
SEKE
2019

Proceedings of the 31st
International Conference on
Software Engineering &
Knowledge Engineering

Lisbon, Portugal
July 10-12, 2019

 i

PROCEEDINGS

SEKE 2019

The 31stth International Conference on

Software Engineering &

Knowledge Engineering

Sponsored by

KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

Technical Program

July 10 – 12, 2019

Hotel Tivoli, Lisbon, Portugal

Organized by

KSI Research Inc. and Knowledge Systems Institute Graduate School, USA

 ii

Copyright ⓒ 2019 by KSI Research Inc. and Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of the publisher.

ISBN: 1-891706-48-9

ISSN: 2325-9000 (print)

2325-9086 (online)

DOI reference number: 10.18293/SEKE2019

Publisher Information:

KSI Research Inc. and Knowledge Systems Institute Graduate School

156 Park Square

Pittsburgh, PA 15238 USA

Tel: +1-412-606-5022

Fax: +1-847-679-3166

Email: seke@ksiresearch.org

Web: http://ksiresearchorg.ipage.com/seke/seke19.html

Proceedings preparation, editing and printing are sponsored by KSI Research Inc. and Knowledge Systems Institute
Graduate School, USA.

Printed by KSI Research Inc. and Knowledge Systems Institute Graduate School

 iii

FOREWORD

Welcome to the 31st International Conference on Software Engineering and Knowledge Engineering (SEKE), in Hotel Tivoli,
Lisbon, Portugal. In last 30 years, SEKE has established itself as a major international forum to foster, among academia, industry,
and government agencies, discussion and exchange of ideas, research results and experience in software engineering and
knowledge engineering. The SEKE community has grown to become a very important and influential source of ideas and
innovations on the interplays between software engineering and knowledge engineering, and its impact on the knowledge
economy has been felt worldwide. On behalf of the Program Committee, it is my great pleasure to invite you to participate, not
only in the technical program of SEKE 2019 and its rich assortment of activities, but also in enjoying the stunning capital of
Portugal and one of the great capitals of Western Europe. Lisbon is a city with more than 800 years where historical heritage,
modernism, culture and nightlife combine in a perfect harmony. The excellence of the climate and the sympathy of the Portuguese
population associated with the diversity and quality of the opportunities offered leave visitors with a desire to return to Lisbon.
Lisbon and Portugal have recently won several international awards as destinations of excellence, such as those from the World
Travel Award.

This year, we received 225 submissions from 29 countries. Through a rigorous review process where a majority of the submitted
papers received three reviews, and the rest with two reviews, we were able to select 88 full papers for the general conference (39.1
percent), 61 short papers (27.1 percent), 3 posters (1.4 percent), 1 demo (0.4 pecent) and 72 rejects (32 percent). Out of that, 9
papers have been specifically submitted, and later accepted, for the 4 special sessions (Theoretical Software Engineering TSE 4
papers, Semantic Enabled Software Engineering SESE 1 paper, Knowledge Graphs KG 3 papers and Machine Learning for SE
and KE MLA 1 paper), and 140 papers are scheduled for presentation in forty sessions during the conference. In addition, the
technical program includes two excellent keynote speeches from Professor Robert Laurini and Professor Rui L. Aguiar.

The high quality of the SEKE 2019 technical program would not have been possible without the tireless effort and hard work of
many individuals. First of all, we would like to express our sincere appreciation to all the authors whose technical contributions
have made the final technical program possible. We are very grateful to all the Program Committee members whose expertise and
dedication made our responsibility that much easier. Our gratitude also goes to the keynote speakers who graciously agreed to
share their insight on important research issues, to the conference organizing committee members for their superb work, and to the
external reviewers for their contribution.

