of p gener-

ated by applying semantics-preserving code transformations
τ . A birthmark is resilient to τ if sim (pf , qf) ≥ 1− ε.

• Credibility. Let p and q be independently developed pro-
grams. A birthmark is credible if it can differentiate the
two programs, that is sim (pf , qf) < ε.

In other words, resilience reflects the ability of birthmark to be
resistant to all kinds of semantic-retention code obfuscations,
while credibility characterizes the ability of birthmark to
distinguish independently developed software.

1) Resilience Evaluation: In this experiment, the bench-
mark program is taken as the original program while the
obfuscated program is taken as the suspect program so that
a series of original-suspect comparison pairs are formulated
to evaluate the resilience of FPBirth. The experimental results
with respect to the similarity distribution under three different
obfuscations (H1, H2 and H3) are illustrated in Figure 3(a),
where H1 uses different compilers and optimizations (e.g.,
llvm, gcc, o0 - oS) for weak obfuscation, H2 applies pro-
fessional obfuscation tools (e.g., SandMark, Zelix, ProGuard)
for strong obfuscation, and H3 uses UPX for packing. From
the results, we can observe that most of the comparison pairs

(a) Resilience evaluation (b) Credibility evaluation

Figure 3: FPBirth Evaluation.

enforce a similarity higher than 0.9; this indicates that FPBirth
birthmark enjoys an excellent resistance to the obfuscation
strategies involved in this public data set.

2) Credibility Evaluation: In this experiment, the programs
independently developed are selected from the data set to
evaluate the credibility of FPBirth. More specifically, the
selected experiment instances include 6 multi-threaded com-
pression/decompression software, 7 web browsers, and 5 audio
player software. We use FPBirth to birthmark the software
and then calculate the similarity between them. Figure 3(b)
shows the distribution of similarity over similar software and
different software, where S stands for software included in
the same category and D represents software distributed in
different categories. From the results, we can see that the
similarity between software belonging to different categories
is very low, with the mean similarity below 0.1. This indicates
that FPBirth birthmark can effectively distinguish different
kinds of software. Due to their remarkable consistency in
functions, the similarity between software in the same category
is slightly higher, but most of them still fall into a very
low similarity range. There are few comparison pairs with
a similarity between 0.2 and 0.3 as their designs adopt the
same algorithm or both rely on some functional modules.
For example, the average similarity between browser Dooble
and Epiphany is 0.28, since both browsers use WebKit layout
engines. Overall, FPBirth performs well in differentiating
independently developed software.

C. Comparisons with Traditional Birthmark Techniques

1) Comparative Analysis on Detection Effect: In this sec-
tion, we compare FPBirth with TreSB [11] and TOB [13],
two traditional thread-aware birthmark techniques, and SCSSB
[16], a dynamic birthmark technique also based on system

296

(a) URC (b) F-measure (c) MCC (d) Pattern length

Figure 4: Comparative analysis on detection performance and pattern length.

calls. To quantitatively validate the effectiveness of different
methods, we use URC (union of resilience and credibility) [17],
F-Measure, MCC (matthews correlation coefficient) [6], and
AUC (area under the curve) as the performance measures.
(i) URC. URC is an indicator designed for comprehensively
measuring the birthmarks in terms of resilience and credibility:

URC = 2× R× C
R+ C

(3)

where R represents the ratio of plagiarism pairs correctly
classified to all comparison pairs with plagiarism, and C
represents the ratio of independently developed pairs correctly
classified to all comparison pairs with independence (i.e.,
without plagiarism). The value of URC is between 0 and
1, and the higher the URC, the better the performance of
the birthmark. According to the criteria given in Eq. (1), the
plagiarism detection result is decided by the threshold ε. We
set the effective value range of the threshold as 0-0.5, that is,
1−ε ≥ ε. Figure 4(a) shows the comparison between FPBirth
and other birthmark techniques under different thresholds. As
the blue line shows, FPBirth performs better than the other
three birthmarking methods.
(ii) F-Measure and MCC. F-Measure and MCC are com-
monly used in the field of information retrieval and data
mining. In this regard, the “uncertain” part of the criteria
given in Eq (1) is removed here, and plagiarism detection is
described as a binary classification problem:

sim(pf , qf) =

{
≥ ε q is a copy of p
< ε q is not a copy of p

(4)

For F-Measure measurement, the harmonic average of preci-
sion and recall is used here, which is described as:

F-Measure =
2× Precision×Recall
Precision+Recall

(5)

MCC is an evaluation metric considering true positives (TP),
true negatives (TN), false positives (FP) and false negatives
(FN), and can be used to make a reasonable assessment of test
effectiveness in the case of unbalanced positive and negative
samples, which is denoted as:

MCC =

TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(6)

Figure 4(b) and Figure 4(c) respectively show the comparison
results between FPBirth and other birthmark techniques under

different thresholds, where FPBirth outperforms TreSB, TOB,
and SCSSB in most measurements.

(iii) AUC. With the help of AUC, we can further perform
the quantitative analysis of the technical performance of each
birthmark with respect to URC, F-Measure, and MCC. Table II
summarizes the specific AUC values of different measure
metrics for each birthmark technique. It can be observed that
all three AUC values of FPBirth are higher than those of tra-
ditional birthmark methods, which indicates that FPBirth can
cope better with multi-threaded program plagiarism detection.

Table II: Comparison of birthmark techniques over AUC

SCSSB TOBSA TOBSS TreSB FPBirth

URC 0.394 0.404 0.402 0.431 0.443
F-Measure 0.916 0.933 0.925 0.952 0.954
MCC 0.820 0.839 0.834 0.875 0.885

2) Comparative Analysis on Time Cost: FPBirth and other
three birthmark based detections mainly include trace capture,
birthmark generation, and similarity calculation. Considering
that the experiments are conducted on the same set of execu-
tion traces, in this section, we focus on comparing the time
cost of FPBirth with others in terms of birthmark generation
(Phase II) and similarity calculation (Phase III). Table III gives
the average time cost of each birthmark. From the results,
we can observe that the average time of FPBirth to generate
birthmark is higher than other methods. The reason behind
this is that other methods use k-gram directly to construct
birthmarks, while FPBirth takes extra time to mine the frequent
patterns that improves the birthmark’s thread-aware ability.
Since FPBirth constructs more representative frequent patterns,
it takes a little more time (9.9 ms on average) for similarity
calculation as well, which is still less than TOBSS using
maximum weighted dichotomy matching. Though it is more
time-consuming, FPBirth is still significant for multi-threaded
program plagiarism detection for its better detection effective-
ness. Our follow-up plan is to optimize the frequent pattern
mining process to improve FPBirth’s construction efficiency.

Table III: Comparison of of birthmarks over time cost (ms)

SCSSB TOBSA TOBSS TreSB FPBirth

Phase II 103 103 103 102 1556
Phase III 0.1 0.1 20 0.02 9.9

297

D. Evaluation on Pattern Length

As described in Section III-B, the length of frequent patterns
directly affects the validity of the constructed birthmark.
Therefore, this section specifically analyzes the impact of
pattern length on the detection performance. Figure 4(d)
displays the AUC values of URC, F-Measure and MCC for
plagiarism detection using FPBirth with respect to different
pattern lengths. We can see that F-Measure slightly increases
as the length increases, while URC and MCC suffer from a
drop at length 3, but keep going up afterwards and reach to the
best at length 5. Considering all three detection metrics, length
6 gives the best balance. This is the reason why we choose
k = 6 for k-gram slice and the length of the input sequences
for frequent pattern mining. In addition, given the length of the
input sequences, frequent patterns after mining and reduction
may still enjoy different pattern lengths ranging from 1 to 6.
As discussed, patterns being too short may exist in different
programs as common behaviors, which may not be able to
differentiate a program from others and should be removed.
From our experimental results, pattern lengths ranging from
3 to 6 provide the best detection performance, which is what
we’ve set up for our experiments.

VI. RELATED WORK

The existing software plagiarism detection work mainly falls
into two categories: static birthmark and dynamic birthmark.
For static birthmark, Xie et al. [17] introduced the weighted
short sequence birthmark, DroidMoss [19] took hash value
of bytecode fragments as birthmark, and ViewDroid [18]
presented a functional view graph birthmark; For dynamic
bithmark, Wang et al. [16] designed SCSSB (System Call
Short Sequence Birthmark) and IDSCSB, and SUPB [9]
constructed call sequence diagram of the program. These
traditional dynamic birthmarks cannot well address the un-
certainty caused by multi-threaded programs. Tian et al. [14]
introduced the concept of thread-aware birthmark for the first
time. Accordingly, two dynamic birthmarking methods TreSB
[11] and TOB [13] were proposed to detect multi-threaded
program plagiarism. Differently, our proposed FPBirth takes
the frequent patterns from execution traces of multi-threaded
programs as birthmark, which preserves the behavioral seman-
tics and also improves the difference-tolerant ability.

VII. CONCLUSION

This paper proposes a new dynamic thread-aware birthmark
FPBirth to detect the multi-threaded program plagiarism. More
specifically, we first explore dynamic monitoring to capture
multiple execution traces with respect to system calls for
each multi-threaded program under a specified input, and
then leverage Apriori algorithm to mine frequent patterns to
formulate our dynamic birthmark, which can not only depict
the program’s behavioral semantics, but also resist the changes
and perturbations over execution traces caused by the thread
scheduling in multi-threaded programs. Using FPBirth, we
design a multi-threaded program plagiarism detection system.
The experimental results based on a public software plagiarism

sample set demonstrate that the developed system integrating
our proposed birthmark FPBirth outperforms alternative ap-
proaches in multi-threaded plagiarism detection.

ACKNOWLEDGMENT

This work was supported in part by the National
Natural Science Foundation of China (61702414), the
Natural Science Basic Research Program of Shaanxi
(2018JQ6078, 2020GY-010), the Science and Technology of
Xi’an (2019218114GXRC017CG018-GXYD17.16), the Inter-
national Science and Technology Cooperation Program of
Shaanxi (2018KW-049, 2019KW-008), and the Key Research
and Development Program of Shaanxi (2019ZDLGY07-08).

REFERENCES

[1] R. Agrawal, R. Srikant et al., “Mining sequential patterns”, in icde,
vol. 95, 1995, pp. 3–14.

[2] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets”, in
ICSE, 2014.

[3] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: current
status and future directions”, DMKD, vol. 15, no. 1, pp. 55–86, 2007.

[4] Y.-C. Jhi, X. Jia, X. Wang, S. Zhu, P. Liu, and D. Wu, “Program
characterization using runtime values and its application to software
plagiarism detection”, IEEE TSE, vol. 41, no. 9, pp. 925–943, 2015.

[5] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection”, in FSE, 2014, pp. 389–400.

[6] B. W. Matthews, “Comparison of the predicted and observed secondary
structure of t4 phage lysozyme”, BBA-Protein Structure, 1975.

[7] G. Myles and C. Collberg, “Detecting software theft via whole program
path birthmarks”, in ISC, 2004, pp. 404–415.

[8] G. Mylos and C. Collberg, “K-gram based software birthmarks”, in ACM
symposium on Applied computing, 2005, pp. 314–318.

[9] J. Park, D. Son, D. Kang, J. Choi, and G. Jeon, “Software similarity
analysis based on dynamic stack usage patterns”, in RACS, 2015, pp.
285–290.

[10] H. Tamada, M. Nakamura, A. Monden, and K.-i. Matsumoto, “Design
and evaluation of birthmarks for detecting theft of java programs”, in
IASTED Conf. on Software Engineering, 2004, pp. 569–574.

[11] Z. Tian, T. Liu, Q. Zheng, M. Fan, E. Zhuang, and Z. Yang, “Exploiting
thread-related system calls for plagiarism detection of multithreaded
programs”, JSS, vol. 119, pp. 136–148, 2016.

[12] Z. Tian, T. Liu, Q. Zheng, F. Tong, D. Wu, S. Zhu, and K. Chen,
“Software plagiarism detection: a survey”, Journal of Cyber Security,
vol. 1, no. 3, pp. 52–76, 2016.

[13] Z. Tian, T. Liu, Q. Zheng, E. Zhuang, M. Fan, and Z. Yang, “Reviving
sequential program birthmarking for multithreaded software plagiarism
detection”, IEEE TSE, vol. 44, no. 5, pp. 491–511, 2017.

[14] Z. Tian, Q. Zheng, T. Liu, M. Fan, X. Zhang, and Z. Yang, “Plagiarism
detection for multithreaded software based on thread-aware software
birthmarks”, in ICPC, 2014, pp. 304–313.

[15] Z. Tian, Q. Zheng, T. Liu, M. Fan, E. Zhuang, and Z. Yang, “Software
plagiarism detection with birthmarks based on dynamic key instruction
sequences”, IEEE Transactions on Software Engineering, vol. 41, no. 12,
pp. 1217–1235, 2015.

[16] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Detecting software theft
via system call based birthmarks”, in 2009 Annual Computer Security
Applications Conference. IEEE, 2009, pp. 149–158.

[17] X. Xie, F. Liu, B. Lu, and L. Chen, “A software birthmark based on
weighted k-gram”, in 2010 IEEE International Conference on Intelligent
Computing and Intelligent Systems, vol. 1. IEEE, 2010, pp. 400–405.

[18] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “Viewdroid: To-
wards obfuscation-resilient mobile application repackaging detection”,
in Proceedings of the 2014 ACM conference on Security and privacy in
wireless & mobile networks. ACM, 2014, pp. 25–36.

[19] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party android marketplaces”, in Proceedings
of the second ACM conference on Data and Application Security and
Privacy. ACM, 2012, pp. 317–326.

298

The Impact of Auto-Refactoring Code Smells on
the Resource Utilization of Cloud Software

Asif Imran⇤ and Tevfik Kosar†
Department of Computer Science and Engineering, University at Buffalo

Amherst, New York 14260-1660, USA
Email: ⇤asifimra@buffalo.edu, †tkosar@buffalo.edu

DOI reference number: 10.18293/SEKE2020-138

Abstract—Cloud-based software-as-a-service (SaaS) have
gained popularity due to their low cost and elasticity. However,
like other software, SaaS applications suffer from code smells,
which can drastically affect functionality and resource usage.
Code smell is any design in the source code that indicates a
deeper problem. The software community deploys automated
refactoring to eliminate smells which can improve performance
and also decrease the usage of critical resources. However, studies
that analyze the impact of automatic refactoring smells in SaaS
on resources such as CPU and memory have been conducted to
a limited extent. Here, we aim to fill that gap and study the
impact on resource usage of SaaS applications due to automatic
refactoring of seven classic code smells: god class, feature envy,
type checking, cyclic dependency, shotgun surgery, god method,
and spaghetti code. We specified six real-life SaaS applica-
tions from Github called Zimbra, OneDataShare, GraphHopper,
Hadoop, JENA, and JAMES which ran on Openstack cloud.
Results show that refactoring smells by tools like JDeodrant and
JSparrow have widely varying impacts on the CPU and memory
consumption of the tested applications based on the type of smell
refactored. We present the resource utilization impact of each
smell and also discuss the potential reasons leading to that effect.

Index Terms—Code smells, automated refactoring, cloud re-
source utilization

I. INTRODUCTION

Software as a Service (SaaS) running in cloud platforms
has become increasingly popular, mainly due to their lower
cost, high availability, and quality of service for the users.
SaaS applications are becoming mainstream in the everyday
lives of users who use them to conduct day-to-day business
and personal software needs [1]. SaaS applications are rapidly
capturing the market, and more service providers are migrating
their software to cloud everyday [2]. The critical advantage of
SaaS is its capability to serve millions of users all around the
world, harnessing the elasticity, reliability, and scalability of
the underlying cloud platform.

Developing SaaS applications differ from desktop applica-
tions since those are required to perform on the cloud back-
bone where multiple software are competing for the compute
cloud resources, mainly CPU and memory [3]. Furthermore,
the shorter time-to-market affects the development of those
open-source software, which are designed to serve multiple
users. Those applications are designed by many contributors
who work together to solve common issues and regularly add
new features. When open source SaaS is incorrectly coded,
they can drain cloud resources like CPU and memory, thereby

resulting in wastage of critical resources that are billed by
cloud service providers [3]. This results in technical debt and
increases the cost of hosting the software in the cloud. We call
the erroneous designs as code smells of SaaS.

Resource consuming code smells can degrade the perfor-
mance of the SaaS application and increase the cost. Users
will be demotivated to pay the increased cost and can move
to less expensive services provided by the competitors. As a
result, fixing those smells can improve the cost-efficiency of
critical computing resources without sacrificing the quality of
service. Hence, selectively refactoring these code smells would
benefit the SaaS service providers as well as the customers of
those services. Previous research has focused on exploring the
impact of code smells on energy consumption, such as battery
usage in smartphones [4]. Also, the importance of detecting
and eliminating smells that affect speedup during migration
has been addressed [5]. However, there is a lack of empirical
study which focuses on analyzing the impact of automatically
refactoring smells in SaaS on CPU and memory consumption.

This paper aims to fill the void by analyzing the effect
of automatic refactoring of smells on resource utilization of
SaaS applications running in the cloud. We conducted an
initial search that included 84 repositories and filtered those
to match the required pre-specific criteria of this research.
We selected seven code smells, which we detected in the
selected software using two popular tools, JDeodrant [6] and
JSparrow [7], which have capabilities of detecting classic code
smells and applying automatic refactoring on those. Out of
the seven smells, JDeodrant detected and refactored god class,
feature envy, and type checking whereas JSparrow could detect
and refactor four smells namely cyclic dependency, shotgun
surgery, god method, and spaghetti code. We strongly believe
our research efforts will help to identify the critical importance
of refactoring specific code smells in cloud-based software and
their impact on the utilization of precious cloud resources.

The rest of the paper is organized as follows: Section II
describes the methodology of our study, Section III presents
the results of the experiments and summary of our findings,
Section IV discusses the related work in this area, and Section
V concludes the paper.

II. EXPERIMENTAL PROCESS

This section describes the goals of this study and the
research questions answered, the selection of code smells, and

299

Smell Primary Causes Impact on Software Refactoring technique

cyclic
depen-
dency

-Violation of acyclic modularization [8]
-Misplaced elements
-Two packages are dependent on each other
-Lack of encapsulation

-Difficult to maintain
-Single method called for multiple tasks
-Has ripple effect on other abstractions [8]

-Encapsulate all pack-
ages in a cycle and as-
sign to single team

god
method

-Many activities in a single method [9]
-Tangled code
-Long methods with multiple responsibilities

-Memory leak
-Multiple calls to same function [10]
-Difficult co-ordination of packages

-Extract method
-Replace method with
method object

type
checking

-Using complex variation of an algorithm re-
quiring execution based on the value of an
attribute [11]
-Objects in class come from different workers

-Abuse of type casting
-Redundant code in a method or class
-Less flexible code

-Replace ”instanceof”
from code
-Strategy pattern

spaghetti
code

-Convoluted code
-Continuous addition of new code and no re-
moval of obsolete ones [12]
-Procedural code design

-Difficult to understand code [12]
-Lack of well-articulated code

-Replace procedural
code segments with
object oriented design

feature
envy

-Accessing data of another object often [6]
-Occurs when fields are moved to data class
-Data defined in class A, however operations
defined in class B

-High volume of requests to access a class and
its objects
-Numerous read and write to remote object

-Move method
-Extract method

shotgun
surgery

-Single behavior defined across multiple
classes [9]

-Requires multiple changes in different loca-
tions (e.g., multiple files) of the code in order
to make a single modification [9]
-Existing behavior in multiple classes

Inline class

god class
-Class aims to do many activities [9]
-Large number of instance variables declared
in one class

-Difficult to manage multiple functionalities
-Difficult to understand code

-Extract class
-Extract Interface

TABLE I: Characteristics and applied refactoring properties of software smells

the methodology of experimental and evaluation processes.

A. Identified Research Questions

The main goal is to determine whether automatic refac-
toring of smells in cloud-based software impact the resource
consumption in terms of CPU and memory. The motivation is
derived from the fact that cloud resources are in high demand,
and any unnecessary resource usage will incur unnecessary
costs. More specifically, we want to determine the refactoring
of which smells will result in an increase or reduction of CPU
and Memory consumption in the cloud. Based on this goal,
we determine the following research questions:

• RQ1. How does auto-refactoring of code smells in cloud-
based software affect CPU utilization?

• RQ2. How does auto-refactoring of code smells in cloud-
based software affect memory utilization?

B. Selected Code Smells

A code smell is a software behavior that is indicative of
more profound quality issues [9]. We selected the aforemen-
tioned seven smells mainly because of the following reasons.
Primarily, those smells are studied popularly by software
community, and they are considered as classic smells [9].
Secondly, several tools can detect the code smells; however,
few tools are available, which can automatically refactor those.
Our selected smells could be automatically detected by the
refactoring tools we used in this study. Table I provides a

summary of the smells which includes the causes, impact on
software, and the refactoring policy applied by the tools.

C. Study Methodology

To eliminate biases in our study, we executed each of the
apps 24 times and took the mean of the data. To analyze the
effect of a given smell, first, we ran the smelly code 3 times.
Then we refactored a smell and ran the software 3 times more,
hence for one software, we had (7*3=21)+3=24 runs. Running
each software 24 times resulted in a total of 144 runs. This
required a significant time frame.

We conducted the experiments in OpenStack cloud servers,
which had 32 GB RAM, 8 core processors, and 2 TB persistent
storage [13]. We set up the cloud and ran the six software
in VM instances, which were created using kernel virtual
machine (kvm). Every time we refactored, we executed the
software in a new instance and deleted all existing data to
minimize the impact of caching. We did not run any other
cloud VM instance with other services to minimize the effect
of external entities. Following this mechanism allowed us
to erase all existing data before the software was run. As
a result, it helped us achieve the same initial condition for
each experimental run. Next, we followed a methodology for
refactoring the selected software, which is shown in Figure 1
and discussed here.

• Smell detection and provenance: As a first step, we
applied JDeodrant to detect the three code smells (god

300

Detect smells Execute code
with smells

Automatic
refactoring

Execute
refactored code

Analyze CPU and
Memory Usage

JDeodrant

JSparrow

Source
code

Fig. 1: Automatic detection and refactoring of code smells.

class, feature envy, and type checking), followed by
JSparrow to detect four remaining smells. Since both
JDeodrant and JSparrow have plugins for Eclipse IDE,
we imported the source codes in to Eclipse and built
those. After detection of the smells, we preserved prove-
nance of the packages, classes, and methods, which were
affected by the smells. Overall, JDeodrant and JSparrow
detected 744 instances of the seven analyzed smells in
the six software. The reason for using two tools is to
include significant number of smells in the study. None
of the tools could single-handedly detect and refactor all
the smells considered here.

• Executing smelly code: Next, we executed the codes
in the cloud. We ran the code three times, each time
with the same workload, and collected the CPU and
memory utilization during each clock cycle using scripts
in OpenStack [3]. This allowed us to eliminate biases.

• Automatic refactoring of smells: Afterwards, we refac-
tored the code from the smells. For each smell, we
took a new copy of the smelly code and refactored to
eliminate the effect of another refactoring. As a result, the
projects were imported newly for each smell, refactored
and executed. After refactoring, we repeat step 2 and
record the CPU and memory consumption for the same
workload and following the same method.

• Logging the data: We proceeded to log all the CPU and
memory consumption in each experimental run. We tried
to eliminate any external impact during each execution.
We recorded the CPU and memory consumption during
each CPU cycle and stored the data persistently.

• Statistical operation: Finally, we obtained the arithmetic
mean of the CPU and memory usage. Afterward, we tabu-
lated the results and compared whether the resource usage
improved or deteriorated after refactoring the smells.

The next section highlights results obtained by following these
prescribed steps.

III. RESULTS

The obtained results during experimentation have been
provided here. The number of detected smells is showcased
which is followed by quantitative analysis of the data achieved
during experimentation.

System Activity LoC Commits NoC

Zimbra 08/05-03/19 24,698 15,052 1,871

JGraph 09/09-02/19 22,758 1,360 187

OnedataShare 11/18-01/20 23,002 1,644 390

Hadoop 12/11-03/20 14,2790 23,611 2,069

JENA 06/10-05/19 70,948 8,287 1,392

JAMES 06/04-08/19 27,003 9,314 340

TABLE II: List of selected systems for the study

A. Selected Software for Analysis

For this study, we identified and selected six open-source
software which serve the users in the cloud. Among those,
we analyzed 3,11,199 Lines of Code (LoC) and 6,249 class
files. Zimbra [14] is an OS-independent emailing, and file
sharing tool running in the cloud, popularly used by Dell,
Rackspace, and Mozilla. OneDataShare [14] is a cloud-based
data transfer tool that incorporates multiple transfer protocols,
including DropBox and GoogleDrive. GraphHopper is a GIS
application provided as SaaS that incorporates spatial rules
in hybrid mode. Hadoop is a software framework which was
first proposed by Google to facilitate the analysis of large
volume of data in the cloud [15]. Java Apache Mail Enterprise
Server (JAMES) consists of a modular architecture based on
state of the art components which provides secure, stable, and
end-to-end mail servers running on the JVM [14]. JENA is
a platform provided by Apache for designing and building
linked data applications, giving access to a variety of APIs
for serialization, processing, storage, and transfer [16]. Table
II shows details related to the software selected for this study.
Following is a description of the mechanism followed here to
to obtain those software.

To analyze the impact of automatic refactoring of smells on
resource usage, we decided to use open-source software that
runs in the cloud as Software as a Service (SaaS) for multiple
reasons. First, there are many software which are developed as
SaaS for cloud since cloud computing has increased in popu-
larity. So the availability of software was satisfied. Second, due
to the high demand for the cloud, those software are heavily
deployed by the industry. As shown in the previous paragraph,
our selected software are used widely by top companies.
Hence we believe it is important to analyze the impact of

301

automatic smell refactoring on resource consumption since
those companies will benefit from our research. Third, the
authors of this paper felt that the software running in the cloud
will contain a significant number of smells since those have
complex code blocks that are written to ensure real-time user
interactions and serving a large number of users from remote
cloud data centers where they are hosted. Finally, one of the
main challenges of SaaS is to optimize resource utilization,
since provisioning extra resources in the cloud will require
additional cost. Hence optimized use of cloud resources will
result in cost reduction for the cloud service provider.

We obtained the source code of the software from Github
during November 2019. The software source code obtained
based on search in Github using the following keywords:
cloud computing software, Software as a Service, pervasive
computing, and cloud data transfer. From there, we selected
the software sorted by popularity. To ensure that our selection
of software is unbiased, we implement a set of checks which
software shall satisfy to be selected for analysis. Those checks
are described as follows:-

• Check 1 - Initial list of software: Initially, we conducted
a preliminary search in Github to identify the realistic
chance of obtaining software that runs in the cloud. This
search was manual and it involved looking out for cloud
computing SaaS. It helped us to identify the keywords
for searching in Github and also laid the foundation for
the following checks.

• Check 2 - Script to automatically download the software:

We developed a script that will parse through Github
projects and automatically download the source codes
from the master branch based on the keywords. It re-
sulted in downloading 84 repositories from Github. We
required to use automated scripts because cloning the 84
repositories manually would be time-consuming.

• Check 3 - Refining the search to match tool require-

ments: Finally, we refined our search to be in line
with the requirements of our selected automatic code
smell detection and refactoring tools. Prior to that, we
eliminated any source code not written in Java, which
left us with a list of 21 repositories. Next, we decided to
include source codes that can be compiled in Eclipse as
JDeodrant and JSparrow both have plugins, which can
be run using Eclipse. After this, we were left with 11
repositories. Finally, we considered repositories with at
least 10,000 lines of code, since otherwise we could run
into the risk of considering a prototype software which
we aimed to avoid.

B. Analysis of Results

We start with highlighting our findings related to CPU
utilization. More specifically, we identify which code smells
from the list will impact the CPU consumption of the analyzed
Java software. Hence we address the research question ”How
does auto-refactoring of code smells in cloud-based software
affect CPU utilization?” Table III identifies the change in CPU

utilization after each smell is refactored. Each column high-
lights the percent change in CPU utilization after refactoring
the smell specified in column heading. The negative sign in
front of the numbers show decrease in resource use, whereas
the positive sign show increase in resource usage.

After presenting the analysis of obtained results for CPU
consumption, we analyze the results for change in memory us-
age after refactoring the smells. Hence, we aim to answer our
second research question, ”How does auto-refactoring of code
smells in cloud-based software affect memory utilization?”
Table IV identifies the percent change in memory utilization
after refactoring each of the smells. The values of memory
usage were measured in MB. Following is an analysis of the
obtained results.

As seen in Table III, the refactoring of cyclic dependency
smells improves CPU utilization for all six software tested.
The CPU utilization was reduced by 16.52%, 17.22%, 50.81%,
4.67%, 31.96%, and 24.53% respectively for Zimbra, Graph-
Hopper, OneDataShare, Hadoop, JENA, and JAMES. Cyclic
dependencies result in direct and indirect dependencies be-
tween abstractions [17]. The abstractions were tightly coupled
between a large number of direct and indirect cyclic dependen-
cies, so they resulted in a tangled design of the code. Further
analysis showed that since the elements were not placed in
the correct package, it resulted in cyclic dependencies between
packages as well. Co-ordination between the packages became
difficult which resulted in multiple calls to the same package.
Hence, the existence of this smell resulted in higher CPU and
memory usage. To eliminate the smell, JSparrow encapsulated
all the packages involved in the chain and assigned it to
a single team, which required less processing and could be
loaded once into memory, thus reducing resource consumption
in terms of both CPU and memory.

A common practice to eliminate the god method smells by
refactoring tools is to detect and remove those by implement-
ing extract method design [18]. This refactoring procedure will
improve the quality and maintainability of the software while
preserving correctness. However, our results in Tables III and
IV show that refactoring god method leads to an increase
in resource utilization. The extra resource usage we found
came from the higher number of message traffic obtained
from architecture modification of this smell. Refactoring of
this smell enables us to obtain a modular architecture of
code where the elements have higher cohesion and lower
coupling. Despite the benefits, this refactoring mechanism may
not be ideal for cloud software as it might create harmful
side effects in terms of sustainability [18]. Refactoring of god
method smells yielded an increase in CPU utilization of 3.50%,
14.59%, 35.79%, 10.45%, 14.36%, and 3.69% for Zimbra,
GraphHopper, OneDataShare, Hadoop, JENA, and JAMES.

Removal of shotgun surgery smells contributed to the
reduction of resource usage by the software. As we know
shotgun surgery smells occur when we try to modify a
class which in turn makes multiple modifications to several
different classes. For example, in OneDataShare, removal of
all instances of this smell resulted in 52.30% of CPU and

302

TABLE III: The impact of smell refactoring on percentage of CPU utilization

Table Affect on CPU utilization after refactoring
cyclic dependency god method shotgun surgery spaghetti code feature envy type checking god class

Zimbra -16.5% +3.5% -42.6% -27.6% +11.0% -33.7% +14.8%
GraphHopper -17.2% +14.6% -30.7% -0.7% +27.6% -10.4% +66.2%
OneDataShare -50.8% +35.8% -52.3% -27.4% +66.8% -53.6% +48.8%

Hadoop -4.7% +10.5% -14.4% -8.2% +20.1% -6.8% +17.4%
JENA -32.0% +14.4% -35.5% -10.4% +57.0% -2.8% +78.5%

JAMES -24.5% +3.7% -20.7% -2.7% +35.0% -3.3% +20.6%

TABLE IV: The impact of smell refactoring on percentage of Memory utilization

Table Affect on Memory utilization after refactoring
cyclic dependency god method shotgun surgery spaghetti code feature envy type checking god class

Zimbra -60.8% +14.2% -71.2% -60.5% +12.6% -53.9% +6.2%
GraphHopper -55.6% +18.9% -57.1% -4.7% +66.7% -22.1% +54.8%
OneDataShare -33.2% +38.2% -31.4% -4.8%8 +81.9% -13.6% +88.1%

Hadoop -7.5% +7.4% -12.8% -20.6% +5.4% -7.7% +17.3%
JENA -7.5% +48.6% -1.7% -14.2% +28.7% -2.9% +42.3%

JAMES -13.2% +0.1% -21.9% -17.8% +14.7% -5.0% +35.3%

31.43% of memory utilization. We consulted the diff in
the commits of OneDataShare and agreed that the smell
was introduced due to the practice of overzealous and sudden
changing of multiple components in different classes during
development to incorporate new requirements without proper
documentation. The refactoring tool used Inline Class to
transfer the diversified behaviors of one operation to one class.
This was done for 39 occurrences of this smell. As a result,
we obtained the improvement of resource utilization.

OneDataShare was found to have improved CPU utilization
by 27.35% when the spaghetti code smells were refactored.
On the other hand, Zimbra’s memory utilization improved by
60.47% when this smell was removed from it. Once again
taking OneDataShare as a case study, upon analysis of its
source code using the refactoring tools, it was seen that the
code used a large volume of GOTO statements. Excessive
use of GOTO instead of well-articulated code design resulted
in software that is convoluted and unmanageable [19]. At the
same time, it causes the program to have methods scattered
across many classes, which required more memory for file
read and write operations.

Eliminating feature envy causes increased resource utiliza-
tion which is a threat to the sustainability of the software, as
it would result in provisioning more resources for the same
task, thus incurring more cost [20]. More specifically, CPU
and memory consumption increased by 66.84% and 81.87%
respectively when this smells was refactored in OneDataShare.
Analysis of files in OneDataShare showed that the method
calls required access to specific classes each time it requested
for certain operations, hence increasing inter-class communi-
cation, thus deteriorating memory and CPU usage.

Refactoring the type checking smell yielded CPU utiliza-
tion improvement of 53.6% of OneDataShare. Also, notable
improvement of memory utilization of 53.9% was observed
for Zimbra. This is because type checking results in a large

function which should be broken down into multiple smaller
functions. Calling the large function numerous times will
cause all its functionality to be executed even when it is not
necessary, yielding high CPU and memory utilization.

The tested software started to consume an alarming quantity
of memory after refactoring god class smells. In general,
the reason for a similar pattern of memory usage can be
summarized to two main causes. The first is despite having a
large volume of LoC and effective session cache management,
the refactoring divided large classes into multiple sub-classes
[18]. Hence, implementing extract method on god classes
caused an increased number of calls the program has to make
to perform its tasks, which increased the data volume stored in
memory. Secondly, all the software have multiple developers
contributing to it. So, from the perspective of community
smells, there is a possible reason between these smells and
developer viewpoint, which requires further research.

In summary, it is seen that all the software considered here
suffered from increased CPU utilization after smells called
god method, feature envy, and god class were refactored.
The increase is 3.5%, 11.00%, and 14.8% respectively for
the three smells. Although the increase in CPU utilization
may seem low, however, it is important to remember that
when the software runs in the cloud, every CPU cycle is
charged to the customer, hence increase in CPU utilization
due to refactoring of software smells will lead to the cloud
client incurring unnecessary extra cost. On the other hand,
it is seen that refactoring the smells called cyclic dependency,
shotgun surgery, spaghetti code, and type checking contributes
to reduced CPU usage.

As seen in Table IV, memory consumption is seen to
drastically increase after refactoring god class. For Zimbra,
GraphHopper, and OneDataShare this increase in memory
consumption is found to be 6.2%, 54.8%, and 88.1%. Overall,
similar observations are made for feature envy, and god method

303

smells as well for all six software. Like CPU, memory resource
is also paid in the cloud, hence refactoring these smells
will lead to additional cost as extra memory needs to be
provisioned. We determine that the refactoring techniques
adopted by JDeodrant for god class, and feature envy smells,
together with JSparrow for god method are not useful for the
cloud-based applications since all the six software resulted in
an increase of CPU utilization and memory utilization.

IV. RELATED WORK

Platform-specific code smells in High-Performance Com-
puting applications were determined by Wang et al. [5]. AST
based matching was used to determine smells present in an
HPC software by comparing it with a dictionary of smells. The
authors claimed that the removal of such smells would increase
the speedup of the software when migrated to a new platform.
The assumption was that certain code blocks perform well in
terms of speedup in a given platform. However, the results
show that certain smell detection and refactoring reduced
the speedup, thus challenging the claims and showing the
importance of further research in this area.

Oliveira et al. conducted an empirical study to evaluate
nine context-aware Android apps to analyze the impact of
automated refactoring of code smells on resource consumption
[21]. They studied three code smells, namely god class, god
method, and feature envy. They found that for the three
smells, resource utilization increases when they are refactored.
Although their findings are useful, it is limited to the analysis
of three code smells only. At the same time, the importance
of analyzing the impact of automated code smell refactoring
on cloud computing SaaS applications were not considered.

V. CONCLUSION

In this paper, we evaluated the impact of automatically
refactoring seven code smells on resource usage of software
running in the cloud platform. Obtained results highlight that
the refactoring techniques adopted by JDeodrant for god class,
and feature envy, together with JSparrow for god method
resulted in more message traffic which adversely affected CPU
and memory usage. More specifically, cumulative increase of
CPU and memory consumption for refactoring these three
smells significantly higher as shown in Table III and Table IV.
Hence, there exists scope of further research to improve the
automatic refactoring mechanisms of existing tools. Also, de-
termining the correlation between refactoring multiple smells
and resource consumption needs to be explored. Additionally,
impact on resource usage after refactoring smells specific to
the cloud should be studied.

ACKNOWLEDGMENT

This project is in part sponsored by the National Science
Foundation (NSF) under award numbers OAC-1724898 and
OAC-1842054.

REFERENCES

[1] V. V. H. Pham, X. Liu, X. Zheng, M. Fu, S. V. Deshpande, W. Xia,
R. Zhou, and M. Abdelrazek, “Paas-black or white: an investigation into
software development model for building retail industry saas,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 2017, pp. 285–287.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[3] A. Imran, A. U. Gias, R. Rahman, A. Seal, T. Rahman, F. Ishraque, and
K. Sakib, “Cloud-niagara: A high availability and low overhead fault
tolerance middleware for the cloud,” in 16th Int’l Conf. Computer and
Information Technology. IEEE, 2014, pp. 271–276.

[4] R. Verdecchia, R. A. Saez, G. Procaccianti, and P. Lago, “Empirical
evaluation of the energy impact of refactoring code smells.” in ICT4S,
2018, pp. 365–383.

[5] C. Wang, S. Hirasawa, H. Takizawa, and H. Kobayashi, “A platform-
specific code smell alert system for high performance computing appli-
cations,” in 2014 IEEE International Parallel & Distributed Processing
Symposium Workshops. IEEE, 2014, pp. 652–661.

[6] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-
ant: identification and application of extract class refactorings,” in 2011
33rd International Conference on Software Engineering (ICSE). IEEE,
2011, pp. 1037–1039.

[7] S. IT-Consulting. (2020) Jsparrow.
[8] S. Sarkar, G. M. Rama, N. N. Siddaramappa, A. C. Kak, and S. Ra-

machandran, “Measuring quality of software modularization,” Mar. 27
2012, US Patent 8,146,058.

[9] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[10] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media, 2007.

[11] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant: Identifi-
cation and removal of type-checking bad smells,” in 2008 12th European
Conference on Software Maintenance and Reengineering. IEEE, 2008,
pp. 329–331.

[12] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension,” in 2011 15th European Conference on
Software Maintenance and Reengineering. IEEE, 2011, pp. 181–190.

[13] A. Imran, S. Aljawarneh, and K. Sakib, “Web data amalgamation
for security engineering: Digital forensic investigation of open source
cloud.” J. UCS, vol. 22, no. 4, pp. 494–520, 2016.

[14] A. Imran, “Design smell detection and analysis for open source java
software,” in 2019 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 2019, pp. 644–648.

[15] M. R. Ghazi and D. Gangodkar, “Hadoop, mapreduce and hdfs: a
developers perspective,” Procedia Computer Science, vol. 48, no. C,
pp. 45–50, 2015.

[16] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “Qualitas corpus: A curated collection of java code for em-
pirical studies,” in 2010 Asia Pacific Software Engineering Conference
(APSEC2010), Dec. 2010, pp. 336–345.

[17] G. Samarthyam, G. Suryanarayana, and T. Sharma, “Refactoring for
software architecture smells,” in Proceedings of the 1st International
Workshop on Software Refactoring, 2016, pp. 1–4.

[18] R. Pérez-Castillo and M. Piattini, “Analyzing the harmful effect of god
class refactoring on power consumption,” IEEE software, vol. 31, no. 3,
pp. 48–54, 2014.

[19] M. Ceccato, P. Tonella, and C. Matteotti, “Goto elimination strategies in
the migration of legacy code to java,” in 2008 12th European Conference
on Software Maintenance and Reengineering. IEEE, 2008, pp. 53–62.

[20] K. Nongpong, “Feature envy factor: A metric for automatic feature
envy detection,” in 2015 7th International Conference on Knowledge
and Smart Technology (KST). IEEE, 2015, pp. 7–12.

[21] J. Oliveira, M. Viggiato, M. F. Santos, E. Figueiredo, and H. Marques-
Neto, “An empirical study on the impact of android code smells on
resource usage.” in SEKE, 2018, pp. 314–313.

304

Towards Fine-Grained Compiler Identification with

Neural Modeling

Borun Xie1,2, Zhenzhou Tian1,2*, Cong Gao1,2, Lingwei Chen3
1School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi’an, China

2Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an, China
3College of Information Sciences and Technology, Pennsylvania State University, PA, USA

*Corresponding: tianzhenzhou@xupt.edu.cn

Abstract—Different compilers and optimization levels can be

used to compile the source code. Revealed in reverse from the

produced binaries, these compiler details facilitate essential

binary analysis tasks, such as malware forensics and binary code

similarity analysis. Most existing approaches adopt a signature

matching based or machine learning based strategy to identify

the compiler details, showing limits in either the detection

accuracy or granularity. In this work, we propose NeuralCI

(Neural modeling-based Compiler Identification) to perform the

identification of compiler family and optimization level on

individual functions. The basic idea is to formulate sophisticated

neural networks to process abstracted instruction sequences

generated using a lightweight function abstraction strategy. To

evaluate the performance of NeuralCI, a large dataset consisting

of 413,119 unique functions collected from real-world projects is

constructed. The experiments show that NeuralCI achieves over

99% and 90% accuracy in identifying the compiler family and

optimization level respectively, which outperforms most state-of-

the-art function level compiler identification methods. Also, we

explore for the first time the possibility of conducting compiler

identification on binary code snippets rather than complete

functions, where NeuralCI still achieves 96% accuracy,

indicating its ability of capturing subtle yet significant features.

Keywords-software forensics; binary code analysis; compiler

identification; neural network

I. INTRODUCTION

In the software production process, diverse toolchains and
toolchain settings can be adopted to transform the source code
to the final binary. For example, different compilers like GCC
and Clang as well as different compiler options like O0-O3 can
be used by the developers. Besides, it is also a common
practice to apply various kinds of code obfuscation techniques
[1, 2] and packers [3, 4] in the binary production process.

Usually binaries produced with these different toolchains
and toolchain settings exhibit significant differences when
viewed in a straight way [5-7]. These differences just indicate
that toolchain footprints are preserved during the source code
to binary code translation process, enabling the possibility of
revealing the toolchain and toolchain setting choices made
during the production process of a binary. This task, which in
the literature is called binary program provenance analysis,
provides ways to spy on the specifics of the binary production
process. A major subtask of it, compiler identification, which
focuses on the compilation phase, attempts to infer from a

piece of binary code the compiler-related details such as the
specific compiler family, the optimization options etc.

Overall, relatively few works have been conducted on
compiler identification, which mainly fall into two categories:
signature matching based methods [8-10] and learning based
methods [11-14]. The former, implemented in several reverse
engineering tools like IDA [8] and PEiD [9], performs whole
program level identification via exact matching of signatures
that are manually constructed for certain compilers. Drawbacks
of these kinds of methods lie in the stringent expertise in
constructing a good enough compiler-specific signature as well
as their coarse identification granularity. The latter formulates
compiler identification as a machine learning task, which trains
models to capture compiler-specific patterns, further with
which to infer the compiler details on previously unseen
binaries. For this kind of method, syntactic or structural
features are extracted based on artificially defined templates
such as idioms [11] which are short sequences of instructions
with wildcards or graphlets [12] which are small subgraphs
within the CFG (Control Flow Graph). The accuracy of these
methods greatly depends on the quality of manually-crafted
feature extraction strategies, where potential human-bias exists,
resulting in capturing lots of irrelevant or redundant features
for the compiler identification task meanwhile failing to
capture closely relevant ones.

In recent years, tremendous successes have been witnessed
of applying natural language processing techniques and deep
learning models to various program analysis tasks [16-21]. In
this paper, we attempt to adopt some of the most popular neural
network structures to achieve fast and accurate fine-grained
compiler identification on function level. Specifically, we feed
typical Recurrent Neural Network (RNN) and Convolutional
Neural Network (CNN) based structures with abstracted
assembly instruction sequences to train classification models
for inferring the compiler families and the optimization levels.
Our intuition is based on the observation that co-occurring
instructions together with their orderings that appear even in
short instruction sequences form good enough signals of
distinguishing different compliers or optimization levels, and
here we resort to the neural models to capture them.

Our main contributions are summarized as following:

 We propose to reveal fine-grained compiler details for
individual functions by designing a lightweight

DOI reference number: 10.18293/SEKE2020-141.

305

function abstraction strategy and adapting typical
sequence-oriented neural networks. It alleviates the
task complexity and human bias impacts by handing
over the professional process of extracting and
selecting features significant for compiler identification
from the domain experts to the less human intervened
neural networks.

 We have implemented the proposed methods as a tool
called NeuralCI (Neural modeling based Compiler
Identification), and evaluated its performance of
revealing either the compiler family or the optimization
level on a large dataset consisting of 413,119 unique
functions that we constructed via processing a set of
diverse real world projects. The experiments show that
NeuralCI outperforms most state-of-the-art function
level compiler identification methods. It achieves
above 99% and 90% accuracy in identifying compiler
family and optimization level respectively.

 We explore for the first time the possibility of
conducting compiler identification on arbitrary binary
code snippets rather than complete functions. It shows
that NeuralCI achieves 96% accuracy, indicating that it
can capture very subtle yet significant features.

The remainder of this paper is organized as follows: Section
Ⅱ summarizes the related works. Section Ⅲ describes in detail
our proposed approach. The experimental evaluation conducted
are presented in Section IV. Finally, we conclude the paper in
Section Ⅴ.

II. RELATED WORK

In general, existing works on compiler identification can be
divided into two classes: signature matching based methods
and learning based methods.

A. Signature Matching Based Methods

The signature matching based methods [8-10] search the
binary program against a corpus of manually constructed
signatures for exact matching, and attribute to the whole
program the compiler label corresponding to the matched
signature string. This kind of method has been implemented in
several reverse engineering tools, such as IDA Pro [8], PEiD [9]
and LANGUAGE 2000 [10], in consideration of its high
detection efficiency and low cost. Drawbacks of these methods
lie in the stringent expertise and labor work in constructing a
good enough compiler-specific signature, as well as the easily
affected accuracy due to slight differences between signatures.
Besides, the signatures usually depend on the metadata or
details of program headers, which can be easily altered or
become unavailable in stripped binaries. Moreover, these tools
identify compilers on the whole binary, while a program can be
produced with multiple compilers in scenarios such as statically
linking library code to produce the final binary program.

B. Learning Based Methods

This type of method formulates compiler identification as a
machine learning task performed on (in most instances stripped)
binaries, based on the belief that the resulting binaries implicit

features reflecting design and implementation decisions of the
certain compiler which are used to produce the binaries.
Specifically, they train models that capture compiler-specific
patterns, further with which to infer the compiler provenance
on previously unseen binaries.

The pioneering work [11] adopting this type of approach was
conducted by Rosenblum et al. that manually defined a set of
idioms (short sequences of instructions with wildcards) and
utilized mutual information calculation to capture and select
significant patterns indicative of the source compiler of the
program binaries. High accuracy is observed for inferring the
compiler families, but we have no idea of its performance on
optimization levels identification as no evaluation was
conducted. ORIGIN [12] achieved superior accuracy in
recovering the compiler details by introducing graphlets (small
and non-isomorphic subgraphs within the CFG) in addition to
idioms so as to capture additional structural features. Hidden
Markov models were learnt via observing the differences in the
type and frequency of instructions comprising the binaries
compiled with different compilers, and proved to be accurate in
identifying the compiler family for a whole program [14, 15].
However, for each individual compiler family a corresponding
separate model needs to be learnt. Also, these models do not
extract information regarding the optimization levels. To
improve efficiency in terms of computational resources and
detection time, BinComp [13] adopted a stratified approach to
infer different compiler details on different granularity. It
identifies compiler family for the whole program via exact
matching of signatures, and conducts compiler version and
optimization level detection for compiler-related functions.
However, the compiler-related functions constitute only a very
small portion of all functions, making it largely impractical in
handling real world programs where user defined functions
hold the principal status. Basically, accuracy of these methods
greatly depends on the quality of manually-crafted feature
extraction strategies, where potential human-bias exists,
resulting in capturing lots of irrelevant or redundant features
for the compiler provenance task meanwhile failing to capture
closely relevant ones.

In recent years, significant successes have been witnessed of
applying deep learning techniques to the domain of binary
program analysis [16-21]. BinEye [16] is one of the few works
that utilize neural models to achieve compiler identification. It
combines word embedding and position embedding to encode
the raw bytes of an object file, and then utilizes CNN to learn a
model that supports optimization level recognition on each
individual object file. Our work differs in that we achieve finer
grained identification of both the compiler family and the
optimization level for each individual function by adopting an
abstraction strategy that operates on assembly instructions
rather than the raw bytes. Structure2Vec [19] utilizes a graph
embedding network to transform the function CFGs into
vectors, which are then fed into a dense layer to train a
classifier for compiler family identification. Compared to this
work, we operate directly on the instructions comprising a
function with a lightweight abstraction strategy, and adopt the
much faster sequence-oriented neural networks to train models
for identifying the optimization level besides just the compiler
family as did by Structure2Vec.

306

Corpus
of

Functions
Function Abstraction

Compiler Family &
Optimization Level

. .

Individual
Function

Neural Networks

Neural Network based
Classification

Function Abstraction Trained Models

Ground Truth

Compiler Family &
Optimization Level

Predicted Output

Figure 1. The basic framework of NeuralCI

III. THE APPROACH

Figure 1 depicts the overall architecture of NeuralCI, which
consists of two phases: the training phase as illustrated in the
top half subfigure, and the detection phase as illustrated in the
half bottom subfigure. The training phase consists of three
steps. As a deep learning-based method, the first step is to
construct a high-quality database comprised of labeled
functions which shall be discussed in detail in Section IV.A.
The second step takes as input each raw function and outputs
an abstracted instruction sequence via a light-weight
abstraction strategy implemented in the function abstraction
module. Then these abstracted sequences together with their
ground truth labels are fed into the neural network based
classification module to train compiler identification models.
The detection phase is much simpler, which takes in an
individual function, processes it with the function abstraction
and utilizes the trained model to produce a predicted output. In
the following, we discuss the details of the function abstraction
module and neural network based classification module
respectively.

A. Function Abstraction

A function must be represented in certain forms such that it
can be processed for further analysis. The typical ways include
using the raw byte sequence, the assembly instruction sequence
or the control flow graph [19] to depict a function. According
to the findings in [15], different compilers tend to use
distinguishable assembly instructions. For example, call
instruction occurs frequently in GCC-generated assembly code,
while the Clang assembly uses callq instead. Also, as indicated
by the pretty good compiler family identification accuracy in
[12], short assembly instruction sequences successfully capture
compiler-related features. Thus, in this work we choose to use
the assembly instruction sequence as the representation of each
function, and we use IDA Pro for the parsing 1 . That is, a

function f will be represented as 1 2, , , nf ins ins ins , where

n denotes the number of instructions within the function, and

each instruction iins consists of an opcode (i.e. mnemonic) and

a list of operands.

1 We assume a reliable way of identifying the function boundaries,

the instruction boundaries, as well as the correct parsing of each

instruction, by using the best commercial reverse engineering tool

IDA Pro. The correct disassembly of binaries is still a complex and

open problem, but are beyond the scope of this paper.

However, as has been confirmed in many existing binary
analysis tasks [19, 20], it is usually not wise to work directly on
the raw assembly instructions. For our case, we want to capture
features reflecting the compiler details rather than the
functionality of the function. That is, we do not care whether a
value 6 is assigned to register eax or a value 10 is assigned. So
the two instructions “mov eax, 6” and “mov eax, 10” should be
considered the same. Besides, the memory addresses (e.g. the
target of jmp instructions) are meaningless but just noises that
bring adverse impacts. Meanwhile, to prevent introducing too
much human bias, we choose to process the raw instruction
sequence with a light-weight abstraction strategy.

Specifically, we do abstraction to each assembly instruction
in a function with the following rules:

 The mnemonics remain unchanged.

 All registers in the operands remain unchanged.

 All base memory addresses in the operands are
substituted with the symbol MEM.

 All immediate values in the operands are substituted
with the symbol IMM.

As an example, with the above abstraction rules, the
instruction “add eax, 6” will become “add eax, IMM”, the
instruction “mov ebx, [0x3435422]” will become “mov ebx,
MEM”, while the instruction “mov eax, [ebp-20]” will become
“mov eax, [ebp-IMM]”.

B. Neural Models for Compiler Identification

Given a set of abstracted assembly instruction sequences, it
is promising to utilize skip-gram [22] to learn the embedding
for each instruction, explore max-pooling, averaging or
concatenation to aggregate the embeddings for each sequence,
and then feed them to any classification model for compiler
identification. However, it still faces the following two
limitations: (1) skip-gram assigns each instruction a static
embedding vector, which is not context-aware to different
sequences it interacts with; this may fail to learn the compiler-
related features; (2) since instruction sequences are abstracted
from functions, they may not only enjoy local instruction
associations and correlations, but also global or long-range
instruction dependency; in this respect, it calls for sequence
learning models to better capture the representative compiler-
specific patterns and features from instruction sequences for
compiler identification. As advanced neural network structures,

307

both RNN and CNN have achieved great success in sequence
learning. As such, in this work, we design an RNN model and a
CNN model respectively to learn the semantic and structural
information of instruction sequences and thus leverage these
advances to identify their compilers.

1) RNN Model: RNN is known to learn the sequential
dependency, and strict to align the positions and contexts for
the instances in the input sequences. Considering that some
instructions may play more significant roles in the function or
some instructions may be uniquely generated by specific
compilers, RNN is able to attend such instructions and learn a
comprehensive and contextualized embedding for the whole
instruction sequence. In this work, we employ Long Short-term
Memory (LSTM) or Gated Recurrent Unit (GRU), either of
which is an architecture designed for RNN to address the
vanishing and exploding gradient issue. The structure of our
RNN model is shown in Figure 2. Each instruction in the input
sequence is first embedded in vector space. Afterwards, the
model reads the input instruction sequence through
LSTM/GRU units to obtain the summary vector, which is then
fed to a Softmax layer to predict the real compiler. The training
loss is adopted to measure the correctness of sequence learning
and compiler prediction. During the training process, dropout is
also applied to prevent the neural network from overfitting.

 2) CNN Model: Different from RNN, CNN is known to
learn the local correlations with shared weights and utilize
pooling mechanism to greatly reduce the number of parameters
needed to find important local patterns. In other words, CNN is
able to attend those frequently co-occurring instructions in the
short sequences. In our model formulation, we further take
advantage of different kernel-size filters to thoroughly extract
interacted salient features among different instruction grams to
capture the behaviors of compilers. The structure of our CNN
model is shown in Figure 3. Each instruction sequence is first
transformed into a matrix, where each row of the matrix is the
instruction’s embedding. We take such an embedding matrix as
input fed to the CNN architecture to learn the higher-level
concept. In the convolutional layer, the raw instruction feature
matrix gets convoluted by different kernels of size 2, 3 and 4
such that different views of feature patterns can be extracted in
parallel, which are then passed through 1-maxpooling layers
for dimensionality reduction. The resulting representations are
concatenated through a dense layer to be fed to a Softmax layer
for compiler prediction. The CNN model is trained using the
instruction sequences with ground truth.

IV. EXPERIMENTS AND EVALUATION

A. Dataset Construction

To evaluate the performance of NeuralCI, we collected 9
widely used C/C++ open source projects, including coreutils
8.31, curl 7.65.3, FreeImage 3.17, git 2.22, libpng 1.6.3, pigz
2.4, x264, vim 8.1.19 and sqlite 3.22, as the basics to construct
the dataset. To be specific, we process these projects with the
following steps:

 Two different compilers involving multiple versions
including GCC (4.6.3, 4.7.4, 4.8.5, 4.9.4, 5.5.0, 6.5.0,
7.4.0) and Clang (3.8, 5.0, 6.0), as well as varying

compiler optimization levels (O0, O1, O2, O3) are
used as the toolchain settings to compile each project.

 IDA Pro is then used to identify and extract functions
from each binary. Also, we get rid of trivial functions
(functions containing just a few instructions, such as
the stub functions) that are meaningless to analyze. We
consider functions containing less than 10 instructions
as trivial in our current setting.

 To avoid the neural models see during the training
phase functions that are really similar to the ones in the
testing phase, which if not properly accounted for can
inflate the performance metrics, we only keep unique
functions. Specifically, a function is considered
redundant if it has the same abstracted instructions as
any other functions’. Then we label each remaining
function with the compiler settings used to compile the
binary that the function resides in.

With these settings, we finally construct a dataset comprised
of totally 413,119 unique functions.

S1 SNS2 S3
...

Embedding

LSTM/GRU LSTM/GRULSTM/GRU...

Function Vectors

256 Units

Softmax

Dropout

Figure 2. RNN-based model

S1 SNS2 S3
...

Embedding

CNN CNNCNN ...

Softmax

1-Max Pooling

...

Function Vectors

3 Region Size (2,3,4)

128 Units

Figure 3. CNN-based model

308

B. Implementation Details and Experimental Settings

We have implemented NeuralCI as a prototype tool. It
utilizes IDA Pro for the parsing of binaries to obtain functions
as well as the raw assembly instructions. The function
abstraction module is implemented in Java, and the neural
modeling module is implemented using Python and the
Tensorflow framework. Skip-gram model provided by gensim
is used to generate the instruction embedding vectors with the
embedding size setting to 100.

For the experimental settings, we randomly split the whole
dataset into training set, validation set and testing set according
to a percentage of 70%, 15% and 15% respectively. The neural
models are trained with a RTX2080Ti GPU card using a batch
size of 500, learning rate 0.001 and Adam optimizer for 100
epochs (Note that for each epoch the training samples are
shuffled and accuracy on the validation set is calculated). Then
we take the model with the best validation accuracy as the final
model to be further evaluated on the testing set with respect to
performance metrics including accuracy, precision, recall and
f1-score.

C. Evaluation

In the following parts, firstly we evaluate the performance of
NeuralCI in identifying the compiler family and optimization
level respectively and get it compared against state-of-the-art
function level compiler identification methods. Then we further
explore for the first time the applicability of NeuralCI on
compiler identification of arbitrary binary code snippets which
can be just a part of a complete function. Considering that
several different neural structures are implemented in NeuralCI,
we use NeuralCIx where x can be LSTM, GRU or CNN to get
them distinguished.

1) Performance of Identifying Compiler Family: In this

experiment, we take the compiler family that each function is

compiled with as the ground-truth, and get the NeuralCI

models trained and evaluated by adopting the experimental

settings as described in Section IV.B. Also, we compare them

against existing methods including Structure2Vec, Idioms,

Graphlets and BinComp that support function level compiler

family identfication. Table I summarizes the experimental

results2. As it shows, the three NeuralCI models achieve nearly

perfect accuracy and f1-score in identifying the compiler

family and they all outperform existing methods in terms of

detection accuracy. Also, the CNN based one NeuralCNN

exhibits the best performance with an accuracy of 99.5% and

f1-score of 0.995, an improvement of 6.3% against Idioms and

the least improvement of 0.7% against Graphlets.

2) Performance of Identifying Optimization Level: In this

experiment, the optimization levels of certain compilers are

2 It should be noted that most existing methods do not provide a

public access to their source code implementation or the dataset they

used. So we give the best performance exhibited in their original

evaluations rather than conducting a direct comparison with them.

Also, not all performance metrics as we evaluated against are used in

their original work, we mark these missing data with a symbol ‘-’ in

Table I as well as the following tables.

taken as the ground-truth to train and evaluate NeuralCI. We

do not use the default 4-level optimization option setting, but

adopt the same strategy as in works [12, 13] that condense the

4 optimization levels to 2 classes ‘low’ and ‘high’, considering

the findings presented in existing studies [12, 13] that it is

difficult to distingush between O2 and O3 compiled binaries.

That is, O0 and O1 will be considered as the low optimization

class, while O2 and O3 will be considered as the high

optimization class. Similarly, we compare NeuralCI with

methods having function-level compiler optmization level

identification results. As summarized in Table II the detection

results on GCC optimzation levels, relatively good detection

accuracy of above 90% are observed for the NeuralCI models,

while the Graphlets method achieves the best accuracy of

97.1% according to their original evaluation result. But as the

reproduction evaluation conducted by BinComp on a different

dataset shows, the Graphlets method achieves an f-score of

just 0.62, much lower than those of NeuralCI’s. Similar results

can be observed for evaluation on the Clang optimization

levels in Table III, where an accuracy of above 90% is

achieved for the NeuralCI models. There’s no data for other

methods, as they didn’t evaluate on the Clang compiler.

TABLE Ⅰ
COMPILER FAMILY IDENTIFICATION RESULTS

Model Accuracy Precision Recall F1-Score

NeuralCILSTM 99.4% 0.994 0.993 0.994

NeuralCIGRU 99.3% 0.994 0.99 0.994

NeuralCICNN 99.5% 0.995 0.995 0.995

Structure2Vec 98.2% 0.98 0.98 0.98

Idioms 93.2% - - -

Graphlets 98.7% - - -

BinComp 97.0% - - -

TABLE Ⅱ
OPTIMIZATION LEVEL IDENTIFICATION RESULTS FOR GCC

Model Accuracy Precision Recall F1-Score

NeuralCILSTM 91.3% 0.914 0.912 0.914

NeuralCIGRU 91.2% 0.913 0.916 0.914

NeuralCICNN 90.9% 0.914 0.907 0.910

Graphlets 97.1% - - -

BinComp 91.0% - - -

TABLE Ⅲ
OPTIMIZATION LEVEL IDENTIFICATION RESULTS FOR CLANG

Model Accuracy Precision Recall F1-Score

NeuralCILSTM 0.914 0.920 0.917 0.908

NeuralCIGRU 0.903 0.925 0.912 0.924

NeuralCICNN 0.900 0.915 0.905 0.903

3) Evaluation on Isolated Binary Code Snippet: The

prologue (the preparation of stacks and registers to be used)

309

and epilogue (the lines of code appearing at the end of a

function for restoring the stack and registers to the state before

the function is called) of a function play important roles in

many binary analysis tasks. Also, as shown by the analysis

presented in the works of Austin[15] and Toderici [16], push,

mov and pop instructions (which are the main components of

prologues and epilogues) show significant effect in

distingushing different compilers. So in this experiment we

explore whether NeuralCI still works on arbitrary binary code

snippets that may not contain function prologue and epilogue.

To achieve that, we apply NeuralCI to identify compiler

family for each basic block containing no less than 10

instructions. As depicted in Table IV, reduced performance is

observed compared with the results on individual functions,

but still pretty good accuracy (around 96%) and f1-score

(around 0.96) are achieved. It indicates that NeuralCI can

capture very subtle yet significant features which may

otherwise be missed by artifically crafted feature extraction

and selection strategies.

TABLE Ⅳ
COMPILER FAMILY IDENTIFICAITON ON INDIVIDUAL BASIC BLOCKS

Model Accuracy Precision Recall F1-Score

NeuralCILSTM 0.962 0.962 0.961 0.961

NeuralCIGRU 0.960 0.959 0.959 0.960

NeuralCICNN 0.961 0.960 0.960 0.961

V. CONCLUSION

In this work, we attempt to solve the problem of fine-grained
compiler identification by feeding in typical neural networks
with abstracted instruction sequences generated with a light-
weight function abstraction strategy. We implement our
methods in a prototype tool NeuralCI, and get its performance
evaluated on a large dataset consisting of totally 413,119
unique functions. As the experimental evaluation shows,
NeuralCI outperforms most state-of-the-art function level
compiler identification methods. It achieves above 99% and
90% accuracy in identifying compiler family and optimization
level respectively. Moreover, the evaluation we conducted of
applying NeuralCI for the tougher task that infers compiler
family from arbitrary binary code snippet achieves rather good
accuracy of 96% and f1-score of 0.96. Future works will focus
on the model interpretability as well as designing more
powerful neural nets such as network structures with attention
mechanism.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China (61702414), the Natural Science
Basic Research Program of Shaanxi (2018JQ6078, 2020GY-
010), the Science and Technology of Xi’an
(2019218114GXRC017CG018-GXYD17.16), the International
Science and Technology Cooperation Program of Shaanxi
(2018KW-049, 2019KW-008), and Key Research and
Development Program of Shaanxi (2019ZDLGY07-08).

REFERENCES

[1] Schrittwieser S, Katzenbeisser S, Kinder J, Merzdovnik G, Weippl, E.
Protecting software through obfuscation: Can it keep pace with progress
in code analysis?[J]. ACM Computing Surveys (CSUR), 2016, 49: 1-37.

[2] Schrittwieser S, Katzenbeisser S. Code obfuscation against static and
dynamic reverse engineering[C]//International workshop on information
hiding. Springer, Berlin, Heidelberg, 2011: 270-284.

[3] Roundy K A, Miller B P. Binary-code obfuscations in prevalent packer
tools[J]. ACM Computing Surveys (CSUR), 2013, 46(1): 1-32.

[4] Ugarte-Pedrero, X, Balzarotti, D, Santos, I, & Bringas, P. G. SoK: Deep
packer inspection: A longitudinal study of the complexity of run-time
packers[C]//2015 IEEE Symposium on Security and Privacy. IEEE,
2015: 659-673.

[5] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang. Neural machine
translation inspired binary code similarity comparison beyond functions
pairs[J].arXiv preprint arXiv:1808.04706,2018.

[6] Z. Z. Tian, T. Liu, Q. H. Zheng, E. Zhuang, M. Fan, and Z. J. Yang.
Reviving sequential program birthmarking for multithreaded software
plagiarism detection[J]. IEEE Transactions on Software Engineering,
2017, 44(5): 491-511.

[7] Z. Z. Tian, Q. H. Zheng, T. Liu, M. Fan, E. Y. Zhuang, and Z. J. Yang,
Software plagiarism detection with birthmarks based on dynamic key
instruction sequences[J]. IEEE Transactions on Software Engineering,
2015, 41(12): 1217-1235.

[8] IDA. Available: https://www.hexrays.com/products/ida/index.shtml.

[9] PEiD. Available: https://www.aldeid.com/wiki/PEiD.

[10] LANGUAGE 2000. Available: https://farrokhi.net/language/.

[11] Rosenblum N E, Miller B P, Zhu X. Extracting compiler provenance
from program binaries[C]//Proceedings of the 9th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and
engineering. 2010: 21-28.

[12] Rosenblum N, Miller B P, Zhu X. Recovering the toolchain provenance
of binary code[C]//Proceedings of the 2011 International Symposium on
Software Testing and Analysis. 2011: 100-110.

[13] Rahimian A, Shirani P, Alrbaee S, Wang L, & Debbabi M. Bincomp: A
stratified approach to compiler provenance attribution[J]. Digital
Investigation, 2015, 14: S146-S155.

[14] Toderici A H, Stamp M. Chi-squared distance and metamorphic virus
detection[J]. Journal of Computer Virology and Hacking Techniques,
2013, 9(1): 1-14.

[15] Austin T H, Filiol E, Josse S, et al. Exploring hidden markov models for
virus analysis: a semantic approach[C]//2013 46th Hawaii International
Conference on System Sciences. IEEE, 2013: 5039-5048.

[16] Yang S, Shi Z, Zhang G, et al. Understand Code Style: Efficient CNN-
Based Compiler Optimization Recognition System[C]//2019 IEEE
International Conference on Communications (ICC). IEEE, 2019: 1-6.

[17] Shin E C R, Song D, Moazzezi R. Recognizing functions in binaries
with neural networks[C]//24th USENIX Security Symposium (USENIX
Security 15). 2015: 611-626.

[18] Chua Z L, Shen S, Saxena P, & Liang Z. Neural nets can learn function
type signatures from binaries[C]//26th USENIX Security Symposium
(USENIX Security 17). 2017: 99-116.

[19] Massarelli L, Di Luna G A, Petroni F, et al. Investigating graph
embedding neural networks with unsupervised features extraction for
binary analysis[C]//Proceedings of the 2nd Workshop on Binary
Analysis Research (BAR). 2019.

[20] Zuo F, Li X, Young P, et al. Neural machine translation inspired binary
code similarity comparison beyond function pairs[C]//Proceedings of the
Network and Distributed Systems Security Symposium (NDSS), 2019.

[21] G. Zhao and J. Huang, "Deepsim: deep learning code functional
similarity," in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 141-151: ACM.

[22] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word
representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.

310

https://www.hexrays.com/products/ida/index.shtml
https://www.aldeid.com/wiki/PEiD
https://farrokhi.net/language/

Evaluating the Relationship of Personality and
Teamwork Quality in the Context of Agile Software

Development
Alexandre Gomes

Federal University of Campina Grande
Intelligent Software Engineering Group

alexandre.gomes@virtus.ufcg.edu.br

Manuel Silva
Federal University of Campina Grande

manuel.silva@virtus.ufcg.edu.br

Dalton Cézane Gomes Valadares
Federal University of Campina Grande

Federal Institute of Pernambuco
dalton.valadares@embedded.ufcg.edu.br

Mirko Perkusich
Intelligent Software Engineering Group

mirko@virtus.ufcg.edu.br

Danyllo Albuquerque
Federal University of Campina Grande

Intelligent Software Engineering Group
danyllo@copin.ufcg.edu.br

Hyggo Almeida, Angelo Perkusich
Federal University of Campina Grande

Intelligent Software Engineering Group
(hyggo@dsc.ufcg.edu.br

perkusich@dee.ufcg.edu.br)

DOI reference number: 10.18293/SEKE2020-158

Abstract—The software industry is increasingly adopting agile
software development (ASD). A characteristic of ASD is of
focusing on people over processes. Given this, the literature
presents models to evaluate teamwork quality for agile teams.
Another perspective is to predict the team’s behavior, given the
members’ personality. This study aims to evaluate the effect of the
personality of a team on its teamwork quality. For this purpose,
we executed an empirical study collecting data from 38 subjects
from five software teams, using a psychometric and a teamwork
quality instrument presented in the literature. We triangulated
the data from both instruments to check their agreement through
correlation analysis. As a result, the soft skills expected given
the psychometric instrument were observed given the metrics
presented in the teamwork quality instrument, evidencing the
impact of the team’s personality on its efficiency. Moreover, we
observed that the personality of the project manager has a direct
impact on the behavior of the team. The results presented herein
show that personality instruments might be used to predict the
team’s behavior having several applications such as assisting in
forming teams.

Keywords: Agile team; Psychometric instruments; Personali-
ties; Bayesian networks.

I. INTRODUCTION

Recently, Agile Software Development (ASD) has become
the mainstream development method of choice [10]. It consists
of a change-driven approach to developing software in the
context of volatile requirements [11]. ASD relies highly on
people factors, as evidenced in the Agile Manifesto: six out
of the twelve principles are teamwork related factors such as
collaboration, communication, and motivation.

The literature presents several studies exploring the re-
lationship between personal characteristics and ASD. Misra
et al. [16] explored success factors in adopting ASD and
concluded that personal characteristics of the team members,
including interpersonal and communication skills, collabora-
tive attitude, and sense of responsibility, are a crucial success
factor. Sheffield and Lemétayer [19] claim the empowerment
of the team members is one of the factors that characterize
agility. This claim leads to the importance of the team mem-

bers having proper personal characteristics, as identified by
Misra et al. [16]. These claims are confirmed by other studies
such as Sahibuddin et al. [18] and Dhir et al. [4].

Researchers have also proposed models to assess ASD
teamwork quality. For this purpose, Freire et al. [7] presented a
Bayesian network, Lindsjørn et al. [14] applied the Structural
Equation Modeling-based instrument, previously proposed by
Hoegl and Gemuenden [12], to agile teams, and Moe et
al. [17] proposed a Radar Plot. Each of these studies proposes
a construct to assess teamwork quality based on expected
personal characteristics such as communication, collaboration,
and cohesion.

Another perspective is, instead of modeling the team’s
characteristics or expected behavior, predicting them given the
team members’ personality. Several researchers have explored
this theme in software engineering, such as Kosti et al. [13],
Yilmaz et al. [21], Capretz [2], Farhangian et al. [5], and
Cruz et al. [3]. For instance, Kosti et al. [13] demonstrated
that personality is a predictor for the individual’s preference
regarding software engineering tasks. Given this, we hypothe-
size the personality is also a predictor for the teamwork quality.

For this purpose, we executed an empirical study collecting
data from 39 subjects from five software teams, using a
psychometric and a teamwork quality instrument presented in
the literature. We used the 16 Personality Factors questionnaire
and the TeamWork Quality (TWQ) model proposed by Freire
et al. [7]. We triangulated the data from both instruments to
check their agreement through correlation analysis. This study
synthesizes the findings of our empirical study focusing on the
analysis of the level of agreement of the applied instruments
and discussing its implications.

The remaining of this paper is organized as follows: Sec-
tion II presents an overview of psychometric instruments and
the TWQ model proposed by Freire et al. [7]. Section III
describes the methodology adopted in this research. Section IV
discusses our findings; Section V discusses the study’s threats
to validity. Finally, Section VI presents our conclusions and

311

future works.

II. BACKGROUND

This section presents an overview of psychometric instru-
ments (Section II-A) and the teamwork quality (TWQ) model
proposed by Freire et al. [7] (Section II-B).

A. Psychometric Instruments

One of the main views of personality psychology is the
personality can be described by a set of characteristics, being
a fixed set of patterns of how a person behaves, feels, and
thinks[15]. These characteristics can be used to summarize,
explain, or even predict how a person will act in different
situations [6]. To determine these personality characteristics,
analysts use to apply psychometric instruments. The psycho-
metric instruments act as identifiers for personalities. Among
them, the most used instruments by psychologists and coaches
are the following:

• The Myers-Briggs Type Indicator (MBTI), based on
Jungian theory and, to the best of our knowledge, it
is the most used psychometric instrument. The MBTI
has four dimensions: (i) Extroversion vs. Introversion,
(ii) Sensing vs. Intuition, (iii) Thinking vs. Feeling, and
(iv) Judging vs. Perceiving [8]. Based on 93 forced-
choice items (only two options of which one has to be
chosen), a licensed MBTI assessor can identify the type
of a person based on the largest score for each bipolar
dimension. In theory, each of the 16 different personality
types measured by MBTI can be viewed as collections
of packaged traits [21].

• The Big Five Inventory (BFI) is a structure that consid-
ers five factors (i.e., Openness, Consciousness, Extrover-
sion, Kindness, and Neuroticism) which are essential for
classifying individual differences in terms of personality
characteristics [9]. Based on five comprehensive dimen-
sions (i.e., the personality characteristic), this model sug-
gests a personality visualization. It is worthy to mention
that this instrument is one of the most reorganized by
personality researchers [13]

• The 16 Personality Factors (16PF) questionnaire is a
psychometric instrument, from the same family as the
BFI, that presents a reliable measure of 16 personality
characteristics, describing and predicting a person’s be-
havior in several contexts. It is used to select, develop,
and motivate people to make organizations thrive. With
over 50 years of research, the insights selected by the
16PF instrument are authenticated by more than 2,700
independent research articles, reviewed by experts, dis-
playing a highly reliable and accurate indicator of future
behavior and presumably success [5].

These psychometric instruments, in addition to revealing the
personality of the individual, also establish the soft skills de-
termined for each personality type [6]. Although the software
industry has become a vital force in society, attracting people
of all psychological types, specific characteristics are more
represented than others in the software engineering field [20].
For instance, according to Barroso et al. [1], the software

field is dominated by introverts, who typically have difficulty
communicating with the software end-users.

Since in this study we use the 16PF questionnaire, we
describe it in more detail in what follows. We discuss the
reasoning for choosing this psychometric instrument in Sec-
tion III-A. The 16PF generates 16 types of personalities,
formed by acronyms generated from the dichotomies emitted
by the psychometric instrument [2]. The acronyms are gen-
erated from the combination of the initial letters of the ten
psychological preferences [3]. For instance, INTJ is obtained
from a combination of INtuitive, Thinking and Judgment.
Likewise, ISTP is obtained from IntroverSion, Thinking and
Perception. In the following is presented five dichotomies used
in the psychometric instrument applied in the present study:

• Mind: Extroversion; Introversion.
• Energy: Intuitive; Sensitive.
• Nature: Thinking; Feeling.
• Tactic: Judgement; Perception.
• Identify: Assertive; Cautious.
According to combination of aforementioned characteristic,

the personalities are organized in the following four groups:
• Analyst personalities: INTJ-A/ INTJ-T; INTP-A / INTP-

T; ENTJ-A / ENTJ-T; ENTP-A / ENTP-T.
• Diplomat personalities: INFJ-A / INFJ-T; INFP-A /

INFP-T; ENFJ-A / ENFJ-T; ENFP-A / ENFP-T.
• Sentinel personalities: ISTJ-A / ISTJ-T; ISFJ-A / ISFJ-

T; ESTJ-A / ESTJ-T; ESFJ-A / ESFJ-T.
• Explorer personalities: ISTP-A / ISTP-T; ISFP-A /

ISFP-T; ESTP-A / ESTP-T; ESFP-A / ESFP-T.

B. Bayesian Networks for Teamwork Quality Estimation

Freire et al. [7] proposed a Bayesian Network (BN) that
models the causal relationships between the key factors that
influence TWQ. A Bayesian Network is a probabilistic graph-
ical model that exposes conditional dependency or causality,
representing random variables by nodes and conditional de-
pendence by edges in a Directed Acyclic Graph (DAG).

The model outputs a probability distribution that represents
the current TWQ and can assist in its process of continuous
improvement. Each node in the network represents a key factor
of the TWQ, and an edge between two nodes represents a
causal relationship (i.e., influence). Also, each key factor has
possible states, and each has an associated probability [7].
Figure 1 presents the main variables that make up the model.

To feed the model, the user inserts data related to each
input node, according to the observations made by the team
during the software development time-frame (e.g., sprint in
ASD context). Then, the outputs must be calculated using a
Bayesian inference tool, such as AgenaRisk[7]. The calculated
results represent probabilities for each node state regarding the
quality level of each factor in the current state of the project.

III. METHODOLOGY

In this section we present our approach, Personality-based
Teamwork Skills (PTS), which uses psychometric instruments
to identify the personalities of team members. Based on this
classification, we estimate some teamwork skills interesting for

312

Fig. 1. Key factors that influence agile teamwork

the software development process, comparing our results with
the ones found through the Bayesian Network model proposed
by Freire et al [7]. Next, we describe our methodology, as
well as the environment in which we obtained the data and
how we performed the validation.

A. Methods
Among the psychometric instruments presented in the pre-

vious session, the 16 Personality Factors (16PF) Questionnaire
was chosen to be applied in this study. This choice occurred
due to several factors as (i) its free availability on the internet,
(ii) its ease of use, and its data analysis to have a vocabulary
that is easy to understand [5], (iii) It is one of the most used
instruments in the field of psychology [6]. This instrument
generates a descriptive analysis of the personality and the
soft skills, associated with the one obtained, according to the
responses collected and inserted in the instrument, for each
individual that composes the work team.

The 16PF is available on the internet and it has about
60 questions. With an application time average about 15
minutes, each one has a scale of markup variation, com-
posed of seven marking circles, which vary from: ”Agree”;
”Neutral” and ”Disagree”. The choice of marking directly
influences the results obtained. With this, the questionnaire
was adapted/transcribed in the text editor and a short header
was added, which asked the individual to identify the sex and
function performed in the project. Then, printed and applied
in loco, with the work teams, of five ongoing projects in the
company, formed by a project manager, scrum master; test
developers and analysts, totaling 39 subjects (6 women and
33 men) with ages ranging from 23 to 35 years with working
experience.

After applying the psychometric instrument, the answers
obtained from the printed questionnaires were inserted, one
by one, in the same online questionnaire available on the
16PF website, after inserting the questionnaires, descriptive
reports of the personalities were generated and saved in a
digital folder (i.e., in .pdf format). Then, it aims to perform the
analysis of the personalities described in the reports generated
by the 16PF, the percentages of the dichotomies issued were
generated. These data were correlated with the percentage of
nodes and states of the Bayesian network generated from the
same agile teams of the applied projects of this research.

B. Environment

We apply the psychometric instrument in a Brazilian soft-
ware company that works with Scrum-based projects, cen-
tralizing its workforce mainly in the development of Web
Systems. The company focuses on executing RD projects,
in cooperation with other Information Technology and Com-
munication companies, demanding temporary efforts with
predefined objectives to create new products, services, or
processes. Nowadays, the company executes more than 40
projects together with multinational partners. The projects
follow agile methods and each team has 5 to 10 members,
depending on the project requirements. Each person spends
about 15 minutes - on average - to complete the questionnaire,
which was estimated by the 16PF psychometric instrument
itself. The questionnaire was applied at the same time to all
members, where each answered his own. One of the authors
organized this activity and received support from two other
authors for coordinating and controlling this activity.

C. Validation

Our validation was performed by analyzing the data gen-
erated in the reports issued by the 16PF psychometric in-
strument. Then, we correlated the aforementioned data with
other ones generated from the Bayesian network (See figure
1). In addition to the information described the individual’s
personalities, the 16PF issues five dichotomies (each one with
two partitions that help to describe the personality): mind,
energy, nature, tactics and, identity. As seen in Table I.

For each dichotomy, a graph is generated with values, in
percentages, based on the factorial analysis, these values are
generated from the variations of the responses of the markup
variation scale: ”I agree”; ”Neutral” and ”Disagree”, contained
in the 16PF questionnaire. This instrument uses the matrix of
inter-correlations between these variables as a starting point,
in an attempt to discover the underlying traits of human
personality.

IV. RESULTS AND DISCUSSION

After the application of the psychometric instrument, the
obtained data were entered into the 16PF web platform. Then,
after the individual generation of the personalities report of
each team member, the data were inserted into an electronic
spreadsheet aiming at organizing them. According to that, it
was possible to analyze which were the most predominant
personalities of the agile teams by members as well as by
function.

The personalities of the agile team members were orga-
nized by function, then we made a comparative analysis with
the Bayesian model applied to the same projects. From the
accomplishment of the previous task, this allowed us to make
the correlation of the personalities with the Bayesian model
under study.

Figure 2 shows how the types of personalities of the agile
teams found in the project 1 (P1) were organized, being
composed by the personalities of the project manager (PM)
and the work team. During the analysis, we noticed in the
same team there were several types of personalities, being

313

Fig. 2. Types of personalities from the agile project 1 team

able to contemplate the four personality groups presented in
section II, named by the instrument under study.

After identifying the personalities of the team, the average
of the percentages of the dichotomies obtained from each
member was calculated and consolidated in a single graph
containing all percentages of the 10 psychological preferences,
attributed by the 16PF. The result of the aforementioned task
can be seen in Table I below.

TABLE I
DICHOTOMIES OF THE FIVE AGILE PROJECTS (P)

DICHOTOMIES P1 P2 P3 P4 P5

MIND EXTROVERTED (%) 40.6 75.5 46 71.7 60
INTROVERT (%) 52.4 24.5 51 28.3 40

ENERGY INTUITIVE (%) 45 28.5 42.7 48.9 52.2
OBSERVER (%) 55 71.5 57.3 51.1 47.8

NATURE THINKING (%) 41.6 32 34.3 30.3 39.5
FEELING (%) 58.4 68 65.7 69.7 60.5

TACTIC JUDGER (%) 63.6 79 71.9 58.6 53.5
EXPLORER (%) 36.4 21 28.1 41.4 46.5

IDENTITY ASSERTIVE (%) 69.3 63 57.9 56.6 55.3
CAUTIOUS (%) 30.7 37 42.1 43.4 44.7

Through the percentages used for each psychological di-
chotomy, it was possible to identify which were the predom-
inant psychological users in the agile teams for each project.
We performed the same analysis for each evaluated project,
taking into account the data obtained from the dichotomies
of each one. Next, the analysis of the dichotomies prevalent
in each project will be shown, according to the data provided
in Table I. In what follows, we described the analysis of the
predominant dichotomies of software projects:

• Mind: The psychological preference Introvert - which
covers the team members who have the following char-
acteristics: Receptors, Contained, Reflexive and Quiet -
had a slightly higher percentage in projects 1 and 3.
On the other hand, the psychological preference Extro-
verted - which concerns the team members who have
characteristics such as Initiatives, Expressive, Active and
enthusiastic - was predominant in the projects 2, 4 and
5.

• Energy: The psychological preference Observer - which
covers the team members who have the following char-
acteristics: Concrete; Realistic, Practical and Traditional
- had a slightly higher percentage in projects 1, 2, 3 and

4. Additionally, the psychological preference Intuitive -
which concerns the team members who have character-
istics such as Imaginative, Conceptual, Theoretical and
Original - obtained greater occurrence in project 5.

• Nature: The psychological preference Feeling - which
covers the team members who have the following char-
acteristics: Empathic, Sensitive and Receptive - achieving
a high occurrence in all evaluated projects. On the other
hand, the psychological preference Thinking - which
concerns the team members who have characteristics
such as: Logical, Questioners, Reviews and Reasonable -
obtained greater occurrence in project 1 and 5.

• Tactic: The psychological preference Judger - which
covers the team members who have the following char-
acteristics: Systematic, Planned, Anticipated and Me-
thodical - had a higher percentage in projects 2 and 3
whereas the psychological preference Explorer - which
concerns the team members who have characteristics such
as Informal, Open, Situational and driven by pressure -
obtained greater occurrence in projects 4 and 5.

• Identify: The psychological preference Assertive - which
covers the team members who have characteristics such
as Objectives and Direct - achieving higher percentage in
all evaluated projects. In addition, the psychological pref-
erence Cautious - which concerns the team members who
have the following characteristics: Weighted, Moderates
and Cautions - obtained greater occurrence in projects 4
and 5.

Figure 3 shows the following current TWQ of the agile
project team 1. The Bayesian networks have the following
key factors: Cohesion; Teamwork; Self-Management; Collab-
oration; Team orientation; Coordination; Daily Meetings and
Communication. Each factor is composed of the states: (i) Very
low; (ii)Low; (iii) Medium; (iv) High and (v) Very high. Each
one of these factors contains the corresponding percentages of
occurrence. These data were acquired by the answers raised
by the questionnaire applied to the members of the agile
team. The input nodes assigned to their states in project 1 by
the author [7] were: Team Autonomy; Team Learning; Team
leadership; Expertise; Personal Attributes; Presence of all
members; Monitoring; Team Communication and Distribution.
For each node, how their state’s probabilities are identified and
represent the level and quality of each factor in the current
state of the project.

Observing the Figure 3, we can conclude the team members
belonging to project 1 had a good performance, despite the
team’s autonomy having negatively influenced the teamwork,
the other factors were assessed as high quality, which con-
tributed to a high value of TWQ.

From that, it was possible to make a direct correlation
between (i) the influence of the predominant psychological
preference - using the percentages obtained utilizing the psy-
chometric instrument 16PF - in contrast to (ii) the percentages
shown for each state with their respective key factors, associ-
ated with the input nodes of the model shown in Figure 3.

after analyzing the project 1, we perform the same analyses
for other projects (i.e, projects 2, 3, 4 and 5). For doing

314

Fig. 3. Bayesian Network Diagram Project 1

so, Bayesian networks were generated with the same input
nodes, main factors and states, according to Bayesian Net-
work generated from project 1 (See Figure 3). Due to space
limitations, further details of these empirical activities can
be accessed through the supplementary material available at
https://bit.ly/39rMTQI .

It was possible to correlate the input node ”Team au-
tonomy” in contrast to the dichotomy ”mind”. According
to previous results, the team members of project 1 has a
’Receptive’ profile because there was a greater prevalence
in the psychological preference ’Introvert’. Additionally, we
do not realize a negative impact on the team’s performance.
it occurs due to the (i) ’extrovert’ psychological preference
had a minimal difference in the percentage obtained and (ii)
the profile of the project manager also has this same psycho-
logical preference. Therefore, we conclude the psychological
preference of the project manager has a direct influence on the
performance of the team. The projects 2, 3, 4 and 5 had similar
results to those ones obtained by project 1. Even though the
nodes had an impact factor very low or medium, the team’s
results were good. Similarly, the project manager personality
had a direct influence on the results.

It was possible correlating the input nodes ”Team learning
and Shared Leadership” in contrast to the dichotomies ”Mind
and identity” because the agile team of the project 1, proved
to be individuals with characteristics such as ”assertive, active
and initiative”. The aforementioned relationship favored the
key factor of ”Self Management” to reach a state of 96.57%
’High’. The other projects 2, 3, 4 and 5 had results consistent
with those of project 1. According to this, we conclude these
two dichotomies (i.e. ”Mind and identity’) directly influenced
the results.

It was possible to correlate the input nodes ”Expertise and
Personal Attributes” in contrast to the dichotomies ”Identity
and Tactics”, since the agile team of the project 1 proved to
be individuals with characteristics such as ”assertive, planned,
anticipated”. The aforementioned relationship favored the key
factors ”Self Management and Team Orientation” to reach
their respective percentages of ’96, 57% High ’and ’81, 33%
High’. The projects 2, 3, 4 and 5 had results consistent with
those of project 1.

It was possible to correlate the input nodes ”Presence of
all members and Monitoring” in contrast to the dichotomy
”Tactic”, since the agile team of the project 1, proved to be
individuals with the following characteristics: planned, me-
thodical, anticipated and systematic. This relationship favored
the key factor ”Meeting Diaries” to reach the status of ’87,
54% High’.The projects 2, 3, 4 and 5 had results consistent
with those ones obtained by project 1. We can conclude the
dichotomy influenced the results obtained.

It was possible to correlate the input nodes ”Means of
Communication and Team Distribution” in contrast to the
dichotomies ”Mind’ and ’Tactics”, since the agile team of the
project 1, proved to be individuals with characteristics such
as extroverted, initiators, expressive, planned and anticipated.
The aforementioned relationship favored the key factor ”Com-
munication” to reach the status of ’97, 86% Very High ’.The
projects 2, 3, 4 and 5 had similar results compared to those
ones obtained by project 1. According to this, we conclude
these two dichotomies directly influenced the obtained results.

The 16PF psychometric instrument applied in the team
members who working on the five analyzed projects sup-
porting us to obtain The main following soft skills: Leader;
Nice; Organized; Encouraging; Controller; Responsible; Re-

315

spectful; Perceptible; Reserved; Adaptable; Altruistic; Gener-
ous; Perfectionist; Accurate; Noticeable; Dreamer; Enthusias-
tic; Dedicated; Friendly; Shy; Realist; Charitable; Opnious;
Sensitive; Egalitarian; Stressed; Impatient; Insecure; Joyful;
Spontaneous; Energetic; Sociable; Curious; Idealistic; Posi-
tive; Honesty; Intuitive; Optimistic; Kind, and Communicative.

After analyzing all the projects, we realized the states
of the Bayesian Networks met the expectations of the soft
skills of the agile teams. We can highlight the state of the
key factor ”Communication” exceeded this estimation. Even
the team members having low levels of soft skills related
to communication performance, the fact of having a project
manager with a high level of this soft skill favored the
high communication performance of the team members under
analysis.

V. THREATS TO VALIDITY

We identified a few threats in our work, which follow
from the instruments selected, researcher bias, and data being
collected from only one company. The 16PF psychometric
was the only means for identifying personalities, which can
be considered a threat because there are other instruments to
accomplish this task. Further, we only used one instrument to
measure the TWQ. Even though there is a risk of bias in the
measurement processes, both instruments have been evaluated
with industry projects.

In addition, the data generated by the psychometric instru-
ment was analyzed only by the authors of this research, with
no contribution from any psychology professional, which leads
to the risk of researcher bias. To mitigate this threat, the first
author held training sessions with specialists aims to use the
psychometric instrument correctly.

Finally, we collect data from a single company. this makes
it difficult to generalize our conclusions. Therefore, we cannot
generalize the study findings to the entire agile context. Un-
fortunately, collecting real-world data in the field of Software
Engineering is not a trivial task because most software de-
velopment companies are not likely to contribute to academic
research.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we evaluated the level of agreement of the
16PF psychometric instrument and the Teamwork Quality
(TWQ) model proposed by Freire et al. [7], which is based
on a Bayesian network. The correlational analysis was based
on the data obtained from the dichotomies generated from the
16PF, compared with the data obtained from the input nodes,
states, and key factors of the generated Bayesian networks.

As a result, the soft skills expected given the psychometric
instrument were observed given the metrics presented in the
TWQ instrument, evidencing the impact of the team’s person-
ality on its efficiency. Moreover, we observed the personality
of the project manager has a direct impact on the behavior of
the team. The results presented herein show that personality
instruments might be used to predict the team’s behavior
having several applications such as assisting in forming teams.

For future work, we seek to carry out new empirical studies
on the types of personalities of the work teams and their

correlation with the individual performance of each team
member. Besides, we also seek to carry out new studies aims
to confirm the main findings of this research.

REFERENCES

[1] A. S. Barroso, J. S. Madureira, M. S. Soares, and R. P. do Nascimento.
Influence of human personality in software engineering-a systematic
literature review. In International Conference on Enterprise Information
Systems, volume 2, pages 53–62. SCITEPRESS, 2017.

[2] L. F. Capretz. Personality types in software engineering. International
Journal of Human-Computer Studies, 58(2):207–214, 2003.

[3] S. Cruz, F. Q. da Silva, and L. F. Capretz. Forty years of research on
personality in software engineering: A mapping study. Computers in
Human Behavior, 46:94–113, 2015.

[4] S. Dhir, D. Kumar, and V. Singh. Success and failure factors that
impact on project implementation using agile software development
methodology. In Software Engineering, pages 647–654. Springer, 2019.

[5] M. Farhangian, M. Purvis, M. Purvis, and B. T. R. Savarimuthu. Person-
alities and software development team performance, a psycholinguistic
study. In 24th European Conference on Information Systems, 2016.

[6] R. Feldt, L. Angelis, R. Torkar, and M. Samuelsson. Links between
the personalities, views and attitudes of software engineers. Information
and Software Technology, 52(6):611–624, 2010.

[7] A. Freire, M. Perkusich, R. Saraiva, H. Almeida, and A. Perkusich. A
bayesian networks-based approach to assess and improve the teamwork
quality of agile teams. Information and Software Technology, 100:119–
132, 2018.

[8] V. Garousi and A. Tarhan. Investigating the impact of team formation
by introversion/extraversion in software projects. Balkan Journal of
Electrical and Computer Engineering, 6(2):132–140, 2018.

[9] N. Gorla and Y. W. Lam. Who should work with whom? building
effective software project teams. Communications of the ACM, 47(6):79–
82, 2004.

[10] R. Hoda, N. Salleh, and J. Grundy. The rise and evolution of agile
software development. IEEE Software, 35(5):58–63, 2018.

[11] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee. Systematic literature
reviews in agile software development: A tertiary study. Information
and Software Technology, 85:60–70, 2017.

[12] M. Hoegl and H. G. Gemuenden. Teamwork quality and the success
of innovative projects: A theoretical concept and empirical evidence.
Organization science, 12(4):435–449, 2001.

[13] M. V. Kosti, R. Feldt, and L. Angelis. Personality, emotional intelligence
and work preferences in software engineering: An empirical study.
Information and Software Technology, 56(8):973–990, 2014.

[14] Y. Lindsjørn, D. I. Sjøberg, T. Dingsøyr, G. R. Bergersen, and T. Dybå.
Teamwork quality and project success in software development: A
survey of agile development teams. Journal of Systems and Software,
122:274–286, 2016.

[15] L. G. Martı́nez, G. Licea, A. Rodrı́guez-Dı́az, and J. R. Castro. Experi-
ences in software engineering courses using psychometrics with ramset.
In Proceedings of the fifteenth annual conference on Innovation and
technology in computer science education, pages 244–248, 2010.

[16] S. C. Misra, V. Kumar, and U. Kumar. Identifying some important suc-
cess factors in adopting agile software development practices. Journal
of Systems and Software, 82(11):1869–1890, 2009.

[17] N. B. Moe, T. Dingsøyr, and T. Dybå. A teamwork model for under-
standing an agile team: A case study of a scrum project. Information
and Software Technology, 52(5):480–491, 2010.

[18] M. H. N. Nasir and S. Sahibuddin. Critical success factors for
software projects: A comparative study. Scientific research and essays,
6(10):2174–2186, 2011.

[19] J. Sheffield and J. Lemétayer. Factors associated with the software
development agility of successful projects. International Journal of
Project Management, 31(3):459–472, 2013.

[20] Z. Stojanov, T. Zoric, and I. Hristoski. Human factor in software
requirements engineering: Preliminary review of qualitative empirical
studies. ZBORNIK RADOVA UNIVERZITETA SINERGIJA, 19(4).

[21] M. Yilmaz, R. V. O’Connor, R. Colomo-Palacios, and P. Clarke. An
examination of personality traits and how they impact on software
development teams. Information and Software Technology, 86:101–122,
2017.

316

ISC-FS: An Improved Spectral Clustering with
Feature Selection for Defect Prediction

Xuan Zhou1, Lu Lu1,2*, and Yexia Qin2,3

1School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
2Modern Industrial Technology Research Institute, South China University of Technology, Meizhou, China

3School of Environment and Energy, South China University of Technology, Guangzhou, China
*Corresponding author email: lul@scut.edu.cn

Abstract—We notice the lack of historical data with labels
always exists in software defect prediction (SDP). Unsupervised
learning and cross-project defect prediction (CPDP) have tried to
address this problem. However, traditional unsupervised learning
always requires manual intervention while CPDP faces the
challenge of heterogeneity between different projects. Therefore,
this paper proposed a framework called Improved Spectral
Clustering with Feature Selection (ISC-FS) to conduct unsu-
pervised learning for defect prediction without human effort
in this paper. First, ISC-FS clusters the software entities and
gets pseudo-labels. Second, we do a feature selection, of which
the key idea is different clusters hold the different magnitude
of features. Last, the selected features are fed to a spectral
clustering method based on connectivity-distance. To validate the
proposed method, experiments were carried out on 28 projects
from PROMISE and NASA datasets, and comparisons were made
with the other five unsupervised methods. The results show the
promising performance that ISC-FS can outperform referential
methods.

Keywords—Software defect prediction, Unsupervised learning,
Spectral clustering

I. INTRODUCTION

With the expansion scale of contemporary software, soft-
ware defect prediction (SDP) has attracted more and more
attention, which can help reduce the test burden and optimize
the allocation of testers and developers. It is usually believed
that the cost of fixing bugs after deployment is higher than that
during development. Given the huge cost and limited budget,
it is important that SDP is involved in the early stage of the
software life cycle.

Researchers have investigated the different algorithms and
features to improve the performance of SDP. SDP tasks usually
consist of two steps: capturing features from software entities
and training a classifier through machine learning methods.
Supervised learning methods predominated in the previous
research related to SDP. But unfortunately, SDP is not widely
used in industry [1]. That is mainly because that the historical
data with labels required in supervised learning is often lack
in pre-release software; more importantly, it is also expensive
and difficult to collect in post-release software [2].

One way to solve this problem is cross-project defect pre-
diction (CPDP), which attempts to use prediction models built

DOI reference number: 10.18293/SEKE2020-017

by other projects with sufficient historical data [3]. The main
challenge CPDP faces are heterogeneity. On the one hand,
different projects may have dissimilar features [4]. On the
other hand, even if a source project with the same features as
the target project is selected, CPDP still faces the differences in
data distribution between source projects and target projects
[5]. As shown in Figure 1, the classifier trained by source
projects may not be suitable for target projects. Moreover,
existing CPDP researches mainly focused on the establishment
of a usable target prediction model. However, a large number
of irrelevant data usually makes the prediction model perform
worse. That explains why CPDP is challenging to achieve
promising performance in practice [6].

Target Project

Source Project
Classifier learned by

source project

Fig. 1. Divergent data distribution between different projects.

Meanwhile, unsupervised learning has also been used in
defect prediction to solve the shortage of labeled data. Never-
theless, early studies on unsupervised learning for SDP often
need human effort. To solve this problem, [7] proposed novel
approaches showing the defective possibility for software
entities by using the magnitude of features. More recently,
[8] presented a connectivity-based unsupervised classifier,
different from traditional distance-based methods.

As far as this paper is concerned, with the heuristic of [8],
we proposed our unsupervised framework for SDP called the
Improved Spectral Clustering with Feature Selection (ISC-
FS). First, given the importance of data quality [9], the
feature selection considering data distribution is added. Sec-
ond, compared with traditional clustering methods, spectral
clustering has the adaptability to different data distributions.

317

To make the adjacency matrix used in spectral clustering
closer to the physical meaning, we present a new adjacency
matrix definition, which will be explicated in Section III.
Furthermore, following the previous point of view [10], a
particular threshold is adopted when labeling entities to avoid
human intervention in the classification process. At last, we
get the final prediction.

In summary, the contributions of this paper are listed as
follows:
• We proposed a novel framework called ISC-FS for SDP

on unlabeled datasets.
• To access our proposed method, experiments were con-

ducted on 23 projects in the PROMISE dataset and 5
projects in the NASA dataset. Results showed that ISC-
FS performs better over traditional unsupervised methods
and state-of-the-art unsupervised approaches for SDP.

The remaining of this paper is structured as followed: In
section II, we introduce the related work about SDP and unsu-
pervised learning. Section III presents our method in details.
Section IV describes the experimental setup and Section V
illustrates the experimental result. In Section VI, we point out
the potential threats to validity. The last section concludes and
discusses future work.

II. RELATED WORK

We introduce the related work on SDP and unsupervised
learning in this section.

A. Software Defect Prediction

SDP is a process predicting whether the software entities
have defects or not. There exists many studies on defect
prediction. [11] combined semantic and structural scattering to
capture project and human characteristics as resource features
to build a prediction model. [12] proposed cross-entropy,
which carries information representing the difference between
two probability distributions. However, all of the above work
are using supervised methods.

That is because that people believe unsupervised classifiers
usually shown disappointing performance. However, according
to the meta-analysis in [2], generally speaking, unsupervised
models do not seem to perform worse than supervised models.
Under this circumstance, and taking into account that it is
easier to collect unlabeled data in the big data era, an effective
unsupervised model for SDP when lacking the labeled data is
necessary.

B. Unsupervised Learning

Unsupervised learning is a machine learning technique
classifying instances to different classes without labeled data.
Due to acquiring labeled data is a difficult task, unsupervised
learning has been applied in many fields. [13] employed it
to the end-to-end training of visual features on large-scale
datasets. In SDP, [14] first attempted expert-based unsuper-
vised learning including k-means and neural-gas. Besides, [15]
labeled the cluster with a certain threshold. The typical process
of unsupervised learning for SDP mainly consisted of two

steps, 1) clustering software instances into k clusters; and 2)
identifying each class is defect-prone or not.

Recently, spectral clustering has been used in SDP [8].
Spectral clustering, based on Laplacian mapping, uses minimal
cuts to characterize the original data with special orientations
that carry the cutting information, and then clusters. The main
idea is treating data as vertices (V) in space, and these vertices
can be connected by edges (E). In SDP, edges represent
the connection between software instances, and its weight
is determined by the connection between two instances. For
clustering, the graph G = (V,E) will be cut into two disjoint
sets. The key idea to this cut is that the edge weights between
the subgraphs are as low as possible, and the edge weights
within the subgraphs are as high as possible.

III. METHOD

In this section, we explicate our method in detail. Figure
2 illustrates the framework of ISC-FS. To be more specific,
ISC-FS includes five steps: (1) preprocessing, (2) spectral
clustering, (3) labeling cluster and get pseudo-labels (4) fea-
ture selection using pseudo-labels; and (5) re-clustering and
labeling by selected features to obtain the final predictions.

dataset

X1 X2 X3 X4 Label

… … … … 1

… … … … 1

X1 X2 X3 X4 Label

… … … … 0

… … … … 0

1. Preprocessing 3. Labeling

{X1, X2, X4}

Selected Features

4. Feature selection using pseudo-labels

2. Clustering

Get the selected features

5. Re-clustering and labeling by

selected features and get final

prediction result
1

1

1

0

0

0

defective

cluster

non-defective

cluster

cluster 1

cluster 2

cluster 2cluster 1

Fig. 2. Overview of ICS-FS framework.

A. Preprocessing software features

Software features usually have various sizes. Take the
features in the PROMISE dataset as an example, loc means
the line of code, which is usually greater than one hundred,or
even thousands. And dam, the data access metrics, is the
ratio of all private or protected attributes in the class to all
attributes, which means its range is [0,1]. Consequently, ISC-
FS used the z-score normalization, which makes data to a
normal distribution with a mean of 0 and a standard deviation
of 1. For every specific feature x, the normalized features x

′

can be shown as:

x
′
=

x−mean(x)

std(x)
(1)

where mean(x) is the average value of x, and std(x) means
the standard deviation of x.

Moreover, in some datasets, we observe there are some
missing values, which we assign to the average of all existing
values of the corresponding features.

318

B. Spectral Clustering

Guided by the idea of spectral clustering, an adjacency
matrix W ∈ Rn×n to represent the weight of edges is
required at first and we note that n is the number of entities.
The previous work [8] adopted the dot product to generate
adjacency matrix, as shown in Equation 2.

wij = xi · xj =
m∑

k=1

(aik ∗ ajk) (2)

where m represents the number of features, and aij represents
the value of the jth feature of the ith entity.

However, since spectral clustering assumes that values in the
adjacency matrix are non-negative, it simply sets the negative
value to zero, which will lead to the loss of some original
information. Furthermore, according to Equation 2, two more
distant points may have larger weights, which is inconsistent
with physical meaning. Thus, we proposed a new adjacency
matrix definition as shown in the Equation 3.

wij =

{
0 if i = j∑m

k=1 exp(−(aik − ajk)
2) if i 6= j

(3)

From Equation 3, each feature has a value ranged in [0,1]
represents its similarity, and the sum represents the similarity
of two entities. Besides, since it is meaningless to focus on
the self-circle, the self-circle value is set to zero.

Second, the Laplacian matrix is calculated by the following
formulas:

Lsym
ij =

{
1 if i = j

− 1√
di∗dj

if i 6= j
(4)

where Lsym represents the symmetric normalized Laplacian
matrix, and di =

∑n
j=1 wij .

Last, we conduct the eigendecomposition on the Laplacian
matrix Lsym. Follow the normalized cut algorithm proposed
by [10], we use the second smallest eigenvector, denoted as
v, for clustering.

C. Labeling Cluster

After spectral clustering, entities has been divided into two
groups. C1 and C2 are used to denote two groups respectively.
To determine whether a cluster is a defective one, we use the
following heuristic: entities with more defect-proneness tend to
have higher complexity. The features in our datasets measure
complexity, which means that larger values represent higher
complexity. In this case, we adopt the average row sums of
the normalized features to determine which cluster is defective.
Calculated by Equation 5, if AV SC1 is greater than AV SC2 ,
we mark C1 as defective cluster. Otherwise, C2 is considered
as cluster containing defective entities. Specially, the labels
obtained by the first clustering are called pseudo-labels, which
are used to assist feature selection, and the labels obtained by
the second clustering are the final results.

AV SCi =

∑
entity∈Ci

RowSum(entity)

size(Ci)
(5)

where AV SCi
represents the average row sums of cluster

Ci, RowSum(entity) is the sum of all feature values of the
specified entity, size(Ci) means the size of cluster Ci.

D. Feature-selection
Feature selection has a greater influence than classifier

selection [17]. Since that the irrelevant or redundant features
not only require more computational cost but also reduce
the performance of prediction models [18], feature selection
based on feature violation scores (FVS) is added in ISC-FS
by removing features with less relevant information. FVS can
be calculated by the following equation:

FV Si =
Vi

Num
(6)

where Vi means the number of violations in the ith features
and Num is the number of entities.

A violation is a value that does not follow the defect
proneness heuristic. To reduce manual intervention, the median
or average value is commonly used as a special threshold. Nev-
ertheless, in the inherently imbalanced SDP field, the median
or average tends to weaken the prediction performance. Thus,
we selected the corresponding defect percentile from pseudo-
labels as the threshold.

Algorithm 1 FeatureSelection(x, pseudoY)
1: percentileX = percentile(x)
2: for i = 1 to row do
3: for j = 1 to col do
4: if pseudoY (i) xor x(i, j) >= percentileX(j) then
5: violate(j) + +
6: end if
7: end for
8: end for
9: for j = 1 to col do

10: if violate(j) < percentileX(j) then
11: select the corresponding feature
12: end if
13: end for

The algorithm is shown in Algorithm 1. We give a specific
example in Figure 3, the clean rate is 4

6 , and the corresponding
percentile is calculated for each feature, shown in bold. For
instance, the Entity D is labeled as clean and its X5 is 10,
which is not less than the corresponding percentile, so it should
be considered as a violation. After calculating all the FVS,
select the features with FVS less than the clean rate. Therefore,
X1, X2, X4 as features are finally selected.

E. Re-clustering and labeling by selected features
After feature selection, the results might differ from the

pseudo-labels used in feature-selection. In this case, it is
necessary to repeat the step of spectral clustering and labeling
clustering.

319

3 1 3 7 1 BuggyEn.A

1 1 0 3 9 CleanEn.B

2 3 5 8 8 BuggyEn.C

0 0 1 8 10 CleanEn.D

1 0 9 1 3 CleanEn.E

1 4 7 7 2 CleanEn.F

X1 X2 X3 X4 X5 Label

{X1, X2, X4}

Selected Features

Clean Rate

FVS
4
¾

6

4
¾

6

4
¾

6
¾

6

3
¾

6

3
¾

6

3
¾

6

3

Fig. 3. An instance of computing feature violation scores (FVS), violations
are shown in a dark gray shade.

IV. EXPERIMENT SETUP

A. Experiment Datasets

Table I lists the statistical characteristics of the 28 datasets
from two groups, the PROMISE and the NASA, used in
our experiments, which is commonly used in recent SDP
researches [19] [20].
• The PROMISE dataset collected by [21], including data

from different versions. As it is likely to be a significant
overlap between different versions of a project, we con-
sidered a version as a separate project. Each project in
PROMISE dataset contains 20 features.

• The NASA dataset is collected from the NASA Metrics
Data Program. Each NASA project includes various static
code metrics (CMs) of a NASA software system or sub-
system, as well as the corresponding defect label data.

B. Comparative Methods

The following five unsupervised learning methods are se-
lected to compare with ISC-FS:
• K-means: A traditional classic clustering algorithm, first

used in SDP in [14].
• Partition around medoids (PAM): A method of K-

medoids. The method uses medoids as a reference point,
which solves the problem that K-means is extremely
susceptible to extreme values.

• CLA: An unsupervised method proposed by [7] for SDP.
The name is taken from the first letter of the steps are
Clustering and LAbeling instances.

• CLAMI: An improved version of CLA by adding Metric
selection and Instance selection.

• Spectral Clustering (SC): A connectivity-based unsuper-
vised method proposed by [8].

It should be pointed out that we adopted the same heuristic
rules as ISC-FS are adopted when labeling the cluster in the
first two baselines, while the last three algorithms have their
own clear rules in the corresponding researches [7] [8].

C. Experiment Datasets

The classifier has many widely used measures for classifiers,
such as accuracy, which is the most traditional measure in

classification tasks, and it represents the ratio of correct
prediction.

However, accuracy usually does not deal well with the
imbalanced datasets. Furthermore, a critical value for the
probability of defect-proneness is required when computing
accuracy and many other measures (e.g. F-score). The critical
value can affect the performance and the default value (i.e. 0.5)
may not be the best critical value [22]. Thus, we adopted the
Area Under Curve (AUC), which is independent of critical
value and has good tolerance for imbalanced datasets, to
evaluate the effectiveness of the approaches.

AUC is defined as the area under the ROC (receiver oper-
ating characteristic curve). ROC refers to a curve of the false
positive rate (FPR) against the true positive rate (TPR). The
FPR and TPR can be expressed in Equation 7 and 8. From
the above definition, it can be seen the AUC value ranges in
[0, 1], and an AUC value of 0.5 indicates that the effect of
the classifier is almost the same as the random guessing. The
higher AUC is, a better result implies.

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

where TP, FN, FP and TN can be calculated from Table II.

V. RESULT

We evaluated our proposed method by the Scott-Knott test
[23], using hierarchical clustering to divide different methods
into groups with significant statistical differences. In this study,
we adopted the normality and effect size aware variant of the
standard Scott-Knott test, Scott-Knott test effect size difference
(ESD) [24]. Based on the traditional Scott-Knott test, the
Scott-Knott ESD test has the following improvements: (1) cor-
rect non-normal distribution inputs, which are considered to be
normally distributed in traditional Scott-Knott testes; and (2)
merge any two statistically different groups with a negligible
effect size into one group. We used the function sk esd in the
ScottKnottESD R package to make the implementation.

The result is shown in Figure 5. After comprehensive
observation, ISC-FS outperformed 5 reference methods in
our experiments. The following points can be drawn from a
detailed observation:
• In the PROMISE dataset, the average AUC of ISC-FS

was 0.694, which outperformed K-means, PAM, CLA,
CLAMI, SC by 44.58%, 43.68%, 5.15%, 14.33%, 3.74%
respectively.

• In the NASA dataset, the average AUC of ISC-FS
was 0.685, which outperformed K-means, PAM, CLA,
CLAMI, SC by 42.12%, 35.91%, 2.24%, 2.39%, 1.48%
respectively.

• The results are divided into groups with different statis-
tical differences in Figure 5. Our results are statistically
different from the other comparison methods in both of
the two datasets.

320

TABLE I
DATASETS

Group Granularity Project Version Avg. instance Avg. Buggy Rate(%) # of metrics

PROMISE class

ant

ivy

jedit

log4j

lucence

poi

synapse

velocity

xalan

camel

1.3 1.4 1.5 1.6 1.7

1.1 2.0

4.0 4.1 4.2 4.3

1.0

2.2 2.4

3.0

1.0 1.2

1.5 1.6.1

2.4 2.5 2.7

1.2

338

232

369

135

294

442

257

222

812

608

19.58

34.06

16.29

25.19

59.00

63.57

21.70

50.21

52.23

35.53

20

NASA function

CM1

KC1

KC3

KC4

MC2

–

505

2107

458

125

161

9.50

15.42

9.39

50.40

32.30

37

21

39

13

39

TABLE II
THE CONFUSION MATRIX

Predicted defective Predicted non-defective

Actual defective True Positive (TP) False Negative (FN)

Actual non-defective False Positive (FP) True Negative (TN)

• K-means and PAM showed the lowest performance be-
cause they adopt a different mechanism with spectral
clustering, which only clustering based on Euclidean
distance between entities.

• We noticed that the CLAMI performed worse than CLA.
However, in [7], CLAMI is proposed as an enhanced
version of CLA by adding metric selection and instance
selection to improve the ability of prediction models. We
studied on it and observed that CLAMI only selected
features with the minimum metric violation score (MVS),
however, in a real dataset with a large number of in-
stances, the MVS of different features often varies. In this
case, dozens of features will be selected as few features
in some projects, which will weaken the performance.

VI. THREATS TO VALIDITY

We discuss a few threats to the validity in this section.

A. Implementation of CLA and CLAMI

In this study, we compared our approaches with 5 referential
methods. Due to the unpublished implementations of CLA
and CLAMI, we have reimplemented our version according
to the corresponding paper. Although we strictly followed the

procedures reported, our implementation may not reflect all
details in the comparative method.

B. AUC might not be the only suitable measures

We used AUC as measures to evaluate the performance of
SDP models. There are many other measures (e.g., G-measure,
MCC) can be used for performance evaluation. In fact, AUC
is a widely used evaluation measure in SDP tasks [4] [7] [8].

C. Experimental results might not be generalizable:

In our experiment, we selected 28 projects that have been
widely used in SDP. However, diverse software projects have
different characteristic, so there is no guarantee that our
findings will be applicable to other projects. More validation
should be conducted in the future.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an unsupervised learning method
called ISC-FS to solve the problem of lacking historical data
in SDP. The main advantage of ISC-FS is that it introduces
feature selection considering data distribution and improves
spectral clustering. A large number of experiments on 28
projects from 2 groups have been conducted to assess that the
proposed method can perform better in terms of AUC than the
referential approaches.

In the future, we plan to evaluate our approach with more
datasets from different sources. Furthermore, we will try
to extend our approach to the semi-supervised version by
introducing a few labeled data.

321

0.694

0.669
0.66

0.607

0.483 0.48

1 2 3 4

IS
C
−
F
S

C
L
A

S
C

C
L
A
M

I

P
A
M

K
−
m

e
a
n
s

0.3

0.4

0.5

0.6

Method

A
U

C

(a) Promise

0.685
0.675 0.67 0.669

0.504

0.482

1 2 3

IS
C
−
F
S

S
C

C
L
A

C
L
A
M

I

P
A
M

K
−
m

e
a
n
s

0.4

0.5

0.6

Method

A
U

C

(b) NASA

Fig. 4. The Scott-Knott ESD ranking of 6 methods

ACKNOWLEDGMENT

This work was supported in part by National Nature Sci-
ence Foundation of China under grant no. 61370103, the
Guangdong Province Application Major Fund under grant no.
2019A0101019 and Guangzhou Produce & Research Fund
under grant no. 201902020004.

REFERENCES

[1] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding,
“The adoption of machine learning techniques for software defect
prediction: An initial industrial validation,” in Joint Conference on
Knowledge-Based Software Engineering. Springer, 2014, pp. 270–285.

[2] N. Li, M. Shepperd, and Y. Guo, “A systematic review of unsupervised
learning techniques for software defect prediction,” arXiv preprint
arXiv:1907.12027, 2019.

[3] S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic literature
review and meta-analysis on cross project defect prediction,” IEEE
Transactions on Software Engineering, vol. 45, no. 2, pp. 111–147, 2017.

[4] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, “Heterogeneous defect
prediction,” IEEE Transactions on Software Engineering, vol. 44, no. 9,
pp. 874–896, 2017.

[5] S. Qiu, H. Xu, J. Deng, S. Jiang, and L. Lu, “Transfer convolutional
neural network for cross-project defect prediction,” Applied Sciences,
vol. 9, no. 13, p. 2660, 2019.

[6] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in Proceedings of the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, 2009, pp. 91–
100.

[7] J. Nam and S. Kim, “Clami: Defect prediction on unlabeled datasets
(t),” in 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2015, pp. 452–463.

[8] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project defect
prediction using a connectivity-based unsupervised classifier,” in Pro-
ceedings of the 38th International Conference on Software Engineering.
ACM, 2016, pp. 309–320.

[9] T. M. Khoshgoftaar and N. Seliya, “The necessity of assuring quality
in software measurement data,” in 10th International Symposium on
Software Metrics, 2004. Proceedings. IEEE, 2004, pp. 119–130.

[10] J. Shi and J. Malik, “Normalized cuts and image segmentation,” De-
partmental Papers (CIS), p. 107, 2000.

[11] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and
A. De Lucia, “A developer centered bug prediction model,” IEEE
Transactions on Software Engineering, vol. 44, no. 1, pp. 5–24, 2017.

[12] X. Zhang, K. Ben, and J. Zeng, “Cross-entropy: A new metric for
software defect prediction,” in 2018 IEEE International Conference on
Software Quality, Reliability and Security (QRS). IEEE, 2018, pp.
111–122.

[13] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering
for unsupervised learning of visual features,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 132–149.

[14] S. Zhong, T. M. Khoshgoftaar, and N. Seliya, “Unsupervised learning
for expert-based software quality estimation.” in HASE. Citeseer, 2004,
pp. 149–155.

[15] C. Catal, U. Sevim, and B. Diri, “Clustering and metrics thresholds based
software fault prediction of unlabeled program modules,” in 2009 Sixth
International Conference on Information Technology: New Generations.
IEEE, 2009, pp. 199–204.

[16] J. Yang and H. Qian, “Defect prediction on unlabeled datasets by using
unsupervised clustering,” in 2016 IEEE 18th International Conference
on High Performance Computing and Communications; IEEE 14th
International Conference on Smart City; IEEE 2nd International Con-
ference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE,
2016, pp. 465–472.

[17] A. Agrawal and T. Menzies, “Is better data better than better data
miners?: on the benefits of tuning smote for defect prediction,” in Pro-
ceedings of the 40th International Conference on Software engineering.
ACM, 2018, pp. 1050–1061.

[18] W. Liu, S. Liu, Q. Gu, X. Chen, and D. Chen, “Fecs: A cluster based
feature selection method for software fault prediction with noises,” in
2015 IEEE 39th Annual Computer Software and Applications Confer-
ence, vol. 2. IEEE, 2015, pp. 276–281.

[19] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning for
software defect prediction,” IEEE Transactions on Software Engineering,
2018.

[20] X.-Y. Jing, F. Wu, X. Dong, and B. Xu, “An improved sda based
defect prediction framework for both within-project and cross-project
class-imbalance problems,” IEEE Transactions on Software Engineering,
vol. 43, no. 4, pp. 321–339, 2016.

[21] M. Jureczko and L. Madeyski, “Towards identifying software project
clusters with regard to defect prediction,” in Proceedings of the 6th
International Conference on Predictive Models in Software Engineering.
ACM, 2010, p. 9.

[22] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building
a universal defect prediction model with rank transformed predictors,”
Empirical Software Engineering, vol. 21, no. 5, pp. 2107–2145, 2016.

[23] E. Jelihovschi, J. C. Faria, and I. B. Allaman, “The scottknott clustering
algorithm,” Universidade Estadual de Santa Cruz-UESC, Ilheus, Bahia,
Brasil, 2014.

[24] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“An empirical comparison of model validation techniques for defect
prediction models,” IEEE Transactions on Software Engineering, vol. 43,
no. 1, pp. 1–18, 2016.

322

A Semantic Convolutional Auto-Encoder Model for
Software Defect Prediction

Zhihan Wang1 and Lu Lu1,2*

1School of Computer Science and Engineering South China University of Technology Guangzhou, China
2Modern Industrial Technology Research Institute, South China University of Technology, Meizhou, China

*Corresponding author email: lul@scut.edu.cn

Abstract—In traditional software defect prediction,
previous researches mainly focused on manually design-
ing complex features and building classifiers based on
features. However, such traditional features often fail
in capturing rich syntactic and semantic information
in programs. Thus, an effecient prediction model is
unable to be constructed in some cases. In this study, a
framework called semantic convolutional auto-encoder
(SCAE) is proposed to effectivelly extract semantic
features from source code. Token vectors are extracted
from Abstract Syntax Trees (ASTs) of programs and
then encoded as numerical vectors. Convolutional auto-
encoder (CAE) can learn semantic features from the
numerical vectors by decreasing the reconstruction
error between input and output. After that, the CAE-
based features are utilized to train a classifier. To
enhance the transferability of CAE-based features for
different projects, we perform domain adaptation by
matching kernel embedding of layer representations
across domains in reproducing kernel Hilbert spaces.
Extensive experimental results verify that the SCAE
yields referential methods on ten open-source projects.

Keywords—Software defect prediction, Transfer
learning, Semantic feature learning, Convolutional
auto-encoder

I. Introduction
As one of the research hotspots in software engineering,

software defect prediction (SDP) technology can detect
potential bugs in an application, then help developers
assign limited testing resources and effectively enhance
software reliability. An ideal defect prediction model can
accurately determine whether there are defects in pro-
gram, and thus plays an important role in improving
software quality, shortening the development cycle, and
decreasing maintaining costs.

Traditional software defect prediction (SDP) technolo-
gies utilize features representing software complexity and
software scale [1] to find the potential defects in program
such as Halstead metric [2], which was based on the
number of operators and operands in program, and Mc-
Cabe metric [3], which was calculated by loop complexity.
Besides, CK metric [4] and other object-oriented met-
rics [5] were also adopted for defect prediction. Previous

DOI reference number: 10.18293/SEKE2020-036

researchers mainly focused on elaborately designing and
choosing handcrafted features that reflect the software
characteristic for better performance of defect prediction.
Asad et al. [6] evaluated the quality of software design and
presented several coupling metrics for defect prediction.
Conducting an empirical study for 32 feature selection
methods, Xu et al. [7] showed that the selection of features
has great effects on classification performance.

A key issue in SDP is the extraction of the syntax
and semantic information from program. Deep learning
technique is also used in the latest studies. Wang et al. [8]
and Li et al. [9] leverage deep belief network (DBN) and
convolutional neural network (CNN) for semantic feature
generation respectively. However, compression of higher
features is often accompanied by the information loss,
which may cause a bad effect on making classifications.
As an unsupervised method in deep learning, auto-encoder
(AE) can automatically learn features from a large amount
of unlabeled data and is widely used in various tasks
[10], [11]. The convolutional auto-encoder (CAE) is an
effective variant of the basic auto-encoder, and can reserve
as much program semantics as possible by reconstructing
input. The convolution and pooling operations in CAE can
capture local patterns more effectively during the period
of feature generation. When transfering knowledge from
a labeled source domain to an unlabeled target domain,
different domains may exhibit distributional discrepancy
in transfer learning, which caused cross-domain knowledge
adaptation problems [12]. In cross project defect predic-
tion, distribution discrepancy between different projects
also hinders the transerability of semantic feature, and
degrades the performance of classifier.

In this work, a framework named semantic convolu-
tional auto-encoder (SCAE) is developed, which uses the
convolutional auto-encoder to effectively capture semantic
information from ASTs of program. Specifically, we first
parse source code into ASTs, then extract AST node to
form token vectors and map token into number according
to the mapping table. The embedded numerical vectors
are fed into convolutional auto-encoder. By decreasing the
reconstruction error between input and output, the CAE
model can automatically learn high-level representation of
input. To bridge the substantial distributional discrepancy

323

between different projects, a domain confusion loss based
maximum mean discreapancy (MMD) is introduced in
feature extraction. Enhancing the semantic feature trans-
feribility generalizes the model of SCAE to the domain
adaptation scenario. Evaluating the proposed approach
on ten open-source java projects, experimental results
indicate that the SCAE can improve the performance on
both within project defect prediction (WPDP) and cross
project defect prediction (CPDP).

This work makes the following contributions:
• To capture semantic information hidden in ASTs, con-

volutional auto-encoder is utilized for a better feature
generation in defect prediction by reconstructing the
input and output.

• Considering the domain discrepancy, we optimized
the model of CAE by minimizing the distributional
discrepancy between source and target projects to
obtain transferable semantic features.

• For WDDP and CPDP, extensive experiments are
conducted to verify the effectiveness of our method,
and the results shows that our approach can enhance
the classification performance of SDP.

The rest of this paper is organized as follows. The
related work of SDP is described in Section II. Section
III illustrates the proposed approach and the experiment
setup is given in Section IV. The proposed approach is
evaluated and the experimental results are analyzed in
Section V. Section VI presents the threats to validity. In
Section VII, we present the conclusion of this work and
possible directions in the future.

II. Related work
Over the past few decades, software defect prediction

becomes a hotspot research area in software engineering
and there are many researches in the literature [13], [14].
Traditionally, most researchers mainly leverage traditional
features for defect prediction, such as Halstead features [2],
McCabe features [3], CK features [4], etc. The selection of
features plays a vital role in classification performance [7]
and Jacob et al. [15] also proposed a method to identify
and remove redundant features for SDP. Ni et al. [16]
investigated multi-objective features selection for SDP and
proposed a method taking feature selection and construc-
tion of prediction models into account. Moreover, different
algorithms of classification in machine learning are also
utilized to build classifiers for defect prediction. Support
Vector Machine [17], Logistic Regression [9], Naive Bayes
[18] were leveraged to build classification models in SDP
respectively. Researchers also build prediction models on
CPDP, in which the training set and the test set are from
different projects. Turhan et al. [19] took the distance of
different data into account, and proposed nearest neighbor
filter to remove irrelevant instances in source project.
Considering the difference of data distribution, Nam et
al. [20] presented an approach, i.e. TCA+, using Transfer
Component Analysis (TCA) to make the source and target

project distributions similar in feature space. To improve
CPDP, Qiu et al. [21] constructed an ensemble classifier
for the target project, which is trained on multiple com-
ponents of source project data.

Recently, several deep learning techniques are also ap-
plied to build models for defect prediction. Wang et al.
[8] utilized a deep learning technique, i.e. Deep Belief
Network, to learn the semantic representation in source
code of program. Convolutional Neural Network were
leveraged [9] for defect prediction, and achieved significant
results on seven open-source projects in terms of F1-score.
Liang et al. [22] also employed Long Short Term Memory
(LSTM) network in defect prediction. Although previous
studies [8], [22] utilized neural network to learn nonlinear
high-dimensional features for CPDP, but they overlooked
the impact of domain discrepancy existing in different
projects. Besides, convolution and pooling operations were
also taken advantage of [9], but the proposed method in
this work mainly has the following two differences. Firstly,
the CAE does not require the information of label in
the period of semantic feature generation. Secondly, we
perform extensive experiments for CPDP in this work.

III. The proposed approach
As shown in Figure 1, the proposed approach consists of

the following major three steps: 1) Parsing source code into
ASTs; 2) Mapping tokens and embedding vectors; 3) Using
convolutional auto-encoder to generate high-level semantic
features and making classifications.

A. Parsing source code
The proposed approach takes source code files as input,

and we need to transform the input to learn semantic
information. It is proved that ASTs can be successfully
applied to various tasks. In this paper, we firstly transform
source code into ASTs so as to perform the following
steps. Source files are parsed into ASTs and appropriate
token nodes are selected from ASTs to generate token
sequences. Following this work [9], four types of AST nodes
are mainly chosen for both WPDP and CPDP.

B. Encoding Tokens and word embedding
In part III-A, each source file is parsed into a token

sequence. Since the proposed model requires numerical
vectors as input, each token sequence needs to encoded
as numerical vectors based on the mapping table. Specif-
ically, a mapping relation between tokens and integers is
constructed, which means that for every token in token
sequences, it has a unique integer identifier. According to
the mapping table, the token sequence can be converted
into an integer vector. In this way, different integer vectors
may differ from each other in length, so zero is appended
at the end of integer vectors to keep the same length
with the longest vector. Following the work [8], infrequent
tokens that occurs less than three times are also filtered
out during this process. Word embedding is also performed

324

Project
A

AST nodes Identifier

MethodDeclaration 1

ForStatement 2

IfStatement 3

ReturnStatement 4

add() 5

… …

Mapping tableToken vectors

2

3

5

4

…

2

3

5

4

…

2

3

5

4

…

Integer vectors

1. Parsing source code to AST

2. Mapping tokens and embedding vectors 3. Feature extraction and making classification

ClassDeclaration

FieldDeclaration

FormalParameter

MethodDeclaration

ReferenceType

BasicType VariableDeclarator

CompilationUnit

ReturnStatement LocalVaraibleDeclaration

VariableDeclarator

ClassCreator

BlockStatement

…

Convolutional and
pooling layer

Deconvolutional and
unpooling layer

Reconstructed
data

Embedded
vector

Full-connected
layer

Project
B

ForStatement

IfStatement

add()

ReturnStatement

……

...

ForStatement

IfStatement

add()

ReturnStatement

……

...

ForStatement

IfStatement

add()

ReturnStatement

……

...

Fig. 1. The framework of SCAE

before training the model. It is difficult to draw the
distance of different AST nodes only using an integer
index. Word embedding technique maps a token to a fixed-
length vector, and tokens in similar context tend to have
similar representations. Here, the embeded size is chosen
as 30, and each token is mapped to a vector whose length
is 30 on the real-number field.

Similar to other classification tasks in machine learning,
there also exists the issue of class imbalance in SDP.
Specifically, the number of defective instances is less than
the non-defective instances in a project, which makes the
classifier tend to predict non-defective. Data sampling
technique is also used in this work by randomly duplicating
the minority class instances, i.e. Random Over-Sampling,
to obtain more balanced training samples.

Input Convolutional Pooling

features

MMD

Source

project

Output

Deconvolutional
UnpoolingTarget

project

Fig. 2. Overview of CAE-based feature generation for CPDP

C. Building convolutional auto-encoder and making pre-
diction

1) Training CAE for WPDP: Comparing with basic
auto-encoder, CAE integrates the convolution and pooling
operations for the advantage of CNN in feature extraction
to better capture the syntactic and semantic information
in program. In particular, CAE includes an encoder and
a decoder. The encoder consists of a convolutional layer,

a pooling layer, a fully-connected layer, and the decoder
also includes an unpooling layer, a deconvolutional layer.

The embedded vector x ∈ Rl×e, where l and e are
the length of input and the embedding size respectively,
passes through the convolutional layer and the pooling
layer and is encoded as the feature y = fe(x) ∈ Rh, where
h denotes the feature size. During the step of decoding, the
hidden representation y also moves through unpooling and
deconvolutional layer, and is decoded as x̃ = fd(fe(x)).
The reconstruction error, Jae =

∑n
i=1 ∥x− x̃∥ 2

2, can be
calculated by the input x and output x̃. In addition, a reg-
ularization item Jwd is added to avoid overfitting during
model training. The objective function to be minimized is
shown in Equation 1, where W , b denote the parameters in
CAE and factors λ, γ are the tradeoff parameters for the
Jwd penalty and Jmmd penalty respectively. In WPDP, we
do not perform the domain adaptation, which means that
the regularization hyperparameter γ is set as 0.

min
W,b

J (W, b) = Jae + λJwd + γJmmd

=
1

2ns

ns∑
i=1

∥x− x̃∥ 2
2 + λ

∑
∥ω∥ 2

2 + γMMD(Xs, Xt)

(1)
CAE is an unsupervised learning method, and cannot

directly be utilized for classification tasks. Therefore, an
additional classifier needs to be constructed. After feature
extraction, we use the CAE-based features of training set
with labels to learn a classifier, and test its performance
on the test set. In this work, the algorithm of Logistic
Regression is utilized to established the classifier for both
WPDP and CPDP.

2) Training CAE for CPDP: To promote transferability
of learned features, we need to reduce the distribution
difference between source and target projects. By mapping
distribution Xs and Xt to a reproducing kernel Hibert
space Hk, maximum mean discreapancy (MMD) measures
the mean value of these two distributions in the Hk. Figure
2 shows the CAE-based feature generation for CPDP, and

325

the MMD loss, i.e. Jmmd, is to be minimized during model
training. The MMD distance can be resolved as follows,

MMD(Xs, Xt) =

∣∣∣∣∣
∣∣∣∣∣ 1ns

ns∑
i=1

ϕ(xi)−
1

nt

nt∑
i=1

ϕ(xi)

∣∣∣∣∣
∣∣∣∣∣
2

Hk

=
1

n2
s

ns∑
i=1

ns∑
j=1

k(xs
i ,x

s
j) +

1

n2
t

nt∑
i=1

nt∑
j=1

k(xt
i,x

t
j)

− 2

nsnt

ns∑
i=1

nt∑
j=1

k(xs
i ,x

t
j)

(2)

where ϕ(·) is a nonlinear feature mapping function on the
reproducing kernel hilbert spaces Hk. The most important
property is that MMD(Xs, Xt) = 0 when Xs = Xt. The
characteristic kernel function k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩
calculates the dot product of xi and xj in Hk. In
this study, we adopted Gaussian kernel: k(xi,xj) =
exp(−∥xi − xj∥2 /2σ), and σ is the kernel width.

IV. Experiments
This section describes the experiment setup in detail.

Extensive experiments are carried out on ten open source
project (listed in Table I) to evaluate effectiveness of the
proposed approach. Here are two research questions:
• RQ1: Does the semantic features extracted by the

proposed approach outperforms traditional features in
WPDP?

• RQ2: Does the distribution adaptation method can
improve the performance of CPDP?

TABLE I
The description of projects from PROMISE repository

Project Name Versions Avg. files Avg. Bug Rate(%)

ant 1.6, 1.7 521 21.4
camel 1.4, 1.6 888 18.5
ivy 1.4, 2.0 284 7.2
jedit 4.0, 4.1 269 21.2
lucene 2.2, 2.4 272 60.7
poi 2.5, 3.0 391 63.9

synapse 1.0, 1.1 190 20.0
velocity 1.5, 1.6 218 49.1
xalan 2.4, 2.7 759 61.5
xerces 1.3, 1.4 370 35.0

A. Dataset
To evaluate the performance of the approach, experi-

ments are performed on ten different open-source projects
from the PROMISE repository which has been used in
prior studies [8], [22]. Table I shows the necessary infor-
mation about projects in experiments, including project
name, project versions (including the training set and
the testing set), the number of files and the bug rate.
Traditional features for these projects are also widely used
in conventional defect prediction [13], [20], [21]. Besides,
the projects in the dataset have different data sizes, i.e.

different numbers of files and defect rates, and we assure
that it can verify the generalization of the model.

B. Evaluation metric
In this study, F1-score (also F-measure) is adopted

to assess the performance of prediction. As a composite
measure, F1-score is the harmonic average of precision and
recall, which has been widely used in binary classification.

C. Baseline of methods
The proposed approach is compared with the following

methods, LR based on 20 traditional features, and other
two deep learning methods, including DBN and CNN.
Besides, NNFilter, TCA and TCA+ are also performed for
CPDP to verify the validity of domain adaptation method.
• LR: A logistic regression classifier is built based on

20 traditional features.
• DBN [8]: This method utilizes Deep Belief Network

to capture semantic information in source code.
• CNN [9]: Supervised Convolutional Neural Network

is utilized to extract semantic features from ASTs of
programs.

• NNFilter [19]: This method uses KNN algorithm to
select instance from multi source projects .

• TCA [23]: Transfer Component analysis, the state-
of-the-art method in transfer learning.

• TCA+ [20]: This method optimizes the normaliza-
tion process of TCA for enhancing CPDP.

When implementing these two deep learning algorithms,
their optimal parameters are selected according to their
papers and we ensure that the experiments are conducted
with the same data processing for a fair comparison,
including parsing source code into ASTs, mapping tokens,
as well as data imbalance preprocessing. The proposed
model is built from a training set using Adam as the
optimizer. Same network architectures and parameters are
adopted when implementing CAE. We set the epoch size
as 30, the batch size as 16, the filter size as 3, the number
of filter as 10, the number of nodes as 20.

V. Results and analysis
This section presents the results of experiments con-

ducted on PROMISE dataset. According to analysis of the
results, we answer the two questions raised in Section III.

RQ1: Does the semantic features extracted by
the proposed approach outperforms traditional fea-
tures in WPDP?

With 20 traditional features, a classifier is constructed
using Logistic Regression algorithm for WPDP. We train
the model with the instances from an old version of
project, and make classifications on a new version of the
same project. Additional two deep learning methods, i.e.
DBN and CNN are also performed to extract semantic
features. Conducting experiments on ten projects as listed

326

Fig. 3. F1-scores of traditional method using LR and deep learning methods using DBN, CNN, CAE respectively.

in Table I, these three methods are compared with our
method, built on CAE-based features using LR algorithm.

As we can see from Figure 3, our approach can obtain
higher F1-scores in most cases. Taking project synapse as
an example, we use 1.0 version for model training, 1.1
version for testing. The F1-score are respectively 0.464,
0.336, 0.289, 0.556 for LR, DBN, CNN and CAE, and the
CAE can obtain higher F1-scores than other methods on
project synapse. The average of F1-scores over ten projects
are 0.488, 0.435, 0.426 and 0.539 for these four methods,
and CAE outperforms 10.36%, 23.94%, 26.67% than LR,
DBN and CNN on F1-score respectively.

RQ2: Does the proposed distribution adaptation
approach for CAE can improve the performance of
CPDP?

In CPDP, the domain adaptation is performed on CAE,
and we call it CAE+. CAE and CAE+ are compared with
other three cross-project defect prediction techniques, in-
cluding NNFilter, TCA and TCA+. Different from WPDP
in RQ1, we only use the new version of projects for CPDP.
For ten projects from PROMISE dataset, each CPDP task
takes a project from these projects as a target project,
and another project as source project. Therefore, 90 sets
of CPDA task are constructed for each method.

Giving a target project, 9 CPDP tasks can be estab-
lished respectively using the remaining 9 projects, and
we calculate the average F1-score for each target project.
Table II illustrates the average results of our methods
and other compared approaches on PROMISE dataset.
Similarly, each row in the table represents the average of
F1-scores of a project, and the best result are also maked
in bold. The next-to-last row reports the w/t/l, which
means that our CAE+ wins w projects, ties t projects,
loses l datasets, versus other methods at coressponding
column. Also taking a project, e.g. xerces as an exam-
ple, the highest F1-score is 0.608 achieved by CAE+.
Compared with NNFilter method, CAE+ wins 9 projects,
ties 0 projects, loses 1 projects, and compared with TCA
method, CAE+ wins 8 projects, ties 0 projects, loses 1
projects respectively.

As Table II reports, the F1-score of CAE and CAE+ is
0.503 and 0.521, which indicates that our proposed models
obtains better performances for CPDP. The CAE+ out-
performs LR, NNFilter, TCA, TCA+, DBN, CNN, and
CAE by 8.8%, 11.3%, 4.4%, 13.8%, 17.9%, 26.2%, and
3.6% respectively. The results also proves that, in general,
domain adaptation method can enhance the performance
of CPDP.

VI. Threats to validity
A. Implementation of compared methods

The proposed model is compared with other deep learn-
ing methods, DBN [8] and CNN [9]. These two methods
are reproduced according to their papers. However, we
can not guarantee that all the implementation details
have been taken into account. Considering the randomness
involved in batch shuffle, we repeated the experiment ten
times, recording the average of F1-score.

B. Pamameter selection
During the training of the proposed model, we adjust

the hyperparameters of CAE to get promising perfor-
mance. Considering the large space of parameters, experi-
ments cannot be done on all combinations of parameters,
which may make a difference in experimental results.

VII. Conclusion
In this work, a framework of SCAE is proposed to

extract semantic features from source code for defect pre-
diction. In particular, token nodes are deliberately selected
from ASTs of program. Each token in token sequence is
mapped into an integer, and then word embedding is per-
formed on numerical vector. The data then are fed into the
convolutional auto-encoder to capture the intermediate
representation of syntactic and semantic information of
source code. Considering the distributional discrepancy
of semantic representations between source and target
project, an additional domain loss item is introduced dur-
ing feature generation in CPDP. Conducting experiments
on ten open-source PROMISE projects, the results prove

327

TABLE II
Average cross-project defect prediction results on PROMISE dataset

Target LR NNFilter TCA TCA+ DBN CNN CAE CAE+
ant 0.49 0.487 0.464 0.387 0.336 0.38 0.483 0.495

camel 0.348 0.348 0.343 0.341 0.312 0.278 0.32 0.349
ivy 0.27 0.275 0.265 0.21 0.176 0.227 0.291 0.263
jedit 0.452 0.445 0.448 0.211 0.337 0.378 0.445 0.471
lucene 0.603 0.592 0.664 0.646 0.582 0.528 0.644 0.646
poi 0.611 0.605 0.627 0.602 0.625 0.573 0.699 0.675

synapse 0.49 0.478 0.456 0.468 0.396 0.384 0.501 0.494
velocity 0.53 0.493 0.56 0.514 0.435 0.429 0.542 0.564
xalan 0.49 0.49 0.64 0.629 0.663 0.545 0.643 0.647
xerces 0.509 0.47 0.523 0.576 0.562 0.405 0.466 0.608

CPCAE:(w/t/l) 9/0/1 9/0/1 8/0/2 9/1/0 9/0/1 10/0/0 7/0/3
Average 0.479 0.468 0.499 0.458 0.442 0.413 0.503 0.521

that the proposed SCAE can improve performance on
both WPDP and CPDP in terms of the evaluation metric,
i.e. F1-score. In future work, we plan to explore other
domain adaptation methods for CPDP, and our future
investigation involves applying the proposed approach to
more projects.

VIII. Acknowledgements
This work is supported in part by the National Nature

Science Foundation of China (No. 61370103), Guangzhou
Produce & Research Fund (201902020004) and Meizhou
Produce & Research Fund (2019A0101019).

References
[1] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and

A. Bener, “Defect prediction from static code features: current
results, limitations, new approaches,” Automated Software En-
gineering, vol. 17, no. 4, pp. 375–407, 2010.

[2] M. Halsted, “Elements of software science (operating and pro-
gramming systems series),” 1977.

[3] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, no. 4, pp. 308–320, 1976.

[4] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck
metrics for object-oriented design complexity: implications for
software defects,” IEEE Transactions on Software Engineering,
vol. 29, no. 4, pp. 297–310, 2003.

[5] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, 1994.

[6] A. A. Asad and I. Alsmadi, “Evaluating the impact of software
metrics on defects prediction. part 2.” Computer Science Jour-
nal of Moldova, vol. 22, no. 1, 2014.

[7] Z. Xu, J. Liu, Z. Yang, G. An, and X. Jia, “The impact of
feature selection on defect prediction performance: An empirical
comparison,” in 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2016, pp.
309–320.

[8] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the 38th In-
ternational Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, 2016, pp. 297–308.

[9] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction
via convolutional neural network,” in 2017 IEEE International
Conference on Software Quality, Reliability and Security, QRS
2017, Prague, Czech Republic, July 25-29, 2017, 2017, pp. 318–
328.

[10] T. Bao, C. Ding, S. Karmoshi, and M. Zhu, “Video anomaly de-
tection based on adaptive multiple auto-encoders,” in Advances
in Visual Computing - 12th International Symposium, ISVC
2016, Las Vegas, NV, USA, December 12-14, 2016, Proceedings,
Part II, 2016, pp. 83–91.

[11] W. Xu, H. Sun, C. Deng, and Y. Tan, “Variational autoencoder
for semi-supervised text classification,” in Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[12] M. Long, Y. Cao, Z. Cao, J. Wang, and M. I. Jordan, “Trans-
ferable representation learning with deep adaptation networks,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 41, no. 12, pp. 3071–3085, 2018.

[13] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, “Dictio-
nary learning based software defect prediction,” in Proceedings
of the 36th International Conference on Software Engineering.
ACM, 2014, pp. 414–423.

[14] Z. Li, X. Y. Jing, and X. Zhu, “Progress on approaches to
software defect prediction,” IET Software, vol. 12, no. 3, pp.
161–175, 2018.

[15] S. Jacob and G. Raju, “Software defect prediction in large space
systems through hybrid feature selection and classification,” Int.
Arab J. Inf. Technol., vol. 14, pp. 208–214, 2017.

[16] C. Ni, X. Chen, F. Wu, Y. Shen, and Q. Gu, “An
empirical study on pareto based multi-objective feature
selection for software defect prediction,” Journal of Systems
and Software, vol. 152, pp. 215–238, 2019. [Online]. Available:
https://doi.org/10.1016/j.jss.2019.03.012

[17] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,
“Using the support vector machine as a classification method
for software defect prediction with static code metrics,” in En-
gineering Applications of Neural Networks, D. Palmer-Brown,
C. Draganova, E. Pimenidis, and H. Mouratidis, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 223–234.

[18] H. JI, S. HUANG, X. LV, Y. WU, and Y. FENG, “Empirical
studies of a kernel density estimation based naive bayes method
for software defect prediction,” IEICE Transactions on Infor-
mation and Systems, vol. E102.D, pp. 75–84, 01 2019.

[19] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On
the relative value of cross-company and within-company data
for defect prediction,” Empirical Software Engineering, vol. 14,
no. 5, pp. 540–578, Oct 2009.

[20] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in
2013 35th International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 382–391.

[21] S. Qiu, L. Lu, and S. Jiang, “Multiple components weights
model for cross-project defect prediction,” IET Software, vol. 12,
no. 4, pp. 345–355, 2018.

[22] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A semantic LSTM
model for software defect prediction,” IEEE Access, vol. 7, pp.
83 812–83 824, 2019.

[23] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adap-
tation via transfer component analysis,” IEEE Transactions on
Neural Networks, vol. 22, no. 2, pp. 199–210, 2010.

328

Revisiting Dependence Cluster Metrics based Defect Prediction

Qiguo Huang∗,Xiang Chen∗†,Zhengliang Li∗,Chao Ni∗,Qing Gu∗‡
∗State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
†School of Computer Science and Technology, Nantong University, Nantong 226019, China

Abstract—A dependence cluster is a set of program el-
ements that all depend upon each other. Prior empirical
studies have found that the dependence cluster based metrics
are useful in effort-aware defect prediction. However, it is
still unknown whether they are useful in non-effort-aware
defect prediction. In this paper, we perform empirical studies
to investigate this issue. We use the product, process, and
network metrics to build the “B” model (baseline model),
and then use the product, process, network and dependence
cluster metrics to build the “B+C” model. Our experimental
results, based on five well-known open-source systems, show
that the dependence clusters are useful for non-effort-aware
defect prediction. These findings help us better understand
how dependence clusters influence non-effort-aware defect
prediction.

Index Terms—dependence cluster, metrics, defect predic-
tion, revisiting, non-effort-aware

I. Introduction
A dependence cluster is a set of program elements that

all depend upon each other [1], [2]. Prior studies showed
that large dependency clusters are widely existed in all
kinds of source code. The existence of the large dependent
clusters will result in ripple effects — a code change in
one element of the dependent cluster will produce potential
impact on other elements of the cluster [1], [2]. A high-
quality software system should reduce or even eliminate
large dependency clusters since they not are easier to
develop, maintain, and reuse. Therefore, The detection and
analysis of dependency clusters is the key point. Binkley
et al. [1] used the technology of program slicing to solve
this problem by defining the program system dependence
graph. Based on their observation, dependence clusters can
influnence software quality. Yang et al. [3] first applied
dependence cluster metrics to software defect prediction,
and their empirical studies have found that the dependence
cluster based metrics are useful in effort-aware defect
prediction. However, it is still unknown whether they are
useful in non-effort-aware defect prediction. In this paper,
our study attempts to fill this gap.

‡Corresponding Author, Email: guq@nju.edu.cn
DOI reference number: 10.18293/SEKE2020-060

Based on this motivation, we investigate the effective-
ness of dependence cluster based metrics in terms of
non-effort-aware performance indicators. Our main con-
tributions are the following:1) We investigate whether
dependence clusters are useful for non-effort-aware defect
prediction. Our results show that the dependence clusters
are still useful for non-effort-aware defect prediction. 2)
We examine whether our conclusions change if the po-
tentially confounding effect of module size is excluded.
The results show that the “B+C” model still performs
better than the “B” model. 3) We examine whether our
conclusions change if the class imbalanced method is used.
The results show that the “B+C” model still performs
better than the “B” model.

The rest of this paper is organized as follows. In
Section II, we summarize related work. In Section III, we
present the research questions and research method. We
describe experiment setup, including studied projects, data
collection, and performance indicators in Section IV. In
Section V, we report out experimental results. Section VI
discusses our findings. Finally, we conclude the paper and
direct future work.

II. Related Work
In this section, we summarize related work on non-

effort-aware defect prediction and dependence clusters.

A. Non-effort-aware Defect Prediction
The non-effort-aware defect prediction is also called

traditional defect prediction [4]. It includes within-project
defect prediction and cross-project defect prediction. For
within-project defect prediction, Hall et al. [5] investigated
the effect of model independent variables and model
techniques on the performance of defect prediction model.
Their results showed that simple modeling techniques,
such as Logistic Regression, tended to perform well. For
cross-project defect prediction, To the best of our knowl-
edge, the earliest study on CPDP(Cross-Project Defect
Prediction) was performed by Briand et al. [6], they used
logistic regression to build defect prediction models based

329

on the Xpose project. The results showed that the CPDP
model is better than the random model, but lower than
the within-project defect prediction performance. Ulike the
above stduies, we investigate whether dependence clusters
have practical value in non-effort-ware defect prediction.

B. Dependence Clusters

The concept of dependency clusters based on program
slicing at the statement level was first proposed by Binkley
et al. [1]. The dependence cluster is a set of program
elements that all depend upon each other. Later, Harman
et al. [2] extended Binkley’s study to modules with
coarser granularity. Their results showed that the accuracy
of the “same slice size” method proposed by Binkley is
very high. In addition, they found that large dependency
clusters are widely existed in analyzed software projects.
Yang et al. [3] first applied dependence cluster based
metrics to effort-aware software defect prediction. Their
empirical result showed the combination of the product,
process, network and dependence cluster metrics produce
more effective models for the prediction of post-release
defect than the combination of the product, process and
network metrics alone. Our study is different from their
studies, we study the defect prediction model in non-effort-
aware evaluations with respect to within-project and cross-
project.

III. RESEARCH METHODOLOGY
In this section, we first introduce the research questions,

then give the research method for the research questions.

A. Research Questions

In order to be easily understand research questions,
we use the system dependence clusters shown in Fig-
ure 1 [3] to illustrate the questions. In Figure 1, the
nodes indicate functions and the directed edges indicate
dependencies between functions, which includes the data
dependencies and the function call dependencies. Such
as, from f1 to f16 are functions, labeled “d” and “c”
indicate data dependencies and function call dependen-
cies, respectively. In this dependency graph, there are 16
functions and 3 dependency clusters which are dc1, dc2
and dc3. In Figure 1, the functions are divided into two
groups: functions inside dependence clusters and functions
outside dependence clusters. Such as, from f1 to f4 are
functions inside dc1, and from f12 to f16 are functions
outside dependence clusters. Functions inside dependence
clusters and functions outside dependence clusters form
the subgraphs SubGin and SubGout, respectively.

Based on the above the preliminary knowledge, we aim
to investigate whether dependence clusters are useful for
non-effort-aware defect prediction Therefore, our research
questions are set up as follows:

Fig. 1: An SDG with dependence clusters

RQ1. In the scenario of within-project defect prediction,
are dependence cluster based metrics useful for non-effort-
aware prediction?

RQ2. In the scenario of cross-project defect prediction,
are dependence cluster based metrics useful for non-effort-
aware prediction?

These research questions are important to both software
researchers and practitioners, as they help us better un-
derstand the effects of dependence clusters on software
quality.

B. Research Method

In order to answer RQ1 and RQ2, we use AIC(Akaike
Information Criterion) as the criteria to perform a forward
stepwise variable selection procedure to build the following
two types of multivariate logistic regression models: (1) the
“B” model (using product, process and network metrics);
(2) the “B+C” model (using product, process, network and
dependence clusters metrics). The logistic regression has
been widely used for building defect prediction models [7],
[8]. We choose the forward stepwise variable selection
rather than the backward stepwise variable selection be-
cause the forward stepwise variable selection is less time
consuming on stepwise variable selection especially for
plenty of independent metrics. The AIC criteria is a widely
used variable selection [9].

IV. EXPERIMENTAL SETUP
In this section, we first introduce the projects used in

our study and the method of collection the data. Then,

330

we give a description of the performance indicators in this
study.

A. Experimental Subjects

We use the five well-known open source projects
to investigate the predictive capability dependence clus-
ters based metrics for non-effort-aware defect prediction:
Gstreamer (GSTR), Glibc (GLIB), Gimp (GIMP) and Bash
(BASH). They are all GNU projects. In Table I, from the
second to seventh columns are respectively the version
number, the release date, the total source lines of code
in the each studied project, the number of functions, the
number of faulty functions, and the percentage of faulty
functions. From eighth to the ninth columns are the pre-
vious version number and the release date of the previous
version, which used to compute the process metrics. The
last two columns are the fixing version number and the
release date of the fixing release, which are used to
determine the faulty or not faulty label for each function.

B. Data Collection

We used the Understand1 tool and R package igrah2 to
collect the data from the above-mentioned five projects.
Metrics for each project consist of: 1) 16 product metrics
(i.e. SLoC metrics); 2) 3 process metrics (i.e. code churn
metrics); 3) 21 network metrics (i.e. Ties metrics); 4)
Collected the dependence clusters for each system ; 5)
Collect the importance metrics for dependence clusters [3];
and 6) the faulty or not-faulty labels of the functions after
version release.

Table II describes the dependence clusters in the ex-
perimental systems. The second to the fifth columns re-
spectively show the number of functions, the number of
clusters, the percentage of functions inside dependence
clusters, and the size of the largest cluster in each experi-
mental system. We can see that there exist many clusters
in these systems from Table II. Table III describes the
importance metrics for dependence clusters in the exper-
imental systems. These metrics are widely used network
metrics [10].

C. Performance Indicators

At present, most of the existing research work regards
the problem of the defect prediction as a binary classi-
fication problem. We set defective functions as positive
and non-defective functions as negative. We combine the
real results of function with the predicted results of model
and divide into true positive (TP), false positive (FP), true
negative (TN) and false negative (FN). Let TP, FP, TN
and FN denote the corresponding numbers of functions,
respectively. These values are stored in the confusion

1https://scitools.com/
2https://igraph.org/r/

matrix, and the confusion matrix is used to compute the
Precision, Recall, and F-measure performance indicators.
These indicators are defined as follows:

• Precision: The ratio of correctly predicted defective
functions over all the functions predicted as being
defective. It is calculated as:

Precision =
TP

TP + FP
(1)

• Recall: The ratio of correctly predicted defective
functions over all of the true defective functions. It
is calculated as:

Recall =
TP

TP + FN
(2)

• F-measure: The indicator is harmonic mean of the
precision and recall. It is calculated as:

F −measure = 2× precision× recall
precision+ recall

(3)

These indicators are widely used for non-effort-aware
defect prediction [11].

V. EXPERIMENTAL RESULTS
In this section, we first describe the models (“B” model

and “B+C” model), then we present the experimental
results for RQ1 and RQ2.

A. The Models

Figure 2 [3] provides an overview of analysis method
for RQ1 and RQ2. In order to answer RQ1 and RQ2, we
first use the procedure described in section 3.2 to build “B”
model and “B+C” model on each data set, respectively. The
introduction of “B” and “B+C” models as follows:

(1) The “B” model. It is the baseline model, which
is built with product, process, and network metrics.
These metrics are described in Table IV. We choose
the metrics as the baseline metrics since they are
widely used in defect prediction [12].

(2) The “B+C” model. The functions are divided into
two groups: functions inside dependence clusters and
functions outside dependence clusters, the “B+C”
model is segmented model which consists of two
independent models. They are the “B+Cin” model
and the “B+Cout” model. “B+Cin” and “B+Cout”
models are respectively used for predicting the prob-
ability that a function inside and outside dependence
clusters are faulty. They are both built with prod-
uct, process, network and the importance metrics
described in Table III. After building the models,
we can verify RQ1 and RQ2.

331

TABLE I: Studied projects and version information

System name Subject release Previous release Fixing release
Version number Release Date Total SLoC # functions # faulty functions % faulty functions Version Release Date Version Release Date

Gstreamer 1.0.0 2012-09-24 75985 3946 146 3.70% 0.11.90 2011-08-02 1.0.10 2013-08-30
Glibc 2.1.1 1999-05-24 172599 5923 417 7.04% 2.0.1 1997-02-04 2.1.3 2000-02-25
Gimp 2.8.0 2012-05-12 557436 19978 818 4.10% 2.7.0 2009-08-15 2.8.16 2015-11-21

Gcc-core 4.0.0 2005-04-21 422182 13612 430 3.16% 3.4.0 2004-04-20 4.0.4 2007-01-31
Bash 3.2 2006-10-11 49608 1947 68 3.49% 3.1 2005-12-08 3.2.57 2014-11-07

“B+Cin” model

“B+Cout” model
Predicted risk 2

Evaluate

Combined
predicted risk

Performances

Test set(f’s inside DCs)

Training set(fs inside DCs)

Training set(fs outside DCs)

Test set(f’s outside DCs)

“B+C”model

Our segmented model

ComparreResult

Predicted risk 1

Product+Process+network

metrics

Predicted risk

Evaluate

Test sets

Training sets

“B” model

Performances

The baseline model

Product+process+network +

importance metrics

Product+process+network +

importance metrics

P+P+N+I

metrics

Product+Process+network

metrics
Training

Training

Training P+P+N +I

metrics

Fig. 2: Overview of the analysis method for “B” VS “B+C” in within-project and “B” VS “B+C” in cross-project

TABLE II: The dependence clusters in experimental sys-
tems

System name # functions # clusters
% functions

Inside clusters
Size of

Largest cluster

Gstreamer 3946 59 15.2 170
Glibc 5923 105 11.6 277
Gimp 19978 363 14.2 158

Gcc-core 13612 139 34.9 4083
Bash 1947 41 46.2 483

TABLE III: The importance metrics for dependence clus-
ters

Metrics Description

Betweenness # shortest paths through the vertex
Centr betw Centrality score according to betweenness
Centr clo Centrality score according to the closeness
Centr degree Centrality score according to the degrees
Centr eigen Centrality score according to eigenvector
Closeness How close to other vertices
Constraint The Burt’s constraint
Degree # v’s adjacent edges
Eccentricity Maximum graph distance to other vertices
Page rank Google page rank score

TABLE IV: Baseline metrics in this study

Category Description

Product SLOC, FANIN, FANOUT, NPATH Cyclomatic, CyclomaticModified, Cy-
clomaticStrict, Essential, Knots, Nesting,MaxEssentialKnots, MinEssen-
tialKnots, n1, n2, N1, N2

Process Added, Deleted, Modified
Network Size, Ties, Pairs, Density, nWeakComp, pWeakComp, 2StepReach, Reach-

Effic, Broker, nBroker, EgoBetw, nEgoBetw, effsize, efficiency, constraint,
Degree, Closeness, dwReach, Eigenvector, Betweenness, Power

B. Experimental Result
In the following, we describe the experimental results

for RQ1 and RQ2, respectively.

(1) RQ1. In the scenario of within-project defect pre-
diction, are dependence cluster based metrics useful for
non-effort-aware prediction?

For RQ1, we use 30 times 3-fold cross-validation to
evaluate the effectiveness of the prediction models. We use
the same training/test set to train/test our segmented model
(i.e., the “B+C” model) and the baseline model (i.e., the
“B” model). On each fold, we first divide the training set
into two groups: functions inside dependence clusters and
functions outside dependence clusters. Then, we train the
“B+Cin” model and the “B+Cout” model, respectively. We
also divide the test set into two groups and subsequently
use the “B+Cin” model and the “B+Cout” model to predict
the probability of those functions that contain faults. After
that, we combine the predicted values to derive the final
predicted values to compute the performance indicators.

Based on F-measure predictive values, we use the
Wilcoxon’s signed-rank test to examine whether two mod-
els have a significant difference in their predictive effec-
tiveness. Then, we use the Bonferroni correction method
to adjust p-values to examine whether a difference is sig-
nificant at the significance level of 0.05 [13].Furthermore,
we use Cliff’s δ to examine whether the magnitude of
the difference between the prediction performances of two
models is important from the viewpoint of practical appli-
cation [14]. By convention, the magnitude of the difference
is considered either trivial (|δ| < 0.147), small (0.147-

332

0.33), moderate (0.33-0.474), or large (|δ| > 0.474) [15]
. From Table V, we find that the “B+C” models have
larger F-measure values than the “B” model in all the
five systems except in Gcc-core , and most of cliff’s |δ|
values are more than 0.147 except in Gcc-core .That is to
say, the dependence cluster based importance metrics are
useful for non-effort-aware prediction under within-project
evaluation.

(2) RQ2. In the scenario of cross-project defect pre-
diction, are dependence cluster based metrics useful for
non-effort-aware prediction?

TABLE V: The experimental results for RQ1

Projects ”B” ”B+C” %↑ |δ|

Gstreamer1.0.0 0.139 0.166 19.4% 0.153
√

Glibc2.1.1 0.068 0.180 164.7% 0.997
√

Gimp2.8.0 0.065 0.159 144.6% 0.992
√

Gcc-core4.0.0 0.094 0.086 -8.5% 0.111
Bash3.2 0.187 0.229 22.5% 0.556

√

Average 0.111 0.164 68.5% 0.562

Cross-project defect prediction uses a predicted model
trained on one project to predict defect in another projects
[8]. From Table VI, we find that the “B+C” models have
larger F-measure values than the “B” model, and the
cliff’s δ values are more than 0.147. That is to say, the
dependence cluster based importance metrics are useful for
non-effort-aware prediction under cross-project evaluation.

TABLE VI: The experimental results for RQ2

Source Target “B” “B+C” ↑% |δ|

Gimp2.8.0

Glibc2.1.1 0.132 0.135

18.5% 0.203
√

Gstreamer1.0.0 0.071 0.075
Gcc-core4.0.0 0.061 0.067

Bash3.2 0.067 0.062

Glibc2.1.1

Gimp2.8.0 0.107 0.051
Gstreamer1.0.0 0.111 0.080
Gcc-core4.0.0 0.159 0.069

Bash3.2 0.027 0.012

Gstreamer1.0.0

Gimp2.8.0 0.079 0.159
Gcc-core4.0.0 0.061 0.106

Bash3.2 0.021 0.026
Glibc2.1.1 0.132 0.143

Gcc-core4.0.0

Gimp2.8.0 0.025 0.042
Bash3.2 0.011 0.052

Glibc2.1.1 0.014 0.067
Gstreamer1.0.0 0.101 0.099

Bash3.2

Gimp2.8.0 0.021 0.078
Glibc2.1.1 0.023 0.081

Gstreamer1.0.0 0.013 0.064
Gcc-core4.0.0 0.059 0.066

Overall, the above experimental results show that the
non-effort-aware defect prediction capability of “B+C”
model is better than that “B” model under the settings
of within-project and cross-project prediction.

VI. DISCUSSION
In this section, we further discuss our findings. First, we

analyze whether our conclusions will change if the poten-
tially confounding effect of module size is excluded for the
“B” and the “B+C” models. Then, we analyze whether we
have similar conclusions if the class imbalanced method
is used.

(1) Will our conclusions change if the potentially
confounding effect of module size is excluded?

In our study, we did not take into account the potentially
confounding effect of function size on the associations
between those metrics with fault-proneness [16], when
building a fault-proneness prediction model. Therefore, it
is not readily known whether our conclusions will change
if the potentially confounding effect of module size is
excluded. In the following, we use the method proposed
by Zhou et al. [16] to remove the confounding effect of
module size and then rerun the analyses for RQ1 and RQ2.
From Table VII, we find that the “B+C” models have
larger F-measure values than the “B” model in all the five
systems except in Gcc-core based on Within-Project Defect
Prediction and most of cliff’s δ values more than 0.147
except in Gcc-core. Table VIII, we find that the “B+C”
models have most of larger F-measure values than the “B”
model based on Cross-Project Defect Prediction ,and the
cliff’s δ values are more than 0.147. This indicates that
“B+C” model still performs better than the “B” model.

TABLE VII: F-measure values after excluding the poten-
tially confounding effect of module size: the “B” model vs
“B+C” model based on Within-Project Defect Prediction

Projects “B” “B+C” %↑ |δ|

Gstreamer1.0.0 0.106 0.162 52.8% 0.875
√

Glibc2.1.1 0.070 0.176 151.4% 0.923
√

Gimp2.8.0 0.085 0.155 82.3% 0.728
√

Gcc-core4.0.0 0.084 0.072 -14.2% 0.187
Bash3.2 0.161 0.221 37.2% 0.421

√

Average 0.101 0.157 61.9% 0.627

TABLE VIII: F-measure values after excluding the poten-
tially confounding effect of module size: the “B” model
vs “B+C” model based on Cross-Project Defect Prediction

Source Target “B” “B+C” ↑% |δ|

Gimp2.8.0

Glibc2.1.1 0.096 0.123

18.2% 0.303
√

Gstreamer1.0.0 0.084 0.101
Gcc-core4.0.0 0.051 0.092

Bash3.2 0.043 0.098

Glibc2.1.1

Gimp2.8.0 0.073 0.091
Gstreamer1.0.0 0.091 0.072
Gcc-core4.0.0 0.087 0.057

Bash3.2 0.082 0.107

Gstreamer1.0.0

Gimp2.8.0 0.052 0.087
Gcc-core4.0.0 0.077 0.052

Bash3.2 0.042 0.031
Glibc2.1.1 0.081 0.102

Gcc-core4.0.0

Gimp2.8.0 0.072 0.056
Bash3.2 0.052 0.071

Glibc2.1.1 0.081 0.067
Gstreamer1.0.0 0.103 0.071

Bash3.2

Gimp2.8.0 0.041 0.071
Glibc2.1.1 0.057 0.101

Gstreamer1.0.0 0.036 0.052
Gcc-core4.0.0 0.043 0.087

(2) Will our conclusions change if the class imbal-
anced method is used?

We did not take into account removing the imbalanced
data in our study, when building a fault-proneness predic-
tion model. Therefore, it is not readily known whether our
conclusions will change if removing imbalanced data. In
the following, we use the random under-sampling method
proposed by Kamei et al. [17] to remove imbalanced data
and then rerun the analyses for RQ1 and RQ2. From

333

Table IX, we find that the “B+C” models have larger F-
measure values than the “B” model except in Gcc-core
based on Within-Project Defect Prediction ,and most of
cliff’s δ values are more than 0.147 except in Gcc-core.
Table X, we find that the “B+C” models have most of
larger F-measure values than the “B” model, and the cliff’s
δ values are more than 0.147. This indicates that “B+C”
model still performs better than the “B” model.

TABLE IX: F-measure values after removing the imbal-
anced data: the “B” model vs “B+C” model based on
Within-Project Defect Prediction

Projects “B” “B+C” %↑ |δ|

Gstreamer1.0.0 0.177 0.190 7.34% 0.256
√

Glibc2.1.1 0.203 0.276 36.0% 0.421
√

Gimp2.8.0 0.168 0.198 17.9% 0.556
√

Gcc-core4.0.0 0.156 0.152 -2.6% 0.187
Bash3.2 0.122 0.134 9.8% 0.375

√

Average 0.165 0.190 13.7% 0.359

TABLE X: F-measure values after removing the imbal-
anced data: the “B” model vs “B+C” model based on
Cross-Project Defect Prediction2

Source Target “B” “B+C” ↑% |δ|

Gimp2.8.0

Glibc2.1.1 0.132 0.207

12.1% 0.215
√

Gstreamer1.0.0 0.091 0.196
Gcc-core4.0.0 0.102 0.201

Bash3.2 0.097 0.182

Glibc2.1.1

Gimp2.8.0 0.155 0.087
Gstreamer1.0.0 0.186 0.205
Gcc-core4.0.0 0.113 0.067

Bash3.2 0.105 0.109

Gstreamer1.0.0

Gimp2.8.0 0.079 0.127
Gcc-core4.0.0 0.062 0.102

Bash3.2 0.061 0.112
Glibc2.1.1 0.131 0.192

Gcc-core4.0.0

Gimp2.8.0 0.202 0.162
Bash3.2 0.167 0.134

Glibc2.1.1 0.236 0.195
Gstreamer1.0.0 0.232 0.195

Bash3.2

Gimp2.8.0 0.160 0.201
Glibc2.1.1 0.203 0.171

Gstreamer1.0.0 0.177 0.181
Gcc-core4.0.0 0.103 0.105

VII. CONCLUSION AND FUTURE WORK
In this paper, we investigate whether dependence clus-

ters are useful for non-effort-aware defect prediction. We
use the product, process, and network metrics to build the
“B” model (baseline model), and use the product, process,
network and dependence cluster metrics to build the “B+C”
model. Our experimental results, based on five well-known
open-source systems, show that the dependence clusters
are useful for non-effort-aware defect prediction. In the
future, we plan to build the model for dependence clusters
at different granularities and examine their effectiveness.

References
[1] D. Binkley and M. Harman, “Locating dependence clusters and

dependence pollution,” in 21st IEEE International Conference on
Software Maintenance (ICSM’05). IEEE, 2005, pp. 177–186.

[2] M. Harman, D. Binkley, K. Gallagher, N. Gold, and J. Krinke,
“Dependence clusters in source code,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 32, no. 1, pp.
1–33, 2009.

[3] Y. Yang, M. Harman, J. Krinke, S. Islam, D. Binkley, Y. Zhou, and
B. Xu, “An empirical study on dependence clusters for effort-aware
fault-proneness prediction,” in 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE,
2016, pp. 296–307.

[4] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu,
and H. Leung, “Effort-aware just-in-time defect prediction: simple
unsupervised models could be better than supervised models,”
in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016, pp. 157–
168.

[5] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in
software engineering,” IEEE Transactions on Software Engineering,
vol. 38, no. 6, pp. 1276–1304, 2011.

[6] L. C. Briand, W. L. Melo, and J. Wust, “Assessing the applicability
of fault-proneness models across object-oriented software projects,”
IEEE transactions on Software Engineering, vol. 28, no. 7, pp. 706–
720, 2002.

[7] Y. Yang, Y. Zhou, H. Lu, L. Chen, Z. Chen, B. Xu, H. Leung,
and Z. Zhang, “Are slice-based cohesion metrics actually useful in
effort-aware post-release fault-proneness prediction? an empirical
study,” IEEE Transactions on Software Engineering, vol. 41, no. 4,
pp. 331–357, 2014.

[8] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the” impre-
cision” of cross-project defect prediction,” in Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, 2012, pp. 1–11.

[9] F. Rahman and P. Devanbu, “How, and why, process metrics
are better,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 432–441.

[10] S. Wasserman, K. Faust et al., Social network analysis: Methods
and applications. Cambridge university press, 1994, vol. 8.

[11] X. Chen, Y. Mu, Y. Qu, C. Ni, M. Liu, T. He, and S. Liu, “Do
different cross-project defect prediction methods identify the same
defective modules?” Journal of Software: Evolution and Process,
10 2019.

[12] T. Zimmermann and N. Nagappan, “Predicting defects using net-
work analysis on dependency graphs,” in 30th International Con-
ference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, 2008.

[13] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
a practical and powerful approach to multiple testing,” Journal of
the Royal statistical society: series B (Methodological), vol. 57,
no. 1, pp. 289–300, 1995.

[14] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic
and comprehensive investigation of methods to build and evaluate
fault prediction models,” Journal of Systems and Software, vol. 83,
no. 1, pp. 2–17, 2010.

[15] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Ap-
propriate statistics for ordinal level data: Should we really be using
t-test and cohen’sd for evaluating group differences on the nsse
and other surveys,” in annual meeting of the Florida Association of
Institutional Research, 2006, pp. 1–33.

[16] Y. Zhou, H. Leung, and B. Xu, “Examining the potentially con-
founding effect of class size on the associations between object-
oriented metrics and change-proneness,” IEEE Transactions on
Software Engineering, vol. 35, no. 5, pp. 607–623, 2009.

[17] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan, “Studying just-in-time defect prediction using
cross-project models,” Empirical Software Engineering, vol. 21,
no. 5, pp. 2072–2106, 2016.

334

Guidelines for Quality Assurance of
Machine Learning-based Artificial Intelligence

Koichi Hamada
DeNA Co., Ltd
Tokyo, Japan

koichi.hamada@dena.com

Fuyuki Ishikawa
National Institute of Informatics

Tokyo, Japan
f-ishikawa@nii.ac.jp

Satoshi Masuda
IBM Research
Tokyo, Japan

smasuda@jp.ibm.com

Mineo Matsuya
LIFULL Co., Ltd.

Tokyo, Japan
matsuyamineo@lifull.com

Tomoyuki Myojin∗
Japan Aerospace Exploration Agency

Tsukuba, Japan
myojin.tomoyuki@jaxa.jp

Yasuharu Nishi
University of Electro-Communications

Tokyo, Japan
Yasuharu.Nishi@uec.ac.jp

Hideto Ogawa
Hitachi, Ltd.

Yokohama, Japan
hideto.ogawa.cp@hitachi.com

Takahiro Toku
OMRON Corporation

Kyoto, Japan
takahiro.toku@omron.com

Susumu Tokumoto
FUJITSU LABORATORIES LTD.

Kawasaki, Japan
tokumoto.susumu@fujitsu.com

Kazunori Tsuchiya
FUJITSU LTD.
Kawasaki, Japan

ktsuchiya@fujitsu.com

Yasuhiro Ujita
OMRON Corporation

Kyoto, Japan
yasuhiro.ujita@omron.com

Abstract—Great efforts are currently underway to develop
industrial applications for artificial intelligence (AI), especially
those using machine learning (ML) techniques. Despite the
intensive support for building ML applications, there are still
challenges when it comes to evaluating, assuring, and improving
the quality or dependability. The difficulty stems from the
unique nature of ML: namely, that the system behavior is
derived from training data, not from logical design by human
engineers. This leads to black-box and intrinsically imperfect
implementations that invalidate many of the existing principles
and techniques in traditional software engineering. In light of this
situation, the Japanese industry has jointly worked on a set of
guidelines for the quality assurance of AI systems (in the QA4AI
consortium) from the viewpoint of traditional quality-assurance
engineers and test engineers. We report the initial version of
these guidelines, which cover a list of the quality evaluation
aspects, a catalogue of current state-of-the-art techniques, and
domain-specific discussions in four representative domains. The
guidelines provide significant insights for engineers in terms of
methodologies and designs for tests driven by application-specific
requirements.

Index Terms—software quality, testing, artificial intelligence,
machine learning, guidelines

I. INTRODUCTION

Machine learning (ML) is a key driving force for indus-
trial innovation in the form of artificial intelligence (AI)
systems. ML-based AI systems consistently display unique
characteristics in engineering because components (models)
are constructed by training with data in an inductive manner.
The obtained components are intrinsically imperfect, i.e., they

∗Presently, the author is with Hitachi, Ltd.
E-mail: tomoyuki.myojin.fs@hitachi.com

DOI reference number:10.18293/SEKE2020-094

tend to have limited accuracy, and they are black-box in the
sense that the learned behavior is too complex to understand
or reason about, especially in the case of deep learning.
Further difficulties emerge as such AI systems work with
fuzzy requirements regarding human perception or the open
real world. One survey showed that more than 40% engineers
feel the difficulty of quality assurance for AI systems is at
the highest level in the sense that existing approaches are no
longer working [1].

At the same time, there is an increasing demand for high-
quality and dependable AI systems because they work closely
with humans. It is therefore crucial to provide clear guidance
for understanding and tackling the difficulties inherent in high-
quality AI systems. In response to such industry demands,
we established the Consortium of Quality Assurance for
Artificial Intelligence-based products and services (QA4AI
Consortium), made up of experts from both industry and
academia. The objectives of the consortium are to form a
societal consensus on quality of AI systems by researching
issues and solutions relating to them, and to contribute to the
diffusion of ML developments into a safe and secure society.

In this paper, we report the first version of the guidelines
for the quality assurance of ML-based AI systems [2]. These
guidelines define the general concept and technologies for the
quality assurance of AI systems including concrete guidelines
relating to the quality characteristics, test architecture, and test
viewpoints in each typical domain.

The remainder of this paper is organized as follows: In
Section II, we first describe the consortium and the method-
ology to work on the guidelines. In Sections III and IV,
we describe the guidelines in terms of the common core
part and domain-specific parts, respectively. We evaluate the

335

guidelines in section V, and discuss the threats to validity
of the evaluation in section VI. Section VII introduces the
related work of this paper. We conclude the paper with future
perspective in Section VIII.

II. METHODOLOGY

A. The QA4AI Consortium

The QA4AI Consortium is a voluntary group to discuss
the quality assurance of ML-based AI systems in Japan. Its
objectives are to promote the application of ML-based AI
systems by reducing the risks associated with AI/ML and to
foster common social understanding of their quality, including
limitations.

When the first version of the guidelines was released,
the consortium consisted of 39 experts and three organiza-
tions from both academia and industry. Members include re-
searchers and practitioners in various technical fields including
software engineering, system safety, machine learning, and
quality assurance. The application domains of the partici-
pants are also diverse, covering the entertainment, automo-
tive, factory automation, electrics and electronics, communica-
tions, software, IT solutions, consumer devices, web systems,
aerospace and more.

B. Structure of Guidelines

The consortium facilitated two types of discussion to formu-
late the guidelines. In the first, quality assurance-related issues
in specific application domains were discussed. The purpose
was to derive concrete insights, as general insights might be
too abstract for the various domains with different demands.
For the first version of the guidelines, there were four working
groups: one each for generative systems, operational data in
process systems, voice user interface, and autonomous driving.

The second type of discussion was for organizing and sum-
marizing the common core concepts of the quality assurance
of ML-based AI systems. These discussions were facilitated
by expert members and their output was reviewed by the entire
consortium. The common concepts consist of two parts: axes
of quality evaluation and a technical catalogue.

The first version of the guidelines was published on the
QA4AI Consortium’s web site1 in May 2019. It has the
structure below corresponding to the two discussion types:

• Core parts of guidelines, including (1) Axes of Quality
Evaluation and (2) Technical Catalogue

• Guidelines for specific domains for (1) Generative Sys-
tems, (2) Operational Data in Process Systems, (3) Voice
User Interface, and (4) Autonomous Driving

III. CORE PARTS OF GUIDELINES

A. Axes of Quality Evaluation

The quality assurance of ML-based systems has unique
aspects in contrast to the quality assurance of traditional, non
ML-based systems. Specifically, ML-based systems usually in-
clude a complex, nonlinear model constructed in the inductive

1http://www.qa4ai.jp

development style for stakeholders, who may be unfamiliar
with ML-based system development.

Software development can be divided into the deductive
style and the inductive style. The former is that, for traditional
software, engineers have rich knowledge on development from
their experiences. Quality assurance applies the knowledge
such as process assessment, measurement, reviews, and test-
ing. The latter is for ML-based systems, because engineers
have poor knowledge how to develop ML-based systems as
they are automatically generated, nonlinear and too complex.
Traditional process assessment, measurement and reviews are
hence ineffective. Frequent, Entire, and Exhaustive Testing
(FEET) still works. Engineers have to adopt both the inductive
development style for the core ML models and the deductive
development style for entire ML-based system.

These guidelines extract five aspects of quality evaluation
for ML-based systems: Data Integrity, Model Robustness,
System Quality, Process Agility, and Customer Expectation.

Data Integrity relates to the quality assurance of samples of
inputs and outputs. This guideline has 11 general checkpoints
for statistical considerations, privacy, intellectual property
rights, online learning, and quality of the data generator,
such as volume and cost, meaningfulness and requirements,
relationships between population and sample, bias and con-
tamination, complexity, multicollinearity, outliers and missing
values, privacy and confidentiality, intellectual property rights,
independence of validation data, and effect of online learning.

Model Robustness relates to the quality assurance of a
model generated automatically. This guideline has 11 general
checkpoints for the characteristics of neural networks, model
performance, generalization, noise, local optima, architecture,
hyper parameters, cross validation, data diversity, and degra-
dation.

System Quality relates to the quality assurance of the
whole system. This guideline has eight general checkpoints for
system-level quality including system performance, validation
scope, criticality and frequency of accidents, controllability of
the system in accidents, functional safety, security, contribu-
tion and localizability of ML components, and explainability
and assurability.

Process Agility relates to the quality assurance from the
viewpoint of development process. This guideline has 11
general checkpoints for quickness of exploration including
short iterations and immediate feedback, scalability, automata-
bility, FEET, appropriate skills and deep understanding, and
teamwork.

Customer Expectation relates to the quality assurance for
various stakeholders, who may be unfamiliar with ML-
based system development. This guideline has eight general
checkpoints for extravagant expectation for AI, acceptance
of probabilistic behaviour, severity of expectation, optimism
for huge data, ambiguity of requirements, compliance, linear
and deterministic thinking, and bureaucracy. This axis is the
baseline for the other. The higher Customer Expectation is,
the higher the other axes need to be.

336

Customer
Expectation

System
Quality

Process
Agility

Model
Robustness

Data
Integrity

Customer
Expectation

System
Quality

Process
Agility

Model
Robustness

Data
Integrity

Fig. 1. Examples of Well-balanced and Ill-balanced Quality Pentagon

The total quality of ML systems should be evaluated
from the viewpoint of balance among the axes according to
Customer Expectation. The development organization of ML-
based systems should also establish a well-balanced quality
assurance fabric, an organization structure, and a quality
management system. Fig. 1 shows examples of a well-balanced
and an ill-balanced quality pentagon, consisting of the axes.
Furthermore, the total quality of ML-systems usually depends
on development phases such as Proof of Concept, Beta Release
and deployment of service to a large number of users. The later
the phase of development, the better the quality should be.

B. Technical Catalogue

Typically, technical guidelines generalize and summarize
techniques and practices being successfully employed in the
industry, at least in leading companies. However, for the qual-
ity assurance of ML models or ML-based systems, techniques
or practices are only just emerging and remain under active
investigation. We therefore collected trends from state-of-the-
art research papers in the Software Engineering community.
We also listed the standard concepts established in the ML
community, primarily for performance evaluation, e.g., preci-
sion/recall, over/under-fitting, and cross validation.

The state-of-the-art trends we included in the first version
of the guideline are as follows.

• Use of pseudo oracle, e.g., [3]
• Metamorphic testing, e.g., [4], [5]
• Robustness evaluation and search for adversarial exam-

ples, e.g., [4], [6]
• Structural coverage for neural network [3], [7]
• Methods for explainable AI including local explanation

for each output, e.g., [8], [9] and global explanation of
the trained model, e.g., [10].

Noted that we endeavor to generalize the concepts as well as
decompose multiple aspects combined in one research paper
or tool, e.g., in [3].

IV. GUIDELINES FOR SPECIFIC DOMAINS

The five axes provide common guidelines for the quality
assurance of ML-based systems, but it is necessary to design
a concrete scheme of quality assurance with an appropriate
understanding of the characteristics of each system. There-
fore, we examined four popular domains in which ML-based
systems are used to discuss the characteristics required quality,
and the quality assurance viewpoint for each domain.

Fig. 2. Image generation from given pose specification.

A. Generative Systems

There have been outstanding advances in techniques for
generative models, which learn “what happens with what prob-
ability”, particularly in techniques for generative adversarial
networks (GANs) [11]. With these techniques, applications
that create images, videos, essays, or dialogue can be con-
structed. We focus on such emerging applications because they
have a unique focus when it comes to quality: for example,
how natural and diverse the outputs are. Such quality attributes
are intrinsically fuzzy and difficult to assess automatically.

Our objective in this domain is to uncover potential ap-
proaches to automated evaluation of such quality attributes for
emerging generative systems. We defined a concrete applica-
tion that generates an image or video of an anime character,
which is inspired by the technique in [12]. Such functions help
create attractive interface agents and videos. We defined five
use cases for this application. Two of them are shown below
and Fig. 2 illustrates the first example.

1) Generate diverse natural character images of a specified
pose given as 2D-coordinates of key body parts

2) Generate a natural character video given two images for
the start and end points

For these use cases, we enumerated the quality attributes
that should be investigated, which are summarized as follows.

• Naturalness, e.g., the outputs let human users feel they
are created by human creators.

• Clearness and Smoothness, e.g., there is no noise,
collapse, or discontinuity in the outputs.

• Diversity, e.g., poses (when not specified) or clothing in
the outputs have a certain degree of diversity.

• Social Appropriateness, e.g., no discriminatory or ob-
scene output is generated.

• Specification Conformance, the output follows the given
instruction such as genders or color of cloths.

Although they are fuzzy intrinsically due to human percep-
tion, the possibilities of automated evaluation should be ex-
plored. Three primary approaches for evaluating these quality
attributes and some of the examples are shown below:

Approach 1 - Metrics: Define and use metrics that represent
the target quality attribute, even approximately. For example,
we can leverage the evaluation metrics of GANs for natural-
ness and diversity [13], [14]. As another example, we can
evaluate statistical values and distributions of optical flow,
which capture the movement of each part in the frames of
the video to detect obviously too drastic movement.

Approach 2 - Evaluation AI: Construct an AI that evaluates
the target quality attribute. Pose estimation techniques [15]

337

can be used to judge whether a generated output matches the
specified pose. We can also build our own model for pose
estimation, as the training data for the generative model orig-
inally includes mappings between poses and images, which
can be used as training data for a pose estimation model. We
can also investigate a dedicated model and data, for the target
quality attributes. For example, we may construct a classifier
to detect noisy images by creating training data that includes
images with noises automatically added.

Approach 3 - Evaluation Rules: Construct a rule-based AI
or traditional software to evaluate the target quality attribute.
For example, we can implement an analyzer that checks if the
specified clothing color is dominant inside the character in the
output image.

B. Operational Data in Process Systems

In industrial systems, ML technologies have been applied
and practically used in various fields, such as abnormality
detection, parameter recommendation and visual inspection.
Quality assurance requires the following three characteristics.

• Stakeholder Diversity: Industrial systems consist of mul-
tiple subsystems. Data integrity depends on various stake-
holders, operations , and contracts.

• Environmental Dependency: Systems are exposed to un-
repeatable and unpredictable changes of 5M + E (man,
machine, method, material, measure, and environment).

• Accountability: To operate the whole system, we need to
endorse the validity for all of system standards and rules.

Considering the three characteristics and the inductive man-
ner in building machine learning model, we defined a devel-
opment process model for machine learning system, named
Intelligent eXperimental Integration (IXI) model as shown
in Fig. 3. This model is divided into three phases: proof
of concept (PoC), development, and operation. Major risks
should be identified and verified in the PoC phase. In the
development phase, industrial systems using machine learning
are developed, based on the results of the PoC. In operation
phase, the output of the deployed machine learning and the
behaviour of the system are monitored and maintain its own
quality. The results in each phase are collected to explain to
stakeholders, and the machine learning model of the system
should be evaluated using risk identified data and during
operation and would be updated as necessary. The reason why
it is difficult to proceed each phase is there are no rational
guideline of evaluation in each activities. So we modeled all of
mandatory development and operation activities in IXI model,
and defined evaluation viewpoints with relationship of quality
model below.

• Customer Expectation: Coordinate intangible assets such
as software and involved various stakeholders.

• Data Integrity: Repetitive data confirmation process for
environmental changes or deterioration of facilities.

• Model Robustness: Condition of data collection and eval-
uation process and measurements.

PoC Development Operation

Goal, KPI,
Target Agreement

Risk Identification
and Analysis

Architecture
Concept Design

Requirement Development

Concept Design

IN/Out/ Monitor Component Development

Data / Model Infrastructure Development

System Test

Acceptance Test

Data Definition,
Analysis

Training Data Design

Machine Learning Component Development

Model Evaluation

Performance
Evaluation

Machine Learning Model Development

Machine Learning Related Development

Release

Monitoring

Trouble
Shoot

KPI Evaluation

Accuracy, Performance,
Size Monitoring

Model / Training Data
Configuration Management

Incident Response

Model Update

Infrastructure
Maintenance

System Development

Machine Learning Component Development

Data Design

Prototyping

Performance
Evaluation & Analysis

Inductive Manner Activity

Fig. 3. IXI model : Intelligent eXperimental Integration model

• System Quality: System quality would depend on data
and model quality. This criteria shows the evaluation
process of each change and explanation to stakeholders.

• Process Agility: Because of above criteria, we empha-
sized the importance of adapt any changes. We picked
up important agile practices.

We also discussed about a real example and added the
results to guideline content. It is a system of built-in machine
learning system in an industrial machine [16].The system has
the three characteristics, so we take it as an good example
for our guideline (quality model criteria and IXI model). We
discussed criteria, review process and test viewpoints for the
case. According to the discussion, we found that there are
following pros(+) /cons(-) in our guideline.

• (+) easy to cover quality criteria. It covers all of ML
related review points and test viewpoints.

• (+) easy to plan using the IXI phase model. The model
helps to understand the necessity of iteration.

• (-) To conclude specific criteria of thresholds and method-
ology to measure the metrics, still we need ML expert in
the project.

Finally, we conclude that our guideline has benefit to cover
and plan the quality assurance for industrial system.

C. Voice User Interface System

The voice user interface (VUI) system such as a smart
speaker recognizes the user’s voice sentence, understands the
intent and performs the actions as requested by using the ML
technologies as follows.

• Speech recognition: Converts speech signals captured
with a microphone into texts

• Natural language understanding: Interprets the converted
texts to generate the commands to act

• speech synthesis: Converts texts that are results of the
commands to speech signals

We discussed quality of VUI according to the axes of quality
evaluation shown in Section III-A. For ”Data Integrity”, the
system requires to perform the same action for the same
intention with different voices or expressions. For ”Model
Robustness”, quality of model update is typically important
since even new words are created day by day. For ”System

338

TABLE I
EXAMPLE OF TEST ARCHITECTURE FOR VUI SYSTEMS

Test Level Test Target Test Viewpoint
Unit test System modules

other than ML
Unit test for each module

Speech recognition,
Natural language
understanding and
Speech synthesis

Accuracy test for data and ML
models

Integration
test

APIs Functional test of integrated
modules

System test Features Specification-based testing
Exploratory testing
Scenario-based testing

Quality”, profiles and daily lives of users are of importance be-
cause smart speakers are usually placed home. For ”Customer
Expectation”, it is necessary to determine target users for each
function and to evaluate whether the users are satisfied.

The test architecture for the smart speakers consists of
several test viewpoints in several test levels as shown in Table
I. It is, however, difficult to clearly evaluate the conformity to
the requirements due to various requirements for VUIs. The
n-level evaluation method will solve such difficulty: Various
engineers evaluate whether output behaviors are suitable to
various intentions and specifications. An example of five-levels
evaluation for the smart speaker is shown below:

1) Perform unintended and different function.
2) The intended function is performed, but the content is

unintended.
3) The intended function is performed, but unintended

information is returned.
4) The intended function is performed and the intended

content is returned, but it must be incorrect.
5) The intended function is performed and the intended

content is returned.
Quality assurance levels of the whole system of smart

speaker can be defined in the following two levels:
1) Behavior level: The results of tests that can be answered

with Yes/No meet the specified acceptance criteria
2) Contents level: The results of tests that evaluate attrac-

tiveness of the product meet defined acceptance criteria

D. Autonomous Driving

Autonomous driving (AD) utilizes ML-based systems as
core technologies for object recognition, path planning, and
manipulation decisions. We investigated ideas, approaches,
technologies and methodologies that assure the quality of
the ML-based systems, focusing on object recognition for
Autonomous Emergency Braking (AEB) as a concrete function
of AD and scenario of AEB for the first version of our
guidelines. It supports automated steering and acceleration
capabilities, which correspond to level 2 of the Society of
Automotive Engineers (SAE) standard [17].

We Identified three challenges with the quality assurance
of AD: AD is expected to reduce crashes compared to human

Challenges
AD is expected to reduce
crashes compared to human
driving.

Scenes in real driving are
beyond assumed scope when
AD was first developed.

ML models are difficult to
replaced on the fly while AD is
operating in the real environment.

Development
process

Solutions

Analyze uncertainty from
use cases, e.g., a use case for
object recognition of AEB.

Develop fail-safe functions
against mis-recognition based
on analysis of failures.

Store knowledge of uncertainty
gaps on the real road and feed
back to analysis at the beginning
of development.

Use cases for AD
(Open world)

Uncertainty analysis

ML models
are required?

Develop
ML models

Develop
fail-safe functions

Accurate enough?

Verification of AD

AD in
the real world

Re-build ML models

Yes

Yes No

No
Feedback

Fig. 4. Methodology for analysis of uncertainty and items to verified in AD
development process.

driving, scenes in real driving are now beyond the scope when
AD was first developed, and ML models are difficult to replace
on the fly after AD is deployed to real driving. As a solution
to these challenges, we developed a methodology consisting
of the following phases:

1) Analyze a use-case for object recognition of AEB based
on a framework to manage uncertainty for AD [18] and
structuring-validation [19]

2) Develop fail-safe functions against mis-recognition
based on analysis of failures

3) Store knowledge of uncertainty gaps on the real road
and feed it back to the analysis at the beginning of the
development

An example of this methodology that includes an AD develop-
ment process, analysis of uncertainty, and items to be verified
in the development process is shown in Fig. 4.

This methodology helps to create test cases for the AEB. For
the results of analyzing uncertainty of AEB for pedestrians,
test cases are represented as a pedestrian who does not look
like a pedestrian (false negative) and an object that looks
like a pedestrian (false positive). The false negatives include,
for example, pedestrians who wear a coat the same color as
the wall or who stand behind a pole, and the false positives
include a pedestrian reflected in a window and a painting
that looks like a pedestrian. The test cases require expected
results. A false negative means the AEB will not work, so the
driver needs to operate the brake. A false positive means that
AEB will work (the car will decelerate) against the driver’s
expectation, so the driver cannot avoid the deceleration.

V. EVALUATION

We administered a questionnaire survey to evaluate useful-
ness of guidelines. The respondents were 31 of the readers,
including 13 persons had participated in developing the guide-
lines, since the authors are also users of the guidelines. Table
II shows the professions of respondents.

The questionnaire utilized 5-point Likert scale ranging from
“strongly deny” to “strongly agree.” The summary of questions
is listed in Fig. 5. The result of question 1 shows that the
whole of users can understand the characteristics of ML-based

339

TABLE II
PROFESSIONS OF RESPONDENTS

Target Research Devel. Testing Quality Other Total
ML/AI 1 11 3 2 0 17

Software 1 0 4 8 0 13
Procurement 0 0 0 0 1 1

Total 2 11 7 10 1 31

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

#1 Understandability of concept of QA for AI

#2 Usefulness for commu. /w customers

#3 Usefulness for planning of product

#4 Usefulness for design of products

#5 Usefulness for development of AI

#6 Usefulness for implementation of product

#7 Usefulness for testing of products

#8 Usefulness for quality assurance of products

#9 Usefulness for maintenance of products
Strongly deny Deny Neutral Agree Strongly agree N/A

Fig. 5. Responses to questionnaires

products that completely differs from that for software and the
proposed concept of quality assurance of them.

Questions from 2 to 9 address the usefulness of the
guidelines at each phase of AI-based system development.
Over 77% of respondents agreed or strongly agreed with the
usefulness at every phase, especially 94% of them did at the
quality assurance phase. These results mean that the QA4AI
guideline meets the objective of clarifying general concept of
quality assurance of AI-based systems.

VI. THREATS TO VALIDITY

There were few respondents to the questionnaire, so more
readers are needed to properly evaluate the guidelines. More-
over, because this was an open web questionnaire, it is possible
that only readers who felt positively responded.

Fig. 6 shows the difference of the response to question
1 between the authors and the others. The authors rate the
understandability of the guidelines more highly than the others
The authors may have a weaker assessment of the guidelines
than the others, otherwise, the results may indicate the effect
of the consortium’s deeper understanding of machine learning
properties as they were involved in the development of the
guidelines.

VII. RELATED WORK

Reports on practices or case studies are emerging from the
industry. Most are general, such as [20], [21], and aspects of
quality assurance or testing are very limited. Simple questions
to evaluate testing activities were provided in [22]. These ques-
tions provide significant guidance on which aspects should
be considered, e.g., monitoring input features. Our guidelines,
which cover these questions, provide more detailed guidance
including the investigation of specific domains in depth.

VIII. CONCLUDING REMARKS

We have reported the active efforts for the quality assurance
of ML models and ML-based systems in the QA4AI Consor-
tium driven by the Japanese industry. The first version of a set
of guidelines was published, including five axes of evaluation,

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Authors

Not authors

Strongly deny Deny Neutral Agree Strongly agree

Fig. 6. Differences of responses to question 1 between authors and the others

a technical catalogue, and specific insights for four application
domains. Testing is the most significant aspect of the guide-
lines as testing is the most significant activity in practice. The
guidelines provide insights from quality-assurance engineers
and test engineers. This direction complements specific testing
techniques that have been actively investigated, which are also
introduced in the guideline.

Given the high demands of the industry, we opted for a
quick release and frequent cycles of updates. We are aware
that the current guidelines are insufficient for some aspects of
the industry. The first version was constructed in a bottom-up,
best-effort way to identify what is missing in the guidelines
or in the knowledge from research communities. For example,
we found there is very little discussion on how to make use of
explainability tools such as LIME [8] in engineering activities.

We are continuously working to extend and enhance the
guidelines. Current activities include case studies to uncover
more insights in each domain as well as to clarify mapping
with other standards such as the Ethics Guidelines in the
European Commission2 and quality standards for general
software systems (SQuaRE, ISO/IEC 250XX series).

Acknowledgements

The authors are grateful to all members of the QA4AI Con-
sortium who contributed to the first version of the guidelines.
The authors are listed in alphabetical order, with no difference
in their contribution to the paper, as representatives of the
consortium.

REFERENCES

[1] F. Ishikawa and N. Yoshioka, “How do engineers perceive difficulties
in engineering of machine-learning systems? - questionnaire survey,”
in Joint International Workshop on Conducting Empirical Studies in
Industry and 6th International Workshop on Software Engineering
Research and Industrial Practice (CESSER-IP 2019), May 2018.

[2] QA4AI consortium, “Guideline for quality assurance of ai-based prod-
ucts (in japanese),” http://www.qa4ai.jp/QA4AI.Guideline.201905.pdf,
Japan, May 2019.

[3] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in The 26th Symposium on Operating
Systems Principles (SOSP 2017), October 2017, pp. 1–18.

[4] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: automated testing of
deep-neural-network-driven autonomous cars,” in The 40th International
Conference on Software Engineering (ICSE 2018), May 2018, pp. 303–
314.

2https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines

340

[5] A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. P. J. C. Bose,
N. Dubash, and S. Podder, “Identifying implementation bugs in machine
learning based image classifiers using metamorphic testing,” in The
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2018), July 2018, pp. 118–120.

[6] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in The 29th International Conference on
Computer Aided Verification (CAV 2017), July 2017, pp. 3–29.

[7] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L. Li, Y. Liu, J. Zhao, and Y. Wang, “Deepgauge: Multi-granularity
testing criteria for deep learning systems,” in The 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE
2018), r 2018, pp. 120–131.

[8] M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should I trust you?”:
Explaining the predictions of any classifier,” in The 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD 2016), August 2016, pp. 1135–1144.

[9] P. W. Koh and P. Liang, “Understanding black-box predictions via
influence functions,” in The 34th International Conference on Machine
Learning (ICML 2017), August 2018, pp. 1885–1894.

[10] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin,
“Learning certifiably optimal rule lists for categorical data,” in The 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD 2017), August 2017, pp. 35–44.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27 (NIPS 2014),
December 2014, pp. 2672–2680.

[12] K. Hamada, K. Tachibana, T. Li, H. Honda, and Y. Uchida, “Full-body
high-resolution anime generation with progressive structure-conditional
generative adversarial networks,” in The 1st Workshop on Computer
Vision for Fashion, Art and Design, Septembe 2018.

[13] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen, “Improved techniques for training GANs,” in The 29th
International Conference on Neural Information Processing Systems
(NIPS 2016), December 2016, pp. 2234–2242.

[14] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs trained by a two time-scale update rule converge to a local
nash equilibrium,” in The 30th International Conference on Neural
Information Processing Systems (NIPS 2017), December 2017, pp.
6626–6637.

[15] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution represen-
tation learning for human pose estimation,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2019), June 2019, pp.
2672–2680.

[16] Y. H. Tsuruta Kosuke, Minemoto Toshifumi, “Development of ai tech-
nology for machine automation controller (1),” OMRON technics, Tech.
Rep., 2018.

[17] S. O.-R. A. D. Committee et al., “Sae j3016. taxonomy and definitions
for terms related to driving automation systems for on-road motor
vehicles,” tech. rep., SAE International, Tech. Rep., 2016.

[18] K. Czarnecki and R. Salay, Towards a Framework to Manage Perceptual
Uncertainty for Safe Automated Driving: SAFECOMP 2018 Workshops,
ASSURE, DECSoS, SASSUR, STRIVE, and WAISE, Västerȧs, Sweden,
September 18, 2018, Proceedings, 01 2018, pp. 439–445.

[19] L. Gauerhof, P. Munk, and S. Burton, Structuring Validation Targets of a
Machine Learning Function Applied to Automated Driving: 37th Inter-
national Conference, SAFECOMP 2018, Västerȧs, Sweden, September
19-21, 2018, Proceedings, 01 2018, pp. 45–58.

[20] M. Zinkevich, “Rules for reliable machine learning: Best practices for
ML engineering,” NIPS 2016 Workshop on Reliable Machine Learning
in the Wild, December 2017.

[21] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann, “Software engineering for
machine learning: A case study,” in The 41st International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP
2019), May 2019, pp. 291–300.

[22] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “What’s your ML
test score? a rubric for ML production systems,” NIPS 2016 Workshop
on Reliable Machine Learning in the Wild, December 2017.

341

Call Sequence List Distiller for Practical Stateful API Testing

Koji Yamamoto, Takao Nakagawa, Shogo Tokui, Kazuki Munakata
Fujitsu Laboratories Ltd.

{yamamoto.kouji,nakagawa-takao,tokui.shogo,munakata.kazuki}@fujitsu.com

Abstract

Necessary and sufficient combinatorial testing is impor-
tant especially for continuous development to provide state-
ful service APIs that are invoked by an unspecified number
of users. Listing API call sequences for this type of test
cases is an important factor in achieving both high test cov-
erage and short time required for test execution. This paper
proposes a method to list fewer call sequences without re-
ducing API coverage, and a method to measure the degree
of adequacy of an API sequence for testing. Evaluations of
more than 400 services show that the listing method reduces
the number of sequences for half of the services, and that the
measurement method can determine whether the reduction
is possible or not for each service with high probability.

Keywords: test for microservices; call sequence listing;
stateful API; API specification; API fuzzing

1. Introduction

In the development of application systems using mi-
croservices, stateful fundamental functions on remote com-
puting nodes are combined to realize more advanced and
valuable functionality. The continuous development pro-
cess to provide remote side services of fundamental func-
tions involves testing to ensure that any combination of
function calls works as intended by the developers.

Each test case of the combinatorial tests for this purpose
consists of three parts: a sequence of APIs to invoke func-
tions, input parameter values of the functions, and expected
output values returned by the functions. Among them, se-
quences (“seqs” hereinafter) of APIs are most important be-
cause the seqs determine most of the test coverage and the
time required to complete the test process.

Representative previous work to list API call seqs for
services is RESTler [1] to our knowledge. It lists API call
seqs by appending an API to the previously listed seq that
outputs values required for the API.

DOI reference number: 10.18293/SEKE2020-095

Figure 1. APIs for motivating example and
value-sharing groups

From another perspective, test case enumeration pursues
two types of aims. One is to find unexpected defects. The
other is to ensure the functionalities are (still) as expected.
The former is important for testing newly created features.
The latter is crucial to continuous development of services.
RESTler has achieved the former aim. So the method lists
all the API seqs in which the value that each API takes is
emitted by the predecessor APIs. However, it is necessary
to reduce the number of seqs for the latter aim.

Let us see a visualized version1 of API specification
(“spec” hereinafter) in Figure 1 for a certain service. The
spec includes APIs that have little to do with each other.
Though some APIs in it should be called one after the other
for test cases, others need not. It is hypothesized that the
values handled by APIs reflect the developers’ intent as
to which API call should or should not follow a particu-
lar API call. For instance, the API get/user/membership

1Ovals in the figure represent APIs. Dashed rectangles stand for values
emitted or consumed by APIs. Dashed arrows indicate data flow.

API spec is assumed to be written in a common format such as OpenAPI
specification[2] (OAS). For example, the oval named “get/user/mem-
bership” represents the API spec in YAML style of OAS2 as follows:
p a t h s :

/ u s e r / membership :
g e t : { t a g s : [s c h e d u l e r s e r v i c e]

p a r a m e t e r s : [{name : u s e r i d , t y p e : s t r i n g , r e q u i r e d : t r u e }]
r e s p o n s e s : {200: {

schema : { t y p e : a r r a y ,
i t e m s : { t y p e : o b j e c t ,

p r o p e r t i e s : { t e a m i d : { t y p e : s t r i n g }} ,
r e q u i r e d : [t e a m i d]}}}}}

342

(“APIM” for short) emits value named team id; the API
get/team/schedule (“APIS”) takes the value. These indicate
a call of APIM can be followed by a call of APIS. Therefore
API call seq “APIM and then APIS” should be a candidate
test case. The API get/user/fee (“APIF”), contrarily, does
not emit values that others take, nor does it take values that
others emit. So APIF should follow nothing and vice versa.
To decrease in seqs, the above hypothesis can be used to
avoid API seqs that are not intended by the developers.

Value-sharing groups (SGs). In order to determine the
degree of adequacy of API call seqs for test cases, we pro-
pose a method to construct groups in which APIs can pass
values to each other. We call the groups as value-sharing
groups. More precisely, a value-sharing group is defined
as a minimum disjoint set of APIs that exchange values by
emitting only to or receiving only from other member APIs
in the same set. In this paper, values are identified by name.

Value-sharing groups could be a method to measure to
what extent each API call seq is adequate for a test case by
counting the number of sharing groups that APIs in each
seq belong to. Formally, a seq is the most adequate iff
|{sg ∈ SharingGroups(spec)|sg ∩ seq ̸= ∅}| = 1 by us-
ing function SharingGroups in Algorithm 1 where spec is
a set of API specs and seq is a set of APIs contained in
the seq. For example, APIs in Figure 1 are divided into
two value-sharing groups drawn as two rectangles. That is,
if the seq is the most adequate, the set seq of APIs in the
seq holds seq ∈ P({APIM, APIS})∪P({APIF}) instead of
seq ∈ P({APIM, APIS, APIF}).

This determination could help filter out API call seqs that
previous work lists to reduce the time required for testing.

We preexamined API specs for 2,157 cases2 of 410
REST services. Half of cases have more than one sharing
groups. Therefore, We have developed a method to list API
call seqs for testing so that each of the listed seqs is associ-
ated with one value-sharing group for almost all seqs.

This method lists API call seqs with exactly one sharing
group for all the investigated cases. For 1/3 of the cases, our
method lists fewer seqs than previous work. Nevertheless,
API coverage by our method is equivalent to the previous
work, except for one of the 2,157 cases investigated. We
suppose our method reduces the number of seqs for testing
without reducing test coverage.

Contributions. Contributions of this work are:

• We have developed a measurement method to decide
the adequacy degree of API call seqs for testing.

• We have developed a way to list fewer API call seqs.
2In general, a service contains multiple service categories, which are

identified by tags if the spec format is OAS for example. For each of the
410 services, each category identified by tag is treated as a case.

• We have performed quantitative evaluation of the pro-
posed listing method using 2,157 cases of REST ser-
vices. The evaluation results show our method lists
fewer API call seqs for testing than previous work
without reducing API coverage.

We show the proposed method and evaluation in sections
2 and 3 resp., discuss related work in 4, then conclude in 5.

2. Proposed Method

To reduce API call seqs for testing, two methods have
been developed. One is to divide APIs to value-sharing
groups (SGs), which appears in subsection 2.2. It is used to
measure a set of API specs and an API call seqs by counting
the number of associated sharing groups. Another method
is to list the reduced number of API call seqs, which ap-
pears in subsection 2.3. The method is also based on the
relationships between values emitted or taken by APIs.

2.1. Prerequisites

Suppose you have API specs for a service obtained by
parsing the API spec file (in OpenAPI Specification [2] or
other formats). Each parsed API spec corresponds to a spe-
cific API, and consists of the following information3:

• A set ivals of tuples of the API input values. A tuple
consists of a value name name, a boolean reqd indi-
cating that the value must be input, and a value type.

• A set ovals of tuples of the API output values. The
tuple type is the same as in ivals, but reqd indicates
the value must be outputted.

2.2. Value-sharing group listing function

Function SharingGroups in Algorithm 1 receives a set of
API specs each of which is of type described in subsection
2.1 to output a set of SGs for the spec set.

The function creates SGs one by one. Variables group,
ref , and namsN contain the SG being created, a set of
names for values emitted or taken by at least one mem-
ber API of the SG, and a set of names for values emitted
or taken only by members newly added to the SG, respec-
tively. The function attempts to select new members of the
SG (ln. 5). If no member are selected, the function decides
to create another SG with any API in spec as an initial mem-
ber (ln. 7, 11). Otherwise, the function adds selected mem-
bers to the SG (ln. 11). In either case, the function adds the
names for the values that the new members emit or take to

3A spec also contains information required to call the API. This in-
formation includes endpoint, base path, and scheme (GET, PUT, and
DELETE for example) if the original API spec is in OAS.

343

Algorithm 1 SharingGroups
Input: A set spec of API specs.
Output: A set groups that stores all the sharing groups as pairs

of sets. The 1st set is of APIs in a sharing group. The 2nd set
is of value names that the APIs in the group take or emit.

1: ivals← NS(∪
api∈spec

api.ivals); ovals← NS(∪
api∈spec

api.ovals)

2: ungot← ivals \ ovals; unused← ovals \ ivals
3: groups← ∅; namsN ← ∅
4: while spec ̸= ∅ do
5: memsN ← {api ∈ spec|VALNS(api) ∩ namsN ̸= ∅}
6: if memsN = ∅ then
7: api←select an element from spec; memsN←{api}
8: group← ∅; ref ← ∅ ▷ allocate new memories
9: groups← groups ∪ {⟨group, ref⟩} ▷ stores group

and ref as references to reflect changes after that in groups.
10: end if
11: group← group ∪memsN
12: namsN ← ∪api∈memsN VALNS(api) \ ref
13: ref ← ref ∪ namsN
14: namsN ← namsN \ (ungot ∪ unused)
15: spec← sepc \memsN
16: end while
17: return groups
18: function VALNS(api)
19: return NS(api.ivals)∪NS(api.ovals)
20: end function

Algorithm 2 Common functions
21: function NS(vals)
22: return {v.name|v ∈ vals}
23: end function

ref (ln. 13), then removes the members from spec (ln. 15),
and replaces namsN with a name set for the values emitted
or taken only by newly added members (ln. 14).

The time complexity of Algorithm 1 is O(S2N) for S
API specs and N value names because the most expensive
part, ln. 5, needs O(SN) at each run and is run O(S) times.

Solid rectangles in Figure 1 shows the result for example.

2.3. Sequence (seq) listing algorithm

Function ListAPISeqs in Algorithm 3 takes API specs
spec, and builds an API call seq list for testing.

First the function lists the initial API seqs (ln. 27), and
stores them into the queue todo. Each element in the queue
todo is a triple of an API seq and two sets of value names
that APIs in the seq take and emit resp. The function picks
an API seq (ln. 29), and checks for executability by calling
INVOKE4 (ln. 30). If all the APIs in the seq have been run,
the function stores it to the result list seqlist (ln. 32). If the
last API call has ended successfully5, the function extends

4The definition of the function is omitted.
5For REST APIs, ListAPISeqs uses HTTP status code to judge success.

Algorithm 3 ListAPISeqs
Input: A set spec of API specs, a max count Nlist of seqs, and a

max length Nseq of a seq.
Output: seqlist that stores all listed API seqs.
24: seqlist← [] ▷ seqlist is a list of API lists.
25: todo← [] ▷todo is a queue for triples of an API list, and two

sets of names for values taken or emitted by APIs in the list.
26: given←NS(∪api∈specapi.ivals)\NS(∪api∈specapi.ovals)
27: EXTEND([], ∅, ∅)
28: while todo ̸= [] ∧ |seqlist| ≤ Nlist do
29: dequeue ⟨seq, taken, emitted⟩ from todo
30: ⟨done whole, last result⟩ ← INVOKE(seq)
31: if done whole then
32: append seq to seqlist
33: if last result is successful ∧ |seq| < Nseq then
34: EXTEND(seq, taken, emitted)
35: end if
36: end if
37: end while
38: procedure EXTEND(seq, taken, emitted)
39: ref←emitted ∪ taken; feedable←given ∪ ref
40: for each next ∈ spec do
41: starving ← NS({v ∈ next.ivals|v.reqd})
42: if starving ̸⊂ feedable then
43: continue to process rest of next-s
44: end if
45: taking ← NS(next.ivals)
46: if seq ̸= [] ∧ (ref \ given) ∩ taking = ∅ then
47: continue to process rest of next-s
48: end if
49: seqN ← seq + [next]
50: takenN ← taken ∪ (feedable ∩ taking)
51: emittedN ← emitted ∪ NS(next.ovals)
52: enqueue⟨seqN , takenN , emittedN ⟩to todo
53: end for
54: end procedure

it (ln. 34) for longer seqs using procedure EXTEND.
Procedure EXTEND appends a API next to the specified

seq seq to get a longer seq seqN . Not all APIs are used for
appending. The procedure uses the following value name
sets to pick APIs to append to the seq: (1) given – A name
set of values taken by at least one APIs in spec and emitted
by no API. The values are treated as coming from outside
the APIs in spec; (2) ref – A name set of values emitted or
taken by at least one APIs in seq; (3) feedable – A name
set of values supplied by APIs in seq or externally supplied.
EXTEND picks APIs that meet both of the following condi-
tions (Note previous work employs condition I alone):

I All the values needed by the API are in feedable(ln. 42).

II If the specified seq seq is not empty, (ref \ given) con-
tains at least one value taken by the API (ln. 46).

EXTEND appends each API that holds the conditions to seq

344

to make a new seq seqN (ln. 49), then queues seqN to todo
besides names of values taken or emitted by seqN (ln. 52).

The time complexity of Algorithm 3 is O(MQSN) for
max API seq length Q, S API specs, N value names,
and at most M members for a SG, because EXTEND,
which is the most expensive and consumes O(SN), is run
O(MQ) times. On the other hand, the previous work needs
O(SQ+1N). It is larger than the former complexity because
O(S) = O(GM) ≥ O(M) where G is the number of SG.

The output seqs for APIs in Figure 1 are “APIF”,
“APIM”, and “APIM, APIS” for example. Besides them,
previous work outputs “APIF, APIM”, and “APIM, APIF”.

2.4. Implementation

We have implemented the functions SharingGroups and
ListAPISeqs in Python3. We also have made an OAS2
parser required for the prerequisites in section 2.1. It also
decomposes arrays6 in OAS2 to obtain value names of array
items, such as team id in the motivating example API spec.
The implementation includes code in which the condition
II in section 2.3 is disabled to emulate the way of previous
work like RESTler for comparison purposes. In the follow-
ing, the implementation of the proposed method is called
DC and the previous work is called SC.

3. Evaluation and discussion

Using the implementation above, we aim to answer the
following research questions:

Q1: Does DC (proposed method) list fewer API call seqs
than SC (previous work)?

Q2: Does DC decrease value-sharing groups (SGs) per
seq? If so, is the decrease related to the decrease in
the listed seq?

Q3: Does DC achieve the same API coverage as SC?

Q4: Is the decrease in listed call seq for a case related to the
number of value-sharing groups (SGs) in that case?

To answer these fairly, we have examined all the API
specs described in OAS 2.0 collected by APIs.guru[3]7.

This examination omits the actual API call portion of
ListAPISeq8 due to lack of access rights to the services. We
listed API call seqs up to length 3. We canceled listing if the
queue todo was still non-empty after 2,000 seqs had been
listed for each service9. The distribution of the examined
cases with each number of SGs is shown in Figure 2.

6Object types are not supported yet.
7These specs may not have been created by the developers.
8It was replaced with a function that always returns ⟨true, true⟩.
9We gave up 125 of 2,282 cases in 32 of 442 services.

Figure 2. The examined cases distribution

Figure 3. Plots for seqs and groups per seq

3.1. Decrease in seqs and sharing groups (Q1 & Q2)

The rows for ns in Table 1 and the scatter plot in Figure 3
show Q1 as yes. The number ns of seqs listed by DC is less
than or equal to the number of seqs listed by SC. Each grey
dot in the figure indicates how much the number of seqs for
each case is reduced by DC.

The rows for ng in the table say DC sets ng to 1 in almost
all cases. On the other hand, the box plot in Figure 3 shows
the numbers of SGs per seq listed by SC vary from 1 to
3. Table 2 shows ns is related to decrease of ng . These
respond affirmatively to the both questions of Q2.

Category |Cases|
Examined cases 2,157
The number ns of increased by DC 0
listed seqs equivalent 651

decreased by DC 1,506
The number ng of increased by DC 0
sharing groups equivalent (both are 1) 623
per seq (mean value) decreased to 1 by DC 1,498

other; no mean value 36
API coverage increased by DC 0
(The number of equivalent 2,154
APIs that appear (both are 100%) (2,033)
in the listed seqs) (both are < 100%) (121)

decreased by DC 1
other; no seqs listed 2

Table 1. The numbers of cases

345

|Cases| ng decreased to 1 otherwise
ns not decreased 0 651
ns decreased 1498 8

(The p-value for χ2 test is 0.0.)

Table 2. Relation of ng and ns

|Cases| Cases having multiple SGs single SG
ns not decreased 39 612
ns decreased 1435 71

(The p-value for χ2 test is 0.0.)

Table 3. Relation of the number of SGs and ns

The answer to Q1 indicates DC reduces API call seqs.
The answer to Q2 says the reduction may be due to DC cre-
ating seqs containing only APIs of a single sharing group.

3.2. API coverage (Q3)

The rows for API coverage in Table 1 show that method
DC holds the number of APIs that appear in the listed seqs
in almost all cases while the method reduces the listed seqs.

3.3. Relationship between seq and SGs (Q4)

Table 3 shows that the fact that a case has multiple shar-
ing groups (SGs) is related to the fact that DC lists fewer
call seqs than SC. Thus, the number of SGs for a service
can indicate the possibility of pruning the call seqs for a
service by using the proposed method.

3.4. Threats to the validity

One threat to the validity is the services to be examined.
We use API specs in APIs.guru[3] alone. The API specs
may be biased while the distribution of the number of SGs
in Figure 2 appears natural and an evidence of unbiased
to us. Besides, we did not evaluate our method with finer
grained measures (ex. code coverage) since internal infor-
mation like code on the examined services is not available.

Another threat is we have not actually called APIs to ex-
amine call seqs. Even if the method is based on static anal-
ysis, the result should be confirmed by actual execution re-
sults. In particular, each seq listed by the proposed method
must be checked by actual calls to see it is actually practical.

An important internal threats to the validity is that cat-
egorization by shared values may not capture the essential
characteristics of API specs. There may be more intuitive
and obvious factors. The scatter plot in Figure 3 implies that
there can exist other drivers to control the number of seqs
listed, even if the shared values is one of the drivers.

4. Related Work

Our algorithm is based on RESTler [1]. It aimed at find-
ing unexpected results. To address another aim, seq reduc-
tion, we have to add the idea of condition II in section 2.3.

We suppose the proposed approach also improves meth-
ods aiming at finding unexpected results since our approach
can support effective testing by reducing redundant call
seqs. RESTler calls itself an API fuzzing tool. One def-
inition of fuzzing is “the execution of the program under
test (PUT) using input(s) sampled from an input space that
protrudes the expected input space of the PUT”[4] (the em-
phasis is also by [4]). API seq listing without restriction
does not only protrudes the input space10 but may enlarge it
explosively. Our method can control its degree.

MoonShine[5], which lists API call seqs for OS kernels,
took a similar approach to ours. Its static analysis has the
algorithm for cond. I in section 2.3, though cond. II is miss-
ing. As another advantage, ours depends only on API specs
to support PUTs written in any programming languages.

5. Conclusion

We have developed a method to list fewer API call seqs
than previous work without losing API coverage. This re-
duces the number of seqs in half of cases. Another devel-
oped method determines whether a seq list is reducible for
each case. Nevertheless, we are afraid that these methods
alone are insufficient for more practical testing of stateful
service APIs. One key to improving the methods is to use
attributes of values that APIs input and output more deeply
(ex. on the types and the degree of necessity of the values).

References

[1] V. Atlidakis et al. RESTler: Stateful REST API
fuzzing. In IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pages 748–758, 2019.

[2] OpenAPI specification.
http://swagger.io/resources/open-api.

[3] APIs-guru - Wikipedia for web APIs.
https://github.com/APIs-guru/openapi-directory.

[4] V. J. M. Manès et al. The art, science, and engineering
of fuzzing: A survey. IEEE Transactions on Software
Engineering (Early Access), pages 1–1, 2019.

[5] Shankara Pailoor et al. Moonshine: Optimizing os
fuzzer seed selection with trace distillation. In Pro-
ceedings of the 27th USENIX Conference on Security
Symposium, SEC ’18, page 729–743, 2018.

10Call seqs are also inputs for combinatorial testing of services.

346

Impact of Label Noise and Efficacy of Noise Filters
in Software Defect Prediction

Shihab Shahriar Khan, Nishat Tasnim Niloy, Md. Aquib Azmain, Ahmedul Kabir
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

(bsse0703,bsse0723,bsse0718,kabir)@iit.du.ac.bd

Abstract—A well-established fact in the domain of software
defect classification is that dataset labels collected using auto-
mated algorithms contain noise. Several prior studies examined
the impact of noise and proposed novel ways of dealing with
this issue. Those studies, however, relied on randomly simulated
artificial noise on clean datasets, but real-world noise is not
random. Using a recently proposed dataset with both clean labels
annotated by experts and noisy labels obtained by heuristics,
this paper revisits the question of how label noise impacts
the defect classification performance and demonstrate how the
answer varies among several types of classification algorithms.
Based on a diverse set of 9 different noise filters, this paper
empirically investigates their ability to improve the performance
of classifiers trained with label noise. Contrary to previous
findings, we observe that the noise filters mostly struggle to
improve performance over unfiltered noisy data. Lastly, we
conduct several small-scale experiments in a bid to explain our
findings and uncover actionable insights.

Index Terms—Defect prediction, Label Noise, Class Imbalance,
Noise detection

I. INTRODUCTION

Like any machine learning task, the quality of defect pre-
diction models depends highly on the quality of data used to
train them. Unfortunately, noise is pervasive in binary defect
prediction datasets, particularly label noise [1], [2]. Label noise
occurs when a defective artifact is labeled as non-defective,
or vice-versa. There are many possible sources of such noise:
mislabeling of issues [3], failure to link issues to relevant code
changes [4] or bias of human annotators [5].

Several studies suggest that the presence of mislabeled
samples can significantly impact the performance of defect
prediction models [1], [6]. Studying the impact of noise is
a tricky problem, however, as it requires access to a set of
samples that are known to be reliable. Evaluating the model
on noisy test data might provide an unreliable estimate of its
generalizability. A common approach is to first clean data [7],
[8] or to only choose datasets believed to be of high-quality
[5], [6], and then randomly introduce artificial noise only in the
training subset. But the label noise of defect prediction dataset
is not random, and random noise tends to overestimate noise’s
impact compared to naturally occurring noise [9].

According to [10], the gold standard for label noise research
is to use a dataset where both naturally occurring noisy labels,

DOI reference number: 10.18293/SEKE2020-126.

and their clean, reliable counterparts (produced for example
with the help of domain experts) are available. Recently, Yatish
el al. [11] presented such a defect prediction dataset, and
concluded, somewhat surprisingly, that the impact of realistic
noise on classifier performance is “modest”. To resolve this
apparent disparity between results from artificial and clean
noise, using the same dataset as [11], this paper revisits the
question of how noise impacts classifier performance. We
show that except for Naive Bayes, noise has a high impact on
most classifiers. Decision tree and random forest were found
to lose comparatively the most performance.

Another objective is to find out whether this loss of perfor-
mance can be mitigated by noise handling techniques. There
are several ways to handle dataset noise such as cost-sensitive
learning [12], robust classifiers [13] or noise filters. We restrict
ourselves to noise filter in this study, and most of the noise
handling approaches proposed in defect prediction literature
fall under this category. In this paper, 9 filters of diverse
properties are investigated to analyze how they individually
perform, and how classifiers react to them. To the best of our
knowledge, this is the first paper to empirically compare such
a broad array of filters in defect prediction setting.

The result of the application of filter is somewhat mixed.
On the one hand, across all classifiers and datasets, noise
filters barely improve performance over unfiltered noisy labels.
On the other hand, from a classifier standpoint, performance
improves quite significantly when best filter performance is
considered. The takeaway is that while filtering can improve
performance, it crucially depends on the right combination of
classifier and filter.

Our final objective is to explain our findings and extract
actionable insights from them. We conduct several small-scale
experiments to that end. These revealed that the noise model
we study is far more challenging than artificially introduced
random noise, which may explain the observed big impact
of noise on classifiers. They also reveal how traditional ap-
proaches to fight the natural imbalance of defect datasets is
particularly inadequate in the high-level noisy setting that we
study.

II. STUDY DESIGN

The scope of this paper is limited to the “within-project”
post-release defect prediction scenario, and the main focus

347

here is on prediction, not interpretation. Throughout the paper,
the noise level (NL) of a dataset refers to the percentage
of its total samples that are mislabeled. Imbalance ratio (IR)
refers to the ratio of the number of samples in the majority
(non-defective) class to the number of samples in minority
(defective) class for clean labels, nIR does the same but
for noisy labels. The term “model” refers to an instance of
the combination of classifier, imbalance-method and filters
used. P→N denotes fraction of originally positive (defective)
samples that have been flipped to negative (non-defective) in
heuristic-based labeling, and N→P denotes the opposite.

All mentions of averages in this study are actually trimmed
mean, calculated after trimming away 5% of extreme val-
ues from each side. Wilcoxon signed-rank test [14] is used
to test statistical significance, with the p-value set to .01.
Benjamini-Hochberg procedure is used to correct for multiple
comparisons. To compute the effect size, Hedges’ g [15] is
used with an interpretation of values according to [16], that is
|g| < 0.2 “negligible”, |g| < 0.5 “small”, |g| < 0.8 “medium”,
otherwise “large”

A. Dataset Description:

This paper uses 32 datasets from 9 open-source software
systems presented in [11]. To identify defects introduced
by a release, traditionally used heuristic methods rely on
strong assumptions like “all bugs reported after release X is
introduced in release X” or that “all defect-fixing commits
that affect the release X occur within (say) 6 months after it’s
release”, etc. Furthermore, to link a bug report to a defect-
fixing commit, they assume that the logs of all bug-fixing
commits contain a specific set of keywords (e.g. Bugs, Fix
etc.) along with relevant issue ID.

In contrast, datasets used here are all collected from JIRA
issue tracker, which allows developers of a software to define
what releases were affected by a given bug, earliest of which
can be assumed to be the one that introduced it. This makes
the produced defective/non-defective labels comparatively far
more reliable. For the 32 datasets studied here, summary
statistics for their key characteristics is presented in Table
1. #ND and #defective denote number of non-defective and
defective samples respectively in clean labels.

TABLE I: Summary statistics of key dataset characteristics

Dataset
Property Min Median Max

Size 731 1717 8846
NL(%) 2.35 13.32 28.99

IR 1.97 8.24 45.07
nIR 3.09 12.65 56.87

#defective 26 197 669
#ND 609 1455 8654

P→N(%) 19.23 63.27 93.43
N→P(%) 1.05 4.12 20.97

B. Classifiers

For subsequent experiments, 6 classifiers have been used:
Decision Tree (DT), K Nearest Neighbor (KNN), Naive Bayes

(NB), Logistic Regression (LR), Support Vector Machine
(SVM) and Random Forest (RF). Each of these classifiers has
been combined with 5 data balancing techniques: Wilson’s
editing (ENN), Random Under-Sampling (RUS), SMOTE,
Tomek Links (TOMEK) and None (representing no sampling),
totaling 6∗5 = 30 models. Two bagging classifiers using Naive
Bayes and Decision Tree are also used as base learners, both of
which apply RUS independently at each base learner (BagNB
and BagDT). This brings the total number of models studied
to 32.

C. Noise Filters

All the 9 noise filters operate under the assumption that mis-
labeled instances are harder to predict than clean ones. These
methods can be roughly divided into two groups. The first
group, ensemble-based methods, assume a mislabeled training
instance will be frequently misclassified by a committee of
classifiers. Iterative Partitioning Filter (IPF) [17], Random
Forest Filter (IHF) [18] and Instance Hardness Threshold
(IHT) [19] belong to this group. IPF partitions the training
data into n subsets to train a decision tree on each, and all n
classifiers are used to predict the label of each instance (and
thereby detect mislabeling) in the training set. RFF takes a
cross-validation approach- it uses n − 1 subsets of training
data to train a random forest classifier, and uses its base trees
to predict on remaining subset. IHT differs from IHF only in
that it down-samples the majority class, leaving minority class
untouched.

The second group uses an instance’s nearest neighbors to
predict its label. This group includes Neighborhood Cleaning
Rule (NCL) [20], SPIDER2 [21], Edited Nearest Neighbor
(ENN) [22], SMOTE ENN [23] and SMOTE IPF [24] and
Closest List Noise Identification (CLNI) [6]. CLNI finds for
each instance the percentage of its K nearest neighbors that
have different class values, instances for which this percent-
age cross a certain threshold are removed and repeats this
procedure unless some stopping criterion is met. For space
consideration, the discussion about the rest of the filters is
omitted.

Six of these filters belong to the family of focused
imbalance-methods- noise identification and removal are in-
tegrated into them. Since the noise detectors have a tendency
to overestimate the noise likelihood of minority class [25],
for the rest 3 types- IPF, CLNI and RFF, this paper relies on
the previously discussed imbalance-methods to balance dataset
before applying filtering. All these filters are compared against
the baseline “NoF”, meaning no filtering.

D. Evaluation:

Following the guidelines of [26], our primary choice for
a model’s performance evaluation is Matthews Correlation
Coefficient (MCC). For a given confusion matrix, MCC is
defined as:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

348

Since this is threshold-dependent, the area under the
Precision-Recall curve (APRC) is also used to complement
MCC, but we note its performance only when APRC result
diverges significantly from MCC. APRC is used over the
more popular alternative area under the receiver operating
characteristic curve (roc-auc) following the recommendation
of [27].

In all of the following experiments, only clean labels are
used for evaluation. 5-fold cross-validation has been repeated
5 times for measuring all reported performance values. The
experiments are conducted with the help of scikit-learn [28]
and imbalanced-learn [29] libraries. For all classifiers, the
default hyper-parameter values provided in these libraries are
used. The dataset and source code of this study can be found
online 1.

III. RESULTS & DISCUSSION

A. How does the presence of label noise impact bug detection?

Figure 1 shows how the performance of examined classifiers
compare between clean and noisy labels. As expected, all
classifiers fare worse when noise is included. But some, for
example, decision tree (DT), reacts quite poorly to noise. This
is expected since unpruned decision trees are known to easily
overfit [30]. But performance loss of random forest (RF) was
somewhat surprising as it has been frequently found to be
noise resistant in previous studies [31], [32]. On the opposite
spectrum is Naive Bayes and its balanced bagging version
BagNB. In fact, as Table II shows, these are the only two
classifiers where label noise seems to have had a small effect
in terms of MCC. Among others, only SVM has a medium
effect, all else are highly impacted by noise. The impact
is comparatively less severe for APRC, which is expected
since it’s threshold-independent. But overall, the impact is
statistically significant for all of the results in Table II except
one. This result contradicts [2] or is slightly at odds with [11]
previous studies, which reported noisy labels having an only
modest effect on classifiers.

This performance of Naive Bayes under noise is consistent
with previous studies [33] that demonstrated Naive Bayes’
superiority in the defect classification task. This is slightly at
odds with the findings from general-purpose (i.e. not domain-
specific) datasets like the ones from UCI [34], where random
Forest, SVM or Boosting approaches perform well. As noise
label is pretty ubiquitous in bug prediction datasets used in
those studies [7], [8], this finding suggests that Naive Bayes’
particular success in defect classification domain may have
been primarily due to its unique robustness in the face of label
noise.

To summarize:
• The impact of label noise is statistically significant for

all classifiers, and the impact is quite large for most.
• Random forest and similar balanced bagging with deci-

sion tree perform best when trained with clean labels.

1https://figshare.com/s/372afb62060475b91e9e

DT LR NB SVM KNN RF BagNB BagDT
Classifier

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
C
C

Labels
Clean
Noisy

Fig. 1: Comparison of performances of classifiers trained with
clean and noisy labels

• NB and bagging with NB are two of the best performing
classifiers with noisy labels, particularly owing to NB’s
surprisingly good inherent robustness to noise.

Discussion: Why is the impact of noise high? One obvious
explanation is that the amount of noise in studied datasets
is comparatively high compared to previous studies. All of
the filters that we studied were tested with the assumption
that noise level will not cross 50%. Even many theoretical
guarantees we have about learning from corrupted labels is
grounded on the same assumption [12], [35]. But as Table I
shows, at least for defective class, this assumption does not
hold. In 23/32 datasets, noise level in defective class (P→N)
is higher than that 50% mark. While overall noise level is
well below 50% for all the datasets, several prior studies show
using artificial noise that the P→N noise is relatively far more
harmful than N→P.

We demonstrate this in a slightly different way: we start
with clean labels, for each class we select the samples that
are mislabeled by heuristic method, and then flip a certain
percentage of them, while keeping the labels of other class

TABLE II: Effect of label noise on classifier performance.
“Delta” denotes average loss of performance across all datasets
and imbalance methods. Results that are NOT statistically
significant are marked with *

MCC APRC
Classifier Delta Effect Interpret. Delta Effect Interpret.

DT .116 1.312 Large 0.082 0.611 Medium
LR .103 1.003 Large 0.079 0.515 Medium
NB .022 0.277 Small 0.013 0.125 Neglig.

SVM .081 0.755 Medium 0.089 0.551 Medium
KNN .097 1.000 Large 0.086 0.607 Medium
RF .141 1.224 Large 0.118 0.760 Medium

BagNB .021 0.268 Small 0.011* 0.087 Neglig.
BagDT .097 0.962 Large 0.097 0.586 Medium

349

https://figshare.com/s/372afb62060475b91e9e

constant. We then compute how this two types of intention-
ally introduced noise degrades performance w.r.t clean data,
aggregated over all datasets and models.

0.00 0.25 0.50 0.75 1.00
Noise Level

0.03

0.02

0.01

0.00

0.01

0.02

dA
PR

C

NP
PN

(a) Impact of each noise type on APRC

0.00 0.25 0.50 0.75 1.00
Noise Level

0.05

0.04

0.03

0.02

0.01

0.00

0.01

dM
C

C

NP
PN

(b) Impact of each noise type on MCC

Fig. 2: Impact of P→N vs N→P noise

As Figure 2 shows, performance decreases much more
rapidly with P→N noise than N→P. This implies where noise
occurs is more important than overall noise level, and that’s
why these datasets pose a very difficult task for any learner.

B. How much can noise filters recover performance?

As previously mentioned, 9 noise filters are applied to the
training dataset. Figure 3 boxplot shows how much each of
them improves performance over unfiltered noisy labels, i.e
the difference in MCC and APRC, across 32 models and 32
datasets.

CLNI NCL ENN IHF SM_ENC IHT SM_IPF SPIDER2 IPF
Filter

0.2

0.1

0.0

0.1

0.2

0.3

D
el

ta

Metric
dMCC
dAPRC

Fig. 3: Performance improvement by noise filters on noisy
labels across all models and datasets w.r.t baseline no-filering
(NoF)

One salient finding is that the median for most of the filters
lies pretty close to zero, a value that indicates no improvement
over non-filtered data. In fact, the boxes quite often go below
the zero mark, these are the cases where filtering actually
decreased performance. Some outliers go even below the range
presented in the figure.

As both Figure 3 and Table III show, the results vary slightly
among the evaluation metrics. Among all the filters, classifiers
and datasets, APRC performance on average is improved by
.0203, for MCC this value is 0.0012. With MCC, only 2
out of 9 filters, NCL and SMOTE IPF, bring statistically
significant improvement. With APRC, this is true for all except
SPIDER2. But irrespective of evaluation metric, the effect of

performance improvement remains small even for the best
performing filters.

DT LR NB SVM KNN RF BagNB BagDT
Classifier

0.00

0.05

0.10

0.15

0.20

0.25

Va
lue

Metric
dMCC
dAPRC

Fig. 4: Performance improvement of each classifier using the
best filter for that classifier

In Figure 4, for each classifier, we plot the improvement
brought by the best among all 9 filters for that classifier.
This represents an upper bound on how much a classifier
can recover performance from the application of filtering. The
figure reveals that KNN and DT classifiers can benefit most
from noise filters. Using only the best value among filters,
performance improvement across all models and datasets on
average is .057 for MCC and .077 for APRC. This implies
filtering can positively impact performance, as long as right
classifier-filter combination is used.

Discussion: So, Why do filters struggle to improve perfor-
mance? Apart from high noise in defective class discussed
before, we believe a big part of this answer lies in the
fact that these datasets are highly class-imbalanced. Next, we
consider 3 of the most common ways to address imbalance
in turn: no sampling, under-sampling and over-sampling, and
provide preliminary evidence to demonstrate why they might
be inadequate for the datasets at hand.

1) No Sampling: We begin with the baseline where we do
not do anything to address class imbalance. [26] suggests that
class balancing is important for moderate or highly imbalanced
datasets, where moderate imbalance was defined as having

TABLE III: Performance improvement for each noise filter
across all datasets and models. Statistically significant im-
provements are marked with *.

MCC APRC
Filter Delta Effect Interpr. Delta Effect Interpr.

SM IPF 0.0237* 0.275 Small 0.0359* 0.274 Small
SPIDER2 -0.0080 -0.121 Neglig. -0.0046 -0.04 Neglig.

IHF 0.0001 -0.061 Neglig. 0.0188* 0.138 Neglig.
NCL 0.0163* 0.156 Neglig. 0.0172* 0.127 Neglig.
ENN -0.0042 -0.079 Neglig. 0.0057* 0.045 Neglig.
IHT -0.0066 -0.079 Neglig. 0.0496* 0.356 Small

CLNI -0.0031 -0.099 Neglig. 0.0159* 0.119 Neglig.
IPF -0.0116 -0.130 Neglig. 0.0264* 0.205 Small

SM ENC 0.0041 0.038 Neglig. 0.0175* 0.119 Neglig.

350

���� ������������� �������������

���

���

���

���

���

���

���

	
	

Fig. 5: Comparison of 3 approaches to data balancing accross
all datasets and models. under-sampling includes ENN and
RUS, over-sampling only includes SMOTE.

IR> 3.94. Using the same threshold, 27 out of 32 datasets
we use is moderately or highly imbalanced, suggesting this
option might not be optimal. We illustrate this using IPF, one
of the filters which does not have data balancing baked in.
As Figure 5 shows, both of the alternatives clearly outperform
no-sampling.

2) Under-Sampling: These techniques remove samples
only from majority class, unless a desired level of balance with
minority class is reached. One problem with these approaches
is that when imbalance is high, this means throwing out a big
portion of dataset. For example, given our median nIR=12.65,
under-samplers will have to throw out 85.4% of overall data
to create perfect balance.

Some techniques try to minimize the impact of data loss
by filtering out uninformative or noisy samples. In fact, 3
of our 9 filters: IHT, NCL and ENN, belong to this group.
As we’ll show, even when they work exactly as intended
i.e. even in the best case scenario, they still struggle to
noticeably improve performance over simple random under-
sampling. To test this, we first removed each mislabeled
sample from majority class of training set, and then kept
randomly removing samples until class balance is achieved.
While the improvement (across all datasets and models) over
random under-sampling is statistically significant, effect size
reveals that the improvement is “negligible” for both MCC
and APRC (.155 and .129 respectively).

3) Over-Sampling: As a representative of this family of
samplers, we choose perhaps the most widely used data
balancing technique: SMOTE [36]. In short, SMOTE randomly
selects one of the minority (defective) samples and one of
it’s nearest neighbors, then samples a random point from the
line connecting those two samples in feature space. This new
sample naturally gets labeled defective. Therefore, quality of
labels of new samples depends crucially on the quality of
existing minority samples’ labels.

Unfortunately, majority of the samples labeled as defective

are actually non-defective due to noise. While the ratio of
N→P noise as shown in Table I is comparatively small, even
that small noise level can overwhelm minority class due to
high imbalance. For example, in a dataset with nIR=12.65,
P→N=63.27% and N→P=4.12% (all are median values taken
from Table I), only 41.3% of samples labeled as defective will
actually be defective. This in turn means that only 17% of
SMOTE-generated defective samples is expected to originate
from a pair of defective samples, whereas for around 34%
samples both of their parents will actually be non-defective.
About half (∼ 49%) will originate from one clean and one
mislabeled sample. Using PCA transformation, we illustrate
this idea with JRuby-1.5.0 dataset in Figure 6.

clean
noise

(a) Original defective samples

noise
hybrid
clean

(b) Samples generated by SMOTE

Fig. 6: Distribution of mislabeled and clean samples in defec-
tive class. Explained variance for the figures is 57% and 59%
respectively.

IV. THREATS TO VALIDITY

Our study crucially depends on the assumption that the
labels we assume to be clean are actually clean. One issue is
that these labels are human-annotated. While this makes the
so-called clean labels far more reliable than their heuristics-
based counterparts, they are still susceptible to human error,
due to phenomenons like snoring [37] or annotator bias [5]
for example.

Also, a few prominent classifiers like Neural Network or
XGBoost [38] are excluded in this study, mainly due to
their computationally extensive training procedures. Similar
consideration also led us to skip extensive hyper-parameter
tuning, something that can impact a classifier’s performance
[39]. We note however, that any such optimization would have
to be carried out on a subset of noisy training data, and this
can lead to poor choice of hyper-parameter values [40].

V. CONCLUSION AND FUTURE WORK

By using a diverse set of classifiers, imbalance-methods and
noise filters, this study empirically investigates how the pres-
ence of label noise in post-release defect prediction datasets
affect performance and evaluates the effectiveness of noise
filters in minimizing the adverse effects of noise. The principal
conclusions of this study are (1) Label noise in bug prediction
datasets do have large impact on most classifier’s performance,
(2) Noise filtering isn’t guaranteed to improve performance,
but with the right choice of classifier-filter combination, it
can yield significant improvement especially for classifiers

351

that easily overfit, e.g., decision tree. This study also revealed
the highly robust nature of the Naive Bayes algorithm, the
surprising brittleness of Random Forest and took the first steps
towards explaining these findings.

For future work, we plan to investigate several alternatives
to filtering for noise handling. The relatively higher cost of
P→N noise suggests while designing any auto defect-labeling
algorithm, recall of defect class should be prioritized over
precision. We also plan to explore this idea in future.

REFERENCES

[1] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced?” in Proceedings of the 7th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering on
European software engineering conference and foundations of software
engineering symposium - ESEC/FSE '09. ACM Press, 2009. [Online].
Available: https://doi.org/10.1145/1595696.1595716

[2] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
misclassification impacts bug prediction,” in Proceedings of the 2013
international conference on software engineering. IEEE Press, 2013,
pp. 392–401.

[3] J. Aranda and G. Venolia, “The secret life of bugs: Going past the
errors and omissions in software repositories,” in Proceedings of the
31st international conference on software engineering. IEEE Computer
Society, 2009, pp. 298–308.

[4] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein,
“The missing links: bugs and bug-fix commits,” in Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, 2010, pp. 97–106.

[5] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample size vs.
bias in defect prediction,” in Proceedings of the 2013 9th joint meeting
on foundations of software engineering. ACM, 2013, pp. 147–157.

[6] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in 2011 33rd International Conference on Software
Engineering (ICSE). IEEE, 2011, pp. 481–490.

[7] J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, “Skewed class
distributions and mislabeled examples,” in Seventh IEEE International
Conference on Data Mining Workshops (ICDMW 2007). IEEE, 2007,
pp. 477–482.

[8] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Folleco, “An
empirical study of the classification performance of learners on imbal-
anced and noisy software quality data,” Information Sciences, vol. 259,
pp. 571–595, 2014.

[9] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and K. Mat-
sumoto, “The impact of mislabelling on the performance and inter-
pretation of defect prediction models,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1. IEEE, 2015,
pp. 812–823.

[10] B. Frénay and M. Verleysen, “Classification in the presence of label
noise: a survey,” IEEE transactions on neural networks and learning
systems, vol. 25, no. 5, pp. 845–869, 2013.

[11] S. Yatish, J. Jiarpakdee, P. Thongtanunam, and C. Tantithamthavorn,
“Mining software defects: should we consider affected releases?” in Pro-
ceedings of the 41st International Conference on Software Engineering.
IEEE Press, 2019, pp. 654–665.

[12] N. Natarajan, I. S. Dhillon, P. Ravikumar, and A. Tewari, “Cost-sensitive
learning with noisy labels.” Journal of Machine Learning Research,
vol. 18, pp. 155–1, 2017.

[13] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,” Machine learning, vol. 40, no. 2, pp. 139–157, 2000.

[14] R. Woolson, “Wilcoxon signed-rank test,” Wiley encyclopedia of clinical
trials, pp. 1–3, 2007.

[15] L. V. Hedges and I. Olkin, Statistical methods for meta-analysis.
Academic press, 2014.

[16] J. Cohen, “A power primer.” Psychological bulletin, vol. 112, no. 1, p.
155, 1992.

[17] T. M. Khoshgoftaar and P. Rebours, “Improving software quality pre-
diction by noise filtering techniques,” Journal of Computer Science and
Technology, vol. 22, no. 3, pp. 387–396, 2007.

[18] M. Sabzevari, G. Martı́nez-Muñoz, and A. Suárez, “A two-stage ensem-
ble method for the detection of class-label noise,” Neurocomputing, vol.
275, pp. 2374–2383, 2018.

[19] M. R. Smith, T. Martinez, and C. Giraud-Carrier, “An instance level
analysis of data complexity,” Machine learning, vol. 95, no. 2, pp. 225–
256, 2014.

[20] J. Laurikkala, “Improving identification of difficult small classes by
balancing class distribution,” in Conference on Artificial Intelligence in
Medicine in Europe. Springer, 2001, pp. 63–66.

[21] K. Napierała, J. Stefanowski, and S. Wilk, “Learning from imbalanced
data in presence of noisy and borderline examples,” in International
Conference on Rough Sets and Current Trends in Computing. Springer,
2010, pp. 158–167.

[22] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Transactions on Systems, Man, and Cybernetics,
no. 3, pp. 408–421, 1972.

[23] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior
of several methods for balancing machine learning training data,” ACM
SIGKDD explorations newsletter, vol. 6, no. 1, pp. 20–29, 2004.

[24] J. A. Sáez, J. Luengo, J. Stefanowski, and F. Herrera, “Smote–ipf:
Addressing the noisy and borderline examples problem in imbalanced
classification by a re-sampling method with filtering,” Information
Sciences, vol. 291, pp. 184–203, 2015.

[25] J. Van Hulse and T. Khoshgoftaar, “Knowledge discovery from imbal-
anced and noisy data,” Data & Knowledge Engineering, vol. 68, no. 12,
pp. 1513–1542, 2009.

[26] Q. Song, Y. Guo, and M. Shepperd, “A comprehensive investigation of
the role of imbalanced learning for software defect prediction,” IEEE
Transactions on Software Engineering, 2018.

[27] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informa-
tive than the roc plot when evaluating binary classifiers on imbalanced
datasets,” PloS one, vol. 10, no. 3, p. e0118432, 2015.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[29] G. Lemaı̂tre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine
learning,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 559–563, 2017.

[30] M. Bramer, “Using j-pruning to reduce overfitting in classification trees,”
in Research and Development in Intelligent Systems XVIII. Springer,
2002, pp. 25–38.

[31] T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Comparing
boosting and bagging techniques with noisy and imbalanced data,” IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, vol. 41, no. 3, pp. 552–568, 2010.

[32] C. Pelletier, S. Valero, J. Inglada, N. Champion, C. Marais Sicre,
and G. Dedieu, “Effect of training class label noise on classification
performances for land cover mapping with satellite image time series,”
Remote Sensing, vol. 9, no. 2, p. 173, 2017.

[33] S. Wang and X. Yao, “Using class imbalance learning for software defect
prediction,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–
443, 2013.

[34] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
[35] N. Manwani and P. Sastry, “Noise tolerance under risk minimization,”

IEEE transactions on cybernetics, vol. 43, no. 3, pp. 1146–1151, 2013.
[36] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[37] A. Ahluwalia, D. Falessi, and M. Di Penta, “Snoring: a noise in defect
prediction datasets,” in Proceedings of the 16th International Conference
on Mining Software Repositories. IEEE Press, 2019, pp. 63–67.

[38] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM, 2016, pp. 785–794.

[39] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“The impact of automated parameter optimization on defect prediction
models,” IEEE Transactions on Software Engineering, vol. 45, no. 7,
pp. 683–711, 2018.

[40] D. I. Inouye, P. Ravikumar, P. Das, and A. Dutta, “Hyperparameter
selection under localized label noise via corrupt validation,” in NIPS
Workshop, 2017.

352

https://doi.org/10.1145/1595696.1595716

Using Deep Learning Classifiers to Identify

Candidate Classes for Unit Testing in Object-Oriented

Systems.

Wyao Matcha

Software Engineering

Research Laboratory

Department of Mathematics

and Computer Science

University of Quebec,

Trois- Rivieres, Quebec,

Canada

Wyao.Matcha@uqtr.ca

Fadel Touré
Software Engineering

Research Laboratory

Department of Mathematics

and Computer Science

University of Quebec,

Trois- Rivieres, Quebec,

Canada

Fadel.Touré@uqtr.ca

Mourad Badri
Software Engineering

Research Laboratory

Department of Mathematics

and Computer Science

University of Quebec,

Trois- Rivieres, Quebec,

Canada

Mourad.Badri@uqtr.ca

Linda Badri
Software Engineering

Research Laboratory

Department of Mathematics

and Computer Science

University of Quebec,

Trois- Rivieres, Quebec,

Canada

Linda.Badri@uqtr.ca

Abstract — This paper aims at investigating the use of deep

learning to suggest candidate classes to be tested rigorously

during unit testing. The approach is based on software unit

testing information history and source code metrics. We

conducted our experiments using data collected from five (5)

successive versions of the open source Java Apache software

system ANT. For each version, we collected various source code

metrics from the source code of the Java classes. We then

extracted testing coverage measures for software classes for

which dedicated JUnit test classes have been developed. We

considered instruction and method level coverage granularities.

Based on the different datasets collected, we trained several

deep neural network models. We validated the constructed

classifiers using Cross Version Validation technique. The

obtained results strongly support the viability of our approach

with an average accuracy greater than 87%.

Keywords- Unit Testing, Tests Prioritization, Source Code

Metrics, Testing Coverage Measures, Machine Learning, Deep

Learning.

I. INTRODUCTION

Testing is the stage of software development where

developers (testers) assess the conformity of the system

developed (under development) with specifications [1].

Testing plays a crucial role in software quality assurance. It

is, however, a time and resource-consuming process. Unit

testing is one of the main phases of the testing process where

each software unit is early and individually tested using

dedicated unit test cases. In object-oriented (OO) software

systems, units are software classes and testers usually write a

dedicated unit test class for each software class they decided

to test [2]. The main goal of unit testing is to early reveal the

faults of software classes. In the case of large-scale OO

software systems, because of resources limitation and time

constraints, it is difficult, even unrealistic, to test rigorously

all the classes [3]. The unit testing efforts are often focused.

Testers (developers) usually prioritize unit tests by selecting

and focussing the unit testing effort on a limited set of

software classes (most critical) for which they write dedicated

unit tests. Tests case prioritization is a method for prioritizing

and planning test cases [3, 5]. This technique is used to run

higher priority test cases (focus on the most critical

components) to minimize time, cost and effort during the

software testing process [3-6].

In this paper, we focus on unit testing of classes and

particularly on how to automatically suggest suitable classes

for unit testing using deep learning and information on both

unit testing history and source code metrics. Several research

related to test cases prioritization [7] using different OO

metrics (The Chidamber and Kemerer metric suite in

particular [8]) have been proposed in the literature. Some of

these metrics, related to different software class attributes,

have already been used in recent years to predict unit

testability of classes [9-13]. These studies analyzed in

particular various open source Java software systems and the

corresponding JUnit test classes. One of the observations that

have been made in these studies is that unit test cases were

written only for a subset of classes [11-13].

Currently, many software repositories are available and

can be used (among others) to analyze and predict software

quality. Based on these repositories, can we extract valuable

information that can be used to help software testers in

prioritizing unit tests? Is it possible to automate this process?

The main goal of our research is to propose an approach to

identifying suitable classes for unit testing using deep

learning techniques [14,15] (artificial neural networks). The

approach is based on software unit testing information history

and source code metrics. We conducted our experiments

using data collected from five (5) successive versions of the

DOI reference number: 10.18293/SEKE2020-147

353

open source Java Apache software system ANT [16]. For

each version, we first collected various source code metrics

from the source code of the Java classes. We then extracted

testing coverage measures for software classes for which

dedicated JUnit [17] test classes have been developed. We

considered instruction and method level coverage

granularities. With the collected data, we trained several deep

neural network models. We validated the constructed

classifiers using Cross Version Validation technique. The

obtained results strongly support the viability of our approach

with an average accuracy greater than 87%.

II. RELATED WORK

Touré et al. [7] investigated an approach based on software
information history to support the prioritization of classes to
be tested. They have analyzed different class attributes of ten
Java open source software systems for which JUnit unit test
classes were developed. Using different techniques, they first
characterized the classes for which JUnit test classes were
developed by the testers. Secondly, they built two classifiers
using OO metrics and unit tests information collected from the
selected systems. The classifiers provide, for each software, a
set of classes on which the unit testing efforts must be focused.
The sets of obtained candidate classes were compared to the
sets of classes for which JUnit test classes were developed by
the testers. The results have shown that: (1) average values of
the metrics of the classes tested are very different from
average values of the metrics of the other classes (2) there is a
significant relationship between the fact that a JUnit test class
was developed for a class and its source code attributes, and
(3) the sets of classes suggested by the classifiers correctly
reflect the selection of testers.

Mirarab et al. [18] used Bayesian networks to create a
unified model based on information provided by the CK
metrics suite [8], changes and testing coverage rates. The
defined approach optimizes coverage and improves the fault
detection rate compared to the random planning of test
scenarios.

Helge Spieker et al. [19] present Retecs (Reinforcement
Learning for Automatic Test Cases Prioritization and
Selection in Continuous Integration), which is a method for
selecting and prioritizing test cases based on machine
learning. It is used in cases of continuous integration with the
aim of minimizing the round-trip delay between code
validation and developer comments in the event of failure of
the test cases. The Retecs method uses reinforcement learning
to select and prioritize test cases according to their duration,
the last execution history and failure. In an environment where
new test cases are created and obsolete test cases are deleted,
the Retecs method learns to prioritize error-prone tests using
a reward function and build on previous cycles of integration.
By applying Retecs on data extracted from three industrial
case studies, Helge Spieker et al. have shown for the first time
that reinforcement learning allows fruitful selection and
automatic prioritization in continuous integration and
regression tests.

III. DATA COLLECTION

For our investigations, we carried out our experiments on
Apache ANT software system, which is a command-line tool
used to control the execution processes described in mutually
dependent XML files (build files) [16]. The versions 1.3, 1.4,
1.5, 1.6 and 1.7 of ANT system have been extracted to carry
on our experiments.

A. Data Collection Tools

The source code of ANT’s considered versions has been
grabbed from GitHub [20] repository. Under IntelliJ [21] IDE,
we used Code Mr [22], Cover [23] plugins as well as the JUnit
Framework [17] to run the unit test suites and collect source
code metrics and testing coverage measures.

B. Source Code Metrics

Four our study, we considered six (6) source code metrics,

five from the well-known metrics suite proposed by

Chidamber and Kemerer [8] and the widely used SLOC

metric. These metrics capture various OO attributes such as

coupling, inheritance, cohesion, complexity and size. They

have received particular attention in empirical software

engineering research and are computed by Code Mr plugin

according to the following definitions:

Coupling metrics: (1) CBO (Coupling between objects)

calculates the number of classes to which a class is linked and

vice versa.

Inheritance metrics: (2) DIT: (Depth of Inheritance) counts

the number of classes between the measured class and the

root of its inheritance hierarchy. (3) NOC: (Number of

Children) calculates the number of subclasses that inherit

from the measured class.

Cohesion metrics: (4) LCOM: (Lack of cohesion in Methods)

assesses the lack of cohesion in a class. It counts the number

of methods pairs whose similarity is 0 minus the number of

method pairs whose similarity is different from zero.

Complexity metrics: (5) WMC: (Weighted Method

Complexity) sums up the cyclical complexities of all the

methods of the measured class. (6) RFC: (Response for

classes) calculates the number of possible methods that can

be called in response to the method invocation of the

measured class.

Size metrics: (7) SLOC: (Source Lines of Codes) calculates

the number of lines of code in measured class.

C. Descriptive statistics

The descriptive statistics on the different versions of the ANT

system [13] show that the number of classes increases from

1093 for version 1.3 to 1145 classes for version 1.7. The

average complexity (WMC) and source lines of code (SLOC)

vary slightly from one version to another (around 19 for

WMC and 156 for SLOC). This small variation is also

observed for the other metrics average values. The great

variability of metrics within the same version indicated by the

354

standard deviations (σ), reflects the variability level of the

software classes characteristics.

TABLE 1:Descriptive statistics of the used source code metrics - ANT

Vers. obs. Stat CBO DIT LCOM SLOC NOC RFC WMC

V1.3 1096

Min 0 1 0 4 0 1 1

Max 672 7 30 1899 143 326 236

Mean 10.97 2.4 1.85 156.64 0.67 26.06 19.74

σ 1111.2 1.82 5.36 49022.6 27.09 1130 864.26

V1.4 1102

Min 0 1 0 6 0 1 1

Max 674 7 30 2204 143 321 235

Mean 10.84 2.39 1.84 155.65 0.67 25.78 19.51

σ 1104.3 1.82 5.35 50129.7 26.97 1106.4 841.08

V1.5 1103

Min 0 1 0 6 0 1 1

Max 674 7 30 2204 143 321 235

Mean 10.84 2.39 1.84 155.73 0.67 25.79 19.52

σ 1104.3 1.82 5.35 50304.1 26.97 1108.1 843.18

V1.6 1140

Min 0 1 0 6 0 1 1

Max 694 7 30 2214 145 321 252

Mean 10.8 2.38 1.82 155.01 0.66 25.63 19.44

σ 1123 1.82 5.18 50743.9 27.72 1096.2 840.85

V1.7 1143

Min 0 1 0 4 0 0 1

Max 694 7 30 2214 145 321 255

Mean 10.81 2.39 1.83 157.33 0.66 25.65 19.45

σ 1125.1 1.83 5.25 53739.4 27.71 1100.1 843.81

D. Empirical Analysis

We have collected the source code of the five different

versions of ANT [16] considered for the study, grabbed from

GitHub repository [20]. We followed the steps described

below for each version:

Step 1: Extracting the considered source code metrics using

Code Mr [22] plugin.

Step 2: Running unit test suites and collecting the testing

coverage rates by using Cover [23] plugin and JUnit [17]

framework.

Step 3: Filtering outlier observations, which are mainly OO

artefacts with 0 complexity (interfaces, some of abstract

classes, enumerations and constants collecting classes).

Step 4: Computing the rank of each value of the metrics. This

step is motivated by the fact that the classifier will be trained

on several versions of different sizes. Ranks will help the

classifiers to mitigate the metrics’ values.

Step 5: Labelling testing coverage data. We have labelled

each class with a binary value, 1 or 0, depending on whether

its unit testing coverage reaches a given threshold percent or

not. 50%, 30% and 0% thresholds have been considered. For

example, by setting the threshold at 50%, all the classes

having a testing coverage greater or equal to 50% are labelled

as 1 (considered as tested), and the rest of classes is labelled

as 0 (considered as not tested).

For each class, the attributes formed by the source code

metrics, the associated rank values as well as the binarized

coverage rates, form a labelled observation. With the

collected data, our goal is to train a deep neural network

model to build classifiers that could automatically predict

(suggest) the label of each observation. In addition, we

wanted to investigate if a classifier built from the dataset of

version n, correctly predicts the level of testing coverage in

the successive n + 1 version.

TABLE 2: Distribution of tested classes - method granularity

Versions Obs 0% 30% 50%

13 1096 179 108 81

14 1102 187 114 82

15 1103 193 117 85

16 1140 193 116 85

17 1143 196 119 87

TABLE 3: Distribution of tested classes - instruction granularity

Versions Obs 0% 30% 50%

13 1096 179 98 60

14 1102 187 102 61

15 1103 193 105 65

16 1140 193 103 62

17 1143 196 106 64

IV. EXPERIMENTAL METHOD

A. Neural networks

Neural networks belong to the family of machine learning
classifier models [24, 25]. The building blocks for neural
networks are artificial neurons [26]. These are simple
computational units that have weighted input signals and
produce an output signal using an activation function [27].

Neurons are arranged into networks of neurons. A row of

neurons is called a layer. Neural networks may have multiple

layers. The first layer, called input or visible layer, takes input

from the dataset. The following layers are referred as hidden

layers. They are responsible for compressing and building

internal representation of datasets. The last layer, also called

output layer, is responsible for classifying the output on the

required classes.

Deep neural networks refer to networks containing more

than one hidden layer. Training those layers requires large

amount of data and specific techniques that prevent vanishing

gradient issue [25].

The neural net training process relies on forward
propagation technique that consists of feeding input values to
the neural network and getting an output (predicted value). On
each training epoch, error is computed using back-propagation
technique [28].

B. Construction and Architecture of the Neural Network

Our deep learning architectures (ANN) are built using

Python programing language, under TensorFlow [29] and

Keras [30] frameworks supported by Pandas [31] library for

data manipulation. We carried out several tests before coming

to the following configuration that produced the obtained

results.

355

Our input layer contains fourteen (14) neurons to match

the 14 characteristics (7 for source code metrics plus 7 for

rank values associated with each metric value). Thirteen (13)

hidden layers follow the input layer containing 169 neurons

each. And finally, 2 neurons compose the output layer to

match our binary classification problem. We used ReLu as

activation function for input and hidden layers. We relied on

"Adam" as optimizer and the mean square as loss function.

The model has been evaluated using confusion matrix.

C. Classifier Validation

We validated our classifier using Cross Version

Validation (CVV) technique inspired by classical cross

validation techniques. CVV approach consists of training the

neural network model on dataset of a version V of the ANT

system, then validating the obtain classifier on the dataset of

the successive version V+1.

V. RESULTS AND INTERPRETATIONS

The CVV technique has validated the suggestions of

classes to be tested for a given version, made by a classifier

trained on the previous version. The following results were

obtained by this validation technique applied to the different

considered versions of ANT.

TABLE 4: CVV results on Method granularity level
 CM50 CM30 CM0

13->13 93.20% 91.77% 88.28%

13->14 92.97% 91.19% 87.99%

14->14 94.04% 90.84% 88.79%

14->15 93.77% 90.57% 88.26%

15->15 93.51% 92.62% 89.06%

15->16 93.64% 92.35% 88.57%

16->16 94.67% 94.07% 89.86%

16->17 94.25% 93.56% 89.70%

From Table 4 (CVV results on method granularity level),
it can be seen that:

The threshold of 50% produces accuracy scores that are
greater than 92%. The lowest accuracy is obtained for a
validation on version 1.4 (92.97%) and the highest is obtained
for a validation on version 1.7 (94.25%).

For a threshold of 30%, the obtained accuracy scores are
greater than 90%. The lowest accuracy is obtained while
validating on version 1.5 (90.57%) and the highest for the
validation on version 1.7 (93.56%).

For a threshold of 0%, the accuracy scores obtained are
greater than 87%. The lowest accuracy is obtained when
validation is done on version 1.4 (87.99%) and the highest for
validation on version 1.7(89.70%).

After all validations, we can notice the trends of the
accuracy to increase. Indeed, the highest accuracy scores
obtained are noticed for a threshold set at 50%. This indicates
that there exists a relationship between classes metrics and
labelled classes (classes labelled 1 or 0). Other results obtained
with threshold sets at 30% and 0% are good but show that their
classifiers are not as accurate as the one obtained with the
threshold set at 50%.

From these results, we can conclude that by using method
granularity level, we are able to predict correctly candidate
classes for unit testing.

 TABLE 5: CVV results on Instruction granularity level

 CLOC50 CLOC30 CLOC0

13->13 94.63% 93.47% 88.37%

13->14 94.48% 93.06% 87.28%

14->14 95.37% 94.22% 89.86%

14->15 95.02% 93.95% 89.32%

15->15 94.48% 94.57% 90.12%

15->16 94.67% 94.24% 89.69%

16->16 95.79% 94.76% 88.57%

16->17 95.62% 94.42% 88.58%

From Table 5 (CVV results on instruction granularity
level), it can be seen that:

For a threshold set at 50%, the accuracy scores obtained
are greater than 94%. The lowest accuracy is obtained for a
validation on version 1.4 (94.48%) and the highest is obtained
for a validation on version 1.7 (95.62%).

For a threshold set at 30%, the accuracy values obtained
are greater than 93%. The lowest accuracy is obtained while
validating on version 1.4 (93.06%) and the highest for
validation on version 1.7 (94.42%).

For a threshold set at 0%, the accuracy values obtained are
greater than 87%. The lowest accuracy is obtained for
validation on version 1.4 (87.28%) and the highest for
validation on version 1.6 (89.69%).

 As we go from validation on version 1.3 to validation on
version 1.7, we observed an increase of the accuracy from
87% to 89%.

As in the case of method granularity level, we obtained the
highest accuracy scores for a threshold set at 50%. Hence a
classifier obtained by training it on the dataset will be more
efficient and accurate than the one obtained with another
threshold. We also observe a tendency of the accuracy to
increase during the test.

From these results, we can conclude that by using
instruction granularity level, we are also able to predict
correctly candidate classes for unit testing.

By comparing the results obtained for the different levels
of granularities (methods and instruction), we see that we
obtain high accuracy scores for the instruction level.

From these two tests, we can conclude that the choice of
the level of granularity as well as the threshold set is crucial.

The CVV validation showed that it is possible to predict
classes to be tested on a version developed or under
development by a classifier trained on the previous version of
the same system. Moreover, we can notice that we got higher
accuracy rates for the instruction granularity level with a
threshold of 50%.

356

VI. LIMITATIONS

The obtained results are quite significant with regard to the
used dataset (information collected from five different
versions of a same system) but should nevertheless be
considered as exploratory. The selection of the classes to test
explicitly (for which JUnit test classes have been developed)
is in most cases left to the goodwill of developers. This can
lead to partially tested classes and systems with few tested
classes, which in turn can influence the results obtained in our
various experiments.

The generalization of our results requires additional
investigations including tests quality as well as the
application’s domain of the considered software systems,
which can also impact the results and restrict their scope. In
our analyzes, we limited ourselves to Java OO language. Even
if Java is a reference language in OO programming, our results
could be biased by this limitation.

We limited our investigations to a well-known case study
system (ANT). The study should be replicated on more
software systems in order to draw more general conclusions.

VII. CONCLUSION

In this work, the goal was to provide an approach that
supports unit testing decision when selecting the software
classes to be tested. For that, we used a classifier build from
deep neural network model based on various class source code
metrics and the corresponding unit testing coverage data. Two
levels of testing coverage measures have been considered in
combination. We validated the constructed classifier using
cross version validation technique. By obtaining after various
tests more than 87% of accuracy rates, we can conclude that
the obtained results strongly support the viability of the
approach.

These results open the possibility of using software
metrics and the developers’ experience (particularly in terms
of unit testing development) in guiding the distribution of the
overall unit testing effort. Hence using current big data
analysis techniques (involving artificial intelligence
algorithms), it is possible to develop cloud-based tools in
order to build a new generation of tests prioritization tools and
guidance integrated into software development environments.

REFERENCES

[1] B. Boehm, "A Spiral Model of Software Development and

Enhancement", Proc. Int’l Workshop Software Process and Software
Environments, ACM Press, 1985; also in ACM Software Eng. Notes,

Aug. 1986, pp. 22-42.

[2] B. Boehm. "Software Engineering Economics". Prentice Hall,

Englewood Cliffs, NJ, ISBN-10 : 0138221227, edition 01 oct 1981.

[3] S. Elbaum, A. G. Malishevsky and G. Rothermel, "Test Case
Prioritization: A Family of Empirical Studies", IEEE Transactions

Software Engineering, Vol. 28, No. 2, pp.159-182, 2002.

[4] S. Elbaum, A. G. Malishevsky and G. Rothermel, "Prioritizing test

cases for regression testing". Proc. ACM SIGSOFT Int. Symp. on

Software Testing and Analysis (ISSTA), Portland, OR, USA, 22-25

August 2000, pp. 102-12

[5] G. Rothermel, R.H Untch, C. Chu and M.J Harrold . "Test case

prioritization: an empirical study", International Conference on

Software Maintenance, Oxford, UK, pp. 179–188.,1999.

[6] J. Kim, and A. Porter , "A history-based test prioritization technique
for regression testing in resource constrained environments", In

Proceedings of the International Conference on Software Engineering,

2002.

[7] F. Toure., M. Badri and L. Lamontagne, "Investigating the

Prioritization of Unit Testing Effort Using Software Metrics", In
Proceedings of the 12th International Conference on Evaluation of

Novel Approaches to Software Engineering (ENASE’17) Volume 1:

ENASE, pages 69-80, 2017.

[8] Chidamber S.R. and Kemerer C.F., "A Metrics Suite for Object

Oriented Design", IEEE Transactions on Software Engineering, vol.

20, no. 6, pp. 476–493, 1994.

[9] M. Bruntink , and A.V. Deursen,"Predicting Class Testability using

Object-Oriented Metrics", 4th Int. Workshop on Source Code Analysis

and Manipulation (SCAM), IEEE, 2004.

[10] V. Gupta, K. K. Aggarwal and Y. Singh, "A Fuzzy Approach for

Integrated Measure of Object-Oriented Software Testability", Journal

of Computer Science, Vol. 1, No. 2, 2005, pp. 276-282.

doi:10.3844/jcssp.2005.276.282.

[11] M. Bruntink and A. Van Deursen, "Predicting class testability using
object-oriented metrics", in Proceedings of the 4th IEEE International

Workshop on Source Code Analysis and Manipulation (SCAM ’04),

pp. 136–145, September 2004.

[12] M. Bruntink and A. van Deursen, "An empirical study of class

testability", Journal of Systems and Software, vol. 79, no. 9, pp. 1219–

1232, 2006.

[13] L. Badri, M. Badri, and F. Toure, "An empirical analysis of lack of

cohesion metrics for predicting testability of classes", International

Journal of Software Engineering and Its Applications, vol. 5, no. 2,

2011.

[14] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. "What is

the best multi-stage architecture for object recognition?" In

International Conference on Computer Vision, pages 2146–2153.

IEEE, 2009.

[15] Y. LeCun, K. Kavukcuoglu, and C. Farabet, Convolutional networks
and applications in vision. In Circuits and Systems (ISCAS),

Proceedings of 2010 IEEE International Symposium on, pages 253–

256. IEEE, 2010.

[16] Apache ANT releases, https://github.com/apache/ant/releases, Visited

in december 2019.

[17] JUnit Framework, https://junit.org/junit5/. Visited in december 2019.

[18] S. Mirarab, A. Hassouna, and L. Tahvildar, "Using Bayesian belief

networks to predict change propagation in software systems" in

Proceedings of the 15th IEEE International Conference on Program

Comprehension, pages 177-188, 2007.

[19] H. Spieker, A. Gotlieb, D. Marijan and M. Mossige, "Reinforcement

learning for automatic test case prioritization and selection in

continuous integration", Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis, July 2017.

357

[20] ANT on Github Repository, https://github.com/apache/ant, Visited in

december 2019.

[21] IntelliJ IDE, https://www.jetbrains.com/idea/, Visited in december

2019.

[22] Code Mr plugin, https://plugins.jetbrains.com/plugin/10811-codemr/,

Visited in december 2019.

[23] Code-Coverage plugin, https://www.jetbrains.com/help/idea/code-

coverage.html, Visited in december 2019.

[24] Artificial Intelligence and life in 2030, one-hundred-year study on

artificial Intelligence, report of the 2015 Study panel, September 2016

[25] Y. LeCun, Y. Bengio, G, Hinton. "Deep learning" . Nature.

2015;521(7553):436-444. doi:10.1038/nature14539

[26] F. Rosenblatt, "The perceptron : A probabilistic model for information

storage and Organization in the brain", in cognitive systems. Buffalo:

Cornell Aeronautical Laboratory, Inc. Rep. No. VG-1196-G-1, 1958.

[27] M. Minsky, and S. Papert, “Perceptrons: An Introduction to

Computational Geometry,” MIT Press, expanded edition, ISBN-10 :

0262631113, décembre 1987

[28] D. E. Rumelhart, G. Hinton, and R. J. Williams, "Learning
representations by back-propagating errors", Cognitive modeling 5.3

(1988):

[29] Tensorflow: https://www.tensorflow.org/

[30] Kera: https://keras.io/

[31] Panda: https://pandas.pydata.org

358

Unit Testing Effort Prioritization Using Combined

Datasets and Deep Learning: A Cross-Systems

Validation

Fadel TOURE

Department of Mathematics and Computer Science,

University of Quebec at Trois-Rivières,

 Trois-Rivières, Québec, Canada.

Fadel.Toure@uqtr.ca

Mourad BADRI

Department of Mathematics and Computer Science,

University of Quebec at Trois-Rivières,

 Trois-Rivières, Québec, Canada.

Mourad.Badri@uqtr.ca

Abstract— Unit testing plays a crucial role in object-oriented

software quality assurance. Software testing is often conducted

under tight time and resource constraints. Hence, testers do not

usually cover all software classes. Testing needs to be prioritized

and testing effort to be focused on critical components. The

research we present in this paper is part of the development of

a collaborative decision support tool allowing the developers’

community to pool their unit testing experiences when selecting

the candidate classes for unit tests. To achieve this, we proposed

in our previous work a unit tests prioritization approach based

on software information histories and software metrics. The

goal is to suggest classes to be tested by building a classifier that

matches the testers selection. Several machine learning

classifiers have been previously considered. The current paper

explores the deep neural network models with more software

source code metrics including explicitly and implicitly tested

classes. The training datasets that have been combined are from

different systems. So, we considered metrics ranks. Using a

cross systems validation technique, obtained results strongly

suggest that deep neural network-based classifiers correctly

reflect the tester’s selections and could thus help in decision

support during the selection of candidate classes for unit tests.

Key words— Tests Prioritization; Unit Tests; Source Code

Metrics; Deep Neural Network; Deep Learning; Machine

Learning Classifiers.

I. INTRODUCTION

Software testing plays a crucial role in software quality
assurance. Unit testing is one of the main phases of the testing
process where each software class is individually tested using
dedicated test cases. In object-oriented (OO) software
systems, units are software classes and testers usually write a
dedicated unit test class for each software class they decided
to test. The unit tests aim at early reveal faults in software
classes. In the case of large-scale OO software systems,
because of resource limitations and tight time constraints, the
unit testing efforts are often focused. Testers usually select a
limited set of software classes for which they write dedicated
unit test classes. Knowing that it is often not realistic to
equally test all software classes, it becomes important for
testers to target the most critical and fault-prone classes.
However, the task is not obvious and requires a deep analysis
of software. These issues belong to the family of tests
prioritization topics. Several existing approaches try to

prioritize test suites execution in order to discover the
maximum of faults quickly, while others try upstream to
focus the developer efforts on suitable classes to be tested.
This paper focus on how to automatically target suitable
candidate classes for unit tests. The long-term goal is to build
a collaborative tool for the developers’ community. That tool
will collect source code metrics and classes unit test
information from different projects in order to improve a
unique cloud-hosted classifier performance to match the
testers’ selection of unit tests candidate classes. For new
systems under development, the tool could suggest, after
collecting some specific source code metrics, a set of
candidate classes for unit tests. Due to the large source code
diversity and increasing amount of data that the tool will face,
we considered using deep neural network models trained on
combined systems’ datasets to explore how accurate the
classifiers could match the testers’ selection.

Many OO metrics, related to internal software class
attributes have been proposed in literature [1, 2]. Some of
them have already been recently used to predict unit
testability of classes in OO software systems [3-10] by
analyzing various existing open source Java software systems
for which Junit [11] test cases were developed and are
accessible in public repositories. For all systems, authors [3-
10] found that only a subset of classes have dedicated unit
test classes written by developers. In previous work [9, 12],
we focused on how the selection of the candidate classes for
unit tests was made by testers. Multivariate Logistic
Regression, Naive Bayes, Random Forest and K-Nearest
Neighbours classifiers have been used to automate the
selection of candidate classes for unit tests. They have been
validated within systems and between systems using Cross
Systems Validation (CSV) and Leave One System Out
Validation (LOSOV). The latter validation technique implied
the use of combined datasets extracted from different
systems.

Based on deep neural network models [13], the current
work includes more source code metrics to capture various
characteristics that we believe are determinative for a
software class to be considered as a good candidate for unit
tests from testers’ point of view. We also included two ways
of labelling tested classes according to the existence of
dedicated unit test classes and to the actual unit testing
coverage.

The paper is organized as follows. Section II presents
some related works. Section III addresses the OO software

DOI reference number: 10.18293/SEKE2020-150

359

mailto:Fadel.Toure@uqtr.ca

metrics we used for this study. Section IV describes the data
collection procedure and the considered systems. Section V
presents the empirical study we conducted and the results
obtained with the related discussions. Section VI reports the
main threats to validity relatively to our empirical
experimentations. Finally, Section VII concludes the paper,
summarizes the contributions of this work and outlines
several directions for future investigations.

II. RELATED WORK

Test case prioritization has been widely discussed in the
context of regression testing. Various techniques have been
proposed in the literature and used different leverages. We
can distinguish: (1) coverage rates based techniques, (2)
software history information based techniques, and (3) risk
analysis based techniques.

Fault detection techniques focus on targeting the most
fault prone components using, in practice, fault exposure
factors as a proxy. Factors are estimated using different ways
from the software artifacts. The results obtained by
Rothermel et al. [11] and Yu and Lau [12] indicated that this
approach improves the fault detection rates.

The coverage-based techniques run the test suites that
cover most modified software artefacts during regression
testing. Several machine learning algorithms (Naïve Bayes,
Genetic Algorithms) are used to derive a prioritization
approach. The investigations [14-16] results showed that
coverage-based techniques also lead to fault detection rate
improvement.

The history-based prioritization collects previous

regression testing assets and current changes information of

the same system in order to prioritize the new given test

suites. Thus, the technique is unsuitable for the first

regression testing of software. Kim and Porter [17] used the

historical execution data to prioritize test cases for regression

tests, while Lin et al. [18] investigated the weight of used

information between two versions of history-based

prioritization techniques. The results indicated that the

history-based prioritization provides a better fault detection

rate. Carlson et al. [19] mixed history and coverage-based

techniques using a clustering based prioritization technique.
Lachmann et al. [20] introduced a test case prioritization

technique for system-level regression testing based on
supervised machine learning. The approach considers black-
box metadata, such as test cases history, as well as natural
language test case descriptions for prioritizing. They used the
SVM Rank machine learning algorithms and evaluate their
approach on 2 subject systems. The results outperform a test
case order given by a test expert.

 Spieker et al. [21] proposed the Retecs approach, a
method for automatically learning test case selection and
prioritization in continuous integration with the goal to
minimize the round-trip time between code commits and
developer feedback on failed test cases. The approach uses
reinforcement learning. The Empirical study shows that
reinforcement learning enables fruitful automatic adaptive
test case selection and prioritization.

 The history and machine learning based techniques
prioritize test suites in a regression testing context. Some
other techniques allow, upstream, the prioritization of
components to be tested. They aim to optimize the testing
efforts distribution by targeting the most fault prone
components. Shihab et al. [22] explored the prioritization for
unit testing phase in the context of legacy systems. Our

previous papers [12] proposed machine learning approaches
that aim to suggest candidate classes for unit tests. We used
2 classifiers trained on the dataset formed by source code
metrics and labelled by tested/not tested, to build classifiers
that match the candidate classes for unit tests. After applying
cross systems validation techniques, our results indicated that
for a given system, the ability of a classifier, to correctly
suggest the candidate classes for unit tests (more than 70%
of accuracy). Furthermore, we considered more machine
learning algorithms and we focused on affinities between the
systems used as training and testing datasets during the cross
systems validation. We wanted to determine whether some
systems make better training sets for suggesting other
specific systems unit test candidate classes. The result
showed that the datasets of large systems could be only used
to suggest large systems unit test candidate classes, while
classifiers trained on small systems fail to suggest the
candidate classes for unit tests on large and small systems. In
the same study [12], we focused on the ability of combined
datasets to suggest candidate classes for unit tests. After
applying the leave one system out validation technique, the
result show that more than 70% of candidate classes selected
by testers were well predicted in the case of large size
systems.

The current paper investigates deep neural network
classifiers trained on combined datasets as predictor models
for unit tests candidate classes selection. Combining different
systems as a single training dataset presents several
advantages such as diversity of observations and their
amount. Indeed, our long-term objective is to build a
collaborative IDE plugin, based on unit tests information and
some specific metrics to support the unit tests prioritization.
Hence, the plugin will collect source code metrics and test
information from various software systems. Under such
conditions, the ability of learning from combined datasets is
of great importance. Combining training datasets may,
however, lead to metric dimensionality issues. Indeed, from
the tester point of view, a class with a given metric value may
be considered as a good candidate or not depending on the
metric values of the other classes of the system. The
following section presents the software metrics we used in
our study.

III. SOFTWARE METRICS

This section presents the considered OO source code
metrics. We expanded the previous dataset metrics used in [9,
12] by including more source code attributes. The selected
metrics are being adopted by practitioners. Several studies
have shown that the considered metrics are related to
testability [3-8], maintainability [23-26], and fault proneness
[27-29]. The set of metrics is related to inheritance, coupling,
complexity and size software attributes. We computed them
using the Borland Together (http://www.borland.com).

Depth of Inheritance Tree: DIT metric is the maximum

inheritance path from the given class to the root class.

Coupling Between Objects: The CBO metric counts for a

given class, the number of other classes to which it is coupled

and vice versa. Fan Out: The FOUT metric counts the

number of other classes referenced by a given class. Fan IN:

The FIN metric counts the number of other classes that

reference to a given class. Weighted Methods per Class: The

WMC metric gives the sum of the complexities of the

methods of a given class, where each method is weighted by

its cyclomatic complexity [27]. Only methods specified in the

360

class are considered. Response For Class: The RFC metric

measures the class’s complexity in terms of method

invocations. It sums the number of methods defined in a

given class and the number of distinct method invocation

made by that method. Lines of Code per Class: The SLOC

metric counts for a given class, its number of source lines of

code.

IV. DATA COLLECTION

A. Selected Systems

The source codes of 10 open source OO software systems
developed in Java have been extracted from public
repositories and described below. For each system, only a
subset of classes has been tested using JUnit framework.

IO 1 is a library of utilities for developing input/output
functionalities. It is developed by Apache Software
Foundation. MATH 1 is a library of lightweight, self-
contained mathematics and statistics components addressing
the most common problems not available in the Java
programming language. JODA 2 is the de facto standard
library for advanced date and time in Java. It provides a
quality replacement for the Java date and time classes. The
design supports multiple calendar systems, while still
providing a simple API.
DBU 3 (DbUnit) is a JUnit extension (also usable with Ant)
used in database-driven projects that, among others, put a
database into a known state between test runs. LOG4J 1 is a
fast and flexible framework for logging applications
debugging messages. JFC 4 (JFreeChart) is a free chart
library for Java platform. IVY 1 is an agile dependency
manager characterized by flexibility, simplicity and tight
integration with Apache Ant. LUCENE 1 is a high-
performance, full-featured text search engine library. It is a
suitable technology for applications requiring full-text
search. ANT 1 is a Java library and command-line tool that
drives processes described in build files as target and
extension points dependent upon each other. POI 1 is an APIs
for manipulating various file formats based upon the Office
Open XML standards and Microsoft's OLE2. It can read and
write MS Excel files using Java.

B. Unit Test Data Collection Procedure

The selected systems have been tested using the JUnit
framework. JUnit [11] is a framework for writing and running
automated unit tests for Java classes. JUnit gives testers some
support so that they can write the test cases more
conveniently. A typical usage of JUnit is to test each class Cs
of the software by means of a dedicated test class Ct. To
actually test a class Cs, we execute its test class Ct by calling
JUnit’s test runner tool. JUnit report how many of the test
methods in Ct succeeded, and how many failed.

In [12], we used the prefix/suffix linking approach, as
other authors [4, 10, 30], to link each software class to its
dedicated JUnit test class if exists. Linked classes are referred
as E-TESTED classes. Furthermore, we considered, the level
of JUnit Coverage (JUC) score computed by Borland
Together Tool to take transitively tested classes into account.
Indeed, in [8, 9, 12], we noted that some of software classes
were tested by transitive method invocations during unit tests.

1 https://apache.org/

2 http://joda-time.sourceforge.net/

Table 1: Percent of tested classes
 MATH IO JODA DBU LOG4J
% I-TESTED 84.04% 81% 76.62% 46.70% 40.26%
% E-TESTED 61.7% 66% 37.81% 40.1% 19.5%
 JFC IVY LUCENE ANT POI
% I-TESTED 66.26% 61.68% 52.52% 16.89% 67.73%
% E-TESTED 55.50% 15.62% 18.54% 16.89% 28,00%

The JUC score is based on unit test class invocation,
representing for each class the percent of software lines of
code covered by the set of unit test classes. Classes with a
JUC score greater than 0 are referred as I-TESTED classes.
Table 1 summarizes the distribution of E-TESTED and I-
TESTED classes.

Descriptive Statistics

Table 2 summarizes the statistics of selected metrics for
the 10 systems ordered by increasing sizes in terms of the
number of classes.

Table 2 Descriptive statistics
Syst Obs Stat FIN CBO DIT LOC RFC FOU

T
WMC

MATH 94

Min. 0 0 1 2 13 0 0
Max
.

13 18 6 660 119 12 174
Sum 275 306 195 7779 3717 194 1824
µ 2.93 3.26 2.07 82.76 39.54 2.06 19.40
σ 2.47 3.72 1.11 97.60 18.64 2.46 25.12

IO 100

Min. 0 0 1 7 17 0 1
Max
.

14 39 5 968 202 21 250
Sum 323 405 214 7604 3782 254 1817
µ 3.23 4.05 2.14 76.04 37.82 2.54 18.17
σ 4.07 5.70 1.01 121.56 24.79 3.27 31.75

Syst Obs Stat FIN CBO DIT LOC RFC FOUT WMC

JODA 201

Min. 0 0 1 5 11 0 1
Max
.

106 36 6 1760 287 22 176
Sum 2116 1596 447 31339 17857 1089 6269
µ 10.53 7.94 2.22 155.92 88.84 5.42 31.19
σ 16.12 6.44 1.28 210.97 64.21 4.78 30.55

DBU 212

Min. 0 0 1 4 11 0 1
Max
.

28 24 6 488 95 19 61
Sum 517 1316 452 12187 6827 901 1989
µ 2.43 6.18 2.13 57.22 32.05 4.23 9.34
σ 3.44 5.32 1.22 60.55 14.54 3.94 9.45

LOG4J 231

Min. 0 0 1 5 11 0 1
Max
.

72 107 7 1103 632 47 207
Sum 966 1698 467 20150 15879 1088 3694
µ 4.18 7.35 2.02 87.23 68.74 4.71 15.99
σ 9.29 10.12 1.30 130.42 105.75 5.93 25.70

Syst Obs Stat FIN CBO DIT LOC RFC FOUT WMC

JFC 409

Min. 0 0 1 4 11 0 0
Max
.

55 101 7 2041 677 56 470
Sum 2583 4861 967 67481 50628 3253 13428
µ 6.28 11.83 2.36 164.19 123.18 7.91 32.67
σ 8.99 14.07 1.40 228.06 148.28 9.43 46.73

IVY 608

Min. 0 0 0 2 1 0 0
Max
.

103 92 6 1039 458 46 231
Sum 2239 5205 1037 50080 35274 3419 9664
µ 3.68 370.03 1.71 219.60 58.02 5.62 15.84
σ 7.89 11.74 1.31 141.80 61.67 7.33 27.38

LUCEN
E

615

Min. 0 0 1 1 11 0 0
Max
.

63 55 6 2644 433 46 557
Sum 2860 3793 1212 56108 23724 2872 10803
µ 4.65 6.17 1.97 91.23 38.58 4.67 17.57
σ 7.18 7.24 1.06 192.87 34.61 5.49 35.70

ANT 663

Min. 0 0 0 1 11 0 0
Max
.

300 41 6 1252 550 30 245
Sum 3228 4613 1563 63548 36282 3294 12034
µ 4.87 6.96 2.36 95.85 54.72 4.97 18.15
σ 16.87 7.25 1.28 132.92 46.25 5.41 24.17

Syst Obs Stat FIN CBO DIT LOC RFC FOUT WMC

POI 1382

Min. 0 0 1 2 11 0 0

Max. 189 168 7 1686 642 62 374

Sum 5733 9660 2899 130185 66574 5924 23810

µ 4.15 6.99 2.10 94.20 48.17 4.29 17.23

σ 9.51 10.78 1.24 154.28 58.44 6.27 28.32

3 http://dbunit.sourceforge.net/

4 http://www.jfree.org/jfreechart/

361

The number of lines of code varies from 7,779 lines

spread over 94 software classes for MATH system, to more
than 130,185 lines of code over 1,382 software classes for
POI system. The number of classes and their cyclomatic
complexity follow the same trend. Following the descriptive
statistics, we grouped the systems into 4 categories relatively
to their size in order to better interpret the results: (1) the
small-size systems, about 100 software classes such as IO and
MATH, (2) the medium-size systems around 200 classes such
as LOG4J, DBU and JODA, (3) the large-size systems,
between 400 and just over 600 classes such as LUCENE,
IVY, ANT and JFC, and (4) the very large-size systems over
than 1,000 software classes such as POI.

The average cyclomatic complexity varies widely
between systems with similar sizes as for JODA and DBU
systems. Indeed, these systems present similar number of
classes (around 200) but quite a different average of
cyclomatic complexity (31.19 vs. 9.34). We made the same
observations for LUCENE and JFC systems.

The DIT metric varies from 1 to 7 in all systems when it
average is about 2 for the majority of systems. DIT has the
lowest variance values compared to other metrics. The
minimum average value of DIT is observed for IVY (1.71)
and the maximum average value for JFC and ANT (2.36). A
very deep inheritance tree may indicate a bad design while
shallow inheritance reflects the lack of code reusability.

JODA software has the highest average value of FIN
(10.53) while JFC got the highest average value of FOUT
(7.91) and RFC (123.18).

V. EMPIRICAL ANALYSIS

A. Research question

The machine learning models in [12] have been trained
on combined datasets formed by source code metrics and unit
tests information of different systems. With 70% of correct
classifications, the generated classifiers well suggested the
candidate classes for unit tests as long as the targeted systems
was large enough. That result has been mainly explained by
the probably missing of strategies when testing small
software systems. With more source code metrics, our current
work test different deep neural network topologies to
improve the results we observed previously. The main
research question is:

Can deep neural network-based classifier better fit the
candidate classes selected by testers for unit testing?

The main goal remains to use metric information in order
to support unit tests prioritization decisions. Our research
question allows to validate whether a deep neural network
model can produce good classifiers that fit the testers
selection of candidate classes for unit tests. The empirical
study we conducted is based on combined training datasets
from which the system under analysis has been excluded, a
technique we referred as Leave One System Out Validation.

B. Deep Neural Network

Deep neural network is a family of Artificial Neural
Network (ANN) that contains more than one hidden layer.
When well trained (Deep learning), it allows computational
models that are composed of multiple processing layers to
learn representations of data with multiple levels of
abstraction. These methods have dramatically improved the
state-of-the-art in speech recognition, visual object
recognition, object detection and many other domains such as

drug discovery and genomics. Deep learning discovers
intricate structure in large data sets by using the
backpropagation algorithm to indicate how ANN should
change its internal parameters that are used to compute the
representation in each layer, from the representation in the

previous layer [13].
In deep neural network models, the layers configuration

may strongly impact the performances of classifiers.
Unfortunately, there is no systematic approach that may
determine the right layers topology for a given dataset.
Hence, we adopted the try and error strategy to find the
suitable architecture for our datasets.

C. Leave One System Out Validation LOSOV

The LOSOV consists of combining the datasets of

different Si systems excluding Sj to form a unique training

dataset for the neural network model. The generated classifier

is tested on the remaining Sj system. After many tries,

following layers topology has been set for the deep neural

network model.
The input layer: We managed a dataset that contains 7

properties formed by the selected metrics which lead us to set
7 neurons on the entry layer.

The hidden layers: The hidden layers organization result
from multiple tries/error, and the best results was obtained
when setting 6 layers of 175 neurons each of them activated
with relu function. With fewer neurons, the model trends to
misclassify the large and the very large systems, while more
neurons conduct to overfitting issues. We tried different
compressing topologies by gradually reducing the number of
cells along the layers, from entry toward the output layer. The
results were inconclusive. We also increased/decreased the
number of layers and combined them with different epoch
numbers but misclassifications and overfitting issues still
persisted.

The output layer: The output layer is composed of 2
neurons to match our binary classification problem. The layer
uses softmax activation function.

We also found, after many tries, that 350 epochs gave the
best results. Increasing that number leads to overfitting with
totally unbalanced confusion matrix (classifier tends to
suggest all software classes or none of them as candidates for
unit tests), while reducing it produces misclassifications.

D. Results & Discussion

We considered both the E-TESTED and I-TESTED unit

test perspectives. Table 3 summarizes the results we got by

generated classifiers with 350 epochs. On each row that

represents evaluated system, LOSVO approach validates the

classifier obtained from the dataset composed of all

remaining systems by testing it on that system. The accuracy

column indicates the accuracy percentage, while the conf.

matrix column holds the confusion matrix produced by the

classifier.
We immediately remarked that: (1) the candidate classes for
unit tests of larger systems are better predicted with better
accuracy compared to our previous works, and (2) the I-
TESTED point of view leads to better suggestion results in
terms of the number of correctly predicted systems. The
relationship between systems’ size and classifiers’
performances is not surprising but follows the trends we
previously observed using other classifiers models. The
explanation may come from the lack of strategy when testing

362

small systems. It may also be related to the training dataset
scale. The largest system (POI) predication is weak according
to E-TESTED point of view (about 63.6%). Removing POI
from the combined dataset may unbalance the training dataset
and could explain the weakness of the prediction accuracy.

Table 3: LOSVO trained on metric values

E-TESTED, Value Only I-TESTED, Value Only
Accuracy Conf. Matrix Accuracy Conf. Matrix

MATH 38.30%
28 8

64.89%
5 10

50 8 23 56

IO 52.00%
30 4

68.00%
15 4

44 22 28 53

JODA 73.13%
97 28

78.61%
34 13

26 50 30 124

DBU 63.21%
115 12

80.66%
84 29

66 19 12 87

LOG4J 86.15%
175 12

78.79%
106 32

20 24 17 76

JFC 83.37%
168 14

82.15%
114 24

53 173 49 222

IVY 88.49%
472 41

85.20%
188 45

29 66 45 330

LUCENE 80.98%
436 65

84.55%
243 49

52 62 46 277

ANT 86.12%
497 54

78.73%
422 129

38 74 12 100

POI 63.6%
725 270

78.22%
431 84

233 154 217 650

When considering the I-TESTED point of view, the

candidate classes for unit tests are better predicted by
classifiers. 8 systems over 10 (against 6 over 10 for E-
TESTED) have an accuracy greater than 70%. The associated
confusion matrices ensure us that the classifiers are not
suggesting no class or all classes (at the same time) as
candidate classes for unit tests. Indeed, we faced that situation
when using shallow neural networks or when we increased
the number of training stages epochs during our
investigations.

When deepening our investigations and reviewing the
descriptive statistics, we understood that some characteristics
of class attributes relatively to other classes in the same
software system may have an impact on developer decision
to select or not that class as a candidate for unit tests. The raw
values of source code metrics considered alone are not
sufficient for our classifiers to correctly match the tester
selections. Indeed, a WMC score of 50 (for example) may be
important when a developer tests a system for which the
average class complexity (WMC) is much smaller than 50
which lead him to write an explicit test class for that software
class. On the other hand, a class with the same complexity
score may be considered as little complex by the developer
when it belongs to a large system in which average
complexity of classes is largely higher than 50. We thus need
an attribute that captures the metric values for a class
relatively to the other classes within the same system. When
combining datasets, that attribute will mitigate it
corresponding source code metrics. The ranks of metric
scores are good candidates. In the following steps, we tested
whether including metric ranks could improve the results of
Table 2. We computed the rank of each metric’s value of each
class inside each system. Ranks have been included to the
datasets. All new datasets contain 14 attributes that constrains
us to review our neural network topology.

The Input layer: With the new datasets of 14 properties
formed by the metrics and their ranks. We set the number of
neurons in the entry layer to 14.

The Hidden layers: We set the number of hidden layers to
13. Now, each layer contains 350 neurons. We kept the relu
as activation function.

The Output layer: The output remains unchanged. Its 2
neurons still match our binary classification problem. They
are activated with softmax function. The number of epochs
has also been doubled to 750 to prevent misclassification.

Table 4 summarizes the results. We immediately remark
that all predictions highly improved compared to Table 3. The
large systems are suggested with more than 99% of
correctness in both perspectives. MATH results with E-
TESTED point of view, slightly improved but remains the
only system under 70% of correctness. For several systems
(JODA, DBU, LOG4J and LUCENE) all tested classes have
been found by the classifier without any false positive or false
negative classification. We reached 100% of correctness.

Table 4 LOSVO trained on metric and rank values
E-TESTED, Value + Rank I-TESTED, Value + Rank

Accuracy Conf. Matrix Accuracy Conf. Matrix

MATH 52.13%
14 22

76.60%
3 12

23 35 60 69

IO 93.00%
30 4

99.00%
19 0

3 63 1 80

JODA 100.00%
125 0

99.50%
46 1

0 76 0 154

DBU 100.00%
127 0%

100.00%
113 0

0% 85 0 99

LOG4J 100.00%
187 0

99.57%
137 1

0 44 0 93

JFC 99.76%
181 1

99.51%
138 0

0 227 2 269

IVY 99.84%
513 0

98.85%
226 7

1 94 0 375

LUCENE 100.00%
501 0

99.19%
289 3

0 114 2 321

ANT 99.85%
550 1

99.85%
551 0

0 112 1 111

POI 99.78%
994 1

99.35%
510 5

2 385 4 863

The results we obtained in Tables 3 and 4 strongly support

our hypothesis. It’s possible to build a prediction classifier
based on deep neural network and trained on combined
datasets composed by different software systems that
correctly suggest classes to be tested. “Correctly” means
matching the real testers’ selection. E-TESTED and I-
TESTED points of view have no impact when we included
the ranks values in the datasets. Let’s recall that our long-term
goal was to build an IDE plugin tool that automatically
collects source code metrics of systems under development
in order to suggest a set of classes to be tested. The plugin's
classifiers would be trained from datasets of various systems.
Under such conditions, it was important for us to explore in
the current work, the suggestion capability of classifiers
trained on such a mixed dataset.

VI. THREATS TO VALIDITY

Obtained results are suggestive and the study we
presented was performed on 10 open-source systems
containing almost a half million lines of code (453K). The
sample is large enough to allow obtaining significant results,
but the experimental approaches may present limitations that
could restrict the generalization of certain conclusions.
Indeed, all systems we used are developed using Java
language and tested using JUnit framework. Java and JUnit
are popular in the developers’ community. The obtained
results may not be generalizable to other unit testing
frameworks or programming languages. More investigations
are required to rule on the issue. Furthermore, it would be

363

interesting to know, in such a condition, whether mixing
dataset from systems built using different languages and unit
framework could improve or degrade the results. The neural
network topology we identified matches very well the
analyzed group of systems. Changing the number of systems
and their categories may degrade obtained results.
Replicating the study on more systems could help to draw
more general neural network topology that fits unit test
decision support.

VII. CONCLUSIONS AND FUTURE WORK

Ten open source software systems have been analyzed in
this study which totals more than 4400 classes. The testers of
each system developed dedicated unit test classes for a subset
of classes using the Junit Framework. We explored the
possibility of deep neural network models to correctly match
developers’ selections of the candidate classes for unit tests.
To achieve our investigations, we considered explicitly and
implicitly tested classes. With the combination of the 10
datasets formed by the considered systems, we tested various
deep neural network topologies that we validated using Leave
One System Out Validation technique. The objective was to
know to what extents the combined information of different
systems could be a usable training dataset for deep neural
network-based classifiers. Results show that it was possible
to correctly match the candidate classes for unit tests
proposed by testers. Furthermore, the results indicated that all
systems could be well predicted with more than 93% of
accuracy. These results are particularly interesting since the
long-term goal of our work is to build a collaborative plugin
tool that suggests the set of the candidate classes for unit tests
by learning from different systems information history. Our
next challenge will be to validate this approach using
different unit testing frameworks under different
programming language before developing the plugin tool.

REFERENCES

1. Chidamber S.R. and Kemerer C.F., 1994. A Metrics Suite for Object

Oriented Design, IEEE Transactions on Software Engineering, vol. 20,

no. 6, pp. 476–493.

2. Henderson-Sellers B. 1996. Object-Oriented Metrics Measures of

Complexity, Prentice-Hall, Upper Saddle River.

3. Bruntink M. and Van Deursen A. 2006. An Empirical Study into Class

Testability, Journal of Systems and Software, Vol. 79, No. 9, pp. 1219-

1232.

4. Badri L., Badri M. and Toure F., 2010. Exploring Empirically the
Relationship between Lack of Cohesion and Testability in Object-

Oriented Systems, JSEA Eds., Advances in Software Engineering,

Communications in Computer and Information Science, Vol. 117,

Springer, Berlin.

5. Badri M. and Toure F., 2011. Empirical analysis for investigating the
effect of control flow dependencies on testability of classes, in

Proceedings of the 23rd International Conference on Software

Engineering and Knowledge Engineering SEKE.

6. Badri M. and Toure F. 2012. Empirical analysis of object oriented

design metrics for predicting unit testing effort of classes, Journal of
Software Engineering and Applications (JSEA), Vol. 5 No. 7, pp.513-

526.

7. Toure F., Badri M. and Lamontagne L., 2014. Towards a metric suite

for JUnit Test Cases. In Proceedings of the 26th International
Conference on Software Engineering and Knowledge Engineering

(SEKE Vancouver, Canada. Knowledge Systems Institute Graduate

School, USA pp 115–120.

8. Toure F., Badri M. and Lamontagne L., 2014. A metrics suite for JUnit

test code: a multiple case study on open source software, Journal of

Software Engineering Research and Development, Springer, 2:14.

9. Toure F., Badri M. and Lamontagne L., 2017. Investigating the

Prioritization of Unit Testing Effort Using Software Metrics, In

Proceedings of the 12th International Conference on Evaluation of

Novel Approaches to Software Engineering (ENASE’17) Volume 1:

ENASE, pages 69-80.

10. Bruntink M., and Deursen A.V., 2004. Predicting Class Testability
using Object-Oriented Metrics, 4th Int. Workshop on Source Code

Analysis and Manipulation (SCAM), IEEE.

11. JUnit Framework, https://junit.org/junit5/. Visited in December 2019.

12. Toure F., and Badri M., 2018. Prioritizing Unit Testing Effort Using

Software Metrics and Machine Learning Classifiers, In Proceedings of
the 30th International Conference on Software Engineering and

Knowledge Engineering, SEKE 2018 DOI:10.18293/SEKE2018-146

13. LeCun Y, Bengio Y, and Hinton G., 2015. Deep learning. Nature. 2015,

521(7553):436-444. doi:10.1038/nature14539.

14. Rothermel G., Untch R.H., Chu C. and Harrold M.J., 1999. Test case
prioritization: an empirical study, International Conference on

Software Maintenance, Oxford, UK, pp. 179–188.

15. Yu Y. T. and Lau M. F., 2012. Fault-based test suite prioritization for

specification-based testing, Information and Software Technology

Volume 54, Issue 2, Pages 179–202.

16. Mirarab S. and Tahvildari L., 2007. A prioritization approach for

software test cases on Bayesian networks, In FASE, LNCS 4422-0276,

pages 276–290.

17. Kim J. and Porter A., 2002. A history-based test prioritization technique

for regression testing in resource constrained environments, In

Proceedings of the International Conference on Software Engineering.

18. Lin C.T., Chen C.D., Tsai C.S. and Kapfhammer G. M., 2013. History-

based Test Case Prioritization with Software Version Awareness, 18th

International Conference on Engineering of Complex Computer

Systems.

19. Carlson R., Do H., and Denton A., 2011. A clustering approach to

improving test case prioritization: An industrial case study, Software

Maintenance, 27th IEEE International Conference, ICSM, pp. 382-391.

20. Lachmann R., Schulze S., Nieke M., Seidl C. and Schaefer I., 2016
System-Level Test Case Prioritization Using Machine Learning, 2016

15th IEEE International Conference on Machine Learning and

Applications (ICMLA), Anaheim, CA, 2016, pp. 361-368.

21. Spieker H., Gotlieb A., Marijan D. and Mossige M., Reinforcement

learning for automatic test case prioritization and selection in
continuous integration, Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis, July 2017.

22. Shihaby E., Jiangy Z. M., Adamsy B., Ahmed E. Hassany A. and

Bowermanx R., 2010. Prioritizing the Creation of Unit Tests in Legacy

Software Systems, Softw. Pract. Exper., 00:1–22.

23. Li W., and Henry S., 1993. Object-Oriented Metrics that Predict

Maintainability Journal of Systems and Software, vol. 23 no. 2 pp. 111-

122.