Personally, we owe a debt of gratitude to a number of people whose help and support with the technical program and the
conference organization are unfailing and indispensable. We are deeply indebted to Dr. S. K. Chang, Chair of the Steering
Committee, for his constant guidance and support that are essential to pull off SEKE 2019. Our heartfelt appreciation goes to Dr.
Oscar Mortagua Pereira, University of Aveiro, Portugal, the Conference Chair, for his help and experience. In addition, we also
like to express our appreciation to Prof. Jing Sun, The University of Auckland, New Zealand, to Prof. Iaakov Exman, The
Jerusalem College of Engineering, Israel, to Dr.Yucong Duan, Hainan University, China and to Dr. Gunasekaran Manogaran,
University of California, Davis, USA for their excellent job in organizing the special sessions SESE, TSE, KG and MLA,
respectively.

We would like also to express our great appreciation to all of the conference organization committee members, including the
Publicity Chair, Lan Lin, Ball State University, USA and Nuno Antunes, University of Coimbra, Portugal. Moreover, we would
like to appreciate and recognize our Conference Liaisons in different regions for their important contributions. They are: Asia
Liaison – Hironori Washizaki, Waseda University, Japan; Australasia Liaison – Jing Sun, The University of Auckland, New
Zealand; Europe Liaison - Raul Garcia Castro, Universidad Politecnica de Madrid, Spain; India Liaison - Swapan Bhattacharya,
National Institute of Technology Karnataka, Surathakl; and South America Liaison - Jose Carlos Maldonado, ICMC-USP, Brazil.

Last but certainly not the least, we must acknowledge the important contributions that the KSI staff members have made. Their
timely and dependable support and assistance throughout the entire process have been truly remarkable. Finally, we wish you
have productive discussion, great networking, effective presentation, and pleasant stay and travel in Lisbon, Portugal to participate
in SEKE 2019.

Angelo Perkusich, Federal University of Campina Grande, Brazil, Program Committee Chair
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain, Program Committee Co-Chair
Diogo Regateiro, Institute de Telecomunicacoes, Portugal, Program Committee Co-Chair

 iv

SEKE 2019
The 31st International Conference on

Software Engineering &

Knowledge Engineering

July 10 – 12, 2019

Hotel Tivoli, Lisbon, Portugal

Conference Organization

CONFERENCE CHAIR
Oscar Mortagua Pereira, University of Aveiro, Portugal

PROGRAM COMMITTEE CHAIR
Angelo Perkusich, Federal University of Campina Grande, Brazil

PROGRAM COMMITTEE CO-CHAIRS
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

Diogo Regateiro, Institute de Telecomunicacoes, Portugal

STEERING COMMITTEE CHAIR
Shi-Kuo Chang, University of Pittsburgh, USA

STEERING COMMITTEE
Vic Basili, University of Maryland, USA

Bruce Buchanan, University of Pittsburgh, USA
C. V. Ramamoorthy, University of California, Berkeley, USA

ADVISORY COMMITTEE
Jerry Gao, San Jose State University, USA

Swapna Gokhale, University of Connecticut, USA
Xudong He, Florida International University, USA

Natalia Juristo, Universidad Politecnica de Madrid, Spain
Taghi Khoshgoftaar, Florida Atlantic University, USA

Guenther Ruhe, University of Calgary, Canada
Masoud Sadjadi, Florida International University, USA

Du Zhang, California State University, USA

 v

PROGRAM COMMITTEE

Silvia Teresita Acuna, Universidad Autonoma de Madrid, Spain
Shadi Alawneh, Oakland University, USA

Vaibhav Anu, North Dakuta State University, USA
Doo-Hwan Bae, Korea Advanced Institute of Science and Technology, Korea

Fevzi Belli, University of Paderborn, Germany
Ateet Bhalla, Consultant, India

Swapan Bhattacharya, NITK, Surathakl, India
Ivo Bukovsky, Czech Technical University in Prague, Czech Republic

Guoray Cai, Penn State University, USA
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain
Keith Chan, Hong Kong Polytechnic University, Hong Kong

Wen-Hui Chen, National Taipei University of Technology, Taiwan
Maria Francesca Costabile, University of Bari, Italy