24. Dagpinar M., and Jahnke J., 2003. Predicting maintainability with

object-oriented metrics – an empirical comparison, Proceedings of the
10th Working Conference on Reverse Engineering (WCRE), IEEE

Computer Society, pp. 155–164.

25. Zhou Y., and Leung H., 2007. Predicting object-oriented software

maintainability using multivariate adaptive regression splines, Journal

of Systems and Software, Volume 80, Issue 8, August 2007, Pages

1349-1361, ISSN 0164-1212.

26. Basili V.R., Briand L.C. and Melo W.L., 1996. A Validation of Object-

Oriented Design Metrics as Quality Indicators, IEEE Transactions on

Software Engineering. vol. 22, no. 10, pp. 751-761.

27. Aggarwal K.K., Singh Y., Kaur A., and Malhotra R., 2009. Empirical
Analysis for Investigating the Effect of Object-Oriented Metrics on

Fault Proneness: A Replicated Case Study, Software Process

Improvement and Practice, vol. 14, no. 1, pp. 39-62.

28. Shatnawi R., 2010. A Quantitative Investigation of the Acceptable Risk

Levels of Object-Oriented Metrics in Open-Source Systems, IEEE

Transactions On Software Engineering, Vol. 36, No. 2.

29. Zhou Y. and Leung H., 2006. Empirical Analysis of Object-Oriented

Design Metrics for Predicting High and Low Severity Faults, IEEE

Transaction Software Engineering, vol. 32, no. 10, pp. 771-789.

30. Mockus A., Nagappan N. and Dinh-Trong T. T., 2009. Test coverage
and post-verification defects: a multiple case study, in proceedings of

the 3rd International Symposium on Empirical Software Engineering

and Measurement (ESEM), pp. 291– 301.

364

An Empirical Investigation on the Relationship

Between Bug Severity and Bug Fixing Change

Complexity

Zengyang Li1, Dengwei Li1, Peng Liang2,*, Ran Mo1
1 School of Computer Science & Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning,

Central China Normal University, Wuhan, China
2 School of Computer Science, Wuhan University, Wuhan, China

zengyangli@mail.ccnu.edu.cn, 762396001@qq.com, liangp@whu.edu.cn, moran@mail.ccnu.edu.cn

Abstract 1—Fixing bugs requires changing source code in most

cases. The complexity of code changes for fixing bugs has an

important impact on release planning. This work intends to

investigate whether there are significant differences between bugs

with different severity levels with respect to the complexity of

code changes for fixing the bugs. We performed a case study on

13 Apache open source software (OSS) projects using commit

records and bug reports. The study results show that (1) for bugs

of high severity levels, there is no significant difference on the

complexity of code change for fixing bugs of different severity

levels for most projects, while (2) for bugs of low severity levels,

fixing bugs of a higher severity level needs significantly more

complex code change than fixing bugs of a lower severity level for

most projects. These findings provide useful insights for effort

estimation and release planning of OSS development.

Keywords-bug severity; code change complexity; commit

records

I. INTRODUCTION

Bugs of a software project are managed in an issue tracking
system, in which the severity of a bug can be indicated by the
development team members or external reporters. In practice,
developers use severity levels, such as Blocker, Critical, Major,
Minor, and Trivial in JIRA, to prioritize the urgency of bugs
and to estimate influence and impact of bugs [1]. The bug
severity data play an important role in release planning and task
assignment [2, 3].

The complexity of required code change for fixing a bug
also influences release planning in terms of effort estimation
[3]. More complex code change is required for fixing a bug
means more effort is needed for this bug fixing task. Effort
estimation for tasks is a key aspect in release planning [3].

Both the severity of a bug and required effort for fixing the
bug should be taken into consideration during release planning
of a project. A natural question arises: is bug severity in line
with actual code change complexity? The answer to this
question will provide meaningful insights for effort estimation
of project development.

* Corresponding author.

DOI reference number: 10.18293/SEKE2020-160

 To investigate whether bug severity is in line with
complexity of actual code change, we performed a case study
on 13 non-trivial Apache open source software (OSS) projects.
Data on bugs were exported from JIRA – an issue tracking
system deployed by Apache Software Foundation. Data on the
complexity of code change for fixing bugs can be obtained by
analyzing the commit records extracted from the code
repositories of the OSS projects.

Our main findings are as follows: (1) There is no significant
difference on the complexity of code change for fixing Blocker
and Critical bugs for most projects. The situation is similar for
Critical and Major bugs. (2) Code change for fixing Major bugs
has a significantly higher complexity than fixing Minor bugs
for most selected projects. The situation is similar for Minor
and Trivial bugs.

The rest of this paper is organized as follows. Section II
reports related work to this study. Section III describes the
design of the case study. Section IV presents the results of the
case study. Section V discusses the results of the case study and
Section VI presents the threats to validity of the results. Section
VI concludes this work with future directions.

II. BACKGROUND AND RELATED WORK

This section presents background of this study and related
work on bug severity and required code change for fixing bugs.

A. Background

In the JIRA issue tracking platform, issues are classified in
multiple types, including Bug, Improvement, New Feature,
Task, Sub-task, Test, and Wish. In particular, according to its
severity (i.e., priority to be fixed), a bug can be labeled a level,
from high to low severity, as Blocker, Critical, Major, Minor,
or Trivial. These severity levels are defined as follows,
according to JIRA [4].

 Level 5 – Blocker: a time-sensitive issue that is
hindering a basic function of a project.

 Level 4 – Critical: a time-sensitive issue that is
disrupting the project, but does not hinder basic
functions.

 Level 3 – Major: this issue needs attention soon, but
is not hindering basic functions. Most requests for new
resources fall into this category.

365

 Level 2 – Minor: this issue needs attention, but is not
time-sensitive and does not hinder basic functions.

 Level 1 – Trivial: this issue is minimal and has no
time constraints.

Besides, in JIRA, the status of a bug can be one of the
following: Open, In Progress, Reopen, Resolved, and Closed.

B. Related Work

Many studies proposed various methods to predict bug
severity automatically. For instance, Roy et al. used text
mining and machine learning techniques to improve bug
severity classification [5]. Lamkanfi et al. applied text mining
algorithms to analyze descriptions of bug reports for predicting
bug severity [6]. Menzies et al. proposed to use standard text
mining and machine learning techniques to automate severity
assessment based on software defect reports [7]. Tian et al.
used multi-factor analysis to automatically predict bug priority
[8]. However, our work is not aimed to predict severity levels
of bugs, but to investigate whether bugs of a higher severity
level require more complex code change to fix.

A number of studies looked into the delay of bug fixing
from the perspective of bug severity and required code change.
Zhang et al. found that a larger total lines of changed code can
delay bug fixing, and bugs of a high severity level were fixed
earlier than bugs of a low severity level [9]. Saha et al. revealed
that bug priority (i.e., severity) has significant impact on the
delay of bug fixing [10]. However, the relationship between
bug severity and complexity of changed code was not
discussed in these study.

Some works on effort estimation took bug severity into
consideration. For instance, Weiss et al. took the average time
and effort of previous bugs with similar severity as an early
estimation of required effort for new bugs [11].

III. STUDY DESIGN

In order to investigate the relationship between bug severity
and code change complexity, we performed a case study on
fifteen Apache OSS projects written in Java. In this section we
describe the case study, which was designed and reported
according to the guidelines proposed by Runeson and Höst [12].

A. Objective and Research Questions

The goal of this case study is to investigate: whether there
is a significant difference on the complexity of changed source
code for fixing the bugs with different bug severity levels.

In this study, the complexity of changed source code is
measured in three dimensions: (i) number of modified lines of
code, (ii) number of modified source files, and (iii) number of
modified packages. It is convenient to extract such information
on a bug by analyzing commit records and bug reports.

Based on the abovementioned goal and considering the
three dimensions of the complexity of changed source code, we
formulated the following three research questions (RQs):

 RQ1: Is there a significant difference between the
numbers of lines of modified code for fixing bugs
with different severity levels?

 RQ2: Is there a significant difference between the
numbers of modified source files for fixing bugs with
different severity levels?

 RQ3: Is there a significant difference between the
numbers of modified packages for fixing bugs with
different severity levels?

B. Case and Unit Analysis

According to [12], case studies can be characterized based
on the way they define their cases and units of analysis. This
study investigates multiple OSS projects, i.e., cases, and each
bug and changed source code for fixing it is a single unit of
analysis.

C. Case Selection

In this study, we only investigated Apache OSS projects
written in Java. For selecting each case (OSS project) included
in our study, we apply the following criteria:

(1) Over 70% of the source code of the project is written
in Java.

(2) The age of the project is over 5 years.
(3) The number of stars of the project on GitHub is over

500.
(4) The number of revisions of code repository of the

project is over 2,000.
(5) The number of bugs of the project is over 1,500.

These selection criteria were set to ensure that the selected
cases are non-trivial and the resulting dataset is big enough to
be statistically analyzed.

D. Data Collection

This section presents the data to be collected and the
process for collecting required data.

1) Data to be Collected
To answer the RQs formulated in Section III-A, we

collected the data items listed in TABLE I, which also provides
the mapping between the data items and the target RQ(s).

TABLE I. DATA ITEMS TO BE COLLECTED

Data Item Description Target RQ

D1 Severity label
of a bug

The priority of an issue in
JIRA (the issue tracking
system used by Apache),
i.e., Blocker, Critical,
Major, Minor, or Trivial.

RQ1, RQ2,
RQ3

D2 Number of
lines of
modified code
for fixing a
bug

The number of lines of
source code that is
changed to fix a bug.

RQ1

D3 Number of
modified
source files for
fixing a bug

The number of source files
that is changed to fix a
bug.

RQ2

D4 Number of
modified
packages for
fixing a bug

The number of packages
(for Java) that is changed
to fix a bug.

RQ3

366

TABLE II. DEMOGRAPHIC INFORMATION OF SELECTED APACHE OSS PROJECTS

Name Age(year) Java% #(Star) #(Revision) #(Committer) #(Bug in JIRA)

P1 Accumulo 9 98.6 782 10,431 113 2,250

P2 Activemq 15 95.9 1,694 10,519 97 4,771

P3 Camel 13 98.6 3,129 43,282 626 4,729

P4 CXF 12 98.9 632 15,524 151 5,114

P5 Flink 10 76.7 12,254 20,738 573 5,797

P6 Hadoop 11 92.7 10,177 23,606 291 23,373

P7 Ignite 6 72.2 3,034 26,624 241 5,575

P8 Maven 17 99.5 2,041 10,639 89 3,230

P9 Nifi 6 86.6 1,930 5,675 296 3,136

P10 Pig 13 93.1 597 3,691 28 3,099

P11 Struts 14 91.2 990 5,836 72 2,894

P12 Wicket 16 88.2 505 20,796 89 4,066

P13 Zookeeper 13 73.7 7,730 2,102 94 1,910

TABLE III. AVERAGE NUMBER OF MODIFIED LINES OF CODE, SOURCE FILES, AND PACKAGES PER BUG

Project #(LOC)/Bug #(File)/Bug #(Package)/Bug

Blocker Critical Major Minor Trivial Blocker Critical Major Minor Trivial Blocker Critical Major Minor Trivial

P1 368.46 229.20 492.77 211.97 333.62 7.67 5.80 8.85 3.87 7.15 4.38 4.38 4.23 2.72 3.76

P2 398.41 178.21 199.16 109.92 49.39 6.03 3.74 4.02 2.35 1.79 2.97 2.40 2.56 1.81 1.45

P3 19.50 202.36 129.65 100.84 62.16 2.17 5.73 4.20 3.54 3.51 1.67 3.31 2.64 2.34 2.43

P4 185.07 85.05 90.98 85.20 124.47 4.37 3.39 3.48 3.59 3.97 3.15 2.39 2.47 2.53 2.67

P5 255.21 187.04 157.21 90.18 34.66 5.16 4.53 3.93 3.03 3.36 3.30 2.70 2.67 2.01 2.50

P6 145.68 122.66 106.65 49.24 23.99 4.44 3.58 3.14 2.50 1.79 3.15 2.66 2.27 1.86 1.50

P7 172.96 282.02 215.47 150.55 29.08 4.64 6.30 5.29 8.97 1.56 3.27 4.07 3.37 5.46 1.44

P8 197.69 97.94 97.08 86.76 42.75 4.14 3.06 3.03 3.48 1.83 3.00 2.48 2.25 2.43 1.67

P9 157.87 240.55 202.16 79.88 7.53 3.80 3.94 4.17 3.31 3.67 2.79 2.53 2.62 2.29 1.64

P10 78.25 53.71 152.08 79.70 30.29 2.75 2.12 3.98 2.52 2.00 2.25 1.86 2.40 1.91 1.32

P11 70.16 266.16 136.43 67.52 175.45 2.61 7.98 2.96 2.74 3.30 2.19 4.14 2.28 2.11 2.45

P12 64.36 84.70 97.46 68.39 27.10 2.27 2.88 2.87 2.59 1.39 1.91 2.10 2.14 1.85 1.24

P13 176.43 185.34 113.30 47.33 16.30 4.12 4.44 2.84 2.15 1.15 2.39 2.29 1.83 1.57 1.15

2) Data Collection Process
The process of collecting the data items (listed in TABLE I)

for an Apache OSS project includes the following four steps.

Step 1: Export commit records. Commit records of the
project were extracted from its Git repository. We developed a
simple tool to extract commit records and save them in a text
file.

Step 2: Export issues from JIRA. Many Apache OSS
projects adopt JIRA (https://issues.apache.org/jira) as their
issue tracking system. We manually exported all issues of the
project and stored them in a Microsoft Access file. Please note
that not all exported issues are bugs and we can get bugs by
choosing the issue type ‘Bug’.

Step 3: Parse commit records. If a commit is performed to
solve an issue, the committer would explicitly tell the issue ID
in the message of the commit record. The changed source files
and the changed lines of code can also be identified in the
commit record.

Step 4: Extract bugs and corresponding number of lines of
modified code, number of modified source files, and number of
modified packages. With issue IDs obtained in Step 3, we
picked up bugs, i.e., issues with issue type ‘Bug’. Then, we
calculated the number of lines of modified code, number of
modified source files, and number of modified packages for
each bug. Please note that, only resolved or closed bugs were
included in our dataset. We found that some bugs were
resolved in previous revisions but still with the status OPEN.
Such bugs actually are in the REOPEN status, which means
that these bugs had not been resolved completely and they may
involve more lines of source code, source files, and packages.

In this case study, we filtered out abnormal data points. By
an abnormal data point, we mean that a bug whose fixing
involves either more than 500 modified source files or over
20,000 lines of modified source code. The abnormal data points
can affect the validity of conclusions. For instance, in project
Accumulo, we found a few bugs each involving hundreds of
thousands of modified lines of source code which is generated

367

https://issues.apache.org/jira

automatically using the model-driven engineering techniques
[13]; if such bugs were not excluded, the average number of
modified lines of source code for bugs would increase greatly.

E. Data Analysis

To answer the RQs formulated in Section III-A, we need to
analyze the collected data on code change history and bug
severity. First, we calculated the average number of modified
lines of code, modified source files, and modified packages, for
each category of bugs (classified according to bug severity).
Second, in order to know whether there are significant
differences between categories of bugs with respect to the
number of modified lines of code, modified source files, and
modified packages, we performed Mann-Whitney U tests on
the data for each selected OSS project. The test is significant at
p-value < 0.05, which means that the tested groups have
significant difference.

IV. RESULTS

Following the study design, we performed the case study.
In this section, we first present the demographic information of
the selected cases, i.e., Apache OSS projects. Then, we report
the results regarding the research questions formulated in
Section III-A.

TABLE IV. DISTRIBUTION OF BUGS OVER DIFFERENT SEVERITY LEVELS

Project #(Blocker) #(Critical) #(Major) #(Minor) #(Trival) Total

P1 136 90 587 232 124 1,169

P2 34 121 1410 290 38 1,893

P3 6 59 2198 927 49 3,239

P4 46 98 1951 426 30 2,551

P5 325 299 856 249 50 1,779

P6 605 801 4174 1115 283 6,978

P7 137 286 1193 112 25 1,753

P8 58 48 569 84 12 771

P9 102 139 835 260 55 1,391

P10 12 42 1114 127 34 1,329

P11 31 49 432 176 20 708

P12 11 50 1323 475 82 1,941

P13 102 87 232 84 20 525

A. Selected Cases

Thirteen Apache OSS projects were selected for this case
study and their demographic information is shown in TABLE
II. The age of the projects is from 6 to 17 years, and 9 out of 13
projects are 10+ years old. All these projects are mainly written
in Java, and more than 90% source code of 8 (out of 13)
projects are written in Java. Eight out of 13 projects are starred
over 1,000 times, and project Flink with 12,254 stars is most
starred. Nine out of 13 projects have 10,000+ revisions,
demonstrating the vitality of these projects. Each of the
selected projects has experienced 2,000+ bugs, and the project
Hadoop has the most bugs (23,373).

The average number of modified lines of code, source files,
and packages over bugs with different severity levels are
presented in TABLE III. The distribution of bugs over different
severity levels for the 13 selected OSS project is shown in
TABLE IV. Please note that, the total number of bugs in
TABLE IV for each project is smaller than the number of bugs
in JIRA (as shown in TABLE II). This is because many bugs in
JIRA are not recorded in the commit messages of the master

branch of the project’s code repository, which is also the reason
why we selected projects with a relatively large number of bugs
(i.e., over 1500 bugs, described in Section III-C).

B. Results on Modified Lines of Code (RQ1)

We performed Mann-Whitney U tests to understand
whether there is a significant difference between bugs with
distinct severity levels with respect to the number of modified
lines of code. Results of the tests are shown in TABLE V,
where cells with p-value < 0.05 are filled in gray. Specifically,
a cell filled in gray and with a number in bold denotes that the
average number of modified lines of code for higher level bugs
is significantly smaller than low level bugs; the remaining cells
filled in gray mean that the average number of modified lines
of code for higher level bugs is significantly larger than low
level bugs.

(1) 3 out of 13 (23.1%) projects have a significant
difference (p-value < 0.05) between Blocker and
Critical bugs, and only in one project (i.e., P5) Blocker
bugs have a higher average number of modified lines
of code than Critical bugs.

(2) 5 out of 13 (38.5%) projects have a significant
difference between Critical and Major bugs, and in 4
out of 13 (30.8%) projects Critical bugs have a higher
average number of modified lines of code than Major
bugs.

(3) 12 out of 13 (92.3%) projects have a significant
difference between Major and Minor bugs, and in
all the 12 projects Major bugs have a higher
average number of modified lines of code than
Minor bugs.

(4) 10 out of 13 (76.9%) projects have a significant
difference between Minor and Trivial bugs, and in 9
out of 13 (69.2%) projects Minor bugs have a higher
average number of modified lines of code than Trivial
bugs.

TABLE V. P-VALUES OF MANN-WHITNEY U TESTS FOR MODIFIED LINES

OF CODE BETWEEN BUGS WITH DIFFERENT SEVERITY LEVELS

Project Blocker&

Critical

Critical&

Major

Major&

Minor

Minor&

Trivial

P1 0.113 0.006 0.010 0.002

P2 0.156 0.780 <0.001 0.002

P3 0.016 0.005 <0.001 <0.001

P4 0.406 0.801 <0.001 0.143

P5 <0.001 0.957 <0.001 0.001

P6 0.655 <0.001 <0.001 <0.001

P7 0.027 <0.001 <0.001 0.003

P8 0.052 0.162 0.722 0.249

P9 0.724 0.849 <0.001 <0.001

P10 0.617 0.315 0.005 0.001

P11 0.988 0.428 0.008 0.122

P12 0.807 0.224 0.001 <0.001

P13 0.671 <0.001 0.001 0.001

C. Results on Modified Source Files (RQ2)

We performed Mann-Whitney U tests to understand
whether there is a significant difference between bugs with

368

distinct severity levels with respect to the number of modified
source files. Results of the tests are shown in TABLE VI,
where cells with p-value < 0.05 are filled in gray.

(1) 1 out of 13 (7.7%) project (i.e., P5) has a significant
difference between Blocker and Critical bugs, and in
this project Blocker bugs have a higher average
number of modified files than Critical bugs.

(2) 5 out of 13 (38.5%) projects have a significant
difference between Critical and Major bugs, and in 4
out of 13 (30.8%) projects Critical bugs have a higher
average number of modified files than Major bugs.

(3) 11 out of 13 (84.6%) projects have a significant
difference between Major and Minor bugs, and in
9 out of 13 (69.2%) projects Major bugs have a
higher average number of modified files than
Minor bugs.

(4) 8 out of 13 (61.5%) projects have a significant
difference between Minor and Trivial bugs, in 7 out of
13 (53.8%) projects Minor bugs have a higher average
number of modified files than Trivial bugs.

TABLE VI. P-VALUES OF MANN-WHITNEY U TESTS FOR MODIFIED FILES

BETWEEN BUGS WITH DIFFERENT SEVERITY LEVELS

Project Blocker&

Critical

Critical&

Major

Major&

Minor

Minor&

Trivial

P1 0.263 0.220 <0.001 0.587

P2 0.096 0.782 <0.001 0.008

P3 0.097 0.007 <0.001 0.009

P4 0.330 0.701 0.005 0.056

P5 <0.001 0.111 <0.001 0.954

P6 0.107 <0.001 <0.001 <0.001

P7 0.125 <0.001 0.001 0.003

P8 0.117 0.982 0.944 0.241

P9 0.865 0.995 0.001 <0.001

P10 0.676 0.016 <0.001 0.050

P11 0.898 0.365 0.131 0.315

P12 0.424 0.181 <0.001 <0.001

P13 0.765 0.001 0.011 0.003

D. Results on Modified Packages (RQ3)

We performed Mann-Whitney U tests to understand
whether there is a significant difference between bugs with
distinct severity levels with respect to the number of modified
packages. Results of the tests are shown in TABLE VII, where
cells with p-value < 0.05 are filled in gray.

(1) 1 out of 13 (7.7%) project (i.e., P5) has a significant
difference between Blocker and Critical bugs, and in
this project Blocker bugs have a higher average
number of modified packages than Critical bugs.

(2) 6 out of 13 (46.2%) projects have a significant
difference between Critical and Major bugs, and in 5
out of 13 (38.5%) projects Critical bugs have a higher
average number of modified packages than Major
bugs.

(3) 11 out of 13 (84.6%) projects have a significant
difference between Major and Minor bugs, and in
10 out of 13 (76.9%) projects Major bugs have a

higher average number of modified packages than
Minor bugs.

(4) 9 out of 13 (69.2%) projects have a significant
difference between Minor and Trivial bugs, in 7 out of
13 (53.8%) projects Minor bugs have a higher average
number of modified packages than Trivial bugs.

TABLE VII. P-VALUES OF MANN-WHITNEY U TESTS FOR MODIFIED

PACKAGES BETWEEN BUGS WITH DIFFERENT SEVERITY LEVELS

Project Blocker&

Critical

Critical&

Major

Major&

Minor

Minor&

Trivial

P1 0.191 0.031 <0.001 0.388

P2 0.175 0.294 <0.001 0.006

P3 0.112 0.004 0.012 0.041

P4 0.275 0.419 0.114 0.024

P5 <0.001 0.084 <0.001 0.976

P6 0.191 <0.001 <0.001 <0.001

P7 0.124 <0.001 0.019 0.002

P8 0.215 0.408 0.762 0.479

P9 0.692 0.550 <0.001 <0.001

P10 0.569 0.070 0.001 0.003

P11 0.921 0.537 0.042 0.221

P12 0.611 0.268 <0.001 <0.001

P13 0.728 <0.001 0.010 0.026

E. Summary

According to the results presented above, there is no
significant difference on the complexity of code change for
fixing Blocker and Critical bugs in terms of the average
number of modified lines of code, source files, and packages
for most selected projects. The situation is similar for Critical
and Major bugs.

Code change for fixing Major bugs has a significantly
higher complexity than fixing Minor bugs in terms of the
average number of modified lines of code, source files, and
packages for most selected projects. The situation is similar for
Minor and Trivial bugs.

V. DISCUSSION

A. Interpretation of Study Results

The results have shown that there is no significant
difference on the complexity of code change for fixing Blocker
and Critical bugs in most selected OSS projects. As defined in
Section II-A, both Blocker and Critical bugs are time-sensitive
issues and of a high level of urgency, and they have a serious
impact on the projects. Thus, Blocker and Critical bugs may
have a similar level of change impact when fixing the bugs.

The results have also shown that code change for fixing
Major bugs has a significantly higher complexity than Minor
bugs in most selected OSS projects. There is a relatively clear
boundary between bugs of these two severity levels. The code
change impact on the software system for fixing Major bugs is
significantly higher than Minor bugs. The complexity of code
change for fixing Minor and Trivial bugs can be interpreted in
a similar way to Major and Minor bugs.

It is consistent in general for the results of the Mann-
Whitney U tests on the significant difference between code

369

change complexity in terms of modified lines of code, source
files, and packages, for fixing bugs with different severity
levels.

B. Implications

There is no significant difference of average number of
modified lines of code, source files, and packages between
Blocker and Critical bugs for most selected OSS projects. This
implies that Blocker and Critical bugs may have similar change
impact and difficulty when fixing them. Hence, when
estimating required effort for fixing Blocker and Critical bugs,
they can be put in the same category.

Major bugs need to modify a significantly higher average
number of lines of code, source files, and packages than Minor
bugs for most selected OSS projects. Also, fixing Minor bugs
involves code change of higher complexity than Trivial bugs.
Hence, for Major, Minor, and Trivial bugs, their severity levels
are in line with the complexity of code change for fixing such
bugs. Therefore, when estimating needed efforts for fixing
Major, Minor, and Trivial bugs, they should be placed in
different categories.

VI. THREATS TO VALIDITY

There are several threats to the validity of the study results.
We discuss these threats according to the guidelines in [12].
Please note that internal validity is not discussed, since we do
not study causal relationships.

Construct validity. Since a bug is closed or resolved, its
severity level (i.e., bug priority in JIRA) was confirmed by the
development team member of the project. Thus, we believe that
the severity levels of closed or resolved bugs can genuinely
reflect the actual severity of the bug. In the data collection
process, only the changed code written in Java were included.
In some cases, the changed code for fixing a bug may involve
source files in other programming languages than Java, which
threatens the construct validity. To reduce this threat, we
filtered out any bug whose fixing entails non-Java source code.

External validity. Since we collected bugs whose fixing
requires changing Java code only, the conclusions of this case
study may not be generalized to projects not written in Java.
Only 13 projects were used in this case study, more projects are
needed to establish more solid conclusions.

Conclusion validity. Only descriptive statistics was used in
the calculation of the average number of modified lines of code,
source files, and packages. The Mann-Whitney U tests were
executed in SPSS, which is a widely-used and well-engineered
statistical tool. Thus, we believe that the threats to conclusion
validity are minimal.

VII. CONCLUSIONS

This work investigates whether there are significant
differences between bugs of different severity levels with
respect to the complexity of code changes for fixing the bugs.
We conducted a case study on 13 Apache OSS projects. Based
on the study results, we obtain the following findings:

 In most (>=10/13, 76.9%) projects Blocker (Level 5)
and Critical (Level 4) bugs have no significant
difference on complexity of code change.

 In most (>=7/13, 53.8%) projects Critical (Level 4)
and Major (Level 3) bugs have no significant
difference on complexity of code change.

 In most (>=10/13, 76.9%) projects Major (Level 3)
bugs have a significantly higher complexity of code
change than Minor (Level 2) bugs.

 In most (>=8/13, 61.5%) projects Minor (Level 2)
bugs have a significantly higher complexity of code
change than Trivial (Level 1) bugs.

Based on the findings of this work, in the next step, we plan
to include more software projects (from both commercial and
open source) to replicate the case study in this work, in order to
establish a more solid foundation for the findings in this work.

ACKNOWLEGMENTS

This work is supported by the National Natural Science
Foundation of China under the grant Nos. 61702377 and
61773175, the Fundamental Research Funds for the Central
Universities under the grant No. CCNU19TD003, and IBO
Technology (Shenzhen) Co., Ltd., China.

REFERENCES

[1] Y. Tian, N. Ali, D. Lo, and A. E. Hassan, "On the unreliability of bug

severity data," Empirical Software Engineering, vol. 21, no. 6, pp.

2298-2323, 2016.
[2] Y. Tian, D. Lo, and C. Sun, "Information retrieval based nearest

neighbor classification for fine-grained bug severity prediction," in

Proceedings of the 19th Working Conference on Reverse Engineering
(WCRE'12), 2012, pp. 215-224.

[3] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. B. Saleem, and M.

U. Shafique, "A systematic review on strategic release planning
models," Information and Software Technology, vol. 52, no. 3, pp. 237-

248, 2010.

[4] Apache Software Foundation. Guidelines for creating a Jira ticket.
Available: https://infra.apache.org/pages/jira-guidelines.html, accessed

on Dec. 20, 2019.

[5] N. K. S. Roy and B. Rossi, "Towards an improvement of bug severity
classification," in Proceedings of the 40th EUROMICRO Conference

on Software Engineering and Advanced Applications (SEAA'14), 2014,
pp. 269-276.

[6] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, "Predicting the

severity of a reported bug," in Proceedings of the 7th IEEE Working
Conference on Mining Software Repositories (MSR'10), 2010, pp. 1-10.

[7] T. Menzies and A. Marcus, "Automated severity assessment of

software defect reports," in Proceedings of the 24th IEEE International
Conference on Software Maintenance (ICSM'08), 2008, pp. 346-355.

[8] Y. Tian, D. Lo, X. Xia, and C. Sun, "Automated prediction of bug

report priority using multi-factor analysis," Empirical Software
Engineering, vol. 20, no. 5, pp. 1354-1383, 2015.

[9] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, "An empirical study on

factors impacting bug fixing time," in Proceedings of the 19th Working
Conference on Reverse Engineering (WCRE'12), 2012, pp. 225-234.

[10] R. K. Saha, S. Khurshid, and D. E. Perry, "An empirical study of long

lived bugs," in Proceedings of the 2014 Software Evolution Week -
IEEE Conference on Software Maintenance, Reengineering, and

Reverse Engineering (CSMR-WCRE'14), 2014, pp. 144-153.

[11] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, "How long will it
take to fix this bug?," in Proceedings of the 4th International Workshop

on Mining Software Repositories (MSR'07), 2007, pp. 1-8.

[12] P. Runeson and M. Höst, "Guidelines for conducting and reporting case
study research in software engineering," Empirical Software

Engineering, vol. 14, no. 2, pp. 131-164, 2009.

[13] X. He, P. Avgeriou, P. Liang, and Z. Li, "Technical debt in MDE: A
case study on GMF/EMF-based projects," in Proceedings of the

ACM/IEEE 19th International Conference on Model Driven

Engineering Languages and Systems (MODELS'16), 2016, pp. 162-172.

370

https://infra.apache.org/pages/jira-guidelines.html

Can Language Help in the Characterization of User Behavior?
Feature Engineering Experiments with Word2Vec

Eduardo Lopez
Information Systems
McMaster University

Hamilton, ON, Canada
lopeze1@mcmaster.ca

Kamran Sartipi
Department of Computer Science

East Carolina University
Greenville, NC, USA
sartipik16@ecu.edu

Abstract

1 Among the many significant advances in the area of
deep learning, the Natural Language Processing (NLP)
space holds a special place. The availability of very large
datasets along with the existence of powerful computing
environments have created a fascinating environment for
researchers. One of the algorithms recently developed is
Word2Vec, which enables the creation of embeddings (low-
dimensional, meaningful representations of language that
can be used for machine learning tasks such as predic-
tion or classification). In this study, we experiment with
Word2Vec and apply it to a different domain, i.e., represen-
tation of user behavior in information systems. We demon-
strate how feature engineering tasks for user behavior char-
acterization can be enriched by the use of NLP concepts.

1 Introduction

Information Technology (IT) has enabled dramatic trans-
formations in the way organizations execute their processes.
Using information systems for the delivery of value is
a competitive necessity across all industries, producing a
trove of digital data that can be used for myriad purposes.
Behavior is no longer an abstraction constrained to the
physical world, but can also refer to the way in which peo-
ple use the information systems at their disposal. The vast
majority of users’ interaction with information systems is
captured in electronic documents – known as logs. These
are usually system-specific, very large files that store ac-
tions, events and/or contextual parameters in the form of
unstructured data. An analysis of these files may provide
remarkable insights into the use of information systems.

This study experiments with a real-life, anonymized set
of logs that capture the behavior of many users over a pe-

1DOI reference number: 10.18293/SEKE2020-117.

riod of continued monitoring spanning 58 days. The objec-
tive is to extract from this data the key elements that would
allow characterization of user behavior in information sys-
tems, and that can be used downstream in tasks such as pre-
diction or classification.

This paper is organized as follows. Section 2 explores
the different foundational concepts that support the analysis
in this study. In Section 3 we describe the approach, delving
into technology architecture, data structures and techniques.
We describe our implementation in Section 4 and conclude
our discussion with a summary of our contributions in Sec-
tion 5.

2 Background on Machine Learning

In this section, we articulate some of the concepts that
support the experiments described in this study. Under
the broader umbrella of Artificial Intelligence (AI), ma-
chine learning – and more specifically deep learning – is
demonstrating great success with many real-world applica-
tions [4]. A large number of achievements in areas such as
computer vision or language have come close or surpassed
human performance as measured by standard tests [5].

Perhaps one of the most remarkable developments in the
Natural Language Processing (NLP) space is the Word2Vec
algorithm. It was created by a team of researchers led by
Tomas Mikolov in 2013 [3]. Word2Vec is best explained
with an example. The following words (alphabetically
indexed) exist in a 5,000-word vocabulary: Man (2203),
Woman (4390), King (1348) and Queen (3100). Each word
may be represented by a one-hot encoded sparse vector,
where only the index position of that word has a value of
1. Figure 1 depicts this scenario.

Although these features are numeric, and suitable to feed
mathematical models, the sparse representation does not en-
able comparison between two words as the similarity met-
rics are meaningless in this context. In contrast, Word2Vec

371

Figure 1. Sparse representation using one-
hot encoding for a 5,000 words vocabulary.

Figure 2. Word2Vec 3-dimensional represen-
tation of the words.

ingests an existing document (that uses the 5,000-word vo-
cabulary) and produces a dense representation of the words
in a lower-dimensional space. The Word2Vec does it by
training a shallow neural network with two layers to pre-
dict a word given the words (i.e. context) around it in the
inputted document. Once the training period is completed,
the output layer is discarded, and the final weights are re-
turned as the new representation. For example, a Word2Vec
configured to yield three dimensions may produce a vector
space that enables comparison between vectors, as per Fig-
ure 2.

3 Approach

Using the Word2Vec concepts in a suitable database is
a remarkable opportunity that this study pursues. As was
explained previously, the intent is to characterize users’ be-
haviors using the tools and techniques from the NLP space.
A very large and completed dataset is available from the Los
Alamos national laboratory in the United States [2]. It con-
tains the logs from multiple devices running on the same
network over a period of 58 days. It includes authentica-
tion actions, Domain Name Service (DNS) calls, routing
flows and programs started or ended by users. Our attention
in this experiment revolves around the programs (i.e. pro-
cesses) log. It has more than 426 million records uniquely
identifying what programs were used by the users.

Manipulating this dataset requires computing power and

Figure 3. 3-dimensional feature space pro-
duced from the raw data through the
Word2Vec algorithm.

software beyond the commonly offered in end user work-
stations. We execute the processes described in this study
in a Linux cluster running Apache Spark [1], a unified data
science open source tool that implements many of the best-
known AI algorithms including Word2Vec.

4 Experimentation

The following experiments are performed using the ap-
proach described.

4.1 Feature engineering with Word2Vec

A single program (i.e. process) is coded with the let-
ter ’P’ and an integer number. We define a process profile
~PP as a set of processes that are executed by the user in

any given hour. The relationship between a process and
a process profile is similar to that of a word to a docu-
ment. Thus, we proceed to use the process profiles as
the document to be processed in Word2Vec. There are a
total of 2,097,198 records capturing the process profiles
(’documents’). We use the Word2Vec implementation in
Apache Spark which averages each document when finding
the lower-dimensional representation of each word (i.e. pro-
cess in the case of this study). We experiment with several
different dimensional spaces: 1, 2, 3 dimensions (which can
be plotted) as well as 10, 100 and 1000.

The 3D vector feature space is depicted in Figure 3. The
two classes (’threat’ and ’normal’) are represented by the
red and blue data points.

As the intent of this experiment is to assert whether user
behaviors can be extracted using Word2Vec, we proceed to
cluster the data in order to best understand if there are reg-
ularities that can be detected. The feature set produced by
Word2Vec is clustered using the K-means technique. Using

372

Figure 4. Cluster quality for 1-, 2-, 3-,
10-, 100- and 1000-dimensions, Word2Vec-
created vector spaces

K-means clustering we establish the silhouette scores from
2 to 15 clusters for each of the Word2Vec vector spaces cal-
culated: 2-, 3-, 10-, 100- and 1000-dimensions. Figure 4
displays the different scores.

There are multiple remarkable elements in this depic-
tion. First: the larger dimensional spaces (10,100 and 1000)
found with Word2Vec do not appear to cluster the data well,
although they begin to improve as the number of clusters
grow (which is to be expected as very high clustering over-
fits the data). Second: the one dimensional Word2Vec clus-
ters the data well (which is to be expected given the sim-
plicity of clustering scalar numbers). However, using only
one dimension neglects the complexity behind user behav-
ior and – in trying to measure it – reduces it to one number
only. Using 2 or 3 dimensions enable a better, more textured
interpretation and still produce high quality clusters. A third
critical point is – knowing that K-means produces differ-
ent clusters when ran repeatedly as it departs from different
centroids – the clustering is performed multiple times, and
the results are averaged for generalization purposes.

We select the 3-dimensional vector space, and the max-
imum number of clusters that yield a 0.95+ score, which is
4 clusters. Three dimensions can represent a wide range of
user behaviors, it is easily plot-able and permit the divid-
ing of process profiles into four distinct and well-delineated
groups. This can be observed in Figure 5, where the differ-
ent clusters are depicted with four different colors. We con-
clude that the features engineered from the data are suitable
for clustering activities, reflecting the utility of the feature
space estimated.

Figure 5. K-means clustering for three-
dimensional Word2Vec vector space

4.2 Machine learning: classification

The second activity that is performed to assess the util-
ity and effectiveness of the features engineered is classifica-
tion. The dataset includes labeled data identifying whether
the activity was performed by a regular user or by a user be-
longing to the ”red team”, i.e., users behaving abnormally.
This is a supervised learning model, in which the objective
is to verify that the features extracted are suitable for iden-
tifying normal vs. abnormal behavior in the feature set.

Every user in the feature set has distinct user behaviors
that the classification exercise analyzes. Thus, the logistic
regression model needs to be run for each user and not for
the total 2.7M records. This means that more than 11,000
logistic regressions (i.e. classifiers) are instantiated and cal-
culated with the labeled data. The feature dataset is parti-
tioned in a training set (80% or approximately 2M records)
and a test set (20% or approximately 500K records).

Figure 6 depicts the classified data along the three di-
mensions calculated with Word2Vec. The color and size
convey the probability (blue=1) of an observation being a
threat.

It is now possible to calculate how good the classifier
was in assigning the correct labels. The following confusion
matrix captures the results when each observation is labeled
a threat for probabilities higher than 0.5.

The total number of records classified (the test feature
set) is 537,280. The ground truth (i.e. known labels) have
161 records labeled as ’threat’. The 3D-Word2Vec logistic
classifier predicted 140 records as threats, 87 correctly and
53 incorrectly. Given the rarity of records labeled as threats,
the overall accuracy of the classifier is not a good indicator

373

Figure 6. Classified (logistic regression)
Word2Vec 3D vector space Color=probability
of observation being a threat

Figure 7. Confusion matrix (threshold = 0.5)
for the logistic classifier.

on its prediction quality. The sensitivity (also called true
positive rate) and specificity are calculated as

sensitivity =
correct threat predictions

total number threats
=

87

140

specificity =
correct normal predictions

total number normals
=

537, 066

537, 140

The classifier has virtually perfect specificity (99.98%),
with an adequate 62% sensitivity. It is important to note that
the probability of randomly picking an observation labeled
as a threat is 140

537,280 or 0.0002%. It is, therefore, possible
to conclude that the classifier built with the features engi-
neered are a very good source of information to identify the
threat labeled records.

5 Conclusion

In this study we explore the feature engineering aspects
– extraction, transformation and selection – of variables that
contain sufficient information for downstream analysis pro-
cesses such as clustering and classification. We can con-
clude that using a multidimensional representation of the
programs enable suitable characterization of user behavior.

The use of process profiles (i.e. processes started or ended
in a given hour by a user) can be equated to language doc-
uments that contain words. Extending the analogy to the
Word2Vec algorithm allows for the transformation of fea-
ture vectors into a dense representation.

Given the results of the different K-means clustering ac-
tivities, the silhouette scores indicate that three dimensions
suffice for the grouping of user behaviors, even enabling
plotting for added understanding of the dynamics.

References

[1] Apache SparkTM - Unified Analytics Engine for Big
Data. https://spark.apache.org/.

[2] Los Alamos National Lab: National Security Science.
https://www.lanl.gov/.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed Representations of Words and
Phrases and their Compositionality. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, editors, Advances in Neural Information Pro-
cessing Systems 26, pages 3111–3119. Curran Asso-
ciates, Inc., 2013.

[4] Raymond Perrault, Yoav Shoham, Erik Brynjolfsson,
Jack Clark, and John Etchemendy. Artificial Intelli-
gence index - 2019 annual report.

[5] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh,
J. Michael, F. Hill, O. Levy, and S. R. Bowman. Su-
perGLUE: A Stickier Benchmark for General-Purpose
Language Understanding Systems. arXiv:1905.00537
[cs], Feb. 2020.

374

Patent Technical Function-effect Representation and
Mining Method

Weidong Liu, Piying Zhang, Wenbo Qiao
College of Computer Science, Inner Mongolia University

Inner Mongolia Key laboratory of Social Computing and Data Processing
cslwd@imu.edu.cn, zhangpy.imu@gmail.com, imu.qiaowb@gmail.com

Abstract—With increasing global competition of intellectual
property, a large number of unstructured patent texts are gener-
ated for technology protection. The ocean of patent texts include
many long sentences about technologies, technical functions,
technical effects and complexity relations between them, which
make it difficult to textual representation and mining. To solve
the above issues, we represent a patent by its technical function-
effects, which are mined from the patent. The model represents
functions/effects by valence utility-technologies and represents
text by association relations between functions and effects.
We evaluate our model by comparing with the state-of-the-art
models on the patent data set. The results show that our model
outperforms other models in evaluation measurement. Such
representation can be applied to patent information retrieval and
patent text analysis.

Index Terms—patent text, representation, function-effect

I. INTRODUCTION

With the economic globalization, technological innova-
tion are fueling the knowledge-economy increase. To realize
innovation-driven economic development, it is urgent to create,
protect and applicant for the patents.

Manually reading and comparing the ocean of patents is
time-consuming, since the patents have many long sentences
which include some technologies, technical functions, tech-
nical effects and some complex relations between them. As
shown in Fig.1(a), the original claim of patent1 have many
long sentences, which consist of technical terms(marked by
blue font) and utility terms(marked by green font). Some
implicit relations are included in the patent as well, such as
the utility-technology relation between ’control’ and ’control
device’and the function-effect relation between ’use: wireless
communication’, ’provide: control device’ and ’control: toy
client’ in Fig.1(b).

Compared with the expected representation in Fig.1(b),
most previous representation models lack some aspects of
consideration to these technical functions/effects and their
relations.

The current textual representation are summarized into three
categories:

1) Concept-based models. The concept-based models of-
ten represent text by a set of concepts, which in-
clude explicit textual representation and implicit text
representation. 1) In explicit textual representation, a

1No.CN102800178A
DOI reference number: 10.18293/SEKE2020-034

n

n

n

(a) Original Claims (b) Structured Claims

Fig. 1. Compared with original claim, the structured claim consist of some
utility-technologies and function-effects.

concept, a topic or a text is represented by a vector,
where each element corresponds to a clear seman-
tic meanings. The most used models include vector
space model(VSM)[1, 2], explicit semantic analysis
model(ESA)[3], probability-based topic model, object
attribute model(OAR)[4] etc. 2) Implicit textual rep-
resentation models map the textual information to a
latent vector space. The semantic information is often
no-interpretable. The most used models include implic-
it semantic analysis model(LSA)[5], neuron-language
model (NLM)[6, 7], segment vector model(PV)[8], hy-
perspace simulation language model(HAL)[8, 9] and
word2vec[10, 11].

2) Relation-based models. Relation based models often
represent text as a set of concepts and their relation-
s. Shinmori represents patent claims by six types of
relation(process, composition, characteristics, premise,
combination)[12]. Okamoto represents patent claims by
verb-nouns relations[13]. Luo represents text by associ-
ation relations[14]. Besides, the relations can form some
networks, such as semantic linking network[15], associa-
tion linking network[16] and knowledge graphs[17–19].

3) Other models. Temporal, citation and other features are
considered in textual representation[20–24].

When the above models are used in patent textual represen-
tation, the limitations are summarized as follows.

1) Overlooked technical functions/effects in the patent.
Most previous models represent a patent by some tech-
nical terms(the nouns) other than the functions/effects
of the patent.

375

2) Neglected the relations between functions and effects.
Most models only focus on the association relations
between technical terms other than the function-effects.

To overcome the above limitations, we propose a patent
function-effect representation and its mining method, by which
each the patent is represented by some function-effects. The
remainders of this paper are organized as follows. Section 2
introduces the preliminary knowledge. Section 3 proposes a
function-effect based patent representation. Section 4 gives a
mining method of function-effect. Section 5 reports experi-
ments. Section 6 makes conclusion.

II. PRELIMINARY KNOWLEDGE

Valence is a term in chemistry, which refers to the ability
of an atom to combine with other atoms. In linguistics,
valence refers to the number of arguments(nouns) a verb
carries. Inspired by the hypothesis of valence theory, each
function/effect of the technology can be represented by the
hypothesis of valence theory.

Definition 1: Hypothesis of Valence Theory(HV T)

HV T = {V T k|0 ≤ k < |HV T |−1} (1)

V T k = {vtki |0 ≤ i < |V T k|−1, |vtki |= k} (2)

vtki = vk(i,0) : tk(1:|vtki |)
(3)

Where v denotes a utility term; t denotes a technical term;
V T (k) is a set of k-valenc utility-technologies; vtki is the ith

a utility-technology in V T (k); |vtki | denotes the number of
technical term in vtki .

For the claims of the previous patent, the hypothesis of
valence theory(HV T) is shown in TableI.

TABLE I
HYPOTHESIS OF VALENCE THEORY OF THE PATENT CLAIMS

HV T (p) HV T (p) = {V T 1, V T 2, V T 3}
V T 1 v9 : t4, v10 : t6, v2 : t2t3, v3 : t3t4, v4 : t4t1
V T 2 v5 : t4t5, , v7 : t7t8, v8 : t7t1, v11 : t2t9, v1 : t1t9, v12 : t1t10, v13 : t10t11
V T 3 v6 : t2t4t6

Technical Terms: t1:remote control toy, t2:client, . . . t11: pre-programmed program
Utility Terms: v1: control, v2: use, v3: provide, . . . v12: perform, v13: base

HVT can represent fucntions/effects of the patent by utility-
technologies.

III. FUNCTION-EFFECT BASED PATENT REPRESENTATION

To represent the functions, the effects and their relations, a
patent function-effect representation model is proposed.
Definition 2: Function-effect Representation(FR)

FR = {Φk|0 ≤ k < |FR|−1} (4)

Φk = {φki |0 ≤ i < |Φk|−1, |φki |= k} (5)

φki = vtk(i,1:|φk
i |−1)

→ vtk(i,0) (6)

where Φk denotes a set of k-degree function-effects; φki
denotes the ith function-effect in Φk; |φki | denotes the degree
of φki ; vtk(i,j) denotes the jth utility-technology in φki .

TABLE II
FUNCTION-EFFECT REPRESENTATION OF THE PATENT CLAIMS

FR(p) FR(p) = {Φ(0),Φ(2)}
Φ0 φ0

1 = vt4, φ
(0
2 = vt5, φ

0
3 = vt6, φ

0
4 = vt7, φ

0
5 = vt13

Φ(2) φ2
1 = vt2vt3 → vt1, φ

2
2 = vt9vt10 → vt8, φ

2
3 = vt11vt1 → vt12

valence utility-technologies: vt ∈ HV T in tableI

The function-effect representation(FR) of the previous
patent claims is shown in TableII.

For the previous patent, its function-effect representation is
shown in TableII.

TABLE III
SYMBOLS AND DESCRIPTION

Symbols Description
V = {vi|0 ≤ i < |V |−1} a set of utility terms
T = {ti|0 ≤ i < |T |−1} a set of technical terms

lcki = tk
(i,1:|lcki |−1)

→ tk
(i,0)

a association relation between technical terms

|lc(k)i | the degree of lc(k)i
LCk = {lcki |0 ≤ i < |LCk|−1} a set of k-degree relations

HLC = {LCk|0 ≤ k < |HLC|−1} hypothesis of linear concept
vtki = vk

(i,0)
: tk

(1:|vtki |)
a k-valence utility-technology

|vt(k,i)0 | the valence of vtki
V Tk = {vtki |0 ≤ i < |V Tk|−1} a set of k-valence utility-technologies

HV T = {V T (k)|0 ≤ k < |HV T |−1} hypothesis of valence theory
φki = vtk

(i,1:|φ(k)
i |−1)

→ vtk
(i,0)

a k-degree function-effect

|φki | the degree of φki
Φk = {φki |0 ≤ i < |Φk|−1} a set of k-degree function-effects

FR = {Φk|0 ≤ k < |MV FR|−1} function-effect representation

IV. FUNCTION-EFFECT MINING METHOD

The function-effect representation(FR) is mined by the steps
as shown in Algo.1, including 1) generation process of utility-
technologies for obtaining functions/effcts in Algo.2, 2) gen-
eration process of transaction of functions/effcts in algo.3 and
3) mining association relation between functions and effects
for obtaining function-effects of the patent by Eq.7.

In Algo.2, the valence relations between verb terms and
noun terms are obtained by pos tagging and dependency pars-
ing2 from the claims and the abstract of a patent, which will
generates different utility-technologies as functions/effects.

Given the functions/effcts, Algo.3 generates some trans-
actions of the functions/effcts, where each sentence can be
regards as a transaction consist of functions/effcts.

Given the transactions of functions/effcts, Algo.1 mines the
relations of functions and effects with support and confidence
large than some threshold values by Eq.7, resulting in the
function-effect representation.

∣∣ vtk(i,1:k−1)
⋂
vtk(i,0) = ∅

vtk(i,1:k−1) → vtki,0
∣∣ sup(vtk(i,1:k−1) → vtk(i,0)) > θs∣∣ conf(vtk(i,1:k−1) → vtk(i,0)) > θc

 .

(7)

V. EXPERIMENTS

In this section, we conduct some experiments to validate
the effectiveness of our representation model.

2https://nlp.stanford.edu/software/

376

Algorithm 1: Mining Process of FR

Input: the abstract pA, the claim pC , the description pD

of a patent p
Output: the function-effects FR(p) of p

1 initialize FR = ∅;
2 generate utility-technologies as functions/effects,

HVT=Algo.2(pA, pC) ;
3 generate transactions of functions/effects,
Trans=Algo.3(HV T, pD) ;

4 if φki = vtk(i,1:k−1) → vtk(i,0) is consistent with Eq.7 then
5 Φk = Φk

⋃
φki ;

6 end
7 return FR = {Φk|0 ≤ k < |FR|−1};

Algorithm 2: generation process of utility-technologies as
functions/effects
Input: pA = {si|0 ≤ i < |pA|−1},

pC = {si|0 ≤ i < |pC |−1}
Output: HV T (pA, pC) = {V T k|0 ≤ k < |HV T |−1}

1 initialize {V T (k) = ∅|0 ≤ k < |HV T |−1};
2 for s ∈ pA ∪ pC do
3 parse dependency tree tree(s);
4 if {t1:k} directly dependent the same v0 in tree(s)

then
5 V T k = V T k

⋃
v0 : t1:k;

6 end
7 end
8 return utility-technologies
HV T = {V T k|0 ≤ k < |HV T |−1};

Algorithm 3: generation process of function/effect trans-
actions
Input: HV T , pD = {si|0 ≤ i < |pD|−1}
Output: Trans = {ts(k)|0 ≤ k < |Trans|−1}

1 initialize transaction Trans = ∅;
2 for s ∈ pD do
3 ts = ∅;
4 for vt ∈ V T of HV T do
5 if vt ⊆ s then
6 ts = ts

⋃
vt;

7 end
8 end
9 Trans = Trans

⋃
ts;

10 end
11 return Trans;

A. Experimental Datasets

Patent data are downloaded from U.S. Patent and Trademark
Office(USPTO)3, which is used in our experiments.

The patents used in our experiments are shown in table IV.
The patent CPC codes of each patent are regarded its the multi-
label, which are shown in table V. There are 4446 patents from
9 CPC codes.

TABLE IV
THE DESCRIPTION OF EXPERIMENTAL DATA

Source USTPO
Data Set A B C D E F G H Y

#code 0 1 2 3 4 5 6 7 8
Number 1256 1508 504 65 279 746 2053 1594 211

Total Number 4446

TABLE V
PATENT DATA WITH MULTI-LABEL

the number of patent Multi-Label
(ABCDEFGHY)

592 000000100
522 000000110
436 100000000
.

B. Baseline Models

We compare function-effect representation(FR) with follow-
ing state-of-the-art representation models:

1) Vector Space Model (VSM)[1]: VSM is a concept-based
model. For VSM, each patent is represented a vector, in
which the word is encoded by one-hot.

2) Power Series Representation(PSR)[14]: PSR is a
relation-based model. For PSR, each patent is repre-
sented by some association relations between technical
terms.

C. Evaluation Measurements

Effective representation should have better performance in
semantic clustering. The patents with the same CPC code are
likely to cluster together. The clustering results are compared
with the multi-labels of patent. We use a widely used evalu-
ation measurements in our experiments. The precision, recall,
F-measure are used to measure the class code predicted by the
model with the reference codes.

Precision is calculated by,

P =
TP

TP + FP
(8)

Recall is calculated by,

R =
TP

TP + FN
(9)

F-measure is calculated by,

F =
2× P ×R
P +R

(10)

3www.uspto.gov

377

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
min_support

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F-
M

ea
su

re

0
1
2
3
4
5
6
7
8
average

(a) F-measure

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
min_confidence

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F-
M

ea
su

re

0
1
2
3
4
5
6
7
8
average

(b) F-measure

Fig. 2. (a) F-Measure under different support[0.02, 0.10], confidence 0.6.
(b) F-Measure under support 0.04, different confidence[0.2, 1.0].

where TP denotes true positive; TN denotes true negative;
FP denotes false positive; FN denotes false negative.

D. Experimental Setups

For each patent p in the data set, we make experiment as
follows.

1) Represent the patent by function-effect representa-
tion(FR), vector space model (VSM) and Power Series
Representation(PSR) in sectionV-B;

2) Cluster each patent by K-means method and each patent
p are clustered into top k multi-clusters with most
similarity(k equals to the number of different CPC codes
in the patent multi-label);

3) Compare and evaluate the results on the evaluation
measurement in the section V-C.

E. Experimental Results

The F-measure on 9 different CPC number codes under
different support are shown in TableVI. The results are shown
respectively in Fig.2 (a). For the experimental data, the highest
average F-Measure of the 9 CPC number codes is obtained
when the support is 0.04.

TABLE VI
F-MEASURE UNDER DIFFERENT SUPPORT IN RANGE[0.02,0.10] AND

CONFIDENCE 0.6

Meas. sup 0 1 2 3 4 5 6 7 8

F-Measure

0.02 0.3997 0.2048 0.0200 0.5408 0.1071 0.3921 0.2410 0.0815 0.4365
0.04 0.3506 0.0742 0.1256 0.6237 0.2820 0.2113 0.3663 0.5137 0.0884
0.06 0.2357 0.4390 0.6256 0.5115 0.2015 0.3814 0.0791 0.0265 0.1158
0.08 0.3987 0.5211 0.1969 0.4235 0.1113 0.4517 0.0326 0.0680 0.2454
0.10 0.2145 0.4128 0.2394 0.0300 0.4068 0.4580 0.1061 0.5355 0.0728

The F-Measure on 9 CPC number codes under different
confidence are shown int TableVII. The results are shown
respectively in Fig.2(b). For the experimental data, the highest
average F-Measure of the 9 CPC number codes is obtained
when the confidence is 0.6.

TABLE VII
F-MEASURE UNDER SUPPORT 0.04, DIFFERENT CONFIDENCE[0.2, 1.0]

Meas. sup 0 1 2 3 4 5 6 7 8

F-Measure

0.2 0.0647 0.2508 0.1015 0.2061 0.3945 0.4433 0.5514 0.4061 0.0342
0.4 0.4033 0.1942 0.3960 0.5572 0.1028 0.0707 0.0275 0.2381 0.4650
0.6 0.3506 0.0741 0.1256 0.6237 2820 0.2113 0.3663 0.5136 0.0884
0.8 0.1062 0.5705 0.1989 0.0742 0.0268 0.2218 0.4709 0.4089 0.4284
1.0 0.5465 0.2383 0.4121 0.1098 0.3943 0.0646 0.4569 0.1991 0.0193

TABLE VIII
PRECISION, RECALL AND F-MEASURE FOR THREE MODELS

Meas. Model 0 1 2 3 4 5 6 7 8

Precision FR 0.3067 0.0387 0.0673 0.4578 0.1657 0.1566 0.2787 0.3491 0.0463
PSR 0.3043 0.0111 0.0474 0.3681 0.1648 0.1555 0.2499 0.1290 0.0451
VSM 0.1626 0.0156 0.0450 0.1580 0.1072 0.1202 0.1188 0.2426 0.0431

Recall FR 0.4091 0.8642 0.9492 0.9778 0.9453 0.3249 0.5344 0.9716 0.9618
PSR 0.3931 0.5420 0.5116 0.3401 0.3481 0.2727 0.3214 0.4507 0.3862
VSM 0.0453 0.0544 0.0457 0.2133 0.1669 0.1303 0.0393 0.0207 0.1503

F-Measure FR 0.3506 0.0742 0.1256 0.6237 0.2820 0.2113 0.3663 0.5137 0.0884
PSR 0.3430 0.0218 0.0867 0.3536 0.2296 0.980 0.2812 0.2006 0.0808
VSM 0.0709 0.0243 0.0453 0.1815 0.1305 0.1250 0.0590 0.0381 0.0670

0 1 2 3 4 5 6 7 8
Label ID

0.0

0.1

0.2

0.3

0.4

Pr
ec

isi
on

PSR
FR
VSM

(a) Precision

0 1 2 3 4 5 6 7 8
Label ID

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

PSR
FR
VSM

(b) Recall

0 1 2 3 4 5 6 7 8
Label ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F-
M

ea
su

re

PSR
FR
VSM

(c) F-Measure

Fig. 3. (a), (b), (c) are the Precision, Recall and F-Measure under different
models.

When keep support 0.04 and confidence 0.6, the precision,
recall and F-measure on the results obtained by our model
compared with that of the baseline models. The comparative
results are shown in table VIII.

Fig.3(a), (b) and (c) show the comparative results. The
results show that our model outperforms the baseline models
in precision, recall and F-measure.

VI. CONCLUSION

In this paper, we propose a function-effect based patent
representation model. The contributions of our model are
summarized as follow.

1) To represent the functions/effects in a patent, the
function-effect representation which is inspired by hy-
pothesis of valence theory, represents functions/effects
by multi-valence utility-technologies;

2) To represent the function-effects in a patent, the
function-effect representation, which is inspired by hy-
pothesis of linearity concept, represents patent function-
effects by multi-degree association relations between
functions and effects.

Compared with the baseline models, the function-effect
representation exhibits good performance in precise, recall and
F-measures in the clustering task.

378

ACKNOWLEDGEMENT

The research work in this paper was supported by the
National Science Foundation of China (grant no. 61801251)
and Natural Science Foundation of Inner Mongolia (2018B-
S06002).

REFERENCES

[1] G. Salton, A. Wong, and C.-S. Yang, “A vector space
model for automatic indexing,” Communications of the
ACM, vol. 18, no. 11, pp. 613–620, 1975.

[2] P. D. Turney and P. Pantel, “From frequency to meaning:
Vector space models of semantics,” Journal of artificial
intelligence research, vol. 37, pp. 141–188, 2010.

[3] E. Gabrilovich, S. Markovitch et al., “Computing seman-
tic relatedness using wikipedia-based explicit semantic
analysis.” in IJcAI, vol. 7, 2007, pp. 1606–1611.

[4] G. Dobbie, W. Xiaoying, T. W. Ling, and M. L. Lee,
“Ora-ss: An object-relationship-attribute model for semi-
stractured data,” Tech. Rep., 2000.

[5] S. T. Dumais, “Latent semantic analysis,” Annual review
of information science and technology, vol. 38, no. 1, pp.
188–230, 2004.

[6] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A
neural probabilistic language model,” Journal of machine
learning research, vol. 3, no. Feb, pp. 1137–1155, 2003.

[7] A. Mnih and Y. W. Teh, “A fast and simple algorithm
for training neural probabilistic language models,” arXiv
preprint arXiv:1206.6426, 2012.

[8] L. Azzopardi, M. Girolami, and M. Crowe, “Probabilistic
hyperspace analogue to language,” in Proceedings of the
28th annual international ACM SIGIR conference on
Research and development in information retrieval, 2005,
pp. 575–576.

[9] D. K. Tayal, L. Ahuja, and S. Chhabra, “Word sense
disambiguation in hindi language using hyperspace ana-
logue to language and fuzzy c-means clustering,” in
Proceedings of the 12th International Conference on
Natural Language Processing, 2015, pp. 49–58.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,”
arXiv preprint arXiv:1301.3781, 2013.

[11] X. Rong, “word2vec parameter learning explained,” arX-
iv preprint arXiv:1411.2738, 2014.

[12] H. Nanba, H. Kamaya, T. Takezawa, M. Okumura,
A. Shinmori, and H. Tanigawa, “Automatic translation
of scholarly terms into patent terms,” in Proceedings of
the 2nd international workshop on Patent information
retrieval, 2009, pp. 21–24.

[13] M. Okamoto, Z. Shan, and R. Orihara, “Applying in-
formation extraction for patent structure analysis,” in
Proceedings of the 40th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, 2017, pp. 989–992.

[14] X. Luo, J. Zhang, F. Ye, P. Wang, and C. Cai, “Power
series representation model of text knowledge based on
human concept learning,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 44, no. 1, pp. 86–
102, 2013.

[15] H. Zhuge, “Autonomous semantic link networking model
for the knowledge grid,” Concurrency and Computation:
Practice and Experience, vol. 19, no. 7, pp. 1065–1085,
2007.

[16] X. Luo, Z. Xu, J. Yu, and X. Chen, “Building association
link network for semantic link on web resources,” IEEE
transactions on automation science and engineering,
vol. 8, no. 3, pp. 482–494, 2011.

[17] K. Nakayama, T. Hara, and S. Nishio, “Wikipedia link
structure and text mining for semantic relation extrac-
tion.” in SemSearch, 2008, pp. 59–73.

[18] K. Nakayama, M. Pei, M. Erdmann, M. Ito, M. Shi-
rakawa, T. Hara, and S. Nishio, “Wikipedia mining,”
Wikimania. Wikimedia, 2008.

[19] K. Nakayama, T. Hara, and S. Nishio, “Wikipedia link
structure and text mining for semantic relation extrac-
tion.” in SemSearch, 2008, pp. 59–73.

[20] L. Zhang, L. Li, and T. Li, “Patent mining: a survey,”
ACM Sigkdd Explorations Newsletter, vol. 16, no. 2, pp.
1–19, 2015.

[21] S. Rogers, S. Tang, and J. Canny, “Acce: automatic
coding composition evaluator,” in Proceedings of the first
ACM conference on Learning@ scale conference, 2014,
pp. 191–192.

[22] G. A. Miller, “Wordnet: a lexical database for english,”
Communications of the ACM, vol. 38, no. 11, pp. 39–41,
1995.

[23] Z. Dong, Q. Dong, and C. Hao, “Hownet and the
computation of meaning,” 2006.

[24] Z. Wang, K. Zhao, H. Wang, X. Meng, and J.-R.
Wen, “Query understanding through knowledge-based
conceptualization,” in Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

379

Towards A Systematic Derivation Of BPMN Model

From Business Process Textual Description

Wiem Khlif1, Nourchène Elleuch Ben Ayed2, Faten chihi1

1Mir@cl Laboratory, University of Sfax, Sfax, Tunisia
2Higher Colleges of Technology, ADW, U.A.E

wiem.khlif@gmail.com, nbenayed@hct.ac.ae, chihi.faten.95@gmail.com

Abstract—Deriving the Business Process (BP) model from its

Textual Description (TD) is crucial to its consistent analysis,

especially by making process information accessible to various

stakeholders. However, establishing or maintaining the TD-BP

alignment is not trivial when the enterprise develops a BP. In fact,

there is a clear risk that model and text become misaligned when

changes are not applied to both descriptions consistently. This

paper proposes a new transformation methodology that helps

business analyst to build BP model, which is aligned to its textual

description. It is based on the use of the business concept’s

template that is enriched by linguistic-based business rules.

Compared to existing methods, our methodology provides more

comprehensive alignment, which encompass all BPMN elements.

We examined the performance of the transformations through the

calculation of recall and precision rates.

Keywords- Textual Description, BPMN Model, Deriving,

Transformation, Business Concept’s Template

I. INTRODUCTION

Business processes capture organizational operations and
involve numerous actors with various roles [1] [2]. To provide
them with the information that they need, organizations have
recognized the value of capturing process descriptions in
model-based as well as text-based representations [1]. In this
context, several methods are proposed to automate the
transformation of a given representation into other one: Form
model to text and from text to model.

Regarding the model-to-text transformation, [3], the authors
have generated textual descriptions of a set of process models
using manual and automatic approaches. In Leopold et al. [4],
the authors proposed an approach that transforms textual as well
as model-based process descriptions into a unified data format
to automatically detect inconsistencies between them. [5] define
a semi-automated approach that consists of a process model-
based procedure for capturing execution-related data in
requirements models and an algorithm that takes these models
as input for generating natural language requirements.

Apropos of text-to-model transformation, [6] presented an
approach to generate BPMN models from natural language text
where they faced the complexity of natural language. In [1], the
authors presented the first automated approach for the
extraction of declarative process models from natural language.

In this paper, we focus on the works related to the generation
of BPMN model from its textual description. Nevertheless, the
existent works do not cover all BPMN elements. In addition,
few works derive automatically the BPMN model. To

overcome this gap, we propose a methodology called MONET
(a systeMatic derivatiOn of a bpmN modEl from business
process Textual description) that allows generating a BPMN
model from the textual description of a business process. To
achieve this, the BP description is split into business concepts
that achieve a specific business goal. Then, each business
concept is specified by using an enriched template [7] that
encapsulates the semantic information pertinent to the business
logic. Since there are many templates’ format, we use the Task
and Task & Support Descriptions [8] for the requirements
specification to document the business concept. This template
is enriched by business rules based on linguistic patterns to
support the derivation of all BPMN elements. To evaluate our
methodology, we examined the performance of the
transformations experimentally through the calculation of recall
and precision rates.

The remainder of the paper is organized as follows: Section
II introduces the proposed methodology MONET and discusses
the transformation definition strategy. Section III describes the
BPMN model derivation phase that covers the pre-processing
step and the transformation rules, which allow the generation of
a BPMN model from the business concept template. Section IV
evaluates the quality of the generated BPMN model by
considering the recall and precision rates. Section V illustrates
our tool MONET that implements the transformation rules and
the ontology to generate the BPMN model. Section VI
enumerates the threads to validity of our methodology. Section
VII discusses the related work and identifies the research gap
interest. Finally, Section VIII summarizes the research results
and draws the future works.

II. OVERVIEW OF MONET

MONET (a systeMatic derivatiOn of a bpmN modEl from
business process Textual description) is a methodology that
derives the BPMN model from a given textual description. Its
novelty resides in the production of a BPMN model that is
aligned to the input business concepts. More specifically, we
propose the business concept as a mean to define the textual
description of the business process. Each business concept is
enhanced by business rules that transform each linguistic
patterns to its corresponding BPMN elements. Fig. 1 depicts
our methodology for deriving the BPMN model from a textual
description. MONET followed two major phases: BPMN model
derivation phase and BPMN model evaluation phase.

The activities of the BPMN model derivation phase are
organized essentially in three steps: A pre-processing step

DOI reference number: 10.18293/SEKE2020-043

380

during which the Business Analyst receives a textual
description of a BPMN model in a natural language.

Figure 1. Conceptual process of MONET.

The description is cleaned based on a simple NLP technique
(Stanford CoreNLP tool) [9]. Then, the Business Analyst uses
the output to identify the business goals that are used to divide
the business process description into different business
concepts. For each business concept, the Business Analyst
prepares its textual description according to a specific template.
To handle this requirement, we rely on the use of the enriched
template presented in [7] (See Section III). Based on this
template, the Business Designer defines an ontology in the
transformation-definition step. The ontology and the linguistic
syntactic patterns are used to define the business transformation
rules (See Section III). The Business Engineer
formalizes/implements the transformation rules in the
transformation-implementation step which provides for the
automated generation of the BPMN model.

The evaluation phase (See Section IV) of our methodology
is based on calculating the recall and precision rates in order to
assess the performance of the transformations experimentally.
Once the calculation is done, a quality report is generated,
which is used by the quality interpretation activity.

III. BPMN MODEL DERIVATION PHASE

A. Natural Langage Pré-processing

We use natural language processing concepts that are syntax
parsing and semantic analysis. The syntax parsing consists on
obtaining a structured representation of the business
knowledge. Therefore, the business analyst has first to clean the
textual description by using the Stanford CoreNLP tool [9], and
second to organize it according to a specific template’s
structure. Stanford CoreNLP tool is used to obtain a more
manageable and readable text. The tool relies on the following
methods:

 Tokenization is the task of breaking a character sequence
up into pieces (words/phrases) called tokens, and
perhaps at the same time throw away certain characters
such as punctuation marks [10].

 Filtering aims to remove some stop words from the text.
Words, which have no significant relevance and can be
removed from the documents [11].

 Lemmatization considers the morphological analysis of
the words

 Stemming aims to obtain the root of derived words [12].

 Part of Speech Tagging tags for each word (whether the
word is a noun, verb, adjective, etc), then finds the most
likely parse tree for a piece of text.

 The cleaned file is then used to identify the business goals of

the business process. By business goal, we mean a collection of

business activities that are related to describe a functional

process of the BPMN model. Each goal will correspond to a

business concept.

 To guide and improve the generation of a BPMN model, the

business analyst associates to each business concept a template

that is described by a set of linguistic patterns. The template

covers the semantic and organizational information related to

the business logic. It is composed of three blocks (Fig. 2).

Figure 2. Detailed description of a business concept.

The first block gives an executive summary of the business
concept in terms of its id, name, purpose, pre-conditions,
participants involved in its execution, and its relationships with
business concept’s successors. We defined a specific structure
for the triggers, which is [<Pre-condition>] <Event

Description> [< Event Type:{timer | Message | Signal |
Conditional}>]. The event type can be explicitly specified or
implicitly extracted from its description. In addition, to
formalize the relations among participants, we created a
WordNet, which is a lexical database for all business words. It
defines a set of synonyms of a participant called Synsets and
records the relations among them such as hypernym (Type of),
meronym (part of), and antonym (opposite word). The
relationships that a business concept has with its successors
follows the linguistic pattern: [<Pre-condition>] <Current

Business Concept ID> is related <sequentially | exclusively |

381

parallel | inclusively>to<Business Concept ID>, where the
<Precondition> construct respects this structure <if>
condition <then>.

The second block describes the main, alternative, and error
scenarios. These scenarios respect this pattern [<Pre-

condition>] <Task#><Task descriptions> <Task Type >:

 Task Description: We defined a linguistic syntax pattern
to describe the tasks: ActionVerb |

CommunicationVerb + BusinessObject |
NominalGroup + [[to ReceiverName] | [from
SenderName]] to label the tasks. We mean by
BusinessObject any entity that describes the business
logic. The NominalGroup is a set of pre/post-modifiers,
which are centered on a Headword that constitutes the
BusinessObject. The pre-modifiers (respectively post-
modifiers) can be a noun, an adjective, or an ed/ing-
participle (respectively, a noun, an adjective, or adverb).
The VerbalGroup indicates the relationship type
between BusinessObjects. We note that the expression
between brackets is optional.

 Task Type: The task type can be "ActiveREQ",
"ActiveREP", "ActiveRET", "ActivePER" or "Passive"
representing respectively "Entry", "eXit", "Read",
"Write" or "data manipulation". "ActiveREQ"
corresponds to a task representing the act of asking for
something. "ActiveREP" corresponds to a reply sent
after asking for something.

"ActiveRET" corresponds to a task allowing data
retrieval. "ActivePER" corresponds to a task allowing
the data record. "Passive" task does not lead to an
exchange of data.

The third block illustrates the list of business objects as
result of the execution of the business concept.

For the semantic analysis of the business concepts’
template, we propose to create an ontology (See Fig. 3).

For the semantic analysis of the business concepts’
template, we propose to create an ontology. It is designed to
describe the entities related to the BPMN metamodel. The
annotation process is based on the result of the preprocessing
task and the defined template. It takes business concept
templates of the business process model and define the
similarities (the links) between concepts. We use the concept
names to produce an expanded list of equivalent or related
terms. Each term of the input textual description may be
associated with one or more entities from the ontology. To find
the similarities, we used the following matching techniques:

 Exact matching identifies the identical entities (String)
in the text and in the ontology;

 Morphological matching identifies the entities with a
morphological correspondence;

 Syntactical similarities using Levenshtein measure [13];

 Semantic matching identifies the synonyms relations
with WordNet ontology.

 Semantic matching identifies the synonyms relations
with WordNet ontology.

Figure 3. Meta-model ontology.

B. From Textual Description to BPMN Model

 We defined eighteen transformation rules. Each

transformation rule operates on the different components of the

template.

R1. Each trigger is transformed into an event that will be linked

to the first element of the current business concept. Based on

the trigger type, we add the corresponding event.

R1.1: If the trigger type describes the time, so add a Timer

Event.

R1.2: If the trigger type describes a certain condition that

must be satisfied to start a process, so add a Conditional

Event.

R1.3: If the trigger type describes any action that refers to

a specific addressee and represents or contains information

for the addressee, so add a Message Event.

R1.4: If the trigger type describes any action that refers to

anyone and represents or contains information for anyone,

so add a Signal Event.

R2. Each participant is transformed into pool or lane depending

on its type.

R2.1: If all participants are business workers, then add a

pool that has the same name of the business worker. We

note that a business worker represents an abstraction of a

human that acts within the business to realize a service.

R2.2: If one of the participants is a metonymy of

"department", "unit", "division" or "organizational unit",

then add a pool that has the same name of the participant

and transform others participants to lanes. Based on the

ontology result, if the relation between the participant

which is represented by a pool and the other one that is

represented by a lane is metonym (part of), so add a lane.

R3. Each relationship between the business concept and its

successors respects the linguistic pattern: [<Pre-condition>]

<Current Business Concept ID> is related <sequentially |

exclusively | parallel | inclusively>to<Business Concept ID>.

R3.1: If the relationship is <sequentially>, then add a

sequence flow if the last element of the current business

concept and the first element of its successor are in the same

pool. Otherwise, add a message flow.

382

R3.2: If the relationship is <parallel>, then add a parallel

gateway between the last element of the current business

concept and the first element of its successor.

R3.3: If the relationship is <exclusively> and there is a

precondition, then add an exclusive gateway between the

last element of the current business concept and the first

element of its successor. The precondition expression is

associated with the gateway outgoing sequence flow.

R3.4: If the relationship is <inclusively> and there is a

precondition, then add an inclusively gateway between the

last element of the current business concept and the first

element of its successor. The precondition expression is

associated with the gateway outgoing sequence flow.

R4. For each step of a BC’s scenario respecting the linguistic

pattern: [<Pre-condition>] <Task#> < Task Description >

<Task Type >, then add the following:

R4.1: If the task description is « Action verb +

BusinessObject », then add a service task that has the

same name of the pattern and a data object.

R4.2: If the task description is « Action verb +

NominalGroup », then add a service task that has the same

name of the pattern. If the pre/post-modifier is a noun that

merely represents a pure value, so there is no data object

to add. Otherwise, if the pre/post-modifier is a complex

noun (an entity) then add a data object.

R4.3: If the task description is « CommunicationVerb+

BusinessObject|NominalGroup + [[to ReceiverName(s)] |

[from SenderName]] », then add send or receive task that

has the same name of the pattern and a data object. Then,

call R4.4, R4.5, and/or R4.6.

R4.4: If the task type is ActivePER, then add an outgoing

object flow between the task and its data object/store.

R4.5: If the task type is ActiveRET, then add an ingoing

object flow between the task and its data object/store.

R4.6: If the task type is ActiveREP, then add a message

event and an outgoing message flow between the task and

message event. The message event name is the

concatenation of the Business Object extracted from the

task and the past participle of Receive.

R5. Each relationship between the task and its successors

respects the linguistic pattern: [<Pre-condition>] <Current

Task ID> is related <sequentially | exclusively | parallel |

inclusively>to<Task ID>.

R5.1: If the relationship is <sequentially>, then add a

sequence flow if the current task and its direct successor are

in the same pool. Otherwise, add a message flow.

R5.2: If the relationship is <parallel>, then add a parallel

gateway between the current task and its direct successor.

R5.3: If the relationship is <exclusively> and there is a

precondition, then add an exclusive gateway, if it does not

exist, between the current task and its direct successor. The

precondition expression is associated with the gateway

outgoing sequence flow.

R5.4: If the relationship is <inclusively> and there is a

precondition, then add an inclusively gateway, if it does not

exist, between the current task and its direct successor. The

precondition is associated with the gateway outgoing

sequence flow.

R5.5: If the relationship is <sequentially>, and there is a

<complete> construct related to a task, then add an end

event.

IV. BPMN MODEL EVALUATION PHASE

The evaluation of our methodology is based on the
experimental comparison activity that calculates for each
element type of the BPMN model, the recall and precision rates
according the following equations:

 Precision = TP/(TP+FP)

 Recall = TP/(TP+FN)

Where:

 True positive (TP) is the number of existing real
elements generated by our transformation;

 False Positive (FP) is the number of not existing real
elements generated by our transformation;

 False Negative (FN) is the number of existing real
elements not generated by our transformation.

V. MONET TOOL

To facilitate the application of our methodology, we
developed a tool for deriving the BPMN model from a given
textual description, named MONET Tool. Our tool is
implemented as an EclipseTM plug-in [14]. It is composed of
three main modules : Parser, generator, and evaluator.

 The pre-processing engine uses as input the textual description
of a BPMN model written in a natural language. It cleaned the
file using the Stanford CoreNLP tool. The cleaned file is used
by the business analyst to define manually business goals. Then,
the latter associates each business goal to its corresponding BC.
The business analyst creates the enriched template
corresponding to each BC. Fig. 4 shows the BC4’s template.

Figure 4. BC4’s Enhanced template.

Next, the analyst selects one or more BCs. If he selects one
BC, the corresponding fragment is generated. Else, the business
analyst can select all business concepts to transform.

The generator engine uses the ontology and applies the
transformation rules to derive the BPMN model. Fig. 5
illustrates the generated BPMN model: “Supply Management
Process”.

383

Figure 5. The generated BPMN model: “Supply Management Process”.

The obtained model is generated as follows: First, by
applying R2.2, we add a lane “PurchaseDepartmentSystem”
inside the pool “Supply Management Process”. Second, by
applying R1, we add the message event “Item and Invoice are
received” in the corresponding lane.

The transformation of the main scenario calls R4.2 and R4.5
that generate a task labelled “Check Item and Invoice”, two data
objects labelled invoice and item, and add an ingoing object
flow between the task and its data objects. Then, R4.2 produces
a task labelled Establish a payment (respectively, Put item in
stock).

By applying R5, we linked the business task “check invoice
and item” to the exclusive gateway labelled “control result”.
Then, we applied R3.3 and added the precondition related to the
default outgoing flow expressing the main scenario. By
applying R5, a parallel gateway is created between establish
payment and put item in stock.

Then, by selecting the "Check alignment" button, the
generator displays each element in all the business concepts and
their corresponding BPMN elements (See Fig. 6).

Figure 6. The generated BPMN model: “Supply Management Process”.

 If each element has its correspondence in the BPMN model,
then we can deduce that the textual description is aligned to its
model.

The BPMN quality evaluator evaluates experimentally the
BPMN model through the calculation of recall and precision
rates.

 Precision==0.86
Recall =0.95

The high scores for both ratios mean that the generated
BPMN model covers the whole domain precisely in accordance
with the experts’ perspective (See Fig. 7). We can deduce that
the performance of our methodology approaches the human
performance.

Figure 7. The elaborated BPMN model by the expert

F1
F2

F3

F4

384

VI. THREATS TO VALIDITY

In our study, threats to validity are relevant to internal
validity and external validity [15].

The internal validity threats are related to four issues: The
first threat to validity focus on who write the textual description
expressing the functional requirements and which template
have been used to describe the functional requirements. Expert
should well write these requirements based on a particular style
to generate a high quality of a BPMN model. The Second
problem is addressed when there is a diversity of description of
the requirements. In this case, which one can be used to describe
the functional requirements? The third issue is related to the
impact of an error-prone generation of a BPMN model. This
case may lead to misalignment and inconsistency between the
textual description and business process model.

The external validity threats deal with the possibility to
generalize this study results to other case studies. The limited
number of case studies used to illustrate the proposed
methodology could not generalize the results. Automation of
our methodology needs to be considered even it is easy to use

manually given its simplicity.

VII. RELATED WORK

Several methods explicitly emphasis on the generation of
process models from different types of text documents. The
authors of [6] presented an automatic approach to generate
BPMN models from natural language text, where they faced the
complexity of natural language.

In [1], the authors present an automated approach for the
extraction of declarative process models from natural language.
They developed a tailored Natural Language Processing (NLP)
techniques that identify activities and their inter-relations from
textual constraint descriptions. By considering the semantics of
these extracted components, the authors generate declarative
constraints aiming to capture the logic defined in the textual
description.

In [16] the author uses natural language processing with a
focus on the verb semantics, and creates a novel unsupervised
technique TextProcessMiner that discovers process instance.

In summary, many researchers studied the alignment
between BPMN model and textual description. However, they
don’t cover all BPMN elements.

VIII. CONCLUSION

This paper proposed a transformation-based approach to
generate a business process model from its textual description.
It provides for the generation of a BPMN model that is aligned
to the input business concepts. Compared to existing works, our
methodology has the merit of accounting for all BPMN
elements and their relationships. To do so, our methodology
used the enriched template as the starting point for deriving
BPMN model. Then, it defines transformation rules that
transform each linguistic patterns to its corresponding BPMN
elements. The methodology has been implemented. An
evaluation of a business process model shows that our
methodology approaches the expert performance and generates
BPMN models respecting the quality measurements. Although

the current results are very promising, our technique still
requires further empirical tests.

 We intend to generalize the methodology in order to derive

BPEL from the textual description as well as the information

system’s design models from the textual description and check

the alignment between all generated models: BPMN model and

information system design models.

REFERENCES

[1] H. Van der Aa, C.D.Ciccio, H. Leopold, H.A. Reijers, “Extracting
Declarative Process Models from Natural Language”, 31st Conf.
Advaneced Information Systems Engineering, Italy pp. 365-338, 2019.

[2] M. Dumas, M. La Rosa, J. Mendling, H.A. Reijers, “Fundamentals of
Business Process Management”. Springer, ISBN, pp. 1-527, 2018.

[3] S. Zaheer, K. Shahzad, R. M. A Nawab, “Comparing Manual- and Auto-
Generated Textual Descriptions of Business Process Models”, 6th Conf.
on Innovative Computing Technology, Ireland, August. 2016.

[4] Leopold, H., H. van der Aa, F. Pittke, M. Raffel, J. Mendling, H.A.
Reijers, “Searching textual and model-based process descriptions based
on a unified data format”, International Journal of Software and system
Modeling. 18, No.2, pp. 1179-1194, 2019.

[5] B. Aysolmaz, , H. Leopold, H.A. Reijers, O. Demirörs, “A semi-
automated approach for generating natural language requirements
documents based on business process models”, International Journal of
Information & Software Technology, Vol 93, pp. 14-29, 2018.

[6] F. Friedrich, J. Mendling, F. Puhlmann, F., “Process model generation
from Natural Language Text”, 23th International Conference on Advanced
Information Systems Engineering, LNCS in Computer Science book
series, Vol. 6741, London, June, pp. 482–496, 2011.

[7] W. Khlif, A. Sallemi, M. Haoues, H. Ben-Abdallah, “Using COSMIC
FSM Method to Analyze the Impact of Functional Changes in Business
Process Models”, 13th International Conference on Evaluation of Novel
approaches to software engineering, Portugal, March, 2018.

[8] S. Lauesen, “Software Requirements: Styles and Techniques”, Addison-
Wesley, London, 2002.

[9] CD. Manning, M. Surdeanu,, J. Bauer, J., Jenny Rose J.R. Finkel,
S.Bethard, D. McClosky, “The Stanford CoreNLP Natural Language
Processing Toolkit”, The 52nd Annual Meeting of the Association for
Computational Linguistics, June 22-27, pp.55-60. 2014.

[10] J. Webster, C. Kit, “Tokenization as the initial phase in nlp”, 14th
conference on Computational linguistics, Association for Computational
Linguistics, Vol.4, pp. 1106-1110, 1992.

[11] Saif, H., Fernandez, M., He, Y., Alani, H. , “On stopwords, filtering and
data sparsity for sentiment analysis of twitter”, the 9 th Inter. Confe. on
Language Resources and Evaluation, European Language Resources
Association, Iceland, May 26-31, pp. 810-817, 2014.

[12] J.B.Lovins, “Development of a stemming algorithm”, Mechanical
Translation and Computational Linguistics, Vol 11, No.1-2, june, pp. 22-
31, 1968.

[13] V.I.Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals”, journal of Soviet physics doklady, Vol. 10, pp. 707-710,
1966.

[14] Eclipse Specification. (2011), Available from: http://www.eclipse.org/

[15] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
“Experimentation in Software Engineering: An Introduction”, 2000.

[16] E.V. Epure, P. Martín-Rodilla, C. Hug, R. Deneckère, C. Salinesi, 2015.
“Automatic process model discovery from textual methodologies”, 9th
IEEE International Conference on Research Challenges in Information
Science, Greece, May 13-15, 2015.

385

http://dblp.uni-trier.de/pers/hd/a/Aa:Han_van_der
https://dblp.org/pers/hd/c/Ciccio:Claudio_Di
https://dblp.org/pers/hd/l/Leopold:Henrik
https://dblp.org/pers/hd/r/Reijers:Hajo_A=
https://dblp.org/pers/hd/a/Aa:Han_van_der
https://dblp.org/pers/hd/p/Pittke:Fabian
https://dblp.org/pers/hd/r/Raffel:Manuel
https://dblp.org/pers/hd/m/Mendling:Jan
https://dblp.org/pers/hd/r/Reijers:Hajo_A=
https://dblp.org/pers/hd/r/Reijers:Hajo_A=
http://dblp.uni-trier.de/pers/hd/l/Leopold:Henrik
http://dblp.uni-trier.de/pers/hd/r/Reijers:Hajo_A=
http://dblp.uni-trier.de/pers/hd/d/Demir=ouml=rs:Onur
http://dblp.uni-trier.de/db/journals/infsof/infsof93.html#AysolmazLRD18
https://link.springer.com/bookseries/558
https://dblp.uni-trier.de/pers/hd/s/Surdeanu:Mihai
https://dblp.uni-trier.de/pers/hd/b/Bauer:John
https://dblp.uni-trier.de/pers/hd/f/Finkel:Jenny_Rose
https://dblp.uni-trier.de/pers/hd/b/Bethard:Steven
https://dblp.uni-trier.de/pers/hd/m/McClosky:David
http://www.eclipse.org/
https://dblp.org/pers/hd/m/Mart=iacute=n=Rodilla:Patricia
https://dblp.org/pers/hd/h/Hug:Charlotte
https://dblp.org/pers/hd/d/Deneck=egrave=re:R=eacute=becca
https://dblp.org/pers/hd/s/Salinesi:Camille

A Novel Self-Attention Based Automatic Code
Completion Neural Network
Bohao Wang, Wanyou Lv, Jianqi Shi, and Yanhong Huang*

National Trusted Embedded Software Engineering Technology Research Center,
East China Normal University

{bohao.wang, wanyou.lv}@ntesec.ecnu.edu.cn
{jqshi, yhhuang}@sei.ecnu.edu.cn

Abstract—Code completion is one branch of source code
modeling tasks. Using a deep learning method to implement it has
explored the possibilities of modeling source code with a statistic
language model. Recurrent Neural Network (RNN) is a universal
feature extractor of Natural Language Processing (NLP), which
is used in the code completion field commonly. However, RNN
based models are lack of long-range context dependency and
have a poor performance in training speed. Besides, some
previous models have not handled the issue of out of vocabulary
(OOV) well, which hinders further improvements in prediction
accuracy. This paper presents a novel automatic code completion
neural network, which is based on a self-attention mechanism
with open vocabulary to address issues of OOV, slow training
speed, and lacking long context-dependency. Experiments in
this paper show that our model has a better performance of
predicting tokens compared with the traditional N-gram model
and RNN based model. In the meantime, we reduced training
time significantly. More broadly, the combination of self-attention
and open vocabulary has a potential application in the source
code modeling field.

Index Terms—Code Completion, Self-Attention, Source Code
Modeling, Open Vocabulary

I. INTRODUCTION

As one part of automatic software development, code
completion is always a popular research field in software
engineering. Code completion, which refers to recommending
the next token based on the current context [1], is a technique
that allows us to speed up the coding process and to reduce
spelling errors during coding. Nowadays, most programmers
use Integrated Development Environment (IDE) like Eclipse
and IntelliJ IDEA to write code, enjoying the convenient
service of code completion which is a basic feature of modern
IDE. Traditionally, code completion in IDE relies heavily
on compile-time type information to predict the next token
[2]. This method only does well in suggesting attributes or
methods of classes but fails to predict coding habits of users.
Hindle et al. [3] propose that code has a naturalness and
is likely to be predictable and repetitive, so they introduce
a statistic language model into the field of source code
modeling. In the early stage, the N-gram model used to be
the statistic language model used in source code modeling

*Corresponding Author
DOI reference number: 10.18293/SEKE2020-056.

[1], [3]–[5]. Later, when the Recurrent Neural Network (RNN)
is introduced into Natural Language Processing (NLP) field,
source code modeling has tended to RNN based model [6],
[7]. Because the vanilla RNN’s variants, Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU) suppress
the problem of gradient exploding and gradient vanishing,
they are applied to the field of source code modeling [4],
[8]. Although some RNN based deep learning static language
models have achieved good results in source code modeling,
there are still several defects. It is noted that most models can
not predict OOV words, which is called neologisms in [9].
A large number of OOV words will affect the performance
of automatic code completion distinctly. Although [10] in
ICSE 2020 tried to solve this problem, the method they
use aggregates the negative effects of lacking long-range
dependency on prediction performance. These defects affect
the quality and precision of code completion. This motivates
us to propose a novel model to address the issues above. In
summary, contributions of this paper include:

• We propose a novel self-attention based automatic code
completion neural network. The model addresses issues
of unable predicting out of vocabulary tokens, lacking
long-range dependency ability, and slow training speed,
which are defects of current models.

• We evaluate our model in a real word Java code dataset.
Compared with previous work, our model has significant
improvements in the metric of Mean Reciprocal Rank
(MRR) and entropy in three realistic scenarios. In the
meantime, our model spends less time in the training
process.

• We design and implement a self-attention based model
with Open Vocabulary (SABCCOV), a tool to predict
the next token based on current tokens. To the best of
our knowledge, we are the first to combine the self-
attention with the Open Vocabulary mechanisms in code
completion.

The rest of this paper is organized as follows. Section II
details some defects of existing current models and back-
ground knowledge of self-attention mechanism. Section III
presents the design of SABCCOV and training setup. Section
IV demostrates experiment details and evaluations of our

386

model. We discuss related work in Section V and conclude
in Section V I .

II. PRELIMINARY

In this section, we mainly talk about existing issues of
current models and the basis of self-attention mechanism.
Sec.II-A describes a common problem in code completion.
The issue of Sec.II-B is a critical factor that affects the
performance of the model. And Sec.II-C is an aspect that can
be improved continuously. At the end of this section, we will
describe the self-attention mechanisms.

A. Out of Vocabulary (OOV)

The vocabulary of natural language processing is commonly
formed by top k (assume 50,000) frequency words from a large
corpus, which is closed because it can only present limited
words. And the indexed vocabulary is used to map a word to
the index in the statistic language model. Out of vocabulary
words in NLP will be represented by ‘UNK’. In natural
language, it is feasible that OOV words are replaced by the
UNK identifier. The NLP model is rarely affected by it since
most words are covered by vocabulary. But the programming
language model will be affected seriously on account of many
identifiers such as variable names, class names, and method
names that are defined by the programmer.

B. Long-Range Dependency

Range dependency means that how many context words
does the model need to predict the next word. In [11], LSTM
language models use 200 context words on average, which
has a longer range commonly than Vanilla RNN and GRU.
Empirically, the RNN based model is hard to deal with
long-range dependencies that are common in programming
language [2]. For example, a class is declared at the top of the
file, but it may be used after one hundred lines of declaration.
The dependency range of the LSTM model may be enough in
NLP, but it is not enough for source code modeling.

C. Slow Training Speed

It is noted that the performance of the deep learning model
depends on the scale of data. The more training data, the
better the performance of the model. In the source code
modeling field, it is an advantage that massive amounts of
data are easy to get from some open source communities
such as Github. Vanilla RNN calculates hidden state one by
one to collect sequence information, that is why Vanilla RNN
called Recurrent Neural Network. The architecture of Vanilla
RNN demonstrates that it is doomed not to support parallel
computing, which will have a strong impact on training speed.

D. Self-Attention Mechanism
The self-attention mechanism is proposed in [12]. An at-

tention function can be described as mapping a query and a
set of key-value pairs to an output, where the query, keys,
values, and output are all vectors. The matrix of outputs can
be computed as:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

Intuitively, the self-attention function is to help every token
in sequence to calculate how much attention needs to pay
to other tokens. In the multi-head version of self-attention,
the self-attention function takes n different matrices as input
and computed for n times, then output n matrices. Then we
concatenate all these matrices and condense them into one
matric whose dimension is the same as the original self-
attention result.

III. APPROACH

In this section, we describe the procedure of the data
preprocessing, which will get more appropriate data for the
model than the raw source code. Then we will present the
architecture of the overall network from a block perspective
and introduce our training strategy.

A. Dataset and Preprocessing

We use the Gig-token corpus in [13], which has more than
14,000 Java projects from Github. We have a large corpus of
source Java code, but we can not feed it into the model directly.
In the NLP filed, the common way of input data transformation
is mapping some high-frequency token to embedding vectors
or one-hot vectors according to a vocabulary. But it can not
handle the problem of OOV words described in Sec.II-A.
It is hard to solve the issue of OOV completely, but the
Open Vocabulary method [10] can solve it partially. Using
the Byte Pair Encoding (BPE) algorithm, this method learns
a segmentation pattern. BPE is a data compression algorithm
that iteratively finds the most frequent pair of bytes in the
vocabulary appearing in a given sequence, and then replaces
it with a new unused entry [14]. The algorithm is first adapted
for word segmentation in [15], it merges pairs of characters
or character sequences.

As an illustration, we can segment a Java source code
file using a BPE vocabulary file as shown in Fig 1. Some
high-frequency tokens are reserved and some low-frequency
tokens are split into high-frequency sub-tokens followed by

package com.testMain;
public class newClass{
private String someInformation;
public newClass(String someinformation){
this.someInformation = someinformation;

}
}

package com . test@@ Main ;
public class new@@ Class {
private String some@@ Infor@@ mation ;
public new@@ Class (String some@@ infor@@

mation) {
this . some@@ Infor@@ mation = some@@

infor@@ mation ;
}

}

Fig. 1. Java code before/after segmentation with an end-of-subtoken ‘@@’

387

‘@@’. In such a way, OOV words are decomposed into high-
frequency subword, which means they can be represented by
word embedding vector or one-hot vectors according to the
Open Vocabulary.

TABLE I
DATASET STATISTICS

Full train Small train Test Valid
Projects 13255 107 38 36

Files 1.9M 12K 8.2K 7.1K
Tokens(original) 1.6B 20M 5.9M 4.6M

Toekns(2K) 2.5B 31.9M 9.4M 7.4M
Tokens(5K) 2.2B 27.8M 8.3M 6.5M
Tokens(10K) 2.1B 25.8M 7.7M 6.1M

It is noted that the BPE algorithm needs code to learn
segment patterns and produce a vocabulary file. And the
number of BPE merging operation affect the performance of
the model, so we set three different value, 2k, 5k, and 10k.
As Table I shows, data was divided into four parts: full train,
small train, test, and valid, which is the same as [4] except
moving a small part randomly from the full train projects as
a BPE training corpus. Followed [10], we set the size of BPE
training corpus to 1000 projects. We provide the procedure of
data preprocessing as follows:

1) Remove comments.
2) Replace non-ascii characters with a special identifier (We

use ‘-UNK-’ in experiments).
3) Tokenize the file1, which means every line is one token

(Punctuations such as ‘;’ is also considered as one token).
4) As for BPE data, use the BPE algorithm2 to get a

vocabulary file and a segment pattern file.
5) As for train, test, and valid data, use the BPE algorithm

with the segment pattern file on these corpora and get
segmented files.

6) Add start and end identifiers (We use ‘<s>’ and ‘</s>’)
at the top and bottom of every Java file then integrated all
files in train/test/valid projects into one file as train/test/-
valid file.

After preprocessing, words were split into subwords and
subwords can be represented by word embedding, which
means most words can be dealt with by the model. Due to
the segmentation of the BPE algorithm, we can suppress the
Out of Vocabulary issue effectively. However, it is noted that
the number of tokens has increased at least one-third of the
original after the procession of the BPE algorithm. It will
magnify the negative effects brought by the problem of Long-
Range Dependency.

B. Model Architecture

We proposed a self-attention based model with Open Vo-
cabulary as shown in Figure 2.The input and output of the
model is a fixed-length sequence. The model has three parts
including the input block, the transformer block and the
output block. In the input block, the input sequence will be

1The library we use is https://github.com/SLP-team/SLP-Core
2We use https://github.com/rsennrich/subword-nmt

public static void

Word

public static void

Positional

Multi-head Self-
Attention

Layer Norm

Add

Feed-Forward

Layer Norm

Add

static void main

Output
Block

Input
Block

Transformer
Block

Encoding

Li
n

e
ar

Li
n

e
ar

So
ft

m
ax

&

 A
rg

m
ax

So
ft

m
ax

&

 A
rg

m
ax

Embedding

Nx

Fig. 2. Overall Architecture: Based on the input of ‘public static void
main’, the model predicts ‘static void main’. Rectangles composed of 3 small
rectangles represents the intermediate vector.
represented by the sum of word embedding and positional
encoding, which will be the input tensor of the transformer
block. The transformer block has a masked multi-head self-
attention layer, a position-wise fully connected feed-forward
layer, and some residual connections. The masked multi-head
self-attention layer and feed-forward layer are followed by a
layer normalization. It looks like the encoder part in [12].
Instead, we replace the multi-head self-attention layer with
a masked self-attention layer. The input and output of the
transformer block have the same dimension, so it can repeat
any time we want. Due to the self-attention mechanism, the
transformer block in our model can solve the problems of
Long-Range Dependency and Slow Training Speed. The
output block consists of a linear layer and a softmax layer. The
output sequence is obtained by the output tensor processed by
the argmax function.

As Figure 2 shows, the input is ‘public static void’ and
the model will output the sequence of ‘static void main’.
Predictions for position i can only depend on the known
input at positions less than i. The most critical part of the
whole model is the self-attention mechanism. Benefits of
the self-attention including two aspects. First, the training
process can be shortened observably since the self-attention
mechanism supports parallelized-training. The RNN based
model computes the next hidden units depending on previously
hidden units. Unlike the RNN based model, the self-attention
based model does not need previously results, so it can
be parallelized by vectorization. The second aspect is the
self-attention can learn longer-range dependency than LSTM
based model. In order to capture the information between two
tokens(noted token i and token j), the RNN based model needs
at least |j-i| steps because of the serial computation. And it
may lose some information if the distance is too long. But the

388

vectorization of the self-attention based model can ignore the
distance between two tokens in the same segment and correlate
them within one step.

The multi-head self-attention layer considers the attention
weight of every position of the input, which means the third
token in the input sequence may be taken into account when
predicting the second position in the output. For example, the
model will take ‘void’ (third token in input) into accounts
when it is predicting ‘void’ (second token in output). But as a
prediction task, it is a cheating trick to consider the context that
has not shown yet. In [12], the masked mechanism guarantees
that the model will not make the prediction based on future
information. And this is the reason we replace it with the
masked multi-head self-attention layer.

The model we proposed is used to predict sub-tokens, which
means it may output part of the correct token (some sub-
token is a complete correct token). Further, we use the beam-
search-like algorithm [10] to predict complete tokens directly.
As Figure3 shows, if the model predicts the token ends with
‘@@’, the model will continue to predict the token until the
next predited token without ‘@@’. Finally, the model will
concatenate all the predited subtokens, delete the ‘@@’ and
the result is the prediction of the model.

C. Training

As Section III-A described, we have two training sets on a
different scale, including small training and full training. Most
setup of two training sets is the same. We fix the length of the
input sequence feed to the network to 512. If the length of the
input is longer than 512, then split it into a few segments and
supplement segment whose length is less than 512 with special
tokens. The batch size is 32 for the small train and 64 for the
full train, respectively. The number of the transformer block is
3, the number of multi-head is 2, and the dropout rate is 0.2.
Other hyperparameter of the transfomer block is the same as
the encoder in the [12]. The loss function is entropy, which will
be discussed in detail in Section IV-B. The optimizer is adam
optimizer with an initial learning rate 0.0003 and a learning
rate decay strategy. The strategy is that the learning rate will
be half if the current epoch’s valid loss is bigger than the last
epoch. Max training epoch is 50 for the small train and 5 for
the full train. If the valid loss of the current epoch has not
been decreased for last 4 epoch, the training process will be
stopped early.

IV. EXPERIMENT

In this section, we will give a description of our experiment
scenarios and evaluation metrics. In these experiments, we
used the popular deep learning framework Tensorflow. We
implemented and evaluated the proposed model on a Linux PC
with an Intel i7-5960X processor @3.0 GHz and an NVIDIA
GTX 1080Ti GPU.

A. Scenarios

In the code completion task, the next token is predicted
based on current tokens. Whether tokens in the current file

package com.testMain ;
public class newClass {
 private String someInformation ;
 public newClass (String someinformation) {
 this.someInformation = ________?_________
 }
}

SABCCOV

some@@Infor@@mation

Infor@@(59%)

String(17.9%)

this(4.8%)

...

Infor@@(59%)

String(17.9%)

this(4.8%)

...

Infor@@(59%)

String(17.9%)

this(4.8%)

...

some@@(27.9%)

class(15.3%)

test@@(7.9%)

...

some@@(27.9%)

class(15.3%)

test@@(7.9%)

...

some@@(27.9%)

class(15.3%)

test@@(7.9%)

...

mation(78.3%)

new@@(13.4%)

com(3.7%)

...

mation(78.3%)

new@@(13.4%)

com(3.7%)

...

mation(78.3%)

new@@(13.4%)

com(3.7%)

...

Predict

Recommended token:

Fig. 3. An example of our model’s prediction.
or other files that belong to the same project can be trained
for the model is a question. Followed [10], there are also 3
test scenarios including Static, Dynamic, Maintenance in our
experiments to check the performance of our model.

Static: This is the basic mode. The model is trained by
the large corpus from the internet only. It provides code
completion service directly without changed or improved in
further usage. In this scenario, local code will not be used
for the further training of the model. It may not guarantee to
provide a high-quality service of the code completion because
everyone has a different code style. The model learned from
the large corpus is only a generalization ability.

Dynamic: In this mode, the model has two stage training
prcess. The second stage is that, based on the Static mode, the
model will be trained by reading the code from the file that the
user is editing currently. We denoted it as a local model. With
the Dynamic strategy, the model will learn the habits of the
coder gradually and prefer to predict the token which reflects
the style of the coder finally. The Dynamic strategy here is
that the model will read every 512 sub-tokens and executes
one step gradient descent to update the model. This mode will
have a better performance than the Static mode. However, it
will read data that may not be allowed by the user because of
security and privacy.

Maintenance: This mode has three stage training process.
Based on the Static mode, the model here will use codes in the
current project files firstly, which is the second training stage.
Lastly, just like Dynamic mode, the model will be trained by
reading the code user is editing currently. It is obvious that the
model trained in this mode has the best performance than the
others since it obtains the largest data set. The disadvantage
of this mode is that uploading data in projects may be strictly
forbidden in most enterprises.

B. Evaluation Metrics

In our experiments, we evaluated both the intrinsic and
extrinsic performance of our model. Intrinsic performance
means that evaluating the predicting ability of a language
model without other task’s inference which may bring some
other information. We use entropy as the intrinsic metric,
which is a standard measure employed in the previous work.
Given a sequence S = {t1, t2, . . . , t{|m|}}, the probability of

389

TABLE II
ENTROPY RELFECTS THAT THE LOWER ENTROPY, THE MORE REASONABLE THE TOKEN PREDICTED BY THE MODEL.

Entropy Nested Cache N-gram Open Vocabulary NLM [10](2k/5k/10k) SABCCOV(2k/5k/10k)

Small Train
Static - 4.90 / 4.78 / 4.77 2.62 / 2.57 / 2.63

Dynamic 2.57 2.33 / 2.27 / 2.54 1.59 / 1.58 / 1.61
Maintenance 2.23 1.46 / 1.51 / 1.60 1.32 / 1.29 / 1.29

Full Train
Static - 3.59 / 3.35 / 3.15 1.84 / 1.79 / 1.74

Dynamic 2.49 1.84 / 1.72 / 1.70 1.22 / 1.19 / 1.17
Maintenance 2.17 1.03 / 1.06 / 1.04 1.08 / 1.02 / 0.99

TABLE III
MRR REFLECTS THE INVERSE OF THE AVERAGE EXPECTED POSITION IN THE RANK LIST.

MRR Nested Cache N-gram Open Vocabulary NLM [10](2k/5k/10k) SABCCOV(2k/5k/10k)

Small Train
Static - 62.87% / 63.80% / 63.75% 71.54% / 71.79% / 71.59%

Dynamic 74.55% 76.94% / 77.51% / 77.32% 77.54% / 77.72% / 77.45%
Maintenance 77.04% 77.48% / 78.49% / 78.69% 78.15% / 78.94% / 78.97%

Full Train
Static - 68.69% / 69.87% / 70.84% 77.88% / 78.42% / 78.81%

Dynamic 75.0% 78.99% / 79.88% / 80.36% 81.99% / 82.51% / 82.88%
Maintenance 77.3% 78.85% / 80.31% / 81.16% 80.71% / 81.78% / 82.30%

ti is estimated by p(ti|t1, . . . , ti−1). The entropy is defined
as:

Hp(s) = −
1

|m|

|m|∑
i=1

logp(ti|t1, . . . , ti−1) (2)

Entropy corresponds to the average number of bits required in
every prediction. But our model predicts a sub-token other than
a complete token, we follow [10] and change the subformula
in Equation 2 as follows:

p(ti|t1, . . . , ti−1) =

N∏
n=1

p(win|t1, . . . , ti−1, wi1, . . . , wi,n−1) (3)

In Equation 3, we assume that the token ti is split into sub-
tokens ti = {wi1, ..., wiN} . The combination of Equation 2
and Equation 3 is the loss function of the model to check
whether the model is converging.

The extrinsic performance here we use is Mean Reciprocal
Rank (MRR). The reciprocal rank of a query response is the
multiplicative inverse of the rank of the first correct answer.
MRR is the average of reciprocal ranks or results for a sample
of queries Q defined as:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(4)

For example, if the correct word ranks first in the option list,
then MRR is 1. If the correct word ranks second, the MRR
is 0.5 and so on. In our experiments, we provide ten most
likely tokens for users to choose, which means the length of
the options list is 10, so the MRR of the predicted word is at
least 0.1 and the unpredicted word is 0.

C. Results

The results demonstrate that our model is particularly better
than the N-gram model [4] and RNN based Open Vocabulary
NLM [10]. Our model has a faster training speed as shown
in Table IV. In the small training dataset, one training epoch
time of our model was almost half of the Open Vocab NLM’s

training time. As for the full training dataset, our model
spent an hour less than the previous work every epoch. Open
Vocabulary NLM only has one layer of RNN but our model
has three transformer blocks, which means our model has
more parameters and is more complicated. But our model was
still a lot faster than their model. It is noted that the model
with a faster training speed is always the first choice when
performance is the same.

Furthermore, our model has not only a fast training speed
but also a better performance. Table II and III shows that
performance comparison statistics of the Open Vocabulary
NLM, the Nested Cache N-gram model and our model. In
the metric of entropy, our model with 5k BPE operations
had the best results among three models in the small training
and our model with 10k BPE operations won in the full
training no matter in which scenarios. Due to the large number
of samples, even minor improvements (e.g., 0.01 bits) in
entropy can be statistically significant in language modeling.
It was almost same in the metric of MRR. In Table III, there
was a great improvement in the Static scenario between our
model and Open Vocabulary NLM and a slight improvement
in Dynamic and Maintenance scenarios. It was declared in
Section IV-A that Dynamic and Maintenance scenarios need
the authorization of reading user code, which may be seen
as an invasion of privacy. Under normal circumstances, the
Static scenario is the most favored option of users. So it is
meaningful to improve the performance of the model in the
Static scenario.

TABLE IV
TRAINING TIME(MIN/EPOCH)

BPE Operations 2k 5k 10k
Small Train Open Vocab NLM 18 16 16

Our model 8 7 8
Full Train Open Vocab NLM 717 669 728

Our model 561 555 628

390

V. RELATED WORK

Code completion is a basic feature of IDE for a long
time. Traditionally, code completion in IDE relies heavily on
compile-time type information to predict the next token [1].
The deep learning method finds a way that learns the proba-
bility distribution of tokens from a large source code corpora
to improve the accuracy of token prediction. In 2012, Hindle
et al. [3] first proposed that programming languages have
usefully predictable statical properties that can be captured
in statistical language models. Based on Hindle’s work, Tu
et al. [1] put forward that source code has the property of
localness and proposed a cache mechanism to improve pre-
diction accuracy. Hellendoorn et al. [4] enhanced established
language modeling approaches to handle the special challenges
of modeling source code.

Li et al. [2] and Liu et al. [16] proposed that structural
information can also be used to improve the performance
of the model. They predicted the terminal node and the
non-terminal node in source code using the AST tree. It is
critical that the AST tree needed to guarantee both semantic
information and structural information when modeling the
AST tree. In this method, they can predict not only the token
itself, namely the terminal node, but also the token’s structural
information and type which is a non-terminal node. In 2016,
Raychev et al. [17] used the decision tree to model the AST
sequence of code to predict token. Liu et al. [16] showed that
structural information in AST and sequences of the token can
learn mutually and get better results with multi-task learning.

Out of vocabulary words used to be called neologisms [9],
which means unseen identifier names that have not been used
in the training set. In [9], they split OOV words on camel case
and underscores and could only handle part of neologisms.
And [2] tried to solve the OOV problem by augmenting an
RNN with a pointer network [18]. Some researches focused
on the techniques for automatic splitting identifiers [19], [20].
One obvious feature of their splitting technique is that hu-
man can understand the sub-identifers after splitting. Instead,
Karampatsis et al. [10] first proposed Open Vocabulary that
split OOV words to incomprehensible sub-words. Based on
their technique, we proposed a novel network in this paper to
improve the performance and the training speed.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a self-attention based code com-
pletion model with Open Vocabulary. First, we alleviated the
OOV problem by adopting the Open Vocabulary mechanism.
Second, We added the self-attention mechanism to address the
issue of sequence augment brought by the Open Vocabulary
method. In the meantime, we speeded up the training process
and improved the performance of the model. To our best
knowledge, we are the first to combine the self-attention with
the Open Vocabulary mechanisms and get significant results in
the code completion field. Besides, we believe our model may
inspire other researchers in the source code modeling field.
Our embedding layer is trained during the training process
now. In the future, we may train the embedding layer using

large corpora in advance. Then we insert it directly into the
model and fine tune this layer during the training process.
And we also plan to improve our model not to predict only
one token but a series of tokens that can present user intent.

ACKNOWLEDGMENT

This work is partially supported by STCSM Projects
(No. 18QB1402000 and No. 18ZR1411600), SHEITC Project
(2018-GYHLW-02012).

REFERENCES

[1] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014, pp. 269–280.

[2] J. Li, Y. Wang, M. R. Lyu, and I. King, “Code completion with neural
attention and pointer networks,” arXiv preprint arXiv:1711.09573, 2017.

[3] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 2012, pp. 837–847.

[4] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 763–773.

[5] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A
statistical semantic language model for source code,” in Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering,
2013, pp. 532–542.

[6] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, 2015, pp.
334–345.

[7] M. Sundermeyer, H. Ney, and R. Schlüter, “From feedforward to
recurrent lstm neural networks for language modeling,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 23, no. 3,
pp. 517–529, 2015.

[8] H. K. Dam, T. Tran, and T. Pham, “A deep language model for software
code,” arXiv preprint arXiv:1608.02715, 2016.

[9] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015, pp. 38–49.

[10] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes, “Big
code != big vocabulary: Open-vocabulary models for source code,” in
International Conference on Software Engineering (ICSE), 2020.

[11] U. Khandelwal, H. He, P. Qi, and D. Jurafsky, “Sharp nearby, fuzzy
far away: How neural language models use context,” arXiv preprint
arXiv:1805.04623, 2018.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[13] M. Allamanis and C. Sutton, “Mining source code repositories at mas-
sive scale using language modeling,” in 2013 10th Working Conference
on Mining Software Repositories (MSR). IEEE, 2013, pp. 207–216.

[14] P. Gage, “A new algorithm for data compression,” The C Users Journal,
vol. 12, no. 2, pp. 23–38, 1994.

[15] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[16] F. Liu, G. Li, B. Wei, X. Xia, M. Li, Z. Fu, and Z. Jin, “A self-attentional
neural architecture for code completion with multi-task learning,” arXiv
preprint arXiv:1909.06983, 2019.

[17] V. Raychev, P. Bielik, and M. Vechev, “Probabilistic model for code with
decision trees,” ACM SIGPLAN Notices, vol. 51, no. 10, pp. 731–747,
2016.

[18] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in neural information processing systems, 2015, pp. 2692–2700.

[19] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source
code to automatically split identifiers for software analysis,” in 2009 6th
IEEE International Working Conference on Mining Software Reposito-
ries. IEEE, 2009, pp. 71–80.

[20] E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker, “An
empirical study of identifier splitting techniques,” Empirical Software
Engineering, vol. 19, no. 6, pp. 1754–1780, 2014.

391

An Ensemble Approach to Detect Code Comment
Inconsistencies using Topic Modeling

Fazle Rabbi, Md. Nazmul Haque, Md. Eusha Kadir, Md. Saeed Siddik and Ahmedul Kabir
Institute of Information Technology
University of Dhaka, Bangladesh

Email: {bsse0725, bsse0635, bsse0708, saeed.siddik, and kabir}@iit.du.ac.bd

Abstract—In modern era, the size of software is increasing, as
a result a large number of software developers are assigned into
software projects. To have a better understanding about source
codes these developers are highly dependent on code comments.
However, comments and source codes are often inconsistent in a
software project because keeping comments up-to-date is often
neglected. Since these comments are written in natural language
and consist of context related topics from source codes, manual
inspection is needed to ensure the quality of the comment associ-
ated with the corresponding code. Existing approaches consider
entire texts as feature, which fail to capture dominant topics
to build the bridge between comments and its corresponding
code. In this paper, an effective approach has been proposed
to automatically extract dominant topics as well as to identify
the consistency between a code snippet and its corresponding
comment. This approach is evaluated with a benchmark dataset
containing 2.8K Java code-comment pairs, which showed that
proposed approach has achieved better performance with respect
to the several evaluation metrics than the existing state-of-the-art
Support Vector Machine on vector space model.

Index Terms—Source Code, Code Comment, Topic Modeling,
Software Artifact Analysis

I. INTRODUCTION

Code comments with its corresponding source code are the
main artifact of any software systems. For the management
of software evolution and maintenance, developers provide
comments with a code fragment which give insightful infor-
mation about a software system. Comments are very important
as they are more natural, descriptive and easy to understand
than source code [1], [2]. In large projects, new developers
are highly dependent on code comments to understand its
corresponding source codes. Researchers found that code and
comments evolve over time [3] and this evolved codes and
comments become inconsistent to each other. Because of
changing codes frequently and keeping corresponding com-
ments same, comments become invalid or inconsistent with
corresponding source code.

Tracking the inconsistency of source code and its comment,
several diverse approaches have been proposed. Where most
of the approaches apply Information Retrieval (IR) techniques
to collect lexical information with the assumption that the
textual information of source code and comment are same.
However, that assumption can be violated [4] in several cases,
for example, the vocabulary developers use to write source

DOI reference number: 10.18293/SEKE2020-062.

code can be different from the vocabulary of comment (e.g.
synonym). Nevertheless, there is no sufficiently rich litera-
ture to track this inconsistency because of lacking standard
datasets. A benchmark dataset has been provided [5] with
a proposal to measure the coherence between source code
and comment. Lexical similarity has been collected by using
Vector Space Model to classify the text using tf-idf [6] and
finally the code-comment inconsistency is measured using
Support Vector Machine (SVM). However, this approach uses
all of the vocabulary as features which can take a huge
execution time.

By analyzing existing literature, some insights of source
code and comments have been found, which are concluded
below as the research direction in this domain.

• A single word (topic) is more important than a large
number of similar words (features). For example, if a bag
of words is found from a java method like, “dropdown”,
“chrome”, “menu”, “http” or “browser”, a topic related
to “browser” can represent these words.

• The size of comments is less than the size of source code.
So, the source code and comment need to be represented
into a fixed-sized common topic.

• Synonymous words have been chosen by developers
while writing comment with respect to source code. So,
to capture the semantic information between source code
and comment, the vocabulary information needs to be
incorporated.

To capture these insightful information, several Research
Questions (RQ) have been raised to propose an efficient
inconsistency detection approach, which are listed below.

• RQ1: How to comprehend the insight meaning of a code
and comment pair?

• RQ2: How to measure the relation between the code
and comment pair?

We focused on the above research questions as our objec-
tives and tried to answer them throughout the newly proposed
code comment inconsistency detection technique. This paper
proposes an automated approach to identify the inconsistency
of source code with its respective comments. The breakdown
of the contributions of this paper are listed as follows.

• Datasets are pre-processed to capture more meaningful
information about source code and comments, e.g., de-

392

velopers defined simple name.
• Latent Dirichlet Allocation (LDA) has been used for

representing the similar words into topics.
• A fusion approach (ensemble Random Forest) has been

proposed for measuring the probability of the inconsis-
tency between code and comments, where SVM is used
to discriminate consistent and inconsistent comments.

• The proposed approach has been compared with state of
the art baseline classification approaches and it is evident
that this approach performs better in terms of Accuracy
and Area Under Precision-Recall Curve (AUCPR).

In section II, an overview of the methods are briefed which
are important to understand the proposed method. Dataset
parsing and pre-processing is discussed in section III-A.
Proposed method is explained in section III-B. The dataset
description and experimental results are presented in section
IV. Related works are reviewed in section V, and finally this
work has been concluded in section VII.

II. BACKGROUND

To understand the proposed approach, knowledge about
Topic Modeling, Random Forest (RF) and Support Vector
Machine (SVM) is needed which are briefly discussed here.

A. Topic Modeling
Topic Modeling is a subfield of Machine Learning and

Natural Language Processing. It is one type of statistical model
which follows unsupervised machine learning technique to
provide abstract topics for a given document. Latent Dirichlet
Allocation (LDA) is a type of topic modeling which is used in
this paper. LDA is trained using a set of documents and with
a given number of topics. It provides a probability distribution
of words for a topic and a probability distribution of topics
for a document as output.

B. Random Forest
Random Forest [7] is an ensemble learning approach for

classifying data. In training time, it builds a multitude of
decision trees. Each decision tree predicts a class label of a
new input data pattern and RF merges them together to get a
more accurate and stable prediction. RF is a fast, simple and
flexible machine learning algorithm. In this paper RF receives
the topic distribution gained from LDA as input and produces
output for the next procedure.

C. Support Vector Machine
A Support Vector Machine [8] is a discriminative classifier

formally defined by a separating hyperplane. While training
this classifier, it finds the maximum-margin hyperplane that
separates the group of data points into two classes. A new
incoming pattern is classified in the class according to the
side of the hyperplane.

III. PROPOSED APPROACH

The proposed ensemble approach to detect code comment
inconsistency is described in this section thoroughly. Before
training, the way of pre-processing code and comment pairs
is also discussed here.

Fig. 1. Topic Modeling (LDA).

A. Code-Comment Parsing

The raw code comment pairs need to be processed to create
features for training. The two steps which are followed to make
the features during pre-processing are described next.

1) Process Code and Comment Pairs: The pairs of codes
and comments need to be parsed into tokens to execute the
next steps. At the beginning, all newlines, tabs and special
characters like braces, semicolons, full-stops are removed.
Extra whitespaces are also removed from the remaining code
and comments. Words are also split based on camel cases.
After tokenizing, every code and comment is turned into a
bag of word tokens. Finally each of the words are lemmatized
into root words.

2) Create vectors from code and comments: After pro-
cessing the code-comment pairs into bag of word tokens, two
corpora for codes and comments are built. Each of these
corpora turns a code/comment into an index vector. These
index vectors of code/comment is passed into its corresponded
Latent Dirichlet Allocation (LDA) model. There are two
identical LDA models for training code and comment index
vectors separately. For every k number of topic, these LDA
models provide two separate probability distributions for a
pair of code and comment which are concatenated to produce
feature vector using Eq. (1).

concatenatedfeaturek = LDAk(code)⊕LDAk(comment) (1)

Here, k is the number of topics and ⊕ is used for concatenating
vectors. This features vector is now ready to be used for
Inconsistency Detector described in the next section. The
overview of preparing feature vector is illustrated in Fig. 1.

B. Inconsistency Detector

As discussed above, the extracted feature vector of k number
of topics is fed into a random forest as input. Based on this
input features, the random forest model produces a consistency
score for a code-comment pair. A random forest built from k
topics, RFk, provides a consistency score, scorek derived in
Eq. (2).

scorek = RFk(concatenatedfeaturek) (2)

As the number of topics for both comment and code can be
varied, it is needed to incorporate different number of topics
to find the informative and effective features. For different

393

Fig. 2. Overall process of the proposed method.

TABLE I
DESCRIPTIVE STATISTICS OF THE DATASET

Application Files Classes Methods Methods with comments Coherent Non-Coherent Total Not Included
CoffeeMaker 7 7 51 47 (92%) 27 20 47 0
JFreeChart-0.6.0 82 83 617 485 (79%) 406 55 461 24
JFreeChart-0.7.1 124 127 807 624 (77%) 520 68 588 36
JHotDraw-7.4.1 575 692 6414 2480 (39%) 762 1025 1787 693
All 788 909 7889 3636 (46%) 1715 1168 2883 753

number of topics ranging from i to j on interval 1, different
random forest models are built. Each random forest model
returns a consistency score for a code-comment pair. These
consistency scores derived from m different random forests are
needed to be fused. Here, SVM is used to fuse the consistency
scores provided by m random forests and predict the outcome
using Eq. (3).

Ŷ = SVM(⊕j
k=iscorek) (3)

Fig. 2 describes the overall procedure of proposed method.

IV. EXPERIMENTS & RESULT ANALYSIS

We used a dataset provided by Corazza et al. [9] in this
experiment. Four versions of three java projects CoffeeMaker1,
JFreeChart2 and JHotDraw3 are used in this dataset. Some
descriptive statistics of these projects are reported in Table I.

We split the dataset randomly into 90% training and 10%
testing set. After training finished, we run our model on testing
set. The result is evaluated based on two evaluation metrics
namely Accuracy and Area Under Precision-Recall Curve
(AUCPR). Table II and III report the performance comparison
of our proposed method with other methods in terms of
accuracy and AUCPR. We report the average performance by
applying 10 fold cross-validation. To find the outputs of the
existing approach, we re-implemented it.

From Table II, it can be observed that, the accuracy of the
proposed method is better than the existing approach [5] for
all of the projects except JHotDraw-7.4.1. At first a single
Random Forest having 10 features (RF 10) is used to classify
consistent and inconsistent code-comment pairs. As the result

1agile.csc.ncsu.edu/SEMaterials/tutorials/coffee maker
2www.jfree.org/jfreechart
3www.jhotdraw.org

TABLE II
PERFORMANCE COMPARISON IN TERMS OF ACCURACY

Dataset RF-10 Coherence Proposed
CoffeeMaker 0.830 0.873 0.895
JFreeChart-0.6.0 0.879 0.835 0.918
JFreeChart-0.7.1 0.876 0.875 0.898
JHotDraw-7.4.1 0.743 0.811 0.801
All 0.803 0.837 0.841

of this approach was not satisfactory, an ensemble RF with
SVM (Proposed) is used. By using this, the accuracy increases
for all of the projects and looks very promising.

In Table III, the result is showed based on AUCPR which
also denotes that, the result of the proposed approach performs
better than the existing one. It can also be observed that,
AUCPR values are improved when using the ensemble of RFs
for different number of topics instead of a single Random
Forest with constant number of topics (e.g. RF 10).

TABLE III
PERFORMANCE COMPARISON IN TERMS OF AUCPR

Dataset RF-10 Coherence Proposed
CoffeeMaker 0.878 0.943 0.975
JFreeChart-0.6.0 0.938 0.909 0.941
JFreeChart-0.7.1 0.924 0.941 0.962
JHotDraw-7.4.1 0.837 0.882 0.855
All 0.888 0.888 0.912

We also found that the proposed approach is promising
while comparing the training time with state-of-the-art method.
For small projects training time is almost same in both cases.
However, the proposed approach trains faster than the existing
approach for large projects.

394

V. RELATED WORKS

There have been some previous works in this field related
to code comment relation. The earliest work related to code
comment inconsistency that we studied is “iComment: Bugs
or Bad Comments” [10]. In this work, authors proposed an
approach to detect code comment inconsistency in locking and
calling mechanism. They limited their scope to the comments
related to programmers’ assumptions and requirements.

Another work for testing Javadoc comments was proposed
by Tan et al. to detect comment-code inconsistencies called
@TCOMMENT [11]. The authors considered method proper-
ties for null values and related exceptions. They set some rules
for @param tags in javadoc comments and null pararamer
exception statement to detect inconsistencies between codes
and comments using Natural Language Processing. The scope
of their work is limited to only comments related to null
reference and throwing exceptions.

Ratol et al. proposed an approach to detect invalid comments
while renaming identifiers in source code [12]. The authors
created guidelines to link comments and their responsive
codes and defined the scope of comments in a project to link
identifiers.

While the above works are related to detect inconsistencies
between code and comment, there are some other works to
measure the code comments quality. Steidl et al. presented a
semi automatic approach for quality analysis and assessment
of code comments [13]. Their focus was to evaluate comments
quality to improve the readability of source codes. They
used machine learning technique to classify comments into
categories and based on these categories they developed a
comment quality model.

Corazza et al. published a benchmark dataset of java
method-comment pairs with corresponding coherent values
which they inspected manually [5]. Later they investigated
if it is possible to predict whether a code-comment pair is
coherent or not. They used Vector Space Model to represent a
method or comment based on their tf-idf score. Initially they
used lexical similarity to measure the coherence value and
later they trained a SVM with grid search algorithm to adjust
parameters.

Wen et al. presented a large scale study [14] on code
comments and found that, code and comments co-evolve over
time. Besides, some approaches are proposed to generate
natural language summary or comments from source codes
[15], [16]. As per our knowledge, none of the approaches use
the insight dominating topics to detect if a code and comment
pair conveys the same meaning or not.

VI. THREATS TO VALIDITY

The most important threat is external validity which is
related to the software applications considered in the dataset.
All the applications in experimented dataset were implemented
in Java which could bias the results. For example, Java is more
verbose than other programming languages (e.g., C, C++ etc.)
and then the developers of the applications in the dataset could
have paid inadequate attention on commenting methods.

VII. CONCLUSION

This paper proposed a new ensemble approach to mea-
sure the effectiveness of detecting code comment inconsis-
tencies. In this approach, features are extracted from codes
and comments using topic modeling. Afterwards, proposed
model fuses the coherence scores obtained by different sources
(Random Forests) to provide the probability of inconsistency
between a code and comment. This approach was evaluated
in a benchmark dataset of java projects and the result was
prominent and satisfactory. This approach can also be applied
to detect inconsistencies between code comment pairs of other
languages as a future work.

REFERENCES

[1] T. Tenny, “Program readability: Procedures versus comments,” IEEE
Transactions on Software Engineering, vol. 14, no. 9, pp. 1271–1279,
1988.

[2] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, “The effect of modu-
larization and comments on program comprehension,” in Proceedings of
the 5th international conference on Software engineering. IEEE Press,
1981, pp. 215–223.

[3] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-
evolve? on the relation between source code and comment changes,” in
14th Working Conference on Reverse Engineering (WCRE 2007). IEEE,
2007, pp. 70–79.

[4] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source code
vocabulary,” in 2010 17th Working Conference on Reverse Engineering.
IEEE, 2010, pp. 3–12.

[5] A. Corazza, V. Maggio, and G. Scanniello, “Coherence of comments
and method implementations: a dataset and an empirical investigation,”
Software Quality Journal, vol. 26, no. 2, pp. 751–777, 2018.

[6] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to informa-
tion retrieval. Cambridge University Press Cambridge, 2008, vol. 39.

[7] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[8] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995. [Online]. Available:
https://doi.org/10.1007/BF00994018

[9] A. Corazza, V. Maggio, and G. Scanniello, “On the coherence between
comments and implementations in source code,” in 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications. IEEE,
2015, pp. 76–83.

[10] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* icomment: Bugs or
bad comments?*,” in ACM SIGOPS Operating Systems Review, vol. 41,
no. 6. ACM, 2007, pp. 145–158.

[11] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@ tcomment: Testing
javadoc comments to detect comment-code inconsistencies,” in 2012
IEEE Fifth International Conference on Software Testing, Verification
and Validation. IEEE, 2012, pp. 260–269.

[12] I. K. Ratol and M. P. Robillard, “Detecting fragile comments,” in Pro-
ceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Press, 2017, pp. 112–122.

[13] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” in 2013 21st International Conference on Program
Comprehension (ICPC). Ieee, 2013, pp. 83–92.

[14] F. Wen, C. Nagy, G. Bavota, and M. Lanza, “A large-scale empirical
study on code-comment inconsistencies,” in 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE,
2019, pp. 53–64.

[15] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 2073–2083.

[16] E. Wong, T. Liu, and L. Tan, “Clocom: Mining existing source code for
automatic comment generation,” in 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 2015, pp. 380–389.

395

A Combined Model for Extractive and Abstractive
Summarization Based on Transformer Model

Xin Liu, Liutong Xu
The Academy of Computer Science and Teconology, Beijing University of Post and Telecommunication

Beijing, China
liuxiaoxin@bupt.edu.cn, xliutong@bupt.edu.cn

Abstract—Summary generates by summarizing automatically
main information from the critical sentences of the article.
The traditional method of generating text summarization uses
extractive or abstractive algorithm model built based on neural
attention sequence to sequence framework. This kind of model
has performance bug and weak parallel computing capability
when getting summary, which causes the summary doesn’t fit the
meaning of the original and has no smooth sentences. Therefore,
we put up with a joint summary generation model based on
improving transformer. This model can put attention on sentence
and provide sequence information for periodical transformer
model by recurrent neural network. On the other hand, in
the generation stage, Transformer model is used to learn the
long distance dependence between words, and the summary
statement is more consistent with the original meaning by adding
pointer mechanism and consistency loss function. Experiments
were carried out on three datasets and a manual evaluation was
added to verify that the model has good summary significance.

Index Terms—Text Summarization , Transformer, Sequence
Information, Joint Model

I. INTRODUCTION

Summary generation aims to get a simplified input text
representation to capture the core meaning of the original
content. There are two types of methods: extractive and
abstractive. Extractive methods usually selects the original
sentence or word [1], such as Lead3, Summarunner [2], Swap-
Net [3] model. The summary obtained by these models are
not smooth due to the lack of connectives. Abstractive methods
can generate new words and phrases that are not included in
the source text.But the summary has incorrect fact details and
duplicate information, and words that are out of vocabulary. In
recent years, the pointer generator model proposed by see et
al [4] which has the ability to extract words from the original
text and reduce the repetition rate. Hsu et al. [5] proposed the
inconsistent loss function which combines extractive methods
and abstractive methods.

The transformer model proposed by Ashish et al [9] is
effective for capturing the global context semantic relationship
and parallel computing. In this paper, we proposed TP-EABS
(Transformer added Pointer and combine the Extractive and
Abstractive methods) model. It adopted the advantages of two
types of algorithms and transformer model. The model uses the
hidden layer information of GRU to supplement the sequence

DOI reference number: 10.18293/SEKE2020-069

information of transformer position, and dynamically adjusts
the attention of words in the second phase through sentence
level attention, so as to reduce the probability of words in
sentences with lower weight appearing in the abstract. And
we add a pointer mechanism to the transformer model, which
enables the transformer to copy words from the original text.

In summary, our contributions are as follows:
• We propose a joint model based on improved Transformer.
•We improve the Transformer architecture by adding position
information and pointer mechanisms.
• We have made comparative experiments on CNN/Daily,
Papers and DUC-2004 datasets, and the results have been
improved.

II. RELATED WORK

In recent years, summary generation has been widely stud-
ied. Generally,In the extraction method, key sentences or
words in the original text are extracted and presented as
abstracts. [3] and [4], [6] used recurrent neural network to
code the text, and then mark whether the sentence or word
belongs to the summary statement. Although some extraction
methods [10] can get high Rouge scores, their readability is
very low.

Abstrctive methods are mostly based on the sequence to
sequence framework based on neural attention [11], [14]. [12]
proposed a new model, which first selects key sentences,
then rewrites them with abstract algorithm to generate a brief
summary of the text. [11] proposed a new model, which can
not only retain the ability to generate new words, but also
copy words from the original text accurately to reproduce
information, and reduce the repetition rate of the generated
words in the summary by updating the attention weight. [9]
proposed Transformer, which is completely based on attention
mechanism and eliminates recursion and convolution. It can
solve the problem of long-distance dependence and realize
parallel computing. It can obtain the text semantic information
and structural information better.

III. OUR MODEL

This chapter introduces three aspects: sentence extraction
model, generating model, dynamic word-level mechanism.
Fig. 1 gives the overview of TP-EABS model.

396

Fig. 1: our model

A. Sentence Extraction Model

The model input is a series of sentencesS = [s1, s2, ..., sm],
where the representative m is the mth sentence and si is the
ith sentence, expressed as si = [w1, w2, ..., wn], the input
sentence maps each word to a vector through the language
training model, and the i-th sentence is expressed as si =
[x1, x2, ..., xn], Where n represents the nth word embedding
vector. we use BiGRU (Bi-directional Gated Recurrent Unit)
to process the input word sequence.After reading the words of

the sentence, we update its word representation xji =
[−→
hji ;
←−
hji

]
.

We use matrix X to represent the input vector.Get the sentence
vector by summing the word vectors in the sentence.

Then the sentence vector is input to the second layer of
BiGRU, and then calculated by the sigmoid function to obtain
sentence-level weight βn, The extractor loss is calculated using
the following cross-entropy loss.

Lext = −
1

n

N∑
n=1

(gnlogβn + (1− gn)log(1− βn)) (1)

In the above formula, gn is the n-th sentence a summary,
the value belongs to 1 and the value does not belong to 0.To
get ground truth labels g = {gn}n.We use the unsupervised
method proposed by Nillan et al. [5] to get extracted labels.

B. Generating Model

The benchmark model in this paper uses Transformer. We
will extract the vector Z = [z1, z2, ..., zm, ...] of the first
layer GRU encoding output in the model as the input of the

Transformer layer, we think zi contains word information and
location information.

[Q;K;V] =WZ · Z +BZ (2)

Attention (Q,K, V) = softmax

(
QKT

√
dk

)
V (3)

Where WZ and BZ are training parameters. We obtain
the query, key, and value vectors through Equation 10, dk
represents the size of the key value.

MultiHead (Q,K, V) = Concat (head1, ..., headh)W
O

(4)

where headi = Attention
(
QWQ

i ,KW
K
i , V W

V
i

)
(5)

We represent the output of the Encoder layer as E and
denote the output of the Decoder layer as D.We calculate
the attention weight between the encoder and decoder and
take it out to calculate the probability pgen, which determines
whether the word is copied from the original text or generated
in the dictionary.Enter the last layer of the decoder into
softmax to get the probability of getting words from the
vocabulary pvocab.In the end, we use Beam-search with the
Beam-size set to 3.

Pvoacb = softmax(V ′ (V ·D4 + b) + b′) (6)
[KE ;VE] =WE · E +BE (7)
Qd =Wd ·D1 +Bd (8)

Ct =MulAttn(Qd,KE , VE) (9)

We use the following formula to calculate pgen, where X
is the input vector and C is the context text. The pointer

397

generator network is a hybrid between our baseline and the
pointer network, because it can both copy words by pointing
and generate words from a fixed vocabulary.

pgen = σ(WT
e E +WT

d D +WT
CCt + bptr) (10)

Next, we calculate the probability of the final word through
the probability pvocab and pgen, where Ct is the output of the
encoder and decoder mutual attention matrix at time t.

P (w) = pgenPvocab + (1− pgen)Ct (11)

losst represents the loss function at time t, and
Labsrepresents the loss function of the generated model part.

losst = −logP (W ∗t) (12)

Labs =
1

T

T∑
t=0

losst (13)

C. Dynamic word-level mechanism

The dynamic word-level mechanism is to reduce the word-
level attention through the sentence’s attention weight, so that
the generative summary can pay more attention to a certain
sentence to generate a word, which also makes the sentence
weights of the same information different, which reduces the
repeatability of the generated words to a certain probability.

This article uses a BiGRU to obtain sentence-level weights
in the sentence extraction model. It needs to be added to the
word-level weights. The obtained sentence-level weights are
the matrix Asent formed by β, and a sentence vector Ẽt4
obtained by multiplying the word-level attention matrix and
value according to the multi-head attention mechanism , And
then obtain the updated encoding matrix using the following
formula.

Et4 = (WsentAsent +Bsent))Ẽ
t
4 +BE (14)

In order to ensure that the two levels of attention can be kept
consistent during the training process, a unified loss function
is added here. We use the Lsw loss function to represent the
error function calculated between sentences and words. Where
m(n) is a mapping relationship between words and sentences.

Lsw = − 1

T

t=1∑
T

log(
1

κ
)
∑
n∈κ

Etn ×Am(n)) (15)

Where κ is the set of the first κ participating words and t is
the number of words in the abstract. The loss of inconsistency
helps our unified model for end-to-end training benefit both the
extractor and the abstractor, and also helps to generate longer
digest lengths. Through sentence-level extraction, an improved
Transformer generation layer, and a swap mechanism, we
finally generate a training loss function Lsum

Lsum = ε1Lext + ε2Labs + ε3Lsw (16)

where ε1, ε2, ε3 are hyper-parameters. In our experient, we
give Lext a bigger weight (e.g., ε1 = 5) when end-to-end
training with Lsw since we found that Lsw is relatively large
such that the extractor tends to ignore Lext.

IV. EXPERIMENTS

A. Datasets and Settings

We use three datasets for model evaluation: CNN / Daily
Mail, Papers, and DUC-2004.The Papers dataset is a private
dataset that we build. We use the introduction of the article
as the original information and the multi-sentence abstract of
the article as the abstract.

In preprocessing, we use byte pair coding (BPE) algorithm
[13] to segment words. In this model, we set the vocabulary
size to 50,000. The baseline Transformer model is trained
using the same hyperparameters as the basic model in Ashish
[14]. The number of heads in the Transformer is 8, the size of
the feedforward network is 2048, and the training batch size is
8. We use 256-dimensional in BiGRU, which are stitched into
512-dimensional inputs to the Transformer. During the test,
we used a beam search with a size of 3 to generate summary,
performed 100,000 iterations, saved a basic model every 1000
times, and dropout is 0.5. We limit the maximum output length
to 20 and 30, respectively.

B. CNN/Daily dataset

As shown in Table I, we divide the model into Transformer,
TPABS (Transformer added pointer mechanism), and TP-
EABS. On CNN/Daily dataset, we can see that our model
TP-EABS is about 1.7 percentage points higher than Pgen
at ROUGE-1. Later, we compared this model with our own
baseline model. It was found that before these mechanisms
were added, the evaluation index obtained by our model
Transformer was not higher than the baseline model, indicating
that these mechanisms have improved the summary quality to
a certain extent. The ROUGE score is affected by the short
length of the generated summary. We are difficult to know
why the model gets a low summary score. To evaluate this
hypothesis, we randomly select 40 pairs (articles, abstracts)
from a fixed test set for manual evaluation. Articles and
model-generated summary were submitted to three relevant
professionals for evaluation. Each worker has two model-
generated summaries, one from the TP-EABS model and one
from the PGen model. Workers were asked to choose a better
summary according the four different quality metrics from
Celikyilmaz et al. [11]. The results are shown in Table II.
Interestingly, compared to the PGen model, the summary of
TP-EABS is more favored by humans.

In the experiment, we tried two strategies of location in-
formation superposition(1) Direct superposition form (ADD):
The bidirectional GRU encoding layer information is directly
added on the input vector of the Transformer. (2)Learning
Strategy (MLP): Add a layer of neural network to let this
layer of neural network learn how to superimpose position
information and word vector information.As shown in Table I,
it is found that the two superimposed effects have slightly
higher learning strategies, but the difference is not large. To
reduce the amount of calculation, we add the position vector
directly to the model.

398

TABLE I: ROUGE F1 results for various models and ablations
on the CNN/Daily Mail test set.

Model ROUGE-1 ROUGE-2 ROUGE-L
Attn-S2S [6] 32.75 12.21 29.01
PGen [4] 36.44 15.66 33.42
PGen+Cov [4] 39.53 17.28 36.38
Key informa-
tion [10]

38.95 17.12 35.68

Transformer 35.26 14.12 31.08
TPABS 36.75 15.89 33.15
TP-EABS(MLP) 38.12 17.36 36.45
TP-EABS(ADD) 38.14 17.29 36.52

TABLE II: Head-to-head comparison between test set outputs
of PGenand TP-EABS. Analyses done on summaries for
Papers.

Model PGen same TP-EABS
Non-redundancy 65 62 182
Coherence 180 42 145
Focus 140 36 176
Overall 160 41 170

C. Papers and DUC-2004

In Papers data set, the length of the article is long, and
its summary is mostly not in the original text. We mainly
test our improved Transformer model, as shown in Table III.
After adding the pointer mechanism, the model obtains The
result is 2 percentage points higher than the Pgen model,
which proves that the Transformer model is richer in obtaining
context information than the recurrent neural network in the
language model. On this data set, we set the parameters of
Pgen from See et al[4].We did ablation experiments to evaluate
the contributions of different mechanismsTransformer, TEABS
(Transformer on the extraction model), TPABS (Transformer
with a pointer mechanism added), and TP-EABS.The experi-
mental results of the four models are shown in the Table III.

As shown in Table III, our method has made some progress
on the current benchmark on DUC-2004 dataset, and ROUGE-
1 and ROUGE-L scores have improved the RAS-LSTM model
by absolute 0.3 and 1.5 percentage points, respectively. We
also compare the model with Feats. We can see that our model
still performs better without introducing external information
and reinforcement learning. TPEABS improves the data set

TABLE III: ROUGE F1 results for various models and abla-
tions on the Papers and DUC-2004.

Model R-1 R-2 R-L R-1 R-2 R-L
ABS [15] 24.32 7.32 19.24 26.55 7.06 22.05
ABS+ [15] 25.24 7.64 20.32 28.18 8.49 23.81
FeatS2S [7] 26.89 9.52 23.76 28.61 9.42 25.24
RAS-LSTM [8] 28.42 10.77 22.46 28.97 8.26 24.06
PGen [4] 29.70 13.19 27.32 – – –
Transformer 28.54 12.04 24.92 – – –
TPABS 29.32 12.58 25.45 – – –
TEABS 29.46 13.21 26.15 – – –
TP-EABS 31.69 14.52 28.18 29.27 9.95 25.54

by 0.13 percentage points and 0.4 percentage points over
TPABS. Considering the sequence context information, our
model can capture important information and generate high-
quality abstracts.

V. CONCLUSION

We propose a joint abstract generation model based on
improved Transformer. Most importantly, we improved the
Transoformer model so that it has the ability to copy words
from the original text. After adding sequence information and
extraction stages, the model in this paper can obtain more
complete summary information in the uniformly distributed
original text, and it will not ignore its importance because the
key information is located later. Through end-to-end training
of our model, we conducted experiments on three datasets and
conducted reliable human evaluation on private datasets, prov-
ing that the model has good summary information significance.

REFERENCES

[1] Piotr Bojanowski, Edouard Grave,Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. Transactions of the
Association for Computational Linguistics, 5:135–146, 2017.

[2] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. Summarunner:
A recurrent neural network based sequence model for extractive summa-
rization of documents. In Proceedings of Thirty-First AAAI Conference
on Artificial Intelligence (AAAI-17), pages 3075–3081.

[3] Jadhav A , Rajan V . Extractive Summarization with SWAP-NET:
Sentences and Words from Alternating Pointer Networks[C]// Proceed-
ings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2018.

[4] Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the
point: Summarization with pointergenerator networks. In Proceedings
of the 55th Annual Meeting of the Association for Computational
Linguistics.

[5] Wan-Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui Min, Jing Tang,
and Min Sun. A unified model for extractive and abstractive summariza-
tion using inconsistency loss. arXiv preprint arXiv:1805.06266,2018.

[6] Cao Z, LiW, Li S et al (2016) Attsum: joint learning of focusing and
summarization with neural attention[J].arXiv preprint arXiv:1604.00125

[7] Nallapati, R., Zhou, B., dos Santos, C., Gulcehre, C., Xiang, B.:
Abstractive text summarization using sequence-to-sequence RNNs and
beyond.

[8] Sumit, C., Michael, A., Rush, A.M.: Abstractive sentence summarization
with attentive recurrent neural networks. Human Language Technolo-
gies, pp. 93–98 (2016)

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998–6008.

[10] Ramesh Nallapati, Bowen Zhou, and Mingbo Ma. 2016a. Classify
or select: Neural architectures for extractive document summarization.
arXiv preprint arXiv:1611.04244

[11] Shashi Narayan, Shay B Cohen, and Mirella Lapata. 2018. Don’t give me
the details, just the summary! topic-aware convolutional neural networks
for extreme summarization. In EMNLP

[12] Yen-Chun Chen and Mohit Bansal.Fast abstractive summariza-
tion with reinforce-selected sentence rewriting. arXiv preprint
arXiv:1805.11080,2018.

[13] Sebastian Gehrmann, Yuntian Deng, and Alexander M Rush. Bottom-up
abstractive summarization. arXiv preprint arXiv:1808.10792, 2018.

[14] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. Incorporating
Copying Mechanism in Sequence-to-Sequence Learning. In ACL, 2016.

[15] Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstrac-
tive sentence summarization. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 379–389 (2015)

399

Modeling Topic Exhaustion for Programming Languages on StackOverflow

Rao Hamza Ali and Erik Linstead

Fowler School of Engineering, Chapman University

Abstract

We apply latent Dirichlet allocation on StackOverflow
questions, spanned across ten years, for Python, JavaScript,
Java, C++, and R, in order to discover underlying topics
of questions asked for these programming languages. We
focus on topics that have exhausted over the years; topics
that once peaked in terms of the number of questions being
asked about them but are now in a decline. Studying these
topics provides insight into a language’s evolution and
its cohesion with other programming languages, that may
offer similar features. We also measure the average wait
times to get answers for questions from exhausted topics,
to highlight if the community also plays a role in making
these topics exhausted.

Keywords: Latent Dirichlet Allocation; SOTorrent;
Topic Modeling; Stack Overflow

1. Introduction

Stack Overflow (SO) has become one of the most popu-
lar platforms for programmers to ask and answer questions
for a wide range of topics in software engineering [1]. Start-
ing in 2008, the website has seen constant increase in ques-
tions asked everyday and the categories to which they be-
long [2]. The community, too, has been increasingly active
and boasts an average reply time to a question of 11 minutes
[3]. With the seemingly nonstop increase in questions asked
and new categories sprouting up, we are interested in seeing
how topics (many of which were of high interest to the de-
veloper community historically) have been performing with
the influx of new topics. We are also interested in topics
which have seen a peak of interest from programmers and
now are in a decline. We term these topics as exhausted, in
that they peaked in terms of questions asked about them, but
are now seeing continuous decline in new questions being
posted.

Questions on SO are assigned tags which categorize the
field a question may belong to, but are not helpful in deter-
mining the topic of that question. The work in [4] described

developer behavior for mobile application development, us-
ing tags assigned to SO posts. But two questions with an
iOS tag could ask questions on app performance and creat-
ing a slide view, which are two relatively different topics.
Here we use an unsupervised technique, latent Dirichlet al-
location (LDA) [5], to extract topics from questions specific
to individual programming languages and study their evolu-
tion over time. While there have been studies where LDA
is applied to SO questions, the focus has mostly been on
identifying topics across all languages [6] and looking at
short-term or temporal trends[7] . Another novel approach
to using LDA was presented by [8] to automatically cat-
egorize software from source code, hinting at the success
of using LDA for the analysis of source code and related
text using topic generation. Unlike this previous work, here
we run LDA separately on questions for popular program-
ming languages and observe the trends across the years. The
ultimate goal is to identify which features of the language
have been exhaustively discussed on SO and are no longer
the main focus of the developer community. We also want
to understand how the adoption of programming languages
evolves based on the type of questions that are asked about
them.

One important question that is raised when looking at
topics that have been exhausted is: is the community no
longer active in answering a question related to such top-
ics? Long wait times to get an answer or failure to come
up with a good answer in time, could dissuade developers
from asking further questions about these topics. Once we
identify topics that have been exhausted, we will also look
at the community wide statistics about the time taken to an-
swer questions across the years, and can then conclude the
community’s role in exhaustion of topics.

2. Data

We use the December 2018 data set of SOTorrent[9] for
our study. It consists of over 42 million posts made on SO
from August 2008 to December 2018, including question
and answers from the community on different topics. Each
question is manually tagged by the poster with a program-
ming language and a related field. We use this attribute

DOI reference number: 10.18293/SEKE2020-107.

400

Table 1. Total number of questions per pro-
gramming language

Language Questions

JavaScript 1,723,695
Java 1,487,204

Python 1,068,646
C++ 595,662

R 265,946

to subset the data for 5 programming languages: Python,
JavaScript, Java, R, and C++. These languages are the most
tagged on SO and comprise a large corpus of questions for
our analyses. We are also using data beginning January
2009, to allow for uniform per-year stats.

We choose to use the text pertaining to the question
asked instead of the question title. The question body pro-
vides greater detail and insight about the problem itself. We
further remove any source code references from the ques-
tion body as we are interested in discovering latent topics
from the description of the programming language feature
rather than from relevant code. From this, we are able to
field more connections between words for LDA to utilize
and get results which give a better understanding of the
trends. For the community stats, we extract the first and
accepted answer times for all questions. An accepted an-
swer is selected by the user who posted the question, which
they deem to be the best answer among all others. Table 1
describes the total number of questions, for each language,
that were used in training the LDA model.

3. Method

We start by collecting all question posts for a program-
ming language, and removing all stop-words, punctuation,
and numbers from them. We extensively make use of the
gensim [10] package in Python for topic modeling and nat-
ural language processing (NLP). Using built-in functions,
we tokenize each question, and create a dictionary for each
word and its occurrence count. We use spaCy [11], the NLP
Python library, to lemmatize each token to reduce the word
space to a common base form and discover more coherent
topics. A bag-of-words model [12] is then generated from
the dictionary. This step is crucial because we are not in-
terested in the order of words for each question, but the
word occurrences in all questions. This pre-processing step
is done separately for all languages we run LDA on.

LDA is a probabilistic model for a collection of docu-
ments, where each document consists of a bag of words and
is viewed as a mixture of different topics with varying prob-

Figure 1. Trend of exhausted topics for
Python

abilities. Using this explicit representation of documents in
terms of topic probabilities, LDA identifies the topic that
most represents each document. This is done by utilizing
the mixture model we learn for each set of questions cor-
responding to a programming language. Given the vast vo-
cabulary of words and the need to identify both high-level
and low-level topics, we parameterize LDA to discover 30
topics for each programming language. This number also
gave us the most coherent latent topics.

A topic coherence [13] for each LDA model is calcu-
lated which gives a measure of strength and consistency of
all topics generated. Only models with a topic coherence
greater than 0.5 are chosen. This is to ensure that, while 30
topics do cover all of the questions, the model has been suc-
cessful in understanding the relationships in the corpus and
the topics describe the data in the best possible way. The
topics, identified by the model, can be joined back to the
questions that they have the highest probability of belong-
ing to. Next, we calculate the topic impact score, which is
a rank of a topic’s occurrence each year for a programming
language in comparison to other topics utilized for the lan-
guage within the same year. The impact score is scaled so
that we are able to compare multiple exhausted topics at the
same time and are able to observe common trends for them.

4. Results

For our results, we present the topics that have been ex-
hausted, in terms of questions asked, across the years for
the selected programming languages.By using a threshold
of 30 topics for LDA, we were able to find not only top-

401

Figure 2. Trend of exhausted topics for
JavaScript

Figure 3. Trend of exhausted topics for Java

ics that represented a small set of questions, but also mul-
tiple topics that were part of a bigger theme and described
different aspects of it. Each graph shows the yearly trend
of exhausted topics, with respect to their impact score, for
a different programming language. A set of words is as-
signed to each topic, extracted from the questions, and is
used in the graphs to describe the overall theme of the topic.
These words have the highest probability of belonging to
that topic, among all words. They present an understanding
of what kind of questions are being asked.

LDA has been extensively used in finding inherent top-
ics for a corpus of questions asked on StackOverflow

Figure 4. Trend of exhausted topics for C++

[14][15][16]. But the focus has remained on what kind of
topics are discovered, or which topics have been becoming
more popular or are in steady decline. Our research focuses
on exhausted topics, that are not likely to have an impact
anymore on the community, but need to be identified to fur-
ther study a topic’s trend over the years. It could be the
case that adoption of a new programming language or an
update in the functionality that the developer is interested
in asking about, heavily saturates such topics and we no
longer see them making the same impact on SO. Through
LDA, we found these exhausted topics that cover features
like file I/O, front-end and back-end development, and ba-
sic language functionality.

We start our discussion by identifying exhausted topics
for Python. Figure 1 shows the trend of such topics between
2009 and 2018, given their impact scores. We only report
topics that had an increase in impact after the inception of
SO, but are now in a decline, in terms of questions asked.
We note that topics related to HTML in Python are com-
pletely saturated and developers are no longer asking a lot
of questions about them. Interestingly, we also find some
topics related to Python’s built-in functionality in a decline
too. Python has more or less used the same functions for
file IO and data structures, so it is apparent that develop-
ers have run out of new questions to ask about them, and
their queries have most likely already been answered by
a previous post. The decline in HTML topics is uniform
across all platforms. It is possible that adoption of newer
web scripting languages has moved developers away from
using Python’s web features.

Figure 2 describes the trends of exhausted topics for
JavaScript (JS) on SO. We, here too, note that topics related
to web development and visual programming are the ones

402

that have been most exhausted by the end of 2018. With no
new features introduced to JavaScript related to these top-
ics, developers have saturated the topics by asking all ques-
tions that could be asked, and are satisfied with the answers
on questions already posted on SO, that are similar to their
queries. Figure 3 shows the trend of exhausted Java topics
across the years, with topics related to HTML again being
the ones that have been exhausted. Since the introduction
of Go, Rust, Kotlin, and Swift, the focus of developers in-
terested in making visual and web based applications has
switched over to these new programming languages, aban-
doning the functionality offered by the relatively older lan-
guages. This results in some topics for a language, that was
popular a few years ago, no longer having the same impact
as others. We see a similar trend for exhausted topics in
C++ in Figure 4. Web application related questions are no
longer being asked, and questions about the basic function-
ality of the language, which has not changed after many
version updates, are also on a downward trend.

Another set of topics, we notice have been exhausted,
are ones related to the basic functionality of a programming
language. Since R is used for statistical modeling and has
no applications in web development, all exhausted topics
in R are related to the base functionality of the language.
Questions about data I/O, plotting data points, and wran-
gling data of different types, are the main focus of the lan-
guage. And all such topics have already been exhausted.
Developers can independently develop packages for a pro-
gramming language, to introduce new features, that core de-
velopers have not yet introduced, leaving base features to be
the same across the years. Our analysis makes it apparent
that questions for such features will not evolve over time
and a developer looking to learn a language, will find an-
swers to their questions already posted on the website. This
points to the evolution of a programming language and the
evolution of a developer using that language: how HTML
based queries are on a decline and questions for big data
are being asked more and more, or how people have a com-
mand over the basic features of Java and C++ and have now
run out of questions to ask about them.

Modeling the trends of exhausted topics across different
languages leads to more questions being asked about the
role of the community in their decline. Given that no new
functionality is added to a certain feature of a programming
language, the community will eventually run out of new
questions to ask and those seeking answers would get redi-
rected to questions that have already been posted on SO. But
if the number of such questions being asked declines, is the
community also in decline in answering these questions? It
could be possible that if the SO community takes a longer
time to answer a question, or to give a suitable enough ques-
tion that it is deemed ’accepted’ by the original poster, that
it deters developers from asking questions related to these

Figure 5. Trend of exhausted topics for R lan-
guage on Stack Overflow

topics, and instead they try to find their solution in old posts.
To answer this question, we look at the average time

taken, in hours, to post the first answer, and the accepted
answer, for all questions asked for the exhausted topics. As
the number of active users on SO increases over time, it is
clear that the average wait time to get an answer will lower
[17]. But only if the community is no longer interested in
answering questions about exhausted topics, will we see an
increase or even a plateau in the averages. Figures 6 and 7,
respectively show the trend of average number of hours un-
til a first answer is posted and an accepted answer is posted
for the exhausted topics for all five programming languages
between 2009 and 2018. With over a 100,000 questions
being asked about these topics consistently since 2014, we
observe a steady decline in the average wait time to get to
a satisfactory answer. This shows that the community is
is still active in answering questions, regardless of whether
they belong to an exhausted topic or not.

We conclude that topic exhaustion of a programming
language on SO is not due to the community’s lack of in-
terest in answering these questions, and instead, stems from
the evolution of the language and its cohesion with other
languages. Python still remains the programming language
with the most questions asked. What has changed is that
developers have found other, more efficient avenues to us-
ing some features of the language, via a different program-
ming language. But with new functionality being added to
languages, which leads to more questions being asked by
developers, who want to learn about those functions, old
topics become saturated and developers have exhausted the
different type of questions they can ask about them.

403

Figure 6. Average Hours until First Answer for Exhausted Topics

Figure 7. Average Hours until Accepted Answer for Exhausted Topics

5. Related Work and Future Directions

Since first applied to software in 2007 [18], LDA has be-
come a staple for textual analysis of software artifacts. The
work in [6] extracted topics from questions asked on SO us-
ing LDA and compared them with Java code tokens to find
that some topics generated were either text or code identifier
only. Mentioned earlier, [2] performed topic modeling on
SO questions and answers, posted between 2008 and 2010,
and highlighted main discussion topics, scores comparison
of answer topics, developer interest, and change in interest
in technologies over time. In [16], the authors looked into
how the community answers posts on SO and calculated
user stats over topics generated by an LDA model. Our pa-
per focuses on exhausted topics across 5 programming lan-
guages, over the course of 10 years, and provides an insight
into why they are no longer a big focus of developers.

Our research also relates to [19], which explores the evo-
lution of features of a programming language across version
updates, using topic modeling. The topics were generated
using source code for large open source Java projects, and

the trends showed a stark comparison of feature usage be-
tween version updates. In this paper, we focus on the vo-
cabulary of questions asked about these features in hope
that we can provide trends regardless of version updates,
over a long period of time, and view the exhaustion of ques-
tions to ask as a measure itself of depletion of newer ways
to use a language feature. Exhaustion of questions asked
about a topic does not mean that the feature is less popu-
lar, nor does it mean that the feature is now deprecated and
requires replacement. We instead focus on a community
driven vantage point, which views such features as some-
thing that programmers have mastered, and are now looking
at other prospects that are more challenging.

In the future, topic modeling SO questions for viewing
trends for older languages would highlight the most com-
mon challenges programmers face for a language and ana-
lyzing the answers for such questions would also give a way
of solving them. Investigating why certain topics have been
exhausted in terms of questions asked, from a language de-
veloper point of view, is also a challenge worth tackling,
which could provide new insight into how the community

404

asks questions for a highly documented feature, or how a
major update can increase the hype around it. This infor-
mation, in turn, can be leveraged by language developers to
prioritize the integration of new features or even improve
old ones.

References

[1] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “So-
torrent: reconstructing and analyzing the evolution of
stack overflow posts,” in Proceedings of the 15th Inter-
national Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018,
2018, pp. 319–330.

[2] A. Barua, S. W. Thomas, and A. E. Hassan, “What
are developers talking about? an analysis of topics
and trends in stack overflow,” Empirical Software En-
gineering, vol. 19, no. 3, pp. 619–654, 2014.

[3] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak,
and B. Hartmann, “Design lessons from the fastest
q&a site in the west,” in Proceedings of the SIGCHI
conference on Human factors in computing systems.
ACM, 2011, pp. 2857–2866.

[4] C. Rosen and E. Shihab, “What are mobile developers
asking about? a large scale study using stack over-
flow,” Empirical Software Engineering, vol. 21, no. 3,
pp. 1192–1223, 2016.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirich-
let allocation,” Journal of machine Learning research,
vol. 3, no. Jan, pp. 993–1022, 2003.

[6] M. Allamanis and C. Sutton, “Why, when, and what:
analyzing stack overflow questions by topic, type, and
code,” in Proceedings of the 10th Working Conference
on Mining Software Repositories. IEEE Press, 2013,
pp. 53–56.

[7] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining
questions asked by web developers,” in Proceedings
of the 11th Working Conference on Mining Software
Repositories. ACM, 2014, pp. 112–121.

[8] K. Tian, M. Revelle, and D. Poshyvanyk, “Using la-
tent dirichlet allocation for automatic categorization
of software,” in Mining Software Repositories, 2009.
MSR’09. 6th IEEE International Working Conference
on. IEEE, 2009, pp. 163–166.

[9] S. Baltes, C. Treude, and S. Diehl, “Sotorrent: Study-
ing the origin, evolution, and usage of stack overflow
code snippets,” CoRR, vol. abs/1809.02814, 2018.
[Online]. Available: http://arxiv.org/abs/1809.02814

[10] R. Řehůřek and P. Sojka, “Software Framework
for Topic Modelling with Large Corpora,” in
Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Val-
letta, Malta: ELRA, May 2010, pp. 45–50,
http://is.muni.cz/publication/884893/en.

[11] M. Honnibal and I. Montani, “spacy 2: Natural lan-
guage understanding with bloom embeddings, convo-
lutional neural networks and incremental parsing,” To
appear, 2017.

[12] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding
bag-of-words model: a statistical framework,” Inter-
national Journal of Machine Learning and Cybernet-
ics, vol. 1, no. 1-4, pp. 43–52, 2010.

[13] K. Stevens, P. Kegelmeyer, D. Andrzejewski, and
D. Buttler, “Exploring topic coherence over many
models and many topics,” in Proceedings of the 2012
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, 2012, pp. 952–961.

[14] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, “An
exploratory analysis of mobile development issues us-
ing stack overflow,” in Mining Software Reposito-
ries (MSR), 2013 10th IEEE Working Conference on.
IEEE, 2013, pp. 93–96.

[15] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun,
“What security questions do developers ask? a large-
scale study of stack overflow posts,” Journal of Com-
puter Science and Technology, vol. 31, no. 5, pp. 910–
924, 2016.

[16] S. Wang, D. Lo, and L. Jiang, “An empirical study on
developer interactions in stackoverflow,” in Proceed-
ings of the 28th Annual ACM Symposium on Applied
Computing. ACM, 2013, pp. 1019–1024.

[17] G. Hewgill, Meta Stack Overflow Statistics Graphs,
2010 (accessed May 4, 2020). [Online]. Available:
https://meta.stackexchange.com/questions/38297/meta-
stack-overflow-statistics-graphs

[18] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and
P. Baldi, “Mining eclipse developer contributions via
author-topic models,” in Proceedings of the Fourth In-
ternational Workshop on Mining Software Reposito-
ries. IEEE Computer Society, 2007, p. 30.

[19] E. Linstead, C. Lopes, and P. Baldi, “An applica-
tion of latent dirichlet allocation to analyzing soft-
ware evolution,” in Machine Learning and Applica-
tions, 2008. ICMLA’08. Seventh International Confer-
ence on. IEEE, 2008, pp. 813–818.

405

An Efficient Application Searching Approach Based
on User Review Knowledge Graph

Fang Li1, Tong Li2 *

1 Fan Gongxiu Honors College, 2 Faculty of Information Technology
Beijing University of Technology, Beijing, China

fraulifang@163.com, litong@bjut.edu.cn

Abstract—Finding a software application that perfectly suits
user needs is essential for improving user experiences, as well as
contributing to the development of the application ecosystems.
However, it is not an easy task regarding the huge number of
existing applications that are available for use. In this paper, we
propose to tackle this challenge by exploring valuable information
from user reviews. In particular, we design a user review
knowledge graph that consists of both functional information
and user preferences in order to comprehensively and precisely
characterize software applications. Based on such a review
knowledge graph, our approach can support application search
in an efficient and precise manner. To evaluate our proposal, we
have collected a total of 4,370 applications and 4,396,950 pieces
of reviews for constructing a comprehensive review knowledge
graph and have illustrated how users and developers can effi-
ciently retrieve applications and improve software functionality
based on the knowledge graph.

Index Terms—NLP, Knowledge-graph, App searching

I. INTRODUCTION

With the proliferation of types and quantities of mobile
phone’s application, it is increasingly difficult for users to
find applications that perfectly meet their requirements through
only the huge amount of application descriptions. There is an
urgent need for efficient and accurate application search.

Many direct approaches to application searching have been
proposed in the past decade, which are mainly based on
application descriptions. Specifically, some researches mine
application descriptions from App store and process data by
extracting short textual application features or time series data
to make application recommendation [1]–[3]. Another branch
of research advocates on retrieving applications based on
relevance or history of application usage [4]–[6]. Some other
researchers further use a graph-based method to analyze the
similarity between downloaded applications and search from
the graph to improve the searching efficiency [7]. Although,
the approaches mentioned above are considered as systematic
and promising means to recommend useful application, they
typically require a huge amount of textual data and time to
obtain applications related to user needs. Moreover, the rec-
ommendations that are made based on application descriptions
are not able to reflect the application’s performance as they do
not considering user feedback.

DOI:10.18293/SEKE2020-119
* Corresponding author.

Application reviews contain a huge amount of customer’s
real opinions that are valuable for profiling users. Specifically,
review analysis can obtain the user feedback regarding ap-
plication functionality and qualities. We argue that the effec-
tiveness of application search can be improved by considering
information from both application descriptions and application
reviews.

In this paper, we focused on extracting application features
and corresponding user preference, as well as calculating the
emotional distribution of users. Based on such analysis, we
can meaningfully characterize applications to better support
application recommendation. Specifically, we firstly retrieve
application descriptions and user reviews via web crawling
tool from Google Play Store1. By crawling the user reviews
data and applying Natural Language Processing (NLP) meth-
ods [8], we obtain 4,370 applications and about 4,396,950
pieces of reviews in total. In order to promote the effectiveness
of our approach, only applications that have a decent number
of comments are considered in our study. We then extract the
connections between user sentiment and app features based on
a large scale of textual comments, and figure out the sentiment
distribution accordingly. All the above information services as
the foundation for construction a comprehensive Knowledge
Graph (referred to as “KG” hereinafter), enabling efficient and
effective application search.

Our work mainly leverages techniques of relation extrac-
tion and text classification. With the assistance of Sentiword
Corpus [9] and an application features dictionary, we are able
to extract the relationships between applications features and
their corresponding user sentiment. Each relationship we mark
a sentiment score to evaluate the tendency as well as the
strength of emotions. Based on those relationships, we con-
struct a KG containing user entity, application feature entity
and sentiment relation for further clustering and searching.
Using this Knowledge Graph, we can cluster applications via
intelligent search, rendering multi-angle query results. In this
way, we can deal with an enormous data set of App reviews
and can search the application accurately.

This paper is organized as follows. Section II presents
related work in which app searching has researched within
software engineering. In section III we describe the method-
ology of this work, the collection and processing of data, and

1https://play.google.com/store

406

Fig. 1. The Framework of our paper. The solid rectangle in the figure represents a working step, the dashed rectangle represents the sub-steps in each step,
the blue rectangle with rounded corners represents the technical process. And the tables and sin the figure are examples of each step.

the Knowledge Graph construction phase. In section IV we
provide evaluation of our work. In section V we provide some
discussion. Section VI is our conclusion.

II. RELATED WORK

Instead of using a formal App description, App reviews are
a key driver of application clustering. On the one hand, it
can learn the true user’s feedback for the App. On the other
hand, it assists developers in finding the novel functions that
can be improved. To date, the smartphone operating systems:
Android and iOS have the whole worldwide smartphone ship-
ment market share [10]. A large scale of application reviews
is provided to researchers for review analysis. The history
of application clustering and the use of KG in application
research is discussed in this section.

Previous researches mainly solve the app searching problem
by text mining and semantic awareness [11]. Jiang et al. [12]
use a greedy algorithm to find the semantic awareness of the
user’s request and design an application order for user re-
trieval. Datta, Kajanan and Pervin [13] provide an independent

unbiased search machine for mobile apps with semantic search
capabilities. Lavid Ben Lulu and Kuflik [3] use the Machine
Learning method to automated analyze functional similarity
on the application’s description data. Al-Subaihin et al. [14]
extracted App feature using information retrieval augmented
with ontological analysis to characterize apps. User history and
using experience can be used for app searching because user
feelings are important for app searching. Costa-Montenegro,
Barragáns-Martı́nez and Rey-López [15] used user history to
select the application similar to the downloaded apps. And
Krishna et al. [4], searched a similar app using the user’s
history and the app description information to achieve word
import. Zhu et al. [16] combine the popularity of mobile Apps,
personal preference, and mobile device constraints for app
searching and recommendation. Such textual data is difficult
to search and manage. Park et al. [17] leverage user reviews to
find out important features of apps for app retrieval. Compared
with using app descriptions, brief app reviews can indicate true
feedback from users and comes to more detailed app features.

407

A more applicable method is to use both official descriptions
and user reviews for information collection and select more
app features to more in line with user needs.

Graph is a kind of data structure which models a set
of objects (nodes) and their relationships (edges). Recently,
researches of app searching with a graph representation have
been receiving more and more attention. Jisha, Krishnan and
Vikraman [18] construct a Knowledge Schema - a graphic
model of interconnections of data that characterize any mo-
bile app for app searching. Bae et al. [19] incorporates a
graph-based technique for application recommendation. Such
a method is difficult to find out relevant applications from
a large app store. To concisely record the app features and
achieve multi-angled searching, we construct a knowledge-
based graph containing all the application’s information and
the user’s feedback.

Based on the previous researches, we focus on the app
searching based on formal descriptions and user reviews. By
analyzing the content of reviews, we can extract not only
the application’s features but also true feedback from users.
What’s more, we design a Knowledge Graph-based on the
extracted results for app searching. In this way, the large scale
of review data can be managed well and can be searched
efficiently.

III. METHODOLOGY

Our framework is shown in Fig.1. The sequence Numbers
in the figure correspond to the III.Methodology part. We firstly
design a web crawling tool to grasp the App reviews and offi-
cial descriptions from the Google Play store. We also prepared
the sentiment word information and application feature data
for Named Entity Recognition. During the data preprocessing
phase, we changed words in sentences to their lowercase
and removed the stop words and special symbols, then we
delete the irregular reviews. For example, reviews which only
contain punctuation or non-English sentence. Based on these
corpora, we extracted the sentences with co-occurrence of user
sentiment and App feature. To figure out the sentiment of
user, we classified the relation into different categories and
use the sentiment score from SentimentWordNet to indicate
emotional strength. At last, we build a Knowledge Graph
using these relations for results cluster and retrieval. This step
contains conceptual model and entity & relation construction.
The conceptual model include the user and the application’s
basic information and the inclusion and emotional relation of
them is linked in the graph.

A. Data Collection and Preparation

According to the introduction above, the relationships of
user sentiment with app features are fundamental for construct-
ing the Knowledge Graph and their information thus need to
be collected and prepared beforehand.

1) App Reviews and official description Information: We
choose the Google Play store as the app repositories for its
large scale and high frequency of use. We design web crawling

tools to catch the app reviews, which is built upon PhantomJS2

and Selenium3. There are 20 app categories, including Art
& Design, Augmented Reality, Auto & Vehicles, Beauty,
Books & Reference, Business, Comics, Communication, Dat-
ing, Daydream, Education, Entertainment, Events, Finance,
Food & Drink, Health & Fitness, House & Home, Libraries
& Demo, Lifestyle, and Game.

We extract user reviews from App Store as records and save
the content, user’s ID, review date and other detailed infor-
mation of each review. Before we extract the user sentiment
information, the textual data need to be cleaned. We changed
words in sentences to their lowercase and removed the stop
words such as ”. , !” and special symbols. Then we dismiss
the irregular reviews which may only consist of punctuation,
number or reviews with messy code.

2) Application feature Information: Fine-grained catego-
rization of app features are considered in our research. Here
we create a list of 13 different topics [20]. The topics were
proposed by Di S. et al., which can be a great classification
category for different review topics, for example, ”I like the
GUI of Crazy Bird” is a comment on application’s GUI.
Table I illustrates the definition of each review topic. These
topic are concluded from user reviews and they indicate the
categories that user comments most frequently. Nearly all
mentioned application feature in user reviews can be classified
into a specific feature category. The classify tools create a
new category once the review does not belong to the existing
categories, and then they summarize each category into a topic.
This cluster has shown to achieve a classification accuracy of
0.76.

TABLE I
DEFINITIONS OF APPLICATION FEATURES

Topic Definition

App sentences related to the entire app, e.g., generic crash
reports, ratings, or general feedback

GUI sentences related to the Graphical User Interface or the
look and feel of the app

Contents sentences related to the content of the app
Pricing sentences related to app pricing
Feature or sentences related to specific features or functionality of
Functionality the app
Improvement sentences related to explicit enhancement requests
Updates/ Versions sentences related to specific versions or the update

process of the app
Resources sentences dealing with device resources such as battery

consumption, storage,etc.
Security sentences related to the security of the app or to

personal data privacy
Download sentences containing feedback about the app download
Model sentences reporting feedback about specific devices or

OS versions
Company sentences containing feedback related to the com-

pany/team which develops the app
Other sentences not treating any of the previous topics

To extract the entity word from the review sentence, we con-
struct an entity dictionary which contains all clusters words,

2http://phantomjs.org/
3http://www.seleniumhq.org/

408

e.g., “battery, phone storage” belong to cluster “Resources”
and “Android, iOS” belong to the cluster “Model”. We create
a list of entity words manually which contained 134 original
words identifying the topics. To make the dictionaries more
exhaustive we used Word-Net [21] to generate synonyms for
all the feature words. Synonyms word were then appended to
the dictionary to extract the topic entity word from a different
user, such as ”price, expense and cost” all mean the amount
of money for which something is sold.

3) Sentiment Word Information: For the sentiment informa-
tion, we adopt the method of Gatti, Guerini and Turchi [9]. We
adopt the sentiment corpus containing approximately 155,000
sentiment words called “SentiWords”, which has both high
precision and coverage. We use this sentiment lexicon as our
emotional words dictionary to extract user’s sentiment from
reviews. Each sentiment word from lexicon has a sentiment
score, ranging from -1 to +1. The absolute value of the
sentiment score indicates the emotional tendency (like the
application or dislike) and how strong the emotion is. When
a score is a positive number, the higher the score is, the
more positive the user comment is. On the contrary, the more
negative it is. For example, positive word such as “Good” has
the sentiment score 0.77510, negative word such as “Bad” has
the score -0.47073 and the subjective word such as “install”
has the sentiment score 0.

B. Sentiment-Feature Relation Extraction

In this phase, we mainly introduce how to extract the
relationship of user sentiment with app features from review
contents, which may have the complex grammar and unstruc-
tured sentence pattern. We utilize NLP methods to process
the comments. During this process, Name Entity Recognition
(NER) is significant for getting a high performance of relation
extraction. We construct both user sentiment corpus and app
feature dictionary. Then we use NLTK (Natural Language
Toolkit)https://www.nltk.org/ to figure the sentences with co-
occurrence of user sentiment and app features.

Using the sentiment information and app feature informa-
tion, we dealt with the sentence relation extraction task as a
classification problem. We divided the relation between the
app feature and user sentiment into four main categories,
positive (+), negative (-), expecting (1), and meaningless (0).
More specifically, the relations are classified as “expecting”
when sentiment word is in the expecting word list (which
contains words expressing expected meaning, such as hope,
wish, expect, etc.). Sentiment word with a score greater than
0 will be classified as “positive”, and a score less than 0
is classified as “negative”. If the above three conditions do
not exist, it will be classified as “none”. For instance, if the
user likes the application, We labeled it as positive to the
relationship of the entity with user sentiment. If the user
dislikes the application, We labeled it as negative to the
relationship. If a user expects an improvement of the app
feature, we labeled it as expecting to the relationship. And
if the user comments without real meaning, we labeled it
as meaningless to it. The example of those four categories

is shown in Fig.1, which contains the user sentiment word,
comment app feature word and the relation category.

Relation Extraction is a popular topic in NLP, many novel
methods have been proposed with high performance. To sim-
plify the model as well as avoid complex grammatical and
semantic analysis, we here adopt the text CNN (Convolutional
Neural Network) for sentence classification. In our study, we
manually label part of the reviews and then utilize Text-CNN
[22] to classify others automatically. The marked sentences
are divided into two parts: training data and validation data.
We then trained the CNN model on the marked corpus. In
this way, we extract all sentences that contain co-occurrence
of sentiment words and entity words. For each relationship, a
sentiment score corresponds to the user’s emotion.

C. Review Knowledge Graph Construction
1) Conceptual Model: Fig.2 shows the conceptual model

of the review knowledge graph, including the concept of the
application, user, and some attributes. Specifically, we defined
the sentiment of reviews into four basic emotions: positive,
negative, expecting, and meaningless. At the same time, we
also defined app features that applications and reviews have.
The detailed concept definition is illustrated as follows.

For each application we choose from App Store, we collect
the basic information including the app’s category, app’s total
score, and app’s development team.

Each application has a lot of reviews. The user’s ID and
the comment date would be selected as basic information for
uniquely identifying a comment. Specifically, each review con-
taining user sentiment for app features. Here we particularly
add sentiment score for each comment to transform the textual
emotion to a digitized score, which is defined as sentiment
score ranging from -1 to +1. This score can directly indicate
the relationship including positive, negative, meaningless and
expecting. In this way, the KG can display the distribution of
the user’s opinion about the app. The review is also linked
with the app features that users comment on. The app feature
entity belongs to a different perspective of the application, the
detailed definition of app features is shown in Table I. Each
category contains feature words with specific meaning. For
example, ”button” belongs to the topic ”GUI”. In the review
KG, the app feature entity indicates comment objects around
a specific app.

2) Entity and Relation construction: The relationships of
user sentiment and app features were then embedded into
the Knowledge Graph. Each relationship is displayed in the
KG through the one-to-one correspondence of the concepts
including user entity, app feature entity and the sentiment
score. The attributes information such as app category and
app feature topic are also linked to the app.

In this way, our Knowledge Graph can express the relations
of users and the Apps. For each user entity and App feature
entity, there exists a relation line with a sentiment score to
indicate the meaning and the strength of the relation, such
as “Good (0.77510)”, “Bad (-0.47073)”. We use Neo4j4, an

4https://neo4j.com/

409

Fig. 2. The Conceptual model of Review Knowledge Graph

online database, to construct the Knowledge Graph of the
application’s review.

D. Application searching based on Knowledge Graph

Based on the application’s knowledge graph, application
and its features can be searched accurately. In addition, the
distribution of the user’s emotions can be shown according
to the sentiment score. Several searching problems as follows
can be solved efficiently.

1) Suitable Application Retrieval: For a specific application
searching, the knowledge graph performs a clustering algo-
rithm to group the applications that have the same attributes,
e.g. app category, app development team, app total score, etc.

2) Improvable Application Feature Retrieval: The develop-
ment team can check the expecting relations in the application
knowledge graph to know the most needed functions. In this
way, the knowledge graph can achieve the application’s multi-
angled retrieval.

3) User Sentiment Distribution Retrieval: For selecting a
specific function or standard of applications, the knowledge
graph can give the results based on app features, which were
linked with positive sentiment scores ranging from +1 to -1.
It can also show the distribution of users’ experience feelings
for a certain app by ordering sentiment relations.

IV. EVALUATION

A. Experimental Data Set

We utilize crawling tools designed by ourselves to catch
the application’s description and user reviews from Google
Play Store5. To increase the accuracy and reliability of review
analysis, we only choose the application whose total score is
bigger than 4.0/5.0 and the number of reviews is bigger than
1,000. For those categories that take less than 1% of the total
apps we only choose the applications with score bigger than
3.5/5.0 and the number of reviews bigger than 100. We get a
total of about 4,370 applications and about 4,396,950 pieces
of reviews. The proportion of the reviews number from each

5https://play.google.com/store/apps

app category is shown in Fig. 4, in which all app categories
and the sentiment distribution of reviews are illustrated. In this
picture, each row represents an application category. For each
application category, the figure identifies the total number of
user comments in that category, the proportion of comments
in the total number of experimental comments, and the review
sentiment distribution in each category of comments. The
proportion of different sentiment is distinguished by different
color.

For each review, we save it as one record with review id,
review app, review content, review date, and review user to
indicate the review details. The part of the database we crawled
from the website is shared on another website6.

B. Research Question

This research aims to use previous user comments to
provide a more practical result for users. The most important
evaluation standard of the results would be the user’s satis-
faction degree since there are much more fine-grained feature
categories than the original searching method. So we have the
following research questions to guide our evaluation.

• RQ1: Does this Knowledge Graph improve the algorithm
generated searching results?

• RQ2: Does this Knowledge Graph deal with the applica-
tion information in the same way for all app platforms?

C. Experimental Setting

The app reviews data is collected from the Google Play
Store, which is a world-wide used platform for the mobile
application’s downloading. This app information has also been
analyzed for app retrieval before. Since we only choose the
app with a high total score and accept conspicuously rich
searching terms than ever before, the searching efficiency
would improve a lot. Which can explain RQ1. Using the
sentiment corpus and app feature dictionary designed before,
we manually mark 4000 sentences and achieved an agreement
of 92%. If we hold a different opinion on the sentence, we

6https://github.com/fraulifang/Google-app-reviews

410

Fig. 3. Example of Knowledge Graph

discussed and then labeled it. We collected 1802 positive
relations, 1326 negative relations, 628 improve relations and
244 useless relations. Then we use the Text-CNN [22] model
to automatically classify the other reviews. The parameters of
the model are: filter size are 3,4 and 5, the number of filters is
100, and three convolution layers depending on three different
window sizes. There are also three max-pooling layers, and
an output layer with a softmax function to get the label. The
performance of our model is presented in Table II.

D. Results and Analysis

For now, we get about 4,395,000 relation pairs of user
and app features, including 1,923,038 positive relations,
1,174,434 negative relations, 874,480 improvement relations,
and 423,048 meaningless relations. The more detailed distri-
bution of user sentiment is shown in Fig.4. Then we construct
the knowledge graph based on the relations and the application
description information.

A simplified example of KG is shown in Fig.3, which
contains user entity, app feature entity, relation score and entity
attribute. In this figure, rectangles represent the Apps from
the App Store, ovals represent the App features and rhombus
denote the attributes such as App category and Topic category.
In this figure, two apps, Telegram and Vidogram, with its total
score from Google Play are shown in the graph. The lines with
arrows denote the relationship between apps and their entities
and users. The label of the solid line in the figure is the type
of relationship between the entities.

Based on such a huge graph, application searching can be
achieved. Apps have the same attributes that can be easily
grouped and the category of the app is also shown clearly in
the graph. Furthermore, users can simply search the KG to
find the application they want and know the real experience
feelings from others. For example, a user wants to find an app
for communication. He or she can search the user sentiment
distribution of the app and the result would be the app’s
sequential arrangement of sentiment score, e.g.”Telegram-
4.5, Vidogram-4.2” in Fig3. Or someone wants to find an

application that can read both .doc and .pdf format files, then
they can search the app feature with those keywords. What’s
more, app developers can also check the expecting relations
to see whether the application needs to be improved in some
directions from the user’s aspect. In this way, the multi-angled
and user-friendly app searching can be achieved.

As for RQ2, we test our method on other application
platforms- Uptodown7, which contains Android apps in 6
categories, including Communication, Games, Lifestyle, Mul-
timedia, Productivity, and Tools. We only choose the apps with
a total score bigger than 4.5/5.0 and the number of reviews is
bigger than 1,000. We get a total of about 700 applications.
By dealing with the reviews as illustrated before, we get
about 680,000 relationships. Then the Knowledge graph is
expanded using this new application information. Since the
app feature entities and user sentiment information are the
same, this method can include more platforms application for
more precise searching results.

TABLE II
PERFORMANCE OF OUR TEXT-CNN MODEL

category Precision Recall F1 value

positive 0.75 0.71 0.70
negative 0.74 0.72 0.71
improve 0.76 0.76 0.73
useless 0.81 0.85 0.83

total 0.78 0.76 0.78

V. DISCUSSION

There are still many potential directions need to be explored.
A meaningful direction is to refine the classification of the re-
view category. For example, dividing the content of comments
into version-related, platform-related and operation-related can
help eliminate differences and improve the Knowledge Graph.

7https://en.uptodown.com/

411

Fig. 4. The proportion of app category and the sentiment distribution

The size of the database is equally important and deter-
mines the accuracy and comprehensiveness of the knowledge
map. We tend to continue the collection work and generate
more knowledge on the data while achieving automatic real-
time updates of some data sources. The resulting knowledge
contributes to further development.

VI. CONCLUSION

In this work, we propose an efficient and effective applica-
tion search approach based on a user review knowledge graph,
which contains information of application features and their
corresponding user sentiment. To this end, a total of 4,370
applications and 4,396,950 pieces of reviews were collected.
We leverage advanced NLP techniques for extracting the app
features and identifying their corresponding user’s sentiment.
The 4,396,000 structured relation pairs are then embedded into
a Review Knowledge Graph. Based on such a KG, application
users and developers can search specific applications, review
the distribution of the user sentiment and application categories
to better achieve their specific requirements.

ACKNOWLEDGEMENT

This work is supported by National Natural Science of
Foundation of China (No.61902010) and Beijing Excellent
Talent Funding-Youth Project (No.2018000020124G039).

REFERENCES

[1] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” Proceedings of the 36th International Confer-
ence on Software Engineering - ICSE 2014, 2014.

[2] N. Tignor, P. Wang, N. Genes, L. Rogers, S. G. Hershman, E. R. Scott,
M. ZWweig, Y.-F. Yvonne Chan, and E. E. SchadtT, “Methods for
clustering time series data acquired from mobile health apps,” Pacific
Symposium on Biocomputing. Pacific Symposium on Biocomputing,
vol. 22, pp. 300–311, 02 2017.

[3] D. L. B. Lulu and T. Kuflik, “Functionality-based clustering using short
textual description,” Proceedings of the 2013 international conference
on Intelligent user interfaces - IUI ’13, 2013.

[4] S. Krishna, A. Bajaj, M. Rungta, V. Vala, and H. Tiwari, “Relemb:
A relevance-based application embedding for mobile app retrieval and
categorization,” Computación y Sistemas, vol. 23, no. 3, 10 2019.

[5] N. Chen, S. C. Hoi, S. Li, and X. Xiao, “Simapp,” Proceedings of the
Eighth ACM International Conference on Web Search and Data Mining
- WSDM ’15, 2015.

[6] D. H. Park, Y. Fang, M. Liu, and C. Zhai, “Mobile app retrieval for
social media users via inference of implicit intent in social media
text,” Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, 10 2016.

[7] U. Bhandari, K. Sugiyama, A. Datta, and R. Jindal, “Serendipitous
recommendation for mobile apps using item-item similarity graph,”
Information Retrieval Technology, pp. 440–451, 2013.

[8] P. D. Turney, “Thumbs up or thumbs down?,” Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics - ACL
’02, 2001.

[9] L. Gatti, M. Guerini, and M. Turchi, “Sentiwords: Deriving a high
precision and high coverage lexicon for sentiment analysis,” IEEE
Transactions on Affective Computing, vol. 6, no. 1, pp. 409–421, 2016.

[10] IDC, “Idc - smartphone market share - os.” https://www.idc.com/promo/
smartphone-market-share/os, 2018.

[11] A. Datta, K. Dutta, S. Kajanan, and N. Pervin, “Mobilewalla: A mobile
application search engine,” Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering,
vol. 18, no. 1, pp. 172–187, 2012.

[12] D. Jiang, J. Vosecky, K. W. T. Leung, and W. Ng, “Panorama,” Pro-
ceedings of the 16th International Conference on Extending Database
Technology - EDBT ’13, 2013.

[13] A. Datta, S. Kajanan, and N. Pervin, “A mobile app search engine,”
Mobile Networks and Applications, vol. 18, pp. 42–59, 10 2012.

[14] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, M. Harman, Y. Jia, and
Y. Zhang, “Clustering mobile apps based on mined textual features,”
Proceedings of the 10th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement - ESEM ’16, 2016.

[15] E. Costa-Montenegro, A. B. Barragáns-Martı́nez, and M. Rey-López,
“Which app? a recommender system of applications in markets: Im-
plementation of the service for monitoring users’ interaction,” Expert
Systems with Applications, vol. 39, no. 10, pp. 9367–9375, 08 2012.

[16] K. Zhu, Z. Liu, L. Zhang, and X. Gu, “A mobile application recommen-
dation framework by exploiting personal preference with constraints,”
Mobile Information Systems, vol. 2017, pp. 1–9, 2017.

[17] D. H. Park, M. Liu, C. Zhai, and H. Wang, “Leveraging user reviews
to improve accuracy for mobile app retrieval,” Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in
Information Retrieval - SIGIR ’15, 2015.

[18] R. C. Jisha, R. Krishnan, and V. Vikraman, “Mobile applications
recommendation based on user ratings and permissions,” 2018 Inter-
national Conference on Advances in Computing, Communications and
Informatics (ICACCI), 09 2018.

[19] D. Bae, K. Han, J. Park, and M. Y. Yi, “Apptrends: A graph-based mobile
app recommendation system using usage history,” 2015 International
Conference on Big Data and Smart Computing (BIGCOMP), 02 2015.

[20] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? summarizing app reviews for recommending software changes,”
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering - FSE 2016, pp. 499–510, 2016.

[21] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 11 1995.

[22] Y. Kim, “Convolutional neural networks for sentence classification,”
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014.

412

SLK-NER: Exploiting Second-order Lexicon
Knowledge for Chinese NER

Dou Hu∗ and Lingwei Wei † ‡
∗National Computer System Engineering Research Institute of China, Beijing, China
†School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
‡Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

hudou18@mails.ucas.edu.cn, weilingwei@iie.ac.cn

Abstract—Although character-based models using lexicon have
achieved promising results for Chinese named entity recognition
(NER) task, some lexical words would introduce erroneous
information due to wrongly matched words. Existing researches
proposed many strategies to integrate lexicon knowledge. How-
ever, they performed with simple first-order lexicon knowledge,
which provided insufficient word information and still faced the
challenge of matched word boundary conflicts; or explored the
lexicon knowledge with graph where higher-order information
introducing negative words may disturb the identification.

To alleviate the above limitations, we present new insight into
second-order lexicon knowledge (SLK) of each character in the
sentence to provide more lexical word information including
semantic and word boundary features. Based on these, we
propose a SLK-based model with a novel strategy to integrate
the above lexicon knowledge. The proposed model can exploit
more discernible lexical words information with the help of
global context. Experimental results on three public datasets
demonstrate the validity of SLK. The proposed model achieves
more excellent performance than the state-of-the-art comparison
methods.

Index Terms—lexicon knowledge, attention mechanism, Chi-
nese named entity recognition

I. INTRODUCTION

Named Entity Recognition (NER) aims to locate and clas-
sify named entities into predefined entity categories in the
corpus, which is a fundamental task for various downstream
applications [1–3]. Word boundaries in Chinese are ambigu-
ities and word segmentation errors have a negative impact
on identifying Name Entity (NE) [4], which would make
Chinese NER more difficult to identify. Explicit discussions
have approved that character-based taggers can outperform
word-based counterparts [5].

Because entity boundaries usually coincide with some
word boundaries, integrating external lexicon knowledge into
character-based models has attracted research attention [5].
Although lexicon can be useful, in practice the lexical words
may introduce erroneous information and suffer from word
boundary conflicts, which easily lead to wrongly matched
entities and limit system the performance [6]. To address the
above issues, many sequence-based efforts have been devoted
to incorporated lexicon knowledge into sentences [7, 8].

DOI reference number: 10.18293/SEKE2020-153.

𝐒𝐞𝐜𝐨𝐧𝐝-𝐨𝐫𝐝𝐞𝐫 𝐥𝐞𝐱𝐢𝐜𝐨𝐧 𝐤𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐞:𝐦𝐚𝐭𝐜𝐡𝐞𝐝 𝐥𝐞𝐱𝐢𝐜𝐨𝐧 𝐰𝐨𝐫𝐝𝐬 𝐨𝐟 𝐭𝐡𝐞 𝐜𝐡𝐚𝐫𝐚𝐜𝐭𝐞𝐫′𝐬 𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫.

𝐅𝐢𝐫𝐬𝐭-𝐨𝐫𝐝𝐞𝐫 𝐥𝐞𝐱𝐢𝐜𝐨𝐧 𝐤𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐞:𝐦𝐚𝐭𝐜𝐡𝐞𝐝 𝐥𝐞𝐱𝐜𝐢𝐨𝐧 𝐰𝐨𝐫𝐝𝐬 𝐨𝐟 𝐭𝐡𝐞 𝐜𝐡𝐚𝐫𝐚𝐜𝐭𝐞𝐫.

Nan
南

Jing
京 桥

Bridge
大
Big

江
River

长
Long

市
City

长江大桥
Yangzi River Bridge

南京
Nanjing

市长
Major

长江
Yangzi River

大桥
Bridge

长江大桥
Yangzi River Bridge

南京市
Nanjing City

南京市
Nanjing City

大桥
Big Bridge

南京
Nanjing

市长
Major

长江
Yangzi River

Fig. 1. An example of a word character lattice. The top is that predicting the
label uses from left to right sequence and the bottom is using from right to
left sequence. The green arrow line represents that the character (start) can
match with the lexical word (end). The blue arrow line represents the lexical
word (start) information would be integrated into the character (end).

However, these strategies explore simple first-order lexicon
knowledge(FLK) of each character as shown in the green arrow
line in Fig.1. FLK only contains the lexical features of the
characters itself, which cannot offer adequate word informa-
tion. For example, the character “京(Jing)” only introduces
“南京(Nanjing)” based on FLK. The wrongly matched word
information would misidentify as “南京(Nanjing)” instead
of “南京市(Nanjing City)”. As a result, they continue to
suffer from boundary conflicts between potential words being
incorporating in the lexicon. The conflict caused by this
deficiency mainly comes from the middle of the named entity,
such as “大(Big)” and “江(River)” in “长江大桥(Yangtze
River Bridge)”.

Recently, some models attempted to aggregate rich higher-
order lexicon knowledge, such as the nearest lexical words
[9] or graph structure [10–12]. This higher-order informa-
tion probably introduces irrelevant words with the character,
limiting the performance to some extent. In addition, the
existence of shortcut paths may cause the model degeneration
into a partially word-based model, which would suffer from
segmentation errors.

To address the above issue, we introduce the second-
order lexicon knowledge (SLK) to each character in the input
sentence, that is the neighbor’s lexicon knowledge of the
character, as elaborated in Fig.1 with the blue arrow lines.
The SLK of “京(Jing)” contains both “南京市(Nanjing City)”
and “南京(Nanjing)” from its left neighbor “南(Nan)”, and
“南京市(Nanjing City)” from its right neighbor “市(City)”.

413

With regard to global semantics of the sentence, “南京
市(Nanjing City)” is more likely to be the named entity than
“南京(Nanjing)” due to higher semantic similarity of “南
京市(Nanjing City)”. Similarly, the SLK of “江(River)” is
the potential words “长江大桥(Yangtze River Bridge)” and
“长江(Yangtze River)”, and the SLK of “大(Big)” is “长江
大桥(Yangtze River Bridge)” and “大桥(Big Bridge)”. By
synthesizing global considerations, these lexicon knowledge
guides the character subsequence “长江大桥(Yangtze River
Bridge)” to be recognized as the named entity.

To take advantage of this insight, we proposed a SLK-
based model with a novel strategy named SLK-NER, to inte-
grate more informative lexicon words into the character-based
model. Specifically, we assign SLK to each character and
ensure no shortcut paths between characters. Furthermore, we
utilize global contextual information to fuse the lexicon knowl-
edge via attention mechanism. The model enables capture
more useful lexical word features automatically and relieves
the word boundary conflicts problem for better Chinese NER
performance.

The main contributions can be summarized as follows:
• Insight. We present a new insight about second-order

lexicon knowledge (SLK) of the character. SLK can
provide sufficient lexicon knowledge into characters in
sentences and is capable of relieving the challenge of
word boundary conflicts.

• Method. To properly leverage SLK, we propose a Chi-
nese NER model named SLK-NER with a novel strategy
to integrate lexicon knowledge into the character-based
model. SLK-NER can enable to capture more beneficial
word features with the help of global context information
via attention mechanism.

• Evaluation. Experimental results demonstrate the effi-
ciency of SLK and our model significantly outperforms
pervious methods, achieving state-of-the-art over three
public Chinese NER datasets. The source code and
dataset are available1.

II. RELATED WORKS

Early character-based methods for NER considered few
word information in character sequence [4]. To tackle this
limitation, many works generally use lexicon as extra word
information for Chinese NER.

A. Sequence-based Methods
Zhang et al. [5] introduced a lattice LSTM to model

all potential words matching a sentence to exploit explicit
word information and achieved state-of-the-art results. Lat-
tice LSTM enlightened various approaches for the useage
of lexicon knowledge. Chain-structured LSTM [8] integrated
word boundary features into input character vector via four
strategies. Zhu et al. [9] investigated CNN-based model with
local attention to capture adjacent characters and sentence
contexts. Gui et al. [7] extended rethinking mechanism to
relieve word boundary conflicts.

1https://github.com/zerohd4869/SLK-NER

南
Nan

京
Jing

桥
Bridge

𝒙1
𝑐

𝒉1
𝑐

𝒙2
𝑐 𝒙7

𝑐…

…

Character Encoding

Jing
京

南京市
Nanjing City

南京
Nanjing

𝒙2
𝑐𝒙21

𝑠𝑤 𝒙22
𝑠𝑤

⨁

𝒉2
𝑠𝑤

𝛂21 𝛂22

𝒉2
𝑐

𝐵-𝐿𝑂𝐶 𝑀-𝐿𝑂𝐶 𝐸-𝐿𝑂𝐶

𝐠𝐥𝐨𝐛𝐚𝐥
𝐢𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧

𝐒𝐞𝐜𝐨𝐧𝐝-𝐨𝐫𝐝𝐞𝐫 𝐋𝐞𝐱𝐜𝐢𝐨𝐧 𝐊𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐞

SW 2

CRF Layer

Output

BERT

…

Input sentence

𝒉2
𝑐 𝒉7

𝑐

𝐂𝐨𝐧𝐭𝐞𝐱𝐭𝐮𝐚𝐥 𝐋𝐞𝐱𝐜𝐢𝐨𝐧 𝐊𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐞 𝐅𝐮𝐬𝐢𝐨𝐧

𝑆𝑊2 𝑆𝑊1𝑆𝑊7

Fig. 2. The whole architecture of SLK-NER. It is comprised of character
encoding layer, lexicon knowledge encoding layer, contextual lexicon knowl-
edge fusion and a CRF decoding layer.

B. Graph-based Methods

With the development of graph, there are some studies
improved by graph neural networks. For instance, Gui et
al. [10] proposed a GNN-based method to explore multiple
graph-based interactions among characters, potential words,
and the whole-sentence semantics and effectively alleviated
the word ambiguity. Sui et al. [11] propose a collaborative
graph network to assign both self-matched and the nearest
contextual lexical words. Ding et al. [12] proposed a multi-
digraph structure to learn the contextual information of the
characters and the lexicon.

III. METHOD

A. Overview

The overall architecture of our proposed model is illus-
trated in Fig.2. First, we encode character-based sentences to
explicitly capture the contextual features of the sentence via
character encoding layer. Second, to integrate more lexicon
knowledge, we construct the second-order lexicon knowledge
(SLK) for each character. Third, a fusion layer with the global
attention information is used for fusing different SLK to
alleviate the impact of word boundary conflicts. Finally, a
standard CRF model [13] is employed for decoding labels.

Formally, we denote an input sentence as s = {c1, c2..., cn},
where ci means the ith character. The lexicon D is the same
as [5], which is built by using automatically segmented large
raw text. For ith character, we use

−−→
FWi to denote a set of

words obtained by matching all possible forward subsequences
in lexicon D [8]. Similarly, we use

←−−
FWi to denote the words

for ith character in backward process. The knowledge involved
in these sets represents the FLK corresponding to the ith
character, i.e., FWi =

−−→
FWi ∪

←−−
FWi. Based on FLK, SLK

of ith character can be defined as:

SWi =
−−→
FWi−1 ∪

←−−
FWi+1, i ∈ [1, n]. (1)

As the example shows in Fig.2, SLK of the character
“京(Jing)” is the word set including “南京(Nanjing)” and “南

414

京市(Nanjing City)”. SLK can mitigate the negative impact
of word boundary conflicts. Therefore, we utilize SLK in our
proposed model.

B. Character Encoding Layer

Given the sentence s, a pre-trained model BERT [14]
encodes each character ci in the sentence to a vector.

xc
i = BERT (ci). (2)

To capture more contextual information, we apply bi-
directional Gate Recurrent Unit:

hc
i = GRU(xci), i ∈ [1, n]. (3)

The hidden state of last character contains the global features
of the input sentence, i.e., g = hc

n.

C. Lexicon Knowledge Encoding Layer

To represent the semantic information of SLK of ith charac-
ter, we embed jth lexical word swij in SWi to distributional
space as a semantic vector:

xsw
ij = ew(swij), (4)

where ew is a pre-trained word embedding lookup table.

D. Contextual Lexicon Knowledge Fusion

Not all lexical words contribute equally to the representation
of the character meaning. Hence, we introduce a global
contextual information to extract such SLK that are impor-
tant to the meaning of the character and aggregate them to
refine a character vector. Specifically, for the jth word in the
matching set SWi of the ith character, we can obtain a hidden
representation uij for word embedding xswij :

uij = Wuxsw
ij + bu, (5)

where Wu and bu are update parameters. We measure the im-
portance of lexical word as the similarity and get a normalized
importance weight αij . Then, the SLK of ith character can be
computed as a weighted sum of the word information.

αij =
exp(uT

ijg)∑
j exp(uT

ijg)
, (6)

hsw
i =

∑
j

αijxsw
ij . (7)

Finally, the final representation of ith character is denoted
as ri = [hsw

i ;hc
i].

E. Decoding and Training

To formulate the dependencies between successive labels,
a standard CRF layer is used to make sequence tagging. We
define matrix O to be scores calculated based on the final
representations R = {r1, ..., rn}:

O = WoR + bo, (8)

where Wo and bo are trainable parameters. Then, the proba-
bility of tag sequence y = {y1, ..., yn} is:

p(y|s) =
exp(

∑
i(Oi,yi + Tyi−1,yi))∑

ŷ exp(
∑

i Oi,ŷi + Tŷi−1,ŷi))
, (9)

where T is a transition score matrix, and ŷ denotes all possible
tag sequences. While decoding, we apply the Viterbi [15]
algorithm to get label sequence with the highest score.

Given training examples {(sj , yj)}|Nj=1, we optimize the
model by minimizing the negative log-likelihood loss:

L = −
∑
j

log(p(yj |sj)). (10)

IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: We evaluate our model on three datasets,
OntoNotes4, Weibo and Resume. OntoNotes4 is a multi-
lingual corpus in the news domain that contains four types
of named entities. Weibo dataset consists of annotated NER
messages drawn from Sina Weibo2. The corpus contains PER,
ORG, GEP, and LOC for both named entity and nominal
mention. Resume dataset is composed of resumes collected
from Sina Finance3. It is annotated with 8 types of named
entities. For OntoNotes4, we use the same training, validing
and testing splits as [16]. Since other datasets have already
been split, we don’t change them. The statistics of three
datasets are details in Table I.

TABLE I
THE STATISTICS OF THE DATASETS.

Dataset Training Validation Testing
OntoNotes4 15724 4301 4346
Weibo 1350 270 270
Resume 3821 463 477

2) Comparisons: The methods evaluated are as follows.
BiLSTM-CRF [17] was a sequence labeling model consisting
of BiLSTM layer and CRF layer. BERT [14] was a pre-trained
model with deep bidirectional transformer. Lattice-LSTM [5]
encoded characters in a sequence and all potential words that
match a lexicon. LGN [10] used lexicon to construct the graph
and provide word-level features. The literature [12] applied a
multi-digraph structure to incorporate gazetteer information,
and we denote MG-GNN for convenience. WC-LSTM [8]
was used to add word information into the start or the end
character of the word. LR-CNN [7] extended the rethinking
mechanism when using lexicon. CAN [9] investigated CNN-
based model with local attention to capture adjacent characters
and contexts.

3) Implementation Details: We use lexicon and word em-
beddings provided by [18], which is pretrained on Chinese
Giga-Word using word2vec model. For character embeddings,
we apply the bert-base Chinese model4 (12-layer, 768-hidden,

2https://www.weibo.com
3https://finance.sina.com.cn/stock/
4https://github.com/google-research/bert

415

TABLE II
EXPERIMENTAL RESULTS(%) ON THREE DATASETS.

Models OntoNotes4 Weibo Resume
P R F1 P R F1 P R F1

BiLSTM-CRF[17] 72.0 75.1 73.5 60.8 52.9 56.6 93.7 93.3 93.5
BERT[14] 78.0 80.4 79.2 61.2 63.9 62.5 94.2 95.8 95.0
LGN[10] 76.1 73.7 74.9 - - 60.2 95.3 95.5 95.4
MG-GNN[12] 74.3 76.2 75.2 63.1 56.3 59.5 - - -
LatticeLSTM[5] 76.4 71.6 73.9 53.0 62.3 58.8 94.8 94.1 94.1
WC-LSTM[8] 76.1 72.9 74.4 52.6 67.4 59.8 95.3 95.2 95.2
LR-CNN[7] 76.4 72.6 74.5 - - 59.9 95.4 94.8 95.1
CAN[9] 75.1 72.3 73.6 55.4 63.0 59.3. 95.1 94.8 94.9
SLK-NER 77.9 82.2 80.2 61.8 66.3 64.0 95.2 96.4 95.8

TABLE III
EXPERIMENTAL RESULTS (%) OF DIFFERENT ENCODING STRATEGIES ON THREE DATASETS.

Encoding Strategy OntoNotes4 Weibo Resume
P R F1 P R F1 P R F1

using SLK 77.9 82.2 80.2 61.8 66.3 64.0 95.2 96.4 95.8
using FLK 76.6 82.9 79.8 61.8 64.6 63.2 95.1 96.2 95.6
using SLK and FLK 76.4 82.7 79.6 60.6 63.6 62.1 94.9 96.2 95.5
no lexicon 77.7 81.3 79.6 56.7 66.5 61.2 94.2 96.1 95.1

TABLE IV
EXPERIMENTAL RESULTS (%) OF DIFFERENT FUSION STRATEGIES ON THREE DATASETS.

Fusion Strategy OntoNotes4 Weibo Resume
P R F1 P R F1 P R F1

Global-Attention 77.9 82.2 80.2 61.8 66.3 64.0 95.2 96.4 95.8
Self-Attention 77.2 81.2 79.1 55.9 60.1 57.9 94.2 96.3 95.2
Shortest Word First 77.1 81.5 79.2 55.8 57.7 56.7 93.9 96.1 95.0
Longest Word First 77.1 81.6 79.3 57.6 56.9 57.3 94.7 96.1 95.4
Average 78.6 80.8 79.7 56.4 58.4 57.3 94.3 96.3 95.3

12-heads). For characters and words that do not appear in
the pretrained embeddings, we initialize them with a uniform
distribution5. When training, character embeddings and word
embeddings are updated along with other parameters. For
hyper-parameter configuration, we set max length of sentences
to 250, word embedding size to 50, the dimensionality of Bi-
GRU to 512, the number of Bi-GRU layer to 1, the dropout
to 0.1, the batch size to 32. We use Adam to optimize all the
trainable parameters with learning rate 5e− 5. For evaluation,
we use the Precision(P), Recall(R) and F1 score(F1) as metrics
in our experiments.

B. Experimental Results

Firstly, we compare SLK-NER with two general sequence
labeling model for NER. Both of them performed without any
lexicon knowledge. The results in the first block in Table II,
show that our proposed model achieves best F1 and R, which
proves the efficiency of SLK-NER.

Next, the second block in Table II shows the performance
of graph-based models. SLK-NER gives better F1 and R than
both LGN and MG-GNN. Although these baselines explore
lexicon knowledge via the graph structure, they performed
without the consideration of contextual information. Hence,

5The range is [−
√

3
dim

,+
√

3
dim

], where dim denotes the size of
embedding.

we attribute the benefits to the efficiency of global context-
aware in SLK-NER.

Furthermore, the third block in Table II shows results
of state-of-the-art sequence-based models. We can observe
that our proposed model achieves a remarkably improvement
on F1 over three datasets. The results strongly verify the
integrating SLK into character-based model enables to boost
the performance. By leveraging the SLK properly, our model is
capable of improving NER in various domains, such as social
network, news and Chinese resume.

C. Strategies Analysis

In this part, we explore the effects of strategies about lexicon
knowledge.

1) Lexicon Knowledge Types: We conduct comparative
experiments on different kinds of lexicon knowledge. The
results are illustrated in Table III. We can clearly see that
the character-based model performs poorly without lexicon
knowledge, demonstrating the usefulness of lexicon. Besides,
adding FLK makes a small improvement on F1. While adding
SLK outperforms significantly on F1 in all datasets. The fact
demonstrates the efficiency of SLK, and reveals that leveraging
second-order lexicon knowledge can indeed alleviate the word
boundary conflicts Interestingly, when using both FLK and
SLK, the F1 declines over three datasets. We conjecture

416

the reason is there may be some negative word conflicts
simultaneously for a character which limit the performance.

2) Lexicon Knowledge Encoding: We analysze the differ-
ence between the strategy in our model (Global-Attention)
with four strategies proposed by [8] for encoding word infor-
mation, including Self-Attention, Shortest Word First, Longest
Word First and Average. The results in Table IV show that
global attention in our model achieves best performance on
F1 score. This demonstrates that our model can combine
more informative features to determine the word boundary and
effectively alleviate the negative influence of word boundary
conflicts.

D. Sentence Length Analysis

Fig.3 shows the F1 score of several baselines and SLK-NER
against sentence length on OntoNotes4 dataset. BERT and
SLK-NER outperform significantly than other baselines, which
indicates the ability to capture long dependencies. However,
BERT ignores the word information among the sentence.
SLK-NER obtains a higher F1 over different sentence lengths
compared to BERT, which proves the SLK and global context-
aware can capture more useful contextual information.

Fig. 3. F1 against sentence length on OntoNotes4 dataset. We split samples
into six parts according to the sentence length.

V. CONCLUSION

In this paper, we have investigated a lexicon-based model
in Chinese NER task. We present a new insight about second-
order lexicon knowledge to incorporate informative lexicon
into character-based model. Based on this insight, SLK-NER
is proposed to integrate more contextual word information
into each character utilizing the global context. SLK-NER
can effectively alleviate the impact of word boundary conflicts
and word segmentation errors. Extensive experiments on three
public datasets have demonstrated the superior performance of
SLK-NER than state-of-the-art models.

REFERENCES

[1] Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. Named
entity recognition in query. In SIGIR, pages 267–274,
2009.

[2] Dennis Diefenbach, Vanessa Lopez, Kamal Singh, and
Pierre Maret. Core techniques of question answering
systems over knowledge bases: a survey. Knowledge and
Information systems, 55(3):529–569, 2018.

[3] Sandipan Dandapat and Andy Way. Improved named
entity recognition using machine translation-based cross-
lingual information. Computación y Sistemas, 20(3):495–
504, 2016.

[4] Nanyun Peng and Mark Dredze. Named entity recogni-
tion for chinese social media with jointly trained embed-
dings. In EMNLP, pages 548–554, 2015.

[5] Yue Zhang and Jie Yang. Chinese NER using lattice
LSTM. In ACL, pages 1554–1564, 2018.

[6] Jason PC Chiu and Eric Nichols. Named entity recog-
nition with bidirectional lstm-cnns. TACL, 4:357–370,
2016.

[7] Tao Gui, Ruotian Ma, Qi Zhang, Lujun Zhao, Yu-Gang
Jiang, and Xuanjing Huang. Cnn-based chinese ner with
lexicon rethinking. In 28th IJCAI, pages 4982–4988.
AAAI Press, 2019.

[8] Wei Liu, Tongge Xu, Qinghua Xu, Jiayu Song, and
Yueran Zu. An encoding strategy based word-character
lstm for chinese ner. In NAACL, pages 2379–2389, 2019.

[9] Yuying Zhu and Guoxin Wang. Can-ner: Convolutional
attention network for chinese named entity recognition.
In NAACL, pages 3384–3393, 2019.

[10] Tao Gui, Yicheng Zou, Qi Zhang, Minlong Peng, Jinlan
Fu, Zhongyu Wei, and Xuan-Jing Huang. A lexicon-
based graph neural network for chinese ner. In EMNLP-
IJCNLP, pages 1039–1049, 2019.

[11] Dianbo Sui, Yubo Chen, Kang Liu, Jun Zhao, and Sheng-
ping Liu. Leverage lexical knowledge for chinese named
entity recognition via collaborative graph network. In
EMNLP-IJCNLP, pages 3821–3831, 2019.

[12] Ruixue Ding, Pengjun Xie, Xiaoyan Zhang, Wei Lu,
Linlin Li, and Luo Si. A neural multi-digraph model for
chinese ner with gazetteers. In ACL, pages 1462–1467,
2019.

[13] John Lafferty, Andrew McCallum, and Fernando CN
Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. 2001.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
NAACL, pages 4171–4186, Minneapolis, June 2019.

[15] Andrew Viterbi. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE transactions on Information Theory, 13(2):260–
269, 1967.

[16] Wanxiang Che, Mengqiu Wang, Christopher D. Manning,
and Ting Liu. Named entity recognition with bilingual
constraints. In HLT-NAACL, pages 52–62. ACL, 2013.

[17] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional
lstm-crf models for sequence tagging. arXiv preprint
arXiv:1508.01991, 2015.

[18] Shen Li, Zhe Zhao, Renfen Hu, Wensi Li, Tao Liu,
and Xiaoyong Du. Analogical reasoning on Chinese
morphological and semantic relations. In ACL, pages
138–143, Australia, July 2018.

417

Sentiment Analysis over Collaborative Relationships
in Open Source Software Projects

Lingjia Li‡, Jian Cao*‡ and David Lo§
‡Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

§School of Information Systems, Singapore Management University, 178902, Singapore
Email: ‡{jessie llj,cao-jian}@sjtu.edu.cn, §davidlo@smu.edu.sg

Abstract—Sentiments and collaboration efficiency are key fac-
tors in the success of the open source software (OSS) development
process. However, in the software engineering domain, no studies
have been conducted to analyze the effect between collaborators’
sentiments, and the role of sentiment in collaborative relation-
ships during the development process. In this study, we apply
sentiment analysis and statistical analysis on collaboration arti-
facts over five projects on GitHub. We use sentiment consistency
to quantify the relation between sentiments in collaborative
relationships. It is found that sentiment consistency is positively
correlated with the closeness of collaborative relationships and
collaborators’ overall sentiment states. We also perform the
Granger causality test and network analysis to study the impact
of sentiment consistency on a time series basis. It is found that
positive consistent sentiments not only improve collaboration
willingness to the utmost extent, followed by inconsistent and
negative consistent sentiments, they also boost the closeness of
the entire project community. These findings can be applied
to develop better OSS project monitoring tools and improve
project management by taking developers’ sentiments during
collaborations into consideration.

Index Terms—Sentiment analysis, Human factors, GitHub,
Collaborative and social computing, Project management

I. INTRODUCTION

Software development is a highly collaborative activity
where developers work on collaborative tasks and interact
with shared artifacts to create and maintain a complex software
system. The efficiency of collaboration is a distinguishing
factor in the success or failure of many modest to large
software development organizations [1]. Therefore, how to
improve collaboration efficiency is an important issue in project
management. Many factors affect collaboration efficiency,
including ease of use of technology, trust between the teams
and well-defined task structure [2], etc.

Basic emotions include anger, disgust, fear, joy, sadness,
and surprise. Emotions can generally imply people’s sen-
timents which are usually classified into positive, negative
and neutral. Such sentiments in professional work can affect
creativity, group rapport, user focus, and job satisfaction
[3]. In software development, happy developers have higher
debugging performance [4], self-assessed productivity and
solve problems better [5]. Studies that perform sentiment
analysis on software artifacts find that positive sentiments in

DOI reference number: 10.18293/SEKE2020-030
*Corresponding Author

development activities increase the number of commit files [6]
and decrease issue resolution time [7]. These findings highlight
the role of sentiment in software development and suggest
that understanding its key factors can help improve developers’
performmance.

Sharing feedback in the form of sentiments can positively
affect online trust in inter-user collaborations among Wikipedia
editors [8]. In the education domain, it is also found that
emotions have an impact on forming successful collaborative
relationships [9]. However, in the software engineering (SE)
domain, there is no study to analyze the effect between
collaborators’ sentiments, and the role of sentiment in col-
laborative relationships. Therefore, in this study we focus on
the sentiment over collaborative relationships during software
development. Specifically, we are interested in the collaborative
relationships in open source software (OSS) projects, where the
work is volunteer-driven, hence developers’ enjoyment plays a
dominant role during the developments [10]. To identify the key
factors behind collaborators’ sentiment relations and understand
how these relations interact with collaborative relationships
is important for managing OSS project. On one hand, it can
help develop better tools for monitoring sentiments to resolve
potential risks. On the other hand, effective strategies can be
adopted to coordinate the development process, for example,
recommending compatible developers by taking their sentiment
effects during collaboration into consideration.

We perform sentiment analysis on issue comments in GitHub
and define sentiment consistency to measure the relationship
between collaborators expressed by their sentiments. We intend
to answer the following research questions:

RQ1: Are collaborators’ sentiments more consistent
than those between other developers?

We compare sentiment consistency over collaborative and
non-collaborative relationships to find out whether developers’
sentiments are affected by the collaborative relationship.

RQ2: What factors does sentiment consistency correlate
with in a collaborative relationship?

We examine closeness of collaborative relationships, col-
laborators’ overall sentiment states and position difference
to understand how collaborative relationships affect sentiment
consistency. From an organizational standpoint, this can provide
guidelines to promote effective collaborative relationships.

RQ3: What is the impact of sentiment consistency on
the formation of collaborative relationships?

418

We investigate whether sentiment consistency has an inverse
impact on collaborations. This effort aims to help managers
coordinate collaborators’ sentiments targetedly.

II. RELATED WORK

A. Sentiment Analysis for OSS projects

Sentiment analysis [11] uses natural language processing,
text analysis and computational techniques to automate the
extraction or classification of sentiments from texts. There are a
number of mature and publicly available tools like SentiStrength
[12], Stanford NLP sentiment analyser [13] and Natural
Language Text Processing (NLTK) [14]. Applying sentiment
analysis to SE communities is a relative new research field.
However, sentiment analysis tools trained or evaluated on non-
technical datasets can generate unreliable results on SE datasets
[15]. Therefore, some tools have been developed specifically
for SE domain, like SentiStrength-SE [16], Senti4SD [17] and
SentiCR [18].

Based on these tools, researchers are focusing their ef-
forts on understanding how different factors interact with
developers’ sentiments. Some studies explore the factors that
affect developers’ sentiments. Pletea, Vasilescu, and Serebrenik
[19] analyze commits and pull requests on GitHub and finds
that more negative emotions are expressed in security-related
discussions. Java projects are found to attract more negative
comments while projects with more distributed teams attract
more positive comments [20]. A study investigating commit
logs on GitHub finds that Tuesday’s comments have the most
negative sentiments [6].

Other studies evaluate how developers’ sentiments impact
their performance to reveal what kinds of sentiments benefit the
development process. An online survey [21] shows that anger
can enhance developers’ productivity, while frustration and
disgust may bring risks. A study on the OSS project GENTOO
shows that developers expressing strong emotions in issue
trackers are more likely to become inactive in the projects they
contribute to [22]. Ortu et al. [7] build a logistic regression
model on 560k JIRA comments and find that the more positive
the average sentiment, the faster an issue is fixed.

B. Factors influencing successful collaborative relationships

The success of software development largely depends on
developers’ collaboration efficiency and many factors influence
the formation of successful collaborative relationships. The
work by Kotlarsky and Oshri [23] suggests that human-related
issues, such as rapport and transactive memory, are important
for collaborative work. Joint intention, sharing of goals, plans
and knowledge of the environment, awareness of the roles
and responsibilities and team awareness are identified as the
capabilities needed by an effective team [24]. Trust is another
factor in forming successful collaborative relationships [25].
Perrault et al. [26] prove having learning as a purpose and
sharing leadership to be success factors. Unfortunately, the
role of sentiment in collaborative relationships has not been
investigated yet.

TABLE I
DETAILS OF PROJECTS

Project Language #Issues #Developers Avg. Iss. per Dev.

Three.js JavaScript 5465 2011 2.72
Pandas Python 22854 5713 4.0
IPython Python 10172 3413 2.98
gRPC C++ 14828 3142 4.72
OpenRA C# 6026 682 8.84

III. PROPOSED METHODS

In this section, we describe our dataset and data processing
methods for the subsequent analyses1.

A. Dataset

GitHub is a popular code repository site for many well-
known and active OSS projects. In GitHub, each project has
its own repository and the history of the source code, commits,
issues, and other related data are all publicly accessible. We
obtain the dataset through GitHub REST API2. TABLE I lists
the five mid-to-large scale projects we focus on. To ensure a
high sample coverage [27] of the sampled data, the selection
of programming languages is basically in line with the Top
Languages3 on GitHub. Besides, we take average number of
issues each developer participates into account.

B. Data Extraction

1) Identification of Collaborative Relationships: Generally,
collaborative relationships are formed when two people work
together to accomplish common goals. In GitHub, issue reports
are used by team members to ask for advice, and express and
share opinions related to software maintenance and evolution
[28]. In our study, collaboration between two developers is
defined as the issue resolution process they both participate in.
A collaborative relationship is identified when two developers
both post comments under an issue.

2) Sentiment Analysis and Sentiment Consistency: Senti-
ments are commonly expressed in developers’ issue comments
[29]. We perform sentiment analysis using SentiCR and retrain
the classifier by a gold standard [30] containing 3,000 manually
labeled issue comments of ten OSS projects on GitHub.

To quantify the relation between sentiments expressed by
collaborators in the software development process, we define
sentiment consistency, which is identified through comparing
collaborators’ sentiment polarities. Two comments with the
same sentiment polarity (both positive/negative/neutral) are
considered to be sentiment consistent. Two comments with
opposing sentiment polarities (one detected as positive while
the other detected as negative) are considered to be sentiment
inconsistent.

For a collaborative relationship involving two developers dj
and dk, sentiment consistency in issue ι, denoted as C〈dj ,dk〉(ι),
is the number of sentiment-consistent comment pairs they post

1Code and data are released on http://doi.org/10.5281/zenodo.3608892
2https://developer.github.com/v3/
3https://octoverse.github.com/

419

in ι divided by the total number of comment pairs they post
in ι. Formally,

C〈dj ,dk〉(ι) =

∑
pi∈P

cpi

dj
(ι)cpi

dk
(ι)

cdj
(ι)cdk

(ι)
(1)

where P = {positive, negative, neutral}. cpi

dj
(ι) and cpi

dk
(ι)

represent the number of comments posted by dj and dk in issue
ι with polarity pi respectively. cdj (ι) and cdk

(ι) represent the
total number of comments in issue ι by dj and dk. Sentiment
consistency over collaborative relationship 〈dj , dk〉 is then
formulated as the mean of sentiment consistency in all the n
issues co-participated by dj and dk:

C〈dj ,dk〉 =

n∑
i=1

C〈dj ,dk〉(ιi)

n
(2)

C. Dynamic Collaboration Sentiment Network

Fig. 1. From left to right: Original, Positive and Negative Network of Three.js.

1) Network construction: A (static) collaboration network
N t is defined as a network of collaborative relationships in
which each node is a developer, and two nodes are connected
if there is a collaborative relationship between these two
developers during period t. Each edge is associated with a
weight corresponding to the times of collaborations.

Besides the original collaboration network, we construct a
positive-consistent and a negative-consistent sentiment collabo-
ration network from the extracted data. This is achieved through
consistency filtering: we only keep the sentiment-consistent
collaborations and remove the others. In the network view,
this means that the weight of an edge is reduced by the times
of collaborations in which the two collaborators (nodes) do
not share common positive or negative sentiments. Figure 1
shows the three obtained networks of Three.js. These networks
provide useful informaiton of collaborative relationships as well
as corresponding sentiment effects inside the project, so that we
can interpret how sentiment consistency impacts collaborative
relationships from a structural point of view.

Moreover, we construct dynamic networks to analyze the
evolution of each network structure. A dynamic collaboration
network N is a sequence of collaboration networks correspond-
ing to different periods of time.

N := (N t1 , N t2 , ..., N tn) (3)

where the periods t1, ..., tn are obtained by dividing the overall
development time into half-year intervals.

2) Network Analysis: We want to analyze the collaboration
networks in terms of connectivity, community structure and
betweenness to identify positive and negative sentiments’

TABLE II
SENTIMENT CONSISTENCY BETWEEN COLLABORATORS AND

NON-COLLABORATORS

Collaborators Non-collaborators p for t-test
mean std mean std

Three.js 0.471 0.176 0.4464 0.148 <0.0001
Pandas 0.517 0.189 0.483 0.161 <0.0001
IPython 0.475 0.162 0.448 0.139 <0.0001
gRPC 0.581 0.211 0.545 0.174 <0.0001

OpenRA 0.635 0.172 0.543 0.162 <0.0001

different impacts on collaborative relationships. We focus on
three global measures: mean clustering coefficient, modularity
and average betweenness centrality to mitigate the influence
of network size.

a) Mean clustering coefficient: The clustering coefficient
[31] of a node is defined as:

ci =
2ni

ki(ki − 1)
(4)

where ni denotes the number of edges between the ki neighbors
of node i. The intuition is that ki(ki − 1)/2 edges can exist
between ki nodes, and the clustering coefficient reflects the
fraction of existing edges between neighbors divided by the
total number of possible edges. We employ the mean clustering
coefficient to measure to what degree collaborators tend to
cluster together in different networks.

b) Modularity: Modularity is the standard measure to
quantify the strength of a community structure [32]. Networks
with high modularity have dense connections between the
nodes within modules but sparse connections between nodes in
different modules. In our context, modularity indicates whether
collaborators with consistent sentiment are divided into separate
groups or integrated into a cohesive whole.

c) Average Betweenness Centrality: For a node v, be-
tweenness centrality [33] is the sum of the fraction of all-pairs
shortest paths that pass through v in the network:

cB(v) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

(5)

where V is the set of nodes, σ(s, t) is the number of shortest
(s, t)-paths and σ(s, t|v) is the number of those paths that
contain node v in between. High betweenness centrality
indicates that the person plays the role of gatekeeper in
the social network, with the potential to disrupt connections
between various end points.

IV. RESULTS AND FINDINGS

A. Collaborators vs. Non-collaborators
Sentiment consistency over non-collaborative relationships

is the sentiment-consistent comment pairs divided by the total
comment pairs of two developers in issues excluding the n
co-participated ones. Formally,

C ′〈dj ,dk〉(ι) =

∑
pi∈P

cpi

dj
cpi

dk
−

n∑
i=1

∑
pi∈P

cpi

dj
(ιi)c

pi

dk
(ιi)

cdj
cdk
−

n∑
i=1

cdj
(ιi)cdk

(ιi)
(6)

420

TABLE III
SPEARMAN COEFFICIENTS BETWEEN THREE FACTORS AND

SENTIMENT CONSISTENCY

#Common Issues Sentiment Position Difference

Three.js 0.116 *** 0.357 *** 0.057 *
Pandas 0.062 ** 0.328 *** 0.001 0.942
IPython 0.122 *** 0.273 *** -0.035 0.132
gRPC 0.27 *** 0.107 *** -0.227 ***

OpenRA 0.233 *** 0.44 *** -0.076 0.107
*p < 0.05, **p < 0.01, ***p < 0.001

The means of sentiment consistency for collaborators and non-
collaborators are compared through independent t-tests. It is
estimated from the distribution plots that our data are normally
distributed. It can be found in TABLE II that collaborators
share more consistent sentiments than non-collaborators.

B. Factors Influencing Sentiment Consistency

We investigate the correlation of three factors with sentiment
consistency over collaborative relationships, i.e., closeness
of the collaborative relationship, the collaborators’ overall
sentiment state and the position difference between them. The
model outputs are listed in TABLE III.

1) Closeness of Collaborative Relationship: We measure the
closeness of a collaborative relationship through the number of
issues each pair of collaborators co-participate in. Its Spearman
correlation coefficient with collaborators’ sentiment consistency
is calculated. It is found that sentiment consistency is higher
in collaborators with more co-participated issues.

2) Collaborators’ Overall Sentiment State: A study on
Twitter shows that the positive sentiment is contagious because
community members increasingly share positive tweets more
than negative ones over time [34]. We try to validate whether
this effect can be applied to collaborations in OSS development.
A developer’s sentiment state is measured through the number
of non-negative comments divided by the total number of
his/her comments. We analyze the correlation between the
average sentiment state of two collaborators and their sentiment
consistency over the collaborative relationship. A positive
correlation is found.

3) Position difference between collaborators: In this study,
we want to identify whether different positions between
collaborators can impact sentiment consistency in the OSS
development process. We employ node degree of the basic
collaboration network in Section 3.3.1 to represent a developer’s
position in the project. The normalized position difference of
two collaborators is formulated as |d1−d2|

max(d1,d2)
, where d1 and d2

stand for the node degree. Its Spearman correlation coefficient
with sentiment consistency is then measured.

A negative correlation between the sentiment consistency
and collaborators’ position difference is found in gRPC and
OpenRA. We further investigate the correlations between
collaborators’ position difference and times of collaborations.
The results are shown in TABLE IV.

It can be found that there are negative correlations between
collaborators’ position difference and times of collaborations
in gRPC and OpenRA. Weak negative correlations appear in

TABLE IV
SPEARMAN COEFFICIENTS BETWEEN COLLABORATORS’ POSITION

DIFFERENCE AND TIMES OF COLLABORATIONS

Repository Coefficient p-value
Three.js -0.085 <0.001
Pandas -0.356 <0.0001
IPython -0.304 <0.0001
gRPC -0.629 <0.0001

OpenRA -0.423 <0.0001

Pandas and IPython while there is no correlation in Three.js.
Furthermore, by comparing the attributes of these five projects,
it can be found that the correlation between collaborators’
position difference and times of collaborations is affected by
the average number of issues that a developer participated in
(See TABLE I). In projects that developers participate in quite
a few issues (gRPC and OpenRA), the developers of similar
positions tend to have more collaborations, which contribute
to higher sentiment consistency. On the contrary, in projects
that developers only participate in a small number of issues
(Three.js), positions do not impact their collaborations. Actually,
there are no big differences between developers’ positions in
these projects.

C. Impacts of Sentiment Consistency on Collaboration

We employ the Granger causality test [35] to determine
whether sentiment consistency has a causal relationship with
collaboration willingness. For two time series X and Y, if Y
can be better predicted using the lagged values of both X and
Y than using the lagged values of Y alone, then X is said to
Granger cause Y. In this context, we investigate whether the
occurrence of collaborations is Granger caused by the increase
of sentiment consistency in a prior period.

Yt = µ+

L∑
i=1

αiYt−i +

L∑
i=1

βiXt−i

L = max. no. of lags

(7)

For each pair of collaborators, we extract the frequency of
sentiment consistency and the frequency of collaborations
within a week. We run the adfuller test to select stationary
time series, which is the precondition required by Granger
causality tests. Then we run an independent Granger causality
test on the two time series. The maximum time lags are 2, 4, 8
and 12 weeks respectively. The numbers of significant causal
relationships are compared in TABLE V. It can be found that
the effect of sentiment consistency on collaborations is more
significant than sentiment inconsistency; the effect of positive
consistency is more significant than negative consistency.
We further investigate the evolution of network measures
of the three constructed networks. Figure 2 illustrates the
results. As can be seen, the mean clustering coefficients of
negative collaboration networks are lower than the positive ones,
implying that collaborators with positive-consistent sentiments
are more clustered and interconnected. The modularity of
negative collaboration networks is higher than positive ones,
implying that developers with negative-consistent sentiments

421

(a) Mean clustering coefficient

(b) Modularity

(c) Average betweenness centrality

Fig. 2. Evolution of Network Measures in Original (blue), Positive (green) and Negative (red) Collaboration Networks in Five Projects.

TABLE V
TOTAL NUMBER OF COLLABORATIVE RELATIONSHIPS WITH SIGNIFICANT

CAUSAL EFFECTS OVER DIFFERENT SENTIMENT POLARITIES.

Polarity #Collaborations Total p-value
consistent 1782 (47.9%) 3807 3.80e-35inconsistent 1109 (27.5%) 4029

positive consistent 1120 (28.2%) 3973 7.22e-71negative consistent 686 (16.7%) 4100

are more densely distributed inside small groups. The between-
ness centrality coefficients are generally higher in negative
collaboration networks, implying that negative developers
play a more important role in sentiment propagation through
collaborations than positive developers do.

V. IMPLICATIONS

Although how different factors interact with developers’ sen-
timents during development has been studied, there is no study
to analyze the role of sentiment in collaborative relationships.
Our findings indicate that positive sentiment linkage can boost
collaborators’ closeness and should be encouraged in software
development to foster a better collaboration ecology.

It is also suggested that negative sentiment effects are more
likely to be reduced than augmenting positive ones through
adjustments and the reassignment of collaborators based on
the network features as well as factors influencing sentiment
consistency, so as to maximize collaboration willingness
and efficiency. The results also indicate that developers of
different positions in the collaboration network tend to have
fewer collaborations in practice, which may reduce sentiment
consistency accordingly. This inspires us that we should
promote the collaborations among developers of different

positions in the collaboration network. More specifically, to
encourage positive developers of high degree (i.e., of central
position) to cooperate with negative developers of low degree
(i.e., of peripheral position) can bring more gains to projects.

These findings tell us when we are going to coordinate the
OSS projects, we should take the consistency of developers’
sentiments into account in order to promote their collaborations
in a task. As a measure of implementations, the consistency
of developer’ sentiments can be monitored so that we can
take appropriate measures to regulate the organization of the
development process. It also encourages us to incorporate these
new features into the future monitoring tools.

VI. THREATS TO VALIDITY

In this preliminary study, we only study a sample of
projects. We take into account different developer densities
and programming languages to ensure the diversity of samples
and the generalizability of our results.

We use SentiCR, a customized sentiment analysis tool for
SE domain for sentiment analysis, and retrain it with a gold
standard on GitHub issues. However, misclassifications may
still exist and bring noise to our dataset.

Another threat is the definition of collaborative relationships.
Collaborations on the same file are not taken into account
because it is difficult to extract the sentiments during this kind
of collaboration. Additionally, all the comments in an issue are
considered in the calculation of sentiment consistency between
two developers because it is difficult to determine whether
they are in the same thread of conversation. However, from
our observation, two developers may discuss irrelevant tasks in
one issue, leading to a mis-detected collaborative relationship.
Topic extraction or NLP techniques can be further adopted to
address this issue.

422

VII. CONCLUSIONS

We use sentiment consistency to quantify the relation
between sentiments in collaborative relationships. Our results
show that collaborators share more consistent sentiments
and sentiment consistency has a positive correlation with
the closeness of collaborative relationships and collaborators’
overall sentiment states. It has a negative correlation with
position difference in projects that developers participate in
quite a few issues. Results of the Granger causality test show
that positive consistent sentiments have the most significant
impact on collaboration willingness, followed by inconsistent
and negative-consistent sentiments. Network analysis shows
negative consistent collaborators are more alienated and dis-
tributed in small groups, while positive consistent collaborators
tend to cluster into a cohesive whole. In a follow-up study,
we plan to include more projects and refine our methods for
collaborative relationship detection. We also plan to research
the main causes of sentiment fluctuation over collaborative
relationships, and develop specific strategies for monitoring
such sentiment phenomena. We hope our results can motivate
further research to help coordinate developers’ collaborations
and provide better tools for higher serenity and productivity in
software development communities.

ACKNOWLEDGEMENT

This work is partially supported by National Key Research
and Development Plan(No.2018YFB1003800).

REFERENCES
[1] Grady Booch and Alan W Brown. “Collaborative development envi-

ronments”. In: Advances in computers 59.1 (2003), pp. 1–27.
[2] H Keith Edwards and Varadharajan Sridhar. “Analysis of the effective-

ness of global virtual teams in software engineering projects”. In: 36th
Annual Hawaii International Conference on System Sciences, 2003.
Proceedings of the. IEEE. 2003, 9–pp.

[3] Cynthia D Fisher and Neal M Ashkanasy. “The emerging role of
emotions in work life: An introduction”. In: Journal of Organizational
Behavior: The International Journal of Industrial, Occupational and
Organizational Psychology and Behavior 21.2 (2000), pp. 123–129.

[4] Iftikhar Ahmed Khan, Willem-Paul Brinkman, and Robert M Hierons.
“Do moods affect programmers’ debug performance?” In: Cognition,
Technology & Work 13.4 (2011), pp. 245–258.

[5] Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson. “Happy
software developers solve problems better: psychological measurements
in empirical software engineering”. In: PeerJ 2 (2014), e289.

[6] Vinayak Sinha, Alina Lazar, and Bonita Sharif. “Analyzing developer
sentiment in commit logs”. In: Proceedings of the 13th International
Conference on Mining Software Repositories. ACM. 2016, pp. 520–523.

[7] Marco Ortu et al. “Are bullies more productive?: empirical study
of affectiveness vs. issue fixing time”. In: Proceedings of the 12th
Working Conference on Mining Software Repositories. IEEE Press.
2015, pp. 303–313.

[8] Mihai Grigore and Christoph Rosenkranz. “Increasing the Willingness
to Collaborate Online: an Analysis of Sentiment-Driven Interactions in
Peer Content Production.” In: vol. 4. Jan. 2011.

[9] Jane Conoley and Collie Conoley. “Why Does Collaboration Work?
Linking Positive Psychology and Collaboration”. In: Journal of Educa-
tional and Psychological Consultation - J EDUC PSYCHOLOGICAL
CONS 20 (Feb. 2010), pp. 75–82.

[10] Karim R Lakhani and Eric Von Hippel. “How open source software
works:“free” user-to-user assistance”. In: Produktentwicklung mit
virtuellen Communities. Springer, 2004, pp. 303–339.

[11] Bing Liu et al. “Sentiment Analysis and Subjectivity.” In: Handbook
of natural language processing 2.2010 (2010), pp. 627–666.

[12] Mike Thelwall et al. “Sentiment strength detection in short informal
text”. In: Journal of the American Society for Information Science and
Technology 61.12 (2010), pp. 2544–2558.

[13] Richard Socher et al. “Recursive deep models for semantic compo-
sitionality over a sentiment treebank”. In: Proceedings of the 2013
Conference on Empirical mMthods in Natural Language Processing.
2013, pp. 1631–1642.

[14] Edward Loper and Steven Bird. “NLTK: the natural language toolkit”.
In: arXiv preprint cs/0205028 (2002).

[15] Robbert Jongeling et al. “On negative results when using sentiment
analysis tools for software engineering research”. In: Empirical Software
Engineering 22.5 (2017), pp. 2543–2584.

[16] Md Rakibul Islam and Minhaz F Zibran. “Leveraging automated
sentiment analysis in software engineering”. In: 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE.
2017, pp. 203–214.

[17] Fabio Calefato et al. “Sentiment polarity detection for software develop-
ment”. In: Empirical Software Engineering 23.3 (2018), pp. 1352–1382.

[18] Toufique Ahmed et al. “SentiCR: a customized sentiment analysis tool
for code review interactions”. In: Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Press. 2017, pp. 106–111.

[19] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. “Security
and emotion: sentiment analysis of security discussions on GitHub”.
In: Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM. 2014, pp. 348–351.

[20] Emitza Guzman, David Azócar, and Yang Li. “Sentiment analysis of
commit comments in GitHub: An empirical study”. In: 11th Working
Conference on Mining Software Repositories, MSR 2014 - Proceedings
(May 2014). DOI: 10.1145/2597073.2597118.

[21] Michal R Wrobel. “Emotions in the software development process”.
In: 2013 6th International Conference on Human System Interactions
(HSI). IEEE. 2013, pp. 518–523.

[22] David Garcia, Marcelo Serrano Zanetti, and Frank Schweitzer. “The
role of emotions in contributors activity: A case study on the Gentoo
community”. In: 2013 International Conference on Cloud and Green
Computing. IEEE. 2013, pp. 410–417.

[23] Julia Kotlarsky and Ilan Oshri. “Social ties, knowledge sharing and
successful collaboration in globally distributed system development
projects”. In: European Journal of Information Systems 14.1 (2005),
pp. 37–48.

[24] Katia Sycara and Gita Sukthankar. “Literature review of teamwork
models”. In: Robotics Institute, Carnegie Mellon University 31 (2006),
p. 31.

[25] Valerie Lynne Herzog. “2000 International Student Paper Award Winner:
Trust Building on Corporate Collaborative Project Teams”. In: Project
Management Journal 32.1 (2001), pp. 28–37.

[26] Ellen Perrault et al. “Working together in collaborations: Successful
process factors for community collaboration”. In: Administration in
social work 35.3 (2011), pp. 282–298.

[27] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird.
“Diversity in software engineering research”. In: Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering. ACM.
2013, pp. 466–476.

[28] Alessandro Murgia et al. “Do developers feel emotions? an exploratory
analysis of emotions in software artifacts”. In: Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM. 2014,
pp. 262–271.

[29] Francisco Jurado and Pilar Rodriguez. “Sentiment Analysis in moni-
toring software development processes: An exploratory case study on
GitHub’s project issues”. In: Journal of Systems and Software 104
(2015), pp. 82–89.

[30] Jin Ding et al. “Entity-level sentiment analysis of issue comments”. In:
Proceedings of the 3rd International Workshop on Emotion Awareness
in Software Engineering. ACM. 2018, pp. 7–13.

[31] Stefano Boccaletti et al. “Complex networks: Structure and dynamics”.
In: Physics reports 424.4-5 (2006), pp. 175–308.

[32] Mark EJ Newman. “Modularity and community structure in networks”.
In: Proceedings of the National Academy of Sciences 103.23 (2006),
pp. 8577–8582.

[33] Linton C Freeman. “A set of measures of centrality based on
betweenness”. In: Sociometry (1977), pp. 35–41.

[34] Noha Alduaiji and Amitava Datta. “An Empirical Study on Sentiments
in Twitter Communities”. In: 2018 IEEE International Conference on
Data Mining Workshops (ICDMW). IEEE. 2018, pp. 1166–1172.

[35] Clive WJ Granger. “Investigating causal relations by econometric
models and cross-spectral methods”. In: Econometrica: Journal of
the Econometric Society (1969), pp. 424–438.

423

Searching, Examining, and Exploiting In-demand
Technical (SEE IT) Skills using Web Data Mining

Taeghyun Kang
Department of Computer Science

University of Central Missouri
Warrensburg, MO, USA

tkang@ucmo.edu

Hyungbae Park
Department of Computer Science

University of Central Missouri
Warrensburg, MO, USA

park@ucmo.edu

Sunae Shin
Department of Computer Science

University of Central Missouri
Warrensburg, MO, USA

sshin@ucmo.edu

Abstract—There has always been a mismatch between aca-
demic education and industry demands in various industry fields.
Especially, in the computer related jobs such as software devel-
opers or engineers, employers and job seekers are experiencing
a large curriculum or skill gap compared to other industry fields
due to its fast-changing nature. In order to minimize the gap,
identifying the current job skill trends and offering/learning
relevant skills are critically important for both educators and
students in the fast-paced job market. However, due to the lack
of relative information about the trends of in demand technical
skills in certain regions or around the nation, it is difficult for
educators to keep up with these changes and determine what
needs to be conveyed to students so they can be ready for the
job on day one. In this paper, in order to address these challenges,
we focused on the analysis of in demand technical skills and their
trends in software developer and engineer jobs around the nation.
We collected and analyzed over 120,000 software developer or
engineer job postings and summarized demanding and required
skills from different regions throughout the nation.

Index Terms—Web Data Mining, Job Trend Analysis, Software
Developer, Software Engineer, Programming Languages

I. INTRODUCTION

The academic program’s job placement rate is one of
important performance indicators that can be used to measure
the success of a program. Programs, which demonstrate a
strong job placement rate, frequently use this information
for advertisement. It is critical for educators to convey cur-
rent knowledge that is currently demanded or required by
employers. However, due to the fast-changing nature in the
requirements of computer related jobs, it is challenging that
we minimize the gap between academic education and industry
requirements. This is not the matter of the quality of the
academic program or students being lazy and not studying
hard enough to meet the job requirements. The rapid changes
of technologies are a nature of industry caused by factors
such as satisfying the customers’ demands and achieving a
company’s revenue goal efficiently. As an educator, we need
to keep asking ourselves, “Do our graduates possess the
skills employers need?” and “How do we keep up with fast-
changing industry requirements?” In order to clearly answer
the questions, it is inevitable to make a systematic way that
continuously monitors and analyzes the trends and changes in
job markets. There are various job search engines available
such as Glassdoor, Indeed, Handshake, etc. Even though they

provide advanced search filter so the job seekers can easily
identify the jobs they are looking for, search features of these
websites have limited capability and do not show the trends
of jobs or specific skills. Many academic programs have their
industry advisory board meeting to minimize the gap, but it is
still difficult to see the overall trends of required skills between
states and most in-demand skills in each state. Job seekers and
students also proactively find available resources to identify
job trends or requirements so that they can be prepared for a
job and find their job effectively and efficiently. If failed, they
may need to re-educate themselves.

In this paper, we focus on making a systematic tool to
monitor and analyze in demand technical skills and their trends
in software developer and engineer jobs around the nation
rather than addressing programming languages expected to be
offered in specific regions. We collected and analyzed over
120,000 software developer or engineer job postings around
the nation over the five month period from October 2019
to February 2020 and summarized demanding and required
skills from different regions throughout the nation. The results
show the popularity of integrated development environments,
project management tools, and programming languages and
their correlations. The remainder of the paper is structured
as follows: Section II describes the motivation of the paper
and reviews background knowledge and literature references.
Section III describes the proposed tool for job skills trend
analysis and the data sets processed by the tool. Section IV
shows the results of our analysis and Section V concludes the
paper.

II. RELATED WORK

Web mining is the technique that collects and processes
freely available data from web postings and web documents
and discovers and extracts useful insight, knowledge, and
information. Web mining can be categorized into three broad
areas [14], [17]–[19] such as web usage mining, web content
mining, and web structure mining. The enormous amount of
web data can be counterproductive without proper processing
procedures or automated and systematic methodologies. It
will take a long time to collect and digest data and this
tedious and un-automated process can mislead the viewers.
There are various important techniques in order to make

DOI reference number: 10.18293/SEKE2020-058

424

data mining effective such as generalization, tracking patterns,
classification, characterization, association, outlier detection,
clustering, regression, and prediction [8], [9]. Many research
work have used these web data mining techniques to find and
extract hidden information from the ever-growing number of
web postings and documents.

Milad Eftekhar et al. [15] proposed two models such as
intrinsic burst model and social burst model, in order to find
and extract knowledge and information from burst behaviors
and neighbors’ influences when identifying bursts on social
network sites. They used two graphs called action graph
and holistic graph to characterize and identify users’ bursty
behavior.

Nicola Barbieri et al. [16] proposed the Commu-
nity–Cascade Network(CCN) model that utilizes information
propagation and community formation in a social network can
be explained according to the level of active involvement and
the degree of passive involvement, which ultimately guide a
user behavior within the network. They validated the proposed
CCN model by applying it to real-world social networks.

Wilden et al. [10] presented a framework that suggests the
effectiveness of a brand signal to potential employees. The
employee-based brand equity influenced by employer brand
clarity, consistency, brand investments and the credibility of
brand signals. Furthermore, the paper present that the brand
investment influences both attractiveness of a prospective
employer and employee based brand equity.

Xu et al. [11] investigated the prediction of job change
occasion based on career mobility and daily activity patterns
at the individual level. In order to model the job change
motivations and correlations between professional and daily
life, the work experiences and check-in records of individuals
are collected. They found that the job change occasions are
predictable and shown on the experiment based on the large
real-world data set.

The talent exchange prediction method is developed in [12]
for predicting the possible companies for the potential em-
ployees. The proposed talent circle detection model extracts
talent circles that includes the organizations with similar talent
patterns. In addition, the semantic meaning is offered for
detected circles are labeled with job description. With the
proposed method, the organizations are able to seek the right
talent during recruitment and job seekers can find appropriate
jobs.

H. Li et al. [13] proposed a model that focuses on predicting
the turnover and career progression of talents. The survival
analysis approach shows survival status at a sequence of time
intervals for turnover behaviors of employees. Moreover, the
prediction of the relative occupational level is framed for
modeling career progression.

Among various applications mentioned above, the appli-
cations related to job search and trends [10]–[13] are our
interest in this paper. This analysis will help identify and
reduce the gap between academia education and industry
demands. L. Buth et al. [1] analyzed the needs of industry
by interviewing employers and the situation of a university

responsible for educating students. They identified the gaps in
1) applied knowledge and problem solving skills, 2) communi-
cation skills, and 3) self-discipline and positive work attitude.
Bracey [22] pointed particularly to the absence of teaching
“soft skills” in academic degree programs. She mentioned
that majority of employers are demanding soft skills as a
pre-condition for their employment. McGill [24] particularly
surveyed the hiring needs of game industry and compared
them against game development curriculum at post-secondary
institutions. Hynninen et al. [23] conducted the similar survey
in the field of software testing and quality assurance. They
identified the differences between what is considered important
skills by the industry and those taught in academia. Cheng
et al. [25] presented an analysis of job transition network
for recruitment. The authors suggested a real-time system
for mining job–related patterns collected from social media
sources.

The references listed above indicate the need from field pro-
fessionals to understand the employable skills in this dynamic
job market. This is critical for employers and students because
they seek qualified employees and these job opportunities,
respectively. For employers, it will improve the chances of
hiring the right person and for students it will improve the
chances of getting hired.

Fig. 1. The overview of data processing flow through multiple phases

III. DATA MINING TOOL AND DATA SETS

We developed a home-grown web data mining tool that
crawls job posting web pages from job search websites (i.e.,
indeed), collects raw data of job postings, and extracts neces-
sary information from each job posting in order to achieve the
objectives of our analysis. In order to improve the efficiency
of our tool and the accuracy of the data sets, we conducted
black box and white box testings on our tool. Through this
continuous improvement process, we were able to get more
accurate data sets within a shorter amount of time.

The series of data handling processes can be divided into
several phases. In the raw data collection phase (1) in Figure 1,
we developed our own crawler that is customized for different
job search websites. Each job search website has a distinct
structure and it uses different web page management methods.

425

In order to efficiently discover and collect job postings from
the web, we needed to customize our crawler for different job
search websites and collected more than 120,000 job postings
from the web. This may seem that we are having an enormous
amount of opportunities. However the enormity of the data can
be counterproductive in many ways. If we have to check out
each job posting individually, then it would take a long time to
tabulates and extract what educators, students, and job seekers
need to focus and it may give misleading information to the
viewers. In worst case, they may need to start over learning
new programming languages. Therefore the collected raw data
sets will be refined throughout the following three phases.

The next pre-processing phase (2) in Figure 1 utilizes the
Beautiful Soup Python package [7] in order to efficiently
extract necessary information from each job posting. The
Beautiful Soup Python package makes it easy to parse HTML
and XML documents and generates a parse tree. This parse
tree can be used to extract specific data from HTML.

In the Filtering and processing phase (3) in Figure 1, we
check the duplication of job postings and remove redundant
job postings from each company. We noticed that there are
many duplicated job postings for the same position from
the same company. For each job posting, a unique value is
assigned in the tag called “vjk”. This is a unique identifier
for each unique job description. We utilized the “vjk” ids and
job descriptions to filter out unnecessary redundancies from
the data sets. In order to achieve a highly accurate and quality
collection of the data, the collected data was deduplicated and
validated.

In the last phase (4) in Figure 1, we extract only information
that corresponds to our analysis. After the collected raw
data sets are processed through the four phases described in
Figure 1, we were able to identify total 2,171 unique job
descriptions out of over 120,000 job postings.

IV. JOB TREND ANALYSIS AND RESULTS

As described in the previous section, we have identified total
2,171 unique job descriptions out of over 120,000 job postings.
This shows that there are on average 55 job postings for the
same position with the exactly same job descriptions from
the same company. Various reasons can cause the enormous
amount of duplications; 1) a position has not been filled for
a while, 2) a company wants to expose their job descriptions
more frequently than others, 3) a company needs more em-
ployees for the same position with the same skill sets, etc.
In this section, we will focus on those uniquely specified
jobs for our analysis in order to minimize noise that may be
caused by enormous duplications. The following subsections
describe job requirement trends in several categories such as
integrated development environments, software management
tools, programming languages, etc.

A. Integrated Development Environments (IDEs)

IDEs have been used for decades and increase software
developers’ productivity. Therefore, this is definitely one of
the required skills for any programmer positions around the

world. However, the commonly used or required IDEs have
not been specified in most of the job descriptions. The IDEs
are specified by only a few companies around the nation. This
is because each team even within a company uses multiple
or different IDEs depending on programming languages they
use to develop software or applications or to complete given
tasks. For example, IntelliJ would be used for a project written
in Java, Android studio for Android, RubyMine for Ruby,
and etc. Therefore, it would be difficult for employers to
specify any IDEs used in their job descriptions. This suggests
that job seekers may want to expose themselves to multiple
IDEs for different programming languages. Programmers need
to be flexible and should be able to use any IDEs in their
work environments. Based on the popularity of programming
languages, the IDEs that support Java are placed top ranks (see
Figure 4). Xcode is placed the fourth place and the popularity
of Xcode is due to the popularity of Apple’s iPhone around
the world. We can see the strong correlation between the
popularity of both IDEs and programming languages.

Fig. 2. Popularity of integrated development environments

B. Project Management Tools

We also conducted an analysis to identify which software
development models or project management tools are com-
monly used in industry. Interestingly, the vast majority of
companies is not specifying or asking a specific software
development model or a project management tool in their
job descriptions. However, companies in certain areas such as
Washington, California, Arizona, Colorado, Missouri, Georgia,
and New York showed a strong trend that these specifications
are listed in their job description.

As shown in Figure 3, the Agile development is being
specified most frequently compared to other agile project
management processes such as Scrum, Lean, Kanban, etc.
Traditional project management models such as the spiral or
evolutionary models have not been specified by any of the job
postings but only the waterfall model has been specified along
with the agile process as a required background. These job
descriptions required understanding of both agile and waterfall
developments. This may indicate that the traditional software

426

Fig. 3. Project management tools

development process has been converged to the most broadly
used model among those traditional software development
models. It also indicates that the trend of software development
cycle has been shifted from the traditional project management
models to the agile project management models. This does not
mean that the traditional software development models are not
being utilized in industry. There are many companies that use
the combination of traditional software development and agile
process.

C. Programming Languages

As we see in Figure 4, Java is the most popular program-
ming languages around the nation. This is evident by the top
ranked IDEs in Figure 2. All the top 4 IDEs in the list support
Java. Compared to the popularity of Xcode shown in Figure 2,
‘Swift’ ranked lower in the category of popular programming
languages. This is because Xcode support not just Swift, but
also other programming languages such as C, C++, Objective-
C, Objective-C++, Java, Python, and Ruby.

Fig. 4. Popularity of programming languages

D. Soft Skills

Teamwork, written and spoken communication skills, criti-
cal thinking, leadership, and work ethics are critical soft skills
required and demanded by employers. Especially, some large

corporations already have well-organized intensive programs
for their new employees to teach hard skills and they even
more emphasize the importance of soft skills as soft skills
are hard to teach in a short period of time. It was evident by
many surveys such as [22]–[24]. However, the vast majority
of job descriptions may mislead job seekers, students, and
educators as they are not specifying these critical skill sets.
Even though the vast majority of companies wants to hire
people who has excellent soft skills, they do not actively
require or specify these soft skills in the job description in
reality. It is understandable as soft skills are not only hard to
teach but also hard to evaluate. But a clear job description with
soft skills would help job seekers, students, and educators be
aware of the importance of soft skills and prepare for it.

E. New Technologies

Along with the traditional programming languages and
IDEs, we also conducted analysis for relatively new technolo-
gies such as blockchain, and TensorFlow. We have found 29
and 23 job postings specifying blockchain technologies and
TensorFlow knowledge and background, respectively. These
numbers are relatively lower than other traditional and popular
programming languages. The adaptation of these new tech-
nologies will be collected and analyzed in our future work.

V. CONCLUSION

Offering and learning appropriate programming languages
and demanding skills are critically important for both educa-
tors and students in the fast-paced job market. However, due
to the lack of a systematic approach that analyzes job skills
demands and trends, it is difficult to keep up with these fast
changes. In this paper, we developed a job trend analysis tool,
analyzed over 120,000 job postings, and summarized demand-
ing and required skills from different regions throughout the
nation.

As a continued effort toward this work, we will expand
our analysis to other fast-paced and emerging disciplines such
as cybersecurity and etc. This will also help both educators
and students to identify in demand technical skills in the
industry and frequently exploited vulnerabilities. In addition,
we will analyze other countries’ in demand technical skills to
investigate the worldwide trend for a certain job. In addition,
we are currently working on integrating machine learning
features (e.g., TensorFlow [20]) so the tool can automatically
generate reports that show the trends of job and programming
languages without involving or requiring a manual analysis.

REFERENCES

[1] L. Buth, V. Bhakar, N. Sihag, G. Posselt, S. Bohme, K.S. Sangwan,
and C. Herrmann, “Bridging the qualification gap between academia
and industry in India,” Proceedings of the 7th conference on Learning
Factories (CLF), Volume 9, pp.275–282, Elsevier, 2017.

[2] M.M. McGill, “Defining the expectation gap: a comparison of industry
needs and existing game development curriculum,” Proceedings of the
4th International Conference on Foundations of Digital Games, pp.129–
136, April 2009.

[3] A.H. Harris, T.H. Greer, S.A. Morris and W.J. Clark, “Information
systems job market late 1970’2-early 2010’s,” Journal of Computer
Information Systems, pp.72–79, 2012.

427

[4] C. McLean, “A foot in the door: IT job-search strategies,” Certification
Magazine, Volume 8(4), pp.38–40, 2006.

[5] C. Litecky, A. Aken, A. Ahmad, and H.J. Nelson, “Mining for computing
jobs.” IEEE Software, Volume 27(1), pp.78–85, 2010.

[6] S. Zhong, “Information intelligent system based on web data mining,”
Proceedings of the International Symposium on Electronic Commerce
and Security, pp.514–517, 2008.

[7] https://www.crummy.com/software/BeautifulSoup/#Download
[8] P. Berkhin, “Survey of Clustering Data Mining Techniques,” Grouping

Multidimensional Data, Springer, 2006.
[9] Shu-Hsien Liao, Pei-Hui Chu, Pei-Yuan Hsiao, “Data mining techniques

and applications – A decade review from 2000 to 2011,” Expert Systems
with Applications, Volume 39, Issue 12, pp.11303–11311, Elsevier,
2012.

[10] R. Wilden, S. Gudergan, and I. Lings, “Employer branding: strategic
implications for staff recruitment,” Journal of Marketing Management,
26(1-2), pp.56–73, 2010.

[11] H. Xu, Z. Yu, H. Xiong, B. Guo, and H. Zhu, “Learning career mobility
and human activity patterns for job change analysis,” IEEE International
Conference on Data Mining, pp.1057–1062, 2015.

[12] H. Xu, Z. Yu, J. Yang, H. Xiong, and H. Zhu, “Talent circle detection
in job transition networks,” Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp.655–664, 2016.

[13] H. Li, Y. Ge, H. Zhu, H. Xiong, and H. Zhao, “Prospecting the career
development of talents: A survival analysis perspective,” Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp.917–925, 2017.

[14] N. R. Satish, “A Study on Applications, Approaches and Issues of
Web Content Mining,” International Journal of Trend in Research and
Development, Volume 4(6), ISSN: 2394-9333, 2017.

[15] Milad Eftekhar, Nick Koudas, and Yashar Ganjali, “Bursty Subgraphs in
Social Networks,” Proceedings of the 6th ACM international conference
on Web search and data mining (WSDM), pp.213–222, Rome, Italy,
2013.

[16] Nicola Barbieri, Francesco Bonchi, Giuseppe Manco, “Cascade-based
Community Detection,” Proceedings of the 6th ACM international
conference on Web search and data mining (WSDM), pp.33–42, Rome,
Italy, 2013.

[17] Ujwala Manoj Patil, J.B. Patil, “Web Data Mining Trends and Tech-
niques,” International Conference on Advances in Computing, Commu-
nications and Informatics (ICACCI), pp.962–965, 2012.

[18] B. Liu, “Web Data Mining Exploring Hyperlinks, Contents, and Usages
Data,” 2nd Edition, Springer, 2007.

[19] Jai Prakash, Bankim Patel, Atul Patel, “Web Mining: Opinion and
Feedback Analysis for Educational Institutions,” IJCA, Volume 84(6),
2013.

[20] “TensorFlow: An end-to-end open source machine learning platform,”
url: https://www.tensorflow.org/

[21] D. Smith and A. Ali, “Analyzing Computer Programming Job Trend
Using Web Data Mining,” Issues in Informing Science and Information
Technology, Volume 11, pp.203–214, 2014.

[22] P. Bracey, “Analyzing Internet Job Advertisements to Compare IT
Employer Demands versus Undergraduate IT Program Curriculum in
Texas,” Proceedings of E-Learn: World Conference on E-Learning in
Corporate, Government, Healthcare, and Higher Education, pp.37–42,
ISBN 978-1-880094-90-7, 2011.

[23] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale, “Guidelines for
software testing education objectives from industry practices with a con-
structive alignment approach,” pp.278–283. 10.1145/3197091.3197108,
2018.

[24] M. M. McGill, “Defining the expectation gap: a comparison of industry
needs and existing game development curriculum,” Proceedings of the
4th International Conference on Foundations of Digital GamesApril
(FDG), pp.129-–136, 2009.

[25] Y. Cheng, Y. Xie, Z. Chen, A. Agrawal, A. Choudhary, and S. Guo,
“Jobminer: A real-time system for mining job-related patterns from so-
cial media,” Proceedings of ACM Special Interest Group on Knowledge
Discovery and Data Mining (SIGKDD), 2013

428

Sentiment Analysis of Online Reviews with a

Hierarchical Attention Network

Jingren Zhou1, Peiquan Jin1*, Jie Zhao2*
1School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

2School of Business, Anhui University, Hefei, China

jpq@ustc.edu.cn

Abstract—Sentiment analysis of online reviews has been an

important task in online shopping and electronic commerce to

understand customers’ opinions and behavior. Generally,

customers can express their opinions by posting comments and

uploading images, therefore online reviews can be regarded as the

combination of a textual document and a few related images.

Images may not contain obvious sentimental information, but the

visual aspects of images can augment the sentiment information of

textual comments. Thus, it is a better way to consider both textual

comments and visual images in sentiment analysis of online

reviews. Following this idea, in this paper, we propose a

hierarchical attention network that combines visual aspect

attention, sentence attention, and self-attention to provide effective

sentiment analysis of online reviews. With this mechanism, we can

model the interactions among words within one sentence as well as

the interactions between texts and images. We conduct

experiments on a dataset about online restaurant reviews from

Yelp.com and compare our model with five existing models. The

results suggest the superiority of our proposal.

Keywords-hierarchical attention network; online review;

sentiment analysis

I. INTRODUCTION

The sentiment analysis of web data has been a widely-
studied topic [1-5]. Sentiment analysis aims to detect the
sentimental polarity, e.g., positive or negative, which is
represented by the underlying data. Sentiment analysis is helpful
for many web-based applications such as online reviews
analysis, product recommendation, and personalized search. For
example, in E-commerce platforms, vendors can know the
public opinion toward a new product by analyzing the
sentimental polarity of online reviews, which can be taken as the
basis of market-promoting decisions.

Sentiment analysis used to be a research field in natural
language processing, where the sentiment of a document is to be
classified into different classes (e.g., positive, negative, and
neutral), or a scaling factor (e.g., 1 to 5) is used to measure users’
sentiment [2]. Researchers have proposed various ways to
extract textual features, which are used as input for supervised
learning. The recent works were mostly based on deep neural
networks [3-5], which are proven to be highly effective for
fitting nonlinear functions.

However, traditional sentiment analysis of online reviews
mainly focused on the textual information and highly relied on
natural language processing techniques. On the other hand,

many E-commerce or online shopping sites have allowed users
to post images as part of reviews. Visual images can contain
complementary information that is highly connected to the
textual information in a review. Thus, in this paper, we aim to
figure out the sentiment of online reviews that involve both
textual comments and images. One challenge is that images may
only contain some objects but no explicit sentiment words like
“great” and “wonderful”. For example, an image may only show
some food on the table in a restaurant. Thus, using visual features
directly for sentiment analysis is not effective for online reviews.
We noted that in many cases, the attached images in a review
usually reflect the main topic of the review. For example, when
a person wrote a review about a restaurant, if he posted an image
of his meal, it was likely that his review mainly expressed his
opinions about food. On the other side, if the image was about
the surrounding environment, then we could assign high weights
to the restaurant environment related texts in the textual part,
which was expected to achieve high accuracy of the sentiment
analysis of online reviews.

Following the above idea, we propose to use visual images
and the attention mechanism to enhance the performance of
sentiment analysis on textual reviews. For image analysis, we
propose to adopt visual aspect attention [6], which can help each
sentence to find some “aspects” that appear in an image and align
the semantic information in the text with visual information in
the image. Figure 1 shows an example of Yelp restaurant review,
two images on the right of the document describe drinks and tater
tots separately, while two related sentences state that the drinks
are not good and the tater tots are fine. The visual aspect
attention can bridge the gap between the visual part in the images
with the aspect words in the textual reviews.

On the other hand, there are some limitations for visual
aspect attention. As Fig. 2 shows, the content of two images is
curry, fried chicken, and the beef soup, which are referred as

Figure1. Example of the visual-textual connection in Yelp reviews.

* Corresponding author

DOI reference number: 0.18293/SEKE2020-068

429

“mediocre at best” in the first sentence, while the second
sentence surrounded by a dashed green rectangle box indicated
that the service was not good, but this was not directly reflected
in the two images.

Briefly, this study aims to present a new method for the
sentiment analysis of online reviews by combing visual aspect
attention with sentence attention, yielding a hierarchical
attention network model. The contributions of this study can be
summarized as follows:

(1) We propose a hierarchical attention network for online-
review-oriented sentiment analysis, which can both process
images and texts in a review to generate effective sentiment
polarity. Specially, we adopt self-attention as the base encoding
layer to catch the interactions among words with long distances
for information augment. We also use the visual aspect attention

(2) We present a dense layer to concatenate document
representations generated by visual aspect attention and sentence
attention to avoid the neglecting of some important sentences in
sentiment analysis.

(3) We conduct experiments on a real dataset about online
restaurant reviews from Yelp.com and compare our model with
various baselines. The experimental results show that our
method can improve the sentiment recognition accuracy of
reviews, and can generalize to other scenarios where images
reflex the main content of texts.

The remainder of the paper is structured as follows. Section
II provides a brief literature review on recent research progress.
Section III describes the proposed model. Section IV reports the
experimental results, and finally, we conclude the entire paper in
Section V.

II. RELATED WORK

Previous works on sentiment analysis have focused on text
classification [1], where variants of general classifying
techniques are applied and deep learning also brings
advancement. In recent years, neural networks like recurrent
neural networks have achieved success by incorporating
attention into natural language process tasks, these models are
usually hierarchical, e.g., word encoding and sentence encoding.

Dimension based sentiment analysis [2] means not to
analyze the general sentiment of some document but to detect
the sentiment of each dimension or aspect mentioned in the
document. The state-of-the-art approach for aspect-level

sentiment analysis is attention based deep learning systems. We
focus on the sentiment of the whole document instead of
producing prediction for relevant aspects in images.

Recent works show that sentiment analysis can use
information from more than one modality, e.g., text, acoustic,
image, which is referred to as multimodal sentiment analysis,
while this paper tries to work out sentiment analysis of online
reviews involving text and image. Katsurai et al. [3] proposed
mapping textual, and sentiment views into the latent embedding
space, then mining correlations among these features. The visual
features can be learned from color histograms of images and this
method achieved success on Flickr dataset and Instagram
dataset. Zhang et al. [4] tried to solve sentiment analysis on
microblogging by integrating text features and image features
into multiple kernel learning. You et al. [5] proposed to extract
visual features with CNN and extract textual features from an
unsupervised language model by learning distributed
representations for documents and paragraphs, then to fuse these
two modalities.

Truong et al. [6] proposed to incorporate images as attention
for review-based sentiment analysis. They adopted an
architecture of word encoder and sentence encoder, and used
visual aspect attention to decide the weight of each sentence.
Karpathy et al. [7] proposed a combination of CNNs over image
regions, bidirectional RNNs, and a structured objective to align
language and visual data into a multimodal embedding. Peng et
al. [14] proposed using a visual-textual bi-attention mechanism
for visual-textual alignment, their model tries to learn multi-level
visual-textual correlation for enhancing the matched pairs of
different media types. Xu et al. [8] proposed using soft
deterministic attention and hard stochastic attention for image
captioning. Lu et al. [9] proposed a model for name tagging in
multimodal social media based on visual attention that provides
deeper visual understanding of the decisions of the model. Lu et
al. [10] proposed a mechanism that jointly reasons visual
attention and question attention for visual question answering.

Differing from existing studies, in this paper we propose a
hierarchical attention network that combines visual aspect
attention, sentence attention, and self-attention, which can model
the inter-word correlations among texts as well as the
interactions between texts and images.

III. ARCHITECTURE OF THE HIERARCHICAL ATTENTION

NETWORK

Reviews are comprised of a collection of documents C. Each
document is a sequence of L sentences, si, i ∈ [1, L]. Each

sentence consists of K words xi,k, k ∈ [1, K]. Each document

has a set of N images gj ∈ {g1, g2, … , gN}, the vector

representation of each image is noted as ej. The goal of our study
is to train a classification function to predict sentiment labels for
unseen documents.

Our model is a four-layered hierarchical architecture, as
shown in Fig. 3. The bottom layer is the self-attention layer that
tries to encode each word vector. The next layer is the word
encoding layer with soft attention that encodes word vectors into
sentence vectors. The third layer is the sentence encoding layer
with visual aspect attention. The top layer is the classification
layer for the sentiment label.

The main difference of our model from previous models is
that we present a layered attention mechanism based on visual

Figure 2. Example of deviation of images and texts.

430

aspect attention, sentence attention, and self-attention, to
integrate the texts and images to enhance the effectiveness of
sentiment analysis of online reviews. With our design, both
textual and imaginal information of online reviews can be
reflected in the sentiment analysis process. By using the
hierarchical attention network, especially the self-attention
method, we can model the inter-word correlations among texts
as well as the interactions between texts and images, resulting in
the performance improvement of sentiment analysis of online
reviews.

A. Self-Attention

First of all, words must be transferred into embedding
vectors as input for the model. We use an embedding matrix We
initialized from pre-trained word embedding models [17] to
retrieve the embedding xi,k of each word wi,k.

 𝑥𝑖,𝑘 = 𝑊𝑒𝑤𝑖,𝑘, k ∈ [1, K] ()

 Self-attention is an important concept brought in the model
Transformer [15] that helped improve the performance of neural
machine translation applications. As shown in Fig. 4, self-
attention tries to encode representations of other relevant words
into the current one being processed, while the relevance degree
varies for different words. We use this method to put word
interactions into word embedding vectors. For each word, we
create a query vector Q, a key vector K and a value vector V. The
input of this layer is a sentence matrix composed of word
vectors. There are three parameter matrices WQ, WK, WV which
are initialized randomly and updated during the training process.

 𝑄 = 𝑋𝑖𝑊
𝑄 ()

 𝐾 = 𝑋𝑖𝑊
𝐾 ()

 𝑉 = 𝑋𝑖𝑊
𝑉 ()

In the self-attention layer, the calculation process of the
output Z includes dot product of Q and K, division for scaling,
softmax for normalization and getting the weighted sum of V.

 𝑍𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 ()

The output vector of this layer, which will be used as the new
word representation vector in the next layer, is the concatenation
of original word vector xi,k and the vector zi,k generated by
equation 5, as shown below.

 𝑦𝑖,𝑘 = [𝑥𝑖,𝑘, 𝑧𝑖,𝑘] ()

B. Word Encoding

In this part of the architecture, we try to encode a sentence
matrix of word embedding vectors into a sentence embedding
vector. The input to this layer is the output of self-attention layer.

We choose bidirectional recurrent neural networks (RNN)
[16] with GRU (Gated Recurrent Unit) cell to encode the word
embedding sequence, whose output hi,k is the concatenation of

ℎ⃗ 𝑖,𝑘 generated by the forward GRU and ℎ⃖⃗𝑖,𝑘 generated by the

backward GRU. This component is noted as Bi-GRU
(Bidirectional GRU) in this paper. GRU is a variant of RNN that
costs less computation price and solves the problem of long term
dependency.

 hi,k = Bi-GRU(yi,k) ()

Words are not equally important, and attention helps to
assign greater weight to more important words. We employ a
soft attention mechanism [6] to distribute weights among
words.

 𝑜𝑖,𝑘 = 𝑂𝑇tanh (𝑊ℎℎ𝑖,𝑘 + 𝑏ℎ) ()

 𝛼𝑖,𝑘 =
exp (𝑜𝑖,𝑘)

∑ exp (𝑜𝑖,𝑘)𝑘
 ()

 𝑠𝑖 = ∑ 𝛼𝑖,𝑘ℎ𝑖,𝑘𝑘 ()

Figure 4. An example of how self-attention works.

x21

self attention

word encoding

x22 x2K

self attention self attention

s2s1 sL

sentence attentionvisual aspect attention

concat

softmax

dense layer

Bi-GRU Bi-GRU Bi-GRU

e1

e2

eN

Figure 3. Architecture of the hierarchical attention model.

431

We use a tangent function to project hi,k into its
representation in the attention space. O is a context vector
randomly initialized and updated during training, it is used to
multiply the projection for the relative importance oi,k of hi,k.
Then we use softmax as normalization to obtain attention
weight αi,k of hi,k. The embedding of sentence si is represented
as the weighted summation of all its word representations hi,k by
attention weights αi,k.

C. Visual Aspect Attention and Sentence Attention

This layer transfers the output of the word encoding layer
into document-level representations using visual aspect attention
and sentence attention, assigning greater weight to more salient
sentences. We still use Bi-GRU taking sentence si as input to

generate forward hidden states vector ℎ⃗ 𝑖 and backward hidden

states vector ℎ⃖⃗𝑖 and concatenate them as the output vector hi.

 hi = Bi-GRU(si) ()

We take semantic connections between images and text as

attention for sentences. A document is usually attached with

several pictures, which are associated with sentences with

varying degrees.
First, we need to encode visual images and VGG

convolutional neural networks [18] have proven effective for
learning image presentations in many similar situations. We
employ VGG-16 to process image gj and take the output of the
last fully-connected layer (FC7) as the image representation ej.

 𝑒𝑗 = 𝑉𝐺𝐺(𝑔𝑗) ()

Visual Aspect Attention. We learn the attention weights
γj,i’s for sentence representations hi’s with respect to each image
representation ej.

 𝑝𝑗 = tanh (𝑊𝑝𝑒𝑗 + 𝑏𝑝) ()

 𝑞𝑖 = tanh (𝑊𝑞ℎ𝑖 + 𝑏𝑞) ()

 𝑚𝑗,𝑖 = 𝑀𝑇(𝑝𝑗 ⊙ 𝑞𝑖 + 𝑞𝑖) ()

 𝛾𝑗,𝑖 =
exp (𝑚𝑗,𝑖)

∑ exp (𝑚𝑗,𝑖)𝑖
 ()

We project image representation ej and sentence
representation hi into an attention space followed by a non-linear
activation function to obtain output pj and qi. Then we try to find
interactions between pj and qi by element-wise multiplication
and summation. The learned vector M is a global attention vector
similar to O in word encoder. Then we use softmax to normalize
each attention value mj,i in M as γj,i.

With the visual-aspect attention weight γj,i, we aggregate
sentence representations into document representation dj as
follows.

 𝑑𝑗 = ∑ 𝛾𝑗,𝑖ℎ𝑖𝑖 ()

Each document has a set of image-specific document
representation dj, j ∈ [1, N]. Attached images are not equally

informative, thus we try to learn the importance weight τj of each
document representation dj. The visual attention-based
document representation d’ is the aggregation of image-specific
document representation dj.

 𝑎𝑗 = 𝐴𝑇tanh (𝑊𝑎𝑑𝑗 + 𝑏𝑎) ()

 𝜏𝑗 =
exp (𝑎𝑗)

∑ exp (𝑎𝑗)𝑗
 ()

 𝑑′ = ∑ 𝜏𝑗𝑑𝑗𝑗 ()

Sentence Attention. We use sentence attention to generate a
context vector U and reward sentences that are clues to classify
a document correctly.

 𝑢𝑖 = 𝑈𝑇𝑡𝑎𝑛ℎ(𝑊𝑢ℎ𝑖 + 𝑏𝑢) ()

 𝜋𝑖 =
𝑒𝑥𝑝(𝑢𝑖)

∑ 𝑒𝑥𝑝(𝑢𝑖)𝑖
 ()

 𝑑′′ = ∑ 𝜋𝑖ℎ𝑖𝑖 ()

The concatenation of d’ and d’’ is fed into a dense layer, the
output of which is the final document representation d.

 𝑑 = Dense([𝑑′, 𝑑′′]) ()

D. Sentiment Classification

The top layer treats the document representation d with a
softmax based sentiment classifier, generating the probabilities
distribution μ of sentiment classes.

 𝜇 = softmax(𝑊𝜇𝑑 + 𝑏𝜇) ()

The loss of this model is the cross-entropy error of sentiment
classification:

 loss = −∑ 𝑙𝑜𝑔𝜇𝑑,𝑙𝑑 ()

where l is the ground-truth label of review d.

IV. PERFORMANCE EVALUATION

A. Settings

Dataset. We use a dataset of restaurant reviews on Yelp.com
[6], covering five US cities including Boston (BO), Los Angeles
(LA), Chicago (CH), New York (NY), and San Francisco (SF).
The dataset contains more than 44 thousand reviews and 244
thousand images with each review having at least 3 images. We
split 80% of the dataset for training, 5% for validation, and 15%
for tests. There are five classes of sentiment labels in this dataset,
ranging from very negative to very positive.

Training. In the training process, we use NLTK [13] for
sentence and word tokenization. In addition, we use the pre-
trained Glove word embedding with dimensionality D = 200.
The GRU cells are 50-dimensional in the encoding process, thus

432

the output of bidirectional cells is 100 dimensional. The model
is implemented with Python 3.7 and TensorFlow 1.14. We select
the Adam optimizer for gradient-based optimization and set the
batch size to 32. The model is trained for 20 epochs and the result
of the epoch with the least training loss is outputted as the final
result.

B. Baselines

We compare our model with several baselines that use both
textual and visual features, including TFN-aVGG, TFN-mVGG,
HAN-aVGG, HAN-mVGG, and VistaNet. We focus on the
accuracy of each model when evaluating the sentiment polarity
of the online restaurant reviews.

(1) HAN-aVGG and HAN-mVGG [11]. HAN-aVGG and
HAN-mVGG are composites of HAN-ATT for text and VGG
for images. HAN-ATT uses a hierarchical architecture of word
encoder and sentence encoder. HAN-aVGG and HAN-mVGG
correspond to using average pooling and max pooling for image
feature vectors respectively, which will be concatenated with
textual feature vectors as the input vectors.

(2) TFN-aVGG and TFN-mVGG [12]. TFN-aVGG and TFN-
mVGG are composites of Tensor Fusion Network. Textual
features from HAN-ATT and visual features from VGG are
combined using Tensor Fusion Layer and fed through Sentiment
Inference Subnetwork for the final sentiment label. We use
average pooling for TFN-aVGG and max pooling for TFN-
mVGG.

(3) VistaNet [6]. VistaNet is a hierarchical architecture that
adopts a soft-attention-based word encoding layer and a visual
aspect attention based sentence encoding layer.

C. Results

Table I lists the comparative accuracy of our method with
other baseline methods. The five columns, namely BO, CH, LA,
NY, and SF represent the five cities, and the avg. column is the
average accuracy of all the five cities.

As shown in Table I, our model outperforms these
multimodal baselines in all five cities and average results. This
result demonstrates that combing visual attention and sentence
attention could effectively draw attention to more salient
sentences of a review document. The second-best model
VistaNet is ahead of other baselines, which proves that visual
attention has significant effects in this experiment. Our model
has a 1.71% accuracy improvement over VistaNet, showing that
the self-attention layer is useful for encoding word vectors and a
tradeoff between visual aspect attention and sentence attention
could end up with better results.

We can also notice that TFN-aVGG and TFN-mVGG
perform badly in this experiment even though TFN can provide
rich interactions between textual features and visual features. In
this experiment of online reviews, images seldom carry enough
sentimental information, e.g., images of food cannot tell whether
the customer likes the food or not. This is the reason why our
model using visual features as attention for sentences can
outperform models that use visual features as additional
sentimental information.

D. Ablation Analysis

We conduct an ablation analysis to specifically analyze the
contributions of each component of our architecture. We start
from the most basic architecture and incrementally add a
component until reaching the full architecture.

TABLE II. ABLATION ANALYSIS

Components CITY (%)

Bi-GRU
Hierarchical

Structure

Visual Aspect

Attention
Self-Attention

Sentence

Attention
BO CH LA NY SF Avg.

√ ⅹ ⅹ ⅹ ⅹ 57.70 60.01 56.74 56.59 55.84 56.83

√ √ ⅹ ⅹ ⅹ 60.39 64.39 59.08 59.58 59.18 59.54

√ √ √ ⅹ ⅹ 63.81 65.74 62.01 61.08 60.14 61.88

√ √ √ √ ⅹ 63.17 62.77 62.12 61.40 62.63 62.42

√ √ √ √ √ 66.67 68.31 60.83 61.10 61.05 63.59

TABLE I. ACCURACY COMPARISON OF SENTIMENT ANALYSIS (%)

Models BO CH LA NY SF Avg.

Improvement

(compared with

TFN-aVGG)

TFN-aVGG 46.35 43.69 43.91 43.79 42.81 43.89 -

TFN-mVGG 48.25 47.08 46.70 46.71 47.54 46.87 6.8%

HAN-aVGG 55.18 54.88 53.11 52.96 51.98 53.16 21.1%

HAN-mVGG 56.77 57.02 55.06 54.66 53.69 55.01 25.3%

VistaNet 63.81 65.74 62.01 61.08 60.14 61.88 41.0%

Our model 66.67 68.31 60.83 61.10 61.05 63.59 44.9%

433

We first carry out experiments with the base model Bi-GRU
using only text. Then, we implement a hierarchical structure
with a word encoding layer and max-pooling sentence
representations, the accuracy is 59.54%. By applying the visual
aspect attention upon sentence-level representations, this
structure has achieved an average accuracy of 61.88%. When a
self-attention encoding layer is added to the hierarchical
structure, the average accuracy has increased to 62.42%. Finally,
the sentence attention is combined with the visual attention
through a dense layer. We can see that the model has been
improved to an average accuracy of 63.59%.

All the results in Table II show that our model outperforms
other models in the average accuracy. We can also see that every
component contributes to our model.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel model for text-and-image-
based bi-modal sentiment analysis. Our model utilizes visual
aspect attention, sentence attention, and self-attention to form a
hierarchical attention network, which has been experimentally
demonstrated that it works well for the sentiment analysis of
online reviews. In particular, we use self-attention as the base
encoding layer and combine visual aspect attention with
sentence attention to present a better attention mechanism.
Compared with existing studies, the four-layered hierarchical
attention model can encode the interactions among words within
a sentence as well as the interactions between texts and images.
It adopts a hierarchical attention mechanism by aggregating
word representations into sentence representations, aggregating
sentence representations into document representations, and
finally generating the sentiment label. Our model also employs
images as alignment to select important sentences within a
document and employs a soft attention mechanism for sentences
that may have few interactions with images. We conduct
experiments on a real dataset about online restaurant reviews in
five US cities. The results show that our model outperforms the
other five baselines, indicating the effectiveness of our proposal.

Our future work will concentrate on building a more elastic
attention mechanism, e.g., assigning higher weights to most
influential words in a document and introducing most recent
models of natural language processing for a better understanding
of document content. We will also consider to apply the
hierarchical attention model to sentiment analysis of multimodal
social media such as microblogs [19, 20].

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation
of China (no. 61672479 and 71273010) and the National
Statistical Science Research Project (no. 2019LY66). Peiquan
Jin and Jie Zhao are the joint corresponding authors of this paper.

REFERENCES

[1] Pang, B. and Lee, L., Opinion mining and sentiment analysis.
Foundations and Trends® in Information Retrieval, 2008, 2(1–2), pp.1-
135.

[2] Zheng, L., Jin, P., Zhao, J., Yue, L. Multi-dimensional sentiment analysis
for large-scale E-commerce reviews. In Proceedings of the 25th

International Conference on Database and Expert Systems Applications
(DEXA), 2014, 449-463

[3] Katsurai, M. and Satoh, S.I., March. Image sentiment analysis using latent
correlations among visual, textual, and sentiment views. In Proceedings
of the 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2016, 2837-2841.

[4] Zhang, Y., Shang, L. and Jia, X., Sentiment analysis on microblogging by
integrating text and image features. In Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), 2015,
52-63.

[5] You, Q., Luo, J., Jin, H. and Yang, J., Joint visual-textual sentiment
analysis with deep neural networks. In Proceedings of the 23rd ACM
International Conference on Multimedia (MM), 2015, 1071-1074.

[6] Truong, Q.T. and Lauw, H.W., VistaNet: Visual Aspect Attention
Network for Multimodal Sentiment Analysis. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2019, 305-312.

[7] Karpathy, A. and Fei-Fei, L., Deep visual-semantic alignments for
generating image descriptions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, 3128-3137.

[8] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel,
R. and Bengio, Y., Show, attend and tell: Neural image caption generation
with visual attention. In Proceedings of the International Conference on
Machine Learning (ICML), 2015, 2048-2057.

[9] Lu, D., Neves, L., Carvalho, V., Zhang, N. and Ji, H., Visual attention
model for name tagging in multimodal social media. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(ACL), 2018, 1990-1999.

[10] Lu, J., Yang, J., Batra, D. and Parikh, D., Hierarchical question-image co-
attention for visual question answering. In Advances in Neural
Information Processing Systems (NIPS), 2016, 289-297.

[11] Yang, Z., Yang, D., Dyer, C., He, X., Smola, A. and Hovy, E.,
Hierarchical attention networks for document classification. In
Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, 2016, 1480-1489.

[12] Zadeh, A., Chen, M., Poria, S., Cambria, E. and Morency, L.P., Tensor
Fusion Network for Multimodal Sentiment Analysis. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2017, 1103-1114.

[13] Loper, E. and Bird, S., NLTK: The Natural Language Toolkit. In
Proceedings of the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language Processing and
Computational Linguistics, 2002, 63-70.

[14] Peng, Y., Qi, J. and Zhuo, Y., MAVA: Multi-level Adaptive Visual-
textual Alignment by Cross-media Bi-attention Mechanism. IEEE
Transactions on Image Processing, 2020, 29: 2728-2741.

[15] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, Ł. and Polosukhin, I., Attention is all you need. In Advances
in Neural Information Processing Systems (NIPS), 2017, 5998-6008.

[16] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H. and Bengio, Y., Learning Phrase Representations using
RNN Encoder–Decoder for Statistical Machine Translation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014, 1724-1734.

[17] Pennington, J., Socher, R. and Manning, C.D., Glove: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2014, 1532-1543.

[18] Simonyan, K. and Zisserman, A., Very deep convolutional networks for
large-scale image recognition. arXiv preprint, arXiv: 1409.1556, 2014

[19] Jin, P., Mu, L., Zheng, L., Zhao, J., Yue, L. News feature extraction for
events on social network platforms. In Proceedings of the 26th
International World Wide Web Conference (WWW), 2017, 69-78

[20] Mu, L., Jin, P., Zheng, L., Chen, E., Yue, L., Lifecycle-based event
detection from microblogs. In Proceedings of the 27th International
World Wide Web Conference (WWW), 2018, 283-290

434

Cross-project Reopened Pull Request Prediction in
GitHub

Abdillah Mohamed†‡, Li Zhang†, Jing Jiang†∗
†State Key Laboratory of Software Development Environment, Beihang University, Beijing, China

‡University Institute of Technology, University of Comoros, Comoros
Email:{abdillah,lily,jiangjing}@buaa.edu.cn

Abstract—In GitHub, pull requests may get reopened again for
further modification and code review. Prediction of within-project
reopened pull requests works well if there is enough amount of
training data to build the training model. However, for new projects
that have a limited amount of pull requests, using training data
from other projects can help to predict the reopened pull requests.
Therefore, it is important to study cross-project reopened pull request
prediction and help integrators in new projects.

In this paper, we propose a cross-project approach that consists of
building a decision tree training model based on an external project
as a source project to predict the reopened pull requests in another
project. We evaluate the effectiveness of cross-project prediction on
7 open source projects containing 100,622 pull requests. Experiment
results show that the cross-project prediction achieves accuracy from
78.76% to 96.52%, and F1-measure from 53.34% to 90.58% across 7
projects. We examine the feature importance using the decision tree
predictor and find that the number of commits is the most important
feature in the majority of projects.

Keywords—Reopened pull request prediction, Cross project,
GitHub.

I. INTRODUCTION

GitHub is popular among a large number of software
developers around the word [1].

To identify whether or not a pull request will be reopened,
we proposed in our prior work a within-project predictor
that consists of splitting the entire dataset of a project into
a training set and a testing set to predict whether or not
a closed pull request would be reopened [2]. Prediction of
within-project reopened pull requests works well if there is
enough amount of training data to build the training model.

However, for new projects that have a limited amount of
pull requests, using training data from other projects can
help to predict the reopened pull requests. It is important
to study cross-project reopened pull request prediction, and
help integrators in new projects. Several researchers studied
the cross-project defect prediction [3]–[5]. To the best of our
knowledge, the cross-project reopened pull request prediction
has not been explored yet.

In this paper, we proposes a cross-project approach that
consists of building a decision tree training model based on
an external project as source project to predict the reopened
pull requests in another project. This approach first extracts
code features of modified changes, review features during

∗Corresponding author
DOI reference number: 10.18293/SEKE2020-072

evaluation, and developer feature of contributors from a source
project. Then it uses decision tree classifier to make prediction
for pull requests in a target project.

In order to explore the performances of this approach,
we collect datasets of 7 open-source projects and 100,622
pull requests. Results show that the cross-project reopened
pull request prediction achieves accuracy of 78.76%, 95.11%,
94.12%, 89.95%, 93.06%, 96.52%, 94.87%, and F1-measure
of 53.34%, 86.52%, 83.72%, 73.54%, 81.54%, 90.58%,
85.72% for the target projects bootstrap, cocos2d-x, symfony,
homebrew-cask, zendframework, rails, and angular.js respec-
tively. We explore feature importance, and find that in the
majority of projects, number of commits is the most important
in the prediction of reopened pull requests.

The main contributions of this paper are as follow:
• We build a cross-project approach based on a source

project to predict the reopened pull requests in a target
project. Results show that cross-project approach per-
forms well in predicting reopened pull requests.

• We find that the number of commits is the most important
feature in the cross-project reopened pull request predic-
tion in most of the projects.

The remainder of the work is structured as follows. Section
II presents the data collection. In Section III, we present the
approach of the cross-project reopened pull requests. Section
IV presents the experimental settings. Section V presents the
experimental results of our approach. In section VI, we present
threats to validity. Section VII presents the related work.
Finally, section VIII presents summarise our findings.

II. DATA COLLECTION

We use the same dataset as our previous work [2]. We
choose 7 popular projects such as rails, cocos2d-x, sym-
fony, homebrew-cask, zendframework, angular.js, and boot-
strap with more than 5,000 stars, because they receive many
pull requests and provide datasets for our research.

Table I shows the basic statistics of 7 projects. The table
represents the percentage of reopened pull requests. In the fifth
column, the value before the slash is the number of reopened
pull requests, and the value after the slash is its percentage.
Reopened pull requests exist in all projects.

III. APPROACH

In this section, we describe the cross-project reopened pull
request prediction.

435

TABLE I
BASIC INFORMATION OF PROJECTS.

Project owner Repository Language #Pull requests #Reopened pull requests #Stars
rails rails Ruby 19,190 467/2.43% 36,253

cocos2d cocos2d-x C++ 14,134 113/0.80% 10,514
symfony symfony PHP 14,569 220/1.37% 14,800
caskroom homebrew-cask Ruby 31,980 331/1.04% 11,229

zendframework zendframework PHP 5,631 213/3.78% 5,522
angular angular.js JavaScript 7,504 223/2.97% 56,359

twbs bootstrap JavaScript 7,614 136/1.79% 112,425

Fig. 1. Overall framework of the cross-project predictor

A. Model-building phase

As shown in Figure 1, our framework takes as input
instances (pull requests) from source project (step 1) with
a known class (i.e., reopened or non-reopened). We collect
code features, review features and developer feature. Next, it
extracts various metrics from the source project to build the
cross-project model (step 2). Then we use a weighted vector
to represent each pull request, and each element in this vector
We describe details of features as follow:

Code feature. We use code features in cross-project re-
opened pull requests prediction at the first close. We take
in count four features to measure modified codes, including
number of commits, number of changed files, number of added
lines and number of deleted lines in a pull request.

Review feature. We consider review features, including
number of comments, evaluation time and closed status. Eval-
uation time is the time difference between the pull request’s
submission and first close. Closed status assess whether a pull
request is accepted or rejected at its first close.

Developer feature. We apply developer feature which quan-
tifies the reputation of contributors who submit pull requests.
For each pull request, we compute the number of accepted and
rejected pull requests submitted by the same contributor before
its creation time. Briefly, the reputation is the proportion of
previous pull requests which are submitted by the contributor

and get accepted.

B. Prediction phase

In the prediction phase, the same cross-project prediction
model built in step 2 is applied to predict whether a closed
pull request would be reopened in the target project. For a
pull request in a target project, we first extract code features,
review features and developer feature as those extracted the
model-building phase (step 3). We then input the values of
these metrics into the cross-project model (Step 4). It outputs
the pull request prediction result about whether it will be either
reopened or non-reopened (Step 5).

IV. EXPERIMENTAL SETTINGS

The main goal of this work is twofold. (i) We build trained
model based one source project to train a model and use it
to predict the reopening of a pull request of another project.
(ii) We study feature importance in predicting reopened pull
requests.

A. Evaluation process and metrics

In evaluation, we use accuracy, precision, recall and f1-
measure. The accuracy measures the number of correctly
classified reopened pull requests (both non-reopened and re-
opened) over the total number of pull requests. Precision is
the ratio of correctly predicted reopened pull requests over
all the pull requests predicted as reopened. Recall is the ratio
of correctly predicted reopened pull requests over all actually
reopened pull requests. F1-measure is the weighted harmonic
mean of precision and recall.

B. Research Questions

We are interested to answer following research questions:
RQ1: How does the cross-project prediction perform?
Motivation. In this research question, we aim at building a

cross-project predictor based on one project as a source project
to predict the pull request reopening in a data of another
project.

Approach. To solve this research question, we aim at
building decision tree training models based on one projects as
a source project by crossing the seven projects between them.
For each of the 6 source projects used separately to predict the
reopened pull requests in one and only target project, we select
the results of the source project that achieves high f1-measure.

436

RQ2: Which features are important in cross-project
reopened pull request prediction?

Motivation. Different features may have various weights
in cross-project reopened pull request prediction. We wonder
which features are more important than other.

Approach. In order to answer this question, we use decision
tree classifier to compute feature importance in the prediction
of reopened pull requests. Feature importance is calculated as
the decrease in node impurity weighted by the probability of
reaching that node. The node probability can be calculated
by the number of reopened pull request that reach the node,
divided by the total number of pull requests. The higher the
value is, and the more important the feature is.

V. EXPERIMENTAL RESULTS

In this section, we study the results of our study aiming at
answering above research questions.

A. RQ1: Performance of cross-project prediction

In order to answer RQ1, we study results based on different
combination of source projects and target project. We first
analyze the project rails as an example. Table II shows
results when the project rails is the target project. In each
row, we predict reopened pull requests in the project rails
as target projects by crossing the projects symfony, cocos2d-
x, angular.js, zendframework, homebrew-cask and bootstrap
respectively as source projects. The best results are in bold.
Results show that the combination cocos2d-x =>rails achieves
the best performance by achieving an accuracy of 96.52% and
f1-measure of 90.58%.

TABLE II
PREDICTING THE REOPENED PULL REQUEST BASED ON THE PROJECT

RAILS AS THE TARGET PROJECT

Source =>Target
projects

Accuracy Precision Recall F1-
measure

symfony =>rails 96.47% 98.07% 83.92% 90.45%
cocos2d-x =>rails 96.52% 96.60% 85.20% 90.58%
angular.js =>rails 96.02% 95.29% 85.00% 89.85%
zendframework =>rails 96.42% 96.61% 84.75% 90.29%
homebrew-cask =>rails 92.24% 78.51% 83.92% 81.13%
bootstrap =>rails 94.83% 82.77% 92.97% 87.57%

Table III shows the performances of the cross-projects re-
opened pull requests prediction across 7 projects. The projects
on top of the table are used as a target for single source cross-
projects, while the projects on the left side of the table are
used as source projects. We use the source project to train the
decision tree model, and the target project is used as a class
project to predict the reopened pull requests. Results in green
color represent the highest performance predictions of the
cross-project prediction of each target across 6 target projects.
Results show that when predicting reopened pull requests in
the target project angular.js, the source project symfony is
more suitable comparing to the other source projects. In the
same way, we compared the performances of the other source
projects, and find the source project which achieves the highest
F1-measure in predicting reopened pull requests for a specific
target project.

The Table IV presents the combinations of the cross-project
that carry out the best results across 42 combinations from
the Table III. Each target project is used separately with each
of the six remaining projects as source projects to predict
the reopened pull requests and select the combination that
achieves the best results. In the same way, we processed
to select the best combination of crossed projects (sources
and targets) that has good performances. Thus, we notice
that the single source cross-project reopened pull requests
prediction achieves good performances in most of the projects.

TABLE IV
PERFORMANCES OF CROSS-PROJECT REOPENED PULL REQUESTS

PREDICTOR

Source=>Target projects Accuracy Precision Recall F1-
measure

homebrew-cask =>bootstrap 78.76% 48.12% 59.83% 53.34%
zendframework =>cocos2d-x 95.11% 97.36% 77.86% 86.52%
zendframework =>symfony 94.12% 93.72% 75.64% 83.72%
cocos2d-x =>homebrew-cask 89.95% 78.51% 69.16% 73.54%
rails =>zendframework 93.06% 90.18% 74.41% 81.54%
cocos2d-x =>rails 96.52% 96.60% 85.20% 90.58%
symfony =>angular.js 94.87% 97.91% 76.24% 85.72%

RQ1: Across the 7 projects, the single source cross-
project reopened pull requests prediction achieves good
performances in most of the projects.

B. RQ2: Important features for predicting reopened pull re-
quests.

Decision tree classifier also computes the importance of
each feature in the prediction of reopened pull requests,
and we plot the results in the Table V. Feature importance
may be different in various projects. In the majority of
projects, the number of commits is the most important in the
prediction of reopened pull requests. Some pull requests have
many commits, and they may be difficult for integrators to
make a complete evaluation. Therefore, pull requests with
many commits are likely to be reopened, and the number of
commits is the most important feature.

RQ2: In the majority of projects, the number of commits
is the most important in the cross-project reopened pull
request prediction.

VI. THREATS TO VALIDITY

In this section, we introduce threats to the validity of our
study.

Threats to external validity relate to the generalization of
our research. Firstly, our experimental results are limited to 7
projects in GitHub. In the future, we plan to use more projects
to better generalize the results of our method. Secondly, we
analyze open-source software projects in GitHub. In the future,
we plan to study other platforms and compare their results with
our findings in GitHub.

Threats to construct validity refer to the degree to which the
construct being studied is affected by experiment settings. We
use accuracy, precision, recall, and F1-measure. As a results,
there is little threat to construct validity.

437

TABLE III
F1-MEASURE COMPARISON BETWEEN THE CROSS-PROJECTS REOPENED PULL REQUESTS PREDICTION

Source/Target rails angular.js cocos2d-x Symfony homebrew-cask zendframework bootstrap
rails / 83.61% 86.22% 82.55% 61.82% 81.54% 24.81%
angular.js 89.85% / 84.06% 80.65% 59.58% 77.73% 24.25%
cocos2d-x 90.58% 84.26% / 67.61% 73.54% 80.36% 35.74%
symfony 90.45% 85.72% 84.18% / 61.79% 79.57% 20.59%
homebrew-cask 81.13% 81.62% 83.75% 66.15% / 79.40% 53.34%
zendframework 90.29% 84.87% 86.52% 83.72% 67.34% / 33.68%
bootstrap 87.57% 76.33% 84.68% 69.84% 73.24% 74.43% /

TABLE V
FEATURE IMPORTANCE FOR CROSS-PROJECT REOPENED PULL REQUESTS PREDICTION

Features homebrew-cask
=>bootstrap

zendframework
=>cocos2d-x

zendframework
=>symfony

cocos2d-x
=>homebrew-cask

rails
=>zend-
framework

cocos2d-
x =>rails

symfony
=>Angular.js

Average

Number of commits 0.327 0.275 0.275 0.611 0.476 0.611 0.463 0.434
Number of changed file 0.038 0.411 0.411 0.040 0.361 0.040 0.274 0.225
Number of added lines 0.128 0.000 0.000 0.000 0.045 0.000 0.000 0.025
Number of deleted lines 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Number of comments 0.019 0.033 0.034 0.002 0.017 0.002 0.015 0.017
Evaluation time 0.079 0.169 0.169 0.083 0.041 0.084 0.116 0.106
Closed status 0.322 0.038 0.038 0.234 0.040 0.234 0.025 0.133
Reputation 0.084 0.074 0.073 0.029 0.021 0.029 0.107 0.060

VII. RELATED WORKS

In this section, we mainly discuss related works, including
reopened pull requests and cross-project prediction.

A. Reopened pull requests

In GitHub, there are several works which are focusing on
pull requests evaluation and prediction [2], [6]. We conducted
a case study to understand reopened pull requests [6]. Previous
work [2] designed a within-project reopened pull request pre-
diction, while this paper explores the cross-project reopened
pull request prediction.

B. Cross-project prediction

The cross-project prediction has been the main area of
researches in different aspects by reusing training data from
other projects to make a prediction in a new project. Several
authors discussed the cross-project defect prediction [3]–[5].
Rahman et al. [3] compared the cross-project defect prediction
with the prediction within a project, and they found that cross-
project prediction performance was no worse than within-
project performance and considerably better than random
prediction.

Unlike the above researches, we address a different problem,
namely cross-project reopened pull request prediction.

VIII. CONCLUSION

Cross-project reopened pull requests are important for the
projects that do not have enough historical data to build
prediction models. In this paper, we propose a cross-project
approach for predicting reopened pull requests in GitHub.
This study brings new insight into the performances of the
cross-project using a decision tree classifier. Based on 100,622
pull requests from 7 open-source projects, experimental results
show that the cross-project reopened pull request prediction

achieves an f1-measure of 53.34%, 86.52%, 83.72%, 73.54%,
81.54%, 90.58%, and 85.72% for the target projects bootstrap,
cocos2d-x, symfony, homebrew-cask, zendframework, rails,
and angular.js respectively. We use decision tree to compute
feature importance, and find that number of commits is the
most important feature in the majority of projects.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program of China No. 2018AAA0102301, the
National Natural Science Foundation of China under Grant No.
61672078, the State Key Laboratory of Software Development
Environment under Grant No.SKLSDE-2019ZX-05.

REFERENCES

[1] A Lima, L Rossi, and M Musolesi. Coding together at scale: Github asa
collaborative social network. In Proceedings of 8th AAAI International
Conference on Weblogs and Social Media, 2014.

[2] Abdillah Mohamed, Li Zhang, Jing Jiang, and Ahmed Ktob. Predicting
which pull requests will get reopened in github. In 2018 25th Asia-Pacific
Software Engineering Conference (APSEC), pages 375–385. IEEE, 2018.

[3] Foyzur Rahman, Daryl Posnett, and Premkumar Devanbu. Recalling the”
imprecision” of cross-project defect prediction. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, pages 1–11, 2012.

[4] Feng Zhang, Quan Zheng, Ying Zou, and Ahmed E Hassan. Cross-project
defect prediction using a connectivity-based unsupervised classifier. In
2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pages 309–320. IEEE, 2016.

[5] Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu
Wang. Hydra: Massively compositional model for cross-project defect
prediction. IEEE Transactions on software Engineering, 42(10):977–998,
2016.

[6] Jing Jiang, Abdillah Mohamed, and Li Zhang. What are the characteristics
of reopened pull requests? a case study on open source projects in github.
IEEE Access, 7:102751–102761, 2019.

438

Restaurant Failure Prediction Based on Multi-View

Online Data

Xiaoxiao Sun, Ping Liang, DongjinYu*

School of Computer Science and Technology

Hangzhou Dianzi University

Hangzhou, China

sunxiaoxiao@hdu.edu.cn, liangpingprivate@gmail.com, yudj@hdu.edu.cn

Abstract—Predicting future development trends of restaurants

(especially failure judgement) helps entrepreneurs to identify

potential downward trends in their business and supports

potential investors’ investment decisions. Review apps, such as

Yelp, are generating massive restaurant-related online data every

day, which provides a solid data source for the prediction through

big data technology rather than applying commercial data with

limited access and poor time efficiency. In this paper, we propose

a novel multi-view restaurant failure prediction model named

Semantic Business Cluster Effect Model (SBCM) based on online

review data. Specifically, our model consists of three views:

semantic view (we capture semantic features of reviews via a

neural network and different reviews are assigned with different

importance according to their reviewers’ habits), business

attribute view (we select the most influential business attributes

from datasets), and business cluster effect view (we identify

business clusters based on density and differentiate restaurants

into different clusters). All attributes are then input into a

LightGBM model to conduct the prediction. Experiments on

public Yelp datasets of Toronto and Las Vegas from 2016 to 2017

demonstrate that SBCM averagely outperforms SVM and

XGBoost by 14% and 3% respectively in terms of AUC.