Lin Deng, Towson University, USA
Derek Doran, Wright State University, USA

Weichang Du, University of New Brunswick, Canada
Christof Ebert, Vector Consulting Services, Germany
Magdalini Eirinaki, San Jose State University, USA

Abdelrahman Osman Elfaki, University of Tabuk, Saudi Arabia
Ruby ElKharboutly, Quinnipiac University, Canada

Honghao Gao, ShangHai University, China
Kehan Gao, Eastern Connecticut State University, USA
Felix Garcia, University of Castilla-La Mancha, Spain

Olivier Le Goaer, University of Pau, France
Swapna Gokhale, Univ. of Connecticut, USA

Wolfgang Golubski, Zwickau University of Applied Sciences, Germany
Hassan Haghighi, Shahid Beheshti University, Iran
Hao Han, National Institute of Informatics, Japan

Xudong He, Florida International University, USA
Shihong Huang, Florida Atlantic University, USA

Hamdy Ibrahim, University of Calgary, Canada
Bassey Isong, North-West University, South Africa

Clinton Jeffery, University of Idaho, USA
Jason Jung, Chung-Ang University, South Korea
Pankaj Kamthan, Concordia University, Canada

Ananya Kanjilal, B.P. Poddar Institute of Technology and Management, India
Taghi Khoshgoftaar, Florida Atlantic University, USA

Jun Kong, North Dakota State University, USA
Aneesh Krishna, Curtin University of Technology, Australia

Vinay Kulkarni, Tata Consultancy Services, India
Bixin Li, Southeast University, China

Yuan-Fang Li, Monash University, Australia
Jianhua Lin, Eastern Connecticut State University, USA

Lan Lin, Ball State University, USA
Xiaodong Liu, Edinburgh Napier University, United Kingdom

Luanna Lopes Lobato, Federal University of Goias, Brazil
Baojun Ma, Beijing University of Posts and Telecommunications, China

Beatriz Marin, Universidad Diego Portales, Chile
Riccardo Martoglia, University of Modena and Reggio Emilia, Italy

Santiago Matalonga, University of the West of Scotland, UK
Andre Menolli, Universidade Estadual do Norte do Parana (UENP), Brazil

Hiroyuki Nakagawa, Osaka University, Japan
Alex Norta, Tallinn University of Technology, Estonia

Edson A. Oliveira Jr., State University of Maringa, Brazil
Oscar Mortagua Pereira, University of Aveiro, Portugal

 vi

Antonio Piccinno, University of Bari, Italy
Alfonso Pierantonio, University of L'Aquila, Italy
Rick Rabiser, Johannes Kepler University, Austria

Claudia Raibulet, University of Milan, Italy
Damith C. Rajapakse, National University of Singapore, Singapore

Rajeev Raje, IUPUI, USA
Henrique Rebelo, Universidade Federal de Pernambuco, Brazil

Marek Reformat, University of Alberta, Canada
Diogo Regateiro, Institute de Telecomunicacoes, Portugal

Stephan Reiff-Marganiec, Leicester University, United Kingdom
Daniel Rodriguez, Universidad de Alcala, Spain

Masoud Sadjadi, Florida International University, USA
Claudio Sant'Anna, Universidade Federal da Bahia, Brazil

Klaus-Dieter Schewe, SCCH, Austria
Abdelhak-Djamel Seriai, University of Montpellier 2 for Sciences and Technology, France

Michael Shin, Texas Tech University, USA
Vijayan Sugumaran, Oakland University, USA
Jing Sun, University of Auckland, New Zealand

Meng Sun, Peking University, China
Yanchun Sun, Peking University, China

Gerson Sunye, University of Nantes, France
Kumiko Tadano, NEC, Japan

Chuanqi Tao, Nanjing University of Science and Technology, China
Mark Trakhtenbrot, Holon Institute of Technology, Israel

Peter Troeger, TU Chemnitz, Germany
Christelle Urtado, LGI2P Ecole des Mines d'Ales, France