Furthermore, we find that credit card support, lunch support and

noise level are the three most significant business attributes that

influence the restaurant popularity online.

Keywords: restaurant failure prediction; big data analysis;

semantics extraction; cluster effect; LightGBM; Yelp

I. INTRODUCTION

Business failure prediction is a scientific field with long
history, whose accurate results help entrepreneurs to identify
potential downward trends in their business performance and
give them timely warning to change business strategies in
advance. Meanwhile, according to National Restaurant
Association (NRA) [1], restaurant industry sales are projected to
total $863 billion in 2019 and equal 4 percent of the U.S. gross
domestic product. Meanwhile, restaurant workforce is about 10%
of the overall U.S. workforce. Restaurants have played an
essential role in the economy of a thriving society. Therefore,
restaurant failure prediction is worthy of deep studying.

With the development of mobile Internet technology,
restaurants are changing their traditional business patterns and
starting to pay more attention to online advertisement. Apps such

as Yelp provide platforms for restaurants to advertise their foods
online and for customers to share their dining experiences. These
reviews provide important references accordingly for other
customers to select restaurants. Studies show that online data (i.e.
reviews and check-ins) are related to restaurant performance and
using them to predict restaurant failure is feasible [2,3,4,5].
However, few researchers have made in-depth studies on the
relationship between the abundant semantics of reviews (The
taste, environment, service, price, etc.) and business
performance. Even some did, they ignored the fact that different
customers have different preferences on giving ratings and
reviews. For example, some customers like giving high ratings
to almost all restaurants and some customers prefer to give low
scores. In addition, some people tend to use personalized words
to express their point of view (e.g., “good” is used to express
satisfaction by some strict customers and express borderline by
some lenient customers). Yelp also defines various attributes,
such as credit card, Wi-Fi, parking etc., which can be used to
predict the future performance of restaurants [3]. Moreover, the
success and failure of restaurants are usually affected by their
surrounding business districts, which is not considered in most
studies.

To address the above problems, in this paper, we propose a
novel prediction model named Semantic Business Cluster Effect
Model (SBCM) based on the review semantics, business
attributes and cluster effect to predict business failure of
restaurants. In SBCM, we first design a neural network to
capture semantic features from the newest and most popular
reviews of each restaurant. Secondly, we design a review
importance weight metric to match reviews with reviewing
habits of different customers. Thirdly, we identify the
importance of different attributes provided by Yelp and select
the most important ones as the input of the prediction. Fourthly,
we identify business clusters by Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [6] and
differentiate restaurants into different clusters. Finally, semantic
features, business features and cluster effect features are
integrated and input into LightGBM[7] to obtain the final
prediction value. Experiments on public Yelp datasets
demonstrate that SBCM averagely outperforms SVM and
XGBoost by 14% and 3% respectively in terms of AUC.

The rest of the paper is structured as follows. After
discussing related work in Section 2, we introduce some basic
definitions and raise our problem in Section 3. Section 4 presents

DOI reference number: 10.18293/SEKE2020-077

439

our prediction model in detail. Experiments and visualization
results are given in Section 5. Finally, Section 6 concludes the
paper and introduces the future work.

II. RELATED WORKS

Since the late 1960s, business failure prediction has been
widely investigated through statistical techniques and
discriminant analysis [8]. Logit analysis [9], generalized
extreme value [10], machine learning techniques [11], neural
networks [12] etc., have also been applied in the prediction in
recent years. The common ground of these business failure
prediction methods is that they mostly rely on commercial data,
such as stock prices, working capital and debt, which are more
suitable for large enterprises rather than medium-scale
businesses, especially not applicable for restaurants that we
focus on in this paper. In addition, commercial data are usually
statistical-based, which lack timeliness and sustainability.

In recent years, online review apps become popular with the
proposal of concepts such as big data and smart city, which
provide consistent and substantial data of small and medium-
scale businesses, giving researchers a new idea to predict
restaurant failure. For example, Zhang et al. found that the rating
stars, sentiments, and photos of reviews are closely associated
with restaurant survival [2]. Snow et al. [3] studied the influence
of different business attributes and reviews on restaurant failure.
Wang et al. [5] incorporated check-in data captured from
location-based services to predict restaurant failure and obtained
better results than using business characteristic variables only.
The aforementioned works, however, neglect the fact that
business performance of a restaurant is not only affected by its
own factors, but also affected by its surrounding neighbors. Hu
et al. [13] proved that applying the neighbors’ business
performance to predict the rating of a business is feasible, and
they observed positive correlations between business
individual’s ratings and its neighbors’ ratings.

In conclusion, restaurant failure is a complex problem
affected by various factors. But until now, these factors have not
been adequately considered simultaneously in previous
researches. This paper is dedicated to proposing a prediction
model that synthesize all influence factors, including review
semantic features incorporated with the corresponding review
habit of customers, influential business attributes and business
cluster effect.

III. THE PREMIMINARY

In this section, we define several basic concepts, which are
designed based on Yelp dataset, and are also applicable in other
datasets.

Since Yelp data only shows whether one restaurant is still
open and does not indicate the specific closure date, existing
researches approximates the business status of restaurants by the
time of reviews or check-in records [2,3,5]. Therefore, we use
the similar method and define Restaurant Failure as follows:

Definition 1. Restaurant Failure. The date of the first
review submitted is regarded as the opening date of a restaurant,
and the date of the last review submitted is regarded as the
closure date of the restaurant.

Generally, business entities such as restaurants choose to
cluster together. Studies have shown that clusters significantly
promote business booming [14,15], and the incentive effect is
called cluster effect [16]. One good example of this phenomenon
is that customers prefer to choose a venue with many restaurants
rather than a place with one standalone McDonald’s.

Definition 2. Restaurant Cluster. The restaurants are
mapped to the map by latitude and longitude. A certain number
of restaurants gathering geographically forms a restaurant
cluster.

The problem to be solved in this paper is to predict whether
a restaurant will fail in some time, which is defined as follows:

Problem Definition. Build a prediction model ℱ , which
contains the following structures:

Input: (a)heterogeneous data (review, check-in and business
attributes) of a target restaurant; and (b)the cluster information
data (the latitude and longitude) of all restaurants in the same
city.

Output: whether the target restaurant will fail in the year of
𝑡 + 1.

IV. THE FRAMEWORK

The model that we propose in this paper mainly consists of
three views: semantic view (we capture semantic features of
reviews via a neural network and different reviews are assigned
with different importance according to their reviewers’ habits),
business attribute view (we select the most influential business
attributes from datasets), and business cluster effect view (we
identify business clusters based on density and differentiate
restaurants in different clusters). After capturing features of
these views, we input the compositive feature vector into
lightGBM to get the prediction result as shown in Fig.1.

A. Extractation of Influence Factors

1) Extracting Semantic Features: To capture the abundant
semantics about different aspects of a restaurant, review texts are
firstly converted to machine learnable sequences. Since one-hot
encoding leads to too long vector, the output of word embedding
tools such as word2vec[17] or GloVle[18] is still too long (e.g.
100 dimensions is a common length of word vector, but a review
with only 10 words is converted to 10*100 dimensions).
Convolutional neural network (CNN), which is famous for its
ability of high-dimension information extraction, is applied to
reduce the size of vectors. The intermediate vectors outputted
from CNN represent the highly condensed semantic features and
contain the same semantics with origin sentence. So, we design
a deep learning sentiment classification model to obtain the
review representation vector from CNN layers as shown in Fig.2.
When customers submit reviews, they are required to attach
rating stars at the same time, which contain the same emotion
with reviews. Lots of studies use the rating stars as sentiment
label to train sentiment classification model [19,20]. In this
paper, we also employ the rating star as our sentiment label.

440

Figure 1. The Framework of SBCM.

Figure 2. The method to reduce dimensions of review representation vectors.

For each restaurant 𝛼, we choose the most popular and recent
𝑚 reviews to input into our model to get the review
representation vectors. The input matrix of input layer is created
by concatenating the word vectors of a review. The neural
network accepts fixed length vector as input, but the length of
reviews is usually unfixed. To solve this mismatching problem,
we cut out 𝑛 words from a review as a review vector (If the
length of some reviews is less than 𝑛, the reviews are padding
with zero). After assembling the review vectors, we get a 𝑚 ∗ 𝑛
review matrix, which is defined as follows:

𝑀𝑟 = (𝑤1
𝑚; 𝑤2

𝑚 ; … ; 𝑤𝑛
𝑚) (1)

where 𝑤𝑛
𝑚 stands for the 𝑛-th word in the 𝑚-th review, 𝑀𝑟 ∈

 ℝ𝑚∗𝑛 is the review matrix.

In our method, GolVe is employed to generate embedding
word vectors. All the word vectors in the GloVe are stacked in a

word embedding matrix 𝑀𝑤 ∈ ℝ𝑑×|𝑉| , where 𝑑 is the
dimension of word vector and |𝑉| is the vocabulary size. We

employ the pre-trained 𝑀𝑤 from GloVe’s official website1 to
ensure the efficiency of the word vector. In the embedding layer,
every word in 𝑀𝑟 is converted into a vector of floating number
by finding every word vector in the 𝑀𝑤 , which is defined as
follows:

𝑀𝑒 = 𝐹𝑒(𝑀𝑟 , 𝑀𝑤) (2)

where 𝐹𝑒 denotes the operation of embedding. The matrix 𝑀𝑒 is
a set of m reviews, in which every word is converted.

Then, CNN is applied to compute representation vectors of
reviews and to reduce the length of vectors. Several
convolutional filters of different widths are used in the
convolution layer to capture different semantic of various
granularities. For example, a convolutional filter with a width of
2 captures the semantics of phrases in a sentence and a width of
5 captures the semantics of short sentences in a sentence as Fig.2
shows. The process of the CNN convolution is defined as:

𝑀𝑐 = 𝑓(𝑊𝑒 ∗ 𝑀𝑒 + 𝑏𝑒)

where * denotes the operation of convolution and 𝑓 is an
activation function. 𝑊𝑟𝑙 and 𝑏𝑟𝑙 are learnable parameters. We
input 𝑀𝑐 into a pooling layer to reduce the size. Then an average
pooling layer is employed to capture the whole semantics of the
review. So far, we get the review representation feature vector

matrix 𝑀𝑜 ∈ ℝ𝑚∗𝑘, in which 𝑘 is the output length of the review
representation vector.

2) Integrating Review Importance Weight: Reviews are
given by different reviewers with respective reviewing habits.
Yelp has a simple and intuitive weight metric, i.e. review vote,
which is not able to reflect this difference. Inspired by this, we
design a review importance weight metric, considering both
review vote and reviewer attributes. In Yelp, there are three tree
type of votes, i.e., useful, funny and cool, all of which are
positive vote. We employ the number of all votes as the weight
of a review, which is defined as follows:

𝑊𝑟 = 휃𝑢
𝑟 + 휃𝑓

𝑟 + 휃𝑐
𝑟 (3)

where 휃𝑢 , 휃𝑓 , and 휃𝑐 denote the number of useful, funny and

cool votes. We think that the more votes a review have received
the more important a review is. We then adopt the average
received votes as the weight of a reviewer, which is defined as
follows:

𝑊𝑢 =
휁𝑢

𝛿𝑢

(4)

where 𝛿𝑢 denotes the number of reviews that a reviewer has
written. 휁𝑢 denotes the number of all kinds of votes that a
reviewer have received. 휂𝑟 denotes the rating star of a review.
휂𝑢 denotes the average rating star submitted by the reviewer.
휂 = |휂𝑟 − 휂𝑢| stands for how different between the sentiment
of review and the reviewer's ordinary habits. Intuitively, the
bigger 휂 is, the more influential a review is. Considering the
above factors, the review weight metric is defined as follows:

𝐼 = 𝑙𝑛((𝑊𝑟 + 𝑊𝑢) ∗ 휂 + 1) (5)

where I is in [0,1). By calculating every 𝐼 of 𝑚 reviews, we can
get matrix 𝑀𝐼 ∈ ℝ𝑚∗1 . To concatenate 𝑀𝑜 with 𝑀𝐼, we get a
matrix containing semantics and corresponding weights, which

is denoted as 𝑀𝑠 ∈ ℝ𝑚∗(𝑘+1).

1http://nlp.stanford.edu/data/glove.6B.zip

441

3) Screening Business Attributes:
As we mentioned above, commercial data are commercial

secrets with limited access. Thanks to Yelp, we obtain business
attributes of the restaurants instead, such as credit card, Wi-Fi,
parking etc. We explore the importance of each attribute on
restaurant failure by inputting all business attributes as a vector
into our prediction component and output the weights.

By removing the zero-impact and low-impact attributessuch
as music type and atmosphere, we select the most influential
business attributes. Then we concatenate these attributes 𝑎𝑖 into
a business attribute vector Γ𝑏 = 𝑎1⨁ 𝑎2⨁ … ⨁ 𝑎𝑖 , where ⨁
represents vector connection. Finally, by flattening 𝑀𝑠 into a
vector and combining with Γ𝑏 , we obtain a vector Γ𝑠𝑏 , which
contains semantics and business attributes.

4) Capturing the Influence of Cluster Effect :
A restaurant cluster is a geographical location where enough

resources and competences amass and reach a critical threshold,
which is close to the density cluster. We employ DBSCAN to
cluster the restaurants. DBSCAN is an algorithm to discover
arbitrary-shaped clusters and to distinguish noise points
simultaneously. In detail, DBSCAN accepts a radius value 휀 and
a minimal value 𝑀𝑖𝑛𝑃𝑡𝑠, which means that there are at least
𝑀𝑖𝑛𝑃𝑡𝑠 points within the area of 휀 radius. Fig.3 shows the
restaurant clusters of Toronto and Las Vegas in 2017 calculated
by DBSCAN.

Figure 3. The restaurant cluster of (a) Toronto and (b) Las Vegas in 2017. In

the figure, different colors denotes different restaurant clusters.

Researchers find that increasing the productivity of business
clusters increases the competitive advantage of their individual
[16]. Therefore, we employ the total number of review and
check-in of restaurants in a cluster to reflect its competitive
advantage, which is defined as follows:

𝐸 = ∑(𝑟𝑒𝑣𝑖𝑒𝑤𝛼 + 𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝛼), 𝛼 𝑖𝑛 𝐶 𝛼 (6)

where 𝛼 denotes a restaurant and 𝐶 𝛼 denotes the restaurant
cluster where 𝛼 is located in.

By concatenating Γ𝑠𝑏 with 𝐸, we get a restaurant feature
vector Γ𝑠𝑏𝑐, which contains semantic features, business features
and cluster effect.

B. Prediction Component

LightGBM [7] is a fast, distributed, high-performance
gradient boosting framework based on Gradient Boosting, which
provides a good way to solve classification and regression
problems by combining many tree models into a more accurate
one. Compared to other Gradient Boosting Decision Tree
(GBDT) algorithms using level-wise tree growth strategy,
LightGBM produces more complex trees by following leaf-wise
split approach, which is the main factor in achieving higher
accuracy. In addition, it supports parallel and GPU learning and
has compatibility in handling large-scale data. Therefore,
LightGBM is adopted in this paper to predict whether restaurants
will fail in the future, which is essentially a classification
problem as succeed or fail.

We split the restaurant dataset into a training set and a testing
set. After each restaurant in these two sets going through the
process and forming a feature vector Γ𝑠𝑏𝑐, as shown in Fig.4, we
get a training feature vector set 𝜙𝑡𝑟𝑎𝑖𝑛 and a testing feature
vector set 𝜙𝑡𝑒𝑠𝑡. Then we input 𝜙𝑡𝑟𝑎𝑖𝑛 into LightGBM to train a
model ℳ . Finally, we input 𝜙𝑡𝑒𝑠𝑡 into model ℳ and get the
final prediction value set 𝜓, in which every prediction value �̂�
denotes whether the corresponding restaurant will fail.

Figure 4. The process to generate a combined feature vector Γ𝑠𝑏𝑐.

V. EXPERIMENTS

A. Experimental Setup

1) Datasets: In this paper, we select the open dataset from
Yelp2 for experiments, which includes more than 190,000
restaurants, more than 5 million review data and more than 1
minllion user data in various cities from October 2004 to
November 2018. After analyzing the datasets, we find that Las
Vegas and Toronto have the highest number of reviews from
different countries, which indicates the popularity of yelp in
these cities. Therefore, we select the latest data from 2016 to
2017 of Las Vegas and Toronto as our experiment dataset (the
data of 2018 is incomplete). The detailed statistics of the

datasets are shown in Table Ⅰ. In our experiment, restaurants

that receive less than 10 reviews are filtered to ensure enough
data for semantic extraction. We split 80% of the dataset as
training data and 20% of the dataset as testing data.

2https://www.yelp.com/dataset

M

CNN output

m * k

Concatenate with M

o

I

 Ms

m * (k+1)

Flatten

Concatenate with

Business Features

Concatenate with E

(a) (b)

442

TABLE I. STATISTICS OF DATASETS

Las Vegas Toronto

2016 2017 2016 2017

#Restaurant 22515 24004 14286 14760

#Closed

Restaurant
883 873 744 668

2) Parameters Settings: In our experiment, the number of

the most popular and recent reviews(i.e., 𝑚)is set as 10. The
length of every review(i.e., 𝑛) is set as 20. We implement the
method to get semantic feature vector by Keras, which is a fast
experimentation neural networks API running on top of
TensorFlow. Our experiments were run on a cluster with four
NVIDIA 1080Ti GPUs.

3) Evaluation Metrics: As Table Ⅰshows, the numbers of

the closed restaurants and surivial restauants are imbalance.
Due to this, we employ ROC curve (receiver operating
characteristic curve) and AUC (receiver operating
characteristic's area under curve) as evaluation metrics. An
ROC curve is defined by FPR (false positive rate) and TPR (true
positive rate) as x and y axes, respectively, which depicts
relative trade-offs between true positive (benefits) and false
positive (costs). The area under the curve is defined as AUC.

4) Comparison Methods: We compare our model with two

other methods. As for the SBCM that we proposed, we also

conduct multiple experiments without semantics and without

cluster effect.

• SVM [21]: A supervised learning model that uses
classification algorithms for two-group classification
problems.

• XGBoost [22]: A gradient boosting tree model, which
has gained widely popularity and attention recently after
many winning teams of competitions using it.

• SBCM with no semantics: A variant model of SBCM,
which does not contain semantic features.

• SBCM with no cluster effect: A variant model of SBCM,
which does not contain cluster effect features.

B. Experimental Results

1) Performance Comparison:
The comparisons between SBCM and other methods is

shown in Fig.5. As we can see, SBCM obtains the best
performance on the datasets of Toronto and Las Vegas both in
2016 and 2017. On average, SBCM outperforms SVM and
XGBoost by 14% and 3%, respectively in terms of AUC.
Besides, the model performance on four datasets in terms of
AUC also shows that our proposed model is most stable, and the
range of SBCM in terms of AUC is 0.05. In general, if the AUC
score of a model is above 0.7, it is regarded as a “fair model”,
and the average AUC of our proposed model is 0.78, which is
above the standard.

In order to verify the validity of SBCM, we remove part of
the structure in our model and conduct the same experiment. The
results, shown in Fig.6, indicate the importance of semantics and
cluster effect. Specifically, SBCM outperforms SBCM without
semantics and SBCM without cluster effect by 8% and 2%,

respectively in terms of AUC, which demonstrates that
semantics is more important than cluster effect in our model. In
addition, we notice that results in 2017 is worse than 2016 both
in Toronto and Las Vegas. The possible reason is that restaurants
experienced bad periods of closures in 2016 [3], which reduces
the training datasets for 2017 prediction and leads to the low
performance.

Figure 5. Performance comparisons of different methods.

Figure 6. Performance comparisons of SBCM with different structures.

2) Importance ranking of business attributes:
We also explore the importance of business attributes, as

shown in Fig.7. We notice that the three most important
attributes that affect the future performance of restaurants are
credit card support, lunch support and noise level. The
importance of credit card support is comprehensible as it is safer
and more convenient than cash. We also infer from the results
that whether a restaurant provides lunch is closely relevant to
customer’s choice. Moreover, customers attach importance to
the dinning environment such as noise influence.

(a) ROC curve - 2016 Toronto (b) ROC curve - 2017 Toronto

(c) ROC curve - 2016 Las Vegas (d) ROC curve - 2017 Las Vegas

0.50

0.60

0.70

0.80

0.90

1.00

Toronto

2016

Toronto

2017

Las Vegas

2016

Las Vegas

2017

A
U

C

SBCM with no semantics
SBCM with no Cluster Effect
SBCM

443

Figure 7. The importance ranking of different business attributes.

VI. CONCLUSION

In this paper, we propose a novel prediction model named
SBCM based on review semantics, business attributes and
cluster effect to predict business failure of restaurants.
Specifically, our model consists of the following steps: 1) we
capture semantic features of reviews via a neural network and
different reviews are assigned with different importance
according to their reviewers’ habits; 2) we select the most
influential business attributes from datasets; 3) we identify
business clusters based on density and differentiate restaurants
in different clusters; 4) The above semantic features, business
features and cluster effect features are combined and input into
LightGBM [7] to get the final prediction value. Experiments on
public Yelp datasets of Toronto and Las Vegas from 2016 to
2017 demonstrate that SBCM averagely outperforms SVM and
XGBoost by 14% and 3% respectively in terms of AUC.

In the future, we will further study the following issues: (a)
explore the semantic influence of specific words that represent
restaurant failure; (b) introduce more heterogeneous information
to complete the model; and (c) improve the business cluster
method to better simulate the actual restaurant clusters.

REFERENCES

[1] “National restaurant association,” https://www.restaurant.org/Downloads
/PDFs/Research/SOI/restaurant_industry_fact_sheet_2019.pdf, 2019.

[2] Zhang M, Luo L. Can user generated content predict restaurant survival:
deep learning of yelp photos and reviews[J]. Available at SSRN 3108288,
2018.

[3] Snow D. Predicting Restaurant Facility Closures[J]. Available at SSRN
3420490, 2018.

[4] Hegde S, Satyappanavar S, Setty S. Restaurant setup business analysis
using yelp dataset[C]//2017 International Conference on Advances in
Computing, Communications and Informatics (ICACCI). IEEE, 2017:
2342-2348.

[5] Wang L, Gopal R, Shankar R, et al. On the brink: Predicting business
failure with mobile location-based checkins[J]. Decision Support Systems,
2015, 76: 3-13.

[6] Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise[C]//Kdd. 1996,
96(34): 226-231.

[7] Ke G, Meng Q, Finley T, et al. Lightgbm: A highly efficient gradient
boosting decision tree[C]//Advances in neural information processing
systems. 2017: 3146-3154.

[8] Altman E I. Financial ratios, discriminant analysis and the prediction of
corporate bankruptcy[J]. The journal of finance, 1968, 23(4): 589-609.

[9] Jones S, Hensher D A. Predicting firm financial distress: A mixed logit
model[J]. The accounting review, 2004, 79(4): 1011-1038.

[10] Andreeva G, Calabrese R, Osmetti S A. A comparative analysis of the UK
and Italian small businesses using Generalised Extreme Value models[J].
European Journal of Operational Research, 2016, 249(2): 506-516.

[11] Pal R, Kupka K, Aneja A P, et al. Business health characterization: A
hybrid regression and support vector machine analysis[J]. Expert Systems
with Applications, 2016, 49: 48-59.

[12] Tkáč M, Verner R. Artificial neural networks in business: Two decades
of research[J]. Applied Soft Computing, 2016, 38: 788-804.

[13] Hu L, Sun A, Liu Y. Your neighbors affect your ratings: on geographical
neighborhood influence to rating prediction[C]//Proceedings of the 37th
international ACM SIGIR conference on Research & development in
information retrieval. 2014: 345-354.

[14] Canina L, Enz C A, Harrison J S. Agglomeration efects and strategic
orientations: Evidence from the US lodging industry[J]. Academy of
management journal, 2005, 48(4): 565-581.

[15] McClanahan B, Gokhale S S. Centrality and cluster analysis of yelp
mutual customer business graph[C]//2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC). IEEE, 2016, 1: 592-
601.

[16] Porter M E. The competitive advantage of nations. New York: Free
Press[J]. PorterThe Competitive Advantage of Nations1990, 1990.

[17] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word
representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.

[18] Pennington J, Socher R, Manning C D. Glove: Global vectors for word
representation[C]//Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP). 2014: 1532-1543.

[19] Tang D, Qin B, Liu T. Learning semantic representations of users and
products for document level sentiment classification[C]//Proceedings of
the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). 2015: 1014-1023.

[20] Wen S, Li J. Recurrent Convolutional Neural Network with Attention for
Twitter and Yelp Sentiment Classification: ARC Model for Sentiment
Classification[C]//Proceedings of the 2018 International Conference on
Algorithms, Computing and Artificial Intelligence. 2018: 1-7.

[21] Cortes C, Vapnik V. Support-vector networks[J]. Machine learning, 1995,
20(3): 273-297.

[22] Chen T, Guestrin C. Xgboost: A scalable tree boosting
system[C]//Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining. 2016: 785-79

444

Detecting Spammers from Hot Events on Microblog

Platforms: An Experimental Study

Jialing Liang1, Peiquan Jin1*, Lin Mu1, Jie Zhao2*
1School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

2School of Business, Anhui University, Hefei, China

jpq@ustc.edu.cn

Abstract—With the development of Web 2.0, social media such as

Sina Weibo, Douban, and Zhihu have become an important

platform for the dissemination and fermentation of hot events. At

the same time, many spammers are hidden in the network, and

they are driven by the interests to participate in the process of

event dissemination, disseminating information with a propensity,

and guiding public opinion through speculation, malicious

comments, malicious attacks, etc. It interferes with the network

order and the decision making based on social networks, and even

affects social stability. Therefore, it is important for government

and enterprises to accurately detect spammers from hot events on

microblog platforms and further make sure whether a hot event is

natural developing or driven by spammers. In this paper, we focus

on the hot event list on Sina Weibo and collect relevant microblogs

and involved users of each hot event. Then, we employ typical

machine learning methods to conduct an experimental study on

detecting spammers. Specially, we develop a new set of features

based on three aspects, including user profile, user behavior, and

user relationships, to reflect various factors affecting the detection

of spammers. Finally, we conduct experiments on a real data set

from the Sina Weibo, and compare three machine learning models

including the Naive Bayes, the J48 Decision Tree, and the Logistic

Regression model, concerning various metrics like precision,

recall, F-measure and AUC. The results show that the Logistic

Regression model achieves the best average F-measure in detecting

both spammers and non-spammers.

Keywords-microblog; spammer detection; user feature;

classification model

I. INTRODUCTION

As online users migrate to mobile terminals and social
media, social platforms such as Weibo that are instant and
convenient have become important channels for netizens to
interact, share, and disseminate with others. Weibo users can
share a daily life by posting a short text on the web and mobile
terminals and can browse the information posted by other users
to get attention to current events and hot spots or participate in
the discussion of popular topics and the spread of events through
methods such as reposting comments. in. According to the
CNNIC Report of China [1] released by the China Internet
Network Information Center in February 2019, as of December
2018, the number of microblog users in China was 350 million,
accounting for the total number of Internet users. The proportion
reached 42.3%. In typical social applications, compared to the
privacy of the WeChat circle of friends and QQ space, Weibo

has suddenly become a mainstream online media with many
significant features such as large user scale, strong sociality, fast
propagation speed, and fast response speed. For example, on
November 17, 2018, the People's Daily published the Weibo
topic "China is not a little bit". It has been reposted 1.259 million
times in just half a day, received 118,000 comments and 943,000
likes. The topic of reading reached 8.94 billion.

The existence of Weibo provides a fast platform for the
propagation of hot events [2-4]. But at the same time, due to the
emergence and promotion of the online water army, Weibo has
also become a target platform for spreading rumors and hype.
Spammers are those that are driven by commercial interests to
achieve improper purposes such as influencing public opinion
and disrupting the network environment, thereby manipulating
software robots or spam accounts and producing and
disseminating false information and spam on the Internet.
Generally, spammers may manipulate spam accounts to
speculate bland blog posts or topics as hot events. The purpose
is to gain fame and attention, fight against hostile forces, stir up
public sentiment, or guide public opinion, Spammers can
mislead Internet users' correct judgment of the situation of
events, and even maliciously attack the government and affect
social stability Due to its large scale, the high degree of
coverage, and wide target range, the network spam makes it
difficult to identify spam accounts from a great number of users
solely by manual means.

Based on the above analysis, this article focuses on the
detection of spammers during the spread of Sina Weibo hot
events. Particularly, we use machine learning methods to
identify spam accounts from users who participate in the process
of promoting an event to become a hot spot, giving evidence of
whether the event propagation process is naturally fermented or
promoted by the spam, and finally help decision-makers to guide
and control public opinion [2].

Briefly, we make the following contributions in this paper:

(1) We design a crawler platform to collect detailed personal
information of an event-related Weibo user, making the data set
more realistic. We also set up a Weibo user manual labeling
platform and design the labeling process so that each Weibo user
can judge the labeled results, reducing the errors caused by
manual labeling. In addition, the web-based platform makes
labeling work much convenient and reliable.

(2) A Weibo spammers detection method combining user
attribute characteristics, user behavior characteristics, and user
relationship characteristics is proposed. Compared with the
existing methods, the method proposed in this paper

* Corresponding author

DOI reference number: 0.18293/SEKE2020-080

445

comprehensively considers three user characteristics, which is
more suitable for the identification of spammers.

(3) Based on the defined feature set, we conduct experiments
on a real dataset and compare the performance of three types of
classification models, including Naive Bayes, J48 decision tree,
and logistic regression model. The results show that the logistic
regression model has the best detection effect.

The remainder of the paper is structured as follows. Section
II provides a brief literature review on recent research progress.
Section III describes the data crawling and cleaning process.
Section IV presents feature selection. Section V reports the
experimental results, and finally, we conclude the entire paper in
Section VI.

II. RELATED WORK

Spammers first appeared in the e-mail field, and then quickly
spread to the e-commerce and social fields. Existing detection
methods of network spammers are mainly divided into detection
based on content features, user features, environment features,
and comprehensive features [5].

In the early network environment, the spam was mainly used
to create many spam emails and false comments on e-commerce
platforms. The content generated by the online spam included
obvious characteristics, such as commercial advertisements,
spam, duplicate comments, etc. Most of the network spammers'
recognition is based on the detection of content features,
involving text orientation analysis [6], sentiment analysis [7],
and other methods in natural language processing. The filtering
and detection of spam have been researched for a long time: the
literature [8] analyzes the existing detection and evaluation work
in the two fields of electronic spam and image spam; literature
[9] has seven differences A comparative study of the version of
the Naive Bayes classifier and the linear support vector machine
for automatic filtering of e-mail spam was conducted. For fake
reviewers in e-commerce platforms and forums, usually by
analyzing the text ’s propensity analysis to identify fake reviews
that deviate from unspammed user reviews [10]; some
researchers also look for different rules or groups of rules. Used
to detect abnormal comment user behavior [11].

With the rise and development of social platforms such as
Twitter, Facebook, and Sina Weibo, and the increase in the
number of users on the social network, coupled with the
enhancement of user identification, the Internet has continued to
improve its concealment and deception strategies. For normal
users, its published content no longer has obvious spam features.
Therefore, the detection and recognition of the network spam
have also gradually shifted from content-based features to user-
based features. Benevenuto et al. [12] used tweets related to the
three hot topics to manually construct a labeled dataset,
determine 39 attribute features related to the content of the tweet
and 23 attribute features related to the user, and then use the
SVM method is used to classify and finally the analysis of
experimental results is performed. Murmann et al. [13] used
neighbor nodes with interactive relationships to detect the trust
relationship between users in Twitter, and obtained a new
relationship feature set, and used this feature set to rank the
suspiciousness of all users, with the highest suspiciousness
among them. That is judged as the network spam. Wang et al.
[14] created a directed social graph to show the relationship

between followers and fans. Based on the tweet content features
and user relationship graph features, the Bayesian classifier was
used for spam detection, achieving an accuracy of 89%. rate.
Yang et al. [15] deeply analyzed the concealment and deception
strategies of the Twitter network spam and proposed a method
to detect the network spam in Twitter based on the
characteristics of neighbor nodes. Han Cao et al. [16]
constructed a recognition network by taking the user's attribute
characteristics as the input variables of the learning model, the
user's behavior characteristics as the observation variables, and
the probability that the user is a spam force is the hidden variable
between the input and the observed variables The spam's
probability map model is used to calculate the probability that
the user is spam. Bhat et al. [17] found that similar to ordinary
users, the network sailors in the social field can also form a
certain size network sailor community. To this end, they
extracted user interaction diagrams from the behavior logs of
Weibo users, found overlapping community maps formed
therein, and after manually marking some of the network spam
nodes, they calculated each node to be identified. Communicate
with the community of marked nodes to classify unknown
nodes. In addition, Azad, et al. [18] presented a rapid detection
method for spammers through collaborative information sharing
across multiple service providers, which showed that fusing
muttiple information provided by various providers was helpful
for spammer detection.

Compared with the existing work, this paper designs a new
crawler algorithm, which takes the keywords of the hot event as
seeds to crawl the event-related microblogs and the detailed
personal information of the microblog users who participated in
this hot event. We also construct a manual labeling platform to
tag the dataset. In addition, we propose a new feature set based
on user attribute characteristics, user behavior characteristics,
and user relationship characteristics. Compared with the existing
methods, the method proposed in this paper comprehensively
considers three user characteristics, which are more suitable for
the identification of spammers.

III. DATA CRAWLING AND LABELLING

A. Data Crawling

The data crawling part uses Python's crawler framework and
configures the Google Chrome driver to simulate login to obtain
cookie data. We use popular event keywords and link to the old
search interface of Sina Weibo to form a seed URL, and crawl
the Weibo details returned by the search page, including Weibo
content, likes, retweets, comments, release time and personal
information. The crawled data is stored in MongoDB, which
maintains Weibo information tables and personal information
tables.

B. Data Cleaning

The data cleaning of the original data crawled by the crawler
is mainly divided into two steps. The first step is to filter the
Weibo or missing important information generated by the
dynamic webpage or Weibo anti-crawling caused by the 302
transfer when crawling data. The second step is the manual
labeling phase. When the user information is abnormally absent,
for example, the number of followers, followers, and tweets of a
user is not 0, but the list of followers, followers, and tweets is
empty, we cannot judge whether the user is a spam user based

446

on the existing information. As a result, such users will be
removed from the database at this time.

C. The Labeling Platform

The manual labelling platform is a tool we developed and
deployed on a Tomcat server. The architecture is shown in Fig.
1.

There are four label tables denoted as Lable_0, Label_1,
Lable_2, and Label_3 in Fig. 1. The Label_0 stores the initial
unlabeled user ID. The Label_1 stores the user ID and label
labeled by one tagger. The Label_2 stores the user ID and label
labeled by two taggers, and the Label_3 stores the user ID and
labeled mark.

The process of the labeling platform is as follows:

(1) Copy the IDs of all users from the personal information
table to Label_0, and set the flag field to -1 to indicate no flag;

(2) The client sends a request, and the web container will
perform the JSP conversion and the compiled file. When the
Label_0 table is not empty, randomly obtain a user ID from
Label_0, and obtain the detailed information of the ID from the
personal information table. The result is returned to the browser.
If Label_0 is empty, the ID is obtained from Label_1, and so on,
until the Label_2 table is also empty, indicating that the mark
has been completely completed;

(3) Submit the tag determined by the tagger to the web server
and forward it to the servlet container. At this time, delete the ID
from Labeli, change the value of the tag field, and add the user
ID and the tag field to Labeli + 1.

(4) The browser refreshes the current page after receiving a
response, that is, continues to step (2) until all users have
completed the labeling by three users.

IV. FEATURES SELECTION

To effectively identify the spam users in the user group, in
this paper we design the following features (see Table 1).

A. User-Profile Features

(1) Num_Follows
Unspammed users generally only pay attention to the people

they are interested in, so the number of followers will be in a

relatively reasonable range. To achieve the effect of publicity
and hype, spammers often follow a lot of bloggers. Users will
have a higher number of followers than non-spammers.

(2) Num_Fans
Unspammed users will have a circle of friends on the Weibo

platform, so there is a certain percentage of followers, and
spammers are often fans of other people, but they rarely attract
the interest and attention of others. Compared with unspammed
users, the number of fans of the spam is very small.

(3) Num_Tweets
Unspammed users use Weibo normally. There will be a

certain percentage of Weibo users, who are either new users only
publishing or forwarding specific tweets or be active in the
comments to promote hype and public opinions. On the other
side, their own posts are few. Thus, non-spammer users
generally post more than spammers.

(4) FAuthentication
On microblogging platforms, an authenticated account will

generally be more credible and authoritative than an
unauthenticated account. Therefore, authenticated users are
more likely to be unspammed users, while unauthenticated users
are more likely to be spammers.

(5) FBriefIntroduction
Spammers generally have relatively low completeness of the

information. Few Spam users fill out the personal profile field.
Therefore, Spammers are more likely to have no profile, and
unspammed users are more likely to have a profile.

(6) FVIP
Generally speaking, spammers do not need to register a VIP

because it is costly. However, many normal users will choose to

MongoDB

Microblog Posts

User Data

Label_0

Label_1

Label_2

Label_3

Tomcat

Container

JSP

Servelet

Web

Server

JDBC

Browser

Request Results

Figure1. Architecture of the labeling platform.

TABLE I. FEATURES OF MICROBLOG USERS

No. Type Feature

1
User-Profile

Features
Num_Follows

2
User-Profile

Features
Num_Fans

3
User-Profile

Features
Num_Tweets

4
User-Profile

Features
FAuthentication

5
User-Profile

Features
FBriefIntroduction

6
User-Profile

Features
FVIP

7
User-Behavior

Features
Original_Ratio

8
User-Behavior

Features
URLs_Ratio

9
User-Behavior

Features
Mentions_Ratio

10
User-Behavior

Features
Topics_Ratio

11
User-Behavior

Features
Self-Similarity

12
User-Relationship

Features
Fans_Follows_Ratio

13
User-Relationship

Features
Aggregation_Coef

447

pay for VIPs to obtain more functions and benefits when using
microblogging services. To this end, users who are VIPs are
more inclined to be unspammed users, and users who have not
registered as VIPs are more likely to be spammers.

B. User-Behavior Features

(1) Original_Ratio

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑅𝑎𝑡𝑖𝑜 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑇𝑤𝑒𝑒𝑡𝑠

𝑁𝑢𝑚_𝑇𝑤𝑒𝑒𝑡𝑠

Spammers are usually controlled by machines or robots, so
most spammers are more likely to repost and comment on a
certain microblog, and rarely publish original microblogs. On
the contrary, normal users will share their daily life around them
and will publish a certain percentage of original tweets. Thus,
the original ratio of tweets posted by spammers can be generally
lower than that of normal users.

(2) URLs_Ratio

𝑈𝑅𝐿𝑠_𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚_𝑈𝑅𝐿𝑠

𝑁𝑢𝑚_𝑇𝑤𝑒𝑒𝑡𝑠

Unspammed users are limited to 140 characters of tweet text
for propaganda and hype. The microblogs posted or reposted
may contain more URLs of web links than unspammed users,
thus inducing users to click on the links to browse the page they
want to display. Therefore, the utilization rate of URLs for spam
users is generally higher than that of non-spam users.

(3) Mentions_Ratio

𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠_𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚_𝑀𝑒𝑛𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚_𝑇𝑤𝑒𝑒𝑡𝑠

The @ method is used to remind users who are @ to view
the Weibo content in time. After being logged in by @ users,
they can see the reminder information of the Weibo. Spammers
will attract @ users' attention through @some unrelated users, to
achieve rapid diffusion. Therefore, the @usage rate of spam
users may be higher than that of unspammed users.

(4) Topics_Ratio

𝑇𝑜𝑝𝑖𝑐𝑠_𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚_𝑇𝑜𝑝𝑖𝑐𝑠

2 × 𝑁𝑢𝑚_𝑇𝑤𝑒𝑒𝑡𝑠

When users participate in the discussion of a hot topic, a #
sign is often included outside the topic. Spammers will use the
hashtag # more to achieve the hype topic and promote the topic
to become a popular purpose. Therefore, the # usage rate of spam
users may be higher than that of unspammed users. Since #
always appears in pairs, and Num_Topics only represents the
number of occurrences of # in tweets, the denominator in the
definition needs to be multiplied by 2.

(5) Self-Similarity
The self-similarity among historical tweets refers to the

proportion of similar tweets in the total number of posts
published by users. To achieve the purpose of publicity and
marketing, spammers often use content templates to generate

many similar microblogs. Therefore, the historical microblog
self-similarity of spammers is generally higher than that of non-
spammers.

To calculate the self-similarity, we use a hierarchical
clustering method based on the cosine similarity to cluster the
historical microblogs of a user to form clusters S=(C_1, C_2, ...,
C_k). Here, k is the number of clustered classes. C_J is the jth
class that contains N tweets, which can be defined as C_J=(T_J1,
T_J2, ..., T_JN). The N tweets are regarded as similar tweets.
Then, we define the self-similarity of tweets as follows [15].

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑ 𝐺𝐽=𝑘

𝐽=1 (𝐶𝐽)

𝑁𝑢𝑚_𝑇𝑤𝑒𝑒𝑡𝑠
, 𝐺(𝐶𝐽) = {

𝑁 , 𝑁 ≥ 2
0 , otherwise

C. User-Relationship Features

(1) Fans_Follows_Ratio

𝐹𝑎𝑛𝑠_𝐹𝑜𝑙𝑙𝑜𝑤𝑠_𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑢𝑚_𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑒𝑠

𝑁𝑢𝑚_𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠

Unspammed users have a normal social circle of friends with
a similar number of followees or followers, or large V users have
a great number of followees, and the ratio of followees to
followers is large. However, spammers tend to follow many
users but only a small number of followees; therefore, the
follower ratio of spam users will be lower, and the follower ratio
of unspammed users will be higher.

(2) 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛_𝐶𝑜𝑒𝑓𝑖

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛_𝐶𝑜𝑒𝑓𝑖 =
∑ 𝑎𝑖𝑗

𝑁
𝑗,𝑘=1 𝑎𝑗𝑘𝑎𝑘𝑖

𝑘𝑖(𝑘𝑖 − 1)

We construct an undirected graph G = (V, E) using the
followee and follower list of all users crawled. The adjacency
matrix of graph G is expressed as 𝐴 = (𝑎𝑖𝑗)𝑁×𝑁, and 𝑘𝑖 is the

degree of node i,
1

2
∑ 𝑎𝑖𝑗

𝑁
𝑗,𝑘=1 𝑎𝑗𝑘𝑎𝑘𝑖 represents the number of

neighbor pairs formed between node i and ki neighbor nodes.
𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑒𝑓𝑖

calculates the clustering coefficient of user i.

In general, the clustering coefficient is used to evaluate the
probability that a user's friends are also friends with each other:
for unspammed users, they are closer to their neighbors, that is,
the network of friends is closer, yielding a large coefficient.
However, as more neighbors of spammers are independent
points, their clustering coefficient will be relatively small.

V. PERFORMANCE EVALUATION

A. Settings

Dataset. The data set in this study was collected from the
users who participated in comments and reposts under the
popular tweets returned by the search keyword "Huawei sued the
US government" in the old Sina Weibo search interface. There
are 341 popular microblogs related to words and topics. After
filtering out users who are restricted by Weibo anti-crawling
restrictions and crawling incomplete information, 8149 users
have been collected. After manual labeling, 312 of them are non-
spammer users. There are 7,837 spammers. To avoid the

448

category imbalance caused by the large difference between the
positive and negative examples, the data of a total of 800 users,
including 312 spam users and 488 unspammed users are used for
10-fold cross-validation in the experiment.

Metrics. In the experiments, we use precision, recall, F-
measure, and the AUC under the ROC curve as the evaluation
indicators for spammer detection. Let TP be the number of spam
users correctly classified by the classifier, FP be normal users
incorrectly classified as spam users, and FN be spam users
incorrectly classified as normal users. The accuracy, recall and
F1 values are defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 =
2 × 𝑃 × 𝑅

𝑃 + 𝑅

B. Classification Models

We select three classification models and compare their
performance on detecting spammers.

(1) Naïve Bayes. Let D be the training set, A be the attribute
set of users, we represent each user by an n-dimensional vector
𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), and the results are labeled into m=2 classes
𝐶 = (𝐶1, 𝐶2, … , 𝐶𝑚).

(2) J48 Decision Tree. The J48 decision tree algorithm is a
top-down, recursive divide-and-conquer strategy: selecting a

certain attribute to place at the root node, generating a branch for
each possible attribute value, dividing the instance into multiple
subsets, each subset corresponding to a root Node branches, then
repeat this process recursively on each branch. When all
instances have the same classification, the algorithm stops. Let
D be the training set, A be the attribute set of users, we represent
each user by an n-dimensional vector 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), and
the results are labeled into m=2 classes 𝐶 = (𝐶1, 𝐶2, … , 𝐶𝑚).

(3) Logistic Regression. Let D be the training set, A be the
attribute set of users, and m be number of samples, we represent
each user by an n-dimensional vector 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), and
the results are labeled into 𝐶 = (𝐶1, 𝐶2).

C. Results

We use Java-based machine learning library Weka for the
classification experiments. Tables II and II list the confusion
matrix and classification results of the dataset under the Naive
Bayes algorithm. Tables IV and V list the confusion matrix and
classification results of the dataset under the J48 decision tree
algorithm. Tables VI and VII list the confusion matrix and
classification results of the data set under the logistic regression
algorithm.

We can see that the decision tree achieves the highest
precision for detecting spammers, but its recall is not the highest
among all the three models. The naïve Bayes model achieves the
best recall, but its precision is the lowest among all compared
models, which leads to the lowest F-measure in the experiments.

We also list the performance of non-spammer detection in
the tables. Generally, the recognition of non-spammers is as
important as the detection of spammers. Thus, we calculate the

TABLE II. CONFUSION MATRIX OF NAIVE BAYES TABLE III. CLASSIFICATION RESULTS OF NAÏVE BAYES

Type
Detected as

spammers

Detected as

non-spammers
 Type Hit Ratio

Error

Rate
Precision Recall F-Measure AUC

Spammer

Non-spammer

96.67%

41.04%

3.33%

58.96%

 Spammer 0.967 0.410 0.613 0.967 0.750 0.938

Non-

Spammers
0.590 0.033 0.963 0.590 0.731 0.937

 Avg. 0.741 0.185 0.822 0.741 0.739 0.938

TABLE IV. CONFUSION MATRIX OF DECISION TREE TABLE V. CLASSIFICATION RESULTS OF DECISION TREE

Type
Detected as

spammers

Detected as

non-spammers
 Type Hit Ratio

Error

Rate
Precision Recall F-Measure AUC

Spammer

Non-spammer

90.00%

9.70%

10.00%

92.30%

 Spammer 0.900 0.097 0.862 0.900 0.880 0.925

Non-

Spammers
0.903 0.100 0.931 0.903 0.917 0.925

 Avg. 0.902 0.099 0.903 0.902 0.902 0.925

TABLE VI. CONFUSION MATRIX OF LOGISTIC REGRESSION TABLE VII. CLASSIFICATION RESULTS OF LOGISTIC REGRESSION

Type
Detected as

spammers

Detected as

non-spammers
 Type Hit Ratio

Error

Rate
Precision Recall F-Measure AUC

Spammer

Non-spammer

93.33%

11.19%

6.67%

88.81%

 Spammer 0.933 0.112 0.848 0.933 0.889 0.956

Non-

Spammers
0.888 0.067 0.952 0.888 0.919 0.956

 Avg. 0.906 0.085 0.910 0.906 0.907 0.956

449

average precision, recall, and F-measure of both spammers and
non-spammers detection for all three models. The average value
is denoted as the “avg.” column in all tables. We can see that in
terms of the average F-measure, which can be regarded as a
balanced metric of precision and recall, the naïve Bayes
performs worst and the Logistic Regression model performs best.
The decision tree model gets comparable performance with the
Logistic Regressions, indicating that it can also be considered in
the detection of spammers.

VI. CONCLUSIONS AND FUTURE WORK

Spammers have severely disrupted network order and
decision analysis based on social networks. For hot events on the
Weibo platform, judging whether the event is a natural
fermentation or a spam promotion is of great significance for the
government and enterprises to correctly evaluate the event
situation. This article uses Sina Weibo's popular event keywords
as a starting point, crawls the details of the Weibo returned under
this keyword, and crawls the personal details of the commenting
and forwarding users under Weibo. Furthermore, we designed
and built an artificial labeling platform for Weibo users of the
spammers / unspammed army. By displaying the user's personal
information, the tagger will make judgments based on personal
information to reduce the error of manual judgment. Based on
this, a spam identification method combining user attribute
characteristics, behavior characteristics, and relationship
characteristics is proposed. We combine the results of artificial
labeling to build the input set of the classification model and use
the naive Bayes, J48 decision tree, and logistic regression
models in the classification model to experimentally verify the
real data set. The experimental results show that the logistic
regression algorithm has the best classification effect on
microblog user spam detection.

In future research, we will investigate a few topics. First, we
will carry out the detection and analysis of the spam to obtain
the proportion of spammers involved in a hot event. Second, we
will study the evolution of public sentiment and topics related to
spam [19-21], which is an important indicator to reveal the
dynamic feature of spam on social networks. Third, we will
crawl real-time hotspot events on social networks and construct
a prototype that can monitor real-time spammers on
microblogging platforms.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
of China (no. 61672479 and 71273010) and the National
Statistical Science Research Project (no. 2019LY66). Peiquan
Jin and Jie Zhao are the joint corresponding authors of this paper.

REFERENCES

[1] The CNNIC Report of China.
http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201902/P0201903185
23029756345.pdf. Accessed on 1 March, 2020

[2] J. Zhao, X. Wang, P. Jin, Feature selection for event discovery in social
media: A comparative study . Computers in Human Behaviour, 2015,
51(B): 903-909

[3] L. Zheng, P. Jin, J. Zhao, L. Yue: A fine-grained approach for extracting
events on microblogs. Proceedings of the 25th International Conference
on Database and Expert Systems Applications (DEXA), 2014: 275-283

[4] P. Jin, L. Mu, L. Zheng, J. Zhao, L. Yue: News feature extraction for
events on social network platforms. Proceedings of the 26th International
World Wide Web Conference (WWW), 2017: 69-78

[5] S. Rathore, et al. SpamSpotter: An efficient spammer detection
framework based on intelligent decision support system on Facebook.
Applied Soft Computing. 2018, 67: 920-932

[6] H. Do, et al. Deep learning for aspect-based sentiment analysis: A
comparative review. Expert Systems with Applications. 2019, 118: 272-
299

[7] D. Zimbra, et al. The state-of-the-art in Twitter sentiment analysis: A
review and benchmark evaluation. ACM Transactions on Management
Information Systems. 2018, 9(2): 5:1-5:29

[8] P. Hayati, et al. Evaluation of spam detection and prevention frameworks
for email and image spam: a state of art, Proceedings of the 10th
International Conference on Information Integration and Web-based
Applications & Services (iiWAS), 2008: 520-527.

[9] T. Almeida, et al. Content-based spam filtering, Proceedings of The 2010
International Joint Conference on Neural Networks (IJCNN). IEEE,
2010: 1-7.

[10] F. Li, et al. Learning to identify review spam, Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence (IJCAI).
2011: 2488-2493.

[11] N. Jindal, et al. Finding unusual review patterns using unexpected rules,
Proceedings of the 19th ACM International Conference on Information
and Knowledge Management (CIKM), 2010: 1549-1552.

[12] F. Benevenuto, et al. Detecting spammers on twitter, Proceedings of the
Seventh annual Collaboration, Electronic messaging, AntiAbuse and
Spam Conference (CEAS), Vol. 6, 2010: 12.

[13] A. Murmann. Enhancing spammer detection in online social networks
with trust-based metrics. San Jose State University, 2009.

[14] A. Wang. Don’t follow me: Spam detection in twitter, Proceedings of the
2010 International Conference on Security and Cryptography
(SECRYPT), 2010: 1-10.

[15] C. Yang, et al. Die free or live hard? Empirical evaluation and new design
for fighting evolving twitter spammers, Proceedings of the International
Workshop on Recent Advances in Intrusion Detection. 2011: 318-337.

[16] J. Cao, et al. Collusion-aware detection of review spammers in location
based social networks. World Wide Web, 2019, 22(6): 2921-2951

[17] S. Bhat, et al. Community-based features for identifying spammers in
online social networks, Proceedings of the 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining
(ASONAM). 2013: 100-107.

[18] M. Azad, et al. Rapid detection of spammers through collaborative
information sharing across multiple service providers. Future Generation
of Computer Systems. 2019, 95: 841-854

[19] J. Liang, L. Mu, P. Jin. MGP: Extracting multi-granular phases for
evolutional events on social network platforms. Proceedings of the 14th
International Conference on Semantics, Knowledge and Grids (SKG),
2018: 269-272

[20] L. Mu, P. Jin, L. Zheng, E. Chen, L. Yue. Lifecycle-based event detection
from microblogs. Proceedings of the 27th International World Wide Web
Conference (WWW), 2018: 283-290

[21] L. Mu, P. Jin, L. Zheng, E. Chen. EventSys: Tracking event evolution on
microblogging platforms. Proceedings of the 23rd International
Conference on Database Systems for Advanced Applications (DASFAA),
2018: 797-801

450

http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201902/P020190318523029756345.pdf
http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201902/P020190318523029756345.pdf

Automatic Identification of Architecture Smell

Discussions from Stack Overflow

Fangchao Tian 1,2, Fan Lu 1, Peng Liang 1,*, Muhammad Ali Babar 2

 1 School of Computer Science, Wuhan University, Wuhan, China
2 School of Computer Science, The University of Adelaide, Adelaide, Australia

Abstract—Architecture Smells (ASs), as one source of technical

debt, indicate underlying problems at a high level of systems and

negatively impact various system qualities, such as maintainability

and evolvability. Detecting and refactoring ASs requires the

relevant architectural knowledge and experience. Therefore,

gathering the knowledge of ASs from various sources can facilitate

ASs detecting and refactoring. However, manually identifying AS

knowledge is time-consuming. Automatically and correctly

identifying AS-related posts from Stack Overflow is a step toward

utilizing the AS knowledge to help developers better maintain

their systems. In this work, we propose an approach to

automatically identify AS-related posts from Stack Overflow (SoF)

by using machine learning algorithms. We evaluate the

performance of 12 classifiers based on 3 feature extraction

techniques and 4 classification algorithms with a created dataset

of SoF posts (including 208 AS-related posts and 187 AS-unrelated

posts). The results demonstrate that the SVM algorithm with

Word2Vec achieved the best overall performance with an

accuracy of 0.650, a precision of 0.613, a recall of 0.905, and an F1-

score of 0.731. These results imply that the obtained model of the

AS-related posts identification can be used to aid developers and

researchers in collecting AS discussions from SoF.

Keywords—Architecture Smell, Architecture Smell Discussion,

Stack Overflow, Text Classification

I. INTRODUCTION

Architecture Smells (ASs) are proposed as frequently
recurring architectural decisions that negatively impact system
quality [1]. ASs, as the counterpart of code smells, occur at a
higher granularity level of a system and can have system-wide
impact on maintainability issues. Therefore, detecting and
refactoring ASs require more effort compared to code smells [2].
Different researchers defined different categories of ASs with
supported detection tools [3]. Fontana et al. defined three
dependency-related ASs and proposed a tool, called ARCAN, to
detect them by analyzing dependency graphs extracted from the
packages of compiled Java projects [2]. Mo et al. proposed
Hotspot Detector to detect five types of ASs, called Hotspot
Patterns, defined at the package and file levels [4]. Le et al.
presented ARCADE which can detect 11 types of ASs across 4
categories [5]. These ASs detection tools are metrics-based and
apply some fixed threshold to judge whether a package or
component is smelly or not. But it is challenging to manually
choose the metrics and thresholds, which can induce false-

positive instances of ASs. Correctly detecting and refactoring
ASs requires knowledge and experience of developers and
researchers to remove false positive instances [2]. Therefore,
smell detection and refactoring rely on the knowledge and
experience of developers and researchers, and need to consider
different aspects such as system domain, software context, and
software engineering experience. Moreover, unlike ASs
detection, ASs refactoring is less researched and reported in the
literature. Empirical studies on investing the knowledge and
experience of detecting and refactoring ASs are needed [6].

Stack Overflow (SoF), as a crowdsourced knowledge
sharing platform, has been a popularly and widely used software
and development Questions and Answers (Q&A) sites that
contain more than 18 million questions across a wide variety of
topics since 2008 [7]. The knowledge and experience of
developers in SoF has been adopted by researchers to study
various topics. Tahir et al. investigated the developers’
perception of code smells and anti-patterns by mining and
analyzing the discussions about these two concepts in SoF [8].
In our previous work, we manually collected and analyzed 207
AS-related posts to investigate the understanding of developers
about ASs [3], such as the approaches and tools used to detect
and refactor ASs. Therefore, the discussions in SoF posts can
provide knowledge of ASs and refactoring suggestions that can
be used to guide a developer or architect in understanding and
addressing potential issues in the architecture of a software
system. However, from these studies [3][8], we can find that
searching smell-related posts via tags or search terms is
ineffective and induces false-positive posts. Furthermore,
manually identifying AS-related posts is a time-consuming and
subjective process which requires the expertise and experience
of ASs and can also lead to inaccurate or incomplete posts. To
address this challenge, automatically mining and identifying
AS-related posts is needed.

Machine Learning (ML) and Nature Language Process (NLP)
techniques have been extensively used to automatically identify
or mine meaningful information from SoF posts. For example,
Ahasanuzzaman et al. built a technique, called CAPS, that can
automatically classify SoF posts concerning API issues [9].
Borg et al. used active learning to train an SVM classifier for
identifying SoF posts concerning the performance of software
components [10]. To the best of our knowledge, there is
currently no study that automatically mines SoF post discussing
ASs. Our research aims at closing this gap by automatically
identifying AS-related posts from SoF.

We developed an approach to automate the classification of
AS-related posts. We created a dataset, consisting of labelled

* Corresponding author

This work has been partially supported by the National Key R&D

Program of China with Grant No. 2018YFB1402800 and IBO

Technology (Shenzhen) Co., Ltd., China.

DOI reference number: 10.18293/SEKE2020-084

451

208 AS-related posts and 187 AS-unrelated posts, for training
classification models. Furthermore, we ran an experiment with
12 configurations by using three feature extraction techniques
(i.e., BoW, TF-IDF, and Word2Vec) and four classification
algorithms (i.e., LR, SVM, KNN, and RF). We then compared
the performance of the models measured in terms of accuracy,
precision, recall, and F1-score to determine the best
configuration. In our experiment, the use of the SVM algorithm
with Word2Vec performed best for automating the classification
of AS-related posts.

Thus, our paper makes these contributions: (1) a manually
labelled dataset consisting of 208 AS-related posts and 187 AS-
unrelated posts; (2) an approach to automatically identify AS-
related posts using 12 different configurations regarding 3
feature extraction techniques and 4 classification algorithms; (3)
an evaluation of the performance of 12 different classifiers on
the dataset.

The rest of this paper is organized as follows. Section II
presents the related work. The experiment methodology is
explained in Section III. The results of our experiment are
reported and discussed in Section IV. Section V concludes this
work with future directions.

II. RELATED WORK

In the last years, research and practice on ASs has gained

significant attention [2]. In this section, we provide an overview

of ASs and automatic techniques for mining textual information

from Stack Overflow.

A. Architecture Smells

Several studies proposed the definitions of ASs with
different subtypes. ASs was originally proposed by Lipper [11]
to indicate the underlying problems that occur at the architecture
level of a system. They also provided a catalogue of ASs at
different levels: dependency graphs, inheritance hierarchies,
packages, subsystems and layer. Some of these ASs were
provided with refactoring measures. Garcia et al. considered
ASs as instances of poor architecture decisions that can affect a
system life cycle properties, such as understandability and
testability [1]. Moreover, they described four types of ASs and
each smell’s impact on a system lifecycle properties. Fontana et
al. presented an ASs Detector, called ARCAN, which can
identify three different dependency based ASs: Unstable
Dependency, HubLike Dependency and Cyclic Dependency [2].
They later developed a prototype tool, as an extension of the
Arcan tool, which can provide refactoring suggestions to remove
Cyclic Dependency smell [12]. In another study, Mo et al.
formally defined five architecture hotspot patterns and presented
a tool, called hotspot detector, to automatically detect and
identify these smells at packages or files level [4]. Based on
these works [1][4][6], Le et al. reviewed and integrated
previously reported ASs. Finally, they described 11 ASs and
classified them into four categories. More importantly, all these
11 ASs can be automatically detected by the proposed ARCAN
and the corresponding detection algorithm [5].

As mentioned by Fontana et al. [2], even the detection tools
can induce false-negative AS instances, which require additional
effort and experience as well as a better understanding of the
smells to avoid false-positives instances. As reported in our

previous study [6], SoF, as an online community for sharing
knowledge, can provide a rich knowledge and experience about
AS understanding, detection, and refactoring.

B. Mining Information from Stack Overflow

Many studies have been performed to automatically mine
SoF data from different perspectives using ML or NLP. Karthik
et al. developed an automated mechanism using an unsupervised
deep learning based method to identify three different types of
compatibility relations between components from the
unstructured text on Q&A site postings [13]. Beyer et al. built a
classification model using ML algorithms (Random Forest and
Support Vector Machines) to automatically classify SO posts
into seven question categories [14]. In another study, Borg et al.
made an attempt to use Active Learning and an SVM classifier
for mining performance discussions on SoF posts with two
alternating annotators [10]. Zhang et al. investigated an
approach using NLP and sentiment analysis techniques to
automatically extract problematic API features from SoF posts
[15]. Furthermore, Ahasanuzzaman et al. presented a supervised
learning approach using Conditional Random Field (CRF) to
identify API issue-related sentences in an SoF post [9].

However, none of the works above focuses on the
classification of AS posts in SoF. Inspired by the existing works,
we plan to use ML and NLP techniques to automatically identify
AS discussions on SoF posts.

III. RESEARCH DESIGN

In this section, we describe the goal and Research Questions
(RQs), and the method used in the study design.

A. Research Questions

The objective of our work is to provide an approach to
automatically mine and identify AS discussions from textual
artefacts. To achieve this objective, we define the following
three RQs and explain their rationale.

RQ1: Which technique (BoW vs. TF-IDF vs. Word2Vec)
performs best in the feature extraction step when
identifying AS-related posts from SoF?

Rationale: In text identification tasks, Text Data

Vectorization is an essential process that converts text data into

a set of real numbers (a vector). We use four well-performed

vectorization methods for extracting textual features: BoW, TF-

IDF, and Word2Vec. BoW (Bag of Words), as one of the most

commonly used traditional vector representations, links each

word or n-gram to a vector index that represents weather word

occurs in a document or not. TF- IDF is a statistical measure

used to evaluate the importance of a word to a document in a

collection of documents or corpus. Word2Vec, introduced by

Google, is a predictive embedding model to produce a

distributed representation of words with word semantics [16].

There are two main models of Word2Vec - Continuous Bag of

Words (CBOW) and Skip-Gram. Employing different

vectorization techniques may affect the final performance of

classifiers. Therefore, the aim of the question is to determine

the vector representation which can achieve the best

performance when identifying AS discussions from SoF post.

452

Step 1: Training data collection

Step 2: Preprocess Texts

(Remove useless characters and stopwords)

Step 3: Extract Features

(BoW, TF-IDF, and Word2Vec)

Step 4: Train Classifiers

(LR, RF, KNN, and SVM)

Step 5: Evaluate Trained Classifiers

Fig. 1. The overall process of classifying AS-related posts

RQ2: Which classification algorithm (i.e., LR, SVM,
KNN, and RF) performs best when identifying AS-related
posts from SoF?

Rationale: Various text classifiers have been employed in
the literature based on ML techniques, probabilistic models, etc.
Different classification methods may lead to differences in
classification performance when coping with text identification
tasks [18]. We use four commonly used classification
algorithms (i.e., Random Forest (RF), KNN, SVM, and
Logistic Regression (LR)) for classifying textual artifacts in
software development (e.g., [17]) and compare their
performance in our AS-related posts identification tasks. By
answering this question, we can determine the kind of
classification algorithm that can perform best in automatically
identifying AS-related posts.

RQ3: What is the best configuration to automatically
identify AS-related posts from SoF by combining different
feature extraction techniques and classification algorithms?

Rationale: Different performances can be achieved by
using different feature extraction techniques and classification
algorithms. We used three feature extraction techniques and
four classification algorithms, which results in 12 classifier
configurations. The configuration with best overall
performance may not be combined by the technique and
algorithm which achieve the best performance in each separate
step. Therefore, the aim of this RQ is to analyze the
performance of classifiers with different configurations and
determine the best configuration (that achieves the best
performance) for identifying AS-related posts.

B. Study Design

In this section, we introduce how we performed an
experiment to identify AS discussions from SoF posts using
automatic techniques. As shown in Fig. 1, the study design

1 https://tinyurl.com/wdhy46l

consists of five steps. In the following, we describe the details
of the tasks conducted in each step.

Step 1: Training data collection. The input of the
classification process of AS-related posts in Fig. 1 is SoF posts.
We used a set of inclusion and exclusion criteria (enlisted in
TABLE I) [3] for manually selecting and labeling AS posts. If
a post contained at least one sentence which met one criterion,
we labeled this post as AS-related. Furthermore, we used the
criterion C7 to label AS-unrelated posts. Each post was
independently analyzed and manually labelled as AS-related or
unrelated by two of the authors. To mitigate unconscious bias,
any disagreements of the labelling results were discussed and
resolved with the help of a third author.

We selected and labelled 395 posts (208 AS-related posts
and 187 AS-unrelated posts) according to the above criteria. A
few examples of AS-related and AS-unrelated posts are
provided in TABLE II. This dataset was then split into two parts:
(a) 90% of the posts as the training data set, and (b) 10% of the
posts as the testing data set. To support preprocessing in the
next step, we used a web crawler to collect and store the content
of the labelled SO posts by using their URLs. The crawler
works in four steps: (1) extract the URLs of the labelled posts,
(2) remove useless URL information in the posts (e.g.,
http://www.xxx.org/), (3) parse and extract post information
(i.e., titles, questions, and answers), and (4) save the post
information into a CSV document. For the replicability of our
experiment, the dataset of our experiment has been made
available online1.

TABLE I. Criteria for Labelling AS-Related Sentences

 Criterion ID Description

Criteria for

labelling AS-

related sentences

C1: Description

of Ass

Descriptions of ASs by

practitioners based on their

understanding

C2: Cause of ASs Causes that lead to ASs

C3: Approach for

detecting and

refactoring ASs

Methods used to detect/refactor

specific ASs (e.g., machine

learning based approaches)

C4: Tool for

detecting and

refactoring ASs

Tools for detecting and

refactoring specific ASs (e.g.,

source code analysis tools to

identify dependency cycles)

C5: Impact of

Ass

Impact of ASs on software

development (e.g.,

understandability, testability,

extensibility, and reusability)

C6: Challenge of

detecting and

refactoring ASs

Challenges identified in

detecting and refactoring ASs

Criterion for

labelling AS-

unrelated

sentences

C7: Not AS-

related topic

The sentence does not describe

ASs or the sentence topic is not

about AS, for example

sentences do not describe AS

but only other types of smells

(e.g., code smells).

453

TABLE II. Examples of AS-related Sentences and AS-unrelated

Sentences

Type Example

AS-related

Sentence

“Is using a root persistent class or base persistable

object an architecture smell?”

“I think my architecture has kind of a smell to it: The

webservice is acting as a proxy, collecting information

from different sources.”

“Message Bus and Message Based Architecture With
Winforms/Desktop Application and Strategies/Policies

for View/UI Logic”

“What would be a nice architecture so I can pass
information of eventual problems to a higher layer?”

“Using a command architecture is a good idea, since

this moves all business logic out of the controller, and

allows you to add cross-cutting concerns without
changes to the code.”

AS-unrelated

Sentence

“There's a distinct smell of burned out circuits coming

from my head, so forgive my ignorance.”

“For some derived classes, I want to ensure that one of

two overloaded abstract methods get overridden, but

not both. Is this possible?”

“Judging by the quality of the pixels that have been
restored properly, the network architecture seems to be

fine for this task.”

“I came across the Open Test Architecture API and was

wondering if there are any good Python or java
examples for the same that I could see.”

Step 2: Data Preprocessing. Data preprocessing eliminates the

terms or characters in the training posts that are unnecessary to

train classifiers for identifying AS discussions, which is

composed of 2 steps: (1) Removing useless characters. Since

the posts were crawled from Stack Overflow website which is

formed in HTML 5, most posts contain some useless

punctuations like “…” and escape characters like “/n” or “/r”.

Those characters provide invalid information in semantic

parsing, so we removed those useless characters. (2)

Processing stop words. Referring to the original idea of TF-

IDF, daily language interaction like Q&A posts from Stack

Overflow can be filled with common words such as auxiliary

verbs, conjunctions and articles. Removing stop words can

reduce the noise in natural language, because these words also

lack the distinguishing feature for training classifiers. To

remove those meaningless words, we apply the default stop

words list in Natural Language Toolkit (NLTK) package.

Note that, in our study, we did not apply stemming and

lemmatizing but stop words removing to preprocess the training

data, because stemming and lemmatizing may change the

meaning of the text. Moreover, prior research shows that the

text preprocessing method with No Stemming and

Lemmatization performs best when preprocessing posts to

identify decisions from textual artifacts in software

development [17].

Step 3: Feature extraction. The aim of feature extraction is to

transform preprocessed documents into numerical vector

representations for classifiers regardless of the vectorization

method. In our work, we applied three feature extraction

techniques, i.e., BoW, TF-IDF, and Word2Vec to calculate the

feature value of each post.

BoW is a commonly used traditional feature extraction

technique. A corpus is created consisting of every unique word

across the documents. Then each word is converted into the

corresponding vector by counting the occurrence of a word in a

document. While BoW is simple to understand and implement,

it lacks the ordering of words, which leads to loss of contextual

information and word meaning in the document (semantics).

TF-IDF is a basic vectorization method which considers

frequencies of words in one document and words relationships

among documents. However, TF-IDF is also unable to capture

the word meaning. TF-IDF produces vectors based on

frequencies of words in one document (TF) and the weight of

rare words across all documents (IDF). TF-IDF used in this

study is defined as in Formula (1):

 𝑤𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 × log(
𝑁

𝑑𝑓𝑖
)

𝑡𝑓𝑖,𝑗 represent the count of a term “I” in a document “j”, N

represents the number of total documents in the corpus, and 𝑑𝑓𝑖

represents the number of total documents containing the term i.

Word2Vec is a word embedding method which produces

dimensional numerical representations of words and more

syntactic information than BoW and TF-IDF. These two

models of Word2Vec: Continuous Bag of Words (CBOW) and

Skip-Gram. The CBOW model obtains word representations by

predicting the current word based on its context (surrounding

words). Contrary to the CBOW model, The Skip-Gram learns

the embedding by predicting the surrounding words (context)

given a current word. CBOW is several times faster than Skip-

Gram, while Skip-Gram performs better for even rare words or

phrases than CBOW.

Step 4: Classifier Training. After transforming the collected

SoF into numerical vectors, we used the extracted features to

train four algorithms, i.e., LR, SVM, RF, and KNN, to

automatically identify AS-related posts. RF, KNN, and SVM

are three non-parametric classifiers. In contrast, LR is a

parametric classifier and faster and simpler classification

method than the other three. We used the implementation of

these four classifiers in the scikit-learn Python package.

Step 5: Performance Evaluation. To evaluate the

performance of three feature extracting methods and four

classifiers, we used four common measures: accuracy,

precision, recall, and F1-score. We used Formula (2), (3), (4),

and (5) to calculate accuracy, precision, recall, and F1-score,

respectively.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

454

Among these formulas, True Positive (TP) denotes the

number of correctly identified AS-related posts by classifiers.

False Positive (FP) represents the number of AS-unrelated posts

that are incorrectly identified as AS-related posts by classifiers.

False Negative (FN) indicates the number of AS-related posts

that are incorrectly labelled as AS-unrelated posts by classifiers.

True Negative (FN) shows the number of correctly identified

AS-unrelated posts by classifiers.

Therefore, in our context, precision is used to measure the

exactness of prediction set and represented as the ratio of posts

correctly identified as AS-related posts to all posts identified as

AS-related posts. Recall is the fraction of all AS-related posts

correctly demarcated. F1-score is a combination of precision

and recall. We consider precision and recall equally important.

F1-score is calculated by the harmonic mean of precision and

recall. Accuracy is the ratio of correctly identified posts,

including AS-related posts (TP) and AS-unrelated posts (TN)

to all identified posts.

IV. RESULTS AND ANALYSIS

As described in Section III, we conducted an experiment

with 3 (three feature extraction techniques) × 4 (four

classification algorithms) = 12 configurations. We calculated

these metrics (i.e., precision, recall, F1-score, and accuracy) to

evaluate the performance of each configuration for identifying

AS-related posts in SoF. In this section, we present and analyze

the results to answer the research questions.

A. Results and Analysis of RQ1

To answer RQ1, we calculated the average of the results

obtained by three feature extraction techniques to observe the

impact of different techniques on the performance of classifiers.

TABLE III shows the performance of ASs classifiers by

employing three feature extraction techniques (i.e., TF-IDF,

BoW, Word2vec). The highest accuracy, precision, recall, and

F1-score values of AS discussion classification across all

techniques are highlighted in boldface. we found that TF-IDF

technique can achieve the highest average precision (0.620),

accuracy (0.619), and F1-score (0.714), and the BoW technique

can achieve the best Recall (0.798). One important observation

is that the recall value for the TF-IDF is very poor. It can also

be found that the performance of the Word2Vec model is poor,

which is consistent with the result observed by Li et al. [17].

The results indicate that the TF-IDF technique can perform

better than the other techniques (i.e., Bow, Word2Vec) and

extract meaningful AS discussions from SoF posts.

TABLE III. Average Results of Different Feature Extraction

Techniques for Identifying Architecture Smell Discussions

Technique Accuracy Precision Recall F1-score

TF-IDF 0.619 0.620 0.698 0.714

BoW 0.516 0.528 0.798 0.629

Word2vec 0.556 0.563 0.631 0.589

B. Results and Analysis of RQ2

To answer RQ2, we calculated the average of the results

obtained by the four classification algorithms to observe the

impact of different algorithms on the performance of classifiers

(i.e., the results of AS discussions classification). TABLE IV

presents the performance of ASs classifiers by employing the

four classification algorithms (i.e., LR, SVM, RF, KNN). The

highest precision, recall and F1-score of AS identification

across all classification algorithms are highlighted in boldface.

We observed that the highest average accuracy (0.600), recall

(0.921) and F1-score (0.709) are achieved by the SVM-based

classifier, and the highest average precision (0.589) are

achieved by KNN-based algorithm. Moreover, SVM can

achieve the second-highest average precision (0.579). The

performance of KNN-based classifier is slightly worse than

SVM, with an accuracy of (0.592), a recall of (0.762), and an

F1-score of (0.620). DT-based classifier got the lowest average

precision (0.583), recall (0.577), and F1-score (0.577). These

results indicate that the SVM-based classifier performs the best

in term of the overall performance and can be used as the most

suitable classification algorithm in the classifier training step

when automatically identifying ASs from SoF compared to

other three classification algorithms. This conclusion is

consistent with the findings reported in [17].

TABLE IV. Average Results of Different Classification Algorithms
for Identifying Architecture Smell Discussions

Algorithm Accuracy Precision Recall F1-score

LR 0.542 0.560 0.571 0.566

SVM 0.600 0.579 0.921 0.709

RF 0.525 0.553 0.603 0.570

KNN 0.592 0.589 0.762 0.620

C. Results and Analysis of RQ3

To answer RQ3, we calculated and compared the precision,

recall, and F1-score of each of 12 configurations to analyze how

accurately we can automatically identify AS-related posts from

SoF. TABLE V presents the performance of 12 ASs classifiers

by employing four classification algorithms (i.e., LR, SVM, RF,

KNN) across three feature extraction techniques. The highest

precision, recall, and F1-score values for ASs classifiers across

all configurations are highlighted in boldface. It can be found

that the highest accuracy (0.650), precision (0.636), recall

(1.000), and F1-score (0.731) can be achieved with the

combination of three feature extraction techniques and four

classification algorithms. We can also find that there are two

configurations with an F1-score more than 0.7 and accuracy

greater than 0.625. It is also worth noting that these two

configurations employ SVM. The highest precision (0.650) and

F1-score (0.731) are achieved by the combination of Word2Vec

with SVM, which confirms the result of RQ2 that SVM-based

classifier performs the best for automatic classification of AS-

related posts. One important observation is that although the

TF-IDF technique can achieve the best performance in the step

of text feature extraction when identifying AS-related posts, the

combination of Word2vec and SVM can achieve the best

overall performance. These results indicate that each

configuration presents a diverse performance. Moreover, the

configuration with the best performance is not simply combined

by the technique and algorithm which achieves the best

performance in each separate step, respectively. Overall, with

an accuracy of 0.650, a precision of 0.613, a recall of 0.905, and

an F1-score of 0.731, the configuration with a combination of

Word2Vec and SVM can achieve the best performance for

455

identifying AS-related posts, and can be used by developers and

researchers to collect AS discussions from SoF.

TABLE V. Evaluation Results of Combining Different Feature
Extraction Techniques and Classification Algorithms for

Identifying Architecture Smell Discussions

Technique Algorithm Accuracy Precision Recall F1-score

TF-IDF LR 0.625 0.636 0.667 0.651

SVM 0.625 0.600 0.857 0.706

RF 0.600 0.619 0.619 0.619

KNN 0.625 0.625 0.714 0.619

BoW LR 0.525 0.545 0.571 0.558

SVM 0.525 0.525 1.000 0.689

RF 0.450 0.484 0.714 0.577

KNN 0.575 0.559 0.905 0.691

Word2Vec LR 0.475 0.500 0.476 0.488

SVM 0.650 0.613 0.905 0.731

RF 0.525 0.556 0.476 0.513

KNN 0.575 0.583 0.667 0.622

V. CONCLUSIONS AND FUTURE WORK

Architecture Smells (ASs), as a type of technical debt, have

been attaining importance in recent years since they may

significantly depreciate software quality. Detecting and

refactoring ASs correctly require appropriate architectural

knowledge. The online communities, such as Stack Overflow

(SoF), contain a wealth of latent information expressed in

natural language and become a valuable source of information

for sharing knowledge of ASs. But manually gathering AS

discussions from the online communities is a time-consuming

and labor-intensive task. To address this problem, we have

proposed a solution to automatically identify AS related posts

from SoF using 12 different configurations of feature extraction

techniques and classification algorithms.

We first created a dataset from SoF consisting of 208 AS-

related posts and 187 AS-unrelated posts and manually labelled

AS-related sentences for training classification models across

the combinations of the three feature extraction techniques and

four classification algorithms. We evaluated and discussed the

performance of the 12 combinations by calculating four metrics:

accuracy, precision, recall, and F1-score. The results from our

experiment show that: (1) the TF-IDF technique performs best

when extracting text features to identify ASs; (2) the SVM

based classifier achieves the best overall performance regarding

accuracy and F1-score of automatic AS discussions

classification; and (3) the SVM algorithm with Word2Vec

outperforms the other combinations when automatically

identifying AS-related posts.

These results provide several implications for our future

research including: (1) validating the best configurations in

other online sources of textual information such as developer

mailing lists and issue tracking systems, (2) to identify AS-

related discussions at the sentence level, which provides more

focused content about AS discussions, (3) employing multi-

classification algorithms (e.g., Softmax) to automatically

classify different types of AS-related discussions from textual

artefacts, and (4) automatically extracting AS information to

enrich practioners’ knowledge and experience of detecting and

refactoring ASs, and evaluating whether and how the AS

information can improve detecting and refactoring ASs.

REFERENCES

[1] Garcia, J., Popescu, D., Edwards, G. and Medvidovic, N., 2009.
Identifying architectural bad smells. In: Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR).
Kaiserslautern, Germany. pp. 255-258.

[2] Fontana, F.A., Pigazzini, I., Roveda, R. and Zanoni, M., 2016. Automatic
detection of instability architectural smells. In: Proceedings of the 32nd
IEEE International Conference on Software Maintenance and Evolution
(ICSME). Raleigh, NC, USA, pp. 433-437.

[3] Tian, F., Liang, P. and Babar, M. A., 2019. How developers discuss
architecture smells? an exploratory study on Stack Overflow. In:
Proceedings of the 16th International Conference on Software
Architecture (ICSA). Hamburg, Germany, pp. 91-100.

[4] Mo, R., Cai, Y., Kazman, R. and Xiao, L., 2015. Hotspot patterns: the
formal definition and automatic detection of architecture smells. In:
Proceedings of the 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA), Montreal, QC, Canada, pp. 51-60.

[5] Le, D. M., Link, D., Shahbazian, A., & Medvidovic, N. 2018. An
empirical study of architectural decay in open-source software. In:
Proceedings of the 15th IEEE International Conference on Software
Architecture (ICSA), Seattle, WA, USA, pp. 176-185.

[6] Samarthyam, G., Suryanarayana, G. and Sharma, T., 2016. Refactoring
for software architecture smells. In: Proceedings of the 1st International
Workshop on Software Refactoring (IWoR). Singapore, Singapore, pp. 1-
4.

[7] Grant, S. and Betts, B., 2013. Encouraging user behaviour with
achievements: an empirical study. In: Proceedings of the 10th Working
Conference on Mining Software Repositories (MSR). San Francisco, CA,
USA, pp. 65-68.

[8] Tahir, A., Yamashita, A., Licorish, S., Dietrich, J. and Counsell, S., 2018.
Can you tell me if it smells?: a study on how developers discuss code
smells and anti-patterns in Stack Overflow. In: Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software
Engineering (EASE), Christchurch, New Zealand, pp. 68-78.

[9] Ahasanuzzaman, M., Asaduzzaman, M., Roy, C.K. and Schneider, K.A.,
2020. CAPS: a supervised technique for classifying Stack Overflow posts
concerning API issues. Empirical Software Engineering, 25: 1493-1532.

[10] Borg, M., Lennerstad, I., Ros, R. and Bjarnason, E., 2017. On using active
learning and self-training when mining performance discussions on Stack
Overflow. In: Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering (EASE), Karlskrona
Sweden, pp. 308-313.

[11] Lippert, M. and Roock, S., 2006. Refactoring in large software projects:
performing complex restructurings successfully. John Wiley & Sons.

[12] Rizzi, L., Fontana, F.A. and Roveda, R., 2018. Support for architectural
smell refactoring. In: Proceedings of the 2nd International Workshop on
Refactoring (IwoR), Montpellier, France, pp. 7-10.

[13] Karthik, S. and Medvidovic, N., 2019. Automatic detection of latent
software component relationships from online Q&A sites. In: Proceedings
of the 7th International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE), Montreal, QC, Canada, pp.
15-21.

[14] Beyer, S., Macho, C., Di Penta, M. and Pinzger, M., 2018. Automatically
classifying posts into question categories on Stack Overflow. In:
Proceedings of the 26th International Conference on Program
Comprehension (ICPC), Gothenburg, Sweden, pp. 211-221.

[15] Zhang, Y. and Hou, D., 2013. Extracting problematic API features from
forum discussions. In: Proceedings of the 21st International Conference
on Program Comprehension (ICPC), San Francisco, CA, USA, pp. 142-
151.

[16] Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781.

[17] Li, X., Liang, P. and Li, Z., 2020. Automatic identification of decisions
from the Hibernate developer mailing list. In: Proceedings of the 24st
International Conference on Evaluation and Assessment in Software
Engineering (EASE), Trondheim, Norway, pp. 51-60.

[18] Ikonomakis, M., Kotsiantis, S. and Tampakas, V., 2005. Text
classification using machine learning techniques. WSEAS Transactions
on Computers, 4(8): 966-974.

456

*Corresponding Author: Xinjun Mao (xjmao@nudt.edu.cn). DOI
reference number: 10.18293/SEKE2020-106

Exploring CQA User Contributions and Their Influence
on Answer Distribution

Yi Yang1, 2, 3, Xinjun Mao,1, 3*, Zixi Xu1, 3, Yao Lu1, 3
1College of Computer, National University of Defense Technology, Changsha, China

2College of Information Science and Engineering, Hunan Womens’ University, Changsha, China
3Key Laboratory of Complex Systems Software Engineering, National University of Defense Technology, Changsha, China

Abstract—In community question answering (CQA) sites like
Stack Overflow (SO), users provide contributions driven by
community incentives and self-motivation, which gives rise to
micro activities of individual user and macro emergence of
community. According to our empirical research, the emergence
of answer distribution in SO is of concern, about 90% questions
have no more than two answers and almost 40% of questions
have no accepted answer due to lack of alternative acceptable
answers. In this paper, we explore CQA user contributions by
considering both the external incentives of community and
internal motivations of users, and study why CQA users
contribute and how they influence the macro emergence of
answer distribution. We present CQA community model based
on normative multi-agent system approach, in which the users
are modeled as agents and the community incentives as norms.
The internal motivations are studied based on self-determination
theory. The paper further analyzes how the internal and external
factors together influence the activities of agents and ultimately
the answer distribution of the whole community. We conduct
experiments based on a simulation system and the SO dataset to
validate the effectiveness of our proposed model. The results
show that our model can reproduce the emergence that well
matches up with the observation on real community.

Keywords-NorMAS; BDI; User Contribution; Emergence;
Incentive Mechanism; Self-Determination Theory

I. INTRODUCTION
Community Question Answering (CQA) sites such as Stack

Overflow (SO), Yahoo!Answers, and Quora are a type of
knowledge sharing communities, in which users contribute
their knowledge in term of various activities such as asking,
answering and voting [1]. These activities give rise to various
macro phenomena, i.e. emergence [2]. For example, based on
2,509,027 SO questions from January 2018 to September 2019,
we can observe the emergence of answer distribution to
questions: about 90% SO questions have less than two answers
and almost 40% of questions have no accepted answer. Such
observation on the emergence is of great concern, as they may
affect the prosperity of the community. It is significant for
managers of CQA sites to understand why the macro
emergence occurs and how to improve the emergence.

To address the issue, we need to explore the following
three problems of CQA: user contribution motivation, user
contribution decision, and the influence of user contribution on

the emergence of CQA community. User contribution
motivation refers to why users in CQA contribute their
knowledge. Numerous scholars have conducted research on
CQA user contribution motivations. For example, Lou [3], Jin
[4], and Chen [5] used online surveys and statistical analysis to
study the influence degree of various motivations to CQA user
contributions. However, these researches lack of study and
analysis on the factors that govern and drive users to contribute.

User contribution decision refers to how users select and
take actions to participate in contributions in CQA community.
Many of existing methods are equation-based to model user
behavior. For example, Anderson [6], Gao [7] applied a game-
theoretic model to analyze user behavior decision in CQA
community. In essence, the equation-based methods are
difficult to capture the autonomy feature of users [8][9] and the
community incentives that govern users’ decisions on their
contributions.

For the influence of user contributions on the emergence of
community, most of existing methods are normally based on
the statistical analysis to explore what gives rise to the
emergence. For example, Srba [10] applied statistical analysis
based on the dataset of CQA community to conclude that low-
quality user contributions lead to user churn. However, these
studies can not naturally reveal the community emergence that
results from the user contributions and their interactions.

In this paper we present an approach based on Normative
Multi-Agent System (NorMAS) and Self-Determination
Theory (SDT) to model CQA communities and examine how
individual users in communities provide contributions and
influence the answer distribution. The remaining sections are
organized as following. The next section discusses the related
works. Section III describes the NorMAS-based model of SO
community. Thereafter, Section IV details contribution
mechanism analysis of SO users based on BDI and SDT theory.
Section V describes our experiment and result analysis. Finally,
Section VI concludes the contributions of this paper and points
out the future research direction.

II. RELATED WORK

NorMAS has been widely used to model complex social
systems [11]. For example, Mao et al. [12] presented an
adaptive casteship mechanism to model and design adaptive
multi-agent systems. Mastio [13] et al. applied multi-agent
system approach to simulate and tackle traffic management. As
a classical architecture, BDI (belief-desire-intention) [14] is

457

mailto:xjmao@nudt.edu.cn

often applied to model and simulate the rule-based reasoning
scenario. For instance, Yang et al. [15] considered a robot
software as a multi-agent system and employed multiple
interacting agents with different roles cooperate to achieve
software functionalities. Yan et al. [16] proposed a BDI agent-
based method to simulate suppliers’ belief, reasoning processes,
deception intention and their behavior. Moreover, they
provided buyers with inspection suggestions to detect
suppliers’ falsified test results. In this work, we apply BDI
model to describe CQA users and their reasoning.

III. NORMAS MODEL OF CQA COMMUNITIES

In this section, we present the normative MAS model of
CQA communities, and illustrate the model with the sample of
SO community. We define the NorMAS model of SO
community as a 3-tuple

.,,_ normUGCSAMMASCQA (1)

 MAS represents a set of the agents.

 vUGCUGCUGCUGC aq represents the user
generated contents (UGC), i.e. questions, answers, and
votes. qUGC , aUGC , and vUGC represent the
sets of questions, answers, and votes, respectively.
There exists three kinds of relations :

(1) ｝｛ aq UGCaUGCqaqR |,1 represents
the relation between questions and answers;
(2) ｝｛ vq UGCvUGCqvqR |,2 represents
the relation between questions and votes;
(3) ｝｛ va UGCvUGCavaR |,3 represents
the relation between answers and votes.

 norm represents the reputation incentive mechanism in
the community.

Figure 1. The NorMAS model of SO community

Fig. 1 depicts the NorMAS model of SO community.
Governed by the norms in norm, agents in MAS autonomously
ask, answer, or vote based on the current state of their
contributed knowledge UGC, i.e. the number of questions,
answers, votes, and their relations. In turn, their contribution
behavior change the state of the contributed knowledge UGC.

A. The model of CQA user
In this paper, we employ BDI model to represent agents in

MAS. Hence, we define agent as a 5-tuple

.,,,, INTDESBELREPAagent (2)

 A={ask, answer, upvote, downvote} defines the action
set of agents.

 REP is an agent’s reputation point represented as
integer.

 BEL, DES, INT are an agent’s belief, desire, and
intention, respectively.

B. The model of community incentives
To achieve system goals, CQA communities generally

design and adopt incentive mechanisms to stimulate and
govern users’ behavior. For example, the reputation incentive
mechanism in SO community (see Table I) describes how user
can obtain their reputation points in SO. For example, the third
row of Table I means that when an answer is upvoted, the
answer contributor will be rewarded with 10 reputation points.
In line with the incentive mechanism of SO, we do not take
into account the rule "Upvote an answer".

TABLE I. REPUTATION RULES IN SO

Rule Action Reputation change

1 Question is upvoted +5 (to asker)

2 Question is downvoted -2 (to voter)

3 Answer is upvoted +10 (to answerer)

4 Answer is downvoted -2 (to answerer)

5 Downvote an answer -1 (to voter)

We employ the norms of NorMAS to represent the
reputation incentive mechanism of SO. Here, we define

aqo UGCUGCUGC as the set of questions and answers.
We define ｝，｛ downvoteupvoteAv to represent agents’
vote actions. The reputation incentive mechanism of SO can be
defined as

.IIAUGCnorm vo ： (3)

Here, I represents the reputation points. The function norm
represents that when an agent votes another agent’s question or
answer, the two agents will be gave a certain reputation points,
respectively.

IV. CONTRIBUTION MECHANISM ANALYSIS OF SO USERS

In this section, we analyze SO user contribution
mechanism from two aspects: user contribution motivations
and user contribution decision.

A. Contribution motivation analysis of SO users
Why do users contribute to CQA community? To answer

this question, we adopt a combination of self-determination
theory and online survey to analyze user contribution
motivations. Self-determination theory [17] divides users

458

behavioral motivations into five types of regulations: external
regulation, introjected regulation, identified regulation,
integrated regulation, and intrinsic regulation. Moreover, to
obtain the contribution motivations of SO users, we
investigated some SO users in January 2018. A total of 656
valid feedback samples were obtained. The questionnaire is in
the form of five-level Likert scale. The respondents can choose
one of the five answers: strongly disagree, disagree, indifferent,
agree and strongly agree. The weights of the answers are 5, 4,
3, 2, 1, respectively. Based on the characteristics of the five
motivations summarized by Ryan et al. [18] and our survey
result, the motivations of SO users are classified into four
types:

 Gaining reputation is an introjected regulation. When
SO users ask or answer questions, they have a chance
to gain their reputation points through received votes.

 Gaining privilege is an identified regulation desire for
personal importance in the community. SO users are
gave some privilege to manage the affairs of the
community based on their reputation points. Privileges
have an incentive effect on users’ behavior.

 Returning favor is an integrated regulation to be
competent or synthesis with self, which is a motivation
not related to external reward. For SO users, if their
questions have been answered by other users, they
may have the motivation of giving back to community.

 Helping others is an intrinsic regulation for inner
satisfaction. For SO users, when the questions of other
users are not answered, they have the motivation to
help others.

The first two desires are from the external incentives of
community and the last two are internal motivations of
individual users. Here, we do not consider the external
regulation and the desire related to money and material.

B. Contribution decision of SO users
Here, we apply BDI model to analyze the contribution

decision of SO users. The contribution decision process
consists of four steps: belief update, desire generation,
intention filter, and intention selection. Agent first updates its
belief according to current belief and contributed knowledge
information. Then agent generates its desire based on current
belief related to current contributed knowledge and intention.
Thereafter, agent filters intention based on current belief and
desire. Finally, it selects the intention with the maximum of
intensity to execute.

1) The update of agent’s belief
In the context of CQA, an agent’s belief is the cognition of

self, the state of contributed knowledge, and norms.
Combining the above analysis of user contribution motivation,
we consider four types of cognition and define the belief of
agent as

.OHRFPRI,RREP,BEL , (4)
 RREP is agents’ cognition of probably obtained

reputation points.

 PRI is agents’ cognition of privilege corresponding to
reputation points. There is a simple correspondence
between privilege and reputation points.

 RF is agents’ cognition of giving back to community.

 HO is agents’ cognition of helping others.

Based on the perception of community information and
their current belief, SO users update their belief. The belief
update function can be defined as

.LBEUGCBELbrf ： (5)

Here, UGC is the information of the contributed knowledge.
The updated rules for each belief component are as follows.

 RREP can be updated by the probably received
upvotes VOTE and the action A.

.RREPAVOTE:fr (6)

We divide SO users into four groups based on their
reputation points: newcomer (points<10), normal
(10≤points≤999), established (1000≤points≤19999),
and trusted (points≥20000). SO users with more
reputation points usually have a stronger capability to
gain upvotes.

 PRI represents the probably obtained privilege.
Because privilege are described by some words, we
employ a reputation point transform function to
get the intensity of privileges.

PRI.REP ： (7)

 RF can be updated by the equation

.,0
.1

falsenafif
eutrnaiff

RF
，

(8)

Here, na indicates whether an agent's questions have
been answered by a community. If answered, it will
give back to the community.

 HO can be updated by the equation

false.ad iff 1,
true.ad iff 0

HO
，

(9)

Here, ad indicates if a question of the community has
been answered. If answered, agents will generate the
belief that they don't need to help others.

In conclusion, the update rule of the intensity of the belief
of SO users can be defined as an vector:

.,,, HORFPRIRREPBEL (10)

2) The generation of agent’s contribution desire
According to the analysis of user contribution motivation,

we believe that agents also have four types of desire: gaining
reputation, gaining privilege, giving back to community, and
helping others. Agent may be affected by all the four kinds of
desires at the same time. According to our survey, the intensity

459

of each desire for different types of users are different.
Therefore agents need to update their desire intensity as their
reputation points change. The update rule for the overall desire
intensity of agent is defined as

4
1).(i iDesiDes (11)

Here, is the overall ability of agent desire to drive
agent behavior (]1,0[); represents the weight of each
desire of agents; iDes is the intensity of the i-th desire
(]41[,i). The values of and Des are from statistics of
our questionnaires.

3) The filter of agent’s intention
Intention represents the behavior decision made by agents

based on their own belief to achieve their desire. Agents
possess four candidate actions: ask, answer, upvote, and
downvote. Agents can filter their intention based on their
current belief, desire, and intention. For example, if an agent
wants to answer questions to gain reputation, it will filter some
questions whose answers are difficult to obtain upvotes. Thus
the intention filter function can be defined as

.TININTDESBELfilter ： (12)

More specifically, an agent’s choice of an action depends on
the intensity of its intention. And the probability of choosing
an intention is determined by the intensity of the desire and
belief related to the intention. We define the filter rule of
agents’ intention as

.)(BelDesap (13)

Here, p(a) represents the probability of the candidate action
a (a {ask, answer, upvote, downvote}).

4) The selection of agent intention
Agents select the intention with the maximum of p(a) to

perform. The selection rule of agent intention is defined as

}.)),((|{ INTintintPmaxinta (14)

V. EXPERIMENT AND RESULT ANALYSIS

In order to investigate the influence of CQA user
contributions on the emergence of answer distribution, we
develop a simulation system to simulate massive users’
contribution behavior to reproduce the emergence. If our
simulation system can reproduce the emergence of answer
distribution well, it will show that the proposed approach can
well explain CQA user contributions and their influence on the
emergence of answer distribution.

To achieve this goal, we first design a set of criteria to
evaluate the recurrence of community emergence. Then, we
collect the data of SO and investigate user motivations to
initialize SO users. Finally, we run the simulation system on
the dataset to reproduce the emergence of answer distribution.
We compare the reproduced emergence on our simulation
system with the observation of SO community based on the
proposed criteria. The results will show whether the proposed
model can effectively explain the CQA user contributions and
their influence on the emergence of answer distribution.

A. Evaluation criteria
In this work, we adopt PCC (Pearson Correlation

Coefficient) [19] and MRE (Mean Relative Error) [20] to
evaluate the emergence recurrence effect of the simulation
system. Given X and Y represent a real data and a simulation
data, respectively. X and Y are the averaged value of X and Y,
respectively. n is the number of samples. The PCC of X and Y
is defined as

.
)()(

))((

1
2

1
2

1
,

n
i i

n
i i

n
i ii

YX
YYXX

YYXX
 (15)

And, MRE is defined as

.
X

XY
MRE

 (16)

The greater the value of PCC, the better the emergence
trend consistency between real SO community (X) and the
simulation system (Y). The smaller the value of MRE, the
smaller the value deviation between X and Y. According to the
experience from statistics, when PCC is greater than 0.5, there
exists a strong positive correlation between subjects.

Each comparison of the emergence between SO and the
simulation system is comprised of multiple parts. For example,
answer distribution consists of four types of answer count: 0, 1,
2, and more than 2. Therefore, it is necessary to modify the
above equations as

.1

m
wm

i ii
overall

 (17)

and

.1

m
MREw

MRE
m
i ii

overall
 (18)

Here, m is the component number of an emergence. we
represents the weight of the i-th component. In this way, we
give an overall score for the comparison of a certain
emergence.

B. Data collection
We downloaded three versions of Stack Overflow datasets

between 2017 and 2019. Based on the difference of the
reputation points, the question number, the answer number,
and the vote number of the users in different periods, we
compute out the capability of gaining upvotes of different
types of users. In addition, as described in Section IV, we
investigated some SO users in January 2018 to obtain the
contribution motivations of SO users and their motivation
intensity distributions.

C. Result Analysis
We analyze 2,509,027 SO questions from January 2018 to

September 2019 and observe the emergence of answer
distribution. As shown in Fig. 2, about 90% questions in SO
have no more than two answers.

460

Figure 2. The emergence of answer distribution.

Why are users reluctant to provide more answers for a
question? To explain the phenomenon, we run the simulation
system on So dataset from January 2018 to September 2019.
We first count the distribution of answers of 0, 1, 2 and more
than 2. Then we compare the captured emergence on the
simulation system with the observation of SO community.

TABLE II. THE SIMULATION EVALUATION OF ANSWER DISTRIBUTION

Index PCC MRE

0 answer 0.7653 0.0022

1 answer 0.9210 0.0013

2 answers 0.6901 0.0123

more than 2 answers -0.9632 0.0956

overall 0.7729 0.0314

Table II presents our simulation performance of answer
distribution. Except when the number of answers is more than
2, other simulation results are in line with our expectations.
Other PCC of emergence simulation are greater than 0.65 and
the overall PCC is 0.7729, which indicates that the simulation
system successfully reflects the trend of the emergence of the
real SO community. In addition, the deviations of the
simulation is very small. The small deviation of the simulation
indicates that the simulation system can accurately represent
the real community’s data. Moreover, Fig. 3 depicts the
evolution of the trends of answer distribution in 12 months,
which more intuitively illustrates a very good match between
our simulation and observation of real SO community.

Figure 3. The evolution of the answer distribution in 12 months

To analyze the influence of external incentives of
community and internal motivations of individuals on user
contributions, we performed the influence analysis on answer
distribution without the corresponding motivations. Fig. 4
depicts the evolution of answer distribution without external
incentives in a year. We can observe that in the absence of
external incentives from the community, the proportion of
unanswered questions decreases, the proportion of questions
with one answer does not almost change, and the proportions
of questions with more than one answer increase. The result
shows that in the absence of external incentives, users answer
questions more based on the belief of helping others and giving
back to the community. It leads to a decrease of the ratio of
unanswered questions. Without the external incentives, users
don't care about the influence of existing answer count to a
question on their probably received upvotes. Hence, they will
be willing to contribute more answers to the answered
questions. This is why the proportions of answered questions
increase.

Figure 4. The evolution of the answer distribution without external
incentives of community in a year

Fig. 5 depicts answer distribution without internal
motivations of users. We can observe that the proportion of
unanswered questions continues to increase, whereas the other
proportions of questions continue to decrease. The result
shows that in the absence of internal motivations, users lose
willingness to give back to the community and help other users,
which makes most of them reluctant to answer any questions
that have an answer or not.

Figure 5. The evolution of the answer distribution without internal
motivations of users in a year

In conclusion, the answer provision of SO users for
community questions are motivated by external incentives of
community and internal motivations of individuals. On the one

461

hand, SO users behavior are affected by the community
incentive mechanism. SO users answer questions based on the
probably received upvotes. When a question has answers, SO
users believe that their capability of gaining upvotes in answer
will decrease. Thus they will be reluctant to provide more
answers for a question that has answers. On the other hand, SO
user behavior are affected by their internal motivations. If a
question has been answered, SO users will not generate the
desire to help others to answer the question. Both aspects may
make users not to provide more answers for community
questions. The similar behavior pattern of massive SO users
eventually leads to the emergence of answer distribution. The
result confirms that our approach can effectively explain CQA
user contributions and their influence on answer distribution.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a NorMAS-based approach to
explore CQA user contribution and their influence on answer
distribution. The contributions of the paper are three-fold: (1)
We put forward a NorMAS-based approach to model CQA
communities under the governance of incentive mechanisms.
The constructed model provides a natural description of CQA
communities. (2) We apply self-determination theory and
online survey to classify user contribution motivations. And
we employ BDI theory to detail user contribution decision
driven by community incentives and self-motivation to explain
why users answer a question or not. (3) We develop a
simulation system to simulate CQA communities and
reproduce their emergence. Moreover, we design a set of
criteria to examine the recurrence of the emergence in SO
community. The results show that the proposed approach can
effectively explain CQA user contributions and their influence
on answer distribution.

The validity of our study may be threatened by the
following aspects. First, we differentiate users’ capability and
desire based on the types of users grouped by their reputation
points. The evaluation is not very accurate to some active users
whose reputation points greatly fluctuate. Second, we only
consider the individual behavior such as asking, answering,
voting, and do not consider other behavior such as accepting
an answer. Third, there is no consideration of the changes of
SO reputation mechanism. Hence, the latter two may lead to a
certain deviation in individual behavior analysis. In the future
study, we will collect more data from CQA communities to
improve the performance of our approach. More importantly,
we will further consider how to use the proposed approach to
improve community management and promote long-term
prosperity of CQA communities.

ACKNOWLEDGMENT

This research was supported by the National Key Research
and Development Project of China under Grant
2018YFB1004202.

REFERENCES
[1] S. Y. Lee, H. X. Rui, A. B. Whinston, “Is best answer really the best

answer? the politeness bias,” MIS Quarterly, vol. 43, 2019, pp. 579-600.
[2] John H. Holland, “Emergence: From chaos to order”, Oxford University

Press, 1998.

[3] J. Lou, Y.Fang, K. Lim, J. Peng, “Contributing high quantity and quality
knowledge to online Q&A communities,” Journal of the American
society for information science and technology. vol. 64, 2013, pp. 356–
371.

[4] X. Jin, Z. Zhou, M. Lee, C. Cheung, “Why users keep answering
questions in online question answering communities: a theoretical and
empirical investigation,” International journal of information
management. vol. 33, 2013, pp. 93–104.

[5] Chia Shen Chen, S. F. Chang, C. H. Liu, “Understanding Knowledge-
Sharing Motivation, Incentive Mechanisms, and Satisfaction in Virtual
Communities,” Social Behavior and Personality: an international journal,
vol. 40, 2012, pp. 639-647.

[6] A. Anderson, D. Huttenlocher, J. Kleinberg, J. Leskovec, “Steering user
behavior with badges,” in Proc. 22nd Int. Conf. World Wide Web, 2013,
pp. 95–106.

[7] Y. Gao, Y. Chen, K. J. Ray Liu, “Understanding sequential user
behavior in social computing: To answer or to vote?,” IEEE
Transactions on Network Science and Engineering, vol. 2, 2015, pp.
112-126.

[8] E. Bonabeau, “Agent-Based Modeling: Methods And Techniques for
Simulating Human Systems,” Proceedings of the National Academy of
Sciences, vol. 99, 2002, pp. 7280-7287.

[9] R. Conte, M. Paolucci, “On Agent-Based Modelling and Computational
Social Science,” Frontiers in Psychology, vol. 5, 2014, pp. 1-21.

[10] I. Srba and M. Bielikova, “Why Stack Overflow Fails? Preservation of
Sustainability in Community Question Answering,” IEEE Software, vol.
33, 2016, pp. 1-14.

[11] N. Fornara, T. Balke. “Modeling organizations and institutions in
MAS,” Journal of Applied Logics-IFcolog Journal of Logics and their
Applications, vol. 5, 2018, pp. 565-590.

[12] X. J. Mao, L. J. Shan, H. Z, J. W., “An adaptive casteship mechanism
for developing multi-agent systems,” International Journal of Computer
Applications in Technology, vol. 31, 2008, pp. 17-34.

[13] M. Mastio, M. Zargayouna, G. Scemama, O. Rana. “Distributed Agent-
Based Traffic Simulations,” IEEE Intelligent Transportation Systems
Magazine, vol. 10, 2018, pp. 145-156.

[14] V. D. Gabriel, A. R. Panisson, R. H. Bordini, D. F. Adamatti, C. Z. Billa,
“Reasoning in BDI agents using Toulmin's argumentation model,”
Theoretical Computer Science, vol. 805, 2020, pp. 76-91.

[15] S. Yang, X. J. Mao, S. Yang, “Towards a hybrid software architecture
and multi-agent approach for autonomous robot software,” International
Journal of Advanced Robotic Systems, vol. 14, 2017, pp. 1-15.

[16] J. Q. Yan, X. Li, X. Sun, Y. N. Shi, H. Q. Wang, “A BDI Modeling
Approach for Decision Support in Supply Chain Quality Inspection,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017,
pp. 1-15.

[17] E. L. Deci, R. M. Ryan, “Intrinsic Motivation and Self-Determination in
Human Behavior,” Encyclopedia of Applied Psychology, vol. 3, 2004,
pp. 437-448.

[18] R. M. Ryan, E. L. Deci, “Self-determination theory and the facilitation
of intrinsic motivation,” Social development, and well-being. American
psychologist, vol. 55, 2000, pp. 68-78.

[19] R. W. Emerson, “Causation and Pearson’s correlation coefficient,”
Journal of Visual Impairment Blindness, vol. 109, 2015, pp. 242-244.

[20] S. Jain, P. K. Mishra, V. V. Thakare, J. Mishra, “Design of microstrip
moisture sensor for determination of moisture content in rice with
improved mean relative error,” Microwave and Optical Technology
Letters, vol. 61, 2019, pp. 1764-1768.

462

Copy and Paste Behavior: A Systematic Mapping
Study

Luqi Guan
Dep. Ing. Informática, Escuela Politécnica Superior

Universidad Autónoma de Madrid
Madrid, Spain

luqi.guan@estudiante.uam.es

Xavier Ferre
Dep. Lenguajes y Sistemas Informáticos e Ingeniería de

Software, E.T.S. de Ingenieros Informáticos
Universidad Politécnica de Madrid

Boadilla del Monte, Spain
xavier.ferre@upm.es

John W. Castro*
Dep. Ing. Informática y Ciencias de la Computación

Universidad de Atacama
Copiapó, Chile

john.castro@uda.cl

Silvia T. Acuña
Dep. Ing. Informática, Escuela Politécnica Superior

Universidad Autónoma de Madrid
Madrid, Spain

silvia.acunna@uam.es

Abstract—Both novice and experienced developers rely more and
more in external sources of code to include into their programs by
copying and pasting code snippets. This behavior differs from the
traditional software design approach where cohesion was achieved
via a conscious design effort. Due to this fact, it is essential to know
how this copy and paste programming practices are actually
carried out, so that IDEs and code recommenders can be designed
to fit with developer expectations and habits. Our objective is to
identify the role of copy and paste programming or code clone in
current development practices. A Systematic Mapping Study
(SMS) has been conducted, searching the main scientific
databases. The search retrieved 1271 citations and 39 articles were
retained as primary studies. The primary studies were categorized
according to eight areas: General information of clone usage,
developer behavior, techniques and tools for clone detection,
techniques and tools for clone reuse, patterns of cloning, clone
evolution, effects of code cloning in software maintenance and
development, and tools for clone visualization. The areas,
techniques and tools of clone detection and developer behavior are
strongly represented in the sample. The areas that have been least
studied in the literature found in the SMS are tools of clone
visualization and patterns of cloning.

Keywords— Copy and Paste; Systematic Mapping Study

I. INTRODUCTION
The huge amount of source code available online has

changed coding practices. Both novice and experienced
developers rely more and more in external sources of code to
include into their programs by copying and pasting code snippets
[1][2], which is basically a term used in system engineering. To
copy the code and reuse the code, either by doing some
modifications or without doing any modification in the existing
code, are common activities in software development [3]. Copy
and paste is often done by inexperienced or student
programmers, who find the act of writing code from scratch
difficult or irritating and prefer to search for a pre-written
solution or partial solution they can use as a basis for their own

problem solving [1]. Copy and paste is also done by experienced
programmers, who often have their own libraries of well tested,
ready-to-use code snippets and generic algorithms that are easily
adapted to specific tasks [2]. This behavior differs from the
traditional software design approach, where cohesion was
achieved via a conscious design effort [4]. It also differs from
the code reuse attained through the usage of re-use repositories
built for such specific purpose. We need to know how this copy
and paste programming practices are actually carried out, so that
IDEs and code recommenders can be designed to fit with
developer expectations and habits. The research work aims to
identify the role of copy and paste programming or code clone
in current development practices, by identifying through a
Systematic Mapping Study [12] the current knowledge about
this topic in the existing literature.

Paper organization. In Sec. 2, we present related work. In
Sec. 3, we describe the research method of the SMS. Sec. 4
presents the results of the SMS. In Sec. 5, we discuss the results
and threats to validity, and finally Sec. 6 concludes.

II. RELATED WORKS
We found six systematic reviews related to copy and paste

[5]-[10]. The literature review by [5] presents various methods
that researchers have used to study clone evolution and
summarizes the advantages and disadvantages of relevant
research on clone evolution. The literature review by [6] has
studied code cloning and various techniques to detect code
clones. The SMS by [7] focuses on metric-based clone detection
techniques and various tools used in previous studies. The
literature review by [8] puts a light on all the types of clones and
various techniques for the detection of clones. The systematic
review by [9] analyzes how code clones can be detected and
which techniques and tools are used for this purpose. The
literature review by [10] presented comparative review of
various clone detection techniques. Most of these literature
reviews are related to code clone detection and code clone

DOI reference number: 10.18293/SEKE2020-130
* Corresponding Author.

463

evolution, they do not refer to developer behavior, techniques
and tools of clone reuse, patterns of cloning, tools for clone
visualization and effects of code cloning in software
maintenance and development. After analyzing papers that refer
to those areas mentioned above, we can confirm that there is no
SMS on these areas of code cloning, Therefore, we identify a
lack of systematic approaches to identify the state of the art in
these areas of code cloning.

III. RESEARCH METHOD
We aim to answer the following research questions: (RQ1)

What is the state of the art of copy and paste? and (RQ2) How
do developers use copy and paste? To answer both questions, we
have carried out an SMS.

A. Define the Search Strategy
For the definition of the search string, we need to perform

the following steps: Conformation of the control group (CG),
identification and selection of the keywords, conformation of the
search strings, and specification of the inclusion and exclusion
criteria. To form the CG, we conducted a traditional search to
identify papers directly related to our research. As a result of this
search, we found a total of 10 papers: [3][13]-[21]. In the papers
of the CG the words that appear most frequently must be
identified. The keywords were obtained from a table with the
frequency of all the words that appear in the articles of the CG.
Once the keywords were identified, several options were built
for the search string. Finally, we opted for the following search
string: (“copy and paste code” OR “source code reuse” OR
“code reuse” OR “code snippets reuse” OR “code clone” OR
“code cloning” OR “software clones”) AND (analysis OR
design OR approach OR behavior OR habits OR intent OR
research OR patterns OR “usage patterns” OR method OR
techniques OR tools) AND ("software system" OR development
OR developer OR system OR programming). The criteria used
to retrieve the fundamental studies are summarized below. These
criteria were applied by 3 of the authors of the paper.

a) Inclusion criteria: The paper is related to copy and paste
behavior; OR the paper discusses aspects related to copy and
paste patterns; OR the paper is related to code clones; OR the
paper is about finding duplicated code.

b) Exclusion criteria: The paper is about traditional code
reuse; OR the paper discusses about creating repository for
future reuse; OR the paper is about programing for reuse; OR
the paper is about managing duplicated code; OR the paper is a
review; OR the paper is written in a language other than
English.

B. Select the Studies
The search for studies was carried out in the following digital

databases: Scopus, ACM Digital Library, and IEEE Xplorer.
Once the list of Retrieved Papers is obtained (1271), it is
necessary to eliminate duplicates between the databases and as a
result of this first debug the Non-Duplicate Candidate Papers
are obtained. Then, a first filter must be made applying the
inclusion and exclusion criteria on the title, summary and
keywords of each of the Candidate Papers (163). Studies

obtained from the first filter were evaluated again in a second
filter. In this second filter, each researcher applied the inclusion
and exclusion criteria to the full text of each of the studies. As a
result, the group of Primary Studies was obtained (39). The
search was conducted in November 2019.

C. Extract the Data and Perform Data Synthesis
Once the primary studies are obtained, the relevant

information is extracted to answer the research questions. Figure
1 provides an overview of the primary studies retrieved by the
SMS. It is made of three categories, determined by the year of
publication, type of paper and research areas.

Figure 1. Mapping showing the primary study distribution

The left-hand side is composed of two scatter (XY) charts
with bubbles at the intersections of each category. The size of
each bubble is determined by the number of primary studies that
have been classified as belonging to the respective category at
the bubble coordinates. The right-hand side of the figure shows
the number of primary studies by publication year. We can
observe that publications started to grow from 2016 and many
papers have been published since then, confirming the raising
interest in this research area.

IV. RESULTS
After analyzing the primary studies (see Figure 1) and papers

belonging to the CG, we identified eight different research areas:
General information of clone usage, developer behavior,
techniques and tools for clone detection, techniques and tools for
clone reuse, patterns of cloning, clone evolution, effects of code
cloning in software maintenance and development, and tools for
clone visualization. Next, we will describe each of these areas.

General Information of Clone Usage. This area deals with
clone types and high-level uses of clone information, as well
clone usage patterns [3][15][18]-[23].

Developer Behavior. This area is about how developers face
the use of clones (how they search, how they embed them in their
code, etc.) [13]-[16][19][20][24]-[30].

Techniques and Tools for Clone Detection. This area studies
the techniques and tools for clone detection, analysis and
management and the use of clone-aware tools [3][11][14][31]-
[43].

Developer Behavior

Techniques and tools of clone
detection

2017

2018

0 2 4

2019

2016

2015

Workshop
6 8 10 12

3

Book
chapter

3

Effect of the code clone in the software
maintenance and development

Clone evolution

Techniques and tools of clone
reuse

General information of usage of
clone

Patterns of cloning

Tools of clone visualization

4

SymposiumJournalConference

1

23

1

1

4 4

1

2

3

1

2

2

2

1

1

1

1

1

1

1

1

2

4

6 5

2

2 2

5 5

464

Techniques and Tools for Clone Reuse. This area studies the
techniques and tools for clone reuse. Such as the interactive
approach for recommending where and how to modify the
pasted code, the approach to merge similar pieces of code by
creating suitable abstractions, etc. [44]-[48].

Patterns of Cloning. This area describes several patterns of
cloning, such as forking, templating and customization; the pros
and cons of cloning; and methods for managing code clones
[17][49].

Clone Evolution. In this area the clone community focuses
on how cloned code evolves over time [15][24][50]-[54]. As this
code changes, it exhibits various patterns and characteristics.

Effects of Code Cloning in Software Maintenance and
Development. This area studies the effects of code cloning. It
deals with the maintenance problems that clone codes can cause,
as well as the clone display tools and clone patterns and
refactoring recommendations to solve such problems [18][55]-
[57].

Tools for Clone Visualization. This area studies tools for
code clone visualization. These code clone visualization tools
are used for checking code and analyzing code clones [58][59].

V. DISCUSSION AND VALIDITY THREATS
The analysis reveals that clone detection areas, techniques

and tools, and the related developer behavior are strongly
represented in the sample. Whereas techniques and tools for
clone detection are represented by 14 publications (35.9% of the
total), developer behavior is the second largest group of primary
studies, with a total of 8 publications, that is, 20.5% of all of the
primary studies retrieved in the SMS (39). The areas that have
been least studied in the literature found in the SMS are tools for
clone visualization and patterns of cloning. Judging by the
increase in the number of publications since 2016, the practice
of copy and paste is of notable interest.

We identify as possible threats to validity: (i) coverage of
research questions (RQs), (ii) bias towards certain publications,
(iii) quality of the evaluation, and (iv) lack of knowledge of the
area. It is probable that the proposed RQs could partially cover
the study theme, which we try to mitigate by defining a work
objective and raising several RQs in consensus, with the purpose
of making the objective attainable. It is possible that in an SMS
the process is directed towards a specific group of studies, which
we avoid by forming a literature CG and by consensus building
a search chain with explicit terms obtained from the CG. It is
likely that the quality of the evaluation of the studies was not
adequate due to lack of expertise in the research area, which we
mitigate by including in the team an investigator with experience
in the subject of code clone.

VI. CONCLUSIONS
This paper describes the SMS conducted to answer the

following research questions. In this section, we have considered
the 39 primary studies plus the 10 papers of the control group
where one of them has been obtained in the set of primary
studies, making a total of 48 papers analyzed.

RQ1. The research on copy and paste or code clone deals
with eight areas: General information of clone usage, developer
behavior, techniques and tools for clone detection, techniques
and tools for clone reuse, patterns of cloning, clone evolution,
effects of code cloning in software maintenance and
development, and tools for clone visualization. Most primary
studies and papers belonging to the CG (33.3%) focus on
techniques and tools for clone detection, followed by the ones
about developer behavior (27.1%) and the studies dealing with
general information of clone usage (18.8%).

RQ2. Several patterns for using copy and paste have been
defined: Elementary patterns (between, within, within and
between, external paste) and complex patterns (repeat,
distribution, relay, unknown). On the one hand, the elementary
patterns are composed of a single copy and paste interaction
involving one or more files. On the other hand, complex patterns
are composed of two or more copy and paste incidents involving
more than two files [13].

ACKNOWLEDGMENT
Work funded by FEDER/Spanish Ministry of Science and

Innovation – Research State Agency: project MASSIVE,
RTI2018-095255-B-I00, the R&D programme of Madrid
(project FORTE, P2018/TCS-4314), and project PGC2018-
097265-B-I00, also funded by: FEDER/Spanish Ministry of
Science and Innovation – Research State Agency.

REFERENCES
[1] G. Yarmish, and D. Kopec, “Revisiting novice programmer errors”, ACM

SIGCSE Bulletin, vol. 39(2), pp.131-137, 2007.
[2] R. Pittenger, “Building ASP.NET web pages dynamically in the code-

behind”, 2019, https://www.codeproject.com/Articles/25573/Building-
ASP-NET-Web-Pages-Dynamically-in-the-Code.

[3] A. Vashisht, A. Sukhija, A. Verma, and P. Jain, “A detailed study of
software code cloning”, IIOAB J.-Special Issue: Comp. Science, vol. 9(2),
pp. 20-32, 2018.

[4] R.N. Taylor, N. Medvidovic, and E. Dashofy, “Software architecture:
Foundations, theory, and practice”, John Wiley & Sons, First Ed., 2009.

[5] K. Wang, L. Zhang, and S. Yann, “A study on code clone evolution
Analysis”, in Proc. ICSESS’17. Beijing, China, pp. 340-345, 2017.

[6] K. Solanki, and S. Kumari, “Comparative study of software clone
detection techniques”, in Proc. MITicon’16. Bang-San, Thailand, pp. 152-
156, 2016.

[7] D. Rattan, and J. Kaur, “Systematic mapping study of metrics based clone
detection techniques”, in Proc. AICTC’16. XBikaner, India, art. 76, pp. 1-
7, 2016.

[8] G. Chatley, S. Kaur, and B. Sohal, “Software clone detection: A review”,
Int. J. Cont Theory and Applic., vol. 9(41), pp. 555-563, 2016.

[9] Q.U. Ain, W.H. Butt, M.W. Anwar, F. Azam, and B. Maqbool, “A
systematic review on code clone detection”, IEEE Access, vol. 7, pp.
86121-86144, 2019.

[10] N. Saini, S. Singh, and Suman, “Code clones: Detection and
management”, Procedia Computer Science, vol. 132, pp. 718-727, 2018.

[11] V. Saini, H. Sajnani, J. Kim, and C. Lopes, “SourcererCC and
SourcererCC-I: Tools to detect clones in batch mode and during software
development”, in Proc. ICSE-C'16. Austin, TX, USA, pp. 597-600, 2016.

[12] B. Kitchenham, and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering”, Tech. rep., Keele University
and Department of Computer Science University of Durham, 2007.

[13] T.M. Ahmed, W. Shang, and A. E. Hassan, “An empirical study of the
copy and paste behavior during development”, in Proc. 12th Working
Conf. on Mining Soft. Repositories. Florence, Italy, 2015, pp. 99-110.

465

[14] M. Balint, R. Marinescu, and T. Girba, “How developers copy”, in Proc.
ICPC'06. Athens, Greece, pp. 1-10, 2006.

[15] D. Chatterji, J. C. Carver, and N.A. Kraft, “Claims and beliefs about code
clones: Do we agree as a community? A survey”, in Proc. IWSC'12.
Zurich, Switzerland, pp. 15-21, 2012.

[16] D. Chatterji, J.C. Carver, and N.A. Kraf, “Cloning: The need to
understand developer intent”, in Proc. IWSC'13. San Francisco, CA,
USA, pp. 14-15, 2013.

[17] C. Kapser, and M.W. Godfrey, “Cloning considered harmful considered
harmful”, in Proc. WCRE'06. Benevento, Italy, pp. 645-692, 2006.

[18] M. Kim, L. Berman, T. Lau, and D. Notkin, “An ethnographic study of
copy and paste programming practices in OOPL”, in Proc. ISESE’04.
Redondo, Beach, USA, pp. 83-92, 2004.

[19] T.D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: A
study of developer work habits”, in Proc. ICSE'06. Shanghai, China, pp.
492-501, 2006.

[20] K.T. Stolee, S. Elbaum, and G. Rothermel, “Revealing the copy and paste
habits of end users”, in Proc. VL/HCC'09. Corvallis, OR, USA, pp. 59-
66, 2009.

[21] G. Zhang, X. Peng, Z. Xing, and W. Zhao, “Cloning practices: Why
developers clone and what can be changed”, in Proc. ICSM'12. Trento,
Italy, pp. 285-294, 2012.

[22] A. Khan, H.A. Basit, S.M. Sarwar, and M.M. Yousaf, “Cloning in popular
server side technologies using agile development: An empirical study”,
Pakistan J. Eng. and Applied Sciences, Vol. 22, pp. 1-13, 2018.

[23] J.F. Islam, M. Mondal, and C.K. Roy, “Bug replication in code clones: An
empirical study”, in Proc. SANER'16. Suita, Japan, pp. 68-78, 2016.

[24] S. Bharti, and H. Singh, “An industrial study on developers’ prevalent
copy and paste activities”, in Proc. ICNGCIS'17. Jammu, India, pp. 147-
152, 2017.

[25] D. Chatterji, J.C. Carver, and N.A. Kraft, “Code clones and developer
behavior: Results of two surveys of the clone research community”, Emp.
Soft. Eng., vol. 21(4), pp. 1476-1508, 2016.

[26] A. Ciborowska, N.A. Kraft, and K. Damevski, “Detecting and
characterizing developer behavior following opportunistic reuse of code
snippets from the web”, in Proc. MSR'18. Gothenburg, Sweden, pp. 94-
97, 2018.

[27] L. Müller, M.S. Silveira, and C.S. de Souza, “Do I know what my code is
saying?: A study on novice programmers’ perceptions of what reused
source code may mean”, in Proc. IHC'18. Belém, Brazil, pp. 1-10, 2018.

[28] T. Ohta, H. Murakami, H. Igaki, Y. Higo, and S. Kusumoto, “Source code
reuse evaluation by using real/potential copy and paste”, in Proc.
IWSC'15. Montreal, pp. 33-39, 2015.

[29] B. Van Bladel, A. Murgia, and S. Demeyer, “An empirical study of clone
density evolution and developer cloning tendency”, in Proc. SANER'17.
Klagenfurt, Austria, pp. 551-552, 2017.

[30] B. Xu, L. An, F. Thung, F. Khomh, and D. Lo,“Why reinventing the
wheels? An empirical study on library reuse and re-implementation”,
Empirical Software Engineering, pp. 1-35, 2019.

[31] M.S. Aktas, and M. Kapdan, “Structural code clone detection
methodology using software metrics”, IJSEKE, vol. 26(2), pp. 307-332,
2016.

[32] M. Gharehyazie, B. Ray, M. Keshani, M.S. Zavosht, A. Heydarnoori, and
V. Filkov, “Cross-project code clones in gitHub”, Empirical Software
Engineering, vol. 24, pp. 1538-1573, 2019.

[33] T.A.D. Henderson, and A. Podgurski, “Rethinking dependence clones”,
in Proc. IWSC'17. Klagenfurt, Austria, pp. 66-74, 2017.

[34] B. Joshi, P. Budhathoki, W.L. Woon, and D. Svetinovic, “Software clone
detection using clustering approach”, in: Arik S., Huang T., Lai W., Liu
Q. (eds). Neural Information Processing. ICONIP 2015 (pp. 520-527).
Lecture Notes in Computer Science, vol 9490. Springer, 2015.

[35] T. Kamiya, “An execution-semantic and content-and-context-based code-
clone detection and analysis”, in Proc. IWSC'15. Montreal, Canada, pp.
1-7, 2015.

[36] K. Kim, D. Kim, T.F. Bissyandé, E. Choi, L. Li, J. Klein, and Traon,
“FaCoY: A code-to-code search engine”, in Proc. ICSE'18. Gothenburg,
Sweden, pp. 1-12, 2018.

[37] M. Mondal, C.K. Roy, and K.A. Schneider, “SPCP-Miner: A tool for
mining code clones that are important for refactoring or tracking”, in Proc.
SANER'15. Montreal, Canada, pp. 484-488, 2015.

[38] A.-F. Mubarak-Ali, S. Sulaiman, S.M. Syed-Mohamad, and Z. Xing,
“Code clone detection and analysis in open source applications”, Comp.
Syst. Softw. Eng.: Conc., Meth., Tools, and Appl., pp. 1112-1127, 2018.

[39] B. Priyambadha, and S. Rochimah, “Behavioral analysis for detecting
code clones”, Telkomnika, vol. 16(3), pp. 1264-1275, 2018.

[40] S. Reddivari, and M.S. Khan, “A topic modeling approach for code clone
detection”, in Proc. SEKE'18. San Francisco Bay, USA, pp. 486-491,
2018.

[41] M. Sudhamani, and L. Rangarajan, “Code similarity detection through
control statement and program features”, Expert Systems with
Applications, vol. 132, pp. 63-75, 2019.

[42] J. Svajlenko, and C.K. Roy, “Fast and flexible large-scale clone detection
with cloneworks”, in Proc. ICSE-C'17. Buenos Aires, Argentina, pp. 27-
30, 2017.

[43] C. Wijesiriwardana, and P. Wimalaratne, “Component-based
experimental testbed to facilitate code clone detection research”, in Proc.
ICSESS'17. Beijing, China, pp. 165-168, 2017.

[44] S. Abid, S. Javed, M. Naseem, S. Shahid, H.A. Basit, and Y. Higo,
“CodeEase: Harnessing method clone structures for reuse”, in Proc.
IWSC’17. Klagenfurt, Austria, pp. 24-30, 2017.

[45] Y. Lin, X. Peng, Z. Xing, D. Zheng, and W. Zhao, “Clone-based and
interactive recommendation for modifying pasted code”, in Proc.
ESEC/FSE'15. Bergamo, Italy, pp. 520-531, 2015.

[46] K. Narasimhan, C. Reichenbach, and J. Lawall, “Cleaning up copy–paste
clones with interactive merging”, Automated Software Engineering, vol.
25, pp. 627-673, 2018.

[47] A. Ohtani, Y. Higo, T. Ishihara, and S. Kusumoto, “On the level of code
suggestion for reuse”, in Proc. IWSC'15. Montreal, Canada, pp. 26-32,
2015.

[48] T. Zhang, and M. Kim, “Poster: Grafter: Transplantation and differential
testing for clones”, in Proc. ICSE-Companion'18. Gothenburg, Sweden,
pp. 422-423, 2018.

[49] J. Kanwal, K. Inoue, and O. Maqbool, “Refactoring patterns study in code
clones during software evolution”, in Proc. IWSC'17. Klagenfurt, Austria,
pp. 45-46, 2017.

[50] J. Kanwal, H.A. Basit, and Maqbool, “Structural clones: An evolution
perspective”, in Proc. IWSC'18. Campobasso, Italy, pp. 9-15, 2018.

[51] M. Mondal, C.K. Roy, and K.A. Schneider, “Bug-proneness and late
propagation tendency of code clones: A Comparative study on different
clone types”, J. of Systems and Softw., vol. 144, pp. 41-59, 2018.

[52] T.L. Nguyen, A. Fish, and M. Song, “An empirical study on similar
changes in evolving software”, in Proc. EIT'18. Rochester, USA, pp. 560-
563, 2018.

[53] J.R. Pate, R. Tairas, and N.A. Kraft, “Clone evolution: A systematic
review”, J. Softw.: Evol. Proc., vol. 25(3), pp. 261-283, 2013.

[54] F. Zhang, X. Su, W. Zhao, and T. Wang, “An empirical study of code
clone clustering based on clone evolution”, J. of Harbin Institute of
Technology (New Series), vol. 24(2), pp. 10-18, 2017.

[55] A. Lerina, and L. Nardi, “Investigating on the impact of software clones
on technical debt”, in Proc. TechDebt'19. Montreal, Canada, pp. 108-112,
2019.

[56] M. Mondal, C.K. Roy, and K.A. Schneider, “Does cloned code increase
maintenance effort?”, in Proc. IWSC'17. Klagenfurt, Austria, pp. 1-7,
2017.

[57] S. Wagner, A. Abdulkhaleq, K. Kaya, and A. Para, “On the relationship
of inconsistent software clones and faults: An empirical study”, in Proc.
SANER'16. Suita, Japan, pp. 79-89, 2016.

[58] D. Mondal, M. Mondal, C.K. Roy, K.A. Schneider, S. Wang, and Y. Li
“Towards visualizing large scale evolving clones”, in Proc. ICSE-
Companion'19. Montreal, Canada, pp. 302-303, 2019.

[59] H. Murakami, Y. Higo, and S. Kusumoto, “ClonePacker: A tool for clone
set visualization”, in Proc. SANER'15. Montreal, Canada, pp. 33-39,
2015.

466

Generating Luck from Weak Ties in Social Networks

Iaakov Exman, Omer Ganon and Asaf Yosef
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel

iaakov@jce.ac.il, ganon136@gmail.com, asafjo23@gmail.com

Abstract— One often assumes that for online Social Networks of
related people, relations with strong ties better characterize the
person one is looking for. However, a paradox already stated by
Granovetter is the opposite assumption that weak ties to other
people may be the more significant in certain contexts. This paper
investigates this latter contrarian hypothesis as a novel tool to
extract knowledge and systematically generate luck in the given
contexts. Similarly to interestingness, luck is modeled relative to
the context, by combining two functions – Relevance and Surprise.
The Surprise expresses the importance of weak ties. A Luck-
Generator software tool has been developed as an experimental
testbed to interact with any social network. Its inputs, chosen by
the Luck-Generator customer, are a context, a social network, and
the customer’s network page. The hypothesis is validated by
results showing that relevance alone is not enough to actually
generate all the potential luck: the weak ties’ surprise contribute
essentially to optimize success in the context task. Preliminary
results are illustrated by ‘Getting a Job’ case study.1

Keywords: Luck calculation; Luck-Generator; Weak ties; Context;
Social Network; Interestingness; Relevance; Surprise; Software
Architecture; Knowledge Discovery; Knowledge Extraction.

I. INTRODUCTION

Social Networks, besides being a huge source of searchable
information, have the potential to significantly enhance
performance of a variety of tasks, not necessarily related to the
explicitly declared purpose of any particular network.

Concerning information search, we have previously defined
and demonstrated the usefulness of an Interestingness [10]
measure – composed of Relevance and Surprise functions –
focusing search outcomes, beyond the capabilities of neutral
search engines provided by social networks.

Regarding enhancing task performance, this work proposes a
new kind of knowledge extraction, by means of Luck
measurement, where by luck we mean systematically reaching
goals with low apparent probability. Similarly to Interestingness,
Luck is also obtained by a couple of functions, but now
calculated upon different input types, with the special Surprise
role, to overcome the low apparent probability.

DOI: 10.18293/SEKE2020-156

A. Systematic Generation of Luck

Our working hypothesis is the assumption stated long ago by
Granovetter [16] that weak ties to other members of a – real or
virtual – social network may be surprisingly more significant
than strong ties in certain circumstances. Given a certain
context, defining a task to be performed, one computes a Luck
measure for relevant social network members, with a Surprise
function quantitatively expressing the weak ties of network
members. These were inspired by the generic definition of
interestingness:

 Interestingness = Relevance* Surprise (1)

The operator * in this equation in its most generality, when
not commutative, is a kind of composition. In the simpler
commutative cases it is just plain multiplication (see [10]).

The rationale, actual functionalities in the analogous
equation for calculating Luck, the input variables and additional
motivation are formulated in the more theoretical section III of
this paper.

B. Weak Ties in Social Networks

A natural representation of a social network is a graph in
which vertices stand for network members and edges represent
their ties to other network members. The tie strength – or rather
tie weakness – can be a function of a few different variables, e.g.
distance in terms of counting weighted graph edges, content
similarity and communication frequency.

The goal of this paper is to validate the working hypothesis
by evaluating the calculated Luck with respect to the
contribution of surprisingly weak ties and its effective results for
the context task.

C. Paper Organization

The remaining of the paper is organized as follows. Section
II concisely reviews Related Work. Section III formulates the
Luck generation underlying theory. Section IV describes the
Luck-Generator software tool architecture and implementation.
Section V illustrates the Luck generation task by means of a
case study. Section VI concludes the paper with a discussion.

467

II. RELATED WORK

We concisely review the literature related to Luck
characterization, Interestingness concepts, and practical
applications of weak ties within social networks.

A. Luck Characterization

We refer to Luck in a positive context of systematic
generation, in order to succeed in concrete tasks performance,
in contrast to random uncontrollable situations, in which
sometimes one achieves “by chance” desirable outcomes. An
interesting extended example of the latter negative meaning is
the book by Clayton Christensen and co-authors [6] entitled
“Competing against Luck”. It advocates causality as opposed to
the frustration of hit-and-miss innovation, viz. leaving your fate
to luck.

Dowding [9] deals mostly with moral aspects of luck; he
also suggests a simplistic measure of luck as a relationship
between expected value of outcome (EV) and the actual
outcome (AV), thus Luck AV EV= − , where in a serial of
trials one would expect that AV approaches EV.

Liechti et al. [23] use a more sophisticated definition of luck
as the unexpected component of performance. It is a sum of
three terms: a- the actual deviation from expected performance;
b- an overconfidence bias; c- a look back bias (a difference of
subjective expectation at a certain time t and at a previous
time). This definition is closer to our own definition, which
involves a surprise (or unexpectedness) factor.

B. Interestingness Concepts and Applications

It is worthwhile to be acquainted with the literature on
Interestingness, as the calculation of this quantity shown in
equation (1), inspired the proposed calculation of Luck, in
particular the Surprise factor, as explained in section III.

Overviews of Interestingness measures for typical purposes,
such as Data Mining and Knowledge Discovery are found in
Geng et al. [14] and McGarry [25]. For instance, criteria on
how to determine interesting rules/patterns generated in data
mining are described by Lenca et al. [22].

There are several differing approaches to interestingness as
described e.g. in the Klosgen and Zytkow Handbook [20],
especially by Tuzhilin [28]. Exman, defined Interestingness as a
product of relevance and surprise in 2009 [10]. This definition
has been implemented with successful Web search results, in
software tools such as the one described in [11].

C. Social Networks Weak Ties and Applications

Granovetter [16], [17] is the pioneer of asserting
significance to Weak Ties in social networks. He also was one
of the first researchers that actually made concrete application
of the theory in his book [18] originally published in 1974, in
the context of “Getting a Job”. A generic analysis of networks
from an historical viewpoint is the book by Ferguson [12],
which includes chapter 6, explicitly dealing with weak ties.

The importance of weak ties in social networks triggered a
variety of studies. Many of them supported the theory – such as
Brown and Konrad [4], DeMeo et al. [7]. In contrast, some of
them rather emphasized the importance of strong ties – such as

Gee et al. [10], Krackhardt and co-authors [17]. Others,
extended the theory to different applications, – such as Baer [2],
Centola [5] – or provided general appraisals e.g. Sinan [25].

Specifically concerning the “Getting a Job” context, besides
Granovetter, one finds Gee et al. [13] and the paper by Tassier
on “Labor Market implications of Weak Ties” [27]. Of
significance for this work is the statement by Tassier that weak
ties in a person’s social network grows with network distance
exponentially faster than strong ties, which is reasonable.

Finally, the technical issue of measuring the strength of a tie
is dealt with e.g. in the paper by Marsden and Campbell [24].

III. LUCK IN CONTEXT

This section’s goal is to formulate the theoretical basis for
Luck calculation for any given context data set. It is the result of
Luck mathematical modeling, based upon assumptions
following experimental results, ours and in the literature on
social network ties’ strength. It starts from an abstract scheme
reflecting actual experiments with (non-virtual) networks.

A. The Abstract Scheme

Our idea, on how to generate Luck, avoids the controversy
on the relative importance of strong ties vs. weak ties, in a
straightforward way by involving both strong and weak ties.

Our abstract scheme, in the next text-box has two actions,
not necessarily in a fixed order, which may occur concurrently.

This abstract scheme is illustrated by 3 stories that actually
occurred in human (not virtual) networks.

The first story task was to “find a scientific collaborator”.
The relevant strong tie was to participate in a conference whose
main topic fits the researcher’s scientific interests. The
Conference was held in China. The weak tie was to find among
the many conference participants a Spanish researcher with
whom a vivid conversation of mutual interest developed. The
surprising aspect was to travel a long distance to China to find a
Spanish researcher.

The second story task was to “find a job in the profession”.
The strong tie was to be an active member in relevant
professional interest groups in the internet. This story referred
to a Java programming language interest group. The weak tie
was, in response to an inquiry, to get an answer from an old
acquaintance in the past, but disconnected for several years.
The acquaintance enabled a successful information exchange,
leading to a concrete job, which was actually taken.

The third story task was to “find a candidate for a vacant
position” in our institution. In this story, the weak tie occurred
first. A certain candidate presented himself to the candidates’
recruiter, to show his credentials, and by the way mentioned
members of his family. The strong tie was that the candidate’s
brother learnt years ago in the same class and was well-known
to the recruiter, being a strong implicit recommendation.

Abstract Scheme: Luck Generation

1st action: a relevant strong tie – determines the task to be
performed, within the chosen context;

2nd action: a surprising weak tie – obtains a pointer to the
desired outcome.

468

B. Modeling Luck Calculation

Given the literature on social network ties’ strength and the
previous abstract scheme, we make the following assumptions:

1. Complementary Exponential decay of ties – strong ties

decay exponentially with the network distance, while
weak ties increase exponentially and vice-versa (see e.g.
Tassier [27]);

2. People Matching with strong ties – strong ties bond
similar people to each other (see e.g. Granovetter [16],
and Krackhardt [21]) and vice-versa mismatching for
weak ties;

3. Time Commutativity of strong/weak ties – sometimes
the strong tie action precedes the weak tie action, other
times the order is reversed (as illustrated by the above
stories of the abstract scheme).

We now formulate the necessary equations to model Luck

calculation, based upon the above assumptions. In terms of
notation we define two functions that calculate the contribution
of strong and weak ties as follows:

• Relevance – calculates the strong ties’ contribution;
• Surprise – calculates the weak ties’ contribution.

By the 1st assumption on “Complementary Exponential

decay” each of these functions is an exponential, with
complementary signs. By the 2nd assumption on “People
Matching” with strong ties and “People Mismatching” with
weak ties one has:

 Re exp()levance Match= (2)

 exp()Surprise Mismatch Match= − (3)

By the 3rd assumption on “Time Commutativity” one has:
ReLuck levance Surprise= + (4)

The “plus” operator is certainly commutative. A
“multiplier” operator in this equation is obviously unsuitable, as
the exponential nature of these terms would cause undesirable
exponents addition.

Finally, substituting equations (2) and (3) into equation (4)
one obtains:

exp() exp()Luck Match Mismatch Match= + − (5)

In practice, to use this equation in calculations, one still

needs to make adjustments to normalize the expressions of
Match and Mismatch, in order to eliminate dependence on set
sizes.

C. Luck Calculation with Keyword Sets

In this paper we restrict Luck calculation due to the
representation of social network members by their respective
Keyword Sets.

First, additional notations are introduced:

• Context – is the keyword set defining a task, e.g.
“ find a job in a specific profession”, such as
software engineering;

• Customer = C – is the person, member of a social
network, who demands the performance of the
Context task; it also designates the keyword set of
this person;

• Follower = F – is another member of the same
Customer’s social network, which is a follower (in
the social network sense) of the Customer; it also
designates the keyword set of the Follower; F is
generalizable to a Follower of a Follower of the
Customer, or to any distance from the Customer.

 The keyword set of the Context is determined before any

computation starts. The keyword set of the Customer and of
each Follower are sub-sets of the Context keyword set. These
are determined by extracting sets from the person pages in the
Social Network, and finding the intersection of the extracted
sets with the Context keyword set.

In this work Match and Mismatch, are keyword set
operations necessary to obtain respectively the Relevance and
Surprise functions, by comparing keyword sets for each
Customer C with the keyword set for a Follower F. Match
calculates a similarity measure of the input sets, i.e. keywords

appearing in the intersection ∩ of these sets:

Match C F= ∩ (6)

The output is the number of intersection elements of C and F.
Mismatch calculates the sets’ dissimilarity, viz. a symmetric

difference ∆ between C and F. It is the union ∪ of the relative
complements of these sets:

() ()Mismatch C E C F F C= ∆ = − −∪ (7)

Match and Mismatch diagrams are seen in Fig. 1.

Figure 1. Schematic Match and Mismatch diagram – C represents the Customer
keyword set (yellow). F represents the Follower keyword set (hatched green).

Match is the intersection C∩ F. Mismatch is the union between the relative
complements C-F and F-C.

469

IV. LUCK-GENERATOR: SOFTWARE ARCHITECTURE AND

IMPLEMENTATION

In this section we describe the Luck-Generator software tool
software architecture and implementation. The tool enabled
testing of the Luck calculations and the Case study in section V.
Its output is a list of candidates: a number of Customer followers
with the highest calculated Luck values.

A. Luck-Generator Architecture

The Luck-Generator software architecture has the following
roles, as shown in Fig. 2:

• Front-End – for input and output;
• APIs – for interaction with any chosen social networks;
• Keyword handler – to extract and collect keyword sets;
• Local Storage – to avoid repeated networks access;
• Inquirer – to retrieve necessary data from storage;
• Calculators – of Tie Strength and Luck;
• Analysis tool – for system maintenance.

The Luck-Generator architecture was designed to be

generic, and not fitting any particular Social Network. One only
needs to insert the needed specific API.

Figure 2. Luck-Generator Software Architecture – The Front-End (yellow) in
the figure upper part inputs data and outputs the resulting candidate list. The
upper-right modules (in blue) get the inputs (customer, social network, context)
and obtain keyword sets and followers to be stored locally. The Inquirer
(orange) retrieves data to calculators (green) for Tie Strength and Luck. The
Analysis tool obtains diagnostic graphs for system maintenance.

B. Luck-Generator: Implementation

As far as possible the system is composed of existing
software modules. For instance, extraction of keywords to
characterize the context, the Customer and followers is done
with the help of Datamuse – a semantic network with a word-
finding query engine for system developers – through its API.

Similarly, access to Social Networks is done by specific
available APIs.

V. CASE STUDY: GETTING A JOB

The chosen Context task for our case study is “find a job in the
profession”. The context was defined, data from a Social
Network extracted and calculations performed, as reported here.

A. Context Definition: Getting a Job

The chosen profession was “Software Engineering”. The
Context diverse keyword set is in the next text-box: it has ‘word
pairs’ and even keywords not exactly belonging to software.

The social network was dictated by an available API. We

started testing with a couple of initial “customers” searching for
the job. According to their extracted keywords characterization
these have been involved previously with software, to assure
that testing is realistic.

Normalization of both the Match and Mismatch functions in
equation (5) was done by a sum of the intersection of the
Context and Costumer keyword sets with the intersection of the
Context and each Follower keyword sets.

B. Calculation Results: Relevance vs. Surprise

Calculation results were obtained with input data extracted
from the social network, for each Customer, and a small number
of followers and all the available followers of followers.

The next fig. 3 shows an inverse exponential relation
between Relevance and Surprise for the data-set of a certain
Customer.

Figure 3. Graph of Calculated Relevance against Surprise for Customer C.D. –
There is an inverse relation between these two quantities: when Relevance –
expressing Strong Ties – decreases exponentially, Surprise – expressing Weak
ties – increases and vice-versa, as predicted by our Model.

Context Keyword Set
Software, engineering, developer, DevOps, computers, algorithm,
TechOps, python, programmer, java, ‘computer science’, ‘data
science’, ‘data analyze’, C++, web, framework, embedded ‘alpha
version’, API, api, app, application, beta, version, bios, QA,
automation, agile, scrum, demo, development, device, emulator,
freeware, ‘open source’, interface, ‘operating systems’, workflow
‘machine learning’, ‘deep learning’, startup, innovation, internet,
IoT, VR, code, coding.

470

C. Empirical Validation

We have used several validation techniques to increase
confidence on the obtained results. These included:

• Results Consistency – Variation of customers;
• Robustness – Variation of Context keyword sets;
• Comparison with results shown in the literature.
As an example of Results Consistency, Figure 4 shows the

same calculation of Luck vs. Surprise for four Customers (L.M.,
C.D., M.M. and S.C.) Although the Customers and their
followers’ data sets are totally independent, the functional
behavior is very similar.

Figure 4. Graphs of Calculated Luck against Surprise for diverse Customers –
As Surprise – expressing Weak Ties – increases, our Model predicts that
calculated Luck also increases. A smaller increase of Luck at the left-hand-side
of the graph, corresponds to a Relevance increase – expressing Strong Ties.
Dots show results calculated for actual data from the Social Network. Trend-
lines are very good polynomial fittings. All four graphs have the same scales.

VI. DISCUSSION

We deal here with open issues triggered by the preliminary
results of this work.

A. The Functionality of Luck Calculation

The functionality of Luck calculation in this paper is based
upon empirical assumptions. These have been validated to be
reasonable and self-consistent.

Nonetheless, it would be desirable to formulate a more
rigorous derivation of the equations we have used.

A few possible starting points are as follows:
• Maximum entropy approach – it is well-known that

such an approach, i.e. maximum entropy under
constraints, obtains probability distributions with
exponential functionality, where the exponent is a
negative quantity. This would be suitable to explain
the exponential expressions in equation (5) of this
paper;

• Hyperbolic Modeling of Probability Distributions-
for example, one may perceive that the
functionality of Luck calculation in the same
equation (5) has an obvious similarity to a
Hyperbolic Cosine. An example of probability
modeling involving hyperbolic functions is found in
the work of Hanaki et al. from Tsukuba University
[19].

B. Systematic Luck vs. Irrationality

From the very beginning of this work we adopted a positive
constructive view of Luck, in other words “Systematic Look”.
This paper is a contribution in this direction. This is not an
esoteric point of view. There is a non-negligible number of
works with this approach.

We mention here Dowding [8] which argues for the utility
of ideas of luck and “systematic luck”. Hanaki et al. [19]
suggest that people learning from experience leads them to
make choices with “luckier” outcomes than others. Contrast
these with Adaval [1].

C. Other Variables for Tie Strength Measure

Besides keyword sets, we are aware of other important
variables to characterize Tie Strength, which were not
considered in this work. These include among others, topology
measures such as relationships among edges and vertices in the
social network and communication intensity between members
of the social network, such as frequency and the nature of the
communication, either generic such as ‘like’ or more personal
contents.

We are currently working to integrate these other variables
in the same generic equations of our model – described in
section III B.

D. Future Work

In addition to the interpretation issues and the number of
variables to characterize Tie Strength, important directions for
further investigation are:

471

• Extensive application to a variety of Customers and their
followers;

• Application to different contexts, besides “finding a job”
that has already been intensively researched in the
literature;

• Usage of different functions to calculate Relevance and
Surprise, such as Tf*Idf, and compare their results with
those of match and mismatch;

E. Main Contributions of this Paper

The main contributions of this paper are: 1- the idea of
systematic generation of Luck in a constructive sense, within
contexts of practical tasks, exploring social networks; 2- to
model the significant contribution of Weak Ties for Luck
generation in terms of a mathematical expression of Surprise.

REFERENCES

[1] R. Adaval, “Culture and Cognition: the Case of Irrational Beliefs about

Luck”, Advances in Consumer Research, Vol. 33, pp. 623-628 (2006).

[2] M. Baer, “The Strength-of-Weak-Ties Perspective on Creativity: A
Comprehensive Examination and Extension”, J.App.Psychology, 95, pp-
592-601, (2010).

[3] M. Bertrand and S. Mullainathan, “Are CEOs Rewarded for Luck? The
Ones with Principals are”, The Quarterly Journal of Economics, Vol. 116,
pp. 901-932 (Aug. 2001). http://www.jstor.org/stable/2696421

[4] D.W. Brown and A.M. Konrad, “Granovetter Was Right: The Importance
of Weak Ties to a Contemporary Job Search”, Group & Organization
Management, 26, 434-462, (2001).

[5] D. Centola, “Complex Contagions and the Weakness of Long Ties”,
Am.J.Sociology, 113, pp. 702-734, (2007). DOI:
https://doi.org/10.1086/521848

[6] C.M. Christensen, T. Hall, K. Dillon and D.S. Duncan, Competing
Against Luck – The Story of Innovation and Customer Choice, Harper
Business, New York, NY, USA, October 2016.

[7] P. DeMeo, E. Ferrara, G. Giumara and A. Provetti, “On Facebook, Most
Ties are Weak”, Comm. ACM, 157, pp. 78-84 (October 2014)
https://doi.org/10.1145/2629438; See also: arXiv:1203.0535, 2012.

[8] K. Dowding, “Resources, Power and Systematic Luck: A Response to
Barry”, Politics, Philosophy & Economics, pp. 305-322 (October 2003)
DOI: https://doi.org/10.1177/1470594X030023002

[9] K. Dowding, “Luck and Responsibility”, in M. Matravers and L. Meyer,
(eds.) Democracy, Equality and Justice, Routledge, London, UK, 2008.

[10] I. Exman, “Interestingness – A Unifying Paradigm – Bipolar Function
Composition”, in Proc. KDIR Int. Conf. on Knowledge Discovery and
Information Retrieval, pp. 196-201, 2009.

[11] I. Exman, G. Amar and R. Shaltiel, R., “The Interestingness Tool for
Search in the Web”, in Proc. SKY’2012 Int. Workshop on Software
Knowledge, pp. 54-63, 2012.

[12] N. Ferguson, The Square and the Tower – Networks, Hierarchies and the
Struggle for Global Power”, Penguin Books, UK, (2018).

[13] L.K. Gee, J. Jones and M. Burke, “Social Networks and Labor Markets:
How Strong Ties Relate to Job Finding On Facebook’s Social Network”,
J.Labor Economics, 35, pp. 485-518 (April 2017). DOI:
https://doi.org/10.1086/686225

[14] L. Geng and H.J. Hamilton, “Interestingness Measures for Data Mining:
A Survey”, ACM Computing Surveys, Vol. 38, (3), Article 9, 2006.

[15] Z. Gilani, R. Farahbakhsh, G. Tyson, L. Wang and J. Crowcroft, “An in-
depth characterization of Bots and Humans on Twitter”, 2017.

[16] M.S. Granovetter, “The Strength of Weak Ties”, Am.J.Sociology, 78, pp.
1360-1380, (May 1973).

[17] M.S. Granovetter, “The Strength of Weak Ties: A Network Theory
Revisited”, Sociological Theory, 1, pp. 201-233, (1983).

[18] M.S. Granovetter, Getting a Job: A Study of Contacts and Careers, 2nd ed.
University of Chicago Press, Chicago , IL, USA, (1995).

[19] N. Hanaki, A. Kirman and M. Marsili, “Born Under a Lucky Star?”,
Tsukuba Economics Working Papers, No. 2009-003, (March 2009),
Tsukuba, Japan.

[20] W. Klosgen and J.M. Zytkow, (eds.), Handbook of Data Mining and
Knowledge Discovery, Oxford University Press, Oxford, UK, 2002.

[21] D. Krackhardt, N. Nohria and B. Eccles, “The Strength of Strong Ties:
The Importance of Philos in Organizations”, in Networks in the
Knowledge Economy , (2003).

[22] P. Lenca, P. Meyer, B. Vaillant and S. Lallich, “On selecting
interestingness measures for association rules: user oriented description
and multiple criteria decision aid”, European J. Operational Res., Vol.
183, pp. 610-626, 2008.

[23] D. Liechti, C. Loderer and U. Peyer, “Luck and Entrepreneurial Success”,
Political Science, Psychology, Economics, 2012.
DOI:10.2139/ssrn.1954560

[24] P.V. Marsden and K.E. Campbell, “Measuring Tie Strength”, Ann.
Meeting Am. Sociological Assoc., pp. 482-499, (1984).

[25] K. McGarry, “A survey of interestingness measures for knowledge
discovery”, Knowledge Engineering Review J., 20 (1), 39-61, 2005.

[26] A. Sinan, “The Future of Weak Ties”, Am.J.Sociology, 121. pp. 1931-
1939, (2016). DOI: http://dx.doi.org/10.1086/686293

[27] T. Tassier, “Labor Market Implications of Weak Ties”, Southern Econ.J.,
72, pp. 704-719, (2006). DOI: 10.2307/20111842.

[28] A. Tuzhilin, “Usefulness, Novelty, and Integration of Interestingness
Measures”, chapter 19.2.2 in ref. [16], pp. 496-508, 2002.

472

Personalized Video Recommendation
Based on Latent Community

Han Yan, Ye Tian, Shunyao Wang, Xiangyang Gong, Xirong Que and Wendong Wang
State Lab of Networking and Switching Technologies

Beijing University of Posts and Telecommunications, China
{hanyan, yetian, wangshunyao, xygong, rongqx, wdwang}@bupt.edu.cn

Abstract—Facing with information overload, recommender
system has been employed in many fields, from news, e-commerce
to videos and musics. However, the traditional recommendation
method that focuses on single individual may not has good
performance because of the data sparsity and the curse of large
dimensionality. Although group recommendation has been raised
recently to utilize users’ social information, many of them just
simply aggregate users’ rating information without analyzing the
latent relations among users. In this paper, we proposed a latent
community based video recommendation model (LCB-Rec). This
method does not need explicit user preference information, it
discovers the latent topics of each video with Latent Dirichlet
Allocation (LDA) and finds latent user relations with Personalized
PageRank. Then, latent community’s profile is generated by
cluster method and merge strategy. LCB-Rec focuses on giving
recommendation to latent community rather than single user. We
make comparative experiments with Matrix Factorization (MF)
and Random Walk with Restart (RWR) based on the real-world
datasets. The experiment results demonstrate that our proposed
method has a better performance.

Keywords—video recommendation, latent community detec-
tion, topic model

I. INTRODUCTION

With the development of network transmission and data
processing, people can spend more time interacting with the
Internet. Recently, watching online video has become a popu-
lar entertainment among people. For instance, at YouTube, the
world’s most popular online video website, millions of users
will request millions of videos in a single day. Besides, users
will upload videos continuously to the YouTube with the speed
of more than 24 hours of video per minute [5]. With such
a tremendous video repositories, offering videos that match
users’ interest is a critical problem to be solved. This is why
so many video websites adopt recommender system.

In general, the method for recommendation could be classi-
fied into three categories: collaborative filtering, content based
method and hybrid recommendation [9]. These traditional rec-
ommendation methods focus on providing services for single
user. Evidences that support this kind of recommendation
are users’ feedback to items, characteristic of each item and
users’ profile. However, facing large quantities of unregistered
users and cold-start problem, the recommendation methods
mentioned above may not have a good performance.

DOI reference number: 10.18293/SEKE2020-023

Since it is hard to recommend for single user, how about
offering recommendation for a group of similar users to
decrease dimensionality. In fact, it is reasonable to offer
recommendation to a group of users. Since in real life, people
with similar interest tend to like the same things [1]. However,
in most circumstances [10], raw data does not contain enough
information about users’ social relations. Hence, it is necessary
to find out the “latent social network” of users.

Recently, bullet comments are very popular in many video
websites. As a form of socialized application, bullet comments
give a real-time interaction between video contents and users’
inside idea. Bullet comments can reflect topics of video,
feelings of users, and what users may be interested in. Such
vast amounts of information would be helpful to find the
“latent community”, and with these latent communities we
can give a better recommendation for community users.

The main contributions and solved problems of this paper
are as follows:
• We treat bullet comments as a “corpus” and build topic

model with this “corpus” and LDA method, which returns
the topic distribution for each video.

• We build a directed tripartite graph and apply Personal-
ized PageRank to find similar users. we employ cluster
method and merge strategy to generate the topic distri-
bution of latent community.

• We compute the pearson correlations between new videos
and each community and rank these videos with this
correlations. The top k videos will be recommended.

II. RELATED WORK

A. Traditional Recommendation

Generally speaking, traditional recommendation methods
may be divided into three classes: collaborative filtering,
content based and hybrid of the two [9]. Content based method
provides recommendation by analyzing item’s similarity or
user’s preference [6]. Collaborative Filtering (CF) recommen-
dation is based on users’ past behaviors. It assumes that users
with similar behavior history tend to have same interests.
It uses the past item-rating matrix to build a model for the
purpose of measuring similarity between users.

B. Group Recommendation

To utilize users’ social information, latent information based
recommendation has been proposed. Christakopoulou et al. [4]

473

Fig. 1: Framework of the recommendation model

proposed SVD based model to learn latent user relations from
rating patterns. What’s more, some recommendation method
tends to detect latent community. Cao et al. [2] proposed an
improved CF algorithm, which predicts rating scores based
on communities. Cheng et al. [3] proposed a method to detect
overlapping community in complex network. Lin et al. [7]
proposed a recommendation model with implicit communities
from user ratings and social connections.

However, methods in [2][4][7] need explicit rating informa-
tion such as “like” or “dislike”, our proposed method focuses
on offering recommendation by mining data without explicit
ratings. Our method utilizes users’ watching records and their
bullet comments to discover latent factors.

III. FRAMEWORK OF MODEL

As Figure.1 shows, our recommendation model consists
of four parts: video’s topic identification, user relationship
discovery, latent community discovery and recommendation
for community.

A. Video’s Topic Identification

We focus on analyzing the similarity between community’s
topic distribution and video’s topic distribution. Thus, it is
critical to dig out latent topics from video’s bullet comments.

In this part, we discover the latent probabilistic topic
distribution from each video. Topic models such as LDA is
employed to extract the abstract topics from documents as a
form of document-topic distribution and topic-word distribu-
tion. Although, LDA cannot be applied to videos directly, the
bullet comments of the videos contain detailed information
of each video. Therefore, our proposed method heuristically
treats each video as a document, and all bullet comments will
be regard as the contents of document sets.

B. User relationship discovery

In this part, we utilize the existing user-video relations in the
raw data and latent video-topic distribution found with LDA
to identify latent user relations. We build a directed tripartite

graph indicating relations among users, videos and topics. The
weight η of each edge in graph is defined as follows:

1) Weight ηi,j of the edge pointing from user ui to video
vj : ηi,j =

Ci,j

Ci
, where Ci,j is the number of bullet

comments that user ui made in video vj , Ci is the
number of all bullet comments made by user ui.

2) Weight ηi,j of the edge pointing from video vi to topic
kj : ηi,j = θi,j , where θi,j denotes the probability that
video vi belongs to topic kj .

3) For the edge pointing from user ui to topic kj : ηi,j =
1
Ci

∑V
v=1

∑
c∈v θ

〈c〉
v,j , where Ci is the number of bullet

comments made by user ui, V is the number of videos.
v identifies a single video. c indicates a single bullet
comment. θ〈c〉v,j is the probability that video v belongs to
topic kj and comment c is from user ui to video v.

4) For the edges of other directions, the weight is calculated
as below: ηi,j = 1

|out(i)| , where the |out(i)| is the out
degree of the node i in the graph.

In this part, we make a matrix implementation of Personal-
ized PageRank and describe the graph in a form of transition
matrix M . The final matrix R that describe the degree of user
similarity could be calculated as:

R = (E − dMT)−1(1− d) (1)

where E is diagonal matrix, d is the damping factor.

C. Latent community discovery

The essence of latent community discovery is to explore
users’ relationships and gather similar users. Affinity Propa-
gation is a cluster method taking similarity matrix of sample
nodes as input, which make it suitable for this problem.

The latent community profile is produced from user’s pro-
file. Three merge strategies (average strategy, least misery
strategy and most pleasure strategy) are employed to generate
community profile ~gc for community c.

Average merging strategy (AMS) is a synthesize consider-
ation of all users, ~gc(k) =

∑
x∈c

~ux(k)
N .

474

(a) Perplexity comparison with different K (b) Silhouette Coefficient comparison (c) Calinski-Harabasz index comparison

Fig. 2: Metrics comparison to select appropriate parameter K and preference

Least misery strategy (LeMS) represents lower bound of all
users, ~gc(k) = minx∈c ~ux(k)

Most pleasure strategy (MoPS) represents upper bound of
all users, ~gc(k) = maxx∈c ~ux(k).
~gc(k) is a vector denoting community c’s preference for

topic k, ~ux(k) is a vector denoting user x’s preference for
topic k, N is the number of users in community c.

D. Video Recommendation

The recommendation is executed by analyzing correlations
between latent community’s topic distribution and video’s
topic distribution. As there is no information about new
coming video’s topic distribution, for each new coming video,
we load the topic-word matrix Φ trained with LDA, transpose
and normalize the matrix to get word-topic matrix ΦT . For
each word wi in the new video’s bullet comments, we sample
word’s topic kj with probability ΦT

ij . After that, we get a
statistics vector ~n = {n1, n2, · · · , nK}. Each element nj
denotes the number of words in each topic kj . Finally, we
calculate the topic distribution ~rv = {r1, r2, · · · , rK} of video
v , where rj =

nj∑K
i=1 ni

.
With the topic distribution ~rv = {r1, r2, · · · , rK} of video

v and topic distribution ~gc = {g1, g2, · · · , gK} of community
c, we can use the Pearson correlation coefficient to measure
the similarity between latent community c and video v:

corr(c, v) =

∑K
k=1(rk − r)× (gk − g)√∑K

k=1(rk − r)2 ×
√∑K

k=1(gk − g)2
(2)

where r = 1
K

∑K
k=1 rk , g = 1

K

∑K
k=1 gk.

We rank videos according to the Pearson correlation coef-
ficient and select the top-k videos for recommending.

IV. EXPERIMENT

In this section, we perform experiments to answer the
following questions: (1) What is the proper parameter K (the
number of topics) to be set in the Latent Dirichlet Allocation.
(2) What is the proper parameter preference to be set in the
Affinity Propagation cluster procedure. (3) Does our proposed
method (LCB-Rec) have a better performance than the other
recommendation methods.

A. Dataset
We obtained 3,847 video’s bullet comments from video web

sites (https://www.bilibili.com). To make sure that LDA have
enough training data, we select top 120 videos and each video
contains at least 8000 comments.

B. Comparative Methods
To evaluate the performance of LCB-Rec, Matrix Factoriza-

tion (MF) and Random Walk with Restart (RWR) [8] are used
for comparative experiments. LCB-Rec with different merging
strategies and individual recommendation (Indi-Rec) without
community profile are also comparative experiment.

C. Evaluation Metrics
1) Perplexity: Perplexity measures how well a probability

distribution predicts a sample. Model with lower perplexity
owns better performance. The definition of perplexity is:

perplexity = exp{−
∑V

v=1 log(p(wv))∑V
v=1Nv

} (3)

where V denotes the number of videos, Nv indicates the
number of words without repetition in video v. p(wv) indicates
word w’s distribution in the video v’s comments.

2) Cluster Performance Metrics: As the latent community
is generated without the ground truth labels, it is indeed to use
some metrics for evaluation.

We use Silhouette Coefficient (SC) and Calinski-Harabasz
index (CH) to evaluate cluster performance. The definitions
about the two metrics could be found within scikit-learn. A
higher value of SC or CH relates to a better model.

3) Top-k Metrics: We measure precision@k, recall@k
and f1score@k of each method to evaluate the performance.
Definitions of these metrics are:

precision@k =
|Actual(k) ∩ Predicted(k)|

Predicted(k)
(4)

recall@k =
|Actual(k) ∩ Predicted(k)|

Actual(k)
(5)

f1score@k =
2× precision@k × recall@k
precision@k + recall@k

(6)

where Actual(k) is the top k actual videos’ set,
Predicted(k) is the top k predicted videos’ set.

475

(a) precision@k comparison (b) recall@k comparison (c) f1score@k comparison

Fig. 3: Performance comparison with MF, RWR, Indi-Rec

D. Experiments Results and Analysis

Figure.2a shows the variation of perplexity with 10 different
K. With a synthetic consideration of the training set’s size and
the variation of perplexity, we choose the value of K equals
60, since the perplexity decrease drastically with value of K
from 10 to 60, and decrease slowly from 60 to 100.

To determine the proper value of preference in Affinity
Propagation, we measure Silhouette Coefficient (SC) and
Calinski-Harabasz index (CH) of each cluster result. We select
9 values of preference from −0.0009 to −0.0001 with a step
of 0.0001 and use the default preference value as the baseline
(Shown as a horizontal green line in the figure).

As Figure.2b and 2c shows, both metrics (SC and CH) indi-
cate that the best cluster result is when the preference equals
−0.0002. This cluster result (preference equals −0.0002)
will be used to generate latent community.

We compare the performance of LCB-Rec, MF, RWR and
Indi-Rec. As Figure.3 shows, LCB-Rec method with “MoPS”
or “AMS” strategy and Indi-Rec method has a better perfor-
mance than MF and RWR methods. The performance improve-
ment owes to following reasons: First, LCB-Rec method and
Indi-Rec method both discover latent topic distribution with
users’ bullet comments, while MF and RWR simply use users’
rating information. Second, LCB-Rec method generates latent
community, which reduces the dimensions of latent relation
matrix. While Indi-Rec method lacks information about similar
users. Thus, LCB-Rec method with “MoPS” strategy has better
impact than Indi-Rec.

V. CONCLUSION

In this paper, we focus on recommending videos to a
latent community rather than a single user. Despite simply
aggregating users’ rating information, we try to discover the
latent information among users and build a latent community
with the help of topic model and cluster method. Compared to
other recommending method like MF and RWR, our proposed
method shows better performance.

Discovering latent information from user generated content
(UGC), like bullet comments, does help to boost recommenda-
tion performance. In the future, more latent information could
be excavated from UGC data to strengthen algorithm.

ACKNOWLEDGMENT

This work was supported by National Natural Science Foun-
dation of China (Grant No.61602051), and the Key Laboratory
of Embedded System and Service Computing, China Ministry
of Education (ESSCKF 2019-09).

REFERENCES

[1] Irfan Ali and Sang-Wook Kim. Group recommendations: approaches
and evaluation. In Proceedings of the 9th International Conference
on Ubiquitous Information Management and Communication, page 105.
ACM, 2015.

[2] Cen Cao, Qingjian Ni, and Yuqing Zhai. An improved collaborative
filtering recommendation algorithm based on community detection in
social networks. In Proceedings of the 2015 annual conference on
genetic and evolutionary computation, pages 1–8. ACM, 2015.

[3] J. Cheng, X. Wu, M. Zhou, S. Gao, Z. Huang, and C. Liu. A novel
method for detecting new overlapping community in complex evolving
networks. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 49(9):1832–1844, 2019.

[4] Evangelia Christakopoulou and George Karypis. Local latent space
models for top-n recommendation. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 1235–1243. ACM, 2018.

[5] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor
Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake
Livingston, et al. The youtube video recommendation system. In
Proceedings of the fourth ACM conference on Recommender systems,
pages 293–296. ACM, 2010.

[6] Shanshan Feng, Huaxiang Zhang, Jian Cao, and Yan Yao. Merging
user social network into the random walk model for better group
recommendation. Applied Intelligence, 49(6):2046–2058, 2019.

[7] Xiao Lin, Min Zhang, Yiqun Liu, and Shaoping Ma. Enhancing person-
alized recommendation by implicit preference communities modeling.
ACM Transactions on Information Systems (TOIS), 37(4):48, 2019.

[8] Haekyu Park, Jinhong Jung, and U Kang. A comparative study of matrix
factorization and random walk with restart in recommender systems. In
2017 IEEE International Conference on Big Data (Big Data), pages
756–765. IEEE, 2017.

[9] Lalita Sharma and Anju Gera. A survey of recommendation system:
Research challenges. International Journal of Engineering Trends and
Technology (IJETT), 4(5):1989–1992, 2013.

[10] Jing Shi, Bin Wu, and Xiuqin Lin. A latent group model for group
recommendation. In 2015 IEEE International conference on mobile
services, pages 233–238. IEEE, 2015.

476

Mining and Predicting Micro-Process Patterns of
Issue Resolution for Open Source Software Projects

Yiran Wang‡, Jian Cao*‡ and David Lo§
‡Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240, China

§School of Information Systems, Singapore Management University, 178902, Singapore
Email: ‡{wangyiran33,cao-jian}@sjtu.edu.cn, §davidlo@smu.edu.sg

Abstract—Addressing issue reports is an integral part of open
source software (OSS) projects. Although several studies have
attempted to discover the factors that affect issue resolution,
few pay attention to the underlying micro-process patterns of
resolution processes. Discovering these micro-patterns will help
us understand the dynamics of issue resolution processes so that
we can manage and improve them in better ways. Of the various
types of issues, those relating to corrective maintenance account
for nearly half hence resolving these issues efficiently is critical for
the success of OSS projects. Therefore, we apply process mining
techniques to discover the micro-patterns of resolution processes
for issues relating to corrective maintenance. Four and five typical
patterns are found for the identification stage and solving stage
of the resolution processes respectively. Furthermore, it is shown
that the consequent patterns can be predicted with a certain
degree of accuracy by selecting the appropriate features and
models. Furthermore, we make use of the pattern information
predicted to forecast the issue lifetime and the results show that
this information can also improve the accuracy in the earlier
observation points. At the same time, pattern predictions provide
good interpretability to the forecast of issue lifetime.

Index Terms—issue resolution, micro-pattern, process mining,
issue pattern prediction, issue lifetime prediction

I. INTRODUCTION

Issue registering, tracking and resolution are very important
in open source software (OSS) projects [1]. Previous studies
show that problems of issue overstocking may arise over
time [2] and a considerable portion of issues in GitHub
are pending for months or even over a year [3]. Therefore,
effective strategies should be implemented to improve the issue
resolution process such as prioritizing issues to be resolved
and allocating resources for each issue clearly in practice and
more importantly, we should understand the influential factors
behind successful issue resolution processes.

As a collaboration process, issue resolution consists of
multiple actions that occur in order and involves several
persons. It is beneficial for us to understand issue resolution
from the process view. For example, bottlenecks, the critical
paths and the most frequent paths can be identified and studied
when issue resolution is modeled as a process. Predicting the
resolution time is not sufficient to understand and manage the
dynamic issue resolution process that is full of uncertainties.
Therefore, we aim to provide a richer prediction on the
ongoing process.

DOI reference number: 10.18293/SEKE2020-031
*Corresponding Author

Issue resolution is essentially a problem-solving process and
follows a typical problem-solving procedure that includes steps
consisting of defining the problem, brainstorming the ideas,
deciding on a solution, implementing a solution and reviewing
the results. However, these steps can only roughly describe the
issue resolution process and in practice, there are many details
for each step. The detailed typical process models for different
steps or stages are called micro-process patterns or micro-
patterns in this paper. On open source hosting platforms such
as GitHub, different types of events, including development
events and interaction events, are recorded in event logs. We
can mine micro-patterns for issue resolution processes from
these event logs by applying process mining techniques [4].

The value of process mining in OSS projects, as been de-
scribed in [5], is that it not only reveals the variety of processes
followed by open source communities, it also helps standardize
or improve core activities. Unfortunately, no research has
been conducted on the topic of process pattern mining and
prediction on issue resolution processes yet. Knowing typical
micro-process patterns help developers, managers and stake-
holders gain a deeper understanding on the processes of issue
resolution. It would be extremely helpful to risk assessment,
work prioritization and resource allocation. For example, some
patterns cost more time than others so that OSS project
members can take actions to guide an issue resolution process
to follow more efficient patterns to intentionally speed up the
resolution process. At the same time, micro-process pattern
information can also be a useful feature for the resolution
time prediction model and provides better interpretability to
the prediction results.

There are different types of issues and they may have very
different micro-process patterns. In this paper, we focus on
the issues relating to the maintenance activities. Moreover, the
ISO/IEC 14764 standard [6] defines four types of maintenance
activities spanning the different motivations that software engi-
neers have while undertaking changes to an existing software
system. Issues can be mapped to these maintenance activities
through a classification model [7]. In this paper, we only
focus on issues relating to corrective maintenance, which
corresponds to bugs and accounts for nearly half of all issues.

Therefore, in this paper, we aim at answering the following
research questions:

• RQ1: What are the frequent micro-process patterns of
resolution processes of issues relating to corrective main-

477

tenance in OSS projects?
• RQ2: Is it possible to predict which micro-process pattern

will appear during the issue’s lifetime?
• RQ3: Is pattern information useful for issue lifetime

prediction?

In order to answer these questions, firstly, we mine frequent
process patterns in different stages of issue resolution using
process mining techniques. The distributions and characteris-
tics of these patterns in various projects are analyzed. Then, we
construct models for pattern prediction during issue lifetime
using dynamic and static features. Finally, we try to utilize the
pattern probability predicted as an additional feature for issue
lifetime predictions.

II. RELATED WORK

Influencing factors for issue resolution time [2], [7]–[9],
bug-fixing time prediction and issue lifetime prediction [10]–
[19] have received significant attention in recent years. Weiss
et al. [11] predict the time spent on fixing an issue based
on the average time of its similar issues. Al-Zubaidi et al.
[19] use multi-objective search-based approach to estimate
issue resolution time which makes estimation models accurate
and simple simultaneously. Giger et al. [12] and Rees-Jones
et al. [14] present decision-tree-based models to predict bug
fix time while Panjer et al. [13] utilize logistic regression
models, Zhang [15] utilize kNN-based model. Kikas [10]
predict issue resolution time based on random forest models
using dynamic and contextual features. In this work, we also
construct issue lifetime prediction models but our emphasis is
to show an improvement in the predictors’ performance when
calculating the probability of micro-process patterns predicted
into features.

Process mining is now considered to be in a mature phase
allowing its application to extract knowledge from event logs
to a variety of sectors. Applying process mining in open-
source software communities has seldom been studied [20]–
[23]. [21]–[23] uses the characteristics of process mining to
perform conformance checks to study the differences between
the actual bug life cycle and the standard process on the guide.
However, these studies are confined to extracting the overall
process model and none of them mine internal micro-process
patterns further. In contrast, we try to discover the micro-
process patterns in the issue resolution process.

III. MINING FREQUENT MICRO-PATTERNS OF THE ISSUE
RESOLUTION PROCESS

In this section, we answer RQ1. In order to mine the
micro-process patterns of issue resolution, we need to observe
the micro-processes of issues. The events extracted through
GitHub APIs record what has happened in an issue resolution
process. We perform pre-processing on the raw data and filter
some helpful and common events which are shown in I to
make an event log made up of 38978 records and apply process
mining algorithms on it.

TABLE I
EVENTS OF ISSUES USED IN THIS STUDY

Event name Description
Created The issue was created by the actor.

Assigned The issue was assigned to the actor.
Labeled A label was added to the issue.

Mentioned The actor was @mentioned in an issue body.
Referenced The issue was referenced from a commit message.
Renamed The issue title was changed.
Reopened The issue was reopened by the actor.

Closed The issue was closed by the actor.

A. Dataset

In this study, we collect issue data using its public APIs1

from GitHub and only closed issues updated at or after
January 1, 2017 are included. The ten popular projects used
in this study vary in domain, scale and programming language
and they all provide dynamic platforms for bug reporting,
discussing and fixing.

Since we focus on issues relating to corrective maintenance,
issue reports must be classified first. We rely on labels applied
to each issue report in GitHub to identify their maintenance
type. Labels used by developers in GitHub are reliable since
they are applied by the persons who actually perform the main-
tenance activity [7]. Finally, 4863 issues relating to corrective
maintenance are collected and included in the dataset. We
perform a preliminary analysis on the duration distribution for
the dataset and find that the majority of issues are closed in
a short period while few issues are pending for a long time,
which appears to be a typical long-tail distribution.

B. Approach

The main approach we use to discover micro-processes is
process mining. This technique has been successfully applied
to distill a structured process description from a set of real
executions in practice [24]. Its main objective is to discover
processes, do conformance checking and process improve-
ment. Many algorithms can be applied to generate process
models like α–algorithm, heuristic miner, genetic algorithm. In
accordance with these methods, process mining automatically
discovers fact-based process models out of the raw data.
Therefore, we use process mining to discover micro-process
patterns in issue resolution processes. Celonis2 as a mature
process mining tool is used in this work.

C. Findings

The original extracted model is very complex and difficult
to read and understand, so we remove a few activities and
connections with low frequency to improve the readability of
the model. Figure 1 shows the process model with 97.3%
activities and 87.2% connections covered. Dashed arrows
indicate connections from the Process Start or to the Process
End. It can be easily found that the most common process
path is :

1https://developer.github.com/v3/
2https://academiccloud.celonis.com

478

Fig. 1. The process model with 97.3% activities and 87.2% connections
covered

created − > labeled:bug − > closed
This indicates that most issue resolution processes start with

‘created’ and end with ‘closed’, via ‘labeled:bug’ except for
those which still have activities after the issue is closed. For
this reason, the whole process model can be divided into two
stages by the ‘labeled:bug’ activity:

1) The First Stage (Identification Stage): ‘created’ to ‘la-
beled:bug’: In this stage, project contributors inspect the
issue in order to know the environment and details with
or without further conversations with the issue authors.
If they judge the issue is a bug rather than a misuse,
they will assign the bug label to the issue for further
fixing.

2) The Second Stage (Solving Stage): ‘labeled:bug’ to
‘closed’: In this stage, when an issue is confirmed as
a bug, the actors try to fix it. It may finish directly
without any activities, or a contributor or a team may
be @mentioned or assigned to fix the found bug, and
commits may be made to fix the bug.

Compared with the general problem solving process model,
the first stage roughly corresponds to the step of defining the
problem while the second stage corresponds to brainstorming
the ideas, deciding on a solution, implementing a solution
and reviewing the results. For issue resolution processes in
OSS projects, it is very difficult if not impossible to divide
the second stage into different steps since these steps are
interwoven. Figure 2 shows the process models for the two
stages, respectively.

Table II presents the most frequent micro-process model
variances which exceed 5% of all for each stage. In general,
Stage 1 costs much less time than Stage 2, which indicates
that it is easier to confirm a bug than to fix it. The bottleneck
period usually occurs in Stage 2.

In each stage, the durations differ clearly between patterns.
It should be noted that activities with the circle arrow()
mean the resolution process goes through the activity twice
or more times. The reason why we don’t merge it into the
process model that goes through the activity only once is
that their durations of them differ greatly (See Table II). For
example, the third pattern of the 1st stage spends 34.9 more

(a) The Identification Process Model

(b) The Solving Stage Process Model

Fig. 2. The two-stage process models

TABLE II
FREQUENT MICRO PROCESS PATTERNS IN TWO STAGES

Pattern Micro Process Freq. Duration Standard
No. Patterns Median Deviation

The 1st Stage: Identification Stage
1 created − > labeled:bug 41% 14.2d 69.8d
2 created − > assigned − > labeled:bug 12% 11.4d 52.0d
3 created − > mentioned	 − >labeled:bug 9% 50.8d 134.0d
4 created − > mentioned − > labeled:bug 8% 15.9d 56.4d

others 30% 57.5d 127.5d
The 2nd Stage: Solving Stage

1 labeled:bug − > closed 26% 114.7d 226.0d
2 labeled:bug − > mentioned − > closed 10% 134.8d 237.3d
3 labeled:bug − > mentioned 	 − > closed 17% 189.5d 279.3d
4 labeled:bug − > assigned 	 − > closed 7% 29.8d 72.0d
5 labeled:bug − > referenced 	 − > closed 8% 61.5d 142.4d

others 32% 79.5d 232.6d

days(68.7%) than the fourth pattern on average, and the only
difference between these two patterns is that the former goes
through ‘mentioned’ activity twice or more while the latter
goes through it only once. Going through the ‘mentioned’
activity twice or more may mean a several rounds of discussion
or @mentioning a team and @mentioning a team often costs
more time than @mentioning a person when judging a bug.
It must be noted that spending more time doesn’t necessarily
imply inefficiency. The issue lifetime depends on many factors,
one being the complexity of an issue. For a complex issue, the
project manager may @mentioning a team so that more time
is needed to label this issue and this is often the right way.

479

Another finding is that processes going through the ‘as-
signed’ activity in stage 1 or 2 and processes going through
the ‘referenced’ activity in stage 2 will reduce the durations
greatly. This conforms to our common sense that explicitly
assigning the task to people can increase efficiency and it is
extremely likely that committing to a pull request marks the
end of issue resolution. It may also mean that when an issue
is easy, the manager clearly knows who should be responsible
for it and can directly assign it to him or a developer can
directly commit a pull request to fix it.

IV. PATTERN PREDICTION

Predicting which pattern occurs next in advance during
issue lifetime can provide with a richer and more interpretable
forecast result and in this section, we construct models to
predict patterns to answer RQ2. The steps include feature
selection, model training and evaluation.

A. Feature Selection

The performance of prediction models relies on features that
are properly selected. Obviously, the patterns to be followed
are affected by many factors. Our feature engineering is based
on the work of [10] and [14]. Furthermore, we also add
the following new features to the features we chose based
on previous work: CodeIncluded for whether the body of an
issue includes code or not, CleanedTitleLength for the number
of words in the issue body with markdown parsed and tags
removed and CreatorAuthority for whether the creator has
authoritative identity in the project. It should be noted that
since we would like to predict emerging patterns with time,
the dynamic features proposed in [10] are used.

The selected features can be divided into three classes, i.e.,
Issue features, Issue creator features and Project features.
Issue features describe the contents of an issue and its related
events. Issue creator features reflect the characteristics of the
author of an issue, which relates to issue contents and quality.
The resolution processes of issues are also be affected by
their projects and project features reflects their issue resolution
statuses and activity levels. Features are not listed for lack of
space.

B. Model Training

The target of pattern prediction is to select the most possible
pattern type from a limited number of pattern types. This can
be regarded as a classification problem. Since we will predict
patterns with time, we trained different classification models
at different observation points. For example, the observation
point of 1 day means that we make a pattern prediction for an
issue that has been opened for 1 day.

The observation points are chosen to match calendric pe-
riods, which leads to six observation points (1, 7, 14, 30,
90, and 180 days) . For each observation point, we train two
classifiers to predict the pattern for the 1st stage and the 2nd
stage respectively. Finally, we train 12 models in total.

TABLE III
THE MACRO-F1(MACF1) AND MICRO-F1(MICF1) SCORES AT DIFFERENT

STAGES

metrics Observation Point
1d 7d 14d 30d 90d 180d

Stage 1 macF1 0.617 0.679 0.653 0.591 0.604 0.664
micF1 0.706 0.741 0.746 0.719 0.756 0.869

Stage 2 macF1 0.469 0.646 0.667 0.674 0.708 0.590
micF1 0.508 0.626 0.661 0.682 0.713 0.702

C. Pattern Prediction Performance

We trained multiple classifiers including MultiLayer Percep-
tron, Linear Discriminant Analysis, Gaussian Naive Bayes,
Multinomial Naive Bayes, Bernoulli Naive Bayes, Logistic
Regression, Decision Tree and Random Forest. Random forest
classifiers [25] perform best for most of the time and we
utilize them in the following section. Table III shows the
macro-averaged F1-score and micro-averaged F1-score [26]
for Random forest classifiers at different observation point.

We calculate yhe Top-10 ranking of feature importance
for models at different observation points. The importance
distributions of features of different stages at the same ob-
servation point are quite similar. However, we can find a
huge difference between importance distributions of features
in different observation points of the same stage. In early
periods, static features seem to play a greater role while at
late observation points dynamic features play a major role. It
is also shown that ‘nMentionedByT’ which denotes ‘Number
of times actors was mentioned in the issue body before T’ is
always of great importance.

To summarize the findings with respect to RQ2, it can
be concluded that we can predict which pattern has the
highest probability of appearing during issue lifetime with a
certain degree of accuracy by selecting appropriate features
and models.

V. ISSUE LIFETIME PREDICTION WITH MICRO-PROCESS
PATTERN INFORMATION

In order to answer RQ3, we construct models with micro-
process pattern information in contrast to models without
pattern information to show that predicting patterns with time
is beneficial to lifetime prediction.

A. Feature Selection

The feature selection is similar to last section. In addition,
predicted pattern information is used as the extra inputs to the
models. Rather than providing the concrete predicted pattern
information, here we provide the appearance probabilities of
patterns as inputs, for example, [0.12, 0.21, 0.03, 0.64] for the
1st stage. The reason is the consequent pattern is essentially
nondeterministic and can be changed with time due to several
factors. This is also the reason why pattern prediction accuracy
is not so high. Therefore, providing the name of a most
possible pattern is too risky. If the predicted result is wrong,
it will completely mislead the lifetime prediction model.

480

TABLE IV
PREDICTION PERFORMANCES OF MODELS FOR DIFFERENT OBSERVATION

POINTS AND PREDICTION HORIZONS

Pred. macro-F1 micro-F1 AUC
horizon init prob fore init prob fore init prob fore

Observation at 1 day after issue is opened
7d 0.524 0.576 0.554 0.740 0.785 0.759 0.531 0.571 0.552

14d 0.575 0.623 0.611 0.664 0.704 0.686 0.574 0.618 0.607
30d 0.661 0.680 0.671 0.662 0.682 0.680 0.658 0.678 0.672
90d 0.696 0.695 0.696 0.720 0.726 0.722 0.691 0.690 0.692
180d 0.741 0.728 0.737 0.803 0.804 0.803 0.724 0.708 0.720
365d 0.774 0.772 0.775 0.892 0.894 0.892 0.740 0.734 0.741

Observation at 7 days after issue is opened
14d 0.508 0.535 0.512 0.860 0.865 0.854 0.517 0.538 0.517
30d 0.647 0.669 0.673 0.738 0.761 0.758 0.640 0.667 0.661
90d 0.673 0.693 0.680 0.676 0.698 0.680 0.678 0.690 0.680
180d 0.739 0.736 0.746 0.762 0.765 0.770 0.732 0.729 0.740
365d 0.778 0.756 0.783 0.864 0.852 0.866 0.750 0.727 0.754

Observation at 14 days after issue is opened
30d 0.609 0.637 0.633 0.796 0.820 0.811 0.596 0.618 0.614
90d 0.660 0.667 0.661 0.667 0.677 0.670 0.657 0.661 0.661
180d 0.744 0.737 0.740 0.750 0.748 0.751 0.737 0.734 0.737
365d 0.751 0.750 0.765 0.839 0.836 0.845 0.730 0.725 0.739

Observation at 30 days after issue is opened
90d 0.624 0.626 0.613 0.741 0.743 0.733 0.617 0.620 0.609
180d 0.712 0.730 0.716 0.716 0.732 0.718 0.713 0.733 0.717
365d 0.749 0.735 0.743 0.790 0.784 0.787 0.738 0.722 0.732

Observation at 90 days after issue is opened
180d 0.590 0.584 0.554 0.724 0.729 0.721 0.578 0.580 0.566
365d 0.703 0.702 0.694 0.716 0.713 0.710 0.704 0.702 0.695

Observation at 180 days after issue is opened
365d 0.678 0.683 0.691 0.692 0.708 0.725 0.679 0.689 0.691

TABLE V
HEAT MAP FOR VARIOUS MODELS AT DIFFERENT OBSERVATION POINTS

AND PREDICTION HORIZONS.

(a) macro-F1
Observation Prediction horizons

point 1 7 14 30 90 180
7
14
30
90

180
365

(b) micro-F1
Observation Prediction horizons

point 1 7 14 30 90 180
7
14
30
90

180
365

Red � � � denotes that a model with pattern probabilities performs better
than initial model and blue � � � denotes the contrary. A dark color � �
denotes the gap is more than 6%, the medium � � denotes the gap is between
3%-6% and a light color � � denotes the gap is less than 3%.

B. Model Training

As in [10], our lifetime prediction tries to answer the
question as to whether the issue can be closed before the
given time or not. Therefore, it is a classification problem
and we train prediction models at different observation points.
At each observation point, we make predictions for whether

it will be closed with different prediction horizons. Naturally,
the prediction horizon should end after the observation point.
For each combination of an observation point and a prediction
horizon, we should train one model. For example, we make a
prediction for an issue to answer the question as to whether it
will be closed within 30 days after it has been opened for 14
days.

C. Prediction Performance

Although the prediction task is a binary classification prob-
lem in our study, we still utilize the macro-averaged F1-score
and micro-averaged F1-score to evaluate the classifiers because
correctly predicting the fact that an issue can be closed in a
given prediction horizon or not is equally important so that
traditional metrics for binary-classification are not sufficient.
As in [27], we also use random forest as the model for this
task because it has been proven that random forest is better
than other conventional models on this task.

We analyze model performance for different observation
points and compare initial models (init), models with pattern
probability predicted (prob) and models with exact pattern
predicted (fore). Table IV shows the obtained macro-averaged
and micro-averaged F1-scores of various models.

Accordingly, Table V shows the performance comparison
in the form of a heat map. We find that models with pattern
probability predicted achieve better performance when doing
short-term prediction at earlier observation points.

Firstly, pattern probability is similar to prior probability.
At an early period when other features can barely provide
information, adding prior probability is of great help for
classifiers. As time progresses, other features are of more value
and begin to modify the ‘prior probability’ and even break
away from it. So, the value of pattern probability become less
and less at later observation points.

Secondly, we find that after adding pattern probability
features, the classifiers tend to predict that a certain issue
can be closed within a given period. Without pattern prob-
ability, issue lifetime predicted may range widely. But with
pattern probability, the resolution time distribution predicted
may shrink due to the pattern restrictions. In this case, the
capability of the model to distinguish the unconventional ultra-
long period issue becomes weak, so prediction performance
deteriorates after adding pattern features.

Another interesting finding is that models with pattern
probability predicted even perform better than models with the
foresight of exact patterns in many cases, especially at earlier
observation points. We explain the phenomenon in this way:
The model precision is low at an early period, adding an exact
pattern may result in over-fitting to some extent. Nevertheless,
the probability of patterns means various possibilities, which
improves the ability of generalization.

VI. THREATS TO VALIDITY

Threats to internal validity In this study, we assume that
properties of issues in each project are uniformly distributed
while the heterogeneity of issues in each project cannot

481

be avoided. In addition, there are may several relationships
between some issues in a project, i.e., they are not independent.
These will inevitably affect our results to some extent. Another
issue is we apply 17 features to predict possible patterns while
the most important factor, the complexity of the issue itself, is
not included since it is difficult to measure directly. We have
tried to remedy this by putting some of the features that are
closely related to issue complexity into the model. Also, issue
misclassification is reported to occurs in [28], which may have
impact on issue pattern prediction and issue lifetime prediction
in our study.

Threats to external validity In this study, we use issues
from 10 projects that are representatives of the open source
domain which have different backgrounds, development prac-
tices and goals. To improve generality, we propose extending
our study to more representative projects.

VII. CONCLUSIONS

In this paper we try to mine micro-process patterns of the
resolution process of issues of a corrective maintenance type.
Based on the issues extracted from 10 distinctive and repre-
sentative projects in the open source domain, we apply process
mining techniques to extract process patterns from them. We
divide the whole issue solving process into two stages, i.e., the
identifying stage and the solving stage. Four and five patterns
are discovered for the first stage and second stage, respectively.
Then we analyze their properties and get some interesting
findings. After this, we construct models for pattern prediction
during issue lifetime using static and dynamic features and
our model shows an improved performance with time. Then
we construct models for issue lifetime prediction in GitHub
projects for different calendric periods with the probability of
patterns predicted in order to demonstrate value within pattern
information. The results show that models with predicted
pattern information achieve better accuracy for issue lifetime
prediction at earlier observation points.

ACKNOWLEDGMENT

This work is partially supported by National Key Research
and Development Plan(No. 2018YFB1003800).

REFERENCES

[1] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams,” in Proceedings of the 2010 ACM conference on
Computer supported cooperative work. ACM, 2010, pp. 291–300.

[2] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang, and S. Liu, “Exploring the
characteristics of issue-related behaviors in github using visualization
techniques,” IEEE Access, vol. 6, pp. 24 003–24 015, 2018.

[3] R. Kikas, M. Dumas, and D. Pfahl, “Issue dynamics in github projects,”
in International Conference on Product-Focused Software Process Im-
provement. Springer, 2015, pp. 295–310.

[4] W. Van Der Aalst, Process mining: discovery, conformance and en-
hancement of business processes. Springer, 2011, vol. 2.

[5] E. Kouzari and I. Stamelos, “Process mining in software events of
open source software projects,” in 2nd International Symposium & 24th
National Conference on Operational Research, HELORS, 2013, pp. 25–
27.

[6] ISO/IEC, “International standard-iso/iec 14764 ieee std 14764-2006
software engineering; software life cycle processes &; maintenance,”
2006.

[7] A. Murgia, G. Concas, R. Tonelli, M. Ortu, S. Demeyer, and M. March-
esi, “On the influence of maintenance activity types on the issue
resolution time,” in Proceedings of the 10th international conference
on predictive models in software engineering. ACM, 2014, pp. 12–21.

[8] G. Destefanis, M. Ortu, S. Counsell, S. Swift, M. Marchesi, and
R. Tonelli, “Software development: do good manners matter?” PeerJ
Computer Science, vol. 2, p. e73, 2016.

[9] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical study on
factors impacting bug fixing time,” in 2012 19th Working Conference
on Reverse Engineering. IEEE, 2012, pp. 225–234.

[10] R. Kikas, M. Dumas, and D. Pfahl, “Using dynamic and contextual
features to predict issue lifetime in github projects,” in Proceedings
of the 13th International Conference on Mining Software Repositories.
ACM, 2016, pp. 291–302.

[11] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Fourth International Workshop on Mining
Software Repositories (MSR’07: ICSE Workshops 2007). IEEE, 2007,
pp. 1–1.

[12] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,”
in Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering. ACM, 2010, pp. 52–56.

[13] L. D. Panjer, “Predicting eclipse bug lifetimes,” in Proceedings of the
Fourth International Workshop on mining software repositories. IEEE
Computer Society, 2007, p. 29.

[14] M. Rees-Jones, M. Martin, and T. Menzies, “Better predictors for issue
lifetime,” arXiv preprint arXiv:1702.07735, 2017.

[15] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time: an
empirical study of commercial software projects,” in Proceedings of the
2013 international conference on software engineering. IEEE Press,
2013, pp. 1042–1051.

[16] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models: can
we do better?” in Proceedings of the 8th Working Conference on Mining
Software Repositories. ACM, 2011, pp. 207–210.

[17] P. Anbalagan and M. Vouk, “On predicting the time taken to correct bug
reports in open source projects,” in 2009 IEEE International Conference
on Software Maintenance. IEEE, 2009, pp. 523–526.

[18] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “How long does
a bug survive? an empirical study,” in 2011 18th Working Conference
on Reverse Engineering. IEEE, 2011, pp. 191–200.

[19] W. H. A. Al-Zubaidi, H. K. Dam, A. Ghose, and X. Li, “Multi-objective
search-based approach to estimate issue resolution time,” in Proceedings
of the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering. ACM, 2017, pp. 53–62.

[20] E. Kouzari, L. Sotiriadis, and I. Stamelos, “Process mining for process
conformance checking in an oss project: An empirical research,” in IFIP
International Conference on Open Source Systems. Springer, 2018, pp.
79–89.

[21] E. Kouzari and I. Stamelos, “Process mining in software events of
open source software projects,” in 2nd International Symposium & 24th
National Conference on Operational Research, HELORS, 2013, pp. 25–
27.

[22] W. Poncin, A. Serebrenik, and M. Van Den Brand, “Process mining
software repositories,” in 2011 15th European Conference on Software
Maintenance and Reengineering. IEEE, 2011, pp. 5–14.

[23] M. Gupta, “Nirikshan: process mining software repositories to identify
inefficiencies, imperfections, and enhance existing process capabilities,”
in Companion Proceedings of the 36th International Conference on
Software Engineering, 2014, pp. 658–661.

[24] W. M. van der Aalst, H. A. Reijers, A. J. Weijters, B. F. van Dongen,
A. A. De Medeiros, M. Song, and H. Verbeek, “Business process mining:
An industrial application,” Information Systems, vol. 32, no. 5, pp. 713–
732, 2007.

[25] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[26] V. Van Asch, “Macro-and micro-averaged evaluation measures [[basic
draft]],” Belgium: CLiPS, pp. 1–27, 2013.

[27] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3133–
3181, 2014.

[28] P. S. Kochhar, T.-D. B. Le, and D. Lo, “It’s not a bug, it’s a feature:
does misclassification affect bug localization?” in Proceedings of the
11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 296–299.

482

Deep Graph Attention Neural Network for
Click-Through Rate Prediction

Wen Fang1 and Lu Lu1,2∗
1School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

2Meizhou Modern Industrial Technology Research Institute, South China University of Technology, Meizhou, China
∗Corresponding author email: lul@scut.edu.cn

Abstract—Click-through rate (CTR) prediction aims to esti-
mate the probability of a user clicking on the item, which has
critical importance both in advertising system and recommender
system. Recently, deep learning-based methods have emerged
due to its strong feature extraction ability. Learning user/item
representations (aka. embeddings) is the core of these methods.
However, these existing efforts pay little attention to encoding
the relations among users and items in the embedding process,
which limits the embedding effectiveness. In this paper, we
propose a novel graph neural network framework for CTR
prediction, namely the deep graph attention neural network
(DGAN). Specifically, DGAN treats user-item interactions as a
bipartite graph, which can naturally integrate node information
and topological structure for modeling the relations. The key
component of DGAN is attentive embedding propagation that
recursively propagates embeddings from a node’s neighbors to
refine the node’s embedding, and exploits graph attention mech-
anism to determine which neighbors to focus on. Comprehensive
experiments are conducted on three public datasets and empirical
results demonstrate DGAN achieves substantial gains compared
with the mainstream models for CTR prediction.

Keywords—Click-Through Rate Prediction, Recommender
System, Deep Learning, Graph Neural Network, Embedding
Propagation

I. INTRODUCTION

Online advertising was born in the last century, which has
become the major profit means of most internet companies.
With the explosion of information on the internet, it is becom-
ing increasingly important to explore the way to accurately
and efficiently predict user behaviors with limited network
resources. Click-through rate (CTR) refers to the ratio of ad
clicks to ad impressions, which reflects user behaviors and
serves as a key indicator to measure the advertising effective-
ness. As such, predicting CTR becomes a critical task, which is
beneficial to optimize marketing content, improve advertising
effectiveness and ensure the quality of user experience.

Considering the superiority of deep learning, such as au-
tomatic high-order feature extraction, and inspired by its
immense success in computer vision [1], speech recognition
[2] and natural language processing [3], deep learning-based
methods have been proposed to conduct CTR prediction
task [4]–[6]. Compared with many previous works [7], [8],
these deep learning-based methods can avoid a lot of manual

DOI reference number: 10.18293/SEKE2020-035

Tom

Jane

Mike

Fearless

Fatal Instinct

Blue Sky

Mirage
Mary

Fig. 1: An example of the user-item interaction graph.

feature engineering jobs and improve the model performance
substantially.

Despite the great success achieved by these existing ef-
forts, we argue that they are insufficient to learn effective
embeddings for users and items. The key reason is that they
treat each user-item interaction independently and overlook
the latent relations in the interactions. For example, as shown
in Figure 1, the path Mary → Mirage → Mike reveals the
similar behavior between Mary and Mike, as they all have
interacted with Mirage; the longer path Mary → Mirage →
Mike → Blue Sky implies that Mary may be interested in
Blue Sky, since her similar user Mike has ever watched Blue
Sky. Furthermore, from the holistic view of a path length1 of
3, Tom is more likely to have an interest in Mirage than Blue
Sky, because there are two paths connecting Tom and Mirage,
while only one path connects Tom and Blue Sky.

Being aware of aforementioned challenges and inspired by
the wide success of leveraging graph neural networks [9]–
[11], in this paper, we propose a novel graph neural net-
work framework for CTR prediction, namely the deep graph
attention neural network (DGAN). DGAN is a item-based
model, which takes user behavior sequence and a candidate
item as input, and outputs the probability of a user clicking
the item. Specifically, we first represent user-item interactions
as a bipartite graph, and then refine representation of each
input item by recursively propagating the embeddings from
its neighbors. Distinct from existing work [12], which treats

1In this paper, the length of a path refers to the number of edges it contains.
For example, the length of path Mary→ Mirage→ Mike is 2 and the length
of path Mary → Mirage → Mike → Blue Sky is 3.

483

neighbors equally, here we employ a graph attention mecha-
nism to discriminate the importance of different neighbors. By
doing so, latent relations among users and items are encoded
in the process of embedding propagation.

After several embedding propagation layers, we obtain
a refined representation vector for each item. To yield an
adaptive representation of user interests with respect to current
candidate item, we use an attention network to dynamically
calculate the correlation between candidate item and historical
behaviors, and take weighted sum to aggregate the user
behavior sequence. User interests embedding and candidate
item’s embedding are finally fed into an interaction layer for
CTR prediction.

The key contributions of this work are summarized as
following:
• We emphasize the critical importance of encoding rela-

tions among users and items in the embedding process
of deep learning-based models.

• We propose DGAN, a novel end-to-end CTR prediction
framework based on graph attention network, which
explicitly models relations among users and items by
conducting embedding propagation and employs an at-
tention module to capture the diversity characteristic of
user interests.

• To validate the efficacy of DGAN, we conduct em-
pirical studies on three real-world public datasets. The
experimental results show our DGAN outperforms other
mainstream models in the CTR prediction task.

The remaining parts of this paper are organized as follows.
Section II reviews some related works. Section III describes
proposed model DGAN in detail. Section IV presents the
experiments. Section V summarizes this work and discusses
future works.

II. RELATED WORK

In this section, we mainly present recent studies of the CTR
prediction and graph neural networks.

A. Click-Through Rate Prediction

Compared with traditional shallow learning, deep learning
shows great potential on feature representation and combina-
tion. As such, more and more researchers apply deep learning
to CTR prediction. Qu et al. [13] propose a product-based
neural network (PNN) that combines factorization machine
with multilayer perceptron (MLP). Cheng et al. [5] propose
a novel structure Wide&Deep that cleverly fuses the linear
model and the deep neural network. Guo et al. [14] propose a
factorization-machine based neural network (DeepFM), which
employs factorization machines and deep neural network to
model low-order and high-order feature interactions. Shan et
al. [15] propose a Deep Crossing model composed of an
embedding layer, a stacking layer and a cascade of residual
units for CTR prediction. Zhu et al. [16] propose a Deep
Embedding Forest (DEF) based on Deep Crossing, which
replaces the residual units in Deep Crossing by a forest layer

and improves prediction efficiency by pre-training. Zhou et al.
[17] propose a Deep Interest Network (DIN), which considers
the lack of modeling of user behavior diversity and local
activation in most CTR prediction studies. Zhou et al. [18]
propose Deep Interest Evolution Network (DIEN) to model
users’ sequential behaviors, which enriches the representation
of users and improves the prediction accuracy significantly.
Feng et al. [19] propose a novel CTR model named Deep
Session Interest Network (DSIN) that leverages users’ multiple
historical sessions in their behavior sequences. Despite the
substantial gains achieved by these efforts, little attention has
been paid to encoding relations among users and items in the
embedding process, which degrades the model performance.
In this paper, we employ graph neural network to fill this gap.

B. Graph Neural Networks

Graph Neural Network (GNN) is an extension of con-
volutional neural network to process underlying data with
irregular structure (such as graphs). Kipf et al. [20] propose
a convolutional architecture for semi-supervised learning on
graph-structured. Velickovic et al. [21] propose an attention-
based GNN architecture for node classification. Recently,
researchers also apply GNN to recommender systems. Berg
et al. [22] propose GC-MC, which employs GNN to learn
representations of users/items on user-item graph, but only
first-order neighbors are considered. Wang et al. [12] propose
NGCF, which incorporates GNN into collaborative filtering
and recursively performs propagation on user-item graph to
capture the collaborative signal in high-order connectivity.
However, neither GC-MC nor NGCF discriminate the impor-
tance of different neighbors. In this paper, we exploit the idea
of graph attention network [21] to tackle this problem.

III. METHODOLOGY

In this section, we illustrate our proposed Deep Graph At-
tention Neural Network (DGAN) framework in detail, whose
overall structure is shown in the Figure 2. We discuss the three
main components: 1) embedding layer; 2) attentive embedding
propagation layers; 3) attentive user interest extraction layer,
respectively.

A. Embedding Layer

Embedding is a widely used technique to transform large
scale sparse features into low-dimensional dense vectors,
which has been used in many mainstream recommender mod-
els [12], [17]. With embedding, users can be represented as
Eu = [eu1

, · · · , eum
] ∈ Rm×d , where m is the number of

users, d is the embedding size. Analogously, we can represent
items as Ei = [ei1 , · · · , ein] ∈ Rn×d , where n is the number
of items.

B. Attentive Embedding Propagation Layers

We take inspiration from the recent advance of GNNs [21],
[23]. First, we introduce single layer propagation, and then
exploit the idea of [12] to perform multiple layers propagation.

484

GAT

l

u
e

n

l

u
e

l

i
e

i
e

i
e

i
e

l

i
e

n

l

u
e

l

l

l

u
e

i
e

Fig. 2: An illustration of the DGAN model framework.

1) Single-layer Propagation: Obviously, histories of user-
item interactions not only directly reflect a user’s interests,
but also represent the features of item to a certain extent [24].
We perform embedding propagation between user/item and its
neighbors to encode these relations. For user-item interaction
pair (u, i), embedding propagated from u to i is defined as:

mi←u = attn(ei, eu)eu, (1)

where attn(·) is the graph attention function that takes embed-
dings ei and eu as input and outputs the attention coefficients
αiu, reflecting the importance of local neighbors on ei. Distinct
from traditional graph attention network [21], which simply
concatenates ei, eu and feeds it into a single-layer feedforward
neural network to compute coefficients αiu, we additionally
model user-item interaction via ei � eu, where � denotes
the Hadamard product. Inspired by DKN [25] multi-channel
mechanism, we treat user embedding eu , item embedding ei
, user-item interaction embedding ei � eu as three channels,
and concatenate the three embedding matrices as

Tiu = [W1ei||W2(ei � eu)||W3eu], (2)

where W1,W2,W3 ∈ Rd′×d are the trainable weight matrices.
After getting the multi-channel input Tiu, to increase the
learning ability, we feed it in double-layer feedforward neural
network D:

Hiu = D(Tiu). (3)

To make coefficients easily comparable across different nodes,
we normalize them by adopting the softmax function:

βiu = softmax(αiu) =
exp(Hiu)∑

k∈Ni
exp(Hik)

, (4)

where Ni denotes the neighbors of item i. By assigning
different neighbors with a different weight, the attention mech-
anism is capable of discriminating the importance of different
neighbors, so as to precisely capture latent relations among
users and items. Therefore, embedding propagated from user
u to item i is implemented as:

mi←u = βiueu. (5)

Given the embeddings propagated from neighbors, we take
weighted sum to aggregate them. Specifically, the aggregation
function is expressed as:

e
(1)
i = LeakyReLU(mi←i +

∑
u∈Ni

mi←u), (6)

mi←i =W1ei, (7)

where e(1)i denotes the refined embedding of item i after the
first propagation layer. Note that we additionally aggregate the
original embedding of item i via W1ei (W1 is the trainable
weight matrix defined in Equation 2), whose purpose is to
retain the original features of item i. Analogously, we can
obtain the refined embedding e(1)u for user u.

485

2) Multi-layer Propagation: We argue that the first-order
neighbors are not sufficient to encode relations among users
and items. Therefore, based on the single-layer propagation,
we follow a similar paradigm [12] to gather the embeddings
propagated from the longer path neighbors. Specifically, the
high-order propagation strategy is represented as follow:

e
(l)
i = LeakyReLU(m

(l)
i←i +

∑
u∈Ni

m
(l)
i←u), (8)

where l is path length. Similar to Equation 1 and 7, terms in
Equation 8 can be expressed as:

m
(l)
i←u = attn(e

(l−1)
i , e(l−1)u)e(l−1)u , (9)

m
(l)
i←i =W

(l)
1 e

(l−1)
i , (10)

where W (l)
1 ∈ Rdl×dl−1 is the trainable transformation matrix,

dl is the dimension; e
(l−1)
i is the representation of item

i yielded from previous (l − 1) propagation layers, which
further contributes to the representation of item i at layer l.
Analogously, the representation for user u at the layer l can
be obtained. Hereafter, high-order relation like path Mary →
Mirage → Mike → Blue Sky can be extracted in the process
of embedding propagation. Such high-order relation is crucial
to encode the user’s preference.

After propagating with l layers, we obtain a set of em-
beddings for item i, namely {e(0)i , e

(1)
i , · · · , e(l)i }. Obviously,

embeddings obtained from different propagation layers play
a different role in representing item i. Towards this end,
by exploiting the mechanism of layer-aggregation [23], we
concatenate them to constitute the final embedding for item i:

e(i) = e
(0)
i ||e

(1)
i || · · · ||e

(l)
i , (11)

where || is the concatenation operation. In this way, we encode
relations among users and items in the embedding process,
which not only enrich the initial embeddings, but also endow
our model with powerful expressive capability.

C. Attentive User Interest Extraction

Given user u with behavior sequence {cu1 , cu2 , · · · , cuNu
},

the embeddings of his clicked items can be expressed as
e(cu1), e(c

u
2), · · · , e(cuNu

). To obtain a representation vector of
user interests with respect to current candidate item, a general
way [4], [5] is to process the list of embedding vectors via a
pooling layer:

e(u) = pooling(e(cu1), e(c
u
2), · · · , e(cuNu

)). (12)

Average pooling seems a good choice to achieve above goal,
since it simply conducts element-wise average operations of
the list of embedding vectors. But the user interests embedding
obtained this way remains the same for a specific user, no
matter what candidate items are given. However, interests of
user with rich behaviors are diverse, and user u’s behaviors
ought to have different effects on the candidate item tj when
predicting whether user u will click tj . We model this process
by using an attention network [17]. The attention network is
illustrated in the left upper part of Figure 2. Specifically, for

each item cui clicked by user u and the candidate item tj , we
first conduct Hadamard product of their representation vectors,
then feed it into a feed-forward network G and use softmax
function to normalize the outputs:

wi = softmax(G(e(cui)� e(tj))). (13)

The attention network takes the embedding of candidate item
and a clicked item as input and outputs the impact weight.
Then, we can obtain the final user interests embedding with
respect to the candidate item by calculating the weighted sum
of his clicked items embeddings:

e(u) =

Nu∑
i=1

wie(c
u
i). (14)

Finally, given a user interests embedding e(u) and candidate
item embedding e(tj), we perform inner product to calculate
the probability of a user u clicking the candidate item tj :

pu,tj = e(u)
T
e(tj). (15)

D. Model Optimization

In view of the good performance of binary cross-entropy
loss (aka. log loss) in deep recommender models, in this
paper, we adopt it as the objective function to optimize model
parameters, as follows:

Loss =
−1
N

∑
(u,tj)∈S

(yu,tj log pu,tj+(1−yu,tj) log(1−pu,tj)),

(16)
Where S is training set, N denotes the number of samples in
S, pu,tj to be in (0, 1) represents prediction probability of a
user u clicking the candidate item tj , which is calculated by
the current model parameters. Target value yu,tj is a binarized
1 or 0, which denotes whether u has interacted with tj or not.

IV. EXPERIMENTS

In this section, we present our experiments in detail. We
start by introducing experimental datasets, baselines, evalua-
tion metrics, parameter settings, then compare the proposed
model with the baselines and analyze the results.

A. Dataset Description

Amazon(Electronics)2. Amazon Dataset is a widely used
benchmark dataset in E-commerce, which consists of product
reviews and metadata from Amazon. We use a subset called
Electronics to conduct experiments.

Amazon(Video Games)3. Video Games dataset is also a
subset of Amazon, which contains rich user behaviors.

Yelp20184. This dataset is adopted from the 2018 edition
of the Yelp challenge. Here local businesses like restaurants
and cinemas are treated as items. Specially, we take the subset
where the timestamp is from Jun, 2017 to Jun, 2018.

2http://jmcauley.ucsd.edu/data/amazon
3http://jmcauley.ucsd.edu/data/amazon
4https://www.yelp.com/dataset/challenge

486

0 1000 2000 3000 4000 5000 6000 7000
Iteration

0.50

0.55

0.60

0.65

0.70

0.75

Te
st
 A
U
C

(a) Electronics-AUC

0 500 1000 1500 2000 2500 3000
Iteration

0.55

0.60

0.65

0.70

0.75

0.80

Te
st
 A
U
C

(b) Video Games-AUC

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st
 A
U
C

(c) Yelp2018-AUC

Fig. 3: Testing performance of DGAN in each iteration.

To ensure the quality of datasets, we filter the original
data which keeps each user with at least 10 interactions and
generate negative samples which are of equal size with the
positive ones. Samples in each dataset are split into 4:1 for
training, test. The detailed characteristics of the three datasets
are summarized in table I.

TABLE I: Statistics of datasets used in this paper.

Dataset Users Items Samples

Amazon(Electronics) 45,225 61,918 1,547,004

Amazon(Video Games) 24,303 10,673 414,954

Yelp2018 25,937 92,249 796,994

B. Baselines

• Wide&Deep [5]. Wide&Deep is widely used in industrial
applications, combining a (wide) linear part with a (deep)
non-linear part.

• PNN [13]. PNN uses a product layer to capture interactive
patterns between inter-field categories.

• DeepFM [14]. DeepFM is also a general deep model for
recommendation, which employs factorization machines
and deep neural network to model low-order and high-
order feature interactions.

• DIN [17]. DIN fully considers user behavior diversity. By
exploiting the idea of attention mechanism, it can learn
the different representation of users’ historical behaviors
with respect to the candidate item.

C. Evaluation Metrics

In the experiment, we adopt AUC (Area Under ROC Curve)
[26] to evaluate the performance of our framework and base-
lines. AUC is a widely used metric in CTR prediction field. It
reflects the ranking ability of the model, defined as follows:

AUC =
1

m+m−

∑
x+∈D+

∑
x−∈D−

(I(p(x+) > p(x−))), (17)

where D+ is the set of all positive samples, D− is the set
of all negative samples, function p(·) outputs the predicted

probability of the sample x, I(·) is the indicator function, m+

is the size of D+ and m− is the size of D−.

D. Parameter Settings

We implement our DGAN model in Tensorflow. The di-
mension of both user embeddings and item embeddings are
set as 32. The number of propagation layers is set as 3. The
learning rate is set as 0.01. The batch size is set as 512. We
use Adam [27] to train DGAN by optimizing the log loss.
The key parameter settings for baselines are as follows. The
embedding size is fixed to 128 for all baselines, which results
in better performance. Hyperparameters in the baselines are set
the same as DGAN. Each experiment is repeated five times,
and we report the average performance as results.

TABLE II: Results (AUC) on three public datasets.

Model Electronics Video Games Yelp2018

Wide&Deep 0.7675 0.8137 0.8541

PNN 0.7681 0.8152 0.8597

DeepFM 0.7697 0.8173 0.8684

DIN 0.7712 0.8215 0.8692

DGAN 0.7782 0.8302 0.8832

E. Results

Table II reports the results of comparison of different
models. Figure 3 shows the testing performance curve of
DGAN. The major findings are summarized as below:
• Wide&Deep performs comparably poorly than other

baselines. This indicates that manually designed features
are insufficient to extract the representation of items.

• Compared with Wide&Deep, the performance of PNN
verifies that automative high-order feature interactions
can improve the representation learning ability.

• DeepFM generally performs better than PNN. Such im-
provement might be attributed to the combination of
powerful factorization machines and a specially designed
neural network.

487

• DIN generally achieves remarkable improvements since
it uses attention mechanism to model user’s diverse
behaviors.

• DGAN consistently performs best in the three datasets.
Specially, DGAN outperforms the strongest baselines
with respect to AUC by 0.91%, 1.06%, and 1.61% in
Electronics, Video Games, and Yelp2018, respectively.
This is mainly because it considers the modeling of
relations among users and items, which is overlooked in
most click-through rate prediction studies.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a novel framework DGAN,
which incorporates graph neural network into recommenda-
tion. DGAN addresses two major challenges on the CTR pre-
diction task: 1) Distinct from traditional methods that encode
user or item independently, DGAN fully takes relations among
users and items into consideration by recursively propagating
embeddings on user-item graph structure. 2) With respect to
different candidate items, DGAN exploits an attention network
to obtain an adaptive embedding vector of user interests.
Extensive experiments are conducted on three datasets from
Electronics, Video Games, and Yelp2018. The results demon-
strate the rationality and efficacy of DGAN over several strong
baselines.

In future, we plan to integrate knowledge graph and social
networks into recommendation. This side information will be
beneficial to understand user behaviors and improve recom-
mendation interpretability. Moreover, with the great success
of the Transformer for machine translation task in natural
language processing, we will apply self-attention mechanism
to investigate the sequential recommendation.

ACKNOWLEDGMENT

This research was supported by the National Nature Science
Foundation of China (No. 61370103), Guangzhou Produce
& Research Fund (201802020006) and Meizhou Produce &
Research Fund (2019A0101019).

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[3] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “A latent semantic
model with convolutional-pooling structure for information retrieval,” in
Proceedings of the 23rd ACM international conference on conference
on information and knowledge management, 2014, pp. 101–110.

[4] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proceedings of the 10th ACM conference
on recommender systems, 2016, pp. 191–198.

[5] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & deep
learning for recommender systems,” in Proceedings of the 1st workshop
on deep learning for recommender systems, 2016, pp. 7–10.

[6] R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross network for ad
click predictions,” in Proceedings of the ADKDD’17, 2017, pp. 1–7.

[7] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, “Web-scale
bayesian click-through rate prediction for sponsored search advertising
in microsoft’s bing search engine.” Omnipress, 2010.

[8] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady,
L. Nie, T. Phillips, E. Davydov, D. Golovin et al., “Ad click prediction:
a view from the trenches,” in Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2013, pp. 1222–1230.

[9] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in European Semantic Web Conference. Springer, 2018, pp.
593–607.

[10] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2018, pp.
974–983.

[11] H. Wang, F. Zhang, M. Zhang, J. Leskovec, M. Zhao, W. Li, and
Z. Wang, “Knowledge-aware graph neural networks with label smooth-
ness regularization for recommender systems,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2019, pp. 968–977.

[12] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” in Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Re-
trieval, 2019, pp. 165–174.

[13] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu, Y. Wen, and J. Wang, “Product-
based neural networks for user response prediction,” in 2016 IEEE 16th
International Conference on Data Mining (ICDM). IEEE, 2016, pp.
1149–1154.

[14] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: a factorization-
machine based neural network for ctr prediction,” arXiv preprint
arXiv:1703.04247, 2017.

[15] Y. Shan, T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao, “Deep
crossing: Web-scale modeling without manually crafted combinatorial
features,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 255–
262.

[16] J. Zhu, Y. Shan, J. Mao, D. Yu, H. Rahmanian, and Y. Zhang, “Deep
embedding forest: Forest-based serving with deep embedding features,”
in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017, pp. 1703–1711.

[17] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 1059–1068.

[18] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai,
“Deep interest evolution network for click-through rate prediction,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 5941–5948.

[19] Y. Feng, F. Lv, W. Shen, M. Wang, F. Sun, Y. Zhu, and K. Yang, “Deep
session interest network for click-through rate prediction,” arXiv preprint
arXiv:1905.06482, 2019.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, 2017.

[21] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in 6th International Conference
on Learning Representations, 2018.

[22] R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix
completion,” arXiv preprint arXiv:1706.02263, 2017.

[23] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
arXiv preprint arXiv:1806.03536, 2018.

[24] F. Xue, X. He, X. Wang, J. Xu, K. Liu, and R. Hong, “Deep item-based
collaborative filtering for top-n recommendation,” ACM Transactions on
Information Systems (TOIS), vol. 37, no. 3, pp. 1–25, 2019.

[25] H. Wang, F. Zhang, X. Xie, and M. Guo, “Dkn: Deep knowledge-aware
network for news recommendation,” in Proceedings of the 2018 world
wide web conference, 2018, pp. 1835–1844.

[26] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

488

A Session-based Job Recommendation System
Combining Area Knowledge and Interest Graph

Neural Networks

Abstract—Online job boards become one of the central
components of the modern recruitment industry. Existing systems
are mainly focused on content analysis of resumes and job
descriptions, so they heavily rely on the accuracy of semantic
analysis and the coverage of content modeling, in which case they
usually suffer from rigidity and the lack of implicit semantic
relations. In recent years, session recommendation has attracted
the attention of many researchers, as it can judge the user's
interest preferences and recommend items based on the user's
historical clicks. Most existing session-based recommendation
systems are insufficient to obtain accurate user vectors in sessions
and neglect complex transitions of items. We propose a novel
method, Area Knowledge and Interest Graph Neural
Networks(AIGNN). We add job area knowledge to job session
recommendations, in which session sequences are modeled as
graph-structured data, then GNN can capture complex transitions
of items. Moreover, the attention mechanism is introduced to
represent the user's interest. Experiments on real-world data set
prove that the model we proposed better than other algorithms.

Keywords-component; recommender system; session-based
recommendation; GNN

I. INTRODUCTION
Now more and more candidates are looking for suitable jobs

through the Internet. The traditional method of searching for
keywords is inefficient, and users can only perform self-
assessment based on recruitment information to determine
whether they meet the post. This method cannot quickly find
relevant recruitment data that matches candidates[1]. The
recommendation system is a highly automated system that can
efficiently recommend the items people need. The
recommendation system has been applied in e-commerce[2],
personalized advertising recommendation[3], e-learning
recommendation[4]. In recent years, job recommendation
systems have received increasing attention from researchers[5].
Job recommendation systems can quickly recommend suitable
positions for job seekers.

Traditional job recommendation methods are mainly based
on collaborative filtering[6], content-based approaches[7], the
hybrid method[8]. Now deep learning method is also applied in
job recommendation[9]. The core of session-based

recommendation methods is to recommend new items to users
based on the changing relationship among items. In job
recommendation, people need to consider not only the position
but also the workplace. Specific knowledge shows its
advantages in multiple tasks[10][11]. In this paper, we introduce
area knowledge and consider the regional characteristics in job
recommendations to further improve the performance of the
model. In real life, the user's behavior can be expressed as a
sequence. The user's recent behavior sequence can be regarded
as the user's current preferences, and the user's early historical
session information implies the user's previous long-term
interest preferences. Since the user's long-term preferences will
change with time, so the current preference of the user cannot
correctly reflect the real situation of the user to a certain extent.
The previous job recommendation has weakened the influence
of the difference between long-term and short-term interests on
job seekers. This paper realizes more accurate job
recommendations for users by considering the weight difference
among long-term, short-term and global interests of job seekers.
In this paper, we propose a job session recommendation model
that combines area knowledge and interest graph neural
networks(AIGNN).

II. RELATED WORK
A. Conventional Recommendation Methods

The matrix factorization is a common method in
recommendation system. The basic objective is to factorize into
two low-rank matrices according to a user-item rating matrix,
and each matrix represents a latent factor of users or items[12].
This method is not suitable for the session-based
recommendation system because the user preference is only
provided by some positive clicks. The item-based neighborhood
methods[13], this method is difficult to consider the order
relationship among items. Markov decision processes[14],
mainly learns the probability of state transition. The problem is
that as items increase, it is very tough to model all possible click
sequences.

B. Deep-learning-based Methods

Hidasi et al.[15] used RNN to form a deep neural network
to predict the probability of the next clicked item in the session.

Yusen Wanga, Kaize Shia, Zhendong Niua,b, *
 a School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China

b School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15260, USA
wangyusen@bit.edu.cn, kzshi@bit.edu.cn, zniu@bit.edu.cn

DOI reference number: 10.18293/SEKE2020-041

489

Tan et al.[16] improved the recurrent network model by using
appropriate data augmentation techniques and taking into
account temporal changes in user behavior. Tuan et al.[17]
proposed using a 3D convolutional neural network to better
model user-item interaction data and content features in
sequence recommendation. Li et al.[18] pointed out that the
previous method only considered the user's sequence
performance, but the primary purpose of the user was not
clearly emphasized. Hence, he proposed to adopt an attention
mechanism on RNN to capture the sequential behavior
characteristics and the main purpose of the user. Liu et al.[19]
proposed a session recommendation model using MLP
networks and current attention.

C. Graph Neural Network

Nowadays, graph neural networks can generate graph
structure data representation. GNN [20] can represent the
dependency among graph nodes. In recent years, GNN has
some variants such as Gated graph neural network (GGNN)[21]
and Graph Attention Network (GAT) [22]. Wu et al.[23]
proposed using the GNN method to extract complex changes
among items in session recommendation and achieved good
results.

III. METHODS
In this section, we introduce the proposed AIGNN, in which

the model is shown in Fig 1. We describe the AIGNN method
thoroughly.

A. Notations
The goal of the session recommendation is to predict the

most likely clicked item for the user's next step based on the
user's previous session order. Here we define the letters that
appear in AIGNN.

In session-based recommendation, let J	 = 	 𝑗%, 𝑗', 𝑗(, … , 𝑗*
represents a set consisting of all unique items involved in all
sessions. Each item contains the job knowledge clicked by the
user and the area knowledge of the position. B	 =
	 𝑏%, 𝑏', 𝑏(, … , 𝑏* represents knowledge for each job. A	 =
	 𝑎%, 𝑎', 𝑎(, … , 𝑎* represents the area knowledge of each
position. Fuse the information of A and B to form J, as shown
in Eq. (1). An anonymous session sequence 𝑠 can sort by
timestamp to get list 𝑠	 = [𝑗1,%, 𝑗1,', … , 𝑗1,2] , Where 𝑗1,4 ∈ 𝐽
represents the user's clicked item in session 𝑠. The goal of the
model is to predict the next project 𝑗1,27%based on the previous
clicked item of the user’s. In each session, we calculate the
probability 𝑦 corresponding to each item and output the top-20
items as recommended items.

J =

j%
j'
j(
…
j:

=

a%	b%
a'	b'
a(b(
…

a:	b:

 (1)

B. Session Graph
Since each item is a natural sequence, we construct an

ordered session according to the click order of each item, and
the ordered session sequence is converted into a session graph
so that the GNN can process each session. We build each
session 𝑠 into a directed graph 𝒢1 = (𝑗1, 𝜀1). Each node in the
session graph is an item 𝑗1,4 ∈ 𝐽. 𝜀1 stands for all directed edge
sets. (𝑗1,4A%, 𝑗1,4) ∈ 𝜀1 𝑗1,4 represents the item clicked after
clicking 𝑗1,4A% . The weight of each edge is based on the
occurrence of the edge divided by the outdegree of that edge’s
start node. We construct the vector of each session 𝑠 according
to the vector of each node item.

Figure 1. The overview of the proposed model.

C. Item Embedding
GNN can learn the complex relationship transformation of

each node in the graph structure[20]. Gated graph neural
network (GGNN) is a model based on GRU's spatial domain
message passing[21]. It uses a similar principle of RNN to
realize the transfer of information in a graph. In the field of job
recommendation, in addition to considering the changing
relationship among jobs, it is also necessary to consider the
change of workplace. There are regional differences in job areas.
Different regions focus on different types of jobs. Therefore, we
have added the consideration of the regional factors to general
session recommendations. Besides, we also consider the current,
long-term, and global preferences of users to better analyze
their behavior characteristics.

In this paper, we use GGNN to generate each item
containing area knowledge. A connection matrix 𝐴1 is
constructed to determine how each node communicates with
each other, 𝐴1 ∈ ℝ2×'2 . Since each node of the calculation
considers the bidirectional transfer relationship of the nodes, the
connection matrix is 𝑛×2𝑛 dimension as shown in Fig 2. 𝐴1,4 ∈
ℝ%×'2represents the connection matrix corresponding to each
node in 𝐴1 . 𝐻 is the weight, 𝑧1,4	I and 𝑟1,4I 	are reset and update
gates, σ(∙) is the sigmoid function. The specific formula is as
follows:

𝑎1,4I = 𝐴1,4 ∶ 𝑗%IA%, … 𝑗2IA% 𝐻 + 𝑏 (2)

𝑧1,4I = 	𝜎(𝑊𝓏𝑎1,4I + 𝑈𝓏𝑗4IA%) (3)

490

𝑟1,4I 	= 	𝜎(𝑊S𝑎1,4I + 𝑈S𝑗4IA%) (4)

𝚥UI = 	tanh	(𝑊Y𝑎1,4I + 𝑈Y(𝑟1,4I ⊙ 𝑗4IA%)) (5)

𝑗4I = 1 − 𝑧1,4I ⊙ 𝑗4IA% + 𝑧1,4I ⊙ 𝚥UI (6)

The gated graph neural network processes 𝒢1 for each
session, and GGNN extracts the latent vectors of neighborhoods
into the neural network. The reset gate is used to control the
degree of ignoring the state information of the previous moment.
The update gate is used to control the degree to which the state
information of the previous moment is brought into the current
state. Then we calculate the newly generated messages 𝚥UI based
on the status of the previous, current, and reset gates. 1 − 𝑧1,4I
is to select the forgotten information, 𝑗4I is the final updated
node state.

D. Session Embedding
For a user's session representation, we consider the user's

global representation, long-term interest representation, and
current interest representation. The global preference takes the
user's every click item. The long-term interest is obtained by
averaging all the user's click information. The current interest
is the user's last clicked item. The formula is as follows:

	𝑗] =
%
*

𝑗4*
4^% (7)

𝛽4 = 𝑞a𝜎(𝑊%𝑗2 + 𝑊'𝑗4 + 𝑊(𝑗b + 𝐶) (8)

𝑗Y = 𝛽4𝑗4*
4^% (9)

𝐽d = 𝑊e[𝑗2; 𝑗]; 𝑗Y] (10)

	𝑗] is the average of the sum of users' long-term interest prefer-
ences according to their click items. 	q ∈ ℝ𝑑 and ji is the use-
r's last click as the user's current interest. 𝑗Y is the global emb-
edding of the session graph 𝒢1. We use the attention mechani-
sm to obtain the over-all preferences of users better.

Finally, we get the user's global preference, long-term
preference, and current preference to obtain 𝐽d through a linear
change.

E. Recommendation
We calculate the integrated 𝐽* and each item 𝑗4 to get the

score 𝑠U of each candidate item and then send the candidate

1 https://www.kaggle.com/c/job-recommendation/data

score of each candidate item to softmax to calculate 𝑦，which
is the probability output of the next click in the click session.
The formula is as follows:

𝑠U = 𝐽da𝑗4 (11)
𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠) (12)

F. Training

For each session, we use cross-entropy as the training loss
function. Calculate loss by prediction and the ground truth, as
shown below:

ℒ 𝑦 = − 𝑦42

4^% log 𝑦U + (1 − 𝑦4)log	(1 − 𝑦U) (13)

IV. EXPERIMENTS

A. Datasets
We verify the true validity of the AIGNN model

recommendation in the job area. We use the real datasets
CareerBuilder 1 . This is a real recruitment dataset, which
contains user information, job information, etc. We selected
389,708 users, 10,913 job places, and a total of 315,105 jobs.
We use 1023456 training sessions for training and 57858 test
session data.

B. Baseline Methods
To evaluate the performance of the proposed method, we

compare it with the following representative baselines: (1) POP:
This is a simple baseline that ranks items according to their
popularity measured by the number of interactions. (2)
GRU4REC[15]: Session recommendation via RNN. (3)
NARM[18]: The RNN with attention mechanism is used to
capture the primary purpose and subsequent behavior of the
user. (4) SR-GNN[23]: Session recommendation using gated
graph neural network and attention mechanism.

C. Evaluation Metrics
Following metrics are used to evaluate compared methods.

Recall@20: It is widely used as a measure of prediction accur-
acy. It represents the proportion of correctly recommended ite-
ms in the top-20 items.
MRR@20: It is the average of reciprocal ranks of the
correctly-recommended items. The reciprocal rank is set to 0
when the rank exceeds 20.

V. RESULTS AND ANALYSIS
The results with Recall@20 and MRR@20 on the recomm-

endation performance are presented in Table I. We set the
dimensionality of latent vectors d = 100, the learning rate is set
to 0.001 and the L2 penalty is set to 10-5.

TABLE I. PERFORMANCE COMPARISONS OF DIFFERENT METHODS ON
THE SEQUENTIAL RECOMMENDATION TASK IN CAREERBUILDER

Method Recall@20 MRR@20
POP 4.143 3.702

Figure 2. Connection matrix As representation

491

GRU4REC[15] 52.815 13.684
NARM[18] 63.181 17.572

SR-GNN[23] 68.324 19.729
AIGNN 77.595 21.832

For traditional algorithms such as POP, the performance is
relatively poor. This simple model makes recommendations
based on repeated co-occurring items or consecutive items. In
NARM and GRU4REC, each user is explicitly modeled and
represented by a separate sequence, ignoring the possible
interaction among projects. SR-GNN considers the changing
relationship among projects, without taking personalization
modeling for users into account. We use the AIGNN, which
combines the area knowledge with the job knowledge, and use
the GNN method to extract the complex change relationship
among projects more effectively. Besides, considering the
current, long-term, and global preferences of users, the
mechanism of attention can be more prepared to reflect the
behavior characteristics of users, so it can achieve better results.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a Graph Neural Networks job

session recommendation model based on area knowledge and
interest. Considering the importance of job area knowledge for
job recommendation system, The AIGNN method combines
knowledge and job area knowledge and takes into account the
user's long-term and current and global preferences. The
changing relationship of items is extracted through GNN and
calculated using softmax. Probability distribution selects the
most suitable item. Comparison with other baseline methods on
public datasets proves the effectiveness of our method.

Due to the session-based recommendation requires a large
amount of user history to make recommendations, there is a
problem of cold-start. In the future, it may be a research
direction to add the mechanism of alleviating cold start into
session-based job recommendation.

ACKNOWLEDGMENT
This research work is supported by the National Key R&D

Program of China (Grant number: 2019YFB1406302).

REFERENCES

[1] K. Bradley and B. Smyth, “Personalized information ordering: a case

study in online recruitment,” in Research and Development in Intelligent
Systems XIX. Springer, 2003, pp. 279–292.

[2] O. Hinz and J. Eckert, “The impact of search and recommendation
systems on sales in electronic commerce,” Business & Information
Systems Engineering, vol. 2, no. 2, pp. 67–77, 2010.

[3] X. Liu and Y. Zhang, “A kind of personalized advertising
recommendation method based on user-interest-behavior model,” in 2019
8th International Symposium on Next Generation Electronics
(ISNE).IEEE, 2019, pp. 1–4.

[4] S. Wan and Z. Niu, “A hybrid e-learning recommendation approach based
on learners’ influence propagation,”IEEE Transactions on Knowledge
and Data Engineering, vol. 32,no. 5,pp. 827-840, 2020.

[5] M. Jiang, Y. Fang, H. Xie, J. Chong, and M. Meng, “User click
prediction for personalized job recommendation,”World Wide Web,vol.
22, no. 1, pp. 325–345, 2019.

[6] M. Polato and F. Aiolli, “A preliminary study on a recommender
system for the job recommendation challenge,” in Proceedings of the
Recommender Systems Challenge, 2016, pp. 1–4.

[7] M. Bianchi, F. Cesaro, F. Ciceri, M. Dagrada, A. Gasparin, D. Grattarola,
I. Inajjar, A. M. Metelli, and L. Cella, “Content-based approaches
for cold-start job recommendations,” in Proceedings of the Recommender
Systems Challenge 2017, 2017, pp. 1–5.

[8] Y. Lu, S. El Helou, and D. Gillet, “A recommender system for job seeking
and recruiting website,” in Proceedings of the 22nd International
Conference on World Wide Web, 2013, pp. 963–966.

[9] S. Benabderrahmane, N. Mellouli, and M. Lamolle, “On the predictive
analysis of behavioral massive job data using embedded clustering and
deep recurrent neural networks,”Knowledge-Based Systems,vol. 151, pp.
95–113, 2018.

[10] K. Shi, H. Lu, Y. Zhu, and Z. Niu, “Automatic generation of meteo-
rological briefing by event knowledge guided summarization
model,”Knowledge-Based Systems, vol. 192, p. 105379, 2020.

[11] K. Shi, C. Gong, H. Lu, Y. Zhu, and Z. Niu, “Wide-grained
capsulenetwork with sentence-level feature to detect meteorological event
insocial network,”Future Generation Computer Systems, vol. 102,
pp.323–332, 2020.

[12] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,”
in Advances in neural information processing systems, 2008,pp. 1257–
1264.

[13] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative
filtering recommendation algorithms,” in Proceedings of the10th
international conference on World Wide Web, 2001, pp. 285–295.

[14] G. Shani, D. Heckerman, and R. I. Brafman, “An MDP-based
recommender system,”Journal of Machine Learning Research, vol. 6,
no.Sep, pp. 1265–1295, 2005.

[15] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based
recommendations with recurrent neural networks,”arXiv
preprintarXiv:1511.06939, 2015.

[16] Y. K. Tan, X. Xu, and Y. Liu, “Improved recurrent neural networks for
session-based recommendations,” in Proceedings of the 1st Work-shop on
Deep Learning for Recommender Systems, 2016, pp. 17–22.

[17] T. X. Tuan and T. M. Phuong, “3D convolutional networks for
session-based recommendation with content features,” in Proceeings of
the Eleventh ACM Conference on Recommender Systems,2017, pp.
138–146.

[18] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive
session-based recommendation,” in Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, 2017, pp.1419–
1428.

[19] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “Stamp: short-term
attention/memory priority model for session-based recommendation,”in
Proceedings of the 24th ACM SIGKDD International Conferenceon
Knowledge Discovery & Data Mining, 2018, pp. 1831–183.

[20] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,”IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2008.

[21] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,”arXiv preprint arXiv:1511.05493, 2015.

[22] P. Veličković, G. Cucurull, A. Casanova, A. Romero , P. Lio, and Y.
Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903,2017.

[23] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based
recommendation with graph neural networks,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 346–353.

492

Modeling and Selecting Frameworks in terms of

Patterns, Tactics, and System Qualities

Hind Milhem*, Michael Weiss, Stephane S. Somé*
*School of Electrical Engineering and Computer Science (EECS), Department of Systems and Computer Engineering

*University of Ottawa, Carleton University

Ottawa, Canada
hbani043@uottawa.ca, michael_weiss@carleton.ca, ssome@eecs.uottawa.ca

Abstract—Selecting frameworks and documenting the rationale

for the choice is an essential task for system architects. Different

framework selection approaches have been proposed. However,

none of these connects frameworks to qualities based on their

implemented patterns and tactics. In this paper, we propose a way

to compare automatically the quality attributes of frameworks by

extracting the patterns and tactics from a framework’s source

code and documenting them to connect frameworks to

requirements upon which a selection can be made. We use a tool

called Archie (a tool used to extract tactics from a Java-based

system’s code) to extract the patterns/tactics from the

implementation code of frameworks. We then document and

model these patterns/tactics and their impact on qualities using the

Goal-oriented Requirements Language (GRL). The satisfaction

level of the quality requirements integrated with other criteria

such as the preferences of an architect provide architects with a

tool for comparing different frameworks and documenting their

rationale for choosing a framework. As a validation of the

approach, we apply it to realistic case studies with promising

results.

Keywords-Framework Selection; Architectural Tactic;

Architectural Pattern; Non-Functional Requirement (NFR);

Framework Modeling; Tactic/Pattern Extraction

I. INTRODUCTION

A framework is a highly reusable design for an application

or part of an application in a given domain. With the increasing

complexity of developing software systems and shorter delivery

times, it is essential to reuse existing designs in the form of

frameworks as much as possible. Many candidate frameworks

are usually available for a given application. Therefore,

selecting frameworks and documenting the underlying rationale

for the choice, become an important task for system architects.

Various previous work [1][2][3] have addressed the selection of

frameworks based on various characteristics and criteria such

as the features of the frameworks, the deployability and the

interoperability of the frameworks, and how they perform

(testing). However, none of these connects frameworks to

qualities to compare frameworks based on their exhibited

quality attributes expressed as Non-Functional Requirements

(NFRs) [4].

DOI reference number: 10.18293/SEKE2020-049

Architectural patterns and tactics [4] are reusable building
blocks for software development (including frameworks).
They are characterized in terms of factors that affect the various
quality attributes so that architecture can be understood in terms
of those quality attributes. Our main assumption is that the
implementation of a framework inherits from the quality
attributes associated to the patterns and tactics used in its
implementation.

In a previous work [5], we proposed an approach to select
frameworks based on their quality attributes. We associate
frameworks with quality attributes based on the architectural
patterns used in their implementation. Since the implementation
of frameworks is not always adequately documented, we use a
source code analysis tool (Archie [6][7][8]) to determine which
architectural patterns are used in the implementation of the
frameworks. We then model the relation between the
frameworks, patterns and quality a Goal model using the Goal-
oriented Requirements Language (GRL) [9].

This work builds on our prior work [5] by considering two

additional characteristics to select a framework in addition to

architectural patterns. This is because selecting a framework

based only on its patterns might not be sufficient. The two

additional characteristics are the architectural tactics and the

importance values of quality requirements (preferences of

architects). We use the Archie tool to find the tactics

implemented in frameworks. We then add the tactics and their

impact on quality attributes to the GRL model. We calculate the

importance values of the NFRs using the AHP method [10].

Adding the implemented tactics and the importance values of

the NFRs as other criteria to the model, in addition to the

patterns, would provide more details about how the

implemented patterns/tactics, considering the architects’

preferences in a framework, can together push or pull the

framework toward or away from given NFRs in an informed

way.

The remainder of this paper is organized as follows; Section

2 provides an overview of the related work. We present our

proposed approach in Section 3. In Sections 4, we present a case

study as an example to apply the approach to. Section 5 shows

the preliminary validation of the approach. In Section 6, we

493

mailto:hbani043@uottawa.ca
mailto:michael_weiss@carleton.ca
mailto:ssome@eecs.uottawa.ca

present threats to the validity of this work. In Section 7, we draw

initial conclusions and describes plans for future work.

II. RELATED WORK

Cervantes et al. [1] extract patterns and tactics from a

framework by applying a mapping process between the patterns

and tactics in a framework and those patterns and tactics, which

are employed in architecture design. They also mention that

patterns can be extracted from the provided services of a

framework and that framework selection is based on

architecture drivers (such as the team’s level of knowledge of a

framework, or the framework’s maturity). In comparison to our

work, patterns are identified manually. This approach does not

consider the patterns and tactics implemented in a framework

as a selection criterion. It also does not provide any details on

how to represent frameworks in terms of the patterns and tactics

they implement.

Mirakhorli and Huang [6][7][8] present an approach that

relies primarily on information retrieval and machine learning

techniques for discovering tactics in code. This is done by

training a classifier to recognize specific terms that occur

commonly across implemented tactics. The probabilities of

these terms (the probability that a particular term identifies a

class associated with a tactic) are determined using specific

mathematical equations. The resulting tool is called Archie and

is used in our work to identify architectural patterns and tactics

from source code. In comparison to our work, their work only

focuses on the tactics. Their work does not focus on the

selection method and modeling of architectures in terms of their

implemented patterns and tactics.

Sena et al. [12] analyze studies reporting on software

architectures of big data systems, to identify architectural

patterns, quality attributes, as well as problems and liabilities of

those patterns. They determined that various architectural

patterns, such as the Layered pattern, the Pipe and Filter pattern,

the Broker pattern, and the Shared Repository pattern have

significant impacts on the qualities and characteristics of big

data systems. We use the results of this work to determine the

main quality requirements and the determined patterns, as

discussed in the technical report [11]. In comparison to our

work, this work does not focus on the modeling of architectures

in terms of their implemented patterns. The extraction of the

patterns is done manually by analyzing studies reporting on

software architectures of big data systems.

Additional related work includes: Johnson [13], Aguiar and

David [14], Beck and Johnson [25], Ryoo et al. [29], and

Meusel et al. [30]. A key difference between our work and these

is that their work does not connect frameworks to quality

attributes based on both patterns and tactics. Their work also

does not focus on the selection method and modeling of

architectures in terms of their implemented patterns and tactics.

III. PROPOSED APPROACH

The proposed approach includes three general steps: First,

determining the patterns and tactics a framework implements.

Second, modeling the frameworks in terms of their patterns and

tactics. Third, choosing a framework.

In the following, we present the general steps (process) of

the approach.

A. Determining Patterns and Tactics Implemented in a

Framework

To determine the implemented patterns and tactics of a

framework, we follow the following sub-steps:

1) Determine the Context/Domain

The objective of this sub-step is to restrict the scope of the

search. This allows a more focused determination of the

candidate frameworks, the patterns, and the tactics according to

a specific context.

2) Choose the Patterns and Tactics that Need to be Checked

for A Framework in the Determined Context/Domain

The set of patterns and tactics applied to a problem is

typically restricted by the domain and context of that problem.

These patterns and tactics are the ones known to contribute to

solving aspects of the problem. Our approach searches for the

patterns and tactics relevant to the context of a problem in

frameworks used as part of the solution to this problem.

Therefore, a knowledge of these patterns and tactics is needed

as input.

In this work, we conduct a literature review to find the most

relevant and common patterns and tactics of a framework in the

determined context. The resulting list of tactics and patterns is

however reusable in the same domain.

3) Determine the Tool to be Used to Extract the Patterns

and Tactics of A Framework

Although a manual search of the implemented patterns and

tactics in a framework is possible, it is not practical for large

frameworks. Different alternative methods have been used in

the literature such as Archie [6][7][8], Matching methods

between the provided services of a framework and its

patterns/tactics [13], Pattern instantiation (assigning the roles

defined in a pattern to concrete classes, responsibilities,

methods, and attributes of a practical design) [14], and

Matching methods between the problem statement of an

architecture and the applied patterns [15].

In this work, we use Archie [6][7][8] to extract the patterns

and tactics from the frameworks’ source code. We chose Archie

because it is the only automated tool among the alternatives. So,

it makes the extraction process faster by decreasing time and

effort spent searching the patterns and tactics and their related

terms in the documentation, websites, and source codes of

frameworks. It is extensible so we can add or remove patterns

and tactics.

4) Apply the Tool on a Framework to Extract the Patterns

and Tactics it Implements

In this sub-step, we apply Archie on the candidate frameworks

and get a set of candidate patterns and tactics for each

framework. The interested reader may find more details about

this step in [11].

5) Validate the Candidate Set of Patterns and Tactics which

are Detected by the Selected Tool

We validate the results of applying Archie on the candidate

frameworks by looking for the occurrences of those

patterns/tactics, which are detected by Archie, manually in the

494

source code/documentation/websites of the candidate

frameworks. The goal of this step is to ensure the validity of our

results. For more details about this step, see [11].

B. Modeling Frameworks in terms of their Implemented

Patterns and Tactics

To model frameworks in terms of their implemented patterns

and tactics, we perform the following sub-steps:

1) Determining the Modeling Language to be Used to

Model Frameworks

Different modeling languages have been used to model

frameworks. Examples include The Goal-oriented Requirement

Language (GRL) [9], the NFR-framework [16], i* (i-star)

framework [17], and the softgoal modeling language [18].

In this work, we chose the GRL. The elements of the GRL

notation used are shown in Figure 1. The choice of GRL was

motivated by the facts that: it enables us to evaluate and

compare the impact of different design choices on quality

attributes, it is a part of an international standard (User

Requirements Notation – URN) [9], enables the modeling of

stakeholders and their goals, supports Key Performance

Indicators (KPIs) for quantitative reasoning, and supports

evaluation strategies and propagation algorithms to evaluate the

satisfaction of goals and actors under selected conditions [19].

Giving quantitative contributions of patterns and tactics helped

us calculate the satisfaction of NFRs.

2) Modeling the Patterns, Tactics, and their Contributions

on the NFRs

In this sub-step, we first extract from the description of the

patterns/tactics, the NFRs, the contributions of the patterns and

tactics on the NFRs. Then, we extract the design decisions,

which show the reason for the negative or the positive impact

of a pattern/tactic on an NFR. In this work, we follow Ong et

al.'s [20] approach to extract NFRs, design decisions, and the

contributions of the patterns and tactics on the NFRs. We added

to the description by underlining the benefits, liabilities, the

affected NFRs, and reasons for the positive or negative impact

of the patterns or tactics on the NFRs.

The benefits and liabilities of a pattern/tactic indicate the

positive and negative contributions on the NFRs respectively.

The reasons for the positive or negative impact of the

patterns/tactics on the NFRs correspond to design decisions

behind the application of a pattern/tactic. These design

decisions are expressed as sentences starting with an active verb

such as ‘define,’ ‘register,’ ‘change,’ ‘reuse,’ etc. We also have

followed the same method for the tactics.

We then derive GRL models, with the NFRs and the

contributions of the patterns and tactics on the NFRs, from the

description of each pattern/tactic. First, we start with the

patterns/tactics at the bottom of the model. Then, we put the

design decisions and NFRs at the topmost level of the model.

The complexity of the system dictates the number of levels of

design decisions.

Figure 1. Summary of the GRL notations [9]

Based on Figure 1, we select softgoals (clouds) elements to

represent NFRs and the design decisions, indicating that these

cannot be achieved in an absolute manner. Tasks (hexagons) are

selected to represent patterns, tactics, the parts of a framework

where a pattern/tactic is implemented, and frameworks,

representing ways of achieving a softgoal. An actor with

Boundary (dotted circle) is used to represent an architect of a

framework. Solid lines (Contribution links) indicate the desired

impacts of one element on another element. Contribution types

determined by labels. These labels indicate various degrees of

positive (+) or negative (-) contributions (see Figure 2 for the

complete set of labels). Decomposition links allow an element

to be decomposed into sub-elements [9]. AND, IOR and XOR

are supported decompositions. We use only AND

decomposition links to represent the connection between a

framework and its patterns and tactics because all the patterns

are required in a framework before the NFRs are satisfied. We

used it also to represent the connection between the parts of a

framework and the patterns and tactics because all the patterns

and tactics are needed to be implemented in a part of a

framework.

We use quantitative contribution values. There are different

methods to get the contribution values of a pattern/tactic to an

NFR such as AHP [10], Delphi [21], or by using indicators (one

of the GRL notations as we can see in Figure 1). We use a

matching method between the contribution between a

pattern/tactic and a given NFR from the literature

[22][23][24][25][26][27][28] and the contribution values used

in the GRL. More details about the calculations of the

contribution values are shown in [11].

3) Modeling Framework in terms of their Implemented

Patterns and Tactics

The GRL models of the patterns and tactics from the previous

sub-step, are used to build a bottom up GRL model for

frameworks, starting with the framework and its parts at the

bottom level of the model, connected with all its implemented

patterns and tactics. The parts of a framework show where its

patterns and tactics are implemented. A link between a pattern

and a tactic indicates that the tactic is used as part of the pattern

implementation. The resulting GRL model specifies that the

495

design decisions explain why a pattern/tactic impacts an NFR

the way it does. Consequently, the design decisions push or pull

the framework towards or away from NFRs, as shown in Figure

2.

Each NFR is assigned an importance value given by

architects to help compare and choose the best suited

framework. We calculate these importance values using the

AHP method, as shown in the [11].

C. Choosing a Framework

1) Evaluate the models of the candidate frameworks

To initially assign a satisfaction level to a pattern/tactic, we

assign a tactic or a pattern to be Satisfied (100) if a framework

implements a tactic or a pattern; else, if a framework does not

implement it, it is then assigned to be Denied (0). The initial

values are marked with a star (*) on the evaluation model. All

the patterns and tactics, which are implemented in a framework,

are initially assigned using a star (*). After the initial

assignment of satisfaction levels to the tactics and patterns of a

framework, we evaluate the satisfaction levels of the NFRs by

applying different evaluation strategies on the GRL models, as

we will see in Section IV(C).

2) Compare the Candidate Frameworks

In this last step, we compare the candidate frameworks based

on their implemented patterns and tactics considering the

importance values of the NFRs, which would be given by an

architect, as we will see in Section IV(C).

IV. CASE STUDY

To validate the approach, we applied our approach to an

industrial case study, which is a part of a project to develop a

cyber fusion center. The case study consists in choosing a

stream processing framework for big data. Architects had to

choose among different candidate frameworks. The selected

framework was to provide the backbone for the collection and

correlation of security events. Processing the events requires

routing information from sensors to various processing stages

that perform analytics on the events at different levels of

abstraction (such as detecting attacks and attack patterns).

Our industrial collaborators considered three candidate

frameworks: Apache Storm [29] (a component in Apache

Metron [30]), Apache Flink [31], and Apache Spark [32]. In the

following, we apply the main steps of our approach.

A. Determining Patterns and Tactics Implemented in a

Framework

We apply the following sub-steps to determine the

implemented patterns and tactics of the frameworks Apache

Storm, Apache Flink, and Apache Spark.

1) Determine the Context/Domain

We determined the context of this project to be as big data

systems in general and data streaming frameworks in specific.

All the candidate frameworks are real data streaming

frameworks.

2) Choose the Patterns and Tactics that Need to be Checked

for A Framework in the Determined Context/Domain

Figure 2. The general GRL model of a framework

To perform this sub-step, we conducted a literature review to

find the most relevant and common patterns and tactics of a

framework in the determined context.

Given the context of the problem, we conducted a literature

review to find the most relevant patterns and tactics of a big data

system in general and a data streaming system in specific. We

also determine the most common NFRs of a data streaming

framework. The results of this step and more details are shown

in [11].

3) Determine the Tool to be Used to Extract the Patterns

and Tactics of a Framework

We use the Archie tool [6][7][8] to extract the patterns and

tactics from the frameworks source code as discussed in [7].

4) Apply the Tool on A Framework to Extract the Patterns

and Tactics it Implement

Mirakhorli and Huang [6][7][8] trained a classifier in Archie

to recognize specific terms that occur commonly across

implemented tactics and calculate the weights of the tactics

(the probability that a particular term identifies a class

associated with a tactic). Archie tool considers thirteen tactics

[6][7][8] from three quality attributes to be detected in any Java-

based system. These tactics are Policy-Based Access Control

(PBAC), Role-Based Access Control (RBAC), Kerberos, Audit

trail, Session Management, and Authenticate from Security,

Checkpoint, Heartbeat, Ping/Echo, Active Redundancy, and

Load Balancing form Reliability, and Resource Scheduling,

and Resource Pooling from Performance.

In addition to these thirteen tactics, we added seven other

tactics and five patterns to be detected by the Archie tool. To

see the added patterns and tactics, we refer to [11]. The analysis

of the results of applying Archie to Storm, Flink, and Spark is

shown in [11].

496

5) Validate the Candidate Set of Patterns and Tactics which

are Detected by the Selected Tool

After applying the tool on the candidate frameworks, we

validated the results by looking for the occurrences of the

detected patterns/tactics, manually in the source

code/documentation/websites of the candidate frameworks

Storm, Flink, and Spark. The sample results of the validation

are shown in [11].

B. Modeling Frameworks in terms of their Implemented

Patterns and Tactics

We modeled the candidate frameworks Storm, Flink, and

Spark in terms of their implemented patterns and tactics

following the general model shown in Figure 2. The case study

considers NFRs relevant to data streaming systems such as

Scalability, Maintainability, Performance, Portability,

Availability, Reliability, Security, and Interoperability. For the

sake of readability, the presented model in Figure 3 is restricted

to Testability, Security, Reliability, Availability, and

Scalability. The high-level goal of the project is shown at the

top of the model connected to alternative candidate frameworks

at the bottom of the model. On top of each framework, there are

several parts for each framework connected to their

implemented patterns and tactics. The design decisions explain

why a pattern/tactic impacts an NFR the way it does at the top

of the model. Consequently, the design decisions push or pull

the framework toward or away from NFRs.

C. Choosing a framework

1) Evaluate the models of the candidate frameworks

We evaluate the model to calculate the satisfaction levels of

the NFRS (Figure 3). The evaluation is done by applying

different evaluation strategies on the GRL model. For example,

Figure 4 shows a first strategy where only the patterns and

tactics implemented in the Spark framework are initially

satisfied. Similarly, Figures 5 and 6 show strategies where only

the patterns and tactics implemented in Flink and Storm, are

initially satisfied. Color-coding is used to highlight what is

satisfied and what is denied. For example, the ‘Green’ colour

indicates that the element is satisfied, while the ‘Yellow’ colour

indicates that the element is neutral. The ‘Red’ colour indicates

that the element is denied.

2) Compare the candidate frameworks

Based on the evaluation results of the GRL models from the

previous sub-step, we can see that the three frameworks have

similar satisfaction levels of the Testability, Security, and

Scalability requirements as shown in Figures 4, 5, and 6. The

Testability requirement is satisfied with (42) satisfaction level

for all the frameworks. While the Security is satisfied with (50)

satisfaction level and Scalability with (56) satisfaction level for

all the frameworks.

The Storm framework has a higher satisfaction level for

Reliability and Availability, which is (63) compared to Spark

and Flink. This is because of the implementation of the three

Figure 3. The GRL model of the Storm, Flink, and Spark frameworks in terms of Testability, Security, Reliability, Availability, and Scalability

497

reliability tactics: Exception Handling, Heartbeat, and

Checkpoint. They all improve fault tolerance, which improves

reliability. Spark and Flink have the same satisfaction level for

Reliability, which is (42). Spark has the least satisfaction level

for Availability, which is (5). While Storm has (32) and Flink

has (30) satisfaction levels for Availability. This is because of

applying the Observer/Publish-Subscribe pattern in Storm and

Flink, which provides Asynchronous communication between

components without blocking to wait for a response. This helps

decouple publishers and subscribers so they can be active and

available at different points in time, resulting in improving the

availability of the frameworks. Both Storm and Flink use the

“Checkpoint” tactic to Record consistent states and have a path

to roll back to them if necessary. While Spark uses the “Active

Redundancy” tactic for recovery, preparation, and repair of the

errors. The architect is more satisfied with Storm than Flink and

Spark. As we see, the satisfaction value of the architect for

Storm is (48), while it is (43) for Flink and (37) for Spark. If an

architect favours Reliability and Availability over the other

requirements, we recommend Storm. However, if Testability,

Security, and Scalability are preferred, then any one of the three

frameworks could be equally recommended.

Figure 4. Strategy 1: Applying only the implemented patterns and tactics of the Spark

Figure 5. Strategy 2: Applying only the implemented patterns and tactics of

the Flink

Figure 6. Strategy 3: Applying only the implemented patterns and tactics of

the Storm

498

V. PRELIMINARY VALIDATION

The previous sections discuss the application of the

approach to a case study. We applied the approach in the

context of an industrial project where architects had to choose

among different frameworks Spark, Storm, and Flink. The

results were found satisfactory (and in agreement) with the

project architects. The architects confirmed that the approach

was helpful in choosing the best-fit framework to provide the

backbone for the collection and correlation of security events

in a cyber security center. We also compared the inferred

quality attributes (i.e. reliability, availability, and

performance) with benchmark comparison results such as

[33]. Inoubli [33] showed that both Storm and Flink use the

“Checkpoint” tactic for fault tolerance. While Spark uses

recovery techniques. This was compatible with our results in

Section IV(C). Our results showed that both Storm and Flink

implement the “Checkpoint” tactic to Record consistent

states and have a path to roll back to them if necessary. While

Spark uses the “Active Redundancy” tactic for recovery,

preparation, and repair of errors. Inoubli also showed that

Spark is the fastest framework in terms of the processing time

compared to Storm and Flink. This was compatible with our

results, which shown in [11], that the satisfaction level of the

Performance for Spark is (86) while it is (46) for both Storm

and Flink. This confirms that Spark is the fastest one while

Strom and Flink are quite similar in terms of the data

processing speed, as shown in Figures 12 and 13 in Section

IV(C).

Inoubli also reported that Flink and Storm share

similarities and characteristics with Spark. Flink, Storm, and

Spark implement similar patterns, such as the Layers and

Broker patterns and similar tactics, such as “Resource

Pooling” and “Resource Scheduling”. The compatibility with

Inoubli’s results offers some validation of the main tenet of

our works; the link between the implemented patterns and

tactics, and quality attributes.

 In another case study on Gradle and Maven tools [34],

we also compared the inferred quality attributes (i.e.

performance) with benchmark comparison results such as

[34]. The results of the experiment conducted in [34], showed

that Gradle is faster than Maven. This is because of the

performance features, which Gradle includes, such as the

parallelism and the incremental build and subtasks. In our

results, which are shown in [11], we got quite similar results

to the ones in [34].

In a case study on a Healthcare-Supportive System-System

of Systems (HSH-SoS) architecture [35], we use our

approach to support an analysis of the HSH-SoS architecture

in terms of its implemented patterns and tactics. Our objective

is to confirm that the approach can be used not only to

compare implementations but also to provide a rationale or

documentation about a framework/system architecture.

I. THREATS TO VALIDITY

Threats to validity can be classified as construct, internal,

and external validity. We discuss the threats, which

potentially impact our work, and the ways in which we

attempted to mitigate them.

External Validity evaluates the generalizability of the

approach. The primary threat is related to the assumption that

a framework inherits the aspects of quality associated to its

implemented tactics/patterns. It is possible that

patterns/tactics could be implemented the wrong way and not

provide their expected benefits. Although our initial

validation with case studies such as Gradle and Maven has

showed the validity of our assumption, more case studies will

however be required. As mitigation to this threat we

confirmed the proper implementation by performing a

manual inspection of the code. Another threat is that NFRs

derived from patterns/tactics such as performance might not

be sufficient to be able to compare the frameworks. We

consider the result provided by our approach as one

component of the criteria for a final decision on choosing a

framework. Other criteria including the cost, stability,

maturity, community support might also be considered.

 Construct Validity evaluates the degree to which Archie

was accurate in detecting the patterns and tactics of the

frameworks. In our case study, we have calculated the false

positives and false negatives numbers by checking if those

patterns/tactics detected by Archie are implemented in the

source code of a framework. We found that there were only

12% false positives in Storm, 16% in Flink, 4% in Spark, and

16% in both Gradle and Maven. The whole results showed

that most of the patterns and tactics, which were detected by

Archie for the frameworks, are implemented in the

frameworks. This confirms the high accuracy and

performance of the Archie tool. Archie also has been tested

on several systems ranging from 1,000 to 20,000 java files

[6][7].

Internal Validity reflects the extent to which a work

minimizes systematic error or bias so that a causal conclusion

can be drawn. A threat to validity is that the search for

specific patterns or tactics was solely performed by the

authors. In the case of the cyber fusion center project, we

mitigated this threat by elicited feedback from developers and

architects with extensive experience with the involved

frameworks.

VI. CONCLUSION AND FUTURE WORK

The approach described in this paper extracts the

implemented architectural patterns and tactics from

frameworks source codes to connect frameworks to quality

requirements upon which a selection can be made. We use an

information retrieval approach, with a tool called Archie, to

determine the implemented architectural patterns and tactics

in order to enable a more informed assessment by architects.

We then model the frameworks in terms of their implemented

patterns and tactics using the Goal-oriented Requirements

Language (GRL). This model provides architects with a

rationale about the satisfaction levels and the analysis of the

tradeoff of given NFRs for a framework. Providing such

rationale with considering the importance values of the NFRs

integrated with other criteria such as the cost, delivery time,

499

stability, and maturity of a framework would help an architect

to choose among several candidate frameworks.

In the future, we plan to improve our modeling of

frameworks with GRL indicators instead of simply matching

the impact of patterns on NFRs and the contribution values in

the GRL. The indicators in the GRL measure observable

values and convert them to GRL satisfaction values (from

zero for denied, to 100 for satisfied) that can be propagated

to other model elements through links. This would allow

getting the contribution values of the patterns and tactics

automatically.

 Another future work is to integrate the consideration of

criteria such as cost, delivery time, stability, and maturity of

a framework in addition to the patterns, tactics, and the

importance values of the NFRs to be able to choose a

framework in a more informed way.

REFERENCES

[1] H. Cervantes, P. V. Elizondo, and R. Kazman. 2013. A principled way
to use frameworks in architecture design. IEEE Software, March/April,
46-53.

[2] G. Grau, and X. Franch. 2007. A Goal-Oriented Approach for the
Generation and Evaluation of Alternative Architectures. European
Conference on Software Architecture (ECSA), pp 139-155.

[3] A. Zalewski. 2013. Modeling and Evaluation of Software Architecture.
Warsaw University of Technology Publishing Office.

[4] L. Bass, P. Clements, and R. Kazman. 2012. Software Architecture in
Practice. Addison-Wesley.

[5] H. Milhem, M. Weiss, and S. Some. 2019. Extraction of Architectural
Patterns from Frameworks and Modeling their Contributions to
Qualities. Pattern Languages of Programs (PLoP). 17 pages, Ottawa,
Canada.

[6] M. Mirakhorli. 2014. Preserving the Quality of Architectural Tactics in

Source Code.

[7] M. Mirakhorli and J. Cleland-Huang. 2016. Detecting, Tracing, and

Monitoring Architectural Tactics in Code. IEEE Transactions on

Software Engineering, Volume: 42, Issue 3, pp 205-220.

[8] M. Mirakhorli, A. Fakhry, A. Grecho, M. Wieloch, and J. Cleland-

Huang. 2014. Archie: A Tool for Detecting, Monitoring, and

Preserving Architecturally Significant Code. Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pp 739-742, Hong Kong, China.

[9] G. Mussbacher, M. Weiss, and D. Amyot. 2007. Formalizing

Architectural Patterns with the Goal-oriented Requirement Language.

Proceedings of the Fifth Nordic Conference on Pattern Languages of

Programs.

[10] https://en.wikipedia.org/wiki/Analytic_hierarchy_process

[11] http://www.site.uottawa.ca/~ssome/publis/Methodology_Frameworks

_Selection.pdf

[12] B. Sena, L. Garces, A. P. Allian and E. Yumi Nakagawa. 2018.

Investigating the Applicability of Architectural Patterns in Big data

Systems. Pattern Languages of Programs (PLoP), Portland, Oregon,

USA.

[13] R. E. Johnson. 1997. How frameworks compare to other object-

oriented reuse techniques. Communications of the ACM, 40(10), 39-

42.

[14] A. Aguiar, and G. David. 2011. Patterns for effectively documenting

frameworks. Transactions on Pattern Languages of Programming II,

79-124, Springer.

[15] K. Beck and R. Johnson. 1994. Patterns Generate Architecture.

ECOOP '94 Proceedings of the 8th European Conference on Object-

Oriented Programming, pp 139-149, London, UK.

[16] Mehta, R., Ruiz-López, T., Chung, L., & Noguera, M., “Selecting

among Alternatives using Dependencies: An NFR approach”,

Proceedings of the 28th Annual ACM Symposium on Applied

Computing, New York, NY, USA, pp 1292-1297, (2013).

[17] Bastos, L.R.D., & Castro, J.F.B., “Systematic Integration Between

Requirements and Architecture”, Software Engineering for Multi-

Agent Systems III, pp 85-103, Volume 3390 of the series Lecture Notes

in Computer Science, (2005).

[18] Zhu, M.X., Luo, X.X., Chen, X.H., & Wu, D.D., “A non-functional

requirements tradeoff model in Trustworthy Software”, Information

Sciences 191, pp 61 – 75, (2012).

[19] Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., &

Yu, E., “Evaluating Goal Models within the Goal-oriented

Requirement Language”, International Journal of Intelligent Systems,

pp 841-877, (August 2010).

[20] Ong, H., Weiss, M., & Araujo, I., “Rewriting a Pattern Language to

Make it More Expressive”, 2003.

[21] https://en.wikipedia.org/wiki/Group_decision-making

[22] N. Harrison. 2011. Improving quality attributes of software systems

through software architecture patterns.

[23] S. Bode and M. Riebisch. Impact Evaluation for Quality-Oriented
Architectural Decisions Regarding Evolvability. European Conference
on Software Architecture ECSA, 2010.

[24] A. Alebrahim, S. Fassbender, M. Filipczyk, M. Goedicke, and M.
Heisel. 2015. Towards a Reliable Mapping between Performance and
Security Tactics, and Architectural Patterns. EuroPLoP
'15 Proceedings of the 20th European Conference on Pattern
Languages of Programsv, Article No. 39, 43 pages.

[25] G. Me, C. Calero, and P. Lago. Architectural patterns and quality
attributes interaction. 2016 Qualitative Reasoning about Software
Architectures (QRASA).

[26] N. Harrison and P. Avgeriou. 2010. Implementing Reliability: The
Interaction of Requirements, Tactics and Architecture Patterns.
Architecting Dependable Systems VII pp 97-122.

[27] M. Kassab, G. El-Boussaidi, and H. Mili. 2011. A Quantitative
Evaluation of the Impact of Architectural Patterns on Quality
Requirements. Software Engineering Research,Management and
Applications 2011 pp 173-184, Pp 173-184.

[28] M. Kassab and G. El-Boussaidi. 2013. Towards Quantifying Quality,
Tactics and Architectural Patterns Relations. Proceedings of the
International Conference on Software Engineering and Knowledge
Engineering, SEKE.

[29] https://storm.apache.org

[30] Apache Metron, metron.apache.org

[31] Apache Flink, flink.apache.org

[32] https://spark.apache.org

[33] W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, E. M. Nguifo, “An

experimental survey on big data frameworks”, Future Generation

Computer Systems, 546-564, 2018.

[34] https://gradle.org/maven-vs-gradle/

[35] L. Garces, B. Sena, and E. Y. Nakagawa, “Towards an architectural

patterns language for System-of-Systems”, HILLSIDE Proc. Of Conf.

on Pattern Lang. of Prog. V (October 2019), 24 pages.

500

https://en.wikipedia.org/wiki/Analytic_hierarchy_process
http://www.site.uottawa.ca/~ssome/publis/Methodology_Frameworks_Selection.pdf
http://www.site.uottawa.ca/~ssome/publis/Methodology_Frameworks_Selection.pdf
https://en.wikipedia.org/wiki/Group_decision-making
https://link.springer.com/conference/ecsa
https://link.springer.com/conference/ecsa
http://www.europlop.net/content/conference-0
http://www.europlop.net/content/conference-0
https://ieeexplore.ieee.org/xpl/conhome/7483924/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7483924/proceeding
https://link.springer.com/book/10.1007/978-3-642-17245-8
https://link.springer.com/book/10.1007/978-3-642-23202-2
https://link.springer.com/book/10.1007/978-3-642-23202-2
https://flink.apache.org/
https://spark.apache.org/
https://gradle.org/maven-vs-gradle/

An Evaluation of Recommendation Algorithms for
Tourist Attractions

Anderson Feitosa Júnior
Informatics Coordination

Federal Institute of Alagoas
Maceió, Alagoas, Brasil

amfj1@ifal.edu.br

Flávio Medeiros
Informatics Coordination

Federal Institute of Alagoas
Maceió, Alagoas, Brasil

flavio.medeiros@ifal.edu.br

Ivo Calado
Informatics Coordination

Federal Institute of Alagoas
Maceió, Alagoas, Brasil

ivo.calado@ifal.edu.br

Abstract—Tourism is an important activity for the economy of
several places in the world. In this context, the use of information
systems might bring some benefits for tourists, for example, by
helping people to select tourist attractions, such as restaurants,
beaches, and museums. In this paper, we perform two evalu-
ations of 22 recommendation algorithms provided by existing
recommendation system libraries, aiming to identify efficient
algorithms in terms of prediction accuracy. In the first evaluation,
we compare the algorithms by measuring different metrics, such
as RMSE, MAE, precision, recall, and F1 Score. In the second
evaluation, we compare the recommendation algorithms based
on the answers of 172 people that participated in our survey by
evaluating different kinds of tourist attractions. The results of
our study show that some recommendation algorithms remain
on the top list with regards to efficiency on both studies, such
as the SVD++, Baseline Only, and KNN Z Score with Pearson
Baseline Similarity. Others are efficient in the first evaluation, or
for some metrics, but not in the second study, for example, or
the other way around. The results of our study are useful for
people that are creating solutions in the tourism domain.

Index Terms—Recommendation systems, Tourist attractions

I. INTRODUCTION

Tourism is an important activity for the economy of several
places in the world [1]. In this context, the use of information
systems might bring some benefits for tourists, which nowa-
days can find information about hotels, tourist attractions, and
restaurants in many different places (e.g. Four Square, Yelp,
and Google). Thus, the task of selecting what is relevant is
difficult and time-consuming. Recommendation systems can
help tourists in this task by recommending tourist attractions,
restaurants, and hotels based on their profile and interests.

Considering the relevance of the topic, several approaches
for system recommendation have been proposed, and many of
those recommendation algorithms are available in well-known
libraries, including Surprise, Apache Mahout, and LibRec.
These libraries provide different algorithms to make recom-
mendations, including neighborhood methods [2–4], matrix
factorization-based techniques [5–7], and other types, such as
SlopeOne [8], and CoClustering [9]. However, a little effort
has been put into comparing the efficiency of these algorithms
in practice, for example, by considering the perspective and
opinions of human beings.

In this paper, we perform two evaluations of 22 collaborative
filtering recommendation algorithms. The implementation of

such algorithms were obtained from mature libraries, e.g.,
Surprise, Apache Mahout, and LibRec. After selecting the
algorithms, we performed two complementary evaluations. In
the first one, we compared the algorithms based on a set
of metrics, such as RMSE, MAE, precision, recall, and F1
Score, to measure the efficiency of the algorithms in terms
of prediction accuracy. Afterwards, in the second evaluation,
we compared the same 22 algorithms based on the answers
of 172 people that participated in our experiment by evaluating
tourist attractions of different kinds. At the end, we triangulate
the results of both studies with the goal of identifying the most
efficient algorithms, that is, the ones that make predictions with
fewer mistakes.

The results of our study show that some recommendation
algorithms remain on the top list with regards to efficiency on
both studies, such as the SVD++, Baseline Only, and KNN
Z Score with Pearson Baseline Similarity algorithms. Other
algorithms are efficient in the first evaluation, or for some
metrics, but not at the second evaluation, for example, or
the other way around. For instance, the SVD algorithm is the
second more efficient for metrics RMSE and MAE, while in
the second evaluation, it takes the 16 position in the ranking
of more efficient algorithms. On the other hand, the KNN Z
Score with Cosine Similarity is the most efficient in the eval-
uation with people, but it takes position 14 when considering
metric RMSE. By triangulating the results of both studies, we
improve evidence regarding the most efficient algorithms for
recommendation systems in the tourism domain.

The remainder of this article is organized as follows. In
Section II, we present some background information that is
necessary to understand our study. In Section III, we discuss
the setup of our study, and Sections IV and V present the
results of the evaluations based on metrics and users perspec-
tive respectively. In Section VI, we compare the results of both
evaluations. In Section VII, we discuss the related work, and
Section VIII presents the concluding remarks and conclusions.

II. BACKGROUND

In this section, we present a brief overview of recom-
mendation systems and machine learning. Recommendation
systems have emerged in response to the huge amount of
information available nowadays [10], which makes it difficult

DOI reference number: 10.18293/SEKE2020-070

501

and time-consuming for choosing between a wide variety
of products and services available, for example, in websites
around the world. By definition, recommendation systems
are software tools and techniques that automatically provide
recommendations for users based on their past experience,
that is, recommending the items that are most likely to
interest a particular user [11]. Recommendation systems use
the available user data, information about other users, and
information about the environment with the goal of making
predictions.

Currently, recommendation systems are a common appli-
cation area in machine learning, which is a collection of
algorithms and techniques that software developers can use
to create computational systems that automatically learn by
analyzing the available data to make predictions and in-
ferences [12]. The algorithms for recommendation systems
in machine learning are typically classified into three cate-
gories [13]:

1) Content-Based Filtering: algorithms in which the user
receives recommendations based on similar items that
the user has shown interest in the past [14];

2) Collaborative Filtering: the algorithm makes recom-
mendations for users based on items that people with
a similar profile has shown interest in the past. This
category is subdivided into two subcategories [15]:

a) User-based Collaborative Filtering: a memory-
based algorithm that uses information about users
and items to generate recommendations [16]. It
calculates a certain similarity score among users,
and based on this score, it selects the most similar
users and recommends items that these similar
users have previously shown interest;

b) Item-based Collaborative Filtering: it is a model-
based algorithm that provides item recommenda-
tions based on a model of user ratings [16]. In
this algorithm, the similarities between pairs of
items are calculated, and the similarity is used to
recommend items.

3) Hybrid Filtering: algorithms that combine collaborative
and content-based methods [17].

Recommendation systems are currently applied in many
different domains, such as e-commerce [18], and video stream-
ing [19], due to information overload. In the tourism field,
there is also a huge amount of information available. For
example, tourist information on the internet spreads across a
wide range of different websites. In addition to the official
websites of destinations, attractions or services, there are a
wide range of blogs, and wikis, offering additional information
about tourist attractions [20].

Developers can use a number of programming libraries in
different languages to implement recommendation systems,
such as Surprise, Apache Mahout, and LibRec. These libraries
provide several algorithms to make predictions, including
neighborhood methods [2–4], matrix factorization-based [5–7],
and other types, such as SlopeOne [8], and CoClustering [9].

However, little effort has been put into comparing the effi-
ciency of these algorithms in practice, considering the perspec-
tive of humans. In this study, we few this gap by performing
two evaluations with the goal of ranking collaborative filtering
algorithms: (1) by comparing the efficiency of the collaborative
filtering algorithms by using a set of five metrics; and (2) by
comparing the algorithms based on the answers of 172 people
that participated in our survey.

III. STUDY SETUP

To rank the collaborative filtering recommendation algo-
rithms based on their efficiency, we followed the process
described in Figure 1. In Step 1, we selected a set of platforms
with tourist attractions information and selected four options
to use in our study: Trip Advisor, Google Places, Yelp, and
Foursquare. We extracted the attractions information manu-
ally and by using Application Programming Interface (API).
Overall, we collected information about 92 tourist attractions,
and more than 76 thousand ratings.

Fig. 1. The Steps performed to Rank the Recommendation Algorithms.

After collecting information about tourist attractions and
ratings, in Step 2, we implemented a tool by using the
Surprise library. This library provides a large set of out-of-box
implementations for all recommendation algorithms arbitrarily
selected to our study. Moreover, the Python programming
language was selected due to its growing community work-
ing with machine learning and recommendation systems. In
Table I, we list the 22 algorithms considered in our study.

In Step 3, we performed the first evaluation of the rec-
ommendation algorithms based on a set of five metrics,
and ranking the algorithms based on the RMSE, MAE, F1
Score, Precision, and Recall. We made a system on the top
of Jupyter [21], which allowed us to create an interactive
visualization to compare the results of the recommendation
algorithms. We present the details of this step in Section IV.

Last, in Step 4, we integrated the recommendation system
that we developed in Python to a RESTful API [22] developed
in Flask [23]. For the user interface, we implemented a respon-
sive website by using ReactJS, which connects to the RESTful
API through HTTP calls. After developing this infrastructure,
we sent emails asking users to participate in our survey. We
present the details of this step in Section V.

502

Algorithm RMSE MAE Precision Recall F1
Baseline Only 0.89 0.70 0.86 0.92 0.89

SVD 0.90 0.71 0.86 0.87 0.87
SVD++ 0.91 0.71 0.86 0.89 0.88

kNN Baseline with pearson baseline similarity 0.98 0.75 0.86 0.88 0.87
kNN Means with pearson baseline similarity 0.99 0.76 0.85 0.91 0.88

kNN Z Score with pearson baseline similarity 0.99 0.76 0.85 0.91 0.88
kNN Baseline with MSD 1.02 0.77 0.88 0.81 0.84

kNN Baseline with cosine similarity 1.02 0.77 0.88 0.81 0.84
kNN Means with with cosine similarity 1.03 0.78 0.87 0.82 0.85

kNN Basic with pearson baseline similarity 1.03 0.79 0.84 0.95 0.89
kNN Means with MSD 1.03 0.78 0.87 0.82 0.85

kNN Z Score with MSD 1.03 0.78 0.87 0.82 0.85
SlopeOne 1.03 0.79 0.87 0.82 0.84

kNN Z Score with cosine similarity 1.03 0.78 0.87 0.83 0.85
kNN Baseline with pearson correlation similarity 1.04 0.79 0.87 0.82 0.85
kNN Z Score with pearson correlation similarity 1.05 0.80 0.86 0.84 0.85
kNN Means with pearson correlation similarity 1.05 0.80 0.87 0.84 0.85

CoClustering 1.05 0.80 0.87 0.81 0.84
kNN Basic with cosine similarity 1.07 0.80 0.86 0.86 0.86

kNN Basic with MSD 1.07 0.80 0.86 0.86 0.86
kNN Basic with pearson correlation similarity 1.10 0.82 0.85 0.89 0.87

NMF 1.13 0.90 0.90 0.65 0.75
TABLE I

RANKING OF RECOMMENDATION ALGORITHMS BASED ON METRICS.

IV. METRIC-BASED EVALUATION

To evaluate the 22 recommendation algorithms, we consider
a set of five metrics, as we explain next.

A. Mean Absolute Error (MAE)

The Mean Absolute Error calculates the error of estimated
evaluations of users. For example, if a user rated an item with
a five note and the system predicted a three note, the MAE
is two. The formula used to calculate MAE is presented in
Figure 2.

Fig. 2. The MAE formula used in our study.

B. Root Mean Square Error (RMSE)

The Root Mean Square Error is a quadratic scoring rule that
also calculates the error of estimated evaluations of users. It is
the square root of the average of squared differences between
the prediction given by the system and the user’s evaluation.
The RMSE assigns higher weights to larger errors, since errors
are squared before the average. The formula used to calculate
RMSE is presented in Figure 3.

Fig. 3. The RMSE formula used in our study.

C. Precision

The precision is used to know how many items the user
really liked considering all recommended items. Precision =
tp/tp + fp, where tp is the number of recommended items
the user liked (true positives) and tp+ fp is the total number
of recommended items (true positives, and false positives).

D. Recall

The recall is used to calculate the proportion of recom-
mended items that the user likes. Recall = tp/tp+fn, where
tp is the number of recommended items the user likes (true
positives) and tp + fn is the total number of items that user
likes (true positives, and false negatives).

E. F1 Score

The F1 Score uses Precision and Recall in its calcula-
tion, and can be interpreted as a weighted average of both.
F1Score = 2 ∗ [(precision ∗ recall)/(precision+ recall)].

F. k-Fold Cross Validation

Together with RMSE, MAE, Precision, and Recall, we used
the k-fold cross validation [24] method. In the k-fold cross-
validation, the data is divided into k subsets. Thus, the metrics
equations is repeated k times, in which the time one of the k
subsets is used as a validation set, and the other k− 1 subsets
are used as the training set. The error estimate is calculated
based on all k attempts to get the full effectiveness of the
model. By exchanging the training and test sets, we increase
the effectiveness of this method. In our study, we used k = 5.
In Figure 4, we illustrate this process in detail.

Fig. 4. Cross validation process used in our study with k = 5.

503

In Table I, we list not only the 22 algorithms considered in
our study, but also the metric values according to the use of
statistics. Notice that the algorithms are ranked based on the
value of RMSE. In this context, the most efficient algorithms
are Baseline Only, SVD, and SVD++. In the next section, we
present the second evaluation based on answers of real users,
which we performed to triangulate the results and increase
evidence in the results.

V. EVALUATION BASED ON REAL-USER EVALUATIONS

To evaluate the 22 recommendation algorithms by taking
into account the perception of real users, we integrated our
recommendation system into a tourism application. The main
goal of this evaluation is to compare the evaluations of real
users with the evaluations provided by the recommendation
system (that is, the evaluation based on metrics) for each
algorithm considered in our study.

To perform the evaluation, we integrated the recommen-
dation system into the Hupi application, which provides two
main functionalities: (1) a centralized database with tourist
attractions information; and (2) recommendations of tourist
attractions for tourists based on their profile. In Figure 5,
we present the main screen of the evaluation of the recom-
mendation algorithms based on the Hupi application. In this
screen, the users could see the tourist attractions and evaluate
the attractions based on their perceptions by clicking on the
number of stars. The user could choose to not evaluate any
tourist attraction, and the system automatically generates a new
attraction for evaluation, as the user might not know some
attractions listed in the page.

Fig. 5. The screen of the Hupi application used during our evaluation with
real users.

The evaluation consists of two steps. In the first step, the
system selects a number of tourist attractions and presents
to the users, which evaluate each attraction based on their
perceptions. This first step is used in our system to model the
profile of the user. Based on the profile of the user, the systems
runs the recommendation system to measure the possible rates
for a set of tourist attractions. In the second step, the system
selects a number of attractions, ask the users to evaluate again,
and compare the rates of users with the rates generated by the
recommendation system.

To select participants for our evaluation, we sent emails ask-
ing people to participate in the experiment. Overall, 172 users

Algorithm Error
KNN Z Score with cosine similarity 18.08
KNN Baseline with Pearson correlation similarity 19.04
SVD++ 20.04
KNN Means with with cosine similarity 20.08
KNN Means with MSD 20.62
Baseline Only 21.89
KNN Z Score with Pearson baseline similarity 22.38
KNN Means with Pearson correlation similarity 22.64
CoClustering 23.13
KNN Z Score with MSD 26.94
KNN Basic with Pearson baseline similarity 27.22
KNN Basic with Pearson correlation similarity 28.02
KNN Baseline with Pearson baseline similarity 28.85
KNN Baseline with cosine similarity 29.56
KNN Means with Pearson baseline similarity 30.27
SVD 30.76
SlopeOne 33.52
KNN Basic with cosine similarity 35.60
KNN Baseline with MSD 35.76
KNN Basic with MSD 41.49
NMF 42.30
KNN Z Score with Pearson correlation similarity 45.36

TABLE II
RANKING OF RECOMMENDATION ALGORITHMS BASED ON THE ANSWERS

OF REAL USERS.

participated in the evaluation. In Table II, we show the results
by ranking the algorithms considered in our study. It is
important to notice here that the results of algorithms has
changed when compared with the results of the first evaluation
(see Table I). Error =

∫ n

1
|system rating(i)−user rating(i)|,

where n is the number of evaluations, and i the current
evaluation number.

VI. DISCUSSION

We triangulate the results of both evaluations to rank the
algorithms. As the evaluations and metrics ranked the algo-
rithms differently, we compared the rankings to suggest the
most efficient recommendation algorithms taking into account
the results of both evaluations. Thus, we summed the ranking
positions of each algorithm in both evaluations, for each
metric, to identify the top algorithms based on their efficient.
The top algorithms considering the results of both evaluations
are SVD++, Baseline Only, and KNN Z Score with Pearson
baseline similarity.

We summarise the results in Table III, in which we show
the ranking of the algorithms in both evaluations. To rank the
algorithms taking the results of the two studies, we calculated
the Total Error (TE), by summing the rankings of both studies,
that is TE = RMSE + MAE + Recall + Precision +
F1Score + People, as we were interested in selecting the
most efficient algorithms. So, the final ranking represents the
algorithms with better ranking considering the two evaluations
that we performed in this study, that is, the most efficient
algorithms are the ones with the lowest total error values.

VII. RELATED WORK

Many studies that compares recommendation algorithms
focus on evaluating the quality of the recommendation system
forecasts by using metrics. In [25–27], a recommendation
system for tourism is evaluated by using cross-validation and
several metrics, such them the Root Mean Squared Error
(RMSE), which is also used in our study.

504

Algorithm RMSE MAE People Precision Recall F1 Total Error
SVD++ 3 3 3 12 5 5 9

Baseline Only 1 1 6 17 2 2 8
kNN Z Score with pearson baseline similarity 6 6 7 19 3 3 19

kNN Means with with cosine similarity 9 9 4 4 17 16 22
kNN Z Score with cosine similarity 14 11 1 9 13 13 26

kNN Means with MSD 11 10 5 10 16 17 26
kNN Baseline with pearson baseline similarity 4 4 13 15 7 6 21

kNN Baseline with pearson correlation similarity 15 14 2 8 15 15 31
SVD 2 2 16 14 8 7 20

kNN Means with pearson baseline similarity 5 5 15 20 4 4 25
kNN Basic with pearson baseline similarity 10 15 11 22 1 1 36

kNN Z Score with MSD 12 12 10 6 14 14 34
kNN Baseline with cosine similarity 8 8 14 3 20 21 30

kNN Means with pearson correlation similarity 17 16 8 11 12 12 41
kNN Baseline with MSD 7 7 19 2 21 20 33

CoClustering 18 17 9 5 19 19 44
kNN Z Score with pearson correlation similarity 16 18 13 13 11 11 47

SlopeOne 13 13 17 7 18 18 43
kNN Basic with pearson correlation similarity 21 21 12 21 6 8 54

kNN Basic with cosine similarity 19 20 18 16 10 10 57
kNN Basic with MSD 20 19 20 18 9 9 59

NMF 22 22 21 1 22 22 65
TABLE III

RANKING OF RECOMMENDATION ALGORITHMS BASED ON METRICS AND ANSWERS OF REAL USERS.

Arsan et al. [28] proposes a study by using the Mahout
framework with the goal of searching the best collaborative
filtering algorithms. The study uses the metrics RMSE, and
Mean Absolute Error (MAE) metric. In their study, they used
movie rating dataset to compare the algorithms. In another
study, Seminar and Wilson [29] used the open source Movie-
Lens database to evaluate Mahout algorithms with the MAE
metric.

Said and Bellogı́n [30] compared the results of some algo-
rithms of the Mahout, LensKit and MyMediaLite frameworks
in relation to the RMSE metric and time. In the tourism
domain yet, Nilashi et al. [31] proposed a recommendation
system for tourist places and evaluated it by using several
metrics, such as RMSE, MAE, F1-measure, and Precision.

Noguera et al. [32] developed a mobile hybrid recom-
mendation system by using user-based collaborative filtering
combined with item-based filtering. The main contributions of
this study is related to identifying the limitations of precision
metrics. Liu et al. [33] proposed a new model of user similarity
with the goal of improving the accuracy of collaborative
filtering. It uses the metrics precision and recall to evaluate
its results by claiming that the metrics RMSE and MAE,
although widely used, do not guarantee user satisfaction. In our
study, we complement these studies by comparing the results
of RMSE with the results of a study with real users, which
rated a number of tourist places.

Our study complements the existing studies by considering
a big data set, by comparing 22 algorithms, using a set of
five metrics, as well as by considering an evaluation with real
users to get more evidence with the results.

VIII. CONCLUSION REMARKS

In this study, we performed a comparison of 22 recom-
mendation algorithms in the tourism domain. We performed
two evaluations: (1) based on metrics; and (2) based on the

answers of real users, to rank the algorithms according to
their efficiency. By triangulating the results of both studies,
we improve evidence regarding the most efficient algorithms
for recommendation systems.

The results of the evaluations ranked the algorithms differ-
ently. Some recommendation algorithms remain on the top list
with regards to efficiency, such as the SVD++, Baseline Only,
and KNN Z Score with Pearson Baseline Similarity algorithms,
while others are efficient in the first evaluation, but not at the
second one, or the other way around.

As future work, we intend to evaluate the recommendation
algorithms in different domains, such as movie reviews, and
music.

REFERENCES

1. Bunghez, C. L. The Importance of Tourism to a Desti-
nation’s Economy. Journal of Eastern Europe Research
in Business and Economics, 1–9 (2016).

2. Kramer, O. in Dimensionality Reduction with Unsuper-
vised Nearest Neighbors 13–23 (Springer Berlin Heidel-
berg, 2013).

3. Koren, Y. Factorization Meets the Neighborhood: A Mul-
tifaceted Collaborative Filtering Model in Proceedings
of the International Conference on Knowledge Discovery
and Data Mining (ACM, 2008), 426–434.

4. Koren, Y. Factor in the Neighbors: Scalable and Accurate
Collaborative Filtering. ACM Trans. Knowl. Discov. Data
4, 1:1–1:24 (Jan. 2010).

5. Lee, D. D. & Seung, H. S. Algorithms for Non-negative
Matrix Factorization in Proceedings of the International
Conference on Neural Information Processing Systems
(MIT Press, 2000), 535–541.

505

6. Luo, X., Zhou, M., Xia, Y. & Zhu, Q. An Efficient
Non-Negative Matrix-Factorization-Based Approach to
Collaborative Filtering for Recommender Systems. IEEE
Transactions on Industrial Informatics 10, 1273–1284
(2014).

7. Koren, Y., Bell, R. & Volinsky, C. Matrix Factorization
Techniques for Recommender Systems. Computer 42,
30–37 (Aug. 2009).

8. Lemire, D. & Maclachlan, A. Slope One Predictors
for Online Rating-Based Collaborative Filtering. CoRR
(2007).

9. George, T. & Merugu, S. A Scalable Collaborative Filter-
ing Framework Based on Co-Clustering in Proceedings
of the IEEE International Conference on Data Mining
(IEEE Computer Society, 2005), 625–628.

10. Melinat, P., Kreuzkam, T. & Stamer, D. Information
Overload: A Systematic Literature Review in Perspec-
tives in Business Informatics Research (eds Johansson,
B., Andersson, B. & Holmberg, N.) (Springer int. Pub.,
Cham, 2014), 72–86.

11. Ricci, F., Rokach, L. & Shapira, B. in Recommender
Systems Handbook (eds Ricci, F., Rokach, L. & Shapira,
B.) 1–34 (Springer US, 2015).

12. Swamynathan, M. Mastering Machine Learning with
Python in Six Steps. A Practical Implementation Guide to
Predictive Data Analytics Using Python 1st ed. (Apress,
2017).

13. Akhil, P. V. & Joseph, S. A Survey of Recommender Sys-
tem Types and Its Classification. International Journal
of Advanced Research in Computer Science 8, 486–491
(2017).

14. Deshpande, M. & Karypis, G. Item-based top-N Rec-
ommendation Algorithms. ACM Trans. Inf. Syst. 22,
143–177. ISSN: 1046-8188 (2004).

15. Ekstrand, M. D., Riedl, J. T. & Konstan, J. A. Collab-
orative Filtering Recommender Systems. Found. Trends
Hum.-Comput. Interact. 4, 81–173 (2011).

16. Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. Item-
based Collaborative Filtering Recommendation Algo-
rithms in Proceedings of the International Conference
on World Wide Web (ACM, 2001), 285–295.

17. Mourão, F., Rocha, L., Konstan, J. A. & Meira Jr., W.
Exploiting Non-content Preference Attributes Through
Hybrid Recommendation Method in Proceedings of
the ACM Conference on Recommender Systems (ACM,
2013), 177–184.

18. Linden, G., Smith, B. & York, J. Amazon.com rec-
ommendations: item-to-item collaborative filtering. IEEE
Internet Computing 7, 76–80 (2003).

19. Gomez-Uribe, C. A. & Hunt, N. The Netflix Recom-
mender System: Algorithms, Business Value, and Inno-
vation. ACM Trans. Manage. Inf. Syst. 6, 13:1–13:19
(Dec. 2015).

20. Inversini, A. & Buhalis, D. Information Convergence in
the Long Tail: The Case of Tourism Destination Informa-
tion in Information and Communication Technologies in

Tourism 2009 (eds Höpken, W., Gretzel, U. & Law, R.)
(Springer Vienna, Vienna, 2009), 381–392.

21. Kluyver, T. et al. Jupyter Notebooks-a publishing format
for reproducible computational workflows. in ELPUB
(2016), 87–90.

22. Schreier, S. Modeling RESTful Applications in Proceed-
ings of the Second International Workshop on RESTful
Design (ACM, 2011), 15–21.

23. Grinberg, M. Flask Web Development: Developing Web
Apps with Python 1st (O’Reilly Media, Inc., 2014).

24. Rodriguez, J. D., Perez, A. & Lozano, J. A. Sensitivity
Analysis of k-Fold Cross Validation in Prediction Error
Estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 32, 569–575 (2010).

25. Lim, K. H., Chan, J., Leckie, C. & Karunasekera, S. Per-
sonalized Tour Recommendation Based on User Interests
and Points of Interest Visit Durations in Proceedings
of the International Conference on Artificial Intelligence
(AAAI Press, 2015), 1778–1784.

26. Lim, K. H. Recommending Tours and Places-of-Interest
Based on User Interests from Geo-tagged Photos in
Proceedings of the ACM SIGMOD on PhD Symposium
(ACM, 2015), 33–38.

27. Lim, K. H., Chan, J., Leckie, C. & Karunasekera, S.
Personalized trip recommendation for tourists based on
user interests, points of interest visit durations and visit
recency. Knowl. Inf. Syst. 54, 375–406 (2018).

28. Arsan, T., Koksal, E. & Bozkus, Z. Comparison of
Collaborative Filtering Algorithms with Various Similar-
ity Measures for Movie Recommendation. International
Journal of Computer Science, Engineering and Applica-
tions 6, 1–20 (2016).

29. Seminario, C. E. & Wilson, D. C. Case Study Evaluation
of Mahout as a Recommender Platform in Workshop
on Recommendation Utility Evaluation: Beyond RMSE
(2012).

30. Said, A. & Bellogın, A. Comparative Recommender Sys-
tem Evaluation: Benchmarking Recommendation Frame-
works in Proceedings of the 8th ACM Conference on
Recommender Systems (ACM, Foster City, Silicon Val-
ley, California, USA, 2014), 129–136. ISBN: 978-1-
4503-2668-1.

31. Nilashi, M., bin Ibrahim, O., Ithnin, N. & Sarmin, N. H.
A multi-criteria collaborative filtering recommender sys-
tem for the tourism domain using Expectation Maxi-
mization (EM) and PCA-ANFIS. Electronic Commerce
Research and Applications 14, 542–562 (2015).

32. Noguera, J. M., Barranco, M. J., Segura, R. J. &
MartıNez, L. A Mobile 3D-GIS Hybrid Recommender
System for Tourism. Inf. Sci. 215, 37–52 (Dec. 2012).

33. Liu, H., Hu, Z., Mian, A., Tian, H. & Zhu, X. A new user
similarity model to improve the accuracy of collaborative
filtering. Knowledge-Based Systems 56, 156–166 (Jan.
2014).

506

Who Should Close the Questions: Recommending
Voters for Closing Questions Based on Tags

Zhang Zhang1,2, Xinjun Mao∗ 1,2, Yao Lu 1,2, and Jinyu Lu1

1National University of Defense Technology, Changsha 410073, China
2Key Laboratory of Software Engineering for Complex Systems, Changsha 410073, China

Abstract—Stack Overflow is the most popular community with
a great number of questions daily post by users. The questions
that are unfit for the community should be closed to maintain
the quality of questions. Current practices of closing questions
in Stack Overflow mainly rely on the votes of experienced users
and community moderators, and face several challenges: (1)an
increase in both the number of questions that should be closed
and the proportion of these questions to all questions. (2) a
decrease in participation willingness of non-moderator users to
close questions. One way to tackle the problem is to extensively
utilize the forces of experienced users in the community by recom-
mending them appropriate questions against their development
experiences and skills in order to increase their willingness and
decrease their voting efforts. In this paper, we propose a voter
recommendation method based on the tags of both users and
questions, design user recommending algorithm based on the
user willingness model that incorporates the quantitative and
time information of user activity history in Stack Overflow. We
select 1,397 questions randomly in Stack Overflow to validate
the effectiveness of our method. The results show the successful
recommendation probability in the top5, top10, top100, top300
users are 35.0%, 45.8%, 80.8%, and 89.8% respectively, which
helps recommending users to ’closed’ questions.

Index Terms—Stack Overflow, question quality control, closing
question, voter recommendation.

I. INTRODUCTION

Stack Overflow(SO) is the most popular community driven
by questioning and answering [1] [2] and with more than
10M registered users, 19M questions and 28M answers. It
maintains a strong emphasis on question-answer based format,
and encourages to post the questions related to programming
problems, software algorithms, coding techniques and software
development tools and discussions or chit-chat are discouraged
[3]. However, a large number of questions that are not of
the Stack Overflow concern are posted every day. Therefore
maintaining question quality on such a large scale social
collaborative platform is a great challenge [4]. The questions
that are unfit for the community should be closed. Stack
Overflow guidelines clearly outline categories of questions that
are deemed unfit for its Q&A format, and questions that fall
into the pre-defined sets of guidelines are marked ’closed’
[5]. A question can be marked as ’closed’ for five reasons:

DOI reference number: 10.18293/SEKE2020-073
Corresponding author: xjmao@nudt.edu.cn

duplicate, off-topic, unclear what you’re asking, too broad and
primarily opinion-based.

According to the current rules of SO, the decision to ’close’
a question lies completely on the shoulders of experienced
users with a reputation over 3,000 and community moderators
via a systematic voting process. Due to the rapid growth
of Stack Overflow’s questions and answers, there has been
a steady increase in the workload on the experienced users
and moderators [3] [6]. In contrast to thousands of questions
created every day, the whole community has only 20 moder-
ators and currently they undertake most of the voting tasks.
According to the analysis on data of Stack Overflow between
2008 and 2018, the current practices of ’closed’ questions
faces several critical challenges: (1)the number of ’closed’
questions and the ratio of ’closed’ questions to total questions
show an increasing trend; (2)the participation willingness of
non-moderator users to close questions is declining, which has
probably led to increase the workload of moderators.

One way to tackle the problem is to extensively utilize the
forces of experienced users in the community, encourage them
to participate in closing questions. Currently, the experienced
users browse the questions in SO and vote for the questions
based on their willingness, interest and correlation with their
expertise. Obviously, such a method to vote by browsing
thousands of questions and judging whether they need to be
closed is inefficient. It is necessary to study the automatic
method to recommendate users appropriate questions against
their experiences and skills to increase their willingness
and decrease their voting efforts. The current researches on
’closed’ questions are mainly focused on predicting whether
the question should be closed [3] [5] [6], and little attention
is paid to the treatment of the ’closed’ question, such as the
study of voters.

In this paper, we propose a voter recommendation method
for experienced users in Stack Overflow to improve their
participation in the closing question activity. Different from
the existing method, we build user willingness model against
users’ development experiences and skills by analyzing their
tag-based activity history in SO. We design and implement
the recommendation algorithm that outputs and ranks potential
voting users against the tags of the question. The paper
also conducts experiments to validate the effectiveness of our

507

method.
The rest of the paper is organized as follows. Related works

are introduced in section 2. section 3 analyzes the current
practices and discusses the challenging issues of closing
questions in Stack Overflow. Section 4 presents and details
our user recommendation method based on tags and section
5 introduces the experiments and analyzes the results. We
discuss the conclusion and future work in section 6.

II. RELATED WORK

This section introduces the related works on user rec-
ommendation in Community Question Answering(CQA) and
question quality control in Stack Overflow.

A. User recommendation in CQA

There have been increasing studies on user recommendation
in CQA in recent years [7] [8]. Many studies model users
profiles by learning their history of behaviors, and the tag-
based information from the previous questions, answers and
comments play an important role in this field. Yang et al.
[9] studied the user expertise under tags and recommended
a set of possible expert users for questions to help askers
to get their preferable answers. And their method performs
better than the up-to-date method. Wang et al. [10] propose
a novel personalized recommendation method that considers
both the topic modeling and the link structure for routing new
questions to a group of experts, and the proposed method im-
proves the recommendation performance over other methods
in expert recommendation. Wang et al. [11] propose the Topic
Professional Level Model (TPLM) to find the right experts
for questions that combines both the topic model and the
professional level model to calculate the user’s authority under
a specific topic. Their results showed that their method is
superior to the traditional expert finding method in the Chinese
CQA platform-Zhihu dataset. Liu et al. [12] propose a gating
mechanism to dynamically combine structural and textual
representations based on past question-answering behaviors,
and their experiments on Stackexchange and Quora show that
our approach can improve the performance on expert finding
tasks.

B. Question quality control in Stack Overflow

The question quality control of Stack Overflow is still
a great research challenge [4]. Current researches focus on
prediction of question quality and suggestions for improving
question quality. Correa et al. [3] used a machine learning
framework and build a predictive model to identify a ‘closed’
question at the time of question creation and achieve an
overall accuracy of 73%. Goyal et al. [5] studied the closed
questions and then built a classifier that predicted whether
or not a question would be closed given the question as
submitted, along with the reason that the question was closed.
Tóth et al. [13] present a novel approach for classifying
questions based exclusively on their linguistic and semantic
features using deep learning method and they conclude that
by combining deep learning and natural language processing

methods, the maintenance of quality at Q&A forums could be
supported using only the raw text of posts. Calefato et al. [14]
investigate how information seekers can increase the chance
of eliciting a successful and develop a conceptual framework
of factors potentially influencing the success of questions in
Stack Overflow.

III. CURRENT PRACTICES AND ISSUES ANALYSIS OF
CLOSING QUESTIONS

In this section, we discuss the current practices of ’closed’
questions and analyze the potential issues and challenges based
on data of StackOverflow1.

A. Current practices of closing questions

Currently, the decision to ’close’ a question in Stack Over-
flow lies completely on the systematic voting process(seeing
Fig.1). The experienced users with a reputation over 3,000
and moderators undertake the voting task. The former can
cast a vote to close a question once and 5 votes can close
any question, and the latter can close any question with a
single vote. In addition, users with a reputation of over 250
can vote to close their questions and users who hold a gold
badge for one of the question’s tags can close the question
as duplicate with a single vote. As Fig.1 shows, a question
can be marked as ’closed’ for five reasons: duplicate, off-
topic, unclear what you’re asking, too broad and primarily
opinion-based. According to our analysis on data of SO, up
to December 2019, Stack Overflow has closed more than
0.8M questions, and more than 30,000 users participated in
the voting tasks.