Sylvain Vauttier, Ecole des mines d'Ales, France
Silvia Vergilio, Federal University of Parana (UFPR), Brazil

Gennaro Vessio, University of Bari, Italy
Sergiy Vilkomir, East Carolina University, USA

Aaron Visaggio, University of Sannio, Italy
Ye Wang, Zhejiang Gongshang University, China

Yong Wang, New Mexico Highlands University, USA
Zhongjie Wang, Harbin Institute of Technology, China

Hironori Washizaki, Waseda University, Japan
Bingyang Wei, Midwestern State University, USA

Guido Wirtz, Bamberg University, Germany
Franz Wotawa, TU Graz, Austria

Peng Wu, Institute of Software, Chinese Academy of Sciences, China
Qing Wu, Hangzhou Dianzi University, China
Dianxiang Xu, Boise State University, USA

Frank Weifeng Xu, University of Baltimore, USA
Haiping Xu, University of Massachusetts Dartmouth, USA

Lai Xu, Bournemouth University, UK
Guowei Yang, Texas State University, USA

Yuyu Yin, Hangzhou Dianzi University, China
Huiqun Yu, East China University of Science and Technology, China

Du Zhang, Macau University of Science and Technology, China
Pengcheng Zhang, Hohai University, China
Yong Zhang, Tsinghua University, China

Zhenyu Zhang, Institute of Software, Chinese Academy of Sciences, China
Zhigao Zheng, Central China Normal University, USA

Nianjun Zhou, IBM, USA
Huibiao Zhu, East China Normal University, China

Eugenio Zimeo, University of Sannio, Italy

 vii

PUBLICITY CHAIR
Lan Lin, Ball State University, USA

Nuno Antunes, University of Coimbra, Portugal

ASIA LIAISON
Hironori Washizaki, Waseda University, Japan

AUSTRALASIA LIAISON
Jing Sun, The University of Auckland, New Zealand

EUROPE LIAISON
Raul Garcia Castro, Universidad Politecnica de Madrid, Spain

INDIA LIAISON
Swapan Bhattacharya, National Institute of Technology Karnataka, Surathakl, India

SOUTH AMERICA LIAISON
Jose Carlos Maldonado, ICMC-USP, Brazil

 viii

Keynote I

Introduction to Mobile Applications for Smart Cities

Professor Robert Laurini
Professor Emeritus
University of Lyon

Lyon, France

Abstract

Smart Cities can be defined with a digital layer covering several aspects of urban governance, based on four pillars
such as knowledge engineering, deep learning, realtime massive data and geovisualization. After explaining the issues
relative to those pillars, we will explain how they can be combined to support and develop Location-Based Services
and Mobile Applications. In this talk, three categories of applications will be outlined, those based on mobility, those
for which the answer varies from the location of the mover (space), and continuous applications for which also time is
important.

 About the Speaker

Professor Robert Laurini holds two doctorates (1973 and 1980) from the University of Lyon, France in which he was
professor in information technologies at INSA-Lyon. He is a specialist in geographic information systems and more
recently on knowledge engineering for smart cities. In 76-77, he was researcher at the Martin Centre, University of
Cambridge, UK; in 86-87, visiting professor at the University of Maryland, College Park; during the period 1990-2000,
he was part-time professor at the IUAV University of Venice, Italy. He has supervised or co-supervised 45 PhD’s. He
was involved in PhD committees in 17 countries. He has authored or co-authored more than 250 papers and 8 books,
the last of them is “Geographic Knowledge Infrastructure, Applications to Territorial Intelligence and Smart Cities”.
He was one of the founders of the ACM Spatial Group, European editor of “Computers, Environment and Urban
Systems” and associated editor of the “Journal for Visual Languages and Computing”. He is now fellow of the
Knowledge Systems Institute, USA. He fluently speaks English, French, Italian and Spanish. He is also the founder of
“Academics Without Borders”, which is an NGO devoted to modernizing universities in developing countries. For
more details please see: http://www.laurini.net/robert/

 ix

Keynote II

5G - After the initial launch, is all about software

Professor Rui L. Aguiar
Institute of Telecomunications/DETI

University of Aveiro
Aveiro, Portugal

Abstract

The talk will briefly highlight the changes to be brought by the upcoming 5G networks, and present a view of the
challenges and conceptual changes that the new wireless networks will bring in general, and to software engineering
and knowledge engineering in particular. The discussion will touch on the control aspects of the networks, the
requirements on novel control abstractions, and on new service development concepts and interfaces, focusing on the
new virtualized and softwarized networks that will arise with 5G.