Fig. 1. The current practices of closing questions

B. Issues analysis of closing questions

We collect and analyze the data related to the presence
of ’closed’ questions in Stack Overflow between 2008 and
2018, and find the following potential issues and challenges
of closing questions.

The number of ’closed’ questions. Fig.2 shows the number
of questions posted each year and the ’closed’ questions each

1https://archive.org/details/stackexchange

508

year. First, we find a rapidly increasing trend in the number of
’closed’ questions: from 205 in 2008 to 113,292 in 2018. Then,
we observe the ratio of ’closed’ questions to total questions
over this period in Fig.2. We can find a sharp increase in
the ratio of ’closed’ questions after 2011 and a sharp decrease
from 2014 to 2015, finally it is at around 0.056. In other words,
at least one out of every 20 questions needs to be marked as
’closed’ questions in 2018, which puts tremendous pressure
on questions quality control of the community.

Fig. 2. The number of questions and ’closed’ questions posted each year

Community Participation We analyze the voting history of
experienced users and moderators to understand community
participation. A question is marked as ’closed’ if it reaches
5 votes but a vote from a moderator can immediately close a
question. Therefore, a question can be closed with any number
of ’close’ votes between 1 to 5. Table I shows the distribution
of the number of ‘close votes’ on closed questions. More than
71% of questions require moderator intervention to close. We
also observe a rise in the percentage of questions being closed
only by moderators over time, and a decrease in the percentage
of questions being closed by experienced users.

TABLE I
THE DISTRIBUTION OF NUMBER OF ‘CLOSE VOTES’

Year 1-vote 2-votes 3-votes 4-votes 5-votes

2008 100.00% 0 0 0 0
2009 8.50% 2.05% 1.49% 7.08% 80.88%
2010 4.87% 2.72% 1.94% 1.69% 88.78%
2011 22.15% 8.18% 5.71% 4.44% 59.53%
2012 23.06% 5.56% 2.56% 1.84% 66.98%
2013 8.90% 2.97% 1.79% 1.14% 85.19%
2014 18.09% 5.19% 2.53% 1.53% 72.66%
2015 36.02% 11.66% 4.38% 1.97% 45.97%
2016 41.49% 14.15% 4.93% 2.12% 37.31%
2017 45.92% 14.62% 4.95% 2.04% 32.47%
2018 48.94% 15.42% 4.96% 2.06% 28.62%

Then we further study the difference of the number of votes
between the moderators and non-moderators. Table II shows
descriptive statistics on the voter distribution from 2008 to
2018. We can find that the number of moderators is much less
than that of non-moderators, but they have undertaken most of
the voting tasks. The maximum vote number is 15,024, show-
ing that one moderator in SO has made his own contribution

to close at least 15,024 questions. The average vote number
of moderators is 2,601, which is about 30 times the average
number of non-moderators votes. However, the number of non-
moderators is about 550 times the number of moderators. In
conclusion, the status of community participation in voting to
close the questions has led to a huge workload on moderators
according to our analysis.

TABLE II
THE STATISTICS OF MODERATORS AND NON-MODERATORS

Types Number Mean
of
voting
number

Median
of
voting
number

Min of
voting
number

Max of
voting
number

Moderators 56 2601 2076 4 15024
Non-moderators 30873 86 6 1 20695

Summary. We now summarize the potential issues and
challenges of closing question in SO:

• From the perspective of ’closed’ questions, there is an
increasing number of ’closed’ questions and the percent-
age of ’closed’ questions, which requires more votes to
participate in closing the questions.

• From the perspective of users who vote to close questions,
there is a decrease in community participation of non-
moderator users to close the questions, which has prob-
ably led to an increase in the workload for moderators,
and thereby requires an effective method to encourage
non-moderator users to participate in voting.

According to the above analysis, one way to tackle the
issues is to seek an effective way to help and encourage experi-
enced users to participate in the voting. The feasible solution
is to actively recommendate users appropriate questions for
voting against their development experiences and skills. Such
a method can increase their willingness and decrease their
voting efforts, and therefore improve the efficiency of closing
questions and enhance community question quality control.

IV. USER RECOMMENDATION METHOD BASED ON TAGS

This section details our method, including user willingness
model incorporating the quantitative information and time
information of tag-based information, and the user recommen-
dation algorithm.

A. User willingness model based on tags

One potential voting candidate that is willing to partici-
pate in voting questions depends on several factors that are
related to the questions and the user itself. These factors
include his/her expertise, activeness, etc. We can build the
user willingness model based on these factors to help user
recommendation. User models can be established by learning
their history of behaviors [15], we can analyze the tag infor-
mation in the user history data to establish an accurate user
willingness model.

Quantitative information of tag-based activity history. In
a user’s quantitative information of tag-based activity history,

509

we extract the frequency of activity about a tag(the number of
questioning, answering and commenting related to a specific
tag). And it represents the user’s willingness on this tag [16].
The more frequently a user participates in a post related to a
particular tag, the more interested he is in that tag. We use
the Fretagi(u) to measure the frequency of tag i for user u,
which is defined as:

F retagi(u) = number of activities in tag i for user u.
(1)

For example, if user u has commented 2 posts related to java,
posted 1 question related to java, and answered 5 questions
related to java, then Fretagjava(u) = 5+2+1=8.

Time information of tag-based activity history. The
user’s willingness is dynamically changing [17], thus, the time
information of tags is valuable. We extract the recency of user
activity about a tag from the time information, that is, the
chronological order of activities related to the tag. The activity
data close to the current temporal period is usually more
important than that temporally far from the current period [17].
This study defines the recency to which user u participate in
tags i(abbreviated as RecTtagi(u)) as the following:

RecTtag
i
(u) = 1−

Current− Lasttagi(u)

Current− Firsttagi(u)
(2)

where Current is the time point at which the user tag recency
is currently measured. Lasttagi(u) is the last time user u
participated in the posts or comments related to tag i. And
Firsttagi(u) is the first time user u participated in the posts or
comments related to tag i.

We also extract the duration of user activity from the time
information, that is, the length of time a user has participated in
activities related to a specific tag. It is another important factor
based on the time information to represent a user’s willingness
[18]. The long-duration activity history about a tag usually
reflects a user’s willingness more than the short-duration ones.
We use the Durationtagi(u) to measure the duration of user
u’s participation in posts or comments related to tag i, which
is defined as follow:

Durationtagi(u) = Lasttagi(u) − Firsttagi(u) (3)

Where Lasttagi(u) and Firsttagi(u) have been mentioned
above.

Then we use the ActDurationu to measure the duration of
user u’s participation in posts or comments, which is defined
as follow:

ActDurationu = LastT imeu − FirstT imeu (4)

Where LastT imeu is the last time user u participated in the
posts or comments and FirstT imeu is the first time user u
participated in the posts or comments.

After getting the above two indicators, we use their ratio
to measure the duration of the user u’s preference for tag
i(abbreviated as DurTtagi(u)) as the following:

DurT tagi(u) =
Durationtagi(u)

ActDurationu
(5)

User willingness model. The user willingness model is
composed of several model elements for each tag. To construct
user u’s model element for tag i, this paper uses Pretagi(u)
to combine the frequency, recency and duration of user u’s
activity history about tag i, which is defined as follow:

Pretagi(u) = Fretagi(u) ∗ (α∗RecTtagi(u)+β ∗DurTtagi(u))
(6)

Where α and β are used to control the relative impact of
RecTtagi(u) and ActDurationu, and α + β =1(0≤α,β≤1).

Fig.3 shows user u’s activity history, and user u’s willing-
ness model elements for tag java are based on it. Firstly,
we extract quantitative information and time information of
activities related to java as follows:

• User u posted a question related to java on 2019-02-
14, answered a post related to java on 2019-03-15,
commented a post related to java on 2019-04-01, so
Fretagjava(u) = 1 +1 +1 = 3 according to Eq.1.

• RecTtagjava(u) = 1 − 2019-05-01−2019-04-01
2019-05-01−2019-02-14 ≈ 0.605

with Firsttagjava(u) = 2019-02-14, Lasttagjava(u) =
2019-04-01, Current = 2019-05-01 according to Eq.2.

• DurTtagjava(u) = 2019-04-01−2019-02-14
2019-04-01−2019-02-01 ≈ 0.779 with

FirstT imeu = 2019-02-01, LastT imeu = 2019-04-01,
Firsttagjava(u) = 2019-02-14, and Lasttagjava(u) =
2019-04-01 according to Eq.3, Eq.4 and Eq.5.

Then, we get Pretagjava(u) = 3∗(0.5∗0.605+0.5∗0.779) ≈
2.08 with α = 0.5 and β = 0.5 according to Eq.6.

Fig. 3. An illustration of the user’s activity history

B. User recommend algorithm

This section proposes a user recommendation algorithm
based on the above user willingness model. The algorithm
inputs the question with tags and the candidates with their
activity history and outputs ranked candidates based on the
user willingness model on the tags of the question to be voted,
and the top k users will be recommended to vote for the
question.

Firstly, we input the question that needs votes and get the
tags of this question. We also need to get the candidates
and their activity history. Then, we get the PerScoreu(the
sum of the candidate u’s user willingness model for tags
of this question) for each user, and rank them based on the
PerScoreu. Finally, we select top k users to vote for this
question. The details of the algorithm are as follows:

510

Algorithm: User Recommend
Input:

tag list: the list of tags of the question that needs voters.
user list: users who belong to the candidate list.
history list: activity history of users who belong to user list.

Output:
RecommendedUser-list: ranked users

Procedure:
1: let PerScore be a list
2: for u in user list:
3. let PerScoreu = 0
4: for i in tag list:
5: calculate the Pretagi(u)

1

6: PerScoreu += Pretagi(u)
7: PerScore.append(PerScoreu)
8: sort PerScore based on the PerScoreu
9: return PerScore
1The user u’s willingness model for tag i

V. EXPERIMENTS AND RESULTS

In this section, we will describe the design of our experi-
ment, and analyze the results of the experiment.

A. Experiment design

In order to validate the effectiveness of our recommendation
method, firstly, we construct the candidates’ user willingness
model based on their activity history in SO, then select the
’closed ’questions in SO and use our recommendation method
to recommend experienced users to vote these questions. We
then analyze the overlap between the users who actually vote
to close these questions and our recommended users.

Data selection. We collect user activity history from Jan-
uary 2018 to September 2019 in SO, and select randomly
1,397 questions that were closed between January 2019 and
September 2019 by the experienced users and use them to
perform the experiment.

Evaluation metrics. We evaluate the overlap between the
actual voters and the recommendation result by r top@k. We
define r top@k as follows: if any actual voter of a ’closed’
question ranks among the top k in our recommendation results,
this question is called hit question. And r top@k = (the
number of hit question)/(the number of all tested ques-
tions). Our candidate list is consist of 30,000+ experienced
users who have participated in closing the questions, so we
choose the 1% of the candidates as the maximum value of
k: 300. On the other hand, any question can be closed if it
reaches 5 votes, so the minimum value of k is set to 5. Thus,
k of r top@k is varied as 5, 10, 100, and 300.

Parameter settings. We use 5 different sets of α and β in
our experiment: (1)α = 0, β = 1; (2)α = 0.3, β = 0.7; (3)α =
0.5, β = 0.5; (4)α = 0.7, β = 0.3; (5)α = 1, β = 0. For the
construction of the user willingness model, we have taken the
activity history of the questions, answers and comments of the
users in the 30 days and 365 days before the tested question
is posted respectively.

B. Results and analysis

The experiment results are shown in Table III. From the time
period of the data used to build the user willingness model,
the effectiveness of the user recommendation method based

on the 30-day data is better than that using the 365-day data
when the values of α and β are the same. We speculate that the
latter contains more user activity history, but the old data may
be misleading to reflect the user’s willingness with the user’s
willingness changing over time. From the values of α and β,
with the increase of α and the decrease of β, the effectiveness
of the user recommendation method is gradually improved,
and reaches the best when α = 1 and β = 0. This may be
because the recency of the activity is more expressive of the
user’s willingness than the duration of the activity in the time
information or the indicator DurTtagjava(u) we use to measure
the duration of the user’s willingness is not accurate.

TABLE III
THE EFFECTIVENESS OF USER RECOMMENDATION METHOD WITH

DIFFERENT PARAMETER SETTINGS

Time period α β r top@5 r top@10 r top@100 r top@300

30 days 0 1 0.346 0.450 0.797 0.88
30 days 0.3 0.7 0.348 0.452 0.803 0.89
30 days 0.5 0.5 0.349 0.455 0.803 0.89
30 days 0.7 0.3 0.349 0.455 0.805 0.894
30 days 1 0 0.350 0.458 0.808 0.898
365 days 0 1 0.334 0.422 0.772 0.867
365 days 0.3 0.7 0.335 0.424 0.777 0.879
365 days 0.5 0.5 0.335 0.424 0.779 0.88
365 days 0.7 0.3 0.336 0.424 0.779 0.882
365 days 1 0 0.337 0.424 0.778 0.881

Overall, the user recommendation method using the 30-day
data to build the user willingness model is the most effective
with α = 1 and β = 0 in our experiment: r top@5 = 0.350,
r top@10 = 0.458, r top@100 = 0.808, r top@300 = 0.898.
Then we use this set of parameters to analyze the effectiveness
of our method for different kinds of ’closed’ questions(seeing
Fig.4). For r top@5 and r top@10, our method is most effec-
tive for the questions closed as Unclear what you’re asking:
r top@5 = 0.395, r top@10 = 0.499. However, our method is
not ideal for the questions closed as Too broad and Primarily
opinion-based. We speculate that the user’s willingness to
participate in the closing questions is also affected by the ease
of identifying the reasons of the closing questions.

Fig. 4. The effectiveness of our method for different kinds of ’closed’
questions

511

We pick 10 most frequently occurring tags in the test
set and verify the effectiveness of our method for questions
related to these tags(seeing Table IV) with above parameter
settings. Because our test set is randomly selected, the situation
of the tag frequency distribution in the test set is similar
to that in the community. There are significant differences
in the effectiveness of our method for questions related to
different tags: c# with r top@5 = 0.102, r top@10 = 0.284,
python-3.x with r top@5 = 0.519, r top@10 = 0.597, and
so on. This indicates that the effectiveness of our method is
influenced by the tags of ’closed’ questions, and this may be
because the popularity of a tag affects users’ willingness to
participate in voting activities related to the tag.

TABLE IV
THE EFFECTIVENESS OF OUR METHOD FOR ’CLOSED’ QUESTIONS

RELATED TO DIFFERENT TAGS

Tag r top@5 r top@10 r top@100 r top@300 Number

python 0.431 0.546 0.838 0.927 260
javascript 0.289 0.371 0.811 0.962 159
java 0.194 0.3125 0.792 0.917 144
php 0.402 0.413 0.772 0.913 92
c# 0.102 0.284 0.83 0.92 88
python-3.x 0.519 0.597 0.909 0.961 77
html 0.365 0.486 0.824 0.905 74
c++ 0.233 0.466 0.795 0.932 73
android 0.125 0.266 0.609 0.781 64
r 0.365 0.476 0.984 0.984 63

VI. CONCLUSION AND FUTURE WORK

To close the unfit questions in CQA is extremely sig-
nificant in order to manage and guarantee the quality of
the question and the whole community. Current practices
of closing questions face several challenges, which requires
encouraging experienced users to participate in closing ques-
tions and increases community efficiency. One way to solve
these challenges is to actively recommend experienced users
appropriate questions against their development experiences
and skills, instead of relying on them to randomly browse
the questions to determine whether they need to vote in the
past. In this paper, we present an effective method to actively
recommend users for questions in CQA. Our contribution of
this paper is threefold:(1) obtaining some important findings
about the potential issues and challenges of voting. (2)building
a user willingness model based on the relationship of tags of
both users and questions by extracting the quantitative and
time information of user activity history. (3)proposing a user
recommendation algorithm that outputs and ranks the potential
voters for questions. We conduct experiment to validate the
effectiveness of our proposed method. The experiment results
are positive and impressive in successful recommendation.

In the future, we plan to use more dimensional indicators
of tag-based information to model users, such as active time.
In addition, the users’ collaboration in the past vote history
will also be included in the recommendation basis.

ACKNOWLEDGMENT

This work was supported in part by the National Key
Research and Development Program of China under Grant
2018YFB1004202, and in part by the Laboratory of Software
Engineering for Complex Systems.

REFERENCES

[1] Zhu J, Shen B, Cai X, et al. Building a Large-scale Software Program-
ming Taxonomy from Stackoverflow[C]//SEKE. 2015: 391-396.

[2] Wang T, Yin G, Wang H, et al. Automatic knowledge sharing across
communities: A case study on android issue tracker and stack over-
flow[C]//2015 IEEE Symposium on Service-Oriented System Engineer-
ing. IEEE, 2015: 107-116.

[3] Correa D, Sureka A. Fit or unfit: analysis and prediction of’closed ques-
tions’ on stack overflow[C]//Proceedings of the first ACM conference
on Online social networks. 2013: 201-212.

[4] Ponzanelli L, Mocci A, Bacchelli A, et al. Improving low quality
stack overflow post detection[C]//2014 IEEE international conference
on software maintenance and evolution. IEEE, 2014: 541-544.

[5] Mukerjee A. Predicting Closed Questions on Stack Overflow[J]. 2013.
[6] Lezina C G E, Kuznetsov A M. Predict closed questions on stackover-

flow[J]. 2013.
[7] Huang W, Mo W, Shen B, et al. CPDScorer: Modeling and Eval-

uating Developer Programming Ability across Software Communi-
ties[C]//SEKE. 2016: 87-92.

[8] Zhao Z, Yang Q, Cai D, et al. Expert Finding for Community-Based
Question Answering via Ranking Metric Network Learning[C]//Ijcai.
2016, 16: 3000-3006.

[9] Yang B, Manandhar S. Tag-based expert recommendation in community
question answering[C]//2014 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2014).
IEEE, 2014: 960-963.

[10] Wang L, Wu B, Yang J, et al. Personalized recommendation for
new questions in community question answering[C]//2016 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining (ASONAM). IEEE, 2016: 901-908.

[11] Wang S, Jiang D, Su L, et al. Expert Finding in CQA Based on Topic
Professional Level Model[C]//International Conference on Data Mining
and Big Data. Springer, Cham, 2018: 459-465.

[12] Liu Z, Zhang Y. Structures or texts? a dynamic gating method for
expert finding in cqa services[C]//International Conference on Database
Systems for Advanced Applications. Springer, Cham, 2018: 201-208.

[13] Tóth L, Nagy B, Janthó D, et al. Towards an Accurate Prediction of the
Question Quality on Stack Overflow Using a Deep-Learning-Based NLP
Approach[C]//14th International Conference on Software Technologies,
ICSOFT 2019. SciTePress, 2019: 631-639.

[14] Calefato F, Lanubile F, Novielli N. How to ask for technical help?
Evidence-based guidelines for writing questions on Stack Overflow[J].
Information and Software Technology, 2018, 94: 186-207.

[15] Yu Y, Wang H, Yin G, et al. Reviewer recommender of pull-requests
in github[C]//2014 IEEE International Conference on Software Mainte-
nance and Evolution. IEEE, 2014: 609-612.

[16] Golder S A, Huberman B A. Usage patterns of collaborative tagging
systems[J]. Journal of information science, 2006, 32(2): 198-208.

[17] Zheng N, Li Q. A recommender system based on tag and time infor-
mation for social tagging systems[J]. Expert Systems with Applications,
2011, 38(4): 4575-4587.

[18] Huang C L, Yeh P H, Lin C W, et al. Utilizing user tag-based
interests in recommender systems for social resource sharing websites[J].
Knowledge-Based Systems, 2014, 56: 86-96.

512

A Deep Spatio-temporal Residual Network Model for

Commercial Activeness Prediction

Ping Liang, DongjinYu*, Xiaoxiao Sun

School of Computer Science and Technology

Hangzhou Dianzi University

Hangzhou, China

liangpingprivate@gmail.com, yudj@hdu.edu.cn, sunxiaoxiao@hdu.edu.cn

Abstract—Activeness of regional stores represents the evolvement

of their corresponding commercial districts, whose prediction

helps practitioners grasp the trend of commercial development

and provides support for urban layout. Traditional prediction

methods, however, mostly rely on time series analysis and cannot

model the complex nonlinear space-time relationship of

commercial development as a geographic phenomenon. Inspired

by the outstanding performance of deep learning in the field of

image and video processing, this paper proposes a deep spatio-

temporal residual network model (DSTRN) for commercial

activeness prediction using online reviews and check-in records of

stores. Specifically, our model includes a spatial dimension that

employs local CNN to capture the spatial relation of surrounding

commercial districts, and a temporal dimension that applies 3D

convolutions and LSTM to deal with the temporal characteristics

of commercial activeness. Meanwhile, a residual network is

introduced to eliminate gradient vanishing and exploding caused

by depth increasing of neural networks. In particular, the recent

variations (e.g., sequential changes) and periodic variations (e.g.,

seasonal changes or holiday effects) of commercial development

are both taken into consideration in the model for better

prediction. Experiments on public Yelp datasets of Toronto from

2013 to 2018 demonstrate that DSTRN vastly outperforms other

approaches and reduces the mean square error by 51.2%, 57.5%

and 8.5% compared to Historical average (HA), Autoregressive

integrated moving average (ARIMA) and XGBoost, respectively.

Keywords-Commercial activeness prediction, Commercial

district, Spatio-temporal analysis, Deep learning, Yelp

I. INTRODUCTION

Urban commercial districts are key functional areas in cities
with high density of shopping malls, restaurants, entertainment
facilities and other commercial entities [1]. Activeness of these
entities in turn represents the evolvement of their corresponding
commercial districts, whose prediction could help practitioners
grasp the trend of business development to achieve commercial
success and help the government to make accurate urban layout
policies.

In recent years, the concepts of big data and smart city have
been put forward, which introduce a new idea for predicting
commercial activeness based on the massive amount of data
collected from different aspects of cities. On the other hand, with

the rise of Yelp and other online review apps, a great number of
reviews and check-in records of various commercial entities
given by visitors and consumers become available. Since
business performance, such as revenues and profits, of
individual entities are commercial secrets with only limited
access, how to employ these publicly available online data to
predict the variations of commercial activeness is a topic with
practical significance [2]. Traditionally, time series prediction
methods such as autoregressive model (ARIMA) are widely
applied in commercial prediction field [3,4], which however
usually fail to capture the complex non-linear spatio-temporal
variations of the commercial activeness as a geographic
phenomenon.

To address the above problems, we propose a novel model
to predict commercial activeness as a spatio-temporal problem.
Our approach is motivated by the outstanding performance of
deep learning techniques on handling non-linear relations, more
specifically on the prediction of spatio-temporal scenarios such
as air pollution prediction [5] and taxi demand scheduling [6].
According to the first law of geography “Near things are more
related than distant things”, commercial entities in the same
district affect the commercial activeness of each other. In order
to capture these spatial relations, we apply local Convolutional
Neural Networks (local CNN) on commercial activeness
prediction, which ensure that close spatial relations are captured
and remote spatial relations are excluded. During analysis of the
Yelp datasets, we notice that the review and check-in data show
periodic changes in some commercial entities. For example, the
number of reviews and check-ins of ice cream stores becomes
significantly larger in summer than in winter; more customers
visit shopping malls in holidays than in workdays. In order to
reflect this reality, we adopt the 3D convolutions to extract the
recent variations and periodic rules, respectively, and employ
Long Short-Term Memory (LSTM) model to synthesize them as
the temporal characteristics for commercial activeness
prediction.

In summary, the main contributions of this paper are
summarized as follows:

• We propose a Deep Spatio-Temporal Residual Network
model (DSTRN) to predict the activeness of commercial
districts based on online reviews and check-in records
of commercial entities.

*Corresponding author

DOI reference number: 10.18293/SEKE2020-076

513

• We design a spatial dimension in DSTRN that employs
local CNN to capture the spatial relations of surrounding
commercial districts, and a temporal dimension that
applies 3D convolutions and LSTM to deal with the
temporal characteristics of commercial activeness
(including periodic and recent variations).

• Experiments on public Yelp datasets demonstrate that
DSTRN vastly outperforms HA, ARIMA and XGBoost
by 51.2%, 57.5% and 8.5% in terms of the mean square
error, respectively.

The rest of the paper is structured as follows. After
discussing related work in Section 2, we introduce some basic
definitions and raise our problem in Section 3. Section 4 presents
our prediction model in detail. Experiment results are given in
Section 5. Finally, Section 6 concludes the paper and introduces
the future work.

II. RELATED WORKS

Space and time are two fundamental dimensions related to
all geographic researches. For a long time, spatio-temporal
analysis and modeling of geographic parameters have been the
main focus of GIScience, such as urban changes [7], land
resources utilization [8], and environmental issues [9].
Commercial activeness, which changes with the aggregation and
evolution of commercial districts, is also a geographic issue
affected by complex space and time factors. Traditional studies
on this issue are generally done through investigating local
conditions, which is unsustainable and relies too much on field
survey [10]. Recent studies attempt to explore the utilities of big
data, such as social and review data generated from mobile apps
(e.g., Twitter, Yelp, etc.), in commercial activeness prediction.
For example, Yang et al. [11] applied a clustering algorithm to
aggregate commercial districts based on multiple online data and
used a linear model to predict commercial activeness. Hu et al.
[2] presented a raster transformation model of check-in data
from Internet to analyze commercial district. Wang et al. [12]
proposed an approach to the business failure prediction with
mobile location-based check-ins. These studies, however, did
not recognize the variations of commercial activeness as a non-
linear spatio-temporal issue, which led to relatively low
accuracy on the prediction results.

Deep learning, which has been vastly applied in the field of
image and video processing, is found to be able to handle
complex non-linear relations and further to complete spatio-
temporal prediction. He et al. [13] put forward a multi-view
ensemble neural network to predict commercial hotness, and in
some sub-neural networks they introduced CNN. Zhang et al.
[14] presented a deep learning model with CNN to predict urban
congestion. In these studies, however, the entire research area
was input into CNN as one image, which failed to capture the
local relations among the surrounding areas and falsely included
irrelevant relations of remote entities. In addition, Ji et al. [15]
demonstrated that 3D convolution can perceive not only spatial
features, but also temporal features compared with 2D
convolution in the field of video. Recently, LSTM has been
applied to solve spatio-temporal issue due to its outstanding
ability in capturing temporal relations. Chen et al. [16] applied
LSTM to forecast urban housing price and Kong et al. [17]

utilized LSTM to forecast urban power load. Since LSTM
cannot reflect the spatial relations, researchers thought that
combining CNN and LSTM can capture both spatial and
temporal characteristics. For example, Huang et al. [5] applied
the CNN-LSTM model to predict air particulate matter (PM2.5).
However, due to the complex model architecture, the depths of
deep learning network increased sharply, which led to gradient
vanishing and exploding and reduced the effectiveness of
capturing spatio-temporal relations [18]. On the other hand,
LSTM alone cannot capture both the periodic temporal relations
(e.g., seasonal changes or holiday effects) in spatio-temporal
modeling, which is of vital importance in long-term prediction
[14].

In conclusion, commercial activeness prediction is a
complex and non-linear geographic issue, which contains both
spatial and temporal variations. But until now, these two
characteristics have not been adequately extracted at the same
time. Furthermore, the temporal features of commercial
activeness should be divided into periodic and recent dimensions.
Unfortunately, existing methods, even those based on deep
learning, however, cannot capture these two dimensions
simultaneously and effectively. Therefore, in this paper, we are
dedicated to proposing a deep learning model based on local
CNN, 3D convolution, LSTM and residual network for
commercial activeness prediction.

III. PRELIMINARIES

In this section, we presents the preliminaries which helps
understand the model we presented.

A. Definitions

Definition 1 (Commercial District). The aggregation of
commercial entities in space forms a Commercial District,
which has a diffusion and radiation effect on its surrounding
space.

Definition 2 (Commercial Activeness). The total number of
reviews and check-ins from one commercial entity is defined as
its Commercial Activeness. Similarly, the Commercial
Activeness of one commercial district is the sum of reviews and
check-ins of all commercial entities in this commercial district,
defined as follows:

𝑦 = 𝑆𝑢𝑚#𝑅𝑒𝑣𝑖𝑒𝑤 + 𝑆𝑢𝑚#𝐶ℎ𝑒𝑐𝑘𝑖𝑛 (1)

B. Problem Definition

Commercial Activeness Prediction: Given the commercial
activeness of all grids in the commercial district before a given
time 𝑡 (including 𝑡), the problem is to predict the commercial
activeness of any grid (𝑖, 𝑗) at the time of 𝑡 + 1, defined as:

𝑦𝑡+1
𝑖𝑗

= ℱ(𝑦𝑡𝑠𝑡𝑎𝑟𝑡

𝑖𝑗
, … , 𝑦𝑡

𝑖𝑗
) (2)

where 𝑖 and 𝑗 represent a grid in the commercial district on 2D
coordinate, 𝑡𝑠𝑡𝑎𝑟𝑡 represents the time when the earliest data are
used as input and ℱ is the prediction model.

514

C. 3D convolution

3D convolution is proved to be effective to capture spatio-
temporal features in the field of video convolution [15]. When
2D convolution is applied on video identification, several
contiguous frames in the video are treated as multiple channels
in the image, which reduces the tensor dimension and makes the
network less sensitive to temporal features. However, 2D
convolution applies a 2D filter, which only captures spatial
features. 3D convolution, by contrast, employs a 3D filter and
the increased dimension helps capture the temporal information
from contiguous time spans.

D. Residual Network

Since the ability of only one convolution layer to capture
information is limited, we try to capture depth-dimension
information by increasing the numbers of convolution layers.
However, training deeper neural networks usually leads to
gradient vanishing and exploding. To overcome this problem,
we introduce a residual neural network into our model. Residual
neural network contains several residual units, each one of which
includes two convolution layers and one batch normalization
layer. One residual unit is defined as:

𝑋𝑙+1 = ℱ𝑟𝑒𝑠 (𝑋𝑙) + 𝑋𝑙 (3)

where X𝑙 and X𝑙+1are the input and output of the 𝑙𝑡ℎ residual
unit, and ℱ𝑟𝑒𝑠 is a residual function.

IV. PREDICTION OF COMMERCIAL ACTIVENESS

In this section, we introduce the details of DSTRN, i.e., our
prediction model ℱ . As is shown in Fig.1, the framework is
mainly composed of two parts, which are used to capture spatial
correlation and temporal correlation, respectively. As for
temporal correlation, both periodic variations and recent
variations are considered.

Figure 1. The framework of deep spatio-temporal residual network.

A. Preprocessing

Commercial entities are spatially discrete, which are not
conducive to the capture of their spatial correlations. To
eliminate this obstacle, we rasterize the commercial district into
a series of grids and sum the counts of reviews and check-ins
about the business entities located inside a certain grid to
indicate the commercial activeness of the corresponding grid as
Fig.2 shows. We set the time span as one month and obtain a
time sequence expressed as Γ = {𝑇0, 𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑡}. For each
time slot 𝑇𝑡, we rasterize the commercial activeness and obtain
a set of grid activeness represented as 𝜉𝑡 =
{𝑃00

𝑡 , 𝑃01
𝑡 , 𝑃02

𝑡 , … , 𝑃𝑖𝑗
𝑡 }.

Figure 2. Superposition of reviews and check-ins to indicate commercial

activeness.

B. Spatial Information Extraction

As is mentioned above, in previous spatio-temporal studies,
the whole research area (i.e., the commercial district) is input
into CNN as image with each grid having its commercial
activeness as its value. To focus on correlations among the
surrounding areas and eliminate irrelevant relations of remote
areas, we introduce local CNN to extract spatial information of
commercial activeness. The following steps demonstrate the
process of image segmentation as is shown in Fig.3:

1) For each time slot 𝑇𝑡, we place the commercial district in
the first quadrant of a 2D coordinate system.

Review

Checkin

Review with Checkin

9 7 7 7

7 8 10 6

7 9 7 7

6 7 6 4

Number of Reviews and Checkins

Time

 x 11

Periodic Image Recent Image

SxS

Image

i j
t+1y

3D Conv_layer

3D Conv_layer

Flatten

FC_layer

3D Conv_layer

Res Unit

Res Unit

Flatten

FC_layer

Concatenate

LSTM

FC_Layer

Loss

SxS

Image

SxS

Image

SxS

Image

515

2) We extract grid 𝑃𝑖𝑗 and its surrounding grids as an S ∗ S

image starting from the origin of coordinates, where S is an odd
number to maintain 𝑃𝑖𝑗 in the center of image.

3) We then move 𝑃𝑖𝑗 one grid to the right and repeat the

segmentation operation until the right edge of the last
segmented image reaches the right border of the research area.

4) Afterwards, we move 𝑃𝑖𝑗 one grid up each time until the

upper edge of the segmented image reaches the upper border of
the research area.

So far, we obtain an image tensor set expressed as 𝑌𝑡
𝑖𝑗

∈
 𝑅𝑆∗𝑆, in which every image has commercial activeness as pixel

value of each grid. The local CNN takes 𝑌𝑡
𝑖𝑗

as an input image to

convolutional layers, which is defined as follows:

𝑌𝑡
𝑖𝑗,𝑘+1

= 𝑓(𝑌𝑡
𝑖𝑗,𝑘

∗ 𝑊𝑡
𝑘 + 𝑏𝑡

𝑘) (4)

where * denotes the operation of CNN and 𝑓 is an activation

function. 𝑌𝑡
𝑖𝑗,𝑘

 is the input of the 𝑘𝑡ℎ CNN layer. 𝑊𝑡
𝑘 and 𝑏𝑡

𝑘 are
learnable parameter sets. Since the task is to predict the
commercial activeness of the central grid within an S ∗ S image,
our model does not involve any subsampling and pooling
operations

Figure 3. Image segmentation for local CNN (when S is 3).

C. Temporal Correlation Extraction

The temporal feature extraction of commercial activeness

applies a 3D convolution, in which the image tensor 𝑌𝑡
𝑖𝑗

 in each

time span is regarded as a video frame. 3D convolution is in fact
an increased-dimension 2D convolution. So local CNN is
applied in each 2D dimension of 3D convolution to capture
spatial information. Considering the difference between periodic
and recent characteristics of commercial activeness, a periodic
neural network is designed together with a recent neural
networks as Fig.1 shows.

When designing the periodic neural network, several 3D
convolutions are applied to extract periodic spatio-temporal
information. For each 3D convolution, the activation function is
represented as:

𝒴𝑡
𝑖𝑗,𝑘+1

= 𝑓(𝒴𝑡
𝑖𝑗,𝑘

∗ 𝑊𝑡
𝑘 + 𝑏𝑡

𝑘) (5)

where * denotes the operation of 3D convolution, 𝒴𝑡
𝑖𝑗,𝑘

 is the

input of the 𝑘𝑡ℎ 3D convolution layer, and 𝑊𝑡
𝑘 and 𝑏𝑡

𝑘 are
learnable parameter sets. After several 3D convolution layers,

we flatten the output tensor 𝒴𝑡
𝑖𝑗

∈ 𝑅𝑆∗𝑆 to a feature vector 𝑣𝑡
𝑖𝑗

∈

𝑅𝑡
𝑆2

 for grid (𝑖, 𝑗) at time slot t. Finally, a fully connected layer
is applied to reduce the length of spatio-temporal feature vector

𝑣𝑡
𝑖𝑗

 , which is defined as:

𝜁𝑡
𝑖𝑗

= 𝑓 (𝑊𝑡
𝐹𝐶3𝑑

𝑣𝑡
𝑖𝑗

+ 𝑏𝑡
𝐹𝐶3𝑑

) (6)

where 𝑓 is an activation function, and 𝑊𝑡
𝐹𝐶3𝑑

 and 𝑏𝑡
𝐹𝐶3𝑑

 are
learnable parameters sets. So far, we get a periodic spatio-

temporal information vector 𝜁𝑡_𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐
𝑖𝑗

∈ 𝑅𝑙 , where 𝑙 means

length of the vector. Thus, the periodic data in 𝑝 periods

generate 𝑝 𝜁𝑡_𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐
𝑖𝑗

, which is then integrated into one tensor

𝜂𝑡_𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐
𝑖𝑗

∈ 𝑅𝑙∗𝑝.

When designing the recent neural network, we assume that
recent correlation is more relevant to the prediction result and
hence we input more recent data to our model. Based on this idea,
we increase the depth of recent correlation extraction neural
networks, i.e., increasing the number of 3D convolution layers.
Since increasing layers leads to gradients vanishing, we
introduce residual network to extract recent information. As
mentioned above, in each residual unit, two 3D convolution
layers and one batch normalization layer are employed, together
with several residual units, as Fig.1 shows. After a flatten layer
and a fully connected layer, we obtain a recent spatio-temporal

information tensor 𝜂𝑡_𝑟𝑒𝑐𝑒𝑛𝑡
𝑖𝑗

∈ 𝑅𝑙∗𝑞 , in which 𝑞 represents the

number of recent time slots.

In order to automatically assign different weights to recent
correlation and periodic correlation, LSTM network is applied

in our model. The concatenation of the two tensors 𝜂𝑡_𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐
𝑖𝑗

and 𝜂𝑡_𝑟𝑒𝑐𝑒𝑛𝑡
𝑖𝑗

 is as follows:

𝜃𝑡
𝑖𝑗

= 𝜂𝑡−𝑝𝑒𝑟𝑖𝑜𝑑
𝑖𝑗

 ⨁ 𝜂𝑡−𝑟𝑒𝑐𝑒𝑛𝑡
𝑖𝑗 (7)

Here, the tensor 𝜃𝑡
𝑖𝑗

 contains 𝑝 + 𝑞 periods of spatio-

temporal information. 𝜃𝑡
𝑖𝑗

 is then fed into LSTM and an

outputting tensor is obtained as 𝛿𝑡
𝑖𝑗

.

D. Prediction

For the final prediction, our goal is to obtain all values of grid

activeness for time slot 𝑡 + 1. Since tensor 𝛿𝑡
𝑖𝑗

 already contains

spatial and temporal correlations, a fully connected layer is

applied to calculate the final prediction value �̂�𝑡+1
𝑖𝑗

 as follows:

�̂�𝑡+1
𝑖𝑗

= 𝑓(𝑊𝑡
𝐹𝐶𝛿𝑡

𝑖𝑗
+ 𝑏𝑡

𝐹𝐶) (8)

where 𝑊𝑡
𝐹𝐶 and 𝑏𝑡

𝐹𝐶 are learnable parameters, and 𝑓 is the
activation function. The final result is normalized to [0,1] and
denormalized back to real commercial activeness values.
According to the order that local CNN segments images, the
predicted values are calculated back to obtain the predicted grid
values of grid activeness.

E. Loss Function

Our model is trained through minimizing the value of loss
function iteratively, which is defined as the average absolute
error (MAE) between the real commercial activeness value and
the predicted one as Eq.(9) shows:

𝐿𝜃 =
1

𝑚
∑|𝑦𝑡

𝑖𝑗
− �̂�𝑡

𝑖𝑗
|

𝑚

𝑖=1

 (9)

where 𝜃 is all learnable parameters in DSTRN, and 𝑚 is the
number of samples.

9 7 7 7

7 8 10 6

7 9 7 7

6 7 6 4

S = 3

S = 3 Pi j

Y
i j

t

516

V. EXPERIMENTS

A. Experimental Settings

1) Datasets: We selected the open dataset1 from Yelp for
the experiments, which includes more than 668,000 reviews and
more than 160,000 check-in records of stores in various cities
from October 2004 to November 2018. We chose Toronto as
the target city to evaluate the performance of the proposed
method DSTRN.

After investigation, we selected the data from January 2013
to December 2017 as the training dataset, and the data from 2018
as the testing dataset, and adopted one month as the time span.
When testing the prediction results, we used the same month in
the previous 3 years and the previous 11 months to predict the
commercial activeness in the next time slot. In our experiment,
the activeness values smaller than 10 were filtered, which is a
common practice in practical applications [6].

2) Parameters Settings: We implemented DSTRN2 by
Keras, which is a fast experimentation neural networks API
running on top of TensorFlow. The experiments ran on a cluster
with four NVIDIA 1080Ti GPUs. During experiments, we
applied min-max normalization on training datasets to
normalize input values to [0,1]. After the DSTRN prediction,
we reversed the min-max normalization to recover commercial
activeness values.

In our experiment, the size of surrounding grids was set to 7
∗ 7, which corresponds to a 7km∗7km actual rectangle area. For
the periodic part of DSTRN, we used 3 3D convolution layers
with 32 filters, of which the size is 3 ∗ 3 ∗ 3. For the recent part
of DSTRN, we set the number of residual units to 12, and 32
filters with size of 3 ∗ 3 ∗ 3 were applied in the 3D convolution
layers of each residual unit. In all convolution layers, we adopted
ReLU as the activation functions. For LSTM, we set the
dimensions of hidden state vector as 512. In the final fully
connection layer, we adopted Sigmoid as activation function. As
for other parameters, the batch size was set to 64, and the
learning rate was 0.001. Finally, we applied Adam as optimizer.

3) Evaluation Metrics: We use mean square error (MSE)
and mean percentage error (MAPE) as accuracy indicators of
the model, which are defined as follows:

𝑀𝑆𝐸 =
1

𝑚
∑(𝑦𝑡

𝑖𝑗
− �̂�𝑡

𝑖𝑗
)

2
𝑚

𝑖=1

(10)

𝑀𝐴𝑃𝐸 =
1

𝑚
∑ |

𝑦𝑡
𝑖𝑗

− �̂�𝑡
𝑖𝑗

𝑦𝑡
𝑖𝑗

|

𝑚

𝑖=1

× 100 (11)

where 𝑦𝑡
𝑖𝑗

 is the observed activeness value, �̂�𝑡
𝑖𝑗

 is the predicted

value for grid (𝑖, 𝑗) at time slot 𝑡 and 𝑚 is the number of
samples.

4) Comparison Methods: We compared our model with
three other methods, i.e., Historical average (HA),
Autoregressive integrated moving average (ARIMA), and
XGBoost.

• Historical average (HA): A traditional prediction
method, in which the predicted value is the average

value of previous historical commercial activeness
values.

• Autoregressive integrated moving average (ARIMA):
A traditional time series analysis method, which does
not consider the variations of other relevant random
variables.

• XGBoost: A gradient boosting tree model, which has
gained widely popularity recently after many winning
teams of competitions used it.

B. Experiment Results

In this section, we demonstrate the experimental results of
DSTRN compared with other methods in the first experiment
and we further try to adjust parameters in our model to see their
influence on the model performance (i.e., size of surrounding
grids, the numbers of recent months and the numbers of residual
units) in the second experiment.

1) Model Performance: Figure 4 shows that DSTRN

achieves the lowest MSE (i.e., 26.25) and the lowest MAPE (i.e.,

16.20) among all methods. Compared to the second-best model

(i.e., XGBoost), DSTRN improves 8.5% in MSE and 26.9% in

MAPE, respectively. Compared to traditional methods such as

HA and ARIMA, machine learning and deep learning models

obviously have better performances in terms of MSE and

MAPE.

Figure 4. Comparision of different methods.

2) Parameter Influence: In the second experiment, we
explore how the number of residual units influences the
accuracy of our model as shown in Fig.5a. When the number of
residual units ranges between 11 and 13, MSE and MAPE are
relatively stable. Otherwise, MSE rises significantly due to the
lack of deep mining of commercial activeness. However, when
the number of residual units increases to a certain amount, the
gradients vanishes gradually. Since MAPE better reflects the
overall prediction accuracy of the model, we finally apply 12
residual units in our model.

In addition, because the size of surrounding grids determines
the input image size of local CNN, we also tried to figure out
which size is best for the model. As shown in Fig.5b, when the
size is selected as 7 ∗ 7, MSE and MAPE both obtain their
optimal values. When we increase the size to 13 ∗ 13, MSE and
MAPE rise significantly. The reason is that several unrelated
locations are included in CNN and hence reduces the precision

53.79

61.76

28.68
26.25

22.98 21.92 22.15

16.20

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

HA ARIMA XGBoost DSTRN

MSE MAPE

1https://yelp.com/dataset

2http://dbsi.hdu.edu.cn/CommercialActiveness/

517

of the model. MSE and MAPE also increase slightly as the size
decreases to 5 ∗ 5 for not considering enough surrounding
relations.

Figure 5. Comparison of DSTRN with different parameters

VI. CONCLUSION

In this paper, we propose a model called DSTRN which
employs online reviews and check-in records to predict
commercial activeness by month. Specifically, our model
includes a spatial dimension that employs local CNN to capture
the spatial relation of surrounding commercial districts and a
temporal dimension that applies 3D convolutions to deal with
the temporal characteristics of commercial activeness.
Considering the obvious periodic and recent patterns of
commercial activeness, DSTRN handles periodic and recent
temporal dimensions simultaneously and applies LSTM to
combine the both. In addition, to avoid the gradients vanishing
and exploding caused by increasing of convolution layers, the
residual network is applied in DSTRN. Experiments on public
Yelp datasets of Toronto from 2013 to 2018 demonstrate that
DSTRN vastly outperforms other methods.

 For future optimization, we plan to add more related
information about commercial activeness, such as the layout of
subways, as the input of the prediction other than just reviews
and check-in records. Besides, the semantics of reviews should
also be considered in the future to improve the performance of
the model.

ACKNOWLEDGMENTS

This work was partially supported by National Natural
Science Foundation of China (No. 61472112, No. 61702144),
Key Science and Technology Project of Zhejiang Province of
China (No. 2017C01010), and Natural Science Foundation of
Zhejiang Province of China (No. LQ20F020017). The authors

would also like to thank anonymous reviewers who made
valuable suggestions to improve the quality of the paper.

REFERENCES

[1] Wang, Fang, Li, Yan, and Gao, Xiaolu. "A SP survey-based method for
evaluating environmental performance of urban commercial districts: A
case study in Beijing." Habitat International 53 (2016): 284-291.

[2] Hu, Qingwu,Wang, Ming, and Li, Qingquan. "Urban hotspot and
commercial area exploration with check-in data." Acta Geodaetica et
Cartographica Sinica 43.3 (2014): 314-321.

[3] Nath, Bhola, D. S. Dhakre, and Debasis Bhattacharya. "Forecasting wheat
production in India: an ARIMA modelling approach." Journal of
Pharmacognosy and Phytochemistry 8.1 (2019): 2158-2165.

[4] Zhu, Bangzhu, and Julien Chevallier. "Carbon price forecasting with a
hybrid arima and least squares support vector machines methodology."
Pricing and Forecasting Carbon Markets. Springer, Cham, 2017. 87-107.

[5] Huang, Chiou-Jye, and Ping-Huan Kuo. "A deep cnn-lstm model for
particulate matter (PM2. 5) forecasting in smart cities." Sensors 18.7
(2018): 2220.

[6] Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., Chuxing,
D., and Li, Z. "Deep multi-view spatial-temporal network for taxi demand
prediction." Thirty-Second AAAI Conference on Artificial Intelligence.
2018.

[7] Clarke, Keith C., and Leonard J. Gaydos. "Loose-coupling a cellular
automaton model and GIS: long-term urban growth prediction for San
Francisco and Washington/Baltimore." International journal of
geographical information science 12.7 (1998): 699-714.

[8] Wrenn, Douglas H., and Abdoul G. Sam. "Geographically and temporally
weighted likelihood regression: Exploring the spatiotemporal
determinants of land use change." Regional Science and Urban
Economics 44 (2014): 60-74.

[9] Liu, Y., Zheng, Y., Liang, Y., Liu, S., Rosenblum, D.S.: Urban water
quality prediction based on multi-task multi-view learning. Proceedings
of the 25th International Joint Conference on Artificial Intelligence. pp.
2576-2582 (2016).

[10] Mandhachitara, Rujirutana, and Randall Shannon. "The Formation and
Sustainability of same Product Retail Store Clusters in A Modern Mega
City." Tijdschrift voor economische en sociale geografie 107.5 (2016):
567-581.

[11] Yang, S., Wang, M., Wang, W., Sun, Y., Gao, J., Zhang, W., and Zhang,
J. "Predicting commercial activeness over urban big data." Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
1.3 (2017): 1-20.

[12] Wang, lei, Gopal, Ram, Shankar, Ramesh, and Pancras Joseph. "On the
brink: Predicting business failure with mobile location-based checkins."
Decision Support Systems 76 (2015): 3-13.

[13] He, Zhiyuan, and Su Yang. "Multi-view Commercial Hotness Prediction
Using Context-aware Neural Network Ensemble." Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2.4
(2018): 1-19.

[14] Zhang, Junbo, Yu Zheng, and Dekang Qi. "Deep spatio-temporal residual
networks for citywide crowd flows prediction." Thirty-First AAAI
Conference on Artificial Intelligence. 2017.

[15] Ji, Shuiwang, Xu, Wei, Yang, Ming, and Yu, Kai. "3D convolutional
neural networks for human action recognition." IEEE transactions on
pattern analysis and machine intelligence 35.1 (2012): 221-231.

[16] Chen, Xiaochen, Wei, Lai, and Xu, Jiaxin. "House Price Prediction Using
LSTM." arXiv preprint arXiv:1709.08432 (2017).

[17] Kong, Weicong, Dong, Zhaoyang, Jia, Youwei, Hill, D., Yan, Xu and
Zhang, Yuan. "Short-term residential load forecasting based on LSTM
recurrent neural network." IEEE Transactions on Smart Grid 10.1 (2017):
841-851.

[18] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. "Deep
residual learning for image recognition." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016.

518

Collaborative Denoising Graph Attention
Autoencoders for Social Recommendation

Nan Mu∗†, Daren Zha∗†, Lin Zhao∗, Rui Gong∗
∗Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
†School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Email: {munan,zhadaren,zhaolin1,gongrui}@iie.ac.cn

Abstract—In recent years, social recommendation has at-
tracted more and more attention from researchers, because it
can effectively solve the problems of data sparsity and cold
start. But social recommendation faces two problems: The first
is how to deeply integrate social information with user-item
preference information to obtain accurate user and item latent
vectors. The second problem is how to generate a robust top-
N recommendation model from the implicit feedback infor-
mation. To solve these problems, we propose a novel model:
collaborative denoising graph attention autoencoders for social
recommendation(CDGAAE). This model uses the currently pop-
ular graph neural networks to fuse the interaction preference
information graph and social information graph through a
multi-head attention message passing mechanism. At the same
time, this model delicately merges graph neural networks with
denoising autoencoders, which uses the corrupt versions of the
original data to make the model more robust and generalized.
Finally, we conduct comparative experiments of our model with
other baseline algorithms on two real world datasets, and the
experimental results prove the superiority of our model.

Index Terms—Denoising Graph Attention Autoencoders , So-
cial Recommendation , Implicit Feedback , Top-N Recommenda-
tion

I. INTRODUCTION

Recently, with the boom of the Internet and social media,
social recommendation is a hot topic in academia and industry.
Previous works [1], [2] incorporate social information into the
recommendation system from different perspectives and these
works have achieved good performance. However, the above
methods are shallow models and they cannot deeply merge
social information with user-item interaction information. In
addition, the robustness and generalization of the recommen-
dation system is also crucial, so how to resist the interference
of noise is also a problem we need to consider. In real world,
the user’s explicit rating information for items is difficult to
obtain and what we can usually get is the implicit feedback
data (click, browse, etc). At the same time, for ordinary users,
they prefer to get a list of items that are most interesting to
them. So for the social-based top-K recommendation system,
we face the following two problems: The first is how to deeply
integrate social information with user-item preference informa-
tion to obtain accurate user and item latent vectors. The second
problem is how to generate a robust top-k recommendation
model from the implicit feedback information.

DOI reference number: 10.18293/SEKE2020-105

The rapid development of deep learning technology has
brought us new ideas for solving the above problems. Graph
neural networks [9] generate the accurate representation for
nodes through deeply exploring the graph structure, which
has achieved significant results. The denoising autoencoders
[6] provide a robust feature representation algorithm by using
the corrupted version of the original data. Collaborative neural
filtering [14] deeply learns the interaction behaviors between
users and items.

So in this paper, we propose a novel model: Collaborative
Denoising Graph Attention Autoencoders for Social Recom-
mendation (CDGAAE). We deeply integrate the graph neural
networks with the denoising autoencoders. For the user-item
implicit preference interaction matrix, we use its corrupted
version as input to train our model. CDGAAE includes graph
attention encoder and collaborative neural filtering decoder.
The encoder performs the message passing process based
multi-head attention mechanism on the user-item preference
graph and the social network graph. Then we can obtain
the user latent vector by deeply merging the results of these
two graphs, and the item latent vector is generated from the
user-item preference graph. The decoder designs a multi-layer
neural collaborative recommendation module which takes the
latent vectors of users and items as input, and then the decoder
reconstructs the original user-item preferences, which can en-
hance the robustness of the model. For model learning process,
since the original data is implicit feedback data, we use a
binary cross-entropy loss function and a stochastic gradient
descent optimization method. So the main contributions of this
article are as follows:

1) We propose a novel model Collaborative Denoising
Graph Attention Autoencoders for Social Recommen-
dation (CDGAAE), which can deeply integrate social
information and user-item preference information to
accurately represent users and items.

2) The CDGAAE model delicately integrates graph neural
networks and denoising autoencoders, which making
the model more robust and generalized. At the same
time, it can make top-K recommendations from implicit
feedback data.

3) We compare CDGAAE and many baseline algorithms
on two real world datasets, and the experimental results
prove the superiority of our model.

519

II. RELATED WORK

A. Social Recommendation

With the booming development of online social media,
social recommendation technology has attracted more and
more researchers’ attention. SocialMF [1] incorporates the
mechanism of trust propagation into the social recommenda-
tion model because the trust propagation has been shown to be
a crucial phenomenon in the social sciences. In order to further
improve the performance of recommendation, TrustSVD [2]
integrates explicit and implicit influence into the model at the
same time. And then the top-K recommendation is also an
important research hotspot in social recommendation. SBPR
[3] extends the classical BPR [4] method with observation that
users tend to assign higher rankings to their friends’ favorite
items. SPF [5] develops a social poisson factorization method
to closely combine ratings with social information.

B. Denoising Autoencoders

The Denoising Autoencoder (DAE) [6] is an extension
of the classical autoencoder and the purpose of DAE is to
reconstruct the raw input data χ from its (partially) corrupted
version χ̃. The common corrupted methods consist of the
additive Gaussian noise and the mask-out/drop-out noise. With
this setup, DAE can generate more robust features than the
classical autoencoder. The DAE model is widely used in
recommendation systems to improve the performance of the
framework. Collaborative denoising auto-encoders(CDAE) [7]
proposes a top-N recommendation algorithm which utilizes
the idea of DAE and the CDAE model is a generalization
of several well-known collaborative filtering models but with
more flexible components. And then to tackle the data sparsity
and cold start problems, the Trust-aware Collaborative De-
noising AutoEncoder (TDAE) [8] learn compact and effective
representations from both rating and trust data for top-N
recommendation.

C. Graph Neural Networks

In recent years, graph neural networks [9] have developed
rapidly in the field of representation learning and make
remarkable achievements. The representation of each node
on the graph structure data has always been a research
hotspot and graph neural networks achieve better performance
in terms of accuracy and speed than the classical network
repersentation methods [10] in many application scenarios.
Due to the advantages of graph neural networks more and
more recommendation systems adopt these algorithms. GCMC
[12] provides a framework which considers matrix completion
as a link prediction task and leverage graph autoencoders
combining interaction data with side information. GraphRec
[13] provides a principled approach to jointly capture interac-
tions with opinions in the user-item graph and introduces the
attention mechanism into the model.

III. THE PROPOSED MODEL

In the classical recommendation system, we usually have a
userset U with N users {u1, u2, . . . , uN} and itemset V with

M items {v1, v2, . . . , vM}. We also have a matrix R ∈ RN×M

that represents the users’ preferences for the items. And in this
paper we focus on the implicit feedback information because
the explicit feedback is often hard to get. In the preference
matrix R, if there is an interaction between the user ui and
the item vj , rij = 1, otherwise rij = 0. And then we also
have a matrix S ∈ RN×N , which refers to the social network
relationship between users. In the social graph, if uk has a
relation to ui, ski = 1, otherwise ski = 0.

Now we have the implicit preference matrix R and the
social matrix S, so the goal of our social recommendation
system is to pick a top-k list of the most interesting items
from the unobserved item set for each user.

A. Overall Structure of the Proposed Framework
In this part, we will introduce the overall structure of our

proposed model Collaborative Denoising Graph Attention Au-
toencoders(CDGAAE). The classical denoising autoencoder
has been described in the related work II-B. The common
corrupted methods consist of the additive Gaussian noise and
the multiplicative mask-out/drop-out noise. And in this paper,
we use the mask-out/drop-out corruption, which is widely
used in the previous works [7], [8]. The drop-out corruption
can be explained that the non-zero values (rij = 1) in the
preference matrix R are randomly dropped out independently
with probability q:

P (rij = 0) = q

P (rij = rij) = 1− q
(1)

And then the autoencoder framework of CDGAAE consists
of graph attention encoder and neural collaborative filtering
decoder. The encoder performs the message passing process
based multi-head attention mechanism on the user-item im-
plicit preference graph and the social network information
graph. Then we can obtain the user latent vector by deeply
merging the results of these two graphs, and the item latent
vector is generated from the user-item preference graph. The
decoder designs a multi-layer neural collaborative filtering
module which takes the latent vectors of users and items as in-
put, and then the decoder reconstructs the original preferences
between users and items, which can enhance the robustness
and generalization of the model. For model learning process,
since the original data is implicit feedback data, we use a
binary cross-entropy loss function and a stochastic gradient
descent optimization method.

B. Graph Attention Encoder
The purpose of the encoder module is to learn user latent

vector hi and and item latent vector hj . The graph attention
encoder part shown in Fig.1 contains three message passing
processes. So hi is from user-item implicit preference graph
and social network graph, and hj from user-item preference
graph. Following the initialize method of NeuMF [14], for the
one hot embedding user i and item j, we pass them through two
multi-Layer perceptrons, then we can get the initial embedding
ui ∈ Rd and vj ∈ Rd. Next we will introduce the generation
method of these two latent vectors hi and hj .

520

𝒗𝑗1

𝒗𝑗2

𝒗𝑗3

Graph attention encoder Neural collaborative
filtering decoder

1

1

1

1
𝒉𝑗

User-item
graph

Predicted user-
item graph

𝒗𝑗1

𝑢𝑖2

?
?

?

?

?

?

𝑢𝑖1 𝒉𝑖
𝑆

𝒉𝑖

𝑢𝑖2

𝑢𝑖1

1

1

1

𝒗𝑗2
𝒗𝑗3

User-item
corrupted graph

𝑢𝑖1

𝑢𝑖1

𝑢𝑖3

𝑢𝑖4

𝑢𝑖5

𝑢𝑖3

𝑢𝑖4

𝑢𝑖5

𝒗𝑗1

𝒗𝑗2

𝒗𝑗3

1

1

1

𝟎

𝑢𝑖2

𝑢𝑖1

Concat

𝑢𝑖1Concat 𝒉𝑖
𝑈

𝑢𝑖1Concat

𝑢𝑖1MLP

𝒉𝑖 𝒉𝑗 𝒉𝑖° 𝒉𝑗

ℒ𝑎𝑦𝑒𝑟1

ℒ𝑎𝑦𝑒𝑟2

ℒ𝑎𝑦𝑒𝑟𝑜𝑢𝑡

…

 𝑟𝑖𝑗

𝒗𝑗1

𝒗𝑗2

𝑢𝑖1

𝑢𝑖2

User-user graph

Fig. 1. Overall Structure of the Proposed Framework.

1) User Latent Vector: For each user, firstly, the features of
all directly connected items in the user-item preference graph
are collected to obtain the embedding vector hU

i . The second
aggregation is the message passing of the associated users in
the social graph and we can get another embedding vector hS

i .
Finally, the deep fusion of these two vectors can form a new
embedding vector, that is user latent vector hi.

In the user-item preference graph, for user i, Oi denotes the
set of items which this user interacted with. Firstly we need to
calculate how important the item vj is to the user ui, which
we call the attention coefficients eij :

eij = f(Wuui,Wuvj) (2)

In this equation, f is a function mapping and we can im-
plement it with a variety of neural network structures. Wu

denotes a weight matrix, of which the purpose is to make
reasonable linear transformations for the ui and vj . For each
node in the graph, weight matrix Wu and function f are
shared. This sharing strategy is inspired by the weight sharing
of convolutional neural networks. During the message passing
process, we consider all the items from the set Oi, so we pass
the attention coefficients through a softmax function to get the
final weight of each node:

αij = softmax(eij) =
exp(eij)∑

k∈C(i) exp(eik)
(3)

In our model, we use a standard multi-Layer perceptron gu
to implement the mapping function f , so the calculation of
specific αij is as follows:

αij =
exp(gu(Wuui ⊕Wuvj))∑

k∈Oi
exp(gu(Wuui ⊕Wuvk))

(4)

⊕ denotes the concatenation of two vectors, so Next we can
get the single user embedding vector hU

i from the aggregation

of items’ characteristics:

hU
i = σ(

∑
j∈Oi

αijWuvj) (5)

To make the model aggregate more information from different
perspectives, we adopt a very popular multi-head attention
mechanism [11], which can be described as:

hU
i =

K

‖
k=1

σ(
∑
j∈Oi

αk
ijW

k
uvj) (6)

In this equation, where ‖ represents concatenation of the
vectors, and αk

ij , Wk
u denote the k-th attention weights and

linear transformation’s weight matrix.
Now we hava generated the vector hU

i for user ui from
the user-item preference graph. Next, we will introduce the
generation method of social embedding vector hS

i from the
social network graph. we also use the multi-head attention for
message passing and the calculation of attention coefficients
is similar to Eq.3:

αij =
exp(gs(Wsui ⊕Wsuj))∑

o∈Si exp(gs(Wsui ⊕Wsuo))
(7)

gs is a multi-Layer perceptron and Ws denotes a weight
matrix. Si is the collection of users which have relationship
with user ui, then we can generate the vector hS

i through the
multi-head attention mechanism:

hS
i =

K

‖
k=1

σ(
∑
o∈Si

αk
ioW

k
suo) (8)

Through the above illustration we’ve generated the two parts
of the user latent vector: user embedding vector hU

i from
the user-item implicit preference graph and social embedding
vector hS

i from the social network graph. Both of these
vectors are important components of the representation of user

521

characteristics,so in order to deeply merge the information of
two vectors we also use a multi-layer perceptron:

hi = gus(h
U
i ⊕ hS

i) (9)

So hi is the final user latent vector which deeply integrates
the information from user-item implicit preference graph and
social network graph.

2) Item Latent Vector: In this part, we introduce the gen-
eration of item latent vector hj from the user-item interaction
graph. For each item vj , we aggregate the characteristics of
users who have interated with this item. So this process is very
similar to the generation of user embedding vector hU

i and due
to the limit length of this article, we only list the important
formulas below:

αij =
exp(gv(Wvvj ⊕Wvui))∑

t∈Bj
exp(gv(Wvvj ⊕Wvut))

(10)

hj =
K

‖
k=1

σ(
∑
i∈Bj

αk
ijW

k
vui) (11)

Through the above statement, we finally get the user latent
vector hi and item latent vector hj .

C. Neural Collaborative Filtering Decoder

For reconstructing the user-item relations in the preference
graph, we proposes a neural collaborative filtering decoder
inspired by NeuMF framework [14]. The neural collaborative
filtering decoder part is shown in Fig.1, which consists of
collaboration layer and neural collaborative filtering layers.

The collaboration layer combines user latent vector hi, item
latent vector hj and the element-wise product hi � hj :

Pij = [hi ⊕ hj ⊕ (hi � hj)] (12)

hi,hj is the results from the graph attention encoder part. But
in our framework we also introduce the element-wise product
of these two vectors hi�hj , which depicts the shallow linear
user–item interaction. Next, we take Pij as the input for the
neural collaborative filtering layers to get the deep and intrinsic
interaction of user-item pairs.

We now define the neural collaborative filtering layers as a
multi-layer neural network formulated as:

r̂ij = Lout(LX(. . .L2(L1(Pij)) . . .)) (13)

r̂ij is the reconstructed value of user i with item j and
the Lout is the Logistic function for the output predicted
value. L1,L2, . . . ,LX are the mapping function and in our
experiment, we all use the standard multi-layer perceptron
(MLP) to implement the function.

D. Model Learning

When we talk about the model learning process, we first
need to generate the negative instances. The set O represents
the user-item pairs (ui, vj , rij = 1) with observed interactions
and the set Õ denotes the other user-item pairs (ui, vj , rij =
0). In general, the size of Õ is much larger than the size
of O, so we can’t just take the set Õ as negative instances.

To balance the positive and negative instances, we randomly
sample set Õ and get a new set O−, which size matches the
size of set O.

Then we will introduce the model learning process. For
recommendation system based on explicit feedback, the loss
function is mainly a regression with squared loss. But for
the implicit feedback data used in our paper, the square loss
function doesn’t perform very well because the target value
rij is a binarized 1 or 0, which refers to whether there is any
interaction between user i and item j. So in order to learn the
parameters of the model better, we constrain the output value
r̂ij in the range of [0, 1] with the Logistic function in the
output layer. Just like the NCF model [14] described by He et
al, we define the finall objective function as follows:

L = −
∑

(i,j)∈(O∪O−)

rij log r̂ij + (1− rij) log(1− r̂ij) (14)

This function is the classical binary cross-entropy loss and we
use the stochastic gradient descent algorithm to optimize the
model.

IV. EXPERIMENT

A. Experimental Settings

1) Datasets: In our experiments, we choose two real-
world public datasets: Ciao1 and Epinions2. These datasets are
crawled from two famous commerce website, Ciao.com and
Epinions.com, which contain user-item interaction information
and social relationships. The ratings in Ciao and Epinions are
integers from 1 to 5: {1, 2, 3, 4, 5} and the statistics of datasets
are illustrated in TABLE I.

To generate the implicit feedback data for our model, we
take records greater than or equal to 4 as observed preference
interactions and other records as the unobserved preference.
Then we iteratively drop users and items with less than 5
interactions. This data processing method is widely used in the
previous works [7], [8]. For negative sampling, we randomly
sample the unobserved set Õ to get the negative instances set
O−. In our experiment, the sampling strategy is that for each
user the number of negative instances is 5 times the number
of observed instances of this user.

TABLE I
GENERAL STATISTICS OF THE CIAO AND EPINIONS

statistics Ciao Epinions
Users 7,375 40,163
Items 106,797 139,738

Ratings 284,086 664,824
Density(Ratings) 0.036% 0.051%
Social Relations 111,781 487,183

Density(Social Relations) 0.205% 0.029%

1https://www.cse.msu.edu/ tangjili/datasetcode/ciao.zip
2www.trustlet.org/downloaded epinions.html

522

2) Evaluation Metrics: We use two classical metrics to
evaluate the performance of our top-k recommendation sys-
tem: NDCG@K and MAP@K.

DCG@K is computed by:

DCG@K =
K∑
i=1

2reli − 1

log2(i+ 1)
(15)

and then NDCG@K is the normalized DCG@K over the ideal
iDCG@K.

AP@K is computed by:

AP@K =

∑K
m=1 P@m× relm
min{K, |Yi|}

(16)

P@m represents the precision with m recommended items and
by calculating the average of AP@K from all the users we can
get the MAP@K.

3) Baselines: We choose the following baselines compared
with our model:

– BPR [4]. BPR is a typical pairwise ranking method for
item recommendation and it achieved competitive results
in many datasets.

– SBPR [3]. This model extends the BPR algorithm by
adding the social network information. SBPR is based
on the same idea that a user’s behavior can be influenced
by the users associated with him on social networks.

– NCF [14]. NCF is a neural network based method which
learn the internal interactions between users and items
through the multi-layer perceptrons.

– CDAE [7]. CDAE formulates the top-N recommenda-
tion problem using the Denoising Auto-Encoder frame-
work and learns distributed representations of the users
and items from the implicit feedback data.

– TDAE [8]. TDAE extends the CDAE model and learns
compact and effective representations from both rating
and trust data for top-N recommendation.

– GraphRec [13]. GraphRec provides a state-of-the-art
model for the social recommender system, which cap-
tures interactions in the user-item graph and social
graph.

– CDGAAEden. It is a variant of CDGAAE, which uses
the uncorrupted input for the whole model.

4) Parameter Settings: We implement our model CDGAAE
with the famous framework Pytorch and in view of the
effectiveness and efficiency we set the final parameters of our
model with the following values: For each user, we select 80%
of the data as train set to learn the model parameters, 10% for
validation and 10% for test. Moreover, we set the batch size
and embedding size to 128 and 64, and also the learning rate
is 0.001. Through multiple experiments, we set the number of
attention heads to 4. Then we use the Gaussian distribution
to randomly initialize the model parameters and the activation
function is ReLU. For all the baseline algorithms, we read
the articles and implement methods carefully to get the best
performance.

B. Performance

Table. II shows the perfomance comparison of our model
and baseline methods. ∗ represents the best performace except
for our method and the boldface represents the best result
among all the algorithms. By careful comparison, we can find
the following conclusions:
• Deep neural networks have better performance than the

shallow models. In the absence of social network infor-
mation, the results of NCF and CDAE are better than
that of BPR, and if we add the social network data, the
models TDAE and CDGAAE perform better than SBPR.

• The social network can improve the performace of the
recommendation system. SBPR add social information to
BPR and in the table we can find that SBPR performs
better than BPR. The same conclusion can be drawn from
the comparison of CDAE and TDAE.

• GraphRec shows best experimental results apart from
CDGAAEden and CDGAAE. This model uses graph
neural networks to generate more accurate embedding
for users and items. At the same time, GraphRec uses
attention mechanism for user-item graph and social graph.

• CDGAAEden uses the uncorrupted input for the model,
so it’s less robust than CDGAAE. From the results, we
can clearly find that the performance of CDGAAEden is
worse than that of CDGAAE, and even worse than that
of GraphRec method under certain metrics.

• It is clear from the table II that our method CDGAAE per-
forms best among all the algorithms. We deeply fuse the
graph neural networks with the Denoising Auto-Encoder,
and we also adopt multi-head attention mechanism for
message passing.

C. Model Analysis

We now study the performance of our approach under
different parameter settings. We mainly analyze the multi-head
attention and the embedding size of the latent vector.

1) The impact of multi-head attention: In our graph atten-
tion encoder part, user aggregation, item aggregation in user-
item interaction graph and social aggregation in social graph
all use multi-head attention mechanism. In this method, the
number of attention heads is an important parameter, which
has a crucial impact on the performance of the model. So we
will compare the effects of different quantities of heads on the
results. In the parameter analysis setting, we set the number
of heads k=1, 2, 4, 8, 16 and the experimental performance is
shown in Fig. 2.

From the figure, we can clearly see that experimental
performance of multi-head attetion is better than single-head
attention. In our experimental environment, when the number
of heads is 4, the performance is best for the two datasets.
however, when k=16, the results are worse than the baseline
GraphRec bacause the dimension of single attention layer is
small, which is difficult to learn all the useful information in
the two graphs. So for the multi-head attetion mechanism, an
appropriate number of heads is the key to improve perfor-
mance.

523

TABLE II
PERFOMANCE COMPARISON OF OUR MODEL AND BASELINE METHODS

Datasets Metrics
Algorithms

BPR SBPR NCF CDAE TDAE GraphRec CDGAAEden CDGAAE Improve

Ciao
NDCG@10 0.0369 0.0421 0.0437 0.0461 0.0496 0.0503 0.0506∗ 0.0532 4.89%
MAP@10 0.0210 0.0237 0.0241 0.0261 0.0299 0.0307∗ 0.0305 0.0315 2.61%

Epinions
NDCG@10 0.0153 0.0188 0.0191 0.0218 0.0244 0.0240 0.0248∗ 0.0258 4.03%
MAP@10 0.0080 0.0105 0.0107 0.0104 0.0127 0.0132∗ 0.0120 0.0135 2.27%

0.0515

0.052

0.0525

0.053

0.0535

1 2 4 8 16

Ciao - NDCG@10

0.03

0.0302
0.0304

0.0306

0.0308

0.031

0.0312

0.0314

0.0316

1 2 4 8 16

Ciao - MAP@10

0.023

0.0235

0.024

0.0245

0.025

0.0255

0.026

0.0265

1 2 4 8 16

Epinions-NDCG@10

0.0115

0.012

0.0125

0.013

0.0135

0.014

1 2 4 8 16

Epinions-MAP@10

Fig. 2. Experimental results under different number of attention heads on
two datasets.

0.0508

0.0513

0.0518

0.0523

0.0528

0.0533

8 16 32 64 128 256

Ciao - NDCG@10

0.0298

0.0303

0.0308

0.0313

0.0318

8 16 32 64 128 256

Ciao-MAP@10

0.023

0.0235

0.024

0.0245

0.025

0.0255

0.026

8 16 32 64 128 256

Epinions-NDCG@10

0.0118

0.0123

0.0128

0.0133

8 16 32 64 128 256

Epinions-MAP@10

Fig. 3. Experimental results under different embedding size d on two datasets.

2) The impact of the embedding size: In this part, we
will discuss the effect of embedding size on model perfor-
mance. We adopt six different embedding sizes 8, 16, 32,
64, 126, 256 for parameter analysis on the two datasets
and the experimental performance comparison is shown in
Fig.3. In general, with the embedding size increases, the
recommendation performance of our model first increases and
then decreases. The embedding size of less than 8 and greater
then 128 significantly degrades the model performance. This
phenomenon demonstrates that if embedding size is small, the
model can not fully and accurately represent user and item
characteristics, but if the size is large, the complexity of the
model is high, leading to performance degradation. So we need
to find a suitable embedding size to balance the representation
performance and complexity of the model.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel model: Collaborative
Denoising Graph Attention Autoencoders for Social Recom-
mendation (CDGAAE). CDGAAE uses a corrupted version
of the original data as input, making the representation of the
model more robust. At the same time, this autoencoder frame-
work consists of graph attention encoder and collaborative
neural decoder, which is used to deeply merge the user-item
preference information and social network information. The
final experiments are conducted on two real-world datasets,
and the results show the superiority of our proposed model.

In the future, in order to improve the accuracy of the
recommendation list, we can use the side information of users
and items, which is a significant supplement to depict the
rich characteristics of users and items. Moreover, in addition
to denoising autoencoders, variational autoencoders are also
widely used in recommendation systems. Therefore, we will
integrate the idea of variational autoencoders into the social
recommendation systems in the future, expecting to get better
performance.

REFERENCES

[1] Jamali M, Ester M. A matrix factorization technique with trust prop-
agation for recommendation in social networks[C]//Proceedings of the
fourth ACM conference on Recommender systems. ACM, 2010: 135-
142.

[2] Guo G, Zhang J, Yorke-Smith N. TrustSVD: collaborative filtering
with both the explicit and implicit influence of user trust and of item
ratings[C]//Twenty-Ninth AAAI Conference on Artificial Intelligence.
2015.

[3] Zhao T, McAuley J, King I. Leveraging social connections to improve
personalized ranking for collaborative filtering[C]//Proceedings of the
23rd ACM international conference on conference on information and
knowledge management. ACM, 2014: 261-270.

[4] Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian personal-
ized ranking from implicit feedback[C]//Proceedings of the twenty-fifth
conference on uncertainty in artificial intelligence. AUAI Press, 2009:
452-461.

[5] Chaney A J B, Blei D M, Eliassi-Rad T. A probabilistic model for using
social networks in personalized item recommendation[C]//Proceedings
of the 9th ACM Conference on Recommender Systems. ACM, 2015:
43-50.

[6] Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing
robust features with denoising autoencoders[C]//Proceedings of the 25th
international conference on Machine learning. ACM, 2008: 1096-1103.

[7] Wu Y, DuBois C, Zheng A X, et al. Collaborative denoising auto-
encoders for top-n recommender systems[C]//Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining. ACM,
2016: 153-162.

[8] Pan Y, He F, Yu H. Trust-aware collaborative denoising auto-encoder
for top-n recommendation[J]. arXiv preprint arXiv:1703.01760, 2017.

[9] Zhou J, Cui G, Zhang Z, et al. Graph neural networks: A review of
methods and applications[J]. arXiv preprint arXiv:1812.08434, 2018.

[10] Tang J, Qu M, Wang M, et al. Line: Large-scale information network
embedding[C]//Proceedings of the 24th international conference on
world wide web. International World Wide Web Conferences Steering
Committee, 2015: 1067-1077.

[11] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J].
arXiv preprint arXiv:1710.10903, 2017.

[12] Berg R, Kipf T N, Welling M. Graph convolutional matrix completion[J].
arXiv preprint arXiv:1706.02263, 2017.

[13] Fan W, Ma Y, Li Q, et al. Graph Neural Networks for Social Recom-
mendation[C]//The World Wide Web Conference. ACM, 2019: 417-426.

[14] He X, Liao L, Zhang H, et al. Neural collaborative filter-
ing[C]//Proceedings of the 26th International Conference on World Wide
Web. International World Wide Web Conferences Steering Committee,
2017: 173-182.

524

Identifying Similar Users Based on Metagraph of

Check-in Trajectory Data

Rui Song, Tong Li, Xin Dong, Zhiming Ding

Faculty of Information Technology

Beijing University of Technology

songrui@emails.bjut.edu.cn, litong@bjut.edu.cn, dongxin19@foxmail.com, zmding@bjut.edu.cn

Abstract— Identifying similar users lay the foundation in many

fields, such as friend recommendation, user-based collaborative

filtering, and community discovery. It is useful to analyze users’

similarity based on check-in data, especially the analysis of

spatiotemporal and semantic information. The existing works

pursue semantic similarity of user trajectories and cannot

distinguish the effects of geographical factors in a fine-grained way.

This paper proposes a graph embedding approach to identify

similar users based on their check-in data. We firstly identify

meaningful concepts of user check-in data, based on which we

design a metagraph for representing features of similar user

behaviors. Then we characterize each user with a sequence of

nodes that are derived through a metagraph-guided random walk

strategy. Finally, the sequences are embedded to generate

meaningful user vectors that are used to the similarity among users

and thus identify similar users. We evaluate our proposal on two

datasets, the results of which show that our proposal can

outperform the baselines.

Keywords-user similarity; metagraph; random walk; embedding;

check-in data

I. INTRODUCTION

With the fast development of Location-Based Social
Network (LBSN) platforms, an increasing number of users can
check-in at various Point of Interests (POIs) conveniently and
share their experiences, resulting in massive user check-in
trajectory data. Such check-in trajectory data contains
information about when and where a user visited a POI, which
indicates users’ behaviors and preferences. Analyzing check-in
data has contributed to identifying similar users, laying the
foundation in many fields, such as location prediction [1],
community discovery [3], user-based collaborative filtering and
location recommendation [2].

Some early user similarity studies focus only on the
geographic features of the trajectory [4][5][6], which is limited
by the geographic distance and ignores the semantics [7]. Recent
works have measured the similarity of users by mining the
semantics of GPS trajectories [7][8][9], but the geographical
impacts are not considered deeply enough. For example, in Fig.1,
the three different user trajectories are typical to be treated as the
same, and not further distinguished in terms of their detailed
geographical information [7][8][9]. However, users who live
closer to each other are supposed to be more similar than others.
As shown Fig.1, affected by geographical location, trajectory1
is more similar to trajectory2 than trajectory3. As such, we

argue that the semantic and geographic features should all be
considered when calculating user similarity.

Figure 1. Examples of three users’ semantic trajectories

To consider both semantic and geographic features, we
leverage the graph embedding technique to measure user
similarity. Graph embedding techniques have been proven as a
practical approach for representing profound meanings of
entities and relations. Specifically, the trajectory check-in data
contains different types of nodes (user, time, POI, etc.), which
establishes a graph with heterogeneous nodes. The detailed
semantics of check-in data can be obtained by embedding such
a graph based on metagraph, which contributes to calculating the
similarity among user trajectories. Some pioneer studies have
been done regarding this topic. Dong et al. [14] and Zhang et al.
[15] transformed the structure into the input of the embedded
model by recording the node sequences of the random walk in
the graph. They use metagraph-guided random walk sequences
to capture semantic information between different types of
nodes and thus to improve the quality of transformation.
However, they do not consider spatiotemporal features.

In this paper, we propose a metagraph embedding based
approach to identify similar users using their check-in trajectory.
The main contributions of this paper are summarized as follows:

1) We identify meaningful concepts of user check-in data,
based on which we design a metagraph for representing
features of similar user behaviors.

2) We propose an improved metagraph-guided random
walk algorithm to adapt to time and location similarity,
which is used to characterize each user with a sequence

DOI reference number: 10.18293/SEKE2020-118

525

of nodes. The sequences are embedded to generate
meaningful user vectors that can be used to effectively
calculate user similarity.

3) We compare our approach with the state-of-the-arts
based on two datasets, the result of which show that our
approach can outperform others.

The rest of this paper is organized as follows: Section II
describes some related works. Section III describes the details of
our method, including metagraph of check-in data, the improved
metagraph-guided random walk, embedding and user similarity
calculation. Section IV evaluates our approach. Section V
summarizes the paper.

II. RELATED WORK

This paper identifies similar users by combining the
semantic and spatio-temporal features of check-in trajectories.
We leverage the metagraph-guided heterogeneous graph
embedding to calculate the user’s representation and then
calculate the similarity. This section will introduce related works
of calculating similarity based on semantic trajectory and graph
embedding algorithms.

A. User Similarity Based on Semantic Trajectory

Horozov et al. [10] first construct the user activity’s vectors
by using the user’s votes on POIs, and then calculate the Pearson
similarity to represent the user similarity. Mazumdar et al. [11]
compare user similarity by combining the length, support and
check-in distribution of common location sequences using GPS
data. However, these methods can’t measure users who have
similar preferences but live far away. To solve this problem,
Ying et al. [7] propose a method to measure the user semantic
similarity by Maximal Semantic Trajectory Pattern (MSTP).
They first identify the stopping point from the GPS trajectory
data, and use the landmarks collected from Google Map to form
the semantic trajectory. Then the user similarity is calculated by
the weighted average of the maximum semantic trajectories.
Chen et al. [8] found that the similarity between two identical
users is not equal to 1 in [7]’s work. To this end, Chen et al.
propose a method called Maximal Trajectory Pattern (MTP) to
fix the shortcomings in [7] by using the longest common
semantic patterns. Later, Chen et al. [9] propose a method to
calculate the user similarity according to the Common Pattern
Set (CPS), they introduce the support value distribution of
common patterns to solve the problem of indistinguishable
pattern frequencies in literature [8]. However, these methods
ignore the influence of geographical factor while studying
semantics. We argue that semantic and geographic features
should be considered when calculating user similarity.

B. Embedding Learning

Embedding is a way to transform discrete variables into
continuous vector representations [23]. In neural networks or
graphs, embedding can not only reduce the spatial dimension of
nodes, but also represent the nodes in a meaningful way.
Embedding learning is to learn the vector representation of
nodes in the metric space through specific methods, such as
LINE [12], DeepWalk [13], etc.. Deepwalk uses a neural
language model (skip-gram) to embed graph. The authors first

use random walks to uniformly sample the neighbors of the
nodes from the graph as a path. The paths are treated as sentences,
and nodes are treated as words. Then the skip-gram model is
used to train the representation of the nodes. To better preserve
the relationship between nodes during the embedding process,
LINE proposes the concepts of the first-order similarity and
second-order similarity. However, these works focus on
homogeneous networks which have a single type of node or
relationship. Some pioneer studies have been done regarding this
topic. Dong et al. [14] propose a method (named as
Metapath2vec) for embedding in heterogeneous networks. They
use a random walk based on metapath to get the sequence of
nodes, and then improved the skip-gram model to learn the
embeddings. Zhang et al. [15] argue that metagraph has richer
semantics than meta-path. They use metagraph to analyze the
behaviors of authors’ published papers and classify similar
authors. However, there is no time and location limit for the
author to publish papers, thus their work can not apply to check-
in data. Based on these works, this paper leverages the
metagraph to study the behavior of users visiting POIs,
introduces time and location constraints in random walk
algorithms, and learns user’s embedded representation.

III. METHODOLOGY

The framework of our method, as shown in Fig.2, named as
Metagraph-Guided Embedding (MGE). We first design the
metagraph of check-in trajectory data to represent similar user
behaviors. Then we characterize each user with a sequence of
nodes that are derived through a metagraph-guided random walk
strategy. Finally, the sequences are embedded to generate
meaningful vectors that are used to calculate user similarity.
Here are the basics concepts in this paper, and the details of our
framework.

Figure 2. The framework of our method (MGE).

A. Concepts

We briefly introduce the basic concepts of check-in data and
metagraph.

POI: A POI is defined as a place that has a special function
or meaning to users (e.g., a school or a bank). In our method, a
POI has four attributes: identifier, name, geographical location,
and category.

526

Trajectory: A trajectory is a path that a user takes in space
over a period of time. It can be regarded as a spatial point with
chronological order, which records the user’s geographical
locations at different times. The check-in data studied in this
paper has POI profiles, which is a trajectory data with location
semantic.

Check-in: A check-in is a quadruple (u, t, g, p), where u is a
user, t is a time slot, g is a geographical location coordinate
(including latitude and longitude), and p is a POI. A check-in
means a user u visiting a POI p at a time slot t and a geographical
location g. It is worth noting that we discretize timestamps
associated with check-in records into 24-time slots based on
hours, as other works have done [16].

Metagraph: A metagraph is a relational hypergraph
representing multi-relational and multi-dimensional data [17]. It
is a graph with its nodes denoting the entities and its edges
representing the interaction between nodes. Different from the
traditional graph concepts, each node in metagraph represent a
set of an entity. For example, the user, POI, time slot, and
geographical location can be regarded as entities. Fig.3 shows
the metagraph of our paper.

B. Designing Metagraph

Mining check-in trajectory data can discover user behavior
features. We argue that users with similar behaviors have similar
check-in characteristics. For instance, users will check-in at
similar time slots, geographical locations, or POIs. In order to
measure the similarity of user behaviors, we design a metagraph
of check-in, which can reflect the meanings that two users visit
the same POI when they are at similar time slots and
geographical locations. We use U, T, G, P to represent the set of
users, time slots, geographical locations and POIs, respectively.
In particular, user, time slot, geographical location, and POI are
defined as entities, and serve as different types of nodes in the
metagraph.

Figure 3. Metagraph of check-in data

Fig.3 shows the metagraph of check-in data, which describes
that two users are relevant in check-in activity if they have
similar time slots and geographical locations in the same POI.
At this point, the readers only need to understand the meaning of
the metagraph. The method of defining the similar time slots and
similar locations will be described in detail in the next subsection.

C. Metagraph Guided Random Walk

Using a random walk based on metagraph, we can capture
meaningful semantics from the data, which find similar user
behaviors. Our metagraph of check-in data has the constraints of
similar time slots and similar locations. Therefore, we improved

the random walk strategy, defining similar time slots and similar
locations to limit the random walk process. Here we show the
definition.

Similar time slots. Given two time slots t1 and t2 , a time
threshold τ, if |t1-t2|≤τ, then t1 and t2 are similar time slots.

Similarity locations. Given two geographical coordinates g1 and
g2, a distance threshold δ, the function distance(a, b) represents
the geographic distance between the location a and b, if
distance(g1, g2) ≤ δ, then g1 and g2 are similar locations.

To meet the constraints of time and location, we propose an
improved random walk strategy and list the following four
principles.

1) Every node that random walks exists in the instantiated
graph network. Otherwise, it is meaningless.

2) Random walk starts with user type nodes. Because this
paper studies the similarity of users, we focus on user-
type nodes.

3) Random walks are limited by the structure of the
metagraph. The metagraph is used to describe similar
user behaviors. Walking in the structure of metagraph
can capture the semantics of metagraph.

4) Random walks are constrained by time and location
nodes. To ensure similar time slots, the time threshold
must be met when randomly walking time-type nodes.
In the same way, the distance threshold is met when
randomly walking the location nodes to ensure similar
locations.

To help understand the above principles, given a graph
network of check-in data in Fig.4, Table Ⅰ shows the correct and
incorrect walking sequences, we assume the time threshold is 3
(hours), and locations are similar between nodes. For ease of
observation, the example sequences omit the time and location
nodes, only leaving the user and POI nodes.

Figure 4. Example of a graph network.

TABLE I. EXAMPLES OF RANDOM WALK SEQUENCES

Example Remark

u1, p1, u2 Correct

u1, p3, u2 Incorrect. Violate the principle 1: p3 is not in graph

p1, u2, p2 Incorrect. Violate the principle 2: the start node is not a user

u3, u2, p2
Incorrect. Violate the principle 3: does not satisfy the

metagraph structure

u1, p1, u2,

p2

Incorrect. Violate the principle 4: the time difference does

not meet the threshold

527

Next, we formally describe the node transition probability of
random walks. Different types of nodes (i.e. user, time, location,
POI) constitute a heterogeneous information network (HIN) [18].
Given a HIN H = (V, E) and the metagraph m, where V is a vertex
set, E is an edge set. Equation (1) defines the node transition
probability.

 P(vi |vi-1; m, H)=
1

N
φvi-1

(vi)
 ()

Where φ(∙) is a function of the node type, φ
vi-1

(vi) represents

the type of vi and the previous node is vi-1, N
φvi-1

(vi) represents

the number of nodes which of type φ
vi-1

(vi) . If vi∉ V , the

probability is 0. It is worth noting that the higher frequency of a
user visiting a POI or visiting at a time slot, the higher the
probability of such a time slot or POI node being selected. A
walk will follow the structure of the metagraph repetitively until
it reaches the pre-defined length.

The pseudocode of random walk with time and location
constraints algorithm is shown in Algorithm 1. In particular,
given a graph network, the random walk starts at the user-type
node, walk randomly according to the node transition probability
and ends at a given length. Each starting node generates a given
number of paths. The output is a file containing meaningful
sequences of nodes.

Algorithm 1 Random Walk with Time and Location Constraints

Input
The HIN H = (V, E); the metagraph m; the walk length wl; the
number of walks per node n.

Output A path.txt that records sequences of random walks

1. For each u in U do

2. random walk to time node t0, and location node g0

3. For i ← 1 to n do

4. path = [u]

5. For j ← 1 to wl do

6. While (1) do

7. walk to the node according (1)

8. If time or location similarity are satisfied

9. append the node into path; break

10. End while

11. write path into path.txt

12. End for

13. End for

14. End for

D. Embedded Learning

Through random walks under time and location constraints,
we obtain sequences of each node. We aim to convert the
sequences into vectors to calculate similarity. With embedded
models, given a HIN H = (V, E), the task is to calculate latent

representations in d- dimension X∈R
|V|*d (a.k.a. embeddings),

d ≪ |V|. Then, we choose the skip-gram model to learn the latent
embeddings of nodes. This model has been validated in [14][15].
Specifically, the skip-gram learn node representation by
maximizing the probability of the occurrence node v’s context
nodes Context(v) within w window size, as shown in (2).

 min ∑ ∑ -logP(v'|v;θ)v'∈Context(v)v∈V ()

Where Context(v) denotes v’s neighborhood based on the
random walks guided by metagraph, P(v'|v;θ) is modeled via
softmax. To speed up training, like other works [19], negative
sampling is used to approximate the objective function (3):

 logσ(Xv'∙Xv)+ ∑ logσ(-Xv'k
∙Xv)K

k=1 ()

Where Xv is the vth row of X, representing the embedding
vector of node v. σ(∙) is the sigmoid function, v'k is the kth
negative node sampled for node v' , and K is the number of
negative samples.

E. Calculating User Similarity

The higher the frequency with which two users visit the same
POI at similar times and locations, the higher the behavior
similarity. Based on this meaning, we get the embedded
representation of user nodes. In particular, the closer the user
embeddings are in the vector space, the more similar the users
are. In vector space, the cosine distance pays more attention to
the difference from the vector direction, which helps to
distinguish and measure the similarity of users. Therefore,
equation (4) use the cosine distance to calculate the user’s
similarity and normalization to make the result in the range [0,1].

 sim(ua,ub)=0.5+0.5
ua∙ub

|ua||ub|
 ()

Where ua,ub∈X, sim is the user similarity.

IV. EVALUATION

In this section, we evaluate our method (MGE) on two
datasets. Specifically, we focus on two research questions (RQ)
and designed experiments for each one.

• RQ1. Can our method (MGE) calculate user similarity
effectively?

To answer this question, we compare our method with
the MTP [8] and CPS [9] that focus on the semantic
trajectory similarity calculation.

• RQ2. Can our method (MGE) identify similar users
effectively?

To answer this question, we compared MGE with
popular network representation learning methods LINE [12]
and Deepwalk [13].

A. Experiment 1

1) Dataset: to observe the results of pairwise user similarity

more specifically, and to accurately compare with other

literature which using the same dataset, we use the synthetic

dataset, which is derived from [9]. The dataset is constructed

based on six users’ behaviors that first five being from the

literature [9], we constructed the same behavior of u6 as u3, but

they live far away. The dataset consists of 76 check-ins and 4

528

POIs from 6 users. Fig.5 shows the six users’ behaviors. We use

circles to indicate POIs and arrows between POIs to represent

the trajectory transition direction, and thicker arrows indicate

higher transition frequencies.

Figure 5. The six users’ behaviors (The u6 living far from others).

2) Similarity metrics. the effective similarity calculation

should meet the following principles, with the first four being

from [9]. The last is used to verify the geographical impact.

a) sim(u, u’) is in range [0,1]

b) sim(u, u’) = sim(u’, u)

c) sim(u, u) = 1

d) The frequency of visiting the same place affects the

similarity of user behavior, i.e. sim(u2, u3) > sim(u1, u3).

e) According to the common sense, the user’s geographic

location should have an impact on similarity. The similarity

between geographic and semantic combination should be

higher than considering only semantic similarity, i.e. sim(u3, u6)

≠1.

3) Comparison with Baselines: in terms of calculating user

similarity, we choose MTP [8] and CPS [9] as the baselines for

comparison. The reason is that after our research, most of the

papers that identify similar users are based on GPS data

[20][21], and the algorithms of literature [22] based on check-

in data are unknown or incomplete, making it difficult to

reproduce. Although [8][9] use GPS trajectory data, and their

later works are to calculate user similarity by mining trajectory

semantics. Since neither of them disclosed semantic trajectory

datasets and codes, in order to avoid the negative impact of

different datasets’ types and the reproduction process on the

results, we use the data from [9] and prove their weaknesses and

illustrate the rationality of our method. The results of the

different methods are given below.

TABLE II. PAIRWISE USER SIMILARITY

 u1 u2 u3 u4 u5 u6

 MTP CPS MGE MTP CPS MGE MTP CPS MGE MTP CPS MGE MTP CPS MGE MTP CPS MGE

u1 1.0 1.0 1.0 1.0 0.96 0.88 1.0 0.93 0.83 0.83 0.76 0.81 0.83 0.50 0.62 1.0 0.93 0.66

u2 1.0 0.96 0.88 1.0 1.0 1.0 1.0 0.97 0.89 0.58 0.71 0.80 0.58 0.47 0.63 1.0 0.97 0.67

u3 1.0 0.93 0.83 1.0 0.97 0.89 1.0 1.0 1.0 0.79 0.67 0.77 0.79 0.44 0.57 1.0 1.0 0.79

u4 0.83 0.76 0.81 0.58 0.71 0.80 0.79 0.67 0.77 1.0 1.0 1.0 0.79 0.44 0.58 0.79 0.67 0.59

u5 0.83 0.50 0.62 0.58 0.47 0.63 0.79 0.44 0.57 0.79 0.44 0.58 1.0 1.0 1.0 0.79 0.44 0.57

u6 1.0 0.93 0.66 1.0 0.97 0.67 1.0 1.0 0.79 0.79 0.67 0.59 0.79 0.44 0.57 1.0 1.0 1.0

TABLE III. COMPARING THE METRICS OF METHODS ACCORDING TO THE VALUES IN TABLE Ⅱ

 Similarity metrics Result

Methods a) b) c) d) e) Description User behavior examples Example values in Table Ⅱ

MTP √ √ √ × ×

Violate d): The similarity of u1, u2

and u3 should not be the same.

sim(u1,u2) = sim(u1,u3) =

sim(u2,u3)

Violate e): The similarity of u3 and

u6 should not be the same.

sim(u3,u6) = 1

CPS √ √ √ √ ×
Violate e): The similarity of u3 and

u6 should not be the same.

sim(u3,u6) = 1

MGE √ √ √ √ √ Meet all metrics

529

Results and analysis. In Table Ⅱ, and we describe the results
of different methods separately. For the sake of observation, we
list the measurement results of each method in Table Ⅲ, which

satisfy with “√” and do not satisfy with “×”, and give detail

description and examples.

For MTP, the first three users u1, u2 and u3, are not
distinguished, which violates the metric d). MTP’s weakness has
been proven in [9]. For CPS, the similarity between u3 and u6 is
1, which violates metric e) and cannot find the difference in
geographical location.

MGE can distinguish u3 and u6 and satisfy all metrics. The
reason is that we randomly walked nodes with similar
geographical locations while considering semantics.
Randomness can reduce but not eliminate the similarities of
faraway users.

B. Experiment 2

1) Dataset: we use the Foursquare datasets that is one of the

most popular online location-based social networks. This

dataset consists of 372,387 check-ins and 90,089 POIs from

4,144 users over four years (December 2009 to July 2013). We

construct the graph with users, check-in time and location, and

POI as different types of nodes. We use 80% data as the training

dataset and the rest as the test dataset.

2) The experiment design: the node classification is used to

evaluate MGE. We leverage third-party labels to determine the

class of each node. Foursquare offers ten categories of POI

(including Arts & Entertainment, College & University, Event,

Food, Nightlife Spot, Outdoors & Recreation, Professional &

Other Places, Residence, Shop & Service and Travel &

Transport), which can be used as labels for POI node. Like

literature [15], the user’s label is assigned to the category of the

user’s most visited POIs. In this paper, the node embeddings are

as the input to the logistic regression classifier. F1-measure,

Precision and Recall are applied to evaluate the performance

[24].

3) Parameter selection: in random walks and embeddings,

there are several parameters, such as the number of walks per

node, walk length, the vector dimension and location threshold

δ. We perform an analysis of these parameters in MGE and

select appropriate parameters by observing the F1-measure. Fig.

6 shows the results using the control variable method. It can be

seen from Fig. 6(a) and Fig. 6(b) that a larger value of walk

length and numbers does not mean that the effect is better. F1

peaks at 20 and 50 respectively, but overall the parameters have

little effect on the result, and the extreme value of the result is

around 0.03. For the location threshold in Fig. 6(c), 10km works

best. This shows that users within 10km of their current location

are more likely to visit the same place, so their similarity is high.

In Fig. 6(d), the dimension of the vector peaked at 96. As the

dimension increased, the result did not change much.

4) Comparison with Baselines: in terms of embedding, we

compare two popular network representation learning methods,

LINE [12], DeepWalk [13]. After parameter selection, we use

the same parameters in Table Ⅳ for all embedding methods.

Results and analysis. From Fig. 7, the results of LINE and
DeepWalk are similar, with the F1-measure of about 0.54. MGE
is higher than the baselines, with the F1-measure of about 0.63,
indicating that considering similar time slots and similar
locations can identify users in the same category better. Overall,
our method has better performance than all baselines in F1-
measure, Precision and Recall.

Figure 6. Comparison of different parameters

TABLE IV. PARAMETER SETTINGS

Parameter
Number of

walks per node

Walk

length

Vector

dimension
τ δ

value 50 20 96 3h 10km

(a)

(b)

(c)

(d)

530

Figure 7. Comparison of different methods.

V. CONCLUSION

This paper proposes a systematic method for identifying
similar users based on user check-in trajectory data. In particular,
we base our approach on metagraph embeddings, in which we
first designed a metagraph to represent the check-in behavior of
similar users. Then, we apply a customized metagraph-guided
random walk algorithm to integrate semantic and geographic
similarity into our analysis. Finally, the heterogeneous skip-
gram model is used to graph embedding so that we can calculate
representation vectors of users, and calculate user similarity. We
have designed and conducted a series of experiments which have
shown the effectiveness of our methods over existing
approaches.

ACKNOWLEDGMENT

This work is supported by National Key R&D Program of
China (No. 2017YFC0803300, 2017YFC0803307) and the
National Natural Science of Foundation of China (No. 61902010,
91546111, 91646201).

REFERENCES

[1] R. Wu, G. Luo, Q. Yang, and J. Shao, “Learning individual moving
preference and social interaction for location prediction,” IEEE Access,
vol. 6, pp. 10675-10687, 2018.

[2] J. Zhang and C. Chow, “TICRec: a probabilistic framework to utilize
temporal influence correlations for time-aware location
recommendations,” IEEE Transactions on Services Computing, vol. 9, no.
4, pp. 633-646, 2016.

[3] C. Xu, L. Zhu, Y. Liu, J. Guan and S. Yu, “Dp-ltod: differential privacy
latent trajectory community discovering services over location-based
social networks,” IEEE Transactions on Services Computing, pp.1-1,
2018.

[4] Y. Zheng, L. Zhang, Z. Ma, X. Xie, and W. Ma, “Recommending friends
and locations based on individual location history,” ACM Transactions on
The Web, vol. 5, no. 1, pp. 109-152, 2011.

[5] E. H. Lu and V. S. Tseng, “Mining cluster-based mobile sequential
patterns in location-based service environments,” Tenth International
Conference on Mobile Data Management: Systems, Services and
Middleware, pp. 273-278, 2009.

[6] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W. Y. Ma, “Mining user
similarity based on location history,” Proceedings of the 16th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 34.1-34.10, 2008.

[7] J. C. Ying, H. C. Lu, W. C. Lee, T. C. Weng, and V. S. Tseng, “Mining
user similarity from semantic trajectories,” Proceedings of the 2nd ACM
SIGSPATIAL International Workshop on Location Based Social
Networks, ACM, pp. 19-26, 2010.

[8] X. Chen, J. Pang, and R. Xue, “Constructing and comparing user mobility
profiles for location-based services,” Proceedings of the 28th Annual
ACM Symposium on Applied Computing, pp. 261-266, 2013.

[9] X. Chen, R. Lu, X. Ma, and J. Pang, “Measuring user similarity with
trajectory patterns: principles and new metrics,” Web Technologies and
Applications, pp. 437-448, 2014.

[10] T. Horozov, N. Narasimhan, and V. Vasudevan, “Using location for
personalized POI recommendations in mobile environments,”
International Symposium on Applications and the Internet (SAINT'06),
pp. 6-129, 2006.

[11] P. Mazumdar, B. K. Patra, R. Lock, and S. B. Korra, “An approach to
compute user similarity for gps applications,” Knowledge-Based Systems,
vol. 113, pp. 125-142, 2016.

[12] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: large-
scale information network embedding,” Proceedings of the 24th
International Conference on World Wide Web, pp. 1067-1077, 2015.

[13] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning of
social representations,” Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp.701-710, 2014.

[14] Y. Dong, N. V. Chawla, and A. Swami, “Metapath2vec: scalable
representation learning for heterogeneous networks,” Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, pp. 135-144, 2017.

[15] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “MetaGraph2Vec: complex
semantic path augmented heterogeneous network embedding,” Advances
in Knowledge Discovery and Data Mining, Springer, Cham, pp.196-208,
2018.

[16] T. Qian, B. Liu, Q. V. H. Nguyen, and H. Yin, “Spatiotemporal
representation learning for translation-based poi recommendation,” ACM
Transactions on Information Systems, vol. 37, no. 2, pp. 18.1-18.24, 2019.

[17] Z. Huang, Y. Zheng, R. Cheng, Y. Sun, N. Mamoulis, and X. Li, “Meta
structure: computing relevance in large heterogeneous information
networks,” Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1595-1604,
2016.

[18] Y. R. Lin, J. Sun, P. Castro, R. B. Konuru, H. Sundaram, and A. Kelliher,
“MetaFac: community discovery via relational hypergraph factorization,”
Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp.527-536, 2009.

[19] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,”
Proceedings of the 26th International Conference on Neural Information
Processing Systems, vol. 26, pp. 3111-3119, 2013.

[20] L. Guo, X. Gao, B. Wu, H. Guo, H. Y. Xu, and Y. Wei, “Discovering
common behavior using staying duration on semantic trajectory,” Journal
of Computer Research and Development, vol. 54, no. 1 pp. 111-122, 2017.

[21] D. Yao, C. Zhang, Z. Zhu, J. Huang, and J. Bi, “Trajectory clustering via
deep representation learning,” 2017 International Joint Conference on
Neural Networks (IJCNN), IEEE, pp. 3880-3887, 2017.

[22] W. You, Z. Chenghu, and P. Tao, “Semantic-geographic trajectory
pattern mining based on a new similarity measurement,” ISPRS
International Journal of Geo-Information, vol. 6, no. 7, pp. 212-, 2017.

[23] H. Y. Cai, V. W. Zheng, and K. C. Chang, “A comprehensive survey of
graph embedding: problems, techniques, and applications,” IEEE
Transactions on Knowledge & Data Engineering, vol. 30, no. 9, pp.1616-
1637, 2018.

[24] X. W. Meng, R. C. Li, Y. J. Zhang, and W. Y. Ji, “Survey on mobile
recommender systems based on user trajectory data,” Journal of Software,
vol. 29, pp. 3111-3133, 2018.

531

Formal Security Analysis for Blockchain-based
Software Architecture

Nacha Chondamrongkul∗, Jing Sun†, Ian Warren‡
Department of Computer Science

The University of Auckland
Auckland, New Zealand

∗ncho604@aucklanduni.ac.nz † jing.sun@auckland.ac.nz ‡ i.warren@auckland.ac.nz

Abstract—During the design phase, security as a non-
functional requirement needs to be analysed to address vul-
nerabilities in the architecture design. Without such analysis,
security vulnerabilities can be propagated to the implementation.
However, security analysis is an error-prone task, especially
in complex systems that apply blockchain technology. Without
proper security controls applied, the interaction among software
components and the blockchain may pose security risks. This
paper presents a security analysis approach based on a formal
model of blockchain-based architecture design. Our approach
can automatically identify specific security vulnerabilities and
generate informative scenarios that show how attacks may impact
the blockchain. We have evaluated our approach with an example
system and found it performs well in identifying an extensible
class of security vulnerabilities.

Index Terms—Software Architecture, Security Analysis,
Blockchain, Formal Method

I. INTRODUCTION

Blockchain is an emerging technology that many software
engineers apply to secure data and resources in software sys-
tems. To protect data against tampering, blockchain is usually
applied as software components that provide data storage,
computation services and control functions [1]. Designing the
software architecture for blockchain-based systems involves
off-chain components that are outside the blockchain network
and on-chain components that have access to a node in the
blockchain network. With the combination of on-chain and
off-chain components, protecting a blockchain-based system
is not limited to the blockchain, but the structure and be-
haviour of other components that interface with the blockchain
should also be considered to eliminate risks of attacks [2].
At the design stage, beside verifying the design against the
functional requirements, the architecture security analysis task
is conducted using software architecture design models [3].
This task involves tracing through the components and security
configuration to pinpoint any security flaws in the architecture
design. It helps to prevent the architectural security flaws
propagating to the implementation.

There are approaches proposed to verify security in the
software architecture design in general, such as [4] and [5].
These approaches apply logical rules and metrics that are
hard-coded in source code. Almorsy et al. [6] presented an
extensible tool to identify different security attacks based on

DOI reference number:10.18293/SEKE2020-024

the signatures representing security metrics and vulnerabilities.
However, the blockchain-based system has specific interaction
behaviour between on-chain and off-chain components that
requires tracing through different attack scenarios to find both
direct and indirect impact. The scenario-based traceability
is not yet addressed by the existing approaches. There are
approaches particularly proposed to analyse security in the
blockchain. Luu et al. [7] enhanced the operational semantics
of Ethereum to prevent security bugs in the smart contract.
Chaieb et al. [8] proposed a verifiable protocol that applies
encryption to ensure privacy and security properties. Some
approaches [9] [10] [11] have been proposed to verify security
in the smart contract by analysing source code. However, these
approaches focus either on the structure within the blockchain
or the implementation of the blockchain that does not yet
exist at the design stage. There is still lack of approaches
that can analyse security in blockchain-based application at
the software architecture level.

This paper presents an approach that supports architecture
security analysis based on a formal model of blockchain-based
architecture design. At the design stage, our analysis approach
aims at verifying security as a non-functional requirement after
the design has complied with functional requirements. Our
approach can automatically identify security characteristics
and generate scenarios that show how attacks may have direct
or indirect impact on the blockchain. The contribution of our
approach can be summarised as follows. First, the formal
modelling of blockchain-based software architecture design is
proposed to describe the structural and behavioural aspect of
blockchain-based systems. Second, a set of formally described
security characteristics representing security metrics and vul-
nerabilities is presented. This set is extensible to support other
characteristics not addressed in this paper. Last, our approach
has been implemented as a tool. This tool allows users to
seamlessly perform modelling and security analysis of the
blockchain-based system at the architectural level.

The rest of this paper is organized as follows. Section II
explains a motivating example of blockchain-based system and
its security challenges. Section III presents the modelling and
analysis approach. Section IV presents the evaluation of our
approach. This paper is concluded in Section V.

532

II. SECURITY IN BLOCKCHAIN-BASED ARCHITECTURE

This section discusses an architecture design for an example
application that applies blockchain. In addition, this section
identifies the security threats in the architecture design.

A. Motivating Example

AgriDigital is a motivating example that we use in this
work. In this paper, we briefly introduce the system, but
more details can be found in [12]. The system applies
blockchain technology to build digital trust between parties
in the agriculture supply chain such as farmers, suppliers and
transporters. Digital trust allows different parties to track and
transfer commodities while financial transactions can be made
transparently. The architecture design of AgriDigital can be
found in Figure 1. The AD Web App and Provenance Web App
are web applications that allow users to perform administration
operations and enter the record of commodities. After a
user enters or updates information, Provenance Integration
publishes it to involved components such as AD Message
Bus and Blockchain Message Bus. Blockchain Message Bus
notifies Blockchain Integrator about updated information. This
design applies the Oracle pattern [13] that allows the off-chain
component to push information from the external world to the
blockchain. Therefore, when Blockchain Integrator is notified
about the new information, it creates a new block that keeps
financial transactions on the Public Blockchain, while another
block is created and appended on Private blockchain for an
updated status of commodities. Some status of commodities
can be detected and updated through IOT Sensor that helps to
measure the condition of commodities such as temperature and
humidity. These records of updated status are also created as a
block on Private Blockchain. Reverse Oracle pattern has been
applied between Digital Wallet and Public Blockchain. This
pattern allows Digital Wallet to fetch financial information
from the blockchain for processing.

Some off-chain components, such as AD AppServer, AD
WebServer and IOT WebApp are deployed on local dedicated
servers, while others, such as Provenance Integration, Prove-
nance WebApp and Blockchain Integrator, are deployed on
the public cloud infrastructure. The deployment configuration
of these components poses security threats to the on-chain
components such as Private Blockchain, implemented with
Quorum, and Public Blockchain implemented with Ethereum.

B. Attack Scenarios

The on-chain components are vulnerable to attack as they
are in the request flow triggered by the off-chain components.
In this work, we focus on prominence attack scenarios that
usually have security impacts on the blockchain, namely data
disclosure and data tampering.

1) Data Disclosure: A key decision in designing
blockchain-based software is determining whether the data
should be placed on-chain or kept off-chain [1]. The same copy
of data in the blockchain is shared among all nodes that run
in the blockchain network. If adversaries have access to any
node, they can also access the data stored in the blockchain.

AD WebServer

Public Cloud

AD AppServer

IOT WebApp IOT Device

BankNet
Ethereum

Quorum

AD Web App
AD

Web API

AD

Message Bus

Provenance

Integration

Provenance

Web App

adprovide

adnotify adlog

prvpublish

Blockchain

Message Bus

bclog

IOT

Web API

iotprovide

IOT

Sensor

Public

 Blockchain

Private

 Blockchain

Digital

Wallet
check

finance

Blockchain

Integrator

bcint
logfinance

logstate

Fig. 1. AgriDigital System

Even though data on the blockchain can be encrypted, the data
could be disclosed if the private key is stolen [2]. Securing
the connections and components that access the blockchain is
therefore important. In our example system, if Digital Wallet
or its connection to Public blockchain is compromised, the
financial transaction can be disclosed.

2) Data Tampering: Data in the blockchain is known to
be nearly immutable and tamper-proof since hash functions
are one-way and collision resistant [14]. However, when the
oracle component feeds data to the blockchain, the data are
assumed to be trusted by all participants. If the oracle is
compromised, the adversaries could modify data before it is
stored on the blockchain. The oracle should be safeguarded by
appropriate security controls to prevent this scenario. In our
example system, the Blockchain Integrator serves as an oracle
component. If the Blockchain Integrator or the components
that feed data to it such as IOTWebAPI and Provenance
Integrator are compromised, the data on Private Blockchain
and Public Blockchain can be tampered with.

C. Security Metrics

Different security metrics are used to measure the security
in the software architecture design. In this work, we focus
on the security metrics that suit assessing blockchain-based
software architecture.

1) Attack Surface: This metric measures the number of
weaknesses in the system that the adversaries can use to
attack the system. The attack surface is usually where the
system is open to the external environment such as where data
are entered or the components that are publicly accessible.
The lower the number of attack surface, the more secure the
system is. In our example, Public Blockchain is an attack
surface as it allows any entity to join and run a node in the
blockchain network. BCIntegrator and IOTWebAPI are also
attack surfaces as they are accessible from the public network.

2) Least Priviledge: This metric ensures that minimal ac-
cess to critical data or operations is granted to users or other
components in the system. From an architectural perspective,

the number of components that can access critical data should
be limited. In blockchain-based software, the on-chain com-
ponents are critical components that should be accessed by no
more than necessary off-chain components. In our example,
BCIntegrator and DigitalWallet are the only components that
have direct access to the on-chain components.

3) Defense In Depth: This metric measures how security
controls are applied at different points in the system. To
protect data in the blockchain, the components that access the
blockchain should employ security controls at the component,
host and network layers. For architectural analysis, we can cal-
culate the ratio of off-chain components that access on-chain
components and which apply security controls compared to
the total number of off-chain components that access on-chain
components. The higher the ratio value is, the more secure
the system is. In our example, BCIntegrator and DigitalWallet
should apply authentication and authorization controls, as well
as a firewall that prevents incoming malicious traffic.

III. FORMAL SECURITY ANALYSIS

Our formal security analysis for blockchain-based software
architecture combines ontology reasoning and model checking
techniques, as shown in Figure 2. First, the architecture design
is formally modelled as the component and connector (C&C)
view and the deployment view. Second, the ontology reasoner
is used to identify security vulnerabilities in the model, based
on the ontology description of architecture patterns and se-
curity characteristics. These ontology descriptions are defined
as classes kept in the ontology library. Third, assertions are
inserted into the behavioural model based on the identified
vulnerabilities. Finally, the model checker processes the asser-
tions against the model and generates the security scenarios.

Ontology Library

Blockchain Patterns

Security Characteristics

Basic Patterns

Ontology Reasoner

LTL Assertions

Model Checker

Architecture Model

C&C

View
Deployment

View

Model in OWL

2. process model in OWL to identify

security vulnerabilities

3. Generate assertions to

demonstrate scenarios

4. verify assertions against

model in ADL

Architecture

Modeller

1. create design model

Model in ADL

Security

Vulnerabilities

Attack

Scenarios

Fig. 2. Overall Analysis Process

A. Blockchain Architecture Modelling

Both structure and behaviour of the model are essential to
analyse the security in the design phase. Structure in architec-
ture design can be formally defined as ontology representation
using the Ontology Web Language (OWL). Behaviour respect

Port

Role

<component>

Oracle

<connector>

IOConnector

orafeed

extsupplier

blockstorage

<component>

Blockchain

blockstore

<component>

Reverse Oracle

<connector>

IOConnector

blockquery

extquerier

blocksupplier

<component>

Blockchain

blocksupply

<component>

Storage

<connector>

OSPConnector

hashsupply

hashsupplier

hashlogger

hashlog

<component>

Blockchain

<connector>

OSPConnector

hashcheck

hashcheckerhashvalidator

hashvalidate

a) oracle pattern b) reverse oracle pattern

c) off-chain storage pattern

Fig. 3. Architecture Patterns for Blockchain

to interaction among components, can be defined using the
Architecture Description Language (ADL).

Architecture security analysis is usually performed on the
component and connector view (C&C) and the deployment
view of software architecture design. These views are therefore
semantically described in the design model. Ontology classes
are predefined to support the modelling of the architecture
design [15]. As shown in Figure 3, we have defined four
connector types to support three architecture patterns, namely
Oracle, Reverse Oracle and Off-Chain Storage. These patterns,
proposed by Xu et al. [13], have been applied to blockchain-
based software. In AgriDigital, we applied Oracle and Reverse
Oracle, as well as other basic patterns such as Client-Server
and Publish-Subscribe (more details can be found in [15]).

The design model of a blockchain-based system can be
defined by creating ontology individuals based on defined
classes to represent different entities in the C&C view, such
as Component, Connector, Port and Role. Another set of
individuals is created to represent different entities in the
deployment view such as device, execution environment and
communication link. These entities are linked to describe how
components are deployed within the infrastructure. Due to the
page limit, we present a subset of the AgriDigital model as
shown below1.

Individual(ex : pubwire
value(ex : hasRole ex : pubextsupplier)
value(ex : hasRole ex : pubblockstorage))

Individual(ex : walletwire
value(ex : hasRole ex : wlextquerier)
value(ex : hasRole ex : wlblocksupplier))

Individual(ex : pubextsupplier type(ex : Extsupplier))
Individual(ex : pubblockstorage type(ex : Blockstorage))
Individual(ex : wlextquerier type(ex : Extquerier))
Individual(ex : wlblocksupplier type(ex : Blocksupplier))

The pubwire individual represents a connector that links
Public Blockchain and Blockchain Integrator. The walletwire
individual represents a connector that links Public Blockchain
and Digital Wallet. The code below shows some individuals

1The complete OWL model of AgriDigital can be found at
http://bit.ly/3bm18YB

representing components and ports. The individual repre-
senting the component BlockchainIntegrator has bcint port
that attaches to pubextsupplier defined above. This definition
applies the Oracle pattern. The checkfinance port attached to
the wlextquerier role applies the reverse oracle pattern.

Individual(ex : BlockchainIntegrator
value(ex : hasPort ex : bcint))

Individual(ex : PublicBlockchain
value(ex : hasPort ex : logfinance)
value(ex : hasPort ex : checkfinance))

Individual(ex : bcint
value(ex : hasAttachment ex : pubextsupplier))

Individual(ex : logfinance
value(ex : hasAttachment ex : pubblockstorage))

Individual(ex : checkfinance
value(ex : hasAttachment ex : wlextquerier))

For the deployment view, another set of individuals are
defined partially shown below. Docker1 represents the con-
tainer situated on PublicCloud where BlockChainIntegrator
is deployed. Port12037 represents a communication port that
bcint uses to communicate to Public Blockchain. Link6 rep-
resents the network communication that links the communi-
cation ports that the ports of BlockchainIntegrator and Public
Blockchain are bound to.

Individual(ex : Docker1
value(ex : isNodeOf ex : PublicCloud)
value(ex : hasDeployment ex : BlockchainIntegrator))

Individual(ex : Port12037
value(ex : hasBind ex : bcint))

Individual(ex : Link6
value(ex : hasCommPort ex : Port12037)
value(ex : hasCommPort ex : Port8889))

The interaction behaviour of components can be defined in
ADL as presented in our previous work [16]. This behaviour
model allows the model checker to trace through different
states occurring in the blockchain-based software. The tracing
helps to generate a scenario that shows how an attack happens.
Below is part of model in ADL describing the behaviour of
the Oracle and Reverse Oracle pattern2. The ADL model also
includes definition of the component and system configuration,
which defines role and port attachment, as well as how they
are executed at runtime.

connector IOConnector {
role blockstorage() = token?j → process
→ stored → blockstorage();

role extsupplier(j) = process
→ token!j → Skip; }

connector ROConnector {
role extquerier(j) = request → uid!j
→ res?j → process → Skip;

role blocksupplier() = uid?j → process
→ res!j → blocksupplier(); }

B. Security Characteristic Analysis

Beside the ontology classes supporting blockchain-based
software architecture modelling, we also define ontology
classes for classifying security characteristics in the model.
Three characteristics, namely Attack Surface, Defence in
Depth and Least Privilege, are used to calculate metric values
that measure how secure the system is. Two characteristics,

2The complete ADL model of AgriDigital can be found at
http://bit.ly/2vkmEMK

namely Data Tampering and Data Disclosure, are used to
trace attack scenarios. These ontology classes are kept in
the ontology library. Other characteristics not addressed here
can be defined by creating new class inherited from existing
classes, or conditionally capturing different properties in the
class definition.

1) Attack Surface: To formally define the attack surface, an
ontology class called AttackSurface is created with a logic to
describe the components that are publicly accessible through
the internet or public network such as public blockchain. In
other words, a component is an attack surface if it has an
incoming communication port that binds to the internet link.

AttackSurface ≡ Component u ∃ hasPort
(Port u ∃ isBindTo (IncomingCommPort
u ∃ isCommPortOf InternetLink))

2) Least Privilege: In a blockchain-based system, an on-
chain component is considered as a critical component. We
use an ontology rule to select the components that have access
to the on-chain components. This rule is defined in Semantic
Web Rule Language (SWRL) as shown below. It describes
the connection between two components: comp1 and comp2,
which comp2 is a Blockchain.

hasPort(comp1, p1) ∧ hasPort(comp2, p2)
∧ hasAttachment(p1, r1) ∧ hasAttachment(p2, r2)
∧ hasRole(con, r1) ∧ hasRole(con, r2)
∧ Blockchain(comp2)→ LeastPriviledge(comp1)

3) Defence in Depth: To classify the communication ports
that use security controls, the ontology class, namely Authenti-
catedCommPort, AuthorizedCommPort, FirewalledCommPort
and InputSantizedCommPort are defined. As we aim to capture
the components that have access to the blockchain and apply
security controls, DefenseInDepth is defined as a subset of
LeastPriviledge that has its port bound to an incoming secured
communication port.
AuthenticatedCommPort,AuthorizedCommPort v SecureCommPort
FirewalledComPort, InputSantizedCommPort v SecureCommPort
DefenceInDepth ≡ LeastPriviledge u ∃ hasPort (Port u

∃ isBindTo(IncomingCommPort u SecureCommPort))
4) Data Disclosure: Data disclosure occurs on a connection

that transfers data as plain text over unencrypted protocols
such as http and ftp. PlainLink is defined to represent con-
nectors that communicate using the insecure protocols. An
ontology class called DataDisclosureConnector is defined as
below to describe the connector that is vulnerable to data
disclosure, as it transfers data in plain text.

HTTPLink,FTPLink v PlainLink
DataDisclosureConnector ≡ Connector u (∃ hasLinkVia

(PlainLink u InternetLink))
5) Data Tampering: When data is transferred over a con-

nector that is vulnerable to data disclosure, the data is also be
vulnerable to tampering if the connector is on a communica-
tion link that has no input sanitisation or authorisation. Without
input sanitisation the data may come from an unknown source,
and the data can be changed during the transmission without
any authorisation. DataTamperingConnector class is defined
as below.

NoInputSanitizedCommPort ≡ hasInputSantization <= 0

UnauthorizedCommPort ≡ hasAuthorization <= 0

DataTamperingConnector ≡ DataDisclosureConnector
u ∃(hasLinkVia(CommunicationLink u ∃ hasCommPort
(NoInputSanitizedCommPort u UnauthorizedCommPort)))

535

C. Security Attack Scenarios Analysis

With the ontology classes defined as previously described,
the ontology reasoner can pinpoint which connector is vul-
nerable to data tampering and data disclosure. We use this
information to generate attack scenarios by inserting attacker
components into the design model. These attacker components
represent software components that adversaries use. Then,
Linear Temporal Logic (LTL) assertions are generated and
inserted into the behavioural model in ADL. This allows the
model checker to trace how the components interact with each
other in response to the attacker’s request. Algorithm 1 shows
how the attacker component and LTL assertions are gener-
ated. This algorithm loops through VulnConnSet that contains
inferred individuals that are of type DataTamperingConnector
or DataDisclosureConnector. The attacker component is added
to the model, and its attack port is attached to the outbound
role of the vulnerable connector. The outbound role is where
the request is initiated to make system responses. All inbound
roles that handle the requests are iterated in the second loop.
This iteration finds the port attached to an inbound role and
its component to generate a LTL assertion.

Algorithm 1 Attack Scenarios Generation
1: Input model is a design model
2: Input VulnConnSet is a set of vulnerable connectors
3: for vulconn ∈ VulnConnSet do
4: create attacker as an attacker component
5: create attack port of attacker
6: attach attack port to outbound role of vulconn
7: for inRole ∈ vulconn.getInboundRole() do
8: for comp ∈ model.getComponent() do
9: for port ∈ comp.getPort() do

10: if port has inRole attached then
11: define a LTL assertion with
12: vulconn as vulnerable connector
13: comp as target component

The LTL assertion that proves the attack scenario is created
according to the formula below. The vevnt represents the event
triggered from the attached outbound role (outrole) of the
vulnerable connector (vulconn). The cevnt represents the event
triggered by the target component (targetcomp) that responds
to the request issued by the attacker component (attacker).
In other words, this LTL assertion checks whether the target
component is always eventually invoked when the attacker
makes a request.

�(attacker.vulconn.outrole.vevnt→ ♦ targetcomp.inport.cevnt)

For example, if the connector between Provenance
Integration and Blockchain Message Bus carries the
plain text over the internet through the cloud-based
container, this is vulnerable to data tampering. The
attacker component could be added here. The LTL
assertion is defined to generate the scenarios of this
attack as �(Attacker.prvmsgwire.publisher.process →
♦ BlockchainMessageBus.bclog.evntlogged). The model
checker verifies this assertion to be valid. The negation of

this assertion gives a counterexample showing a state trace,
as shown below.

init → Attacker attack attacked
→ Attacker prvmsgwire publisher process
→ prvmsgwire pevt!87 → prvmsgwire pevt?87
→ BlockchainMessageBus bclog evntlogged ...
→ BlockchainIntegrator bcint sendtobc
..→ PublicBlockChain logfinance finlogged
→ PrivateBlockChain logstate statelogged ...

This state trace illustrates the sequence of how components
and connectors are involved in the scenario. It shows that
both Public Blockchain and Private Blockchain are affected as
they are consequently invoked by Blockchain MessageBus and
Blockchain Integrator respectively. This information supports
software engineers to analyse and fix the configuration in the
design model. In this case, the communication link to the
Blockchain Message Bus should employ an encrypted protocol
like https. Furthermore, an authorisation control should be
applied to Blockchain MessageBus and Blockchain Integrator
to prevent data tampering. Hence, the state trace helps to
pinpoint where the security configuration should be fixed.

IV. EVALUATION

This section presents how we evaluated our approach using
the motivating example. The detail of how we conducted the
evaluation is explained, followed by the results and discussion.

A. Experimental Setup

We have implemented our approach as a software frame-
work to automate the security analysis process. Arch Modeller3

is implemented as a graphical user interface tool to support
modelling the architecture design and performing security
analysis. This tool allows users to draw the graphical dia-
grams representing the architecture design model using the
Eclipse Modelling Framework (EMF), and converts them into
the structural model in OWL and the behavioural model in
Wright#. The model in OWL can be processed by the ontology
reasoner to identify the security characteristics. Then, the
attacker components are automatically inserted and linked to
the vulnerable connectors; at the same time the LTL assertions
are inserted into the behavioural model. The behavioural
model is processed by PAT ADL [16] and returns state traces
as output, which is not possible using results from ontology
reasoning alone.

The model of AgriDigital4 has been created using Arch
Modeller. In our evaluation, we assume the design model
serves functional requirements correctly before conducting
the security analysis. We aim to assess the completeness
and soundness of the security analysis approach. After the
model has been processed, the result is analysed to determine
whether there are true-positives (TP) or false-positives (FP).
We also analysed the design model to find false-negative (FN)
results that are missing from the results given by the ontology
reasoning. The precision and recall rate has been calculated

3Arch Modeller can be found at http://bit.ly/2m3LITT
4The model of AgriDigital can be found at http://bit.ly/2SfxHjE

536

according to [6]. This evaluation was carried out using an
Intel Core i7 CPU with 8.00 GB Ram computer.

B. Evaluation Result

The evaluation result is summarised in Table I. The ontology
reasoner took 9,123 milliseconds to detect all five security
characteristics in the AgriDigital model. We have calculated
the precision and recall rate to prove the soundness and
completeness of the results. It can be seen that most of the de-
tection could achieve a 100% recall rate for all characteristics.
The precision rate can achieve 100% for most characteristics
except data tampering, as we have found a false-positive result.
It is important to note that no false-negative has been found, as
the breach to the whole system may be caused by a missing
security flaw. However, the accuracy of the detection relies
on how accurately the security characteristics are defined.
Also, the design model needs to be checked against functional
requirements before the security analysis is performed.

TABLE I
EVALUATION RESULTS

Characters TP FP FN Precision Recall
Attack Surface 7 0 0 1.0 1.0

Least Priviledge 2 0 0 1.0 1.0
Defence in Depth 2 0 0 1.0 1.0
Data Disclosure 5 0 0 1.0 1.0
Data Tampering 3 1 0 0.75 1.0

Table II shows the statistics when the scenarios have been
generated based on identified connectors that are vulnerable
to different scenarios. It can be seen that some assertions
give state traces that show the on-chain components have
indirect impacts (as indicated in the last column). These on-
chain components are not the target directly connected to
the vulnerable connectors, but they have a consequent impact
from the attacks as some part of the request flow leads to
them. In addition, the time taken by the model checker to
process is reasonable for this size of model, however more
comprehensive evaluation is required to better understand its
performance.

TABLE II
SCENARIO GENERATION

Assertion Scenario Time(ms) State# Impact?
#1 Data Tampering 687 22772 None
#2 Data Tampering 930 38014 Indirect
#3 Data Tampering 19 781 Indirect
#4 Data Disclosure 565 22772 None
#5 Data Disclosure 937 38014 Indirect
#6 Data Disclosure 213 781 Indirect
#7 Data Disclosure 5 13 Direct
#8 Data Disclosure 3462 79 Indirect

V. CONCLUSION

This paper presents a security analysis approach for
blockchain-based software architecture design. Based on the
ontology description of the blockchain architecture pattern
and security characteristics, our approach can identify vul-
nerabilities in the design model. Attack scenarios can be

generated based on the identified vulnerabilities using the
model checking technique. The result can be used to determine
whether the blockchain has any impact from the attacks. We
have evaluated our approach with an example system, and
the results showed that it performs reasonably well. Our set
of ontology descriptions can be extended by inheriting or
defining ontology classes to describe other security metrics
or vulnerabilities. Security engineers can extend our ontology
library, which allows software engineers to analyse security in
the blockchain-based system in a standardised way.

For future work, we plan to conduct a more comprehensive
evaluation of our approach and explore how it can be applied
in the software construction stage.

REFERENCES

[1] X. Xu, I. Weber, and M. Staples, Blockchain in Software Architecture.
Cham: Springer International Publishing, 2019, pp. 83–92.

[2] M. Saad, J. Spaulding, L. Njilla, C. A. Kamhoua, S. Shetty, D. Nyang,
and A. Mohaisen, “Exploring the attack surface of blockchain: A
systematic overview,” CoRR, vol. abs/1904.03487, 2019.

[3] W. D. Yu and K. Le, “Towards a secure software development lifecycle
with square+r,” in 2012 IEEE 36th Annual Computer Software and
Applications Conference Workshops, July 2012, pp. 565–570.

[4] J. Gennari and D. Garlan, “Measuring attack surface in software
architecture (cmu-isr-11-121),” 2012.

[5] R. Vanciu and M. Abi-Antoun, “Finding architectural flaws using
constraints,” in 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Nov 2013, pp. 334–344.

[6] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated software
architecture security risk analysis using formalized signatures,” in 2013
35th International Conference on Software Engineering (ICSE), 2013,
pp. 662–671.

[7] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS 16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 254269.

[8] M. Chaieb, S. Yousfi, P. Lafourcade, and R. Robbana, “Verify-your-vote:
A verifiable blockchain-based online voting protocol,” in Information
Systems, M. Themistocleous and P. Rupino da Cunha, Eds. Cham:
Springer International Publishing, 2019, pp. 16–30.

[9] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “Smartinspect:
solidity smart contract inspector,” in 2018 International Workshop on
Blockchain Oriented Software Engineering, March 2018, pp. 9–18.

[10] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and
H. Kurihara, “Security assurance for smart contract,” in 2018 9th IFIP
International Conference on New Technologies, Mobility and Security
(NTMS), Feb 2018, pp. 1–5.

[11] Á. Hajdu and D. Jovanovic, “solc-verify: A modular verifier for
solidity smart contracts,” CoRR, vol. abs/1907.04262, 2019. [Online].
Available: http://arxiv.org/abs/1907.04262

[12] X. Xu, I. Weber, and M. Staples, Case Study: AgriDigital. Cham:
Springer International Publishing, 2019, pp. 239–255.

[13] X. Xu, C. Pautasso, L. Zhu, Q. Lu, and I. Weber, “A pattern collection
for blockchain-based applications,” in Proceedings of the 23rd European
Conference on Pattern Languages of Programs, ser. EuroPLoP 18. New
York, NY, USA: Association for Computing Machinery, 2018.

[14] F. Chen, Z. Liu, Y. Long, Z. Liu, and N. Ding, “Secure scheme against
compromised hash in proof-of-work blockchain,” in Network and System
Security, M. H. Au, S. M. Yiu, J. Li, X. Luo, C. Wang, A. Castiglione,
and K. Kluczniak, Eds. Cham: Springer International Publishing, 2018,
pp. 1–15.

[15] N. Chondamrongkul, J. Sun, and I. Warren, “Ontology-based software
architectural pattern recognition and reasoning,” in 30th International
Conference on Software Engineering and Knowledge Engineering, June
2018, pp. 25–34.

[16] N. Chondamrongkul, J. Sun, and I. Warren, “Pat approach to architecture
behavioural verification,” in 31th International Conference on Software
Engineering and Knowledge Engineering, July 2019, pp. 187–192.

537

Characterizing Vulnerabilities in a Major Linux Distribution

Stephen R. Tate Moulika Bollinadi Joshua Moore

Department of Computer Science, UNC Greensboro, Greensboro, NC 27402
Contact email: srtate@uncg.edu

Abstract

This paper reports on a careful study of vulnerabilities
in open-source software, performing both a longitudinal
study over 7 years of data and an in-depth exploration of
a particular type of vulnerability. First, data was mined
from Ubuntu security notices from 2012 to 2019, specifi-
cally pulling security notices published within the first year
of each of the four stable releases during that time. This
provided a dataset covering 3,232 security vulnerabilities,
which were cross-referenced with other information, allow-
ing us to identify trends in types of vulnerabilities over the
past 7 years. Within these results, we see that out-of-bounds
memory access (which includes the classic “buffer over-
flow” vulnerability) has consistently been the most perni-
cious security weakness, so in the second part of this re-
search we performed an in-depth study of a random sample
of 30 recent out-of-bounds access vulnerabilities. Begin-
ning by evaluating each vulnerability in terms of seven fea-
tures, we identified trends and patterns and expanded the
analysis to a total of eleven features. These results help fur-
ther understanding of how out-of-bounds access vulnerabil-
ities occur in real software, which can help both researchers
looking to improve tools for vulnerability analysis and de-
velopers learning how to avoid common pitfalls.

1 Introduction

The enthusiasm of programmers to create new software
has led to an explosion in the size and complexity of pro-
grams that has greatly exceeded our ability to ensure that
the programs are free of errors. Of particular interest in our
highly-connected society are errors that can be exploited
to subvert security goals, a kind of error that is called a
“vulnerability.” In this project, we gain insight into what
kinds of vulnerabilities occur across a wide range of open-
source software that is used in Linux and Unix-like oper-
ating systems, how the frequency of various vulnerability

DOI Reference number: 10.18293/SEKE2020-033

types has changed over time, and what specific character-
istics are present in the most pernicious type of vulnerabil-
ity, the out-of-bounds access vulnerability. Our goal is to
improve knowledge about vulnerabilities in real-world soft-
ware, focusing on situations in which sourcecode is avail-
able so that patterns and trends can provide useful informa-
tion for software developers.

Vulnerabilities are cataloged and classified in the “Na-
tional Vulnerability Database,” or NVD, maintained by the
National Institute of Standards and Technology (NIST) [6].
While statistics on the entire NVD database are available,
including a break-down by type of vulnerability [7], these
statistics aggregate vulnerabilities across all environments,
including open-source software, closed-source and propri-
etary software, and dedicated devices and device firmware.
Since our primary motivation for this work is to find infor-
mation that will be useful in settings with access to source-
code (specifically, source-based analysis tools and devel-
oper practices), we look specifically at vulnerabilities where
sourcecode is published so it can be analyzed for patterns
and characteristics.

To study open-source software, we need to identify a set
of projects that we can study, and from which we can ex-
tract useful information about vulnerabilities. We initially
considered mining information from GitHub [4] or from the
Software Heritage Graph dataset [8], but the range of soft-
ware maturity and the ad hoc nature of vulnerability iden-
tification in these sources quickly showed this to be an un-
productive approach. We then looked to major Linux distri-
butions, since distribution maintainers have already iden-
tified interesting and mature projects for inclusion in the
distribution, and they track security vulnerabilities so that
their users can stay up-to-date with security patches. Ex-
ploring three major distributions, Debian [13], RedHat [10],
and Ubuntu [3], we found Ubuntu to be the easiest and
most effective to work with for three main reasons: the
Ubuntu maintainers track a huge collection of open-source
software, with over 29,000 source packages in the 18.04 re-
lease; there is a well-maintained CVE tracker and source
of security notifications (the Ubuntu Security notices, or
USNs); and the practice of producing stable long-term-

538

support (LTS) releases on precise two-year intervals pro-
vides a meaningful way to perform a longitudinal study. In
the end we selected four such LTS releases, 12.04, 14.04,
16.04, and 18.04, and studied both general changes between
releases and specific vulnerability characteristics from the
most recent release. While we use data from Ubuntu, all
major Linux distributions use the same base of open-source
software, so we believe these results are representative of
the broader open-source software community.

Contributions: We make the following contributions in
this paper.

• We provide a clear picture of how the prevalence of
various types of vulnerabilities has changed over time.
The data show quantitatively that out-of-bounds mem-
ory access has remained the most pernicious type of
security vulnerability over time, consistently account-
ing for around a third of all security vulnerabilities.

• We report on a careful study of a random sample of 30
out-of-bounds memory access vulnerabilities, defining
the notion of an “exploit flow” to capture and ana-
lyze features in the sourcecode that characterize each
exploit. Our statistical breakdown reveals several in-
teresting and useful observations, including the per-
vasiveness of exploit flows that cross compilation-unit
boundaries (implying that analysis tools must similarly
consider multi-module analysis) and the importance of
pre and post condition statements at function bound-
aries to simplify understanding of vulnerabilities.

We believe that the results reported here will be beneficial
both for researchers working to improve source-based vul-
nerability identification tools, and for developers learning
about the types of security-related errors made in real-world
software systems.

2 Types Vulnerabilities Over Time

In order to study how vulnerabilities have changed over
time, we considered the four most recent Ubuntu Long-
Term Support (LTS) releases, which were released two
years apart in April, starting in 2012 with release 12.04. We
processed archived Ubuntu Security Notices (USNs), ex-
tending exactly one year after each initial release, extracting
CVE references and information on “affected distributions”
from each security notice to get CVE/distribution pairs.

After manually examining some of these results, we dis-
covered that there were a number of CVEs listed with dis-
tributions that were not actually affected by that CVE. The
problem is that a USN may reference a large number of
CVEs, and the USN flags a distribution as “affected” if any
one of those is a vulnerability in the distribution. In one
extreme case, a single USN (USN 3681-1) referenced 124

different CVEs! This leaves the possibility of a large num-
ber of CVEs in a USN not being relevant to that distribution.
To correct this problem, we pulled information on all CVEs
from the Ubuntu “CVE Tracker,” which indicates which dis-
tribution(s) are affected by an individual CVE, and dropped
a CVE/distribution pair if the CVE tracker has a distribution
classification for that CVE as “DNE” (does not exist), “not
affected,” or “ignore.” After processing, there was a modest
drop in CVE/distribution pairs, with the number of CVEs
affecting release 18.04 dropping from 911 (based on USN
alone) to 843 (based on both USN and the more accurate
CVE tracker classification).

For each CVE that affects an Ubuntu distribution (and
was fixed within the first year of that distribution’s release),
we cross-referenced the CVE with the corresponding en-
try in NIST’s National Vulnerability Database (NVD) to
extract the severity of the vulnerability, as given by the
CVSS v3.0 base score, and the type of vulnerability, as
given by the Common Weakness Enumeration (CWE) code
associated with the CVE. While there are 839 defined CWE
codes, only 62 appear in our dataset, and these can fur-
ther be categorized into a few broad classes of vulnerability
types. Our starting-point was the CWE cluster definitions
from MITRE, such as CWE-970 (“SFP Secondary Cluster:
Faulty Buffer Access”) that lists 11 fine-grained CWEs re-
lated to buffer access. CWEs that were not listed in such
pre-defined clusters were examined for obvious matches,
such as CWE-787 (Out-of-bounds Write). In the end, the
7 CWEs that occurred in our data set from the CWE-970
cluster along with CWE-787 formed our “Out-of-Bounds
vulnerability” class, as summarized in Table 2. Occurrences
of each vulnerability type in the four Ubuntu releases was
collated, and information on the “top 5” most prevalent vul-
nerability types is given in Table 1. Full data, including full
CWE-to-class mapping, occurrence rates for each class, as
well as the scripts used to analyze the Ubuntu data, is avail-
able at the project web site [12].

Discussion: As can be seen in Table 1, the number of vul-
nerabilities has been generally increasing, with an anoma-
lous spike at version 16.04. However the number of high
or critical severity vulnerabilities has decreased, resulting
in the percentage of vulnerabilities classified as high or crit-
ical severity decreasing by over half (from 44% to 19%).
CVE evaluation has dramatically improved over the years,
with the percentage of CVEs giving a CWE classification
increasing 64% to 95%. The Out-of-Bounds access vul-
nerability has been the top vulnerability type in every ver-
sion. This is particularly frustrating as it is one of the oldest
forms of security vulnerability and a significant amount of
research has gone into locating and fixing such vulnerabili-
ties. Furthermore, pointer issues, also a memory safety vio-
lation, have also gotten much more common in the past few
years. Of issues that are not related to memory safety, per-

539

Distribution Ubuntu 12.04 Ubuntu 14.04 Ubuntu 16.04 Ubuntu 18.04
Release date April 26, 2012 April 17, 2014 April 21, 2016 April 26, 2018

Total CVEs fixed in Year 1 646 701 1042 843
High/Critical severity 287 (44%) 268 (38%) 258 (25%) 156 (19%)
CWE classified 415 (64%) 455 (65%) 952 (91%) 802 (95%)

Out-of-bounds access 24.3% (1) 30.8% (1) 38.9% (1) 30.2% (1)
Permissions 18.1% (3) 10.3% (3) 9.5% (3) 15.5% (2)
Pointer issues — 2.6% (10) 8.8% (4) 11.0% (3)
Input validation 16.6% (4) 14.3% (2) 13.1% (2) 10.8% (4)
Resource management 21.9% (2) 9.0% (4) 4.8% (7) 8.5% (5)
Numeric errors 7.0% (5) 8.1% (5) 1.7% (9) 0.2% (19)

Table 1. Vulnerabilities by distribution (rank of each type in parenthesis)

CWEs in the general “out-of-bounds access” class

CWE-118 Incorrect Access of Indexable Resource
(‘Range Error’)

CWE-119 Improper Restriction of Operations within
the Bounds of a Memory Buffer

CWE-122 Heap-based Buffer Overflow
CWE-123 Write-what-where Condition
CWE-125 Out-of-bounds Read
CWE-126 Buffer Over-read
CWE-129 Improper Validation of Array Index
CWE-787 Out-of-bounds Write

Table 2. Out-of-bounds access CWEs

mission and input validation issues remained in the top four
vulnerability types throughout the seven years, although the
percentage of input validation issues has been slowly de-
clining. Numeric errors have also fallen dramatically over
the years. Some of the changes in pointer issues and nu-
meric errors could be due to a change in classification cri-
teria (e.g., an integer overflow leading to out-of-bounds ac-
cess might have been classified as an integer overflow in the
past, but is now classified as out-of-bounds access), but dig-
ging deeper into the CVE classification criteria is beyond
the scope of this project and is left as an open question.

3 Out-of-bounds Access Vulnerabilities
Given the consistent top ranking of Out-of-Bounds ac-

cess vulnerabilities (abbreviated as “OoB access”), we next
undertook a study to gain deeper understanding into how
these vulnerabilities manifest in real-world systems. As a
first step, we pulled the full list of OoB access CVEs that
affected Ubuntu 18.04 in its first year of release, and ran-
domly sorted them so that we could select the first CVEs
in our random ordering as a random sample of OoB ac-
cess vulnerabilities. Early in our process we discovered that

the rapid release model of Firefox and family (Thunderbird,
mozjs, etc.) differed greatly from other packages, and the
huge patch updates made it practically impossible to locate
specific vulnerabilities based on public information. For ex-
ample, the fix for CVE-2018-18493 (a critical-severity OoB
vulnerability) was only included as part of the Firefox up-
date from version 63.0.3 to 64, where the diff between these
versions contains close to 1.9 million lines. As a result, we
excluded vulnerabilities in these packages from our list be-
fore taking our random sample.

We started our evaluation based on 7 characteristics sug-
gested by our past experience. The authors studied 14 CVEs
over a period of 6 weeks, with group discussions that iden-
tified 4 additional recurring patterns, giving a final set of 11
relevant characteristics. The 14 initial vulnerabilities were
re-examined along with 16 others. Of these 30 vulnerabili-
ties, six were excluded for various reasons: three did not ap-
ply to Ubuntu 18.04, two were mis-classified in the NVD as
out-of-bounds access vulnerabilities, and one did not have
enough public information available to analyze. While this
process gave deep insight into vulnerability characteristics,
it was highly labor-intensive, and an interesting future re-
search direction could explore ways to automate or at least
provide tools to assist in this analysis.

3.1 Exploit Flow Definition
To characterize out-of-bounds access vulnerabilities, we

introduce the idea of an exploit flow: the shortest execution
path through the program that fully explains to an informed
reader how the vulnerability arises and what causes the out-
of bounds access, where we allow irrelevant portions of the
flow to be redacted. This definition is inherently subjective,
with reference to “an informed reader,” but in general it will
include code that calculates an array index or a pointer that
is subsequently used in the out-of-bounds access. When the
out-of-bounds access involves a dynamically-sized block of
memory, the exploit flow will also typically include the size

540

5658 first_object=(p[0] << 8) | p[1];
5659 last_object=(p[2] << 8) | p[3];
5660 p+=4;
5661
5662 for (i=(int) first_object;

i <= (int) last_object; i++)
5663 {
5664 if (mng_info->exists[i] &&

!mng_info->frozen[i])
5665 {
5666 ...

Figure 1. Vulnerability CVE-2017-13139

calculation and memory allocation.
An example of an out-of-bounds access vulnerability is

shown in Figure 1, where the code comes from PNG im-
age processing module for the ImageMagick library (code
has been somewhat reformatted to fit in one column, but is
otherwise directly taken from the coders/png.c file of
ImageMagick version 6.9.7-4). Note, this was actually one
of the vulnerabilities that ended up being excluded from our
study, since it was patched prior to the official Ubuntu 18.04
release; however, due to its simplicity it serves as the best
example to explain exploit flows in this paper.

The exploit flow is the following description, which
traces an execution through the code to demonstrate clearly
how the vulnerability can be exploited:

1. Comment: Variable p points to an input buffer con-
taining unsigned characters, read directly from (possi-
bly malicious) input.

2. Lines 5658–5659: 16-bit binary values are loaded
in to unsigned int variables first_object and
second_object, and are unchecked so they can be
any possible 16-bit values (e.g., these variables can
have values 1000 and 2000, respectively).

3. Line 5662: A for loop starts on line 5662, with index
i ranging from first_object to last_object.

4. Line 5664: Array mng_info->exists[i] is ac-
cessed, which is a statically-sized array of size 256.

5. Out-of-bounds access, line 5664: With the sample val-
ues above, on the first iteration of the for loop, i is
1000 and when used as an index into an array of size
256 this results in an out-of-bounds read.

There are a few important observations to make from this
example. First, it is not entirely self-contained, since the
first comment simply mentions that buffer p is uncon-
strained data read from the user. This should be perfectly
clear to the “informed reader” that is part of the exploit flow
definition, and allows us to leave out sometimes-confusing
I/O buffering code from the flow. Second, we include

specific example values that could be used in a proof-of-
concept exploit for the vulnerability — in all but a few
cases, we have constructed actual proof-of-concept inputs
to test our exploit flows. Finally, we do not include code
that defines sizes of memory blocks in the exploit flow when
they follow from static type declarations, and instead simply
state the size of the data block (as we did with the 256-entry
array in the example exploit flow).

In terms of vulnerability characteristics, this exploit flow
is a very simple example of a pattern we saw regularly in
out-of-bounds access vulnerabilities: An offset into a binary
structure is read from user data, unpacked from a straight
binary value (typically 16 or 32 bits), and then used without
being checked to ensure that it is a sensible value.

3.2 Exploit Flow Characteristics

As described above, we evaluated all vulnerabilities in
terms of 11 characteristics or features. In this section we
define and describe these characteristics.

Spans multiple compilation units or files: Does the exploit
flow include code from multiple compilation units, where
“compilation unit” is the unit of source code processed by
one pass of a compiler? For C and C++, a compilation unit
consists of both a main source file (.c or .cpp file) and
any included header files (.h files). This characteristic is
important when considering code analysis tools, as some
tools (e.g., the Clang static analyzer [5]) restrict analysis to
a single compilation unit, whereas others (e.g., Infer [2] and
Klee [1]) perform analysis using information from multiple
compilation units.

Spans multiple functions: Does the exploit flow include
code from multiple functions, where these functions may
be library functions, user-defined functions, or both? Unlike
the previous characteristic, functions may be in the same file
or compilation unit. This characteristic is important while
considering code analysis tools as some tools do not trace
across function call boundaries.

Involves typecasting or type confusion: Does critical data
change types during the exploit flow? Code that initializes
a variable using one type and converts it into another type
is type casting. If that resource is accessed using an in-
compatible type with the original type then it is type con-
fusion. This can result in triggering logical errors in the
source code.

Simplified with a function pre/post condition: Would a
stated function pre/post condition shorten or simplify the
exploit flow? Given the frequency of exploit flows that
span multiple functions, it is not surprising that such con-
ditions could help analysis. In particular, a function that
fills a block of memory could have a pre-condition that the
buffer must have sufficient size, and then the exploit flow

541

does not need to extend into the function. A static anal-
ysis tool could use such pre/post conditions to check both
that pre-conditions are met when a function is called, and to
start path analysis in the function using the pre-condition as
a starting condition.

Simplified with a data structure invariant: Would a stated
data structure invariant shorten or simplify the exploit flow?
The most common way that this is relevant in our study
would be an invariant that relates to the size of a dynami-
cally allocated buffer, so that the buffer size is known to a
static analyzer without requiring the exploit flow to trace all
the way back to the actual size calculation and allocation.

Dynamically-sized memory block: Are memory needs de-
termined at runtime, such as when they are dependent on
user input? Dynamic allocation poses a particular prob-
lem for static analysis tools, as the tool often does not
have any information about the size of the memory block
(this is related to, and potentially addressed by, a data
structure invariant as mentioned above). In addition, with
dynamic memory allocation there is a possibility that the
user/attacker introduces a large value and the system cannot
allocate enough memory for it, so no buffer at all is allo-
cated. While programs can detect this situation by checking
the allocation return value, it is unfortunately common that
programmers omit this error-check.

Binary data format processing: Does the data being handled
in the exploit flow come from a raw binary data format, such
as image or audio files? Vulnerabilities can arise from code
that unpacks and uses values such as sizes or offsets without
first checking them for validity. While legitimate data in
such formats is produced by software that will only output
data conforming to certain rules, attacker-supplied data is
not restricted to sensible values.

Other characteristics: We evaluated all vulnerabilities with
respect to several other characteristics which ended up be-
ing less significant. In particular, we considered whether
the exploit flow was asynchronous, as might be common in
event-driven programming; whether bugs were involved in
parsing textual input; whether there are a significant number
of branching decisions (including loop iterations), which
would lead to path explosion in analysis; and whether the
exploit flow is determined by dynamic type resolution, such
as through a method dispatch table in C++. Any of these
characteristics would complicate the task of code analy-
sis, but all turned out to be rare in our random sample of
OoB vulnerabilities. This is encouraging because it implies
that significant improvements in static analysis can be made
without having to address these particularly challenging sit-
uations. For example, only one CVE had an asynchronous
exploit flow, and most had very limited branching (some
included loops, but the vulnerability could typically be trig-

OoB Access Characteristics

Multiple Functions 17/24 71%
Multiple Compilation Units 12/24 50%
Type confusion/casting 9/24 38%
Simplifying Pre/Post-condition 15/24 63%
Simplifying Invariant 10/24 42%
Dynamically-sized memory 19/24 79%
Binary data formats 19/24 79%

Table 3. Out-of-Bounds Characteristics

gered on the first iteration of the loop).

As we investigated characteristics of exploit flows, an-
other interesting fact emerged: the prominence of fuzz test-
ing in detecting vulnerabilities. The method used to de-
tect the vulnerability was clearly stated in slightly over
half of the studied CVEs, and in every single one of those
cases the vulnerability was found by fuzzing (typically us-
ing AFL [14] or a variant). In several other cases, while not
stated explicitly there was evidence that fuzzing was used
to locate the vulnerability, and in only a single case did the
evidence suggest that the vulnerability was found in some
other way (probably manual code review). This does raise
an interesting question, which would require further study
to resolve: Is improved success in finding OoB vulnerabili-
ties masking a decline in frequency of occurrence? In other
words, how much of the OoB frequency in Table 1 is due to
actual prevalence of the type of vulnerability and how much
is due to our success in locating such vulnerabilities? The
widespread use of fuzzing could also explain the predomi-
nance of vulnerabilities in binary file format processing, as
fuzzing works particularly well on such data.

3.3 Results

The prevalence of the various vulnerability characteris-
tics described above, across the 24 usable samples, is given
in Table 3. The frequency of exploit flows that cross func-
tion and even compilation-unit boundaries clearly demon-
strates that effective analysis tools must be able to reason
about multi-unit execution paths. However, a promising as-
pect of this analysis is that a large number of such flows
(roughly two-thirds of the multi-function exploit flows)
could be greatly simplified through proper use of func-
tion pre/post conditions. Programmers naturally divide pro-
grams into pieces with clear logical requirements so that
they can cope with complexity as a developer. Making these
logical requirements explicit could significantly help analy-
sis in most of the OoB vulnerabilities that we studied.

Furthermore, dynamic memory allocation is very com-
mon in modern software, and our results show that it also
plays an important role in many vulnerabilities. Again,

542

buffer sizes are generally logically designed by program-
mers, even if such sizes are not available (in C and C++) to
static analysis tools. Taking this logical design out of the
mind of the programmer and turning it into an explicitly-
stated data structure invariant could help identify vulnera-
bilities in almost half of the vulnerabilities studied.

Finally, type confusion and casting is a less common but
still significant problem. Casting issues, such as from an
unsigned size to a signed size, could be easily identified
by even simple static analysis tools. As a next step in our
work, we will study how often such casting issues occur and
how often they lead to vulnerabilities. We suspect that the
number of safe uses of typecasting far exceeds the unsafe
uses, which would lead such a static analysis tool to produce
too many false positives to be useful. Analysis of how to
identify just the unsafe uses is an interesting open question.

4 Related Work
Rigorous work classifying vulnerabilities across a wide

span of open-source software is uncommon, but a few re-
cent projects are related to our work. Ponta et al. manually
curated a large collection of 624 vulnerabilities and associ-
ated patches in open-source Java packages related to their
area of interest [9]. As their work focuses specifically on
Java code in a niche area, it does not provide the broad pic-
ture of open-source vulnerabilities that our study seeks.

In a similar effort to ours, reviewing reported buffer-
overflow vulnerabilities, Shuckert et al. performed a review
of such vulnerabilities that had been reported in the Firefox
web browser [11]. This study provides some interesting ob-
servations, but results are reported in a more qualitative than
quantitative fashion, with no statistics on the prevalence of
various vulnerability characteristics reported. Furthermore,
focusing on a single software package provides excellent
insight into that package, but it is unclear how much the
results reflect overall open-source development characteris-
tics as opposed to particular coding practices and standards
for that particular development team.

Other work on buffer-overflow vulnerabilities considers,
as part of the background to their work, investigation of cer-
tain characteristics related to their work, but these are not
broadly-focused studies that provide insight into bigger pic-
ture of open-source vulnerabilities.

5 Conclusion
In this paper, we examined characteristics of real-world

vulnerabilities in open-source software. Mining a large
set of 3,232 vulnerabilities over 7 years revealed several
interesting trends, and clearly showed that out-of-bounds
access vulnerabilities have remained the most commonly-
occurring danger. With an eye toward identifying promis-
ing directions for program analysis tools and techniques, we

carefully studied a random sample of out-of-bounds access
vulnerabilities, identifying several particularly promising
directions for future work. First, there is a strong need for
analysis that spans function or even compilation unit bound-
aries. Second, the use of pre/post conditions and data struc-
ture invariants, perhaps provided to analysis tools through
sourcecode annotations, could greatly simply the reasoning
required to identify vulnerabilities. And finally, exploring
how tools can distinguish between safe and unsafe uses of
typecasting could produce interesting and practical results.

References
[1] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unas-

sisted and Automatic Generation of High-coverage Tests for
Complex Systems Programs. In Proc. of the 8th USENIX
Conference on Operating Systems Design and Implementa-
tion (2008), OSDI’08, pp. 209–224.

[2] CALCAGNO, C., AND DISTEFANO, D. Infer: An Auto-
matic Program Verifier for Memory Safety of C Programs.
In NASA Formal Methods. 2011, pp. 459–465.

[3] CANONICAL, LTD. Ubuntu website. https://ubuntu.
com/.

[4] GITHUB, INC. Github website. https://github.
com/. Accessed: 2020-01-30.

[5] LATTNER, C., AND ADVE, V. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transforma-
tion. In Proc. of the 2004 International Symposium on Code
Generation and Optimization (2004).

[6] NATIONAL INSTITUTE OF STANDARDS AND TECHNOL-
OGY. National vulnerability database. https://nvd.
nist.gov/.

[7] ÖZKAN, S. CVE Details website. https://www.
cvedetails.com/. Accessed: 2020-01-30.

[8] PIETRI, A., SPINELLIS, D., AND ZACCHIROLI, S. The
Software Heritage Graph Dataset: Public Software Devel-
opment under One Roof. In Proc. of the 16th International
Conference on Mining Software Repositories (2019), MSR
19, pp. 138–142.

[9] PONTA, S. E., PLATE, H., SABETTA, A., BEZZI, M., AND

DANGREMONT, C. A Manually-curated Dataset of Fixes to
Vulnerabilities of Open-source Software. In Proc. of the 16th
International Conference on Mining Software Repositories
(2019), MSR ’19, pp. 383–387.

[10] REDHAT. Website. http://www.redhat.com/.
[11] SCHUCKERT, F., HILDNER, M., KATT, B., AND LANG-

WEG, H. Source Code Patterns of Buffer Overflow Vulnera-
bilities in Firefox. Gesellschaft fr Informatik e.V., 2018.

[12] TATE, S., BOLLINADI, M., AND MOORE, J. Ubuntu vul-
nerability study project. https://span.uncg.edu/
vulnerabilities.

[13] THE DEBIAN PROJECT. Website. https://www.
debian.org/.

[14] ZALEWSKI, M. American Fuzzy Lop. http://
lcamtuf.coredump.cx/afl/.

543

https://ubuntu.com/
https://ubuntu.com/
https://github.com/
https://github.com/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.cvedetails.com/
https://www.cvedetails.com/
http://www.redhat.com/
https://span.uncg.edu/vulnerabilities
https://span.uncg.edu/vulnerabilities
https://www.debian.org/
https://www.debian.org/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Mining DApp Repositories: Towards In-Depth
Comprehension and Accurate Classification

Yeming Lin∗†, Jianbo Gao‡, Tong Li∗†, Jingguo Ge ∗†, Bingzhen Wu∗†
∗Institute of Information Engineering, Chinese Academy of Science, Beijing, 100093, China
†School of Cyber Security, University of Chinese Academy of Sciences, Beijing, 100049, China

‡School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
∗†{linyeming,litong,gejingguo,wubingzhen}@iie.ac.cn, ‡gaojianbo@pku.edu.cn

Abstract—Blockchain has recently attracted great interest from
both academia and industry. Ethereum introduces programma-
bility into blockchain through smart contracts and provides an
open-source computing platform for blockchain-based decentral-
ized applications (DApps). There are currently thousands of
DApps pertaining to different application domains, including
games, gambling and finance. In order to better comprehend
blockchain application scenarios and help developers understand
DApps better, clear DApps classification criteria are needed.
However, many DApps that can be found through collection
websites (commonly known as DApp Stores) are not classified
properly, making these datasets imprecise. This issue has mo-
tivated the present empirical study of DApp categories, as a
part of which over 2,500 DApps in three DApp Stores are
investigated, allowing us to produce and publicly release a
high-quality dataset in which misclassified DApps are relabeled
manually, facilitating their more precise classification. We also
propose DAppClassifier, a novel technique for classifying DApps
based on their actual functionalities. When developing the new
classifier, we extracted features from source code, bytecode and
historical transactions, and trained neural networks to classify
DApps. Our approach was evaluated on the released dataset and
achieved good precision.

Index Terms—Blockchain, Decentralized Application, Compre-
hension, Ethereum, Smart Contract

I. INTRODUCTION

Owing to the growing interest in Bitcoin, considerable
efforts have been invested into the development of blockchain
techniques. Ethereum is a public open-source blockchain-
based distributed computing platform, providing a Turing-
complete virtual machine for executing smart contracts. Smart
contract refers to open-source programs that can be automati-
cally executed without any centralized control. Consequently,
it is the most important innovation of Ethereum.

Blockchain-base decentralized applications (abbreviated as
DApps), are the emerging trend in the blockchain develop-
ment, as they rely on smart contracts instead of traditional
centralized server as the back-end. Owing to its transparency,
decentralization, and security, this infrastructure offers im-
mense potential for use in a variety of fields, including finance,
governance, supply chain management, etc. Thus, it is not
surprising that the number of DApps has already surpassed

DOI reference number: 10.18293/SEKE2020-088

2,500 within 4 years, with the value of the DApp market
estimated at billions of dollars [1].

DApp Store is a repository that facilitates DApp manage-
ment. Akin to AppStore for the iOS system, it provides a
convenient platform for users to browse DApps and select
those that meet their needs. To expedite searching, DApp
Stores classify DApps into a set of categories, such as Games,
Gambling, Exchange, and High-risk.

Such categorization can be helpful for both users and
developers, as users can browse the appropriate category to
find relevant DApps, whereas developers can determine the
most optimal category for their DApps prior to submission.

At present, DApp categories are manually selected by the
developers at the time of submission. The maintainers of DApp
Stores will subsequently manually check if the classification
is correct, aiming to detect high-risk DApps (such as those
hiding a Ponzi scheme). However, as such classification relies
on human judgment, it can be error-prone. On one hand, the
predefined categories may be ambiguous, and the developers
may find it difficult to locate a proper category for their DApp.
On the other hand, as manually verifying classification for each
DApp is time-consuming, there is a risk of exposing DApp
users to security issues.

To provide a comprehensive understanding of the DApp
classification status, as a part of this investigation, an empirical
study involving over 2500 DApps in three DApp Stores is
conducted. Based on the findings obtained, a dataset is con-
structed and its accuracy is optimized by manually relabeling
misclassified DApps.

However, to the best of our knowledge, no effort has been
devoted to the DApp classification problem. Although several
approaches have been proposed for labelling and identifying
smart contracts (a component of DApp), they can only be
utilized to cluster similar smart contracts [2] or identify special
smart contract types, such as Ponzi scheme or honeypot [3]
[4]. Thus, none of them can be directly applied to classify
multifarious DApps. Even though, some approaches to mobile
App classification can be potentially modified for use in DApp
classification, as they do not take advantage of the unique
characteristics of DApps, the classification performance would
be compromised.

To overcome these shortcomings, in this paper, we propose
DAppClassifier, a novel technique for classifying DApps based

544

on easily obtainable rich and comprehensive features that
represent the actual DApp functionalities. DAppClassifier first
extracts features from source code, bytecode and historical
transactions, which is the communication between the user
and the DApp. Next, hybrid neural networks are devised to
classify DApps.

To evaluate DAppClassifier performance, it is applied to the
optimized dataset (obtained in the first phase of this study as a
part of which misclassified DApps were relabeled manually),
achieving >84% average precision.

The main contributions of this work are as follows:
• We conduct a systematic empirical study on DApp sta-

tus, extensively investigate DApp classification problem
and obtain the different categories characteristics.

• We construct a high-quality dataset by relabeling
misclassified DApps. The revised dataset is open sourced
and can be accessed from https://bit.ly/2JFmtiS.

• To eliminate the need for manual verification and reclassi-
fication, we propose DAppClassifier that can automat-
ically classify DApps based on their rich and compre-
hensive features. The effectiveness of DAppClassifier is
subsequently confirmed by testing its performance against
other available techniques.

II. BACKGROUND

In this section, we provide the background information
required for understanding our work.

A. Ethereum and Smart Contract

Ethereum is a public open-source blockchain-based dis-
tributed computing platform that provides a running environ-
ment for decentralized applications.

A smart contract is a computer program outlining the rules
under which the participants agree to interact with each other.
If the pre-defined rules are met, the agreement is automatically
enforced.

B. Ethereum Virtual Machine (EVM)

Ethereum provides EVM to support the compilation and
execution of smart contracts. Technically, it is the runtime
environment for smart contracts in Ethereum. It is a stack-
based, register-less virtual machine, where operators and
operands are all pushed onto the stack indistinguishably, with
the exception of the data that requires persistent storage space
on Ethereum. Solc compiler will translate readable solidity
code into bytecode, only EVM can understand.

C. Decentralized Applications

Centralized systems directly control the operation of the
individual units and flow of information from a single center.
Decentralized applications (DApps) are applications that run
on a decentralized network rather than a single computer.
Technically, a DApp is composed of front-end and back-end
code, whereby the front-end is an Internet-based interface,
typically a web page, and the back-end contains the key data

and operations, typically based on one or more smart con-
tracts in a blockchain. When users interact with blockchain-
based DApps, a transaction is initiated and recorded on the
blockchain permanently. So we can get all the interactions
between DApps and users from the blockchain.

III. EMPIRICAL STUDY

In this section, current DApp classification status is briefly
outlined.

For this analysis, three DApp Stores: State of the DApps
[1], DappRadar [5], and Dapp.com [6] are chosen as the
representatives of the current DApp market (based on the
Google Search results).

A. Overview of DApp Categories

This section commences with an overview of DApp cate-
gories, to help readers better understand the current classifica-
tion criteria. DApp Stores utilize predefined categories, allow-
ing users to find the DApps they need. However, these are not
standardized, making comparisons across different platforms
difficult, while introducing the risk of misclassification.

TABLE I
DAPP CATEGORIES ON THE WEBSITES. FOR EACH CATEGORY, THE

COLUMNS OF THE TABLE SHOW, FROM LEFT TO RIGHT: THE NUMBER OF
DAPPS FROM State of the DApps (#S), DappRadar (#R), AND Dapp.com

(#D).

Category #S #R #D
Games 303 402 455

Gambling 211 375 266
High-risk 148 333 256

Exchanges 106 57 65
Finance 101 - 53

Social 86 - 45
Media 55 - -

Development 49 - -
Marketplaces 41 15 -

Property 29 - -
Governance 27 - -

Wallet 20 - -
Security 20 - -
Storage 17 - -
Identity 15 - -
Health 4 - -

Insurance 4 - -
Energy 3 - -

Collectibles - 52 -
Tools - - 57

Art - - 33
Others - 260 84
Total 1239 1494 1314

B. Misclassification of DApps

In this section, we provide a descriptive analysis on the
DApps in the three most widely used platforms: State of the
DApps [1], DappRadar [5], and Dapp.com [6] to determine
if these are properly classified by the developers. We crawled
all DApps information from three platforms and matched them
by front-end URL and contract address. If they have the same
front-end URL or similar front-end URL with the same con-
tract address, we consider them to be the same DApp, for some
DApps have different URL parameters in order to identify
the source of the request. Our investigation has uncovered

545

TABLE II
MISCLASSIFICATION ACROSS DIFFERENT DAPP STORES

Overlap Categories #DApps
Games, High-risk, Gambling 8

Gambling, High-risk 77
Games, High-risk 71
Games, Gambling 37

Games, Collectibles 25
Games, Marketplaces 13

High-risk, Finance 12
Finance, Others 20
Social, Others 24
Tools, Others 12

two important problems with the current classification system,
which are discussed below.

1) The classification criteria are ambiguous and differ
across DApp Stores: We compare DApps and the categories
utilized by the aforementioned three DApp Stores, and find
that the classification criteria are non-uniform and ambiguous,
for the following two reasons.

First, each DApp Store uses a different number of cate-
gories, at 18, 7, and 9, respectively (Table I). While Games,
Gambling, High-risk and Exchanges are utilized in all three
cases, Health and Insurance, for example, only exist in State
of the DApps.

Second, even if DApp Stores utilize the same category,
such as Games or Gambling, the classification criteria can be
ambiguous. In an ideal scenario, the same DApp should be
classified into the same category on all DApp Stores. However,
according to our investigation, this is not always the case, as
shown in Table II. For example, 37 DApps classified as Games
on one DApp Store are classified as Gambling on the other.

Moreover, as no clear description of the categories is
provided on the DApp Stores, developers would find it chal-
lenging to determine the most appropriate category for their
DApps.

2) DApps are often misclassified by DApp Stores: As a part
of our investigation, we examine the characteristics of DApps
and check if these corresponded to their classification by DApp
Stores.

For this purpose, we conducte a preliminary experiment
on smart contracts of DApps, which is guided by three hy-
potheses: (1) Intuitively, DApps with the same smart contracts
should be in the same category; (2) DApps with the same run-
time code should be in the same category; and (3) DApps with
the same opcode list should be in the same category, because
opcode (rather than the operand) determines the program
execution logic.

To test these hypotheses, we extract smart contracts from
DApps. When comparing run-time code, we match the code
textually, whereas for opcode list comparison, we split the run-
time code into opcode list and operand list, and remove the
latter.

Our findings revealed that, in the three DApp Stores in-
cluded in our analysis, 41, 29, and 36 DApps, respectively,
violate the three hypotheses given above, suggesting high

degree of misclassification. We manually analyze these DApps
and found that more than 40% of DApps changed from High-
risk to other categories, in order to trick users into using. We
manually corrected these classification errors in our dataset.

C. The Difficulties of DApp Classification

As mentioned earlier, due to the lack of clarity in the
classification criteria used by DApp Stores, developers often
struggle with interpreting the requirements for each category,
which may result in misclassification of their DApps.

To mitigate these issues, an automatic classification ap-
proach is needed, as it would allow developers to identify
the most suitable category for their DApps, while aiding the
DApp Store maintainers in the verification process, which is
currently conducted manually.

However, objective DApp classification is challenging for
several reasons, as explained below.

1) Limited EVM features: EVM is a runtime environment
for smart contracts based on a 256-bit register stack. Unlike
in traditional operating systems, in EVM, program’s operators
and operands are all pushed onto the stack indistinguishably.
As EVM relies on fewer operator types, it is not as complex
as traditional operating systems. For example, Dalvik Instruc-
tion Set Architecture (ISA) defines 218 Android application
instructions, and Java runtime machine (JVM) provides about
202 instructions, whereas only 137 are provided by the EVM.

Traditional program classification techniques are mostly
based on static and dynamic features of the code. Due to the
simplicity of smart contracts, it is much harder to generalize
features to classify DApps.

2) Redundancies in libraries: To reduce human effort and
avoid source code duplication, DApp developers tend to invoke
public libraries developed by some third-party organizations
(like openzeppelin1 or oraclize2). Most developers and com-
panies also store proprietary code in private libraries for
subsequent reuse. In the context of this investigation, a library
can be regarded as a special kind of smart contract. A typical
smart contract is composed of multiple functions with different
access scope, such as Internal, External, Public, Private, etc.
However, in contrast to traditional programming languages,
when compiling a smart contract that relies on libraries, all
public and external functions will be compiled into application
binary interfaces (abbreviated as ABIs), which serve as the
inference for library invocations, regardless of whether the
function is needed by the DApp.

We analyze library invocation by all DApps from the three
DApp Stores, whereby Table III provides all libraries that
are invoked by more than one category. As can be seen,
most public or external functions are never used. Due to
such redundancy, many conventional program classification
techniques (which are often based on program similarity)
cannot be applied effectively.

Moreover, if a library is invoked by multiple DApps from
different categories, these DApps will have similar sets of

1https://openzeppelin.org/
2http://provable.xyz/

546

TABLE III
MOST COMMONLY INVOKED LIBRARIES.

Library Name #DC #SC #Int #Ext #Used
Math 11 47 12 4 0

ECRecovery 8 20 2 1 0
MathLib 3 8 4 3 0

PaymentLib 2 6 6 21 0
CommUtils 2 6 19 8 0

DLL 2 6 0 8 0
Player 2 6 9 8 1

AttributeStore 2 6 0 2 0
StringLib 2 6 1 1 0

SortitionSumTreeFactory 2 4 1 8 0
Helper 2 4 4 17 0

LinkedListLib 2 2 11 6 0
For each library, the columns of the table show, (from left to right): the
number of DApp categories (#DC) and smart contracts (#SC) invoking the
library, internal and private functions (#Int), external and public functions
(#Ext), and public and external functions (#Used) in the library that are
actually used.

ABIs. As a result, ABI-based classification techniques which
are commonly used in Mobile App classification cannot be
directly applied to classify DApps.

As illustrated above, current DApp classification is time-
consuming and error-prone, as it is challenging to utilize the
limited information from the DApp itself for this purpose.
To address this issue, we develop an automated classification
method, DAppClassifier, as described in the subsequent sec-
tion.

IV. DAPPCLASSIFIER

A. An Overview of DAppClassifier

In this section, we use machine learning to solve the DApp
classification problem. The resulting DAppClassifier predicts
DApp category based on easy-to-access features representing
the actual DApp functionalities. The overall DAppClassifier
structure is shown in Figure 1. Given the input of all in-
formation pertaining to a particular DApp—including DApp
bytecode, transactions in history, and DApp source code
(optional)—the classification is performed in two steps: the
feature extraction process and the classification process. In the
following sections, we provide detailed description of these
two processes.

Feature Extraction Process Classification Process

ByteCode

Transactions

SourceCode

DNN

CNN

CNN DNN

Predicted
Category

<one-hot>

Bytecode Blocks

Function Name

Source code

<embedding>

<embedding> <softmax>

…

Fig. 1. An Overview of DAppClassifier

B. Feature Extraction Process

In this step, various features that are related to the DApp
category are identified, ensuring that they are easy-to-access
and can reflect the program functionalities.

The feature extraction process is guided by three hypothe-
ses: (1) Function names reflect their actual functionalities; (2)

Similar execution logic is more likely to imply similar program
functionalities; and (3) The developer-defined names in source
code are indicative of the actual functionalities.

1) Function name features: In practice, function names
should reflect program functionalities. However, these can be
difficult to obtain. Intuitively, function names can be deduced
from function calls incorporated into the execution traces dur-
ing transactions, but this is unreliable, as not all functions will
be called during execution, especially for infamous DApps. As
an alternative, features can be extracted from binary code and
transactions. However, this approach leads to two difficulties
discussed below.

First, only the 4-byte digital signatures (hash values of
function names) can be extracted from binary code. These
signatures cannot be directly used as features, because one of
the classification criteria mandates that similar function names
should imply similar functionalities. Thus, it is necessary to
convert each signature into the initial word-form. Second, as
explained in Section III, a significant number of unused
library functions are compiled into the bytecode, which would
compromise the effectiveness of the selected features.

Our feature extraction approach can mitigate these issues.
We retrieve word-form function names by utilizing Ethereum
Function Signature Database3 —a large-scale open-source
database that records common function names and corre-
sponding signatures. This allows those 4-byte signatures to be
mapped to their human-readable versions (in our experiment,
about 60% function names can be matched). In addition, we
perform an additional filtering process, whereby we identify
all library functions before collecting all the function names
invoked through transaction. Finally, we remove all the un-
invoked public library function names to eliminate redundan-
cies.

2) Bytecode block features: The bytecode reflects DApp
behavior, and can thus be used in classification. However, the
bytecode cannot be used directly due to several reasons.

First, bytecode is composed of three components: creation
code, swarm code, and runtime code. As the first two elements
are used for the creation and distributed storage, they have no
contribution to the program runtime behavior. Second, runtime
code consists of operators and operands (i.e., PUSH 0X80). If
the operands are not filtered out, the extracted feature will be
too sensitive to the operands. Third, runtime code comprises of
multiple blocks, each of which indicates a logical unit. Thus,
to maximize the feature utility, runtime code should be divided
into basic blocks.

To alleviate these issues, DAppClassifier extracts refined and
subtle features from bytecode in three steps: [2]

1) Redundant code elimination: In this step, all superfluous
creation and swarm code parts, which easily identified,
are removed.

2) Desensitization: All the operands (i.e., the immediate
numbers after operators) are removed. Note that, as a
special kind of operand, the signature of function name

3https://www.4byte.directory/

547

is also removed. Those have already been discussed in
function name features.

3) Division into basic blocks: In runtime code, operators
JUMP, JUMPI, REVERT, STOP, and RETURN are the
indicators of an interruption in a logical relationship.
DAppClassifier divides the runtime code according to
the opcodes.

Following the above process, DAppClassifier can identify
refined and subtle block-level sub-sequences of bytecode as a
feature.

3) Source code features: Compared with bytecode, source
code can better convey the intent of developers. Not only
the function names and statements are in high-level language,
which is similar to the human language, but code also con-
tains abundant programming notes, which convey intention of
developers.

For this reason, DAppClassifier applies tokenization and
embeddings features from source code, which is a two-layer
neural network that processes text, whereby its input is a text
corpus and its output is a set of vectors.

C. Classification Process

In the classification model, (1) three units are used to handle
the three kinds of features, which are subsequently combined
by (2) applying another Deep Neural Network (DNN) model.

1) DNN for Feature Name features: DNN model is a
learning method with multiple layers of neural networks. It
is particularly suitable for classification prediction problems
where inputs are assigned a class or label.

Specifically, our network is a fully connected DNN model
with RELU activations, N layers, and M units per layer. We
swept over N = [3, 4, 5, 6, 7] and M = [32, 64, 128, 256,
512]. Our best performing model has N = 3 layers and M =
64 units, yielding a learning rate of 3× 10−5.

2) CNN for Function Body features: Convolutional Neural
Network model (abbreviated as CNN) is a neural network that
uses convolution in place of general matrix multiplication.

Specifically, our network is a CNN model with an embed-
ding layer (embedding dim = 128), a convolutional layer (256
filters with kernel size = 5) and a MaxPool layer (each layer
contains 64 neurons).

3) CNN for Source Code features: In line with the approach
adopted for sentence classification in the NLP scenario, to
handle features, CNN with the same specifications as given
above is utilized to extract meaningful sub-structures from
source code.

4) DNN to Conjunct the Units: The intermediate results of
the above three models are concatenated by a model composed
of three layers: an input layer combining the output of the three
units, a 128-dimensional fully connected layer, and a softmax
layer to output the final category.

V. EVALUATION

In this section, we describe the experimental design adopted
for evaluating DAppClassifier, followed by the experimental
results demonstrating its correctness and effectiveness.

TABLE IV
EXPERIMENTAL RESULTS

Dataset DAppClassifier FuncName ByteBlocks Source
#S 84.6% 78.2% 77.2% 79.9%
#R 83.5% 78.9% 76.3% 79.3%
#D 84.0% 80.1% 79.6% 70.3%

A. Evaluation Design

We conduct large-scale experiments on DApp classification
based on our self-constructed open-sourced dataset.

Dataset: Data on the three most commonly-used DApp
Stores, namely State of the DApps, DappRadar, and Dapp.com
are crawled, manually checked and all misclassified DApps
are relabeled or removed(As explained in Section III-B),we
matched them by front-end URL and contract address. If they
have the same front-end URL or similar front-end URL with
the same contract address, we consider them to be the same
DApp, for some DApps have different URL parameters in
order to identify the source of the request. Yielding a large-
scale dataset covering about 2,573 DApps including 11,230
smart contracts deployed on the Ethereum Environment.

For each DApp, we download the bytecode and transactions,
and retrieve its source code (if available) by Etherscan. To
collect data on these smart contracts, we manually run an
Ethereum node, starting from the Genesis block to the latest
block to identify all the transactions and extract bytecode and
runtime code. We focus on the DApp categories containing at
least 20 DApps, since these categories are more representative
of the general classification status. The revised dataset has
been released (https://bit.ly/2JFmtiS), it contains the DApp
name, contract address, category, DApp url, etc..

B. Experimental Results

In this section, we present the experimental results related
to the two research questions.

RQ1: How many DApps can be accurately classified into
the correct category? The experimental results of our clas-
sifier reported in Table IV indicate that its accuracy surpasses
84% when applied to each of the DApp Stores, confirming that
our approach is technically promising. As precision, recall and
F-score are consistent for multiclassification problem, only the
precision of our approach is reported.

RQ2: How does each feature contribute to the DApp
classification performance?

The columns 3–5 of Table IV show the performance (mea-
sured in terms of precision) of DAppClassifier based on a
single feature (with a single classification unit).

Features extracted from source code should aid in accurate
classification, as the programmer’s intent is typically conveyed
through function and routine names and developer comments.
However, the results reported in the last column of Table IV
counter this intuitive expectation, requiring further investiga-
tion.

Note that the experiments focusing on source code only
are conducted on DApps for which source code is available.
As nearly half of the DApps lacked source code, the dataset

548

used for training in this experiment is substantially reduced.
In particular, in Dapp.com only 50.4% of DApps are released
with source code, compared with 63.9% and 56.7% DApps
on State of the DApps and DappRadar respectively. Thus, all
three features should be utilized to improve the classification
accuracy.

VI. DISCUSSIONS

In this section, we will discuss the benefits and shortcom-
ings of our approach.

Function name feature extraction benefits: In the pro-
posed approach, prior to extracting function name features,
based on the unique DApp characteristics, all the un-invoked
public library function names are removed. To evaluate the
effectiveness of this strategy, we conduct another experiment
on the DApps with historical transactions, applying only the
function name feature unit. Besides the feature extraction
process described in Section IV, we conduct comparison ex-
periments, each incorporating the following feature extraction
processes:

• Names from Invocation & Bytecode removed unused li-
braries: The features we used in our approach.

• All names from Bytecode: All function names extracted
from bytecode are utilized, i.e., the unused public library
functions are not removed.

• All names from Invocation: All function names from
invocations in the history of transactions are identified
and utilized.

• Names from Invocation & Bytecode:The function names
collected by adopting the strategy described in Section
IV are combined with those from the invocations.

As can be seen in Figure. 2, the features collected by
utilizing All names from Invocation process achieve the lowest
accuracy. This finding supports our hypothesis that function
names identified through invocations of historical transactions
are not sufficient for meaningful classification, due to users
inadequate. The features collected via the strategy denoted
as All names from Bytecode yield a higher precision because
all the functions in the application are utilized, not just those
that have been called. However, lack of understanding of user
behavior leads to insufficient accuracy.

We take the advantage of both and combine them as input.
The features collected through Names from Invocation &
Bytecode and Names from Invocation & Bytecode removed
unused libraries can both reach the top accuracy given a long
training time. However, by removing all the unused library
methods, the learning convergence can be expedited.

VII. RELATED WORK

Several studies have been conducted to evaluate the
Ethereum ecosystem. For example, some authors characterized
money transfer [7], contract invocation [8], code similarity [9]
of Ethereum. Other researchers focused on financial activities
on Ethereum, including Ponzi schemes [3], Honeypots [4]
detect and ICO behavior finding [10], which might be a
complement to our work. There is an empirical study on

0 5 10 15 20 25 30 35 40
epoch

0.650

0.675

0.700

0.725

0.750

0.775

0.800

ac
cu

ra
cy

All names from Invocation
Names from Invocation & Bytecode
All names from Bytecode
Names from Invocation & Bytecode removed unused libraries

Fig. 2. Comparison within different features

distributed applications [11]; however, our research is more
systematic and is conducted on a larger scale. Moreover,
machine learning has been used to label similar smart contracts
with source code [2], even though its notion of a “cluster”
cannot be precisely defined.

VIII. CONCLUSION AND FUTURE WORK

Owing to the development of blockchain and mobile tech-
nology, the number of DApps has already surpassed 2,500,
and the scale of DApp market is estimated at billions of
dollars [1]. To provide a better comprehension of decentral-
ized applications (DApps), we have conducted a systematic
empirical study on DApp classification status, and have con-
structed a dataset by relabeling misclassified DApps. Based on
our empirical findings, we have proposed DAppClassifier—a
novel approach for classifying DApps based on their real
functionalities. Extensive evaluations have demonstrated that
DAppClassifier can achieve an average precision of greater
than 84%.

REFERENCES

[1] S. of the DApps, “Stateofthedapps,” 2020. [Online]. Available:
https://www.stateofthedapps.com

[2] R. Norvill, B. B. F. Pontiveros, R. State, I. Awan, and A. Cullen,
“Automated labeling of unknown contracts in ethereum,” in 2017 26th
International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2017, pp. 1–6.

[3] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting
ponzi schemes on ethereum: Towards healthier blockchain technology,”
in Proceedings of the 2018 World Wide Web Conference. International
World Wide Web Conferences Steering Committee, 2018, pp. 1409–
1418.

[4] C. F. Torres and M. Steichen, “The art of the scam: Demystifying hon-
eypots in ethereum smart contracts,” arXiv preprint arXiv:1902.06976,
2019.

[5] D. Radar, “Dappradar,” 2020. [Online]. Available: https://dappradar.com
[6] DApp.com, “Dappcom,” 2020. [Online]. Available: https://www.dapp.

com
[7] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange,

“Understanding ethereum via graph analysis,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp.
1484–1492.

[8] L. Kiffer, D. Levin, and A. Mislove, “Analyzing ethereum’s contract
topology,” in Proceedings of the Internet Measurement Conference 2018.
ACM, 2018, pp. 494–499.

[9] N. He, L. Wu, H. Wang, Y. Guo, and X. Jiang, “Characterizing
code clones in the ethereum smart contract ecosystem,” arXiv preprint
arXiv:1905.00272, 2019.

[10] G. Fenu, L. Marchesi, M. Marchesi, and R. Tonelli, “The ico phe-
nomenon and its relationships with ethereum smart contract environ-
ment,” in 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE). IEEE, 2018, pp. 26–32.

[11] K. Wu, “An empirical study of blockchain-based decentralized applica-
tions,” arXiv preprint arXiv:1902.04969, 2019.

549

Automated Rogue Behavior Detection for Android
Applications

Shuangmin Zhang, Ruixuan Li�, Junwei Tang, Xiwu Gu
School of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan, China

E-mail: {shmzhang, rxli, jwtang, guxiwu}@hust.edu.cn

Abstract—There are a large number of third-party application
markets that provide application download services for Android
users. In order to improve users’ satisfaction, major application
markets urgently need an automated solution to avoid some
rogue behaviors that affect users’ experience, such as rogue
advertisements that induce users to click, rogue pop-up boxes
that cannot be closed normally, and rogue floating windows
that affect users’ experience. To address such problems, we
propose a rogue behavior detection framework. We use the
object detection approach to identify advertisements in screen
views, the random forest method to identify the pop-up views,
and then combine image analysis, natural language processing
and heuristic methods to detect rogue behaviors. The proposed
framework can also record evidences of rogue behaviors in
applications, so that application markets can ask developers
to rectify. The experimental results show that the precision of
rogue application detection reached 96.7% and the recall reached
90.1%.

I. INTRODUCTION

In the last decade, it has entered the era of mobile devices.
According to the mobile operating system market share in
March 2020, Android system has the highest share at 72.26%
[1]. The huge user base of the Android system has also
spawned a large number of feature-rich Android application-
s. Users with high security awareness generally choose to
download applications from large application markets, because
most of them perform virus detection before allowing the
applications to be online. However, there are still a large
number of problematic applications that can cause trouble to
users in application markets.

Research on Android applications mainly focuses on safety
issues that pose a significant risk, such as malware detection
[2], privacy leak detection [3] and ad fraud detection [4].
Little attention has been paid to user experience of using
Android applications. For the detection of rogue ads (a kind of
rogue behavior), the detection of ads in the screen views is a
key point. Ad detection methods mainly adopt traffic analysis
method [4] [5]. These methods can only identify the screen
views containing ads, but cannot give the specific location of
the ads. Hence, an efficient method is needed to detect the
location of the ads in screen views. In order to improve users’
experience and satisfaction, an automated solution is urgently

DOI reference number: 10.18293/SEKE2020-089

needed to identify rogue behaviors that affect users’ experience
in Android applications, including some rogue behaviors that
only affect users’ experience without causing major security
issues.

In this paper, we propose a framework to find rogue
behaviors that affect users’ experience. The contributions of
our work are as follows. We propose an object detection
approach based on deep learning approach to detect ads in
screen views. It can be used to serve rogue ad detection. We
present a classifier that can divide the screen views into those
containing and not containing pop-up boxes based on random
forest. It can be used to serve rogue pop-up box and rogue ad
detection. We implement the rogue ad detection module based
on natural language processing and heuristic rules, the rogue
pop-up box detection module based on heuristic rules, and
the rogue floating window detection module based on image
analysis and heuristic rules.

II. DEFINITION AND CATEGORIES OF ROGUE
BEHAVIORS

A. Definition of Rogue Behavior
Rogue Behavior: A kind of application behavior that

indirectly affects the user’s mobile device, making the user
unable to use the mobile device conveniently, and bringing
potential threat to the user’s mobile device. It has no direct
damage to the system after the execution, nor causing the
infringement of user’s personal information and fees [6].

B. Categories of Rogue Behavior
1) Rogue Ad: Ads with contents that induce users to

click. Some ads often display some inductive information to
induce users to click. As shown in Fig. 1(a), the bottom of the
left screen view is an ad. The ”Clear Memory” and ”Close” in
the ad view are fake buttons. Such ads can easily mislead users
to think that their devices need to clear memory. When a user
clicks on the green fake button, the installation package starts
to be downloaded. Ads that overlay clickable components.
To improve the click rate of ads, applications may pop up
an ad pop-up box immediately after a normal pop-up box.
The original intention of the user is to click the button of
the normal pop-up box, but at this time, the ad pop-up box
pops out suddenly, and the user is highly likely to click on
the ad by mistake, as shown in Fig. 1(b). Ads that appear

550

before application exit. After a user’s click on the exit key,
the application will usually pop up a prompt box to confirm
if the user really wants to exit. When the user clicks the
”Exit” button, the user’s intention is to leave the application.
However, some applications show an ad after clicking the
”Exit” button, as shown in Fig. 1(c).

2) Rogue Pop-up Box: Some developers may use pop-up
box inappropriately, causing trouble to users. As shown in Fig.
1(d), the prompt pop-up box of the application only provides
one button means ”update”, without the button to close the
pop-up box. Through manual testing, even clicking the back
key of Android device still cannot exit, which will cause great
trouble to users.

3) Rogue Floating Window: Some applications misuse the
floating window to place ads for profit. Because a floating
window is floating on the normal application screen view,
it will cover part of the contents in the application screen
view, which will affect users’ experience. Android application
developers generally like to design the floating window used
for advertising purposes as red-envelope-style to attract users
to click on the ad, as shown in Fig. 1(e).

Fig. 1. Rogue Behaviors.

III. METHOD
The overall scheme of rogue behavior detection for Android

applications is shown in Fig. 2. The Android application
traversal module automatically runs applications and records
information based on Appium1. The information of the screen
views and the events that caused the views’ transition are
recorded during the traversal process, as shown in Fig. 3.
The main purpose of the Android application screen view
classification module is to classify the application screen
views. This module will train a deep learning-based object
detection model and a random forest-based classifier. The
object detection model is used to identify ads in the screen
views. The random forest classifier is used to divide the
screen views into views containing pop-up box and those not
containing pop-up box. The rogue ad detection module, the
rogue pop-up box detection module and the rogue floating
window detection module are used to identify rogue behaviors
in Android applications.

1Appium. http://appium.io/

Fig. 2. Overall Scheme of Rogue Behavior Detection.

Fig. 3. Recorded Information.

A. Ad Detection
We design a lightweight network based on RetinaNet [7],

as shown in Fig. 4. The left is backbone, the medium is
Feature Pyramid Networks (FPN) structure [8], the right are
classification and bound regression subnetworks. Each of L1
and L2 is a convolution. L3, L4 and L5 are made up of 4,
8 and 4 cells respectively, and each cell is a residual module
composed of three deep separable convolutions [9]. By FPN
structure, features of different scales are fused to combine the
high-level information with the low-level information. Each
of the classification and bound regression branches contains
two residual modules consisting of two convolutions. Finally, a
convolution is added as the output layer. We design 24 anchors
of different scales and aspect ratios at each location. For the
classification branch, each anchor is classified as an ad or non-
ad, so the number of the output channels is 48. For the bound
regression branch, every four numbers make up the upper-left
and lower-right coordinates of the border, so the number of
the output channels is 96.

551

Fig. 4. Ad Detection Model.

B. Pop-up View and Non-Popup View Classification
We divide the Android application screen views into views

containing pop-up box and those not containing pop-up box.
We analyze the information of 1,000 Android applications,
and summarize a series of features. These features include
some 0-1 features as well as continuous value features. These
features can be roughly divided into the following categories:
component size features, component quantity features, compo-
nent location features, keyword features and the proportions of
components with specific attributes. The extracted features are
suitable for decision tree classifier, so we use a random forest
classifier based on decision tree. The random forest classifier
has higher accuracy by combining the results of multiple base
classifiers.

C. Heuristics-based Detection of Rogue Behaviors
1) Rogue Ad Detection: Detection of ads with contents

that induce users to click. We first get the ad images cropped
from the screenshots according to the ad detection result, and
then we use the Optical Character Recognition (OCR) API
provided by Baidu2 to extract the texts in ad images. Then,
we analyze the semantics of the advertising texts. In order
to remove the interference of the texts outside the ad, we
adopt difference set of OCR texts and view texts. Due to
Chinese has multiple expressions of the same meaning, we
need to understand the degree of similarity between different
words. We adopt neural network word vectors for word
representation, so we can identify other inductive sentences
of similar meaning. The detection can be considered as an
advertising text classification task. We adopt FastText [10] as
the classification model, because it is based on word vectors
and maintains high accuracy while training and testing time
are greatly reduced. Detection of ads that overlay clickable
components. In order to overlay the clickable components, the
ad view should have an ad that occupies more than 30% of
the screen space. The previous screen view of the ad view is
a pop-up view that contains at least one clickable component.
Detection of ads that appear before the application exits.
Generally, before exiting the application, users will be asked if
they really want to quit. There are two situations at this time.
One is that the user clicks the ”Exit” button, then will lead to
exit. In normal circumstances, this prompt view should be the

2Baidu OCR. https://ai.baidu.com/tech/ocr/general

last view in the traversal process. If an ad view appears after
that, this ad is a rogue ad. Another situation is that the user
clicks the ”Cancel” button, then will go back to the previous
view. Because the previous view may contain ads, the ads that
appear at this time should not be considered as rogue ads.

2) Rogue Pop-up Box Detection: The detection of pop-
up boxes that force applications to upgrade requires the
cooperation of the automated traversal module. In automated
traversal process, we remove events of update buttons. If a
pop-up view contains ”update”, ”upgrade”, ”download” or
other texts with similar meanings, and the event executed on
this view is ”Back” type event, and the ID of the next view
is equal to this view, the view is considered to have a pop-up
box that forces users to update the application.

3) Rogue Floating Window Detection: The most intuitive
feature of rogue floating windows is that they have red-
envelope-style small icons that are approximately square. We
consider components with an aspect ratio between 0.8 and 1.2
to be regarded as approximate square, and extract the pixel
value of each pixel for such components. The screen views
that contain such components with visual red pixels accounting
for more than 20% and visual yellow pixels accounting for
more than 3% are considered as those likely to have red-
envelope-style floating windows. It is found that rogue floating
windows often exist in multiple screen views. Therefore, we
further consider the context information of the current screen
view. If one of the surrounding screen views also contains
red-envelope-style icon, we believe it contains rogue floating
window.

IV. EXPERIMENTAL EVALUATION

A. Dataset
The dataset used in our work is from the application market

named ”Mango Download Station”3. We collected a total
of 4,000 applications. For Android application ad detection,
500 applications were randomly selected as the dataset. For
the classification of views containing pop-up box and views
not containing pop-up box, 1,000 applications were randomly
selected as the dataset. For the detection of rogue behaviors,
the remaining 3,000 applications were selected as the test set,
which did not include the training set used for ad detection
and the dataset used for the classification of screen views.

B. Result of Ad Detection
We use 300 applications as the training set, and the re-

maining 200 applications as the validation set. The validation
results are shown in Fig. 5. Fig. 5(a) shows the precision
curve. Fig. 5(b) shows the recall curve. Fig. 5(c) shows the
F1 curve. Fig. 5(d) shows the precision-recall curve. The
abscissa represents the recall under different score thresholds,
the ordinate represents the corresponding accuracy, and the
area under the curve represents the Average Precision (AP).
Here, the score threshold means that during evaluation, a
predicted box with a score lower than the threshold will be

3Mango Download Station. http://www.90370.com

552

thought as a negative case, otherwise as a positive case. The
evaluation was conducted with an Intersection Over Union
(IOU) of 0.75, which means that the predicted box and the
ground truth box are considered to be matched if their IOU is
greater than 0.75. Based on the results and combined with
the need to identify ads in our work, the score threshold
with higher recall rate is selected under the condition that the
precision and F1 value are not too low. The score threshold we
use for ad detection is 0.42. The AP is 0.808 on the validation
set. The effect of ad detection is good enough to be used in
our work to serve rogue ad detection.

Fig. 5. Precision, Recall, F1 and P-R Curve.

C. Result of Pop-up View and Non-Popup View Classifica-
tion

In this experiment, 1,000 applications were randomly se-
lected as the dataset. For the evaluation of the classifier, the
10-fold cross-validation method is used. We randomly divided
the data into 10 parts, one of which was taken as the validation
set and the other 9 parts as the training set. The experiment
was conducted for 10 times, and the arithmetic mean value of
the results was taken as the final result. The results show that
the average accuracy of the classification is 98%. The effect of
the classifier is good enough to be used in our work to serve
rogue pop-up box detection and rogue ad detection.

D. Result of Rogue Behavior Detection

By manually marking the data set, 131 of the 3000 appli-
cations in the test set were marked as having rogue behaviors.
Using our method to test the 3,000 applications, the results
of rogue behavior detection are shown in Table I. The results
show that 122 applications have rogue behaviors, of which
118 applications do have rogue behaviors, and 4 do not.
13 applications with rogue behaviors were not identified. In
summary, the precision of rogue behavior detection in our
work is 96.7%, and the recall is 90.1%.

TABLE I
RESULT OF ROGUE BEHAVIOR DETECTION.

Predict Labels
Rogue Apps Normal Apps

Actual
Labels

Rogue Apps 118 13
Normal Apps 4 2865

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an effective rogue behavior
detection framework for Android applications. We implement
ad detection, screen view classifier, rogue ad detection, rogue
pop-up box detection, and rogue floating window detection.
Using the methods we proposed, 118 Android applications
containing rogue behaviors were found in 3,000 applications.
The results show that the precision of rogue application
detection reached 96.7% and the recall reached 90.1%.

We only identify five types of rogue behaviors, and other
rogue behaviors may exist in reality. Meanwhile, new rogue
behavior is still emerging. The methods proposed in this paper
is scalable, and this study can be easily expanded to new rogue
behaviors.

VI. ACKNOWLEDGEMENT

This work is supported by the National Key Research
and Development Program of China under grants 2016YF-
B0800402 and 2016QY01W0202, National Natural Science
Foundation of China under grants U1836204 and U1936108.

REFERENCES

[1] statcounter, “Mobile operating system market share worldwide,” https:
//gs.statcounter.com/os-market-share/mobile/worldwide, 2020.

[2] Y. S. Sun, C.-C. Chen, S.-W. Hsiao, and M. C. Chen, “Antsdroid:
automatic malware family behaviour generation and analysis for android
apps,” in Australasian Conference on Information Security and Privacy.
Springer, 2018, pp. 796–804.

[3] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, pp.
1–29, 2014.

[4] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu, and
J. Klein, “Frauddroid: Automated ad fraud detection for android apps,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 257–268.

[5] J. Crussell, R. Stevens, and H. Chen, “Madfraud: Investigating ad fraud
in android applications,” in Proceedings of the 12th annual international
conference on Mobile systems, applications, and services, 2014, pp.
123–134.

[6] C. C. S. Association, “Description format for mobile internet malicious
code,” http://www.ptsn.net.cn/standard/std query/show-yd-3983-1.htm,
2013.

[7] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[8] Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, and H. Ling,
“M2det: A single-shot object detector based on multi-level feature
pyramid network,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 9259–9266.

[9] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[10] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext. zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

553

Benchmarking the efficiency of RDF-based access for blockchain environments

Juan Cano-Benito Andrea Cimmino Raúl Garcı́a-Castro

Ontology Engineering Group
Universidad Politécnica de Madrid

E-mail: {jcano,cimmino,rgarcia}@fi.upm.es

Abstract

Blockchain and knowledge graphs are technologies that
have become pervasive in several domains where web
services have been developed relying on them. The in-
mutability of the data offered by the blockchain together
with the capabilities of the knowledge graph when con-
suming data, enables web services to provide richer func-
tionalities. Literature has explored the benefits of combin-
ing both qualitatively, and only a few works have exposed
quantitatively the feasibility of combining these technolo-
gies. In particular, as far as we know no work reports the
cost of storing knowledge graphs serialized in RDF into
blockchains, or analyses alternatives such as virtualisers
that transform on the fly data from different formats into
RDF. In this paper we present an empirical analysis of the
cost of storing into a blockchain in comparison with stor-
ing JSON, and the benefits when solving SPARQL queries
by reading directly the RDF or using a virtualiser fed with
RDF. For the sake of our experiments, we rely on different
sensors that store their data into two blockchains, on top of
which we perform our analysis.

Keywords: Blockchain, Knowledge Graph, Semantic
Web, RDF, RDF Virtualisation

1 Introduction
Nowadays blockchain has become a pervasive techno-

logy in a wide range of sectors [1]. The reason is due
to the fact that it allows to store data ensuring its in-
mutability [14]. The data stored into a blockchain may be
expressed in any format and under any model. As a result, a
large number of services have decided to publish knowledge
graphs (KGs) relying on blockchain to store their data [21].

Blockchain has many implementations, such as
Ethereum, Bitcoin, or Hyperledger Fabric. These imple-
mentations often associate a cost to the amount of data
that peers write in the chain. As a result, the same data

DOI reference number: 10.18293/SEKE2020-104

written in the chain with a verbose format have a higher
cost to be paid by a peer, in comparison with having the
data represented with a simpler format.

The cost of writing becomes especially relevant when
blockchain is storing KGs since their data format is Re-
source Description Framework (RDF), which is known
to be verbose. Therefore, although a KG stored in a
blockchain has clear benefits when consuming data due to
the RDF, this format will entail a higher cost in comparison
with other lighter formats, it has also an expected higher
cost. There is an ever-growing number of proposals that
store a KG in a blockchain, but there is a lack of knowledge
about how suitable this approach is and if other alternatives
could work better.

In this paper a case study is presented in which an em-
pirical analysis is performed in order to establish the bene-
fits and costs of storing a KG in a blockchain. In addition,
a virtualisation approach that generates virtual RDF from
data expressed in JavaScript Object Notation (JSON) that
is stored in a blockchain is considered. The scope of this
paper is establishing how costly is storing RDF instead of
JSON, and if a virtualisation approach is a better alternative
that directly storing RDF in the blockchain.

The case study is contextualised in a simulated research
laboratory that counts with 15 light bulb sensors, an occu-
pancy sensor, and a temperature sensor. The sensors send
data to an agent that writes such data into two different
Ethereum blockchains. In one of them, data is written as
plain JSON, whereas on the other one, data is expressed
in RDF using the VICINITY ontology [7]. The analysis
consists in measuring how costly is storing RDF and JSON
in terms of gas, and how effective is querying the data is
querying either data.

The analysis carried out aims at exploring the following
research questions:

• H1: What has a higher cost when writing data in the
blockchain, RDF or JSON?

• H2: What is faster when reading from the blockchain,
RDF or JSON?

554

• H3: Considering a virtualiser that transforms on the fly
JSON data into RDF. What is faster to query, RDF or
virtual RDF?

The rest of the article is organised as follows: Section 2
reports proposals in the literature combining these technolo-
gies; Section 3 introduces concepts used across the paper;
Section 4 presents the architecture followed in our experi-
mental analysis; Section 5 explains how the experimenta-
tion was carried out and reports its results; and, finally, Sec-
tion 6 recaps our conclusions and main findings.

2 Related Work

The approach of storing the RDF data of a KG in a
blockchain has been addressed mainly from a theoreti-
cal point of view without reporting any quantitative anal-
ysis [4, 6, 8, 10, 13, 16, 24, 26, 27]. Although dif-
ferent proposals provide a preliminary qualitative analy-
sis [15, 17, 22, 23], most of the works describe specific ap-
plications that have stored their KGs in a blockchain with-
out analysing the efficiency of this decision over other alter-
natives [9, 11, 2, 25].

The majority of proposals address how semantic web and
blockchain technologies could work jointly in order to en-
hance their benefits without providing any analysis of its
feasibility [6, 8, 10, 16, 27]. Some proposals report a quali-
tatively analysis of how some specific domains could bene-
fit from using these two technologies together. For instance,
for chemistry [26], smart cities [24], publications [13], or
government [4] domains.

Several proposals provide a quantitative analysis of the
combination of these two technologies. Ruta et al. [22,
23] performed an analysis over the discovery of Internet
of Things (IoT) resources whose meta-descriptions were
stored in a blockchain using RDF. They reported discovery
and query processing time over the RDF involved in such
task. However, the results have not enough granularity to
establish only the reading time of the RDF, nor they pro-
vide a comparison with other alternatives.

Le-Tuan et al. [17] presented a scenario of a small net-
work of lightweight nodes. Each node processes 1 billion
triples, but those triples are not stored in the blockchain that
contains instead a hash pointing to an RDF online docu-
ments. Therefore, although the proposal reports the time
for writing and querying data, these results do not involve
directly the blockchain. As a result, the cost of writing is
neither analysed or reported.

Ibañez et al. [15] studied the verbosity of RDF express-
ing data. They reported the number of bytes that different
serialisations of RDF have when expressing the same data.
In addition, authors considered the same information com-
pressed with different algorithms. However, RDF was not
stored in any blockchain, nor any cost was reported.

As a conclusion, the literature currently lacks to deter-
mine the benefits of storing KGs inside a blockchain from
the point of view of the cost of writing RDF instead of other
serialisations, e.g., JSON. Additionally, no work has ex-
plored alternatives like using RDF virtualisers in order to
have the benefits of RDF when consuming data while stor-
ing in the chain less-verbose formats like JSON.

3 Background

Most of the concepts on top of which this paper is build
are well-known, namely: RDF [5], the SPARQL Proto-
col and RDF Query Language (SPARQL) [12], JSON [3],
and blockchain [20]. Nevertheless, others concepts are not
terms widely known and, therefore, in this section they are
defined.

Transaction: is the name of the operation that writes
or stores some data inside a blockchain. Depending on the
data size that is been written, it requires more or less space
in one block. As a result, if transactions require more space
than the one available in a block, they will be written in
more than one block.

Usually, a transaction has a virtual cost since it requires a
certain amount of computing power. As a result, performing
a transaction has an associated cost in public blockchains
and, depending on the implementation, it may have different
names; for example, for Ethereum it is called Gas [28].

Software agent Autonomous actions in a tailored-
domain environment can be done [29]. The means of the
actions performed by an agent have as goal to meet a set of
design requirements. A system with two or more agents is
known as Multi-Agent System.

In the context of this paper, a proactive agent with simple
reflexes based on condition-action is used.

RDF Virtualisation is a technique used in the semantic
data integration context [18]. Usually, it refers to a piece of
software connected to a data source and with a set of trans-
lation rules called mappings. These techniques are able to
translate on the fly data from heterogeneous formats and
models into RDF expressed according to a specific ontol-
ogy, allowing to solve SPARQL queries over such data.

Virtual RDF is the one generated as an RDF virtualisa-
tion technique [18]. It receives such name due to the fact
that the RDF is not stored anywhere and is consumed as
produced; unless a software agent stores it somewhere.

4 Experimental Architecture

The scope of this paper is to provide an empirical analy-
sis of how suitable is to store RDF inside a blockchain, due
to the cost that it entails. Alternatively, storing JSON and
using a virtualiser could bring the same benefits without the
drawbacks of the former approach.

555

The scenario presented in Figure 1 has been endowed in
order to perform the desired analysis. The scenario consists
of a set of sensors which data is stored inside a blockchain
using the JSON format. Besides, the same data is stored
using RDF inside another blockchain. Then, relying on this
infrastructure, a set of tests have been performed to find an-
swers to the research questions reported in the introduction.

Next, the different components of the architecture are ex-
plained:

IoT Infrastructure: the sensors within the architecture
are 15 light bulb sensors, 1 temperature sensor and 1 oc-
cupancy sensor. These devices send their data to the IoT
Collector that forwards such information to the Agent JSON
Writer and to the Agent RDF Parser. The data is reported
by the sensors in JSON format.

Agent RDF Parser: this agent receives the JSON data
from the IoT Infrastructure and using a fixed RDF template
injects such data into the template using JSONPath expres-
sions. Then, it forwards the instantiated RDF template to
the Agent RDF Writer.

Agent RDF/JSON Writer: although the architecture
counts with two different agents for this task, conceptually
they perform the same function. Both receive a document
and write it in the blockchain. The Agent RDF Writer stores
the received RDF documents in the RDF blockchain seri-
alised as Turtle, and the Agent JSON Writer stores the JSON
documents received in the JSON blockchain.

Blockchain: in the architecture, data (either in RDF or in
JSON) is stored in a different Ethereum blockchain. Their
functionality is the same since the blockchain is agnostic to
the data format.

Agent JSON/RDF Reader: the architecture counts with
two different agents for this tasks that perform the same

function. These agents read the information within their
respectively blockchain. As a parameter, they can receive
the number of transactions to be read, providing as a result
the collection of documents stored in those transactions.

Virtualiser: this component in the architecture is imple-
mented with a software called Helio1. It reads a number
of transactions from the blockchain and, relying on a set
of translation rules, generates an RDF document with all
the JSON documents stored in the RDF blockchain, i.e., the
Virtual RDF. The virtual RDF is generated so it is exactly
the same of the one provided by the Agent RDF Reader.

SPARQL Agent: this agent receives a SPARQL query
and returns the query result. Depending on how it is config-
ured, it relies on the Virtual RDF or on the RDF output by
the Agent RDF Reader to answer the query.

The goal of this architecture is to provide a playground
were different measurements can be taken. First, the gas
consumption when storing the RDF or the JSON docu-
ments, relying on the Agent Writers. Secondly, the time
that takes reading RDF and JSON documents from the
blockchain, relying on the Agent Readers. Third, the time
that takes answering a query with the data stored in a set of
transactions when such RDF is provided by the Agent RDF
Reader or the Virtualisation component.

As a result, by performing these measurements, the re-
search questions introduced in Section 1 will be validated,
analysing the feasibility of storing RDF or JSON directly
on the chain, and using a virtualiser to obtain the RDF ben-
efits.

1https://helio.linkeddata.es/

Figure 1. Experimental architecture

556

5 Experimental Analysis

The different experiments designed to address the three
research questions formulated in this paper are reported in
this section. First, the gas spent when storing RDF and
JSON is measured in order to validate the first research
question. Second, the time required to read from the JSON
and the RDF blockchains, respectively, is measured in or-
der to validate the second research question. Finally, the
time taken to perform the same query relying on the one
provided by the virtual RDF and the one provided by the
RDF blockchain were measured to validate the third re-
search question.

The best effort was done in order to prevent informa-
tion loss due to the bespoke characteristics of each format.
Therefore, the JSON and the RDF documents stored in both
blockchains contain the same information. During the ex-
periments we compared the results considering the same
amount of transactions, namely: 2,000, 4,000, 6,000, 8,000,
10,000, 12,000, and 14,000.

All these tests have been carried out on a computer with
the following characteristics: intel i7 6700k, 32 Gb RAM
and 1Tb SSD.

Finally, all the times reported as box plots are measured
in seconds reporting the results of executing 10 times each
experiment. The test performed to establish if the results
have statistically significant differences is the well-known
Iman–Davenport test [19], with a confidence level of 95%.
This test outputs a p-value; if this value is below 0.05 it
means there are no statistically differences between the re-
sults, i.e., they can be considered the same.

5.1 Gas consumed storing RDF vs JSON

In this experiment RDF and JSON documents were
stored in different blockchains. Both documents contained
the same information; however, data expressed in RDF
required around 6,000 characters, whereas JSON data re-
quired approximately 550 characters to encode the same in-
formation. Figure 2 depicts the gas consumed storing sets
of RDF and JSON documents containing equivalent infor-
mation.

As it can be observed, storing data in RDF requires for
each transaction, on average, an amount of gas that is 10
times more than the one required by the information seri-
alised in JSON. In this case there is no need of applying any
statistical test since the magnitude of such difference makes
results clear.

5.2 Time required to read transactions

In this experiment we measured the time that took read-
ing a set of transactions from the JSON and the RDF

0

50000

100000

150000

200000

250000

2000t 4000t 6000t 8000t 10000t 12000t 14000t

G
a

s
 C

o
n

s
u

m
e

d

Number of transactions

RDF

JSON

Figure 2. Gas consumed by RDF and JSON

blockchains, respectively. In addition, the time for the
JSON data to be sent to the Helio virtualiser is included in
the results. Figure 3 depicts the results of this experiment.

20

40

60

80

2000t 4000t 6000t 8000t 10000t 12000t 14000t
Number of transactions

R
e
a
d

in
g

 t
im

e
 (

s
)

Technique JSON Helio RDF

Figure 3. Time for reading the transactions

As it can be observed, the reading times for the three
cases are close enough. The statistical test applied over
their average values in order to ensure their statistical equiv-
alence returns the following p-values: between JSON and
Helio is 0.13, between JSON and RDF is 2.66×10−4, and
between Helio and RDF is 0.02×10−4. With this p-values,
it can be concluded that reading times are statistically equiv-
alent between JSON and Helio. Instead, between JSON and
RDF, and Helio with RDF, there is a statistical difference.
As a result, reading JSON, and optionally feeding the Helio
virtualiser, is faster than just reading the RDF.

5.3 Issuing SPARQL queries

In this experiment the time that took reading the
blockchain plus the time that takes solving a SPARQL
query was measured. The query issued asked about all the

557

known data in the blockchain. Figure 4 depicts the results
of this experiment.

0

2

4

6

2000t 4000t 6000t 8000t 10000t 12000t 14000t
Number of transactions

T
im

e
 f

o
r

q
u

e
ri

n
g

 (
s

)

Technique Helio RDF

Figure 4. Time for querying all the data in the
blockchain

At the light of these results, using the virtualiser Helio
allows to solve the SPARQL queries faster than just aggre-
gating RDF documents from the Agent RDF Reader. The
difference is due to the fact that the translation is fast and
produces a whole RDF document; instead, the Agent RDF
Reader needs to aggregate all the documents into a single
one before solving the query. This behaviour explains the
linear growth of the results in the chart.

The statistical test outputs a p-value of 0.02; therefore,
it can be concluded that there are no statistical differences
and, thus, using a virtualiser in this context is the same than
reading and querying the RDF directly.

6 Conclusions

This article presents an empirical study that aims at an-
swering the research questions proposed in section 1. These
questions revolve around if storing RDF in a blockchain is
efficient, and if alternatives exist in order to keep the ben-
efits of RDF but avoiding its drawbacks. The experimental
results led to the following answers:

RQ1: at the light of the results reported in sub-
section 5.1 we can conclude that writing RDF is more than
10 times more expensive than writing JSON.

RQ2: results from sub-section 5.2 advocate that reading
JSON is faster reading than RDF; even feeding with the read
data a virtualiser is faster than reading RDF.

RQ3: sub-section 5.3 proofs that querying the virtu-
aliser is faster than reading and querying the RDF from the
blockchain.

As a conclusion of our empirical analysis, storing RDF
in a blockchain brings clear benefits for consuming data,
e.g., been able to query semantic data, use standard-
ized models or bring the benefits of link-data. However,
RDF has some drawbacks: i) reading the data from the
blockchain takes more time than reading the same data in
other format like JSON, and also, ii) writing RDF in a
blockchain has an elevated cost in terms of gas.

As a result, in this paper a virtualiser to translate on the
fly JSON into RDF was analysed. The experimental results
achieved proof that using a virtualiser under the studied cir-
cumstances is more efficient than using RDF. It has the same
benefits, but none of its drawbacks.

In the future, this analysis will be extended considering
SPARQL query rewriting techniques, which could be even
more efficient than using virtualisers. Also other parameters
will be studied, such as scalability and memory usage.

7 Acknowledgements

This paper was written in the context of the DELTA Eu-
ropean project, and thus has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 773960.

References

[1] J. Al-Jaroodi and N. Mohamed. Blockchain in indus-
tries: A survey. IEEE Access, 7:36500–36515, 2019.

[2] A. Banerjee and K. Joshi. Link before you share:
Managing privacy policies through blockchain. In
2017 IEEE International Conference on Big Data,
pages 4438–4447. IEEE, 2017.

[3] L. Bassett. Introduction to JavaScript object notation:
a to-the-point guide to JSON. O’Reilly Media, Inc.,
2015.

[4] T. Beris and M. Koubarakis. Modeling and preserving
Greek government decisions using semantic web tech-
nologies and permissionless blockchains. In European
Semantic Web Conference, pages 81–96. Springer,
2018.

[5] D. Brickley, R. V Guha, and B. McBride. RDF schema
1.1. W3C recommendation, 25, 2014.

[6] J. Cano-Benito, A. Cimmino, and R. Garcı́a-Castro.
Towards blockchain and semantic web. In Interna-
tional Conference on Business Information Systems,
pages 220–231. Springer, 2019.

[7] A. Cimmino, V. Oravec, F. Serena, P. Kostelnik,
M. Poveda-Villalón, A. Tryferidis, R. Garcı́a-Castro,

558

S. Vanya, D. Tzovaras, and C. Grimm. VICINITY: IoT
semantic interoperability based on the Web of Things.
In 2019 15th International Conference on Distributed
Computing in Sensor Systems (DCOSS), pages 241–
247. IEEE, 2019.

[8] J. de Kruijff and H. Weigand. Understanding the
blockchain using enterprise ontology. In International
Conference on Advanced Information Systems Engi-
neering, pages 29–43. Springer, 2017.

[9] M. Demir, O. Turetken, and A. Ferwom. Blockchain
and IoT for delivery assurance on supply chain
(BIDAS). In 2019 IEEE International Conference on
Big Data, pages 5213–5222. IEEE, 2019.

[10] M. English, S. Auer, and J. Domingue. Blockchain
technologies & the semantic web: A framework for
symbiotic development. In Computer Science Con-
ference for University of Bonn Students, pages 47–61,
2016.

[11] D. Graux, G. Sejdiu, H. Jabeen, J. Lehmann, D. Sui,
D. Muhs, and J. Pfeffer. Profiting from kitties on
ethereum: Leveraging blockchain RDF data with
SANSA. SEMANTiCS Conference, 2018.

[12] S. Harris, A. Seaborne, and E. Prud’hommeaux.
SPARQL 1.1 query language. W3C recommendation,
21(10):778, 2013.

[13] M. R Hoffman, L. Ibáñez, H. Fryer, and E. Sim-
perl. Smart papers: Dynamic publications on the
blockchain. In European Semantic Web Conference,
pages 304–318. Springer, 2018.

[14] F. Hofmann, S. Wurster, E. Ron, and M. Böhmecke-
Schwafert. The immutability concept of blockchains
and benefits of early standardization. In 2017 ITU
Kaleidoscope: Challenges for a Data-Driven Society
(ITU K), pages 1–8. IEEE, 2017.

[15] Luis Daniel Ibáñez, Huw Fryer, and Elena
Paslaru Bontas Simperl. Attaching semantic metadata
to cryptocurrency transactions. In DeSemWeb@ISWC,
2017.

[16] Henry Kim, Marek Laskowski, and Ning Nan. A first
step in the co-evolution of blockchain and ontologies:
Towards engineering an ontology of governance at the
blockchain protocol level. SSRN Electronic Journal,
2018.

[17] A. Le-Tuan, D. Hingu, M. Hauswirth, and D. Le-
Phuoc. Incorporating blockchain into RDF store at the
lightweight edge devices. In International Conference
on Semantic Systems, pages 369–375. Springer, 2019.

[18] M. Lefrançois, A. Zimmermann, and N. Bakerally. A
SPARQL extension for generating RDF from hetero-
geneous formats. In European Semantic Web Confer-
ence, pages 35–50. Springer, 2017.

[19] D. G Pereira, A. Afonso, and F. Medeiros. Overview
of friedman’s test and post-hoc analysis. Commu-
nications in Statistics-Simulation and Computation,
44(10):2636–2653, 2015.

[20] M. Pilkington. Blockchain technology: principles and
applications. In Research handbook on digital trans-
formations. Edward Elgar Publishing, 2016.

[21] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli.
Blockchain-oriented software engineering: challenges
and new directions. In 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering Compan-
ion (ICSE-C), pages 169–171. IEEE, 2017.

[22] M. Ruta, F. Scioscia, S. Ieva, G. Capurso, and
E. Di Sciascio. Semantic blockchain to improve scal-
ability in the Internet of Things. Open Journal of In-
ternet Of Things (OJIOT), 3(1):46–61, 2017.

[23] M. Ruta, F. Scioscia, S. Ieva, G. Capurso, and
E. Di Sciascio. Supply chain object discovery with
semantic-enhanced blockchain. In Proceedings of the
15th ACM Conference on Embedded Network Sensor
Systems, pages 1–2, 2017.

[24] M. Ruta, F. Scioscia, S. Ieva, G. Capurso, G. Loseto,
F. Gramegna, A. Pinto, and E. Di Sciascio. Semantic-
enhanced blockchain technology for smart cities and
communities. In 3rd Italian Conference on ICT for
Smart Cities & Communities (I-CiTies 2017), 2017.

[25] M. Sicilia and A. Visvizi. Blockchain and OECD data
repositories: opportunities and policymaking implica-
tions. Library hi tech Journal, 2019.

[26] J. J Sikorski, J. Haughton, and M. Kraft. Blockchain
technology in the chemical industry: Machine-to-
machine electricity market. Applied Energy, 195:234–
246, 2017.

[27] H. Ugarte. A more pragmatic Web 3.0: Linked
blockchain data. 2017.

[28] G. Wood et al. Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum project yellow
paper, 2014.

[29] M. Wooldridge and N. Jennings. Intelligent agents:
Theory and practice. The knowledge engineering re-
view, 10(2):115–152, 1995.

559

SecureChange: An Automated Framework to Guide Programmers in Fixing
Vulnerability

Sayem Mohammad Imtiaz*1, Kazi Zakia Sultana†2 and Tanmay Bhowmik‡3

1Department of Computer Science, Iowa State University, IA, USA
2Department of Computer Science, Montclair State University, NJ, USA

3Department of Computer Science and Engineering, Mississippi State University, MS, USA

Abstract

When developers fix a defect, they may change multiple
files. The number of files changed for resolving the defect
depends on how strongly the files are coupled with each
other. In earlier works, researchers leveraged this coupling
for better understanding and analyzing software as well as
for guiding developers to quickly find all probable code ar-
eas to complete fixing a defect. In some studies, researchers
generated association rules reflecting the coupling among
files and built tools to automate the discovery of the related
changes in the files. Such tools, however, do not consider
the type of defects resolved earlier for generating the rules
as a result of which many unrelated files may come up while
changing a file in later releases for resolving a specific type
of defect. Therefore, in our study, we consider only secu-
rity defects or vulnerabilities to generate the rules and then
automate the finding process of other related files while fix-
ing a vulnerability. Our tool “SecureChange” suggests the
developers a number of related files that might need to be
changed while fixing a particular vulnerability based on the
mined association rules from the revision history. This ap-
proach will have a significant role in guiding the developers
in fixing a vulnerability. Furthermore, this will be an effec-
tive endeavor for training new developers based on the vul-
nerability history of a system, which will in turn help them
to develop secure code. The proposed approach will also
be helpful in educating new developers about software vul-
nerabilities. Finding all the related files which have been
modified to fix a vulnerability, the new developers will be
able to learn how the faults in a file can be the root cause

*sayem@iastate.edu
†sultanak@montclair.edu
‡tbhowmik@cse.msstate.edu

of a vulnerability and how it can propagate to other related
files and ultimately emerge as a vulnerability to the outside
world. As a demonstration of our approach, we generate
association rules based on the revision history of three sys-
tems: Android, Mozilla Firefox, and Apache Tomcat. The
average precision and recall of 44% and 44% respectively
for three systems indicate the feasibility of our approach.

1. Introduction

Coupling among files in a software becomes crucial for
program understanding and resolving issues in software
maintenance [1–3]. Developers fix some software issues
in every revision and record the related changes which are
stored as revision histories. Mining this revision history can
be a good source of discovering coupling among the files.
Revision history also tells us how the program evolves over
time, which can later be used for identifying the versions
having or not having a particular issue. Researchers have
used such historical data to support code navigation [4].
In [5,6], coupling has been used to analyze and get insights
of the program. In order to guide developers in fixing de-
fects, [7] suggested a technique to provide related changes
by mining revision histories.

The state of the art does not focus on the revision his-
tories that are targeted to fix particular types of issues
(general bugs or vulnerabilities or adding new functional-
ities) [1–3, 7]. Here, a potential drawback is that there is a
higher probability of increased false positives if the devel-
oper is not fixing the same type of issue compared to the
earlier versions. Therefore, following such a generalized
association rule based technique could be misleading for a
developer as he/she might end up wasting time concentrat-

DOI reference number: 10.18293/SEKE2020-132

560

ing on irrelevant files considering the task at hand. In order
to address this gap, in this paper, we consider the revisions
that were made for resolving vulnerabilities and then ex-
tract the files that were changed together. We leverage the
extracted components to generate association rules so that
we can guide the developers later on fixing vulnerabilities.
Software vulnerability is a mistake in software that can be
directly used by a hacker to gain access to a system or net-
work1. As a vulnerability can put the security of a software
at risk, in our study, we considered software vulnerability
and applied the framework for fixing the security issues.

Let us consider an example. According to the revi-
sion log2 of Apache Tomcat (an open-source Java Servlet
Container developed by the Apache Software Founda-
tion (ASF)), NamingContextListener.java has been
modified 50 times since 2006 as a part of fixing dif-
ferent issues. But it was coupled with only one file
ResourceLinkFactory.java in Revision 17572713 where
the developer fixed the “Unrestricted Access to Global Re-
sources” vulnerability. This vulnerability4 has been fixed by
the developers in 2016. A developer does not need to con-
sider all files related to NamingContextListener.java
since 2006 for fixing a vulnerability in this file. This story
tells us that mining the revision log of a system could be
of no use if we do not consider the type of issue to be re-
solved. Therefore, we concentrate on the revisions related
to fixing vulnerabilities so that when the developers will try
to fix any vulnerability later, they can be guided based on
only the vulnerability-fixing related revisions of that file.

Another motivation of the paper comes from the need
to educate new developers on vulnerability for a specific
system. As a new developer may be unfamiliar with the
system she is working on, this can be an effective guidance
for her to fix the faults in all the related files and help her to
be acquainted to the new system.

This paper, primarily motivated by the work of Zimmer-
mann et al. [7], uses the concept of association rule mining
to produce the list of coupled files from the revision history.
In contrast to the state of the art, it focuses on quick fix-
ing software vulnerability and ensuring secure coding. The
objectives of the paper are as follows:

1. to obtain association rules reflecting the coupling
among the related vulnerable files so that programmers
can be guided in fixing vulnerability in later releases of
the same system.

2. to assist the developers in finding and fixing vulnera-
bilities in an efficient and effective way, thereby ensur-
ing secure software evolution.

1https://cve.mitre.org/about/terminology.html
2https://svn.apache.org/viewvc/tomcat/trunk/java/org/apache/catalina

/core/NamingContextListener.java?view=log&pathrev=1757271
3https://svn.apache.org/viewvc?view=revision&revision=1757271
4http://cve.mitre.org/cgi-bin/cvename.cginame=CVE-2016-6797

3. to identify coupling among vulnerable files and thus
increase the ability to understand and analyze vulnera-
ble code for software maintenance.

4. to evaluate the proposed approach that suggests related
changes that might be needed for fixing a particular
type of vulnerability in a system.

Section 2 shows the related works. In Section 3, we dis-
cuss Apriori algorithm which we used to generate associ-
ation rules from the vulnerability revision histories. Sec-
tion 4 presents the methodology followed in SecureChange
to perform the experiments. Finally, Section 5 presents the
results and Section 6 concludes the study.

2. Related Work

In [8], Ying et al. applied data mining techniques in the
change history and determined sets of files that were fre-
quently changed together in the past. They hypothesized
that the change patterns (pertinent set of files) can be recom-
mended to the developers performing a modification task.
They revealed valuable dependencies among the files in the
Eclipse and Mozilla open source projects and evaluated the
performance of the recommendations that were produced by
their approach for actual modification tasks. Xing et al. [9]
used association rule mining at the design level on ver-
sions of UML diagrams to detect class co-evolution. They
presented three potential applications of class co-evolution
discovery in the context of software maintenance: finding
the scope of future maintenance activities, guiding refactor-
ing activities and identifying system instabilities. Although
they showed promising initial results of their approach, it
still lacks in large scale evaluation. In [10], the authors in-
vestigated how a change in one source code entity propa-
gates to other entities. They applied several heuristics to
predict change propagation and validated their approach in
five open source software systems. Gall et al. [2] first used
release history of a system to uncover logical dependencies
and common change patterns among modules in order to de-
tect potential structural shortcomings. The CVS history has
also been used to detect more fine-grained logical coupling
between classes [5], files, and functions [6]. In [11–13],
authors used inductive learning (a relevance relation identi-
fying two files that are updated together) to learn different
concepts between logically coupled files.

Michail [14, 15] applied data mining technique to dis-
cover library reuse patterns (for example, how library func-
tions are used together or how library functions are over-
written by the applications classes). [15] considered the in-
heritance relationship and generated generalized associa-
tion rules to find how the descendent classes have been in-
voked or instantiated. In SecureChange, we use association

561

rule mining for mining vulnerability revision histories and
guiding developers in secure software development.

3. Introducing the Apriori Algorithm

In order to suggest relevant co-occurring changes for a
particular change, SecureChange leverages an association
rule learning technique known as Apriori algorithm [16].
Let us assume that we have a set of transactions, T =
{T1, T2, T3, ..., Tn}, where each transaction records a set of
co-occurring change items, C = {C1, C2, C3, ...}. Apriori
algorithm generates a set of frequent items based on a sup-
port threshold. The frequent item set is then leveraged to
learn association rules among individual items, Ci, in the
set of all transactions. A rule is denoted as follows:

X → Y where X, Y ⊆ C

Here, X is called antecedent and Y is called consequent.
In other words, if X occurs, then Y follows. The rules are
derived based on some parameters:

• Support Count: Support count indicates the popular-
ity of an item. It measures how frequently a particular
item appears in all transactions. It can be expressed as:

Support(X) =
|{t ∈ T,X ⊆ t}|

|T |

• Confidence: Confidence measures the relative impor-
tance of the consequent in a rule. It indicates how fre-
quently a consequent appears in all transactions that
contain antecedent.

Confidence(X → Y) =
Support(X ∪ Y)

Support(X)

Higher the confidence, better the likelihood of occur-
ring Y, given X.

• Lift: Lift takes the popularity of both antecedent and
consequent into account. It is possible that an item is
generally very popular. It may occur in many transac-
tions without maintaining a particular pattern with any
antecedent. In such a case, confidence provides a poor
feedback on a rule. However, lift resolves this prob-
lem by considering popularity of both the antecedent
and consequent. In other words,

Lift(X → Y) =
Support(X ∪ Y)

Support(X)× Support(Y)

A lift value of 1 indicates that item-sets are indepen-
dent of each other. Whereas, a value higher than 1
indicates a tie between item-sets. In other words, the
higher the lift, the stronger the tie. On the other hand,
lift value lower than 1 indicates a negative tie.

Table 1: Datasets

System # Transactions
Curated

Transactions Versions

Tomcat 76 48 5 - 8.5.38
Firefox 595 249 3.6 - 62.0.2
Android 1485 381 4.4 - 9.0

4. Methodology

This section describes the methodology of Se-
cureChange in details.

4.1 Research Question

The primary challenge with mining association rules for
secure development is that the occurrence of a vulnerability
is very infrequent compared to regular bugs. As a result,
vulnerability-fixing transactions are less in amount com-
pared to other general transactions. Abundance of data is
very crucial for the success of a data mining technique such
as association rule mining. Therefore, in this study, we at-
tempt to answer the following research question (RQ):

Given the limited availability of the vulnerability-
fixing transactions, is association rule mining for secure
software development as effective as it has been shown
in guiding general software change tasks [7]?

4.2. Training Data Preparation

To evaluate SecureChange, we have performed case
studies on three widely known real world open-source soft-
ware systems, namely, Apache Tomcat5, Mozilla Firefox6,
and Android Open Source Project (AOSP)7. The vulnera-
bilities detected and fixed in these systems are publicly ac-
cessible. We begin by mining respective security advisories
of all the systems. A security advisory typically records
detailed information of past vulnerabilities, including the
source code changes for fixing the vulnerability and time of
the fix. We treat set of all files changed for fixing a vulner-
ability as a single transaction.

Table 1 shows the demography of the collected data. We
found that most of the transactions have only one change.
These transactions can be easily identified by Apriori al-
gorithm, hence leading to a bloated estimation of the per-
formance. For instance, in our experiment, SecureChange
provided two or three times better performance estimation
than the one trained without such transactions. Therefore,
we further curated the dataset to eliminate transactions with

5http://tomcat.apache.org/
6https://www.mozilla.org/
7https://source.android.com/

562

http://tomcat.apache.org/
https://www.mozilla.org/
https://source.android.com/

a single change and then assessed the effectiveness of Se-
cureChange in predicting co-occurring changes.

4.3. Validation Technique

We have validated SecureChange in a repeated valida-
tion setup. The experiment has been repeated 100 times on
a randomly shuffled dataset for each project. In each ex-
periment, Apriori algorithm was trained with 90% of the
data and remaining 10% was retained for testing. The data
were randomly shuffled before each experiment. The ran-
dom shuffling and repeating many times minimized the bias
in the reported result. During every experiment, we per-
formed the following steps:

1. Shuffle dataset randomly and split into two 90%-10%
folds.

2. Train SecureChange with Apriori algorithm on the fold
with 90% data.

3. After generating the rules or training, iterate through
every transaction in the test dataset. For every trans-
action in the test dataset, we evaluate every pair of
rules. For instance, if a certain transaction contains
three files which have been changed to fix a vulner-
ability, Ti = {File1, F ile2, F ile3} , then following
rules are evaluated: File1 → File2, File2 → File3,
File1 → File3, File2 → File1, File3 → File2, and
File3 → File1. Then we obtain the average of the
performance metrics for all queries in the test dataset.

4. Final performance metrics (i.e., Recall, Precision and
Feedback) are reported by taking average over all re-
peated experiments.

4.4. Performance Metrics

The performance of SecureChange is evaluated based on
the following three metrics:

• Precision: For a given transaction, precision refers
to the percentage of rules predicted correctly out of all
predictions. For instance, consider, a transaction con-
tains two files, Ti = {File1, F ile2}. This transaction
suggests two rules:

File1 → File2 (1)

File2 → File1 (2)

Rule 1 tells us that if File1 is changed, then File2
changes and the impact is bidirectional; therefore, we
have the rule 2.

Assume, following rules have been predicted by Se-
cureChange for File1 and File2:

File1 → File2 (3)

File1 → File3 (4)

File2 → File4 (5)

The rules 3 and 4 basically tell us that with a certain
support, confidence and lift, if File1 is changed, then
File2 and File3 are also changed. The rule 5 can be
interpreted similarly.

A transaction containing N items or files will have
N number of queries. For example, we have two
queries to validate: File1 and File2 as in the rules 1
and 2 generated from the transaction Ti. For query 1,
only the rule 3 is correct out of two predictions made
for File1. Therefore, the precision, in this case, is
50%. Similarly, the precision for query 2 is 0 since
the prediction is wrong for File2. Finally, an aver-
age precision for all queries (25%) is reported by Se-
cureChange. If SecureChange generates no rules for a
query, the precision is considered to be 100%. How-
ever, considering such queries distorts the average pre-
cision. Therefore, we did not measure precision and
recall for such queries and also did not consider them
in performance evaluation.

• Recall: For a given transaction, recall refers to
the percentage of rules predicted correctly out of all
ground truth rules. In the example, for query 1, the
recall is 100% as one out of one possible original
changes for File1 has been correctly predicted. Sim-
ilarly, for query 2, it is 0. Finally, an average recall
(50%) is reported by SecureChange.

• Feedback: A query can be left unreported by Se-
cureChange. For instance, consider the transaction
consisting of two files in the above example. Assume,
following rules have been predicted by SecureChange:

File1 → File2 (6)

File1 → File3 (7)

As we can see, rule 2 has not been predicted by Se-
cureChange. The precision, in this case, is 100% since
no false positive reported and recall is 0 since no ac-
tual change has been picked. Similarly, there can be
many queries for which SecureChange may not re-
spond. It would take a toll on the final average preci-
sion and recall and undermine the actual performance
of the SecureChange. Therefore, we omit such queries
in the final performance evaluation and instead in-
corporate another complementary performance metric,

563

Table 2: Performance Overview

System Feedback Precision Recall

Firefox 42% 20% 24%
Android 37% 49% 56%
Tomcat 44% 62% 51%

Average 41% 44% 44%

feedback. Feedback informs us about the fraction of
queries that have been responded to by SecureChange.
It allows us to evaluate the actual performance of the
SecureChange even in the case of inadequate training
data. It also highlights the overall responsiveness of
the framework. The feedback for this example is 50%
since one query out of two queries has been responded.

5. Results and Implications

To answer the research question mentioned in Sec-
tion 4.1, we have conducted case studies on three open-
source software systems, Firefox, Tomcat, and Android
Open Source Project, which publicly report vulnerabili-
ties detected and fixed in their system. For three systems,
SecureChange achieved approximately 41% feedback and
44% precision and recall on average as in Table 2. Different
values for support, confidence, and lift parameters provide
different results in each system as shown in Figure 1.

Zimmermann et al. [7] achieved 66% feedback in trans-
actions where any kind of changes by the developers were
considered. Although their feedback is better than the feed-
back we found for vulnerability-fixing transactions, they
achieved 33% precision and 29% recall on average. The
feedback found in our study can be explained from the fact
that, considering all kind of changes allowed them to in-
clude more transactions in the experiments. On the other
hand, security-related transactions are less frequent, and
therefore, our curated security transactions are significantly
less than the transactions considered in [7]. Intuitively,
more the transactions, better the response rate would be.

However, the better recall and precision we obtained on
a comparatively smaller set of transactions suggest that the
vulnerability fixes often involve same set of files, hence they
are frequently co-occurring. It implies that correlation stud-
ies on finer-granularities (e.g. statements, functions, classes
etc.) is worth-exploring which could provide more precise
vulnerability localization in the source code.

Figure 1 presents a comparative overview of the preci-
sion, recall, and feedback at different minimum supports
and confidences for Firefox, Android, and Tomcat respec-
tively. A general observation is that precision and recall
tend to increase as the support and confidence increase.
Feedback, on the other hand, tends to decrease as the sup-

Figure 1: Precision, Recall, and Feedback for varying sup-
port and confidence (First row showing result for Firefox,
second row for Android, and third row for Tomcat)

port and confidence increase. A higher support and con-
fidence ensures that only highly relevant rules are consid-
ered, therefore, as these parameters go up, the number of
queries responded decreases for stricter filtering conditions.
However, on the positive side, it only returns highly likely
changes with lower false positives. Therefore, there is an
obvious trade-off between the provided results and the ac-
curate results.

Our results imply that we can effectively apply associ-
ation rule mining to guide developers in secure software
development.

6. Threats to Validity and Conclusion

In this study, we first analyzed vulnerability revision his-
tories of three large systems: Android, Firefox, and Tomcat.
Then we generated association rules to figure out which files
are frequently changed together in a vulnerability fix. When
a developer starts to fix a vulnerability by making changes
in a vulnerable file, our approach will suggest relevant set
of files to be modified based on the generated association
rules. We found precision and recall of 44% and 44% re-
spectively on an average for three systems.

In our experiment, a threat to internal validity could be,
to what extent, the reported result can be trusted or whether
it is biased. To mitigate this threat, we have introduced
randomization in the experimental procedure and repeated

564

the experiments 100 times. On the other hand, an external
threat to SecureChange is whether it generalizes across ap-
plication domains. In order to mitigate this threat, we have
performed experiments on three different kinds of open-
source systems, namely a web server (Tomcat), a desktop
application (Firefox), and an operating system (Android).
However, it is possible that SecureChange might not repli-
cate the similar performance in closed-source systems for
different architecture or other open-source systems for the
quality of the captured vulnerability data. Also, a reason-
able amount of preexisting vulnerability data has to be avail-
able to have useful feedback from SecureChange.

In future, we plan to extend this research for other sys-
tems so that our proposed framework, SecureChange, can
be used by the developers of all systems. In addition, we
will work on building a plug-in of the proposed framework
for different source code editors (e.g., Eclipse, Netbeans) so
that developers can find it more useful for secure coding.

References

[1] T. Ball, J. min Kim, A. A. Porter, and H. P. Siy, “If
your version control system could talk...” 1997.

[2] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logi-
cal coupling based on product release history,” in Pro-
ceedings. International Conference on Software Main-
tenance, Nov 1998, pp. 190–198.

[3] J. M. Bieman, A. A. Andrews, and H. J. Yang, “Un-
derstanding change-proneness in oo software through
visualization,” in 11th IEEE International Workshop
on Program Comprehension, May 2003, pp. 44–53.

[4] D. Čubranić and G. C. Murphy, “Hipikat: Recom-
mending pertinent software development artifacts,” in
Proceedings of the 25th International Conference on
Software Engineering, ser. ICSE, 2003, pp. 408–418.

[5] H. Gall, M. Jazayeri, and J. Krajewski, “Cvs re-
lease history data for detecting logical couplings,” in
Sixth International Workshop on Principles of Soft-
ware Evolution, 2003. Proceedings., Sep. 2003, pp.
13–23.

[6] T. Zimmermann, S. Diehl, and A. Zeller, “How history
justifies system architecture (or not),” in Sixth Interna-
tional Workshop on Principles of Software Evolution,
2003. Proceedings., Sep. 2003, pp. 73–83.

[7] T. Zimmermann, P. Weissgerber, A. Zeller, and
S. Diehl, “Mining version histories to guide software
changes,” IEEE Transactions on Software Engineer-
ing, vol. 31, no. 6, pp. 429–445, June 2005.

[8] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-
Carroll, “Predicting source code changes by mining
change history,” IEEE Trans. Softw. Eng., vol. 30,
no. 9, pp. 574–586, Sep. 2004.

[9] Z. Xing and E. Stroulia, “Data-mining in support
of detecting class co-evolution,” in The 16th Inter-
national Conference on Software Engineering and
Knowledge Engineering, Alberta, Canada, June 20-
24, 2004, 2004, pp. 123–128.

[10] A. E. Hassan and R. C. Holt, “Predicting change prop-
agation in software systems,” in 20th IEEE Interna-
tional Conference on Software Maintenance, 2004.
Proceedings., Sep. 2004, pp. 284–293.

[11] J. S. Shirabad, T. C. Lethbridge, and S. Matwin, “Sup-
porting maintenance of legacy software with data min-
ing techniques,” in Proceedings of the 2000 Confer-
ence of the Centre for Advanced Studies on Collabo-
rative Research, ser. CASCON ’00, 2000, pp. 11–.

[12] ——, “Mining the maintenance history of a legacy
software system,” in International Conference on Soft-
ware Maintenance, 2003. ICSM 2003. Proceedings.,
Sep. 2003, pp. 95–104.

[13] ——, “Mining the software change repository of a
legacy telephony,” in Proceedings of International
Workshop on Mining Software Repositories (MSR ’04,
2004, pp. 53–57.

[14] A. Michail, “Data mining library reuse patterns in
user-selected applications,” in 14th IEEE Interna-
tional Conference on Automated Software Engineer-
ing, Oct 1999, pp. 24–33.

[15] ——, “Data mining library reuse patterns using gen-
eralized association rules,” in Proceedings of the 2000
International Conference on Software Engineering.,
June 2000, pp. 167–176.

[16] R. Agrawal, R. Srikant et al., “Fast algorithms for
mining association rules,” in Proc. 20th int. conf. very
large data bases, VLDB, vol. 1215, 1994, pp. 487–
499.

565

DOI reference number: 10.18293/SEKE2020-143

Significant API Calls in Android Malware Detection
Using Feature Selection Techniques and Correlation Based Feature Elimination

Asadullah Hill Galib

Institute of Information Technology

University of Dhaka

Dhaka, Bangladesh

bsse0712@iit.du.ac.bd

B M Mainul Hossain

Institute of Information Technology

University of Dhaka

Dhaka, Bangladesh

mainul@iit.du.ac.bd

Abstract— Android API Calls are an important factor in

differentiating malware from benign applications. Due to the

increasing number of API Calls and considering computational

complexity, the number of API calls in Android malware detection

should be assessed and reduced without affecting detection

performance. This study tries to figure out a feature reduction

approach for identifying significant API Calls in Android malware

detection. It incrementally analyzes various feature selection

techniques to find out the minimal feature set and the most suitable

technique. Also, it incorporated a correlation-based feature

elimination strategy for further reduction of API Calls.

Experiments on two benchmark datasets show that the Recursive

Feature Elimination with Random Forest Classifier causes the

minimal number of API Calls. Evaluation results indicate that the

reduced set of significant API Calls (SigAPI) will perform

relatively close to the full set of features in terms of accuracy,

accuracy, recall, f-1 performance, AUC, and execution time. It also

compares the performance with the existing malware detection

works and the SigAPI outperforms most of the work regarding

malware detection rate. Furthermore, it reports the top significant

API Calls in malware detection. Finally, this work suggests that

reduced features set of significant API Calls would be useful in

classifying Android malware effectively.

Keywords- Significant API Calls, Android Malware Detection,

Feature Selection

I. INTRODUCTION

Android API (Application Programming Interface) is a
series of specifications and guidelines that programs can follow
to communicate with each other. Using API Calls this
communication happens. APIs are growing exponentially every
year [1]. Due to the wide-ranging applicability of API Calls, they
are commonly used for characterizing and separating malware
from benign applications.

 However, the Android operating system uses a large
number of API Calls and the number continues to expand. So,
handling this large number of API calls in malware detection for
Android is challenging. This would overfit the classifier model
or complicated the classification method by providing a large
number of features set. It would be useful to boost this problem
by reducing features of the API Calls using feature selection
techniques.

 This study dealt with examining API Calls for reducing
the irrelevant ones without tampering significant API Calls. It

presents an approach for significant API Calls identification.
Primarily, it incrementally employed several feature selection
techniques. It trialed with Mutual Information Gain, Univariate
ROC-AUC scores, Recursive Feature Elimination (RFE) with
Gradient Boosting Classifier, and Random Forest Classifier,
SelectKBest using chi scoring function, SelectFromModel using
Random Forest and Extra Trees classifiers for exploring the
effect of incremental feature selection. Subsequently, according
to the performance evaluation, it infers a minimal range of
features for different techniques and determines the best
selection technique. Further, by incorporating a correlation-
based feature elimination strategy, it reduces the minimal range
of feature sets. Finally, the selected features are evaluated on two
benchmark datasets based on five performance metrics
(accuracy, precision, recall, f-1 score, AUC), execution time,
and comparison with existing works.

 Results show that from all the API Calls, 15-25 API
Calls are significant in malware detection according to RFE with
Random Forest Classifier. Evaluation illustrates that using those
significant API calls, the performance is close enough to the full
API Calls set. For instance, using the top 25 significant API
Calls derived from the feature selection technique, the
performance metrics are as follows for a particular dataset:
accuracy - 97.07%, precision - 97.41%, recall - 94.60%, f-1
score - 0.960, and AUC – 0.993. Likewise, as far as the
execution time is concerned, the significant API Calls take fairly
less time. In comparison with existing works, this work
outperforms other studies while using only a few numbers of
API Calls. Also, the top significant API Calls are reported.

 There were no prior works on reducing or defining
significant API calls. To the best of our knowledge, this is the
first study on significant API Calls in Android malware
detection. The main contributions of the study are as follow:

• It proposes and assesses a feature reduction approach
for identifying significant API Calls in Android
Malware Detection effectively.

• It’s reduced significant API Calls performs notably
with respect to the full features set in terms of accuracy,
precision, recall, f-1 score, AUC, and execution time.
Also, it outperforms most of the existing works.

• It provides the top significant API Calls list in Android
malware detection.

566

The rest of the paper is organized as follows. Section II
presents the significant API Calls identification approach in
detail. Section III gives the evaluation of the approach. Section
IV gives the limitation. Section V gives related works. Section
VI concludes the paper and guides future work.

II. SIGNIFICANT API CALLS IDENTIFICATION APPROACH

The overall approach of significant API Calls identification
consists of five steps. The overview of the approach is depicted
in Fig. 1. The details of each step are as follow:

Figure 1. Significant API Calls Identification Approach

A. Data Preprocessing

The dataset is preprocessed using traditional data
preprocessing techniques. Other features are excluded from the
dataset except for the API Calls. Subsequently, missing value
treatment and label encoding are incorporated. For, incremental
feature selection, the dataset is split into training and validation
sets.

B. Incremental Feature Selection (IFS)

In identifying the significant API Calls, two aspects are
considered. First, how many numbers of API Calls should we
choose? In this regard, it is avoided to set any predefined
parameters like a certain number of API Calls to be selected.
Rather, it is intended to determine the optimal/minimal number
of API Calls by analyzing performance metrics for different
numbers of API Calls. In doing so, a feature selection technique
is employed in an incremental way. For each feature selection
technique, from one to the highest number of API Calls are
assessed separately based on performance metrics.

Second, which feature selection technique is more suitable in
reducing API Calls while maintaining the performance in
Android malware detection? Again, various feature selection
techniques are analyzed to figure out the most suitable
technique, rather than imposing a predetermined feature
selection technique. In this study, the following feature selection
techniques are examined:

1. Feature Selection using Mutual Information Gain (Entropy-
Based): Mutual Information is a non-negative value
between two random variables, which measures
dependency between variables. It measures the quantity of

information gained by analyzing the other random variable
involving one random variable. It is equal to zero if there
are two independent random variables, and higher values
mean higher dependence. The function is based on
nonparametric methods based on entropy estimation of the
distances from k-nearest neighbors as defined in [2] and [3].

2. Feature Selection Based on Univariate ROC-AUC Score: A
ROC curve (receiver operating characteristic curve) is a
graph representing a classification model output at all
classification thresholds. This curve maps two parameters:
True Positive Rate and False Positive Rate. AUC stands for
"Area under the ROC Curve," meaning that AUC measures
the whole two-dimensional space under the ROC Curve.
The region under the curve (AUC) is proportional to the
probability that a classifier ranks a randomly selected
positive instance higher than a randomly selected negative
one by using normalized units [4]. Univariate ROC-AUC
involves the analysis of a single variable. An AUC equal to
0.5 corresponds to a type of random classification. For a
model to be acceptable AUC will be greater than 0.5.

3. Feature Selection using Recursive Feature Elimination
(RFE): The goal of recursive feature elimination (RFE) is
to pick features by recursively considering smaller and
smaller sets of features, given an external estimator that
assigns weights to features. First, the estimator is trained on
the initial collection of features and the importance of each
function is obtained. The least significant characteristics are
then pruned from the present range of characteristics. The
process is repeated recursively on the pruned collection
before finally achieving the required number of features to
be chosen [5]. In this work, two classifiers are used as the
estimators of the RFE.

3.1. RFE with Gradient Boosting Classifier: As the base
estimator of the RFE, Gradient Boosting Classifier is
employed. Gradient Boosting Classifier builds an
additive model in forward-stage-wise fashion; enables
arbitrary differentiable loss functions to be optimized.
Regression trees are fit on the negative gradient of the
function of binomial or multinomial loss of deviance
in each point [6].

3.2. RFE with Random Forest Classifier: Random Forest
Classifier is also used as the base estimator of the RFE.
It is a meta-estimator that fits multiple decision tree
classifiers on various dataset sub-samples and uses an
average to improve predictive [7].

4. Feature Selection using SelectKBest with chi2: SelectKBest
scores the features according to the k highest scores. It takes
a score function as a parameter, which would be specific to
a pair. The score function retains the features of the first k
with the highest scores [8]. In this study, the chi2 scoring
function is employed. This scoring function computes the
chi-squared stats between each non-negative feature and
class scores accordingly. It tests for which the distribution
of the test statistic approaches the χ2 (Chi-Squared)
distribution asymptotically [9].

5. Feature Selection using SelectFromModel (Tree-Based):
SelectFromModel is a meta-transformer that can be used

567

along with any tree-based estimator. It calculates the feature
importance of each feature according to fitting the estimator
into the data. Based on the feature importance it selects the
top N features, where N is predefined [10]. Tree-based
estimators are used here as it can classify the significant
features by selecting the classification features on the basis
of how well they boost the node's purity [11]. In this case,
every possible value of N is evaluated. Also, two tree-based
estimators are incorporated here: Random Forest Classifier
and Extra Trees Classifier.

C. Determining Feature Selection Technique using the

Minimal Range of Features

After implementing the incremental feature selection using
different feature selection techniques, analysis of performance
metrics is carried out to identify the minimal range of features.
The minimal range of features implies a range of features from
which segment the performances of Android malware detection
are not increased significantly with respect to the increase of
features. In other words, before the minimal range, the
performances are increased. But, after the minimal range, the
performances are quite unchanged with the increase in the
number of features. To draw a conclusion from the analysis, a
self-explanatory plot is generated using the performance metrics
(accuracy, precision, recall, f-1 score) with respect to the
increasing number of features. According to the plots for
different techniques, the minimal range of features are deduced.

These minimal ranges are conducive to determine the best
feature selection technique. The feature selection technique with
the lowest minimal range is carefully chosen for identifying
significant API Calls in Android Malware Detection.

D. Correlation-based Feature Elimination

After selecting the important features using the suitable
feature selection technique, a final feature elimination strategy
is performed for further reduction of API Calls without affecting
the performances notably. Here, a correlation-based feature
elimination strategy is applied.

A pair-wise Pearson correlation coefficient is calculated for
all pairs of important API Calls. It is a measure of the linear
correlation between two variables X and Y. It is calculated using
the following equation [12]:

𝜌𝑥𝑦 =
Cov(x,y)

𝜎𝑥 𝜎𝑦
 (1)

Where,

𝜌𝑥𝑦 = Pearson correlation coefficient

Cov (x,y) = covariance of variable x and y

𝜎𝑥 = standard deviation of x

𝜎𝑦 = standard deviation of y

Then all the pairs with a Pearson correlation coefficient
greater than 0.85 are filtered out for the feature elimination
process. As the two features in each pair are highly correlated,
so removing one of them would not affect the classification
performances.

The elimination strategy here is to remove the less important
feature from each pair. To measure the relative importance of the
features, a tree-based estimator – Random Forest Classifier is
used. According to the relative feature importance, the more
important feature in each pair is intact, and the less important
feature is eliminated.

E. Evaluating Significant API Calls

Finally, the reduced set of API Calls are evaluated according
to five performance metrics – accuracy, precision, recall, f-1
score, AUC. Here, the minimal range of features derived from
the best feature selection technique is assessed. In the final
assessment, the Random Forest classifier is trained and
evaluated with 10-fold cross-validation. Along with the five-
performance metrics, execution time, and comparison with the
existing approach are also evaluated. Also, significant API Calls
are determined and reported.

III. EVALUATION

In the evaluation of this study, two benchmark datasets are

used. The experimental results are analyzed based on five

performance metrics - accuracy, precision, recall, f-1 score, and

AUC. These metrics are widely used in performance measure

of Android malware detection. Besides, the execution time of

detection is considered for evaluation. Three research questions
are being answered here regarding significant API Calls in

malware detection.

A. Dataset

In this study, the Drebin [13] and the Android Malware
Genome Project [14] datasets are used. The datasets are used
separately to ensure the applicability and generalizability of the
approach.

The Drebin dataset contains 5,560 malware applications
from 179 different malware families. Also, 9470 benign
applications derived from the Google Play Store are
incorporated here for classifying the malware properly.

The Android Malware Genome Project dataset contains
1,200 malware samples that cover most existing Android
malware families. Here, 2539 benign applications derived from
the Google Play Store are incorporated. In the rest of the paper,
this dataset is referred to as Malgenome.

Only the API Calls are considered in this work. In total, 73

API Calls are found in the Drebin dataset and 69 API Calls are

found in the Android Malware Genome Project dataset.

B. RQ1: How can we sort out the significant API Calls

(features) in Android malware detection?

According to the different incremental feature selection
techniques, the minimal ranges are analyzed to determine the
best feature selection technique in identifying significant API
Calls. The near minimal ranges are as depicted in Table I.

From the experiments, the best feature selection technique
for API Calls reduction is Recursive Feature Elimination (RFE)

with Random Forest Classifier as it has the lowest minimal

range among other techniques for both datasets (see Table I).

568

TABLE I. MINIMAL RANGE OF FEATURES FOR DIFFERENT FEATURE

SELECTION TECHNIQUES

Feature Selection

Technique

Minimal Range

for Drebin

Minimal Range

for Malgenome

Mutual Information Gain 37-42 23-28

Univariate ROC-AUC

Score
35-38 25-30

RFE with Gradient

Boosting Classifier
23-28 20-25

RFE with Random Forest

Classifier
18-25 18-21

SelectKBest with chi2 47-50 30-33

SelectFromModel with

Random Forest Classifier
25-30 17-22

SelectFromModel with

Extra Trees Classifier
28-33 20-23

The minimal range of features using RFE with

Random Forest Classifier for the Drebin dataset can be

deduced from Fig.2 and Fig. 3. According to Fig. 2., with the

number of features, are increased, the performance metrics

are also increased initially. However, in the range between

18-25 features (approximately), the performance metrics are

going to be stable and remain constant (the lines are almost

horizontal) for the following selected features. So, it can be
inferred that by taking those 18-25 features, the

performances are close enough to the actual performances of

all the 73 features. In the next research question, this minimal

range of features are evaluated.

Figure 2. Recursive Feature Elimination (RFE) using Random Forest

Classifier (Performance Metrics vs Number of Features)

Before proceeding to the performance evaluation, the

correlation-based feature elimination (CFE) is performed on

the minimal range of features. And, experiments show that

CFE can reduce the features as depicted in Table II. For

instance, CFE can reduce 18 features to 15 and 16 features

respectively for the Drebin and Malgenome datasets.

TABLE II. CORRELATION-BASED FEATURE ELIMINATION (CFE) ON THE

MINIMAL FEATURE SETS

Number of API Calls

Minimal Feature Sets

With CFE for

Drebin

With CFE for

Malgenome

18 15 16

19 15 17

20 17 18

21 19 19

22 20 20

23 21 21

24 21 21

25 22 22

C. RQ2: How do the significant API Calls perform in

detecting Android Malware?

In this research question, the reduced set of Significant API
Calls (SigAPI) are evaluated based on the performance metrics,
execution time, and comparison with existing works.

1) Performance Evaluation of the SigAPI

The performance evaluation for the significant API

Calls is based on five metrics. The evaluation is described in

Table III and Table IV for the number of API Calls– 15, 17,

19, 21, 23, 25, and all API Calls to sidestep redundancy.

Table III shows that for the Drebin dataset, the

performance metrics using significant API Calls are close to

the performance metrics of using all the API Calls (73).

Table IV also shows that for the Malgenome dataset,

the significant API Calls performs almost identically to the

full feature set of API Calls (69).

Specifically, how many significant API calls should be
selected? - It depends on the requirement of the stakeholders.

However, it is suggested to use the range of 15-25 significant

API Calls based on the prerequisite of performance metrics.

TABLE III. PERFORMANCE EVALUATION OF THE SIGNIFICANT API CALLS

(DREBIN)

Feature

Selection

Technique

of

API

Calls

Acc

(%)

Pre

(%)

Rec

(%)
F-1 AUC

All Features 73 98.32 98.62 96.17 0.974 0.996

RFE with

Random

Forest Clas-

sifier

25 97.07 97.41 94.60 0.960 0.993

23 96.69 96.92 94.06 0.955 0.993

21 96.26 96.64 93.15 0.949 0.992

19 96.17 96.26 93.27 0.947 0.991

17 95.62 95.58 92.43 0.940 0.988

15 95.38 96.03 91.29 0.936 0.986

569

TABLE IV. PERFORMANCE EVALUATION OF THE SIGNIFICANT API CALLS

(MALGENOME)

Feature

Selection

Technique

of

API

Calls

Acc

(%)

Pre

(%)

Rec

(%)
F-1 AUC

All

Features
69 98.71 98.87 97.22 0.980 0.998

RFE with

Random

Forest

Clas-sifier

25 98.12 98.16 96.19 0.972 0.998

23 98.03 98.15 95.87 0.970 0.998

21 98.10 98.07 96.10 0.971 0.996

19 96.16 97.92 96.51 0.972 0.996

17 97.97 97.82 96.03 0.969 0.995

15 97.26 97.62 94.05 0.958 0.993

2) Execution Time of the SigAPI

Table V shows the comparative execution time of

malware detection. The result shows that using the

significant API Calls (ranges between 15-25), the execution
time of the malware detection is considerably lower than

using all the features. For large data sets, this time would be

substantially higher.

TABLE V. EXECUTION TIME OF THE SIGNIFICANT API CALLS

of

API

Calls

Execution Time (s)

for Drebin

Execution Time (s)

for Malgenome

All 6.48 5.76

25 4.15 4.02

23 4.11 3.98

21 4.11 3.88

19 3.95 3.85

17 3.91 3.78

15 3.90 3.74

3) Comparison with Existing Works

Table VI shows the comparative analysis of the

detection rate using significant 20 API Calls – SigAPI (20)

for the Drebin dataset with respect to some existing works on

Android malware detection. The result shows that SigAPI

(20) outperformed all the existing works except two.

TABLE VI. COMPARISON WITH THE EXISTING WORKS

Works Detection Rate (%)

SigAPI (20) 96.30

Drebin [10] 93.90

SigPID [15] 93.62

Yerima et al. [11] 92.1%

Yerima et al. [12] 97.5%

Peiravian et al. [13] 95.75%

DroidAPIMiner [14] ~99%

Altaher et al. [16] 91%

A. RQ3: Which API Calls are Significant in Android

Malware Detection?

Table VII shows the top 25 significant API Calls in

Malware Detection for the Drebin dataset. These API Calls

are derived from the feature selection technique – RFE with

Random Forest Classifier. Also, these 25 API Calls are

almost identical to the Malgenome dataset except 3 API

Calls. More data instances would be conducive to generating

identical API Calls. Yet, as this study primarily suggests a

feature reduction approach for significant API Calls, the

dataset to dataset it may slightly vary due to the inconsistency
and time period of datasets.

TABLE VII. TOP 25 SIGNIFICANT API CALLS (DREBIN)

TOP 25 SIGNIFICANT API CALLS (DREBIN)

transact ClassLoader

onServiceConnected Landroid.content.Context.register

Receiver

bindService Ljava.lang.Class.getField

attachInterface android.content.pm.PackageInfo

ServiceConnection TelephonyManager.getLine1Num

ber

android.os.Binder Ljava.lang.Class.getMethod

Ljava.lang.Class.getCanonicalNa

me

android.telephony.gsm.SmsMana

ger

Ljava.lang.Class.getMethods TelephonyManager.getSubscriber

Id

Ljava.lang.Class.cast Ljava.lang.Object.getClass

Ljava.net.URLDecoder TelephonyManager.getDeviceId

android.content.pm.Signature HttpUriRequest

android.telephony.SmsManager Runtime.exec

IV. LIMITATION

In this study, only the Drebin and Malgenome datasets have
been analyzed, which is subject to bias and lack of
generalizability, threatening external validity. In terms of threats
to internal validity, the parameters of different techniques and
algorithms, execution time measurement are susceptible to bias
and can be examined differently by different analysts and
machines.

V. RELATED WORK

Several works dealt with API Calls in Android malware
detection. For instance, Drebin incorporated API Calls with
other features and obtained an accuracy of 93.90% in malware
detection [13]. Yerima et al. combined API Calls and
Permissions with Bayesian Classifier and attained 92.1%
accuracy [15]. In another work, they achieved an accuracy of
97.5% and an AUC of 0.953 by using a composite parallel
classifier approach [16]. Using API Calls modeled with SVM
(Support Vector Machine), Peiravian et al. gained an accuracy
of 95.75% and an AUC of 0.957 [17]. Likewise, DroidAPIMiner
integrated API level features and reached an accuracy as high as
99% using the KNN classifier [18].

570

Though a handful number of works employed API Calls,
none dealt with reducing API Calls or identifying important API
Calls. However, feature reduction technique is applied in
Permission features previously. Li et al. successfully reduced
135 Permission features to 22 features. They used Permission
ranking with negative rate, support based Permission ranking,
and Permission mining with association rules for feature
selection. Their reduced Permission features have higher recall
value, close enough accuracy value with the full features set. But
their precision was lower and false positive rate (FPR) was
higher significantly with respect to all Permission features [19].

 Altaher et al. proposed an approach based on ANFIS with
fuzzy c-means clustering using significant application
permissions. Their classification accuracy was 91%, with the
lowest false positive and false negative rates of 0.5% and 0.4%,
respectively [20].

Wang et al. evaluated individual permissions and collective
permissions and implemented three measures of scoring on the
permission features. They discovered dangerous permission
subsets using Sequential Forward Selection (SFS) and Principal
Component Analysis (PCA). They got a 94.62% detection rate
[21].

To the best of our knowledge, there is no such work on
feature reduction of API Calls in Android malware detection.

VI. CONCLUSION

In this study, a feature reduction approach is proposed for
identifying significant API Calls in Android Malware detection.
Evaluation of the significant API Calls shows that API Calls can
be reduced without affecting performance so much. Therefore,
reduced features set of significant API Calls would be
convenient in classifying Android malware considering
performance and computational complexity.

In the future, the approach will be evaluated using different
and large datasets. Also, other feature selection techniques using
deep learning, ensemble learning, etc. will be employed.

REFERENCES

[1] J. Fernando, “What is an API ? How to call an API from Android ?,”
DroidMentor, 12-Oct-2016. [Online]. Available:

https://droidmentor.com/api-call-api-android/. [Accessed: 11-Jan-2020].

[2] A. Kraskov, H. Stögbauer, and P. Grassberger, “Erratum: Estimating
mutual information [Phys. Rev. E69, 066138 (2004)],” Physical Review

E, vol. 83, no. 1, 2011.

[3] B. C. Ross, “Mutual Information between Discrete and Continuous Data

Sets,” PLoS ONE, vol. 9, no. 2, 2014.

[4] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition

Letters, vol. 27, no. 8, pp. 861–874, 2006.

[5] “sklearn.feature_selection.RFE¶,” scikit. [Online]. Available:
https://scikit-

learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html.

[Accessed: 11-Feb-2020].

[6] M. B. Fraj, “In Depth: Parameter tuning for Gradient Boosting,” Medium,
24-Dec-2017. [Online]. Available: https://medium.com/all-things-ai/in-

depth-parameter-tuning-for-gradient-boosting-3363992e9bae.

[Accessed: 03-Mar-2020].

[7] Ho, Tin Kam. "Random decision forests." In Proceedings of 3rd
international conference on document analysis and recognition, vol. 1, pp.

278-282. IEEE, 1995.

[8] “sklearn.feature_selection.SelectKBest¶,” scikit. [Online]. Available:
http://scikit-

learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBes

t.html. [Accessed: 11-Jan-2020].

[9] Pearson K. X. On the criterion that a given system of deviations from the

probable in the case of a correlated system of variables is such that it can
be reasonably supposed to have arisen from random sampling. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science. 1900 Jul 1;50(302):157-75.

[10] “1.13. Feature selection¶,” scikit. [Online]. Available: https://scikit-

learn.org/stable/modules/feature_selection.html. [Accessed: 01-Mar-

2020].

[11] “Using Scikit-Learn in python for feature selection,” Data Science

Beginners, 26-Nov-2018. [Online]. Available:
https://datasciencebeginners.com/2018/11/26/using-scikit-learn-in-

python-for-feature-selection/. [Accessed: 01-Mar-2020].

[12] “Basic Concepts of Correlation,” Real Statistics Using Excel. [Online].
Available: http://www.real-statistics.com/correlation/basic-concepts-

correlation/. [Accessed: 04-Mar-2020].

[13] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin:

Effective and Explainable Detection of Android Malware in Your
Pocket,” Proceedings 2014 Network and Distributed System Security

Symposium, 2014.

[14] Yajin Zhou, Xuxian Jiang, "Dissecting Android Malware:
Characterization and Evolution," Proceedings of the 33rd IEEE

Symposium on Security and Privacy (Oakland 2012), San Francisco, CA,

May 2012

[15] Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013, March). A

new android malware detection approach using bayesian classification. In
2013 IEEE 27th international conference on advanced information

networking and applications (AINA) (pp. 121-128). IEEE.

[16] Peiravian, N., & Zhu, X. (2013, November). Machine learning for android
malware detection using permission and api calls. In 2013 IEEE 25th

international conference on tools with artificial intelligence (pp. 300-305).

IEEE.

[17] Yerima, S. Y., Sezer, S., & Muttik, I. (2014, September). Android

malware detection using parallel machine learning classifiers. In 2014
Eighth International Conference on Next Generation Mobile Apps,

Services and Technologies (pp. 37-42). IEEE.

[18] Aafer, Y., Du, W., & Yin, H. (2013, September). Droidapiminer: Mining
api-level features for robust malware detection in android. In International

conference on security and privacy in communication systems (pp. 86-

103). Springer, Cham.

[19] Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., & Ye, H. (2018). Significant
permission identification for machine-learning-based android malware

detection. IEEE Transactions on Industrial Informatics, 14(7), 3216-3225.

[20] Altaher, A., & BaRukab, O. (2017). Android malware classification based
on ANFIS with fuzzy c-means clustering using significant application

permissions. Turkish Journal of Electrical Engineering & Computer

Sciences, 25(3), 2232-2242.

[21] Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., & Zhang, X. (2014).

Exploring permission-induced risk in android applications for malicious
application detection. IEEE Transactions on Information Forensics and

Security, 9(11), 1869-1882

571

DOI reference number：10.18293/SEKE2020-149

Threat Intelligence Relationship Extraction Based on
Distant Supervision and Reinforcement Learning

XurenWang, Jie Yang
Information Engineering College

Capital Normal University
Beijing, China

wangxuren@cnu.edu.cn

QiuyunWang, Changxin Su
Key Laboratory of Network Assessment Technology

Institute of Information Engineering
Chinese Academy of Sciences

Beijing, China

Abstract—In recent years, threat intelligence has become a new
hotspot in cybersecurity. It analyzes and predicts attacks that
have occurred and have not occurred, and plays an important
role in building an efficient defense system. Traditional threat
intelligence relies on a manual collection and its efficiency is
relatively low. Therefore, the efficient sharing of threat
intelligence has important research value. For the information
extraction technology of threat intelligence, we focus on the
construction of threat intelligence labeling data sets and the
extraction technology of threat intelligence relationship. The
specific content and research results include two aspects: (1)
Research on the construction of threat intelligence information
extraction data set. The threat intelligence extraction data set is
constructed by a distantly supervised labeling method. In this
paper, more than 900 threat intelligence reports are used as a
corpus. We finally obtain a relation extraction data set containing
10,000 sentence instances of 30 relationships. (2) Research on the
extraction of threat intelligence relationships. To mitigate noise
labeling data in the relation extraction data, we propose a distant
supervision relationship extraction method based on DRL-ET-
PCNN-ATT (Deep Reinforcement Learning Entity Type
Piecewise Convolution Neural Network-Attention) based on the
PCNN-ATT (Piecewise Convolution Neural Network-Attention)
model. The experimental results show that compared with the
CNN (Convolution Neural Network), PCNN (Piecewise
Convolution Neural Network), RL-CNN (Reinforcement
Learning Convolution Neural Network) models, the accuracy of
the extraction model used in this paper has increased by 16.77%,
5.88%, and 4.97%, and the recall rate has increased by 16.39%,
2.83%, and 4.49%.

Keywords-threat intelligence; relationship extraction; distant
supervision; reinforcement learning

I. INTRODUCTION
Threat intelligence sharing research faces two major

challenges: First, when there is a large amount of threat
intelligence report, it is very inefficient to rely solely on
manual analysis and sharing of critical information. It is
impossible to synchronize and share real-time threat
intelligence on time, resulting in Threat information lags.
Second, unlike the natural language processing corpus in the
general domain, the tagging corpus in the field of threat
intelligence is scarce, which makes research on threat
intelligence extraction very difficult. Therefore, information
extraction on threat intelligence has important practical
significance and application value.

In summary, we make contributions in this work include: (1)
Constructing a threat intelligence extraction data set through a
distantly supervised labeling method; (2) We evaluate our
model and achieve the best result compared with several state-
of-the-art relation extraction models.

II. RELATEDWORK

In recent years, there has been an increasing amount of
literature on threat intelligence data, and the dataset for threat
intelligence is increasing. Varish Mulwad et al. proposed a
framework to extract vulnerability and attack information from
web text, and generate machine-understandable languages. The
data set was from 107 vulnerability description documents and
was not publicly available [1]; Nikki McNeil et al. proposed a
new entity extraction guidance algorithm PACE is used to
extract valuable network security concepts. The data set is
manually annotated 10 documents from online open source
websites with a total of seven entity types [2]; Corinne L. Jones
and others proposed a bootstrapping algorithm to extract
security entities and their relationships from the text. The
dataset is a corpus of 62 documents made from various
security-related websites. The dataset is not open source [3];
Arnav Joshi et al. The research of linked data completed an
experimental data set through professional annotations. The
training set consists of 3800 entities and 38,000 instances. The
test set consists of 1200 entities and 9,000 instances. The
dataset is not public [4]; Ravendar Lal et al. Researched
extracting secure entities and concepts from unstructured text,
and they built datasets from more than 100 select reports After
screening and the fact that sampling CVE eventually got 60, 12
and 12 Dobe Microsoft bulletin announcement of the
composition of the data set, it is not open to the public [5]. In
summary, threat intelligence related datasets are very rare and
most of them are not public. Hence, we propose an annotation
method based on distant supervision to help security analysts to
label OSINT data more quickly and efficiently. Then we
propose the relationship extraction method combined with
reinforcement learning to research threat intelligence
information extraction on this data set.

III. DATASET
After distant supervision labeling and manual verification,

the label definition and quantity distribution for each
relationship are shown in Table 1.

The final threat intelligence relationship extraction data set
contains 10,000 sentence examples of 30 types of relationships.

572

TABLE I RELATIONSHIP LABEL DEFINITION AND QUANTITY
DISTRIBUTION

Head entity Relation Tail entity Relation number

Hacker group Background Region 386
Hacker group Target Region 1155
Hacker group Target Industry 1218
Hacker group Target Organization 257
Hacker group Target User 179
Hacker group Attack Way 759
Hacker group Use Tool 1227
Hacker group Use Loophole 97
Hacker group Oldest active Time 167
Hacker group First found Time 103
Hacker group Attack Time 458
Hacker group Attack Purpose 325
Hacker group Have Alias 153
Hacker group Launch Attack action 238
Hacker group Use Tool 146
Hacker group Attack Purpose 91
Sample file Generate Time 109
Sample file Use Loophole 96
Sample file Have File type 85
Sample file Propagation Way 444
Sample file Have Features 238
Sample file Target Region 91
Sample file Target Industry 295
Sample file Related Sample file 111
Sample file Have Alias 222

Security Team Found Sample file 112
Security Team Found Attack activity 248
Security Team Release Time 123
Security Team Found Hacker group 115
Offensive action Attack Time 752

IV. THREAT INTELLIGENCE RELATIONSHIP EXTRACTION
FRAMEWORK

Aiming at the complicated threat data in a large number of
threat intelligence reports, as shown in section III, the entity-
relationship is marked based on the method of distant
supervision, which solves the problem of marking threat
intelligence data. However, this method generally classifies
sentences at the sentence set level, and cannot map
relationships to sentences one by one. The main reason for this
problem is the noisy data in the distantly supervised labeled
data set, which has a great effect on relationship extraction
great influence. To solve this problem, based on the distant
supervised model PCNN, we propose a distant supervised
extraction model based on DRL-ET-PCNN-ATT. The model is
shown in Fig. 1, which is mainly composed of the input vector
layer and piecewise convolution neural network and sentence
instance selector. The model first inputs three layers of feature
vectors, including pre-trained word vectors, the vector of the
relative position between each word and the entity, and the
entity type vector; the next step is the piecewise convolutional
neural network to extract the context information related to the
entity, and add the attention mechanism to the sentence vector,
and get the classification result of the relationship label. To
alleviate the problem of noisy sentences, we introduce a
sentence selector based on reinforcement learning.

Figure 1. DRL-ET-PCNN-ATT relationship extraction model diagram

A. Input Vector Layer
 In this paper, before inputting into the neural network

layer, it is necessary to characterize the word vector
and obtain the context relationship between words.
Here, the word2vec word vector language model is
used to convert each word in the corpus into a d-
dimensional vector. Thus, we get a single vector
representation of each word.

 In the input vector feature, to highlight the relative
position of the entity in the sentence and make full use
of the position information in the sentence, this article
adds the vector feature of the entity position and uses
the relative position of each word and the entity
position in the sentence as an important feature input.
Here, position embedding proposed by Zeng [6] are
used. As shown in Fig. 2, the relative distance between
each word and the entities E1 and E2 in the sentence is
stitched together as the position vector feature.

Figure 2. Example of the position feature vector
 Due to the difference in the order of magnitude of each

entity type in the threat intelligence data set, consider
adding entity type features based on a common model.
First label the text with a BIO labeling scheme, that is,
label each element as "BX", "IX" or "O". Among them,
"BX" indicates that the fragment in which this element
is located belongs to type X and this element is at the
beginning of this fragment, "IX" indicates that the
fragment in which this element exists belongs to type
X and that the element is in the middle position of this
fragment, and "O" indicates that it does not belong to
any type, and then quantify the labeled entities and
words to give them corresponding features, and then
stitch them together with word features and location
features as input features of the convolutional neural
network. That is, if the dimension of the word vector is,
the dimension of the position vector is, the dimension
of the entity type feature vector is, and the dimension
of the input vector layer is d:

573

 ddwdpde (1)

B. Convolutional neural network layer And Attention layer
The construction process of the convolutional neural

network layer and attention layer uses the baseline model
proposed by Lin et al. [7].

C. Sentence selector based on reinforcement learning
Reinforcement learning is an area in machine learning that

emphasizes how to act based on the environment to achieve the
maximum expected benefits. The problem that reinforcement
learning solves is to get an optimal action for a specific
problem so that the reward obtained under this strategy is the
largest.

Definition of the problem to be solved by the instance
selector: given a set [sentences, relationship labels], expressed
as X ={(�����), (�����),…, (�����)}, X include the noise
annotation generated by the distant supervision method, and the
task of the selector is to determine which sentence correctly
describes the relationship, then select the sentence and hand it
to the convolutional neural network classifier.

According to the task requirements of this problem, we
construct a reinforcement learning selector for relation
extraction tasks. As shown in Fig. 1, the state, action, and
reward are defined as follows:

 The state contains the current sentence, selected
sentences, and entities. The author uses a continuous
function �(s�) to represent the state, which will output
a vector. Among them, the vector representation of the
current sentence is obtained from the non-linear layer
of the PCNN used for relation classification; the vector
representation of the selected sentence set is the
average of each sentence vector; the vector
representation of a pair of entities is pre-trained word
vector.

 The value of action is {0, 1}, indicating whether to
select the current sentence. The a� obtained according
to the policy function ��(�����) where θ is the
parameter to be learned. The following logical function
is used here as the policy function definition, where
�(s�) is the state feature mentioned earlier.

��s��� �����s� ��� � t �(s�)+ b
+ (�� a�)(� � �(� t �(s�)+ b))

(2)

 The reward is a quality representation of the selected
sentence. When a round of sentences is selected, there
will be final feedback, that is, final feedback is set at
the final state. The definition of the feedback function
is as follows, where Q is the selected sentence set,
which is a subset of state, r represents the relationship
label of the current sentence, and p(r|��) is the label
probability output by the relationship classifier.

r s� � =
0� � 香 |�+ �|

�
� �� ��

�香䁋�(�|��)� � � = |�+ �|

(3)

 The optimization function of sentence selector for
maximizing feedback is defined as:

J θ = V� �0 � = ��0��0��������������� �=0
� +� r si Q� �

(4)

 According to Actor-critic algorithms [8], we add value
function �� after state and reward calculations to
reduce the error of the policy function. The value
function is defined as follows:

�� ��� = �(s�)�� (5)

 Where � (s�) is the initial state vector, � s�' is the
state vector after the sentence is selected, input these
two vectors to the value function to get the Q value
output Q� s� and Q� s�' , the TD error δ is used as
the parameter update error of the policy function and
value function, � is the decay.

δ = � + ��� s�' � ��(s�) (6)

 The parameter ω of the value function is updated as
follows, � is the training step.

� = � + �δ�(s�) (7)

 The parameter θ of the policy function is updated as
follows, α is the training step.

θ = θ + α �=�
� ∇��香䁋�� (s����)� δ (8)

V. EXPERIMENTS

In this section, we evaluated the model on the threat
intelligence data set constructed in part III. We first introduce
the experiment dataset and parameter settings. To verify the
advantages of this model, we conducted experiments on CNN,
PCNN, and RL-CNN separately. The experimental results
show that the model used in this paper has a higher accuracy of
extracting threat intelligence relationships than other models,
and gives this comparison of experimental results and PR
(precision-recall) curves of these four models.

A. Dataset
As shown in the third part, 10000 sentence instances

containing 30 relationships are established, and the data set is
randomly divided into a training set of 90% and a test set of
10%, that is, the training data contains 9,000 sentence
examples, and the test data contains 1000 sentence examples.
Relationship extraction usually has three types of evaluation
indicators: precision, recall, and F1 measure. We will use

574

these three indicators to compare the performance of our
model with the baseline extraction model.

B. Parameter Settings
Some key parameters need to be set during model training.

For the parameter settings of the relational classifier part, the
word vector dimension is set to 50, the position vector
dimension is set to 5, and the entity type feature vector
dimension is set to 3. In the convolutional neural network layer,
the size of the convolution window is set to 3. The number of
neurons in the hidden layer of the convolutional layer is set to
230. In the instance selector section, set batch size 40 and
learning rate 0.1. To alleviate the problem of overfitting the
model, we add a dropout unit.

C. Experiment Results
To verify the effectiveness of the DRL-ET-PCNN-ATT

based relationship extraction model used in the extraction of
threat intelligence relationships, this paper compares this with
general models CNN [9], PCNN [6], and RL-CNN [10].
Second, we also compare the processing of sentence
information in the package. There are 4 ways, namely ATT,
AVE, ONE, CROSS_MAX, and AVE. All the sentence
weights in a package are regarded as the same, that is, the
vector is taken. The average value; ONE takes the sentence
instance vector with the highest confidence in the bag as the
input calculation; CROSS_MAX [11] performs an instance-
max-pooling operation on all sentence vectors inside the bag.
The triples and sentences are converted into a dictionary format
and input to the above model for training and testing. The
accuracy, recall, and F1 values are shown in Table 2. By
analyzing the experimental results in Table 2, we can see the
advantages of the model used in this article. The DRL-ET-
PCNN-ATT model has the highest accuracy rate, reaching
92.31%, and the recall rate is 83.24%. The ATT method is also
used in the package example. Compared with the CNN / PCNN
/ RL-CNN model in the field of relation extraction, the
accuracy rate has increased by 16.77%, 5.88%, and 4.97%, and
the recall rate has increased by 16.39%, 2.83%, and 4.49%.

The precision/recall curves for each method are shown in
Fig. 3. By analyzing the PR curve of Fig. 3 (a)(b), the
extraction effect of DRL-ET-PCNN-ATT is significantly better
than PCNN-ATT, and the extraction effect of RL-CNN-ATT is
significantly better than CNN-ATT. The processor eliminates
some noise data and improves the accuracy of relation
extraction. From Fig. 3 (c), the extraction effect of PCNN is
better than the CNN model, and we can see the advantage of
the segmented pooling method in the extraction effect. From
Fig. 3 (d), it can be seen that the advantages of DRL-ET-
PCNN-ATT for the other three models reflect the advantages
of adding entity type features and combining the PCNN model
with reinforcement learning, making full use of the distribution
characteristics of entity type threat intelligence data and the
advantages of joint training. The combination of the two
greatly improves the accuracy of relation extraction, as shown
in Fig. 3 (e), the extraction performance comparison of the four
bag instance processing methods on the DRL-ET-PCNN model
shows that the ATT method is the most suitable for the model
used in this paper, maximizing the extraction accuracy.

TABLE II. EXPERIMENTAL RESULTS OF EACHMODEL ON FOUR
BAG PROCESSING METHODS

Model BagWay ACCURACY AUC F1

CNN

ATT 0.7554 0.6685 0.7092
AVE 0.7585 0.6745 0.7140
ONE 0.7773 0.6723 0.7210

CROSS_MAX 0.7626 0.6854 0.7219

PCNN

ATT 0.8643 0.8041 0.8331
AVE 0.8639 0.7843 0.8222
ONE 0.8723 0.7587 0.8115

CROSS_MAX 0.8745 0.7743 0.8213

RL-CNN

ATT 0.8734 0.7875 0.8282
AVE 0.8830 0.8047 0.8420
ONE 0.8942 0.8102 0.8501

CROSS_MAX 0.8864 0.7957 0.8386

DRL-ET-
PCNN

ATT 0.9231 0.8324 0.8754
AVE 0.8943 0.8075 0.8487
ONE 0.9018 0.8186 0.8582

CROSS_MAX 0.9113 0.8265 0.8679

(a)

(b)

(c)

575

(d)

(e)

Figure 3. Comparison of Experimental P-R Curves of Threat Intelligence
Relation Extraction Data Sets on Different Models

VI. CONCLUSION AND FUTUREWORK

In this paper, we use the knowledge base to distantly
supervise structured threat intelligence data to construct a
relationship extraction dataset and compare the number of
sentences and relationship types with the classic data set in the
field of relationship extraction. In the research of the
construction of the threat intelligence relationship extraction
model, based on the PCNN-ATT model, we propose a distant
supervision relationship extraction method based on DRL-ET-
PCNN-ATT, The extraction accuracy is significantly improved.

In the future, we will explore the following directions:

The dataset used in this paper is extracted from
unstructured text. It is limited to text corpora such as hacker
organizations, security teams, and sample files. It ignores
charts in threat intelligence reports, threat information in
pictures. In future research, we can consider building a set of
report pre-processing process and image recognition model,
which can extract this non-text information and enrich the
shared information of threat intelligence.

In relation extraction, the assumption in distant supervision
is too positive, and it is inevitable to introduce a lot of noise
data. To alleviate the problem of mislabeling, at present, the
typical model of entity-relationship extraction is PCNN-ATT,
but it mainly uses the semantic information of the sentence and
does not involve grammatical information. Therefore, how to
effectively fuse the semantic and sentence grammatical
information to extract entity relationships is also one of the
main directions to optimize the extraction model in future work.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Program of China (Grant No.2018YFB0805005).

REFERENCES
[1] Mulwad V, Li W, Joshi A, et al, “Extracting information about security

vulnerabilities from web text”. 2011 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology.
USA: IEEE, 2011, pp. 257-260.

[2] McNeil N, Bridges R A, Iannacone M D, et al, “Pace: Pattern accurate
computationally efficient bootstrapping for timely discovery of cyber-
security concepts”. 2013 12th International Conference on Machine
Learning and Applications. USA: IEEE, 2013, pp. 60-65.

[3] Jones C L, Bridges R A, Huffer K M T, et al, “Towards a relation
extraction framework for cyber-security concepts”. Proceedings of the
10th Annual Cyber and Information Security Research Conference. USA:
ACM, 2015, pp. 1-4.

[4] Joshi A, Lal R, Finin T, et al, “Extracting cybersecurity related linked
data from text”. 2013 IEEE Seventh International Conference on
Semantic Computing. USA: IEEE, 2013, pp. 252-259.

[5] Lal R, “Information Extraction of Security related entities and concepts
from unstructured text”. 44(3), pp. 127-131, 2013.

[6] Zeng D, Liu K, Chen Y, et al, “Distant supervision for relation
extraction via piecewise convolutional neural networks”. Proceedings of
the 2015 conference on empirical methods in natural language
processing. Portugal: Association for Computational Linguistics, 2015,
pp. 1753-1762.

[7] Lin Y, Shen S, Liu Z, et al, “Neural relation extraction with selective
attention over instances”. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Germany: Association for Computational Linguistics, 2016, pp. 2124-
2133.

[8] Konda V R, Tsitsiklis J N, “Actor-critic algorithms”. Advances in neural
information processing systems. USA: NIPS, 2000, pp. 1008-1014.

[9] Zeng D, Liu K, Lai S, et al, “Relation classification via convolutional
deep neural network”. Ireland: ACL 2014, 2014, pp. 2335-2344.

[10] Feng J, Huang M, Zhao L, et al, “Reinforcement learning for relation
classification from noisy data”. Thirty-Second AAAI Conference on
Artificial Intelligence. USA: AAAI, 2018.

[11] Jiang X, Wang Q, Li P, et al, “Relation extraction with multi-instance
multi-label convolutional neural networks”. Proceedings of COLING
2016, the 26th International Conference on Computational Linguistics:
Technical Papers. Japan: The COLING 2016 Organizing Committee
2016, pp. 1471-1480.

576

SEKE2020 Authors Index

A-1

A

Abby Bechtel 281

Abdillah Mohamed 435

Ademar França Sousa Neto 101

Ahmedul Kabir 347, 392

Alex 311

Alexey Nechaev 264

Anderson Feitosa Júnior 186, 501

Andrea Cimmino Arriaga 554

Angelo Perkusich 101, 311

Asadullah Hill Galib 566

Asaf Yosef 467

Asif Imran 299

B

B M Mainul Hossain 566

Bangchao Wang 107

Banujan Kuhaneswaran 71

Bing Li 228

Bingzhen Wu 544

Bixin Li 147

Bohao Wang 386

Borun Xie 305

Bowen Du 65

C

Carlos Pantoja 55

Chao Ni 329

Chen Qian 210

Chenglin Ye 43

Chih-Shiang Shur 234

Cong Gao 293, 305

Cuong Cu 135

D

Dalton Cézane Gomes Valadares 101

Dalton Valadares 311

SEKE2020 Authors Index

A-2

Danyllo Albuquerque 101, 311

Daren Zha 519

David Lo 418, 477

Dengwei Li 365

Don Pathirage 117

Dong Sun 107

Donghoon Kim 180

Dongjin Yu 238, 439, 513

Dongsoo Jang 117

Dou Hu 413

Duong Dinh Tran 287

E

Eduardo Lopez 371

Eduardo Moraes 186

Elia Eiroa-Lledo 281

Ellen Francine Barbosa 192

Emily Daskas 281

Erik Linstead 281, 400

F

Fabian Cesar Manoel 55

Fadel Toure 359

Fadel Touré 353

Fan Lu 451

Fang Li 406

Fangchao Tian 451

Faten Chihi 380

Fazle Rabbi 392

Feng You 244

Florian Auer 158

Flávio Medeiros 186, 501

Fuyuki Ishikawa 335

G

Gang Lu 222

Gen Wang Gou 7

SEKE2020 Authors Index

A-3

Genwang Gou 19

Geun Sik Jo 13

Golddy Indra Kumara 250

Guoshuai Zhao 77

H

Haiping Zhang 238

Han Yan 473

Hao Shi 37

Hideto Ogawa 335

Hind Milhem 493

Hiroyuki Nakagawa 141

Hongfei Fan 65

Hongming Zhu 65

Huibiao Zhu 1, 31, 222

Hyggo Almeida 101, 311

Hyungbae Park 121, 424

I

Iaakov Exman 264, 467

Ian Warren 532

Imano Williams 83

Ivo Calado 501

J

Jia Wei Jiang 7

Jiahuan Chu 250

Jialing Liang 445

Jian Cao 418, 477

Jian Wang 228

Jianbo Gao 544

Jianqi Shi 386

Jiaqi Yin 1, 31, 222

Jiawei Jiang 19

Jin Yong Kim 13

Jing Jiang 435

Jing Sun 532

SEKE2020 Authors Index

A-4

Jingguo Ge 544

Jingren Zhou 429

Jinxi Kong 25

Jinyu Lu 507

John Castro 463

Joshua Moore 538

José Ferdin 101

Juan Cano-Benito 554

Jun-Hao Chen 234

Junchao Lv 43

Junwei Tang 550

Junya Xu 222

K

Kaize Shi 489

Kamran Sartipi 371

Katie Rodeghiero 281

Kazi Zakia Sultana 560

Kazuhiro Ogata 287

Kazuki Munakata 342

Kazunori Tsuchiya 335

Koichi Hamada 335

Koji Yamamoto 342

L

Lan Lin 127

Lawrence Chung 89

Le 55

Li Yao 228

Li Zhang 435

Liang Hao 127

Lili Xiao 1, 31, 222

Lilian Passos Scatalon 192

Lily Foster 281

Liming Guan 238

Lin Zhao 519

SEKE2020 Authors Index

A-5

Linda Badri 353

Ling Shi 7

Lingjia Li 418

Lingwei Chen 293, 305

Lingwei Wei 413

Lingyuan Zhu 147

Linjiang Zheng 43

Liutong Xu 396

Loc Ho 180

Lu Lu 317, 323, 483

Lucas Barros 186

Luiz Antonio Pereira Silva 101

Luqi Guan 463

M

Manuel Silva 311

Md Aquib Azmain 347

Md Eusha Kadir 392

Md Nazmul Haque 392

Md Saeed Siddik 392

Michael Bosu 198

Michael Felderer 158

Michael Franklin Bosu 164

Michael Shin 117

Michael Weiss 493

Mineo Matsuya 335

Mingliang Li 25

Mirko Perkusich 101, 311

Moulika Bollinadi 538

Mourad Badri 353, 359

Muhammad Ali Babar 451

Myeong Oh Lee 13

N

Nacha Chondamrongkul 532

Nan Mu 519

SEKE2020 Authors Index

A-6

Nicolas Ferlans 204

Nikita Butakov 204

Ningning Chen 31

Nishat Tasnim Niloy 347

Nourchène Elleuch Ben Ayed 380

O

Omer Ganon 467

Onyeka Ezenwoye 61

P

Patrick Cook 93

Peiquan Jin 429, 445

Peng Liang 365, 451

Pengfei Shao 216

Peter Whigham 164, 198

Ping Liang 439, 513

Piying Zhang 375

Q

Qiao Pan 250

Qiguo Huang 329

Qin Liu 65

Qing Gu 329

Qing Wang 293

R

Rachel Culver 135

Raha Pirzadeh 281

Ran Li 1

Ran Mo 111, 365

Rao Hamza Ali 400

Raúl García-Castro 554

re Braga Gomes 311

Rehman Arshad 276

ro Samyn 55

Robert Ahn 89

Rogério Eduardo Garcia 192

SEKE2020 Authors Index

A-7

Ronaldo Goncalves 89

Rong Peng 107

Rui Gong 519

Rui Li 37

Rui Song 525

Ruixuan Li 550

S

Samuel Yen-Chi Chen 234

Satoshi Masuda 335

Sayem Mohammad Imtiaz 560

Shanmuganathan Vasanthapriyan 71

Shaoxian Shu 37

Shaozhi Wei 111

Sheyda Kiani Mehr 204

Shihab Shahriar Khan 347

Shogo Tokui 342

Shuaicai Ren 141

Shuangmin Zhang 550

Shunyao Wang 473

Shuyuan Jin 216

Silvia Acuña 463

Siva Parameswaran 93

Stephen MacDonell 164, 198

Stephen Tate 538

Stéphane Somé 493

Su Changxin 572

Sunae Shin 424

Susan Mengal 93

Susumu Tokumoto 335

Suyeong Lee 49

Swapna Gokhale 174

T

Taeghyun Kang 121, 424

Takahiro Toku 335

SEKE2020 Authors Index

A-8

Takao Nakagawa 342

Tanmay Bhowmik 560

Tatsuhiro Tsuchiya 141

Tevfik Kosar 299

Ting Hu 111

Tom Hill 89

Tomoyuki Myojin 335

Tong Li 77, 406, 525, 544

Tong Wang 147

V

Venkata Inukollu 121

Vinicius Jesus 55

W

Wang Qiuyun 572

Wang Xuren 572

Wanwei Liu 37

Wanyou Lv 386

Wei Dong 37

Wei Li 25

Weidong Liu 375

Wen Fang 483

Wenbo Qiao 375

Wenchin Huang 168

Wendong Wang 473

Wenjing Zhu 210

Wenting Sun 204

Wiem Khlif 380

William Patten 61

Wu Jiang 270

Wyao Matcha 353

X

Xavier Ferré 463

Xi Wu 19

Xiang Chen 329

SEKE2020 Authors Index

A-9

Xiangyang Gong 473

Xiaohong Yuan 83

Xiaohui Cui 25

Xiaowen Wang 65

Xiaoxiao Sun 439, 513

Xin Dong 525

Xin Liu 396

Xin Ma 25

Xin Sun 127

Xinjun Mao 457, 507

Xinlei Ma 153

Xinwei Zhu 238

Xirong Que 473

Xiwu Gu 550

Xu Jianjun 270

Xuan Zhou 317

Xuancheng Fan 204

Xudong Zhao 37

Xuewang Zhang 257

Y

y Silva Chagas 101

Yan Liu 153

Yang Jie 572

Yanhong Huang 386

Yanhui Li 168

Yao Lu 457, 507

Yasuharu Nishi 335

Yasuhiro Ujita 335

Ye Tian 473

Yeming Lin 544

Yeonghun Nam 49

Yexia Qin 317

Yi Liu 61

Yi Yang 457

SEKE2020 Authors Index

A-10

Yin Zhou 257

Ying Shang 244

Yiran Wang 477

Yizhi Jiang 65

Yohan Bae 49

Yong Xin Zhao 7

Yongjie Zheng 135

Yongli Li 244

Yongxin Zhao 19

Yuan Fei 1, 31, 222

Yuanbang Li 107

Yuhui Ye 43

Yun-Cheng Tsai 234

Yusen Wang 489

Z

Zedong Peng 127

Zengyang Li 365

Zhang Zhang 507

Zhao Siming 25

Zhen Yang 77

Zhendong Niu 489

Zhengliang Li 329

Zhenlan Ji 168

Zhenzhou Tian 293, 305

Zhihan Wang 323

Zhiming Ding 525

Zhongjin Li 238

Zixi Xu 457

SEKE2020 Keyword Index

B-1

A

access control 216

affine couple transformation 238

Agile team 311

algebraic composition 210

Algebraic Higher Abstraction level 264

algebraic specification language 287

Alzheimer’s disease 250

Android Malware Detection 566

App searching 406

Archetype 153

architecture implementation conformance 135

Architecture Smell 451

Architecture Smell Discussion 451

artificial intelligence 335

AST 270

attention mechanism 228, 413

automated refactoring 299

autonomous vehicle 7

B

Bayesian networks 311

BDI 457

Bi-directional LSTM 228

big data analysis 439

binary code analysis 305

Blockchain 31, 532, 544

BPMN Model 380

bug severity 365

Business Concept’s Template 380

C

check-in data 525

Chinese named entity recognition 413

clang 270

Class Imbalance 347

SEKE2020 Keyword Index

B-2

classification model 445

Click-Through Rate Prediction 483

closingquestion 507

cloud 216

cloud resource utilization 299

cluster effect 439

co-evolution 147

code change complexity 365

Code Comment 392

Code Completion 386

Code smells 299

code source 147

Collaborative and social computing 418

Commercial activeness prediction 513

Commercial district 513

commit records 365

Commuter 43

compilation optimization selection 270

compiler identification 305

component 49, 489

Comprehension 544

Context 467

continuous experimentation 158

controller synthesis 37

Convolutional Neural Network 244

Configuration 153

Copy and Paste 463

Cross project 435

cross-modal hashing 257

CSP 1, 31, 222

D

Data exploration 49

Data mining 49

Decentralized Application 544

SEKE2020 Keyword Index

B-3

deep learning 250

Deep Learning 353, 483

Deep learning 513

Defect prediction 347

Denoising Graph Attention Autoencoders 519

Deriving 380

distantsupervision 572

Domain Ontology 83

domain specific language 158

Dynamic birthmark 293

dynamic projection 65

E

Embedding 204

embedding 525

Embedding Propagation 483

Emergence 457

empirical software engineering 164

ERI cars 43

Ethereum 544

evolutionary requirements 107

F

Feature Selection 566

Fine-grained Code Change 111

Formal Method 532

Framework Architectural Architectural Pattern 493

Frequent pattern 293

Function-as-a-Service 210

function-effect 375

G

generative model 238

GGNN 270

GitHub 418, 435

GNN 489

goal modeling 141

SEKE2020 Keyword Index

B-4

Goal-Orientated 89

Graph 204

Graph Neural Network 483

guidelines 335

H

HiBrinto 71

hierarchical attention network 429

Highway Bridge 71

hubness problem 238

Human factors 418

I

ICN 222

Implicit Feedback 519

Incentive Mechanism 457

information fusion 107

Insight discovery 49

Interactive Systems 89

Interestingness 467

Interface transition diagram 121

intersection management 7

IoV 31

issue lifetime prediction 477

issue pattern prediction 477

issue resolution 477

J

Job Trend Analysis 424

Joint Model 396

K

kernel concerns 107

kernel estimators 198

Knowledge 71

Knowledge Discovery 467

Knowledge Extraction 467

knowledge graph 65

SEKE2020 Keyword Index

B-5

Knowledge Graph 77

Knowledge graph 406

Knowledge representation 93

Knowledge Representation Learning 77

L

Label Noise 347

labeling 141

lambda expression 180

language feature 180

Laplacian Matrix 264

latent community detection 473

lexicon knowledge 413

LightGBM 439

linear fusion 250

Luck calculation 467

Luck-Generator 467

M

Machine Learning 89, 204, 353

machine learning 335

Management 71

Maven 153

MCAC Router Architecture 222

Meta-Model 117

metagraph 525

micro-pattern 477

microblog 445

mobile app 107

mobile application 121

Mobile Development 186

model collapse 238

Modeling 1, 222

Modeling Verification 31

Modularity Matrix 264

multi-classification 250

SEKE2020 Keyword Index

B-6

multi-robot system 37

multi-source data 250

Multi-threaded program 293

mutual exclusionprotocol 287

N

NDN 31

neural network 305

neural topic model 228

NLP 406

Node2Vec 204

Noise detection 347

Non-Functional Requirement Framework Modeling 493

Non-Functional Requirements 89

NorMAS 457

O

Oil &Gas Industry 55

online controlled experiment definition 158

online review 429

Ontology 71, 89

open source project 180

Open Vocabulary 386

orthogonal regularization 257

OWL 93

P

patent text 375

Performance Analysis 186

Personalities 311

Physical Artifact 55

Physical environment 55

privacy protection 216

process mining 477

programming language 180

Programming Languages 424

Project management 418

SEKE2020 Keyword Index

B-7

proof assistant 287

proof generator 287

proof score 287

Psychometric instruments 311

Q

quantitative data 180

question quality control 507

R

Random Walk 204

random walk 525

Recommendation systems 501

recommender system 489

Recommender Systems 89

RecommenderSystem 483

Refactoring Automation 264

Refactoring Rule Set 264

Regular travel behavior Private data 43

reinforcement learning 572

relationpath 65

relationship extraction 572

Relevance 467

reliability 270

Reopened pullrequest prediction 435

representation 375

Requirement Engineering 121

Requirements elicitation 141

Resource Description Framework 93

restaurant failure prediction 439

robot operating system 37

route planning 7

S

Secure Software Engineering 83

Security 1, 61

Security Analysis 532

SEKE2020 Keyword Index

B-8

Security Concerns 83

Security Modeling 117

Self-Attention 386

Self-Determination Theory 457

Semantic Web 71, 93

semantics extraction 439

Sentiment analysis 418

sentiment analysis 429

SequenceInformation 396

service discovery 228

service model 210

session-based recommendation 489

SHAMROQ 93

Significant API Calls 566

Smart Contract 544

SMOTE algorithm 7

Social Network 467

Social Recommendation 519

Software 61

Software Architecture 111, 117, 467, 532

software architecture 135

Software architecture 147

Software Artifact Analysis 392

Software defect prediction 317

software effort estimation 164

Software effort estimation 198

Software Engineer 424

software engineering decision support 164

software evolution 135

software forensics 305

Software Maintenance 111

Software Modularity 264

Software plagiarism 293

software processes 198

SEKE2020 Keyword Index

B-9

software quality 335

Software Requirements 117

SoftwareAnalytics 153

SoftwareDeveloper 424

Source Code 392

Source Code Metrics 353

Source CodeModeling 386

spammer detection 445

Spatio-temporal analysis 513

Spatiotemporal similarity 43

Spectral clustering 317

Spectral Refactoring 264

Spiking Neural Network 244

Stack Overflow 451

Stack Overflow 507

staticanalysis tool 180

stationarity 198

Surprise 467

Systematic Mapping Study 463

T

Tactic 493

Tactic/Pattern Extraction Selection 493

Taxonomy 61

technology acceptance model 158

template 180

temporal logic synthesis format 37

testing 335

Testing Coverage Measures 353

Tests Prioritization 353

Text Classification 451

Text Summarization 396

Textual Description 380

Threat 117

Threat intelligence 572

SEKE2020 Keyword Index

B-10

Threshold Setting Algorithm 244

Time series data 49

time-aware models 164

Top-N Recommendation 519

topic model 473

Topic Modeling 392

Tourist attractions 501

Traceability Link Recovery 77

training 257

Transformation 380

Transformer 396

U

UML 121

Unit Testing 353

Unsupervised learning 317

Use Cases 83

user comments 107

User Contribution 457

user feature 445

user similarity 525

userreviews 141

V

VANET 1

Verification 1, 222

video recommendation 473

voter recommendation 507

Vulnerability 61

W

Weak ties 467

Weakness 61

Web Data Mining 424

Web service 228

weighted linear regression 198

Y

SEKE2020 Keyword Index

B-11

Yelp 439, 513

Z

zero shot recognition 238

F L

flexibility 216

	seke20foreword.pdf
	CONFERENCE CHAIR
	PROGRAM COMMITTEE CO-CHAIRS
	STEERING COMMITTEE CHAIR
	STEERING COMMITTEE
	ADVISORY COMMITTEE
	PROGRAM COMMITTEE
	Silvia Teresita Acuna, Universidad Autonoma de Madrid, Spain Shadi Alawneh, Oakland University, USA Vaibhav Anu, North Dakuta State University, USA Dionysios Athanasopoulos, Queen's University of Belfast, United Kingdom Doo-Hwan Bae, Korea Advanced In...
	PUBLICITY CHAIR
	ASIA LIAISON
	AUSTRALASIA LIAISON
	EUROPE LIAISON
	INDIA LIAISON