 About the Speaker

Rui L. Aguiar received his Ph.D. degree in 2001 from the University of Aveiro. He is currently a Full Professor at the
University of Aveiro, responsible for the networking area, and has been previously an adjunct professor at the INI,
Carnegie Mellon University. He is coordinating a research line nationwide in Instituto de Telecomunicações, on the
area of Networks and Multimedia. His current research interests are centred on the implementation of advanced
networks and systems, with special emphasis on 5G networks and the Future Internet. He has about five hundred
published papers in those areas. He has served as technical and general chair of several conferences, from IEEE, ACM
and IFIP. He sits on the TPC of all major IEEE ComSoc conferences. He has extensive participation in national and
international projects, and in industry technology transfer actions. He is the current Chair of the steering board of the
Networld2020 ETP. He is senior member of IEEE, Portugal ComSoc Chapter Chair, and a member of ACM. He is
associated editor of several journals and sits on the Advisory Board of several EU-projects and research units from
several countries.

SEKE2019 Table of Contents

Table of Contents

Session Knowledge Graphs

A DIK-based Question-Answering Architecture with Multi-sources Data for Medical
Self-Service (S). 1

Menglong Li, Mengxing Huang, Yu Zhang and Wenlong Feng

Constructing a Knowledge Base of Coding Conventions from Online Resources 5

Junming Cao, Tianjiao Du, Beijun Shen, Wei Li, Qinyue Wu and Yuting Chen

Combining time, keywords and authors information to construct papers correlation
graph (S) . 11

Hanwen Liu, Huaizhen Kou, Xiaoxiao Chi and Lianyong Qi

Modeling and Simulation of CPS based on SysML and Modelica (S) . 15

Fei Deng, Yunqiang Yan, Feng Gao and Linbo Wu

Session Agile Software I

AgileCritPath: Identifying Critical Tasks in Agile Environments . 20

Rachel Vital, Glaucia Melo dos Santos, Toacy Oliveira, Paulo Alencar and Don Cowan

Evaluating Software Developers’ Acceptance of a Tool for Supporting Agile
Non-Functional Requirement Elicitation . 26

Felipe Ramos, Antonio Pedro, Marcos Cesar, Alexandre Costa, Mirko Perkusich,
Hyggo Almeida and Angelo Perkusich

Automatic Generation of Virtual Assistants from Databases using Active Ontologies 32

Martin Blersch, Sebastian Weigelt, Walter Tichy and Kevin Angele

GADIS: A Genetic Algorithm for Database Index Selection (S) . 39

Priscilla Neuhaus, Julia Couto, Jonatas Wehrmann, Duncan Ruiz and Felipe Meneguzzi

Session Software Testing I

Research on Page Object Generation Approach for Web Application Testing. 43

Yimei Chen, Zheng Li, Ruilian Zhao and Junxia Guo

A Class-level Test Selection Approach Toward Full Coverage For Continuous Integration. . 49

Yingling Li, Junjie Wang, Qing Wang and Jun Hu

Amplifying Tests for Cross-Platform Apps through Test Patterns . 55

Thiago Botti de Assis, André Augusto Menegassi and André Takeshi Endo

Session Theoretical Software Engineering

Algebraic Convergence to Software-Knowledge: Deep Software Learning (P) 61

Iaakov Exman and Assaf Spanier

Formal ontologies and data shapes within the Software Engineering development lifecycle . 64

Jose Maŕıa Alvarez Rodŕıguez, Valent́ın Moreno and Juan Llorens

x

SEKE2019 Table of Contents

Towards an Ontology to Support Decision-making in Hospital Bed Allocation (S) 71

Debora Engelmann, Julia Couto, Vagner Gabriel, Renata Vieira and Rafael Bordini

A Software System is Greater than its Modules’ Sum: Providers & Consumers’
Modularity Matrix . 75

Iaakov Exman and Harel Wallach

Session Agile Software

An Effort Estimation Support Tool for Agile Software Development: An Empirical
Evaluation . 82

Emanuel Dantas, Alexandre Costa, Marcus Vinicius, Mirko Perkusich, Hyggo
Almeida and Angelo Perkusich

Towards an artifact to support agile teams in software analytics activities 88

Joelma Choma, Eduardo Guerra, Tiago Silva Da Silva, Luciana Zaina and Filipe
Figueiredo Correia

Sprint Performance Forecasts in Agile Software Development - The Effect of
Futurespectives on Team-Driven Dynamics . 94

Fabian Kortum, Jil Klünder, Wasja Brunotte and Kurt Schneider

Session Software Testing II

Research on Multi-constraint Combinatorial Test Technology for High Confidence
Embedded Software (S) . 102

Feng Gao, Fei Deng and Yunqiang Yan

Specification-based Testing with Simulation Relations (S) . 107

Canh Minh Do and Kazuhiro Ogata

A Survey Study on the Inference Problem in Distributed Environment (S) 113

Adel Jebali, Abderrazak Jemai and Salma Sassi

Towards human-centric software testing . 117

Samantha Catania, Chris Porter and Mark Micallef

Session Software Testing III

Semantic Analysis for Deep Q-Network in Android GUI Testing . 123

Thi Anh Tuyet Vuong and Shingo Takada

Impacts of Data Uniformity in the Reuse of Acceptance Test Glue Code 129

Douglas Hiura Longo, Patŕıcia Vilain and Lucas Pereira da Silva

Test Case Generation by EFSM Extracted from UML Sequence Diagrams 135

Mauricio Rocha, Adenilso Simão, Thiago Sousa and Marcelo Batista

The Smell of Blood: Evaluating Anemia and Bloodshot Symptoms in Web Applications . . 141

Zijie Huang, Junhua Chen and Jianhua Gao

Session Formal Methods I

xi

SEKE2019 Table of Contents

Formalization and Verification of RTPS StatefulWriter Module Using CSP 147

Jiaqi Yin, Huibiao Zhu, Yuan Fei, Qiwen Xu and Ruobiao Wu

A Sound and Complete Axiomatisation for Spatio-Temporal Specification Language 153

Tengfei Li, Jing Liu, Dongdong An and Haiying Sun

Formal Specification and Model Checking of the Lim-Jeong-Park-Lee Autonomous
Vehicle Intersection Control Protocol (S) . 159

Moe Nandi Aung, Yati Phyo and Kazuhiro Ogata

Session Baysean Methods

Improving the Applicability of the Ranked Nodes Method to build Expert-Driven
Bayesian Networks (S) . 165

João Nunes, Luiz Silva, Mirko Perkusich, Kyller Gorgonio, Hyggo Almeida and
Angelo Perkusich

A systematic process to define expert-driven software metrics thresholds (S) 171

Renata Saraiva, Mirko Perkusich, Hyggo Almeida and Angelo Perkusich

Multi-source fault detection and diagnosis based on multi-level Knowledge Graph and
Bayesian theory reasoning (S) . 177

Tao Sun and Qi Wang

Session Formal Methods II

Formal Specification and Model Checking of A* Algorithm . 181

Kazuhiro Ogata

PAT approach to Architecture Behavioural Verification . 187

Nacha Chondamrongkul, Jing Sun and Ian Warren

Leveraging Rigorous Software Specification Towards Systematic Detection of SDN
Control Conflicts (S) . 193

Xin Sun and Lan Lin

Session Software Bugs

The Influence of God Class and Long Method in the Occurrence of Bugs in Two Open
Source Software Projects: An Exploratory Study (S) . 199

Aloisio Cairo, Glauco Carneiro, Antonio Resende and Fernando Brito E Abreu

Feature Evaluation for Automatic Bug Report Summarization (S) . 205

Akalanka Galappaththi and John Anvik

Generating Integration Tests Automatically Using Frequent Patterns of Method
Execution Sequences . 209

Mark Grechanik and Gurudev Devanla

CrashAwareDev: Supporting Software Development based on Crash Report Mining and
Analysis (S). 215

Leandro Beserra and Roberta Coelho

Session Internet of Things

xii

SEKE2019 Table of Contents

Dynamic and Interoperable Control of IoT Devices and Applications based on Calvin
Framework . 221

Fernanda Famá, Cleuves de Carvalho, Danilo Santos, Angelo Perkusich and Kyller
Gorgônio

Reverse Engineering Behavioural Models of IoT Devices . 227

Sébastien Salva and Elliott Blot

A Resource Management Architecture For Exposing Devices as a Service in the Internet
of Things . 233

Carlos Pantoja, Heder Dorneles Soares, Tielle Alexandre, Jose Viterbo and Amal
El-Fallah Seghrouchni

Session Security

SPRO: Security Process Framework . 239

Henrique Persch, Lisandra Fontoura and Adriano Fontoura

Detecting Security Vulnerabilities using Clone Detection and Community Knowledge 245

Fabien Patrick Viertel, Wasja Brunotte, Daniel Strüber and Kurt Schneider

Case-Based Cybersecurity Incident Resolution . 253

Marcelo Colomé, Raul Ceretta Nunes and Luis Alvaro de Lima Silva

Session Formal Methods III

Verifying Static Aspects of UML models using Prolog (S). 259

Feng Sheng, Huibiao Zhu, Zongyuan Yang, Jiaqi Yin and Gang Lu

Modeling and Verifying TESAC Using CSP . 265

Dongzhen Sun, Huibiao Zhu, Yuan Fei, Lili Xiao, Gang Lu and Jiaqi Yin

PRISM Code Generation for Verification of Mediator Models (S) . 271

Weidi Sun and Meng Sun

Session Adaptive Software

An evolutionary model for dynamic and adaptative service composition in distributed
environment . 275

Jiawei Lu, Huan Zhou, Jun Xu, Haibo Pan and Gang Xiao

Learning - based Adaptation Framework for Elastic Software Systems . 281

Yingcheng Sun, Xiaoshu Cai and Kenneth Loparo

Self-Adaptive software changes analysis method based on ”Detection-Recognition”
Mechanism (S) . 287

He Zhang, Qingshan Li, Lu Wang and Wen Cheng

Session Semantic Enabled SE

morph-GraphQL: GraphQL Servers Generation from R2RML Mappings (S) 291

Freddy Priyatna, David Chaves-Fraga, Ahmad Alobaid and Oscar Corcho

xiii

SEKE2019 Table of Contents

Semantic Rule Based Program Monitoring (S) . 297

Luke Tudor, Jing Sun, Hai H. Wang and Bingyang Wei

Context-aware Reactive Systems based on Runtime Semantic Models (S) 301

Ester Giallonardo, Francesco Poggi, Davide Rossi and Eugenio Zimeo

Enhancing Semantic Search of Crowdsourcing IT Services using Knowledge Graph. 307

Duankang Fu, Shufan Zhou, Beijun Shen and Yuting Chen

Session Empirical Studies

An Empirical Study on Research and Developmental Opportunities in Refactoring
Practices . 313

Shivani Jain and Anju Saha

An Empirical Studies on Optimal Solutions Selection Strategies for Effort-Aware
Just-in-Time Software Defect Prediction. 319

Xingguang Yang, Huiqun Yu, Guisheng Fan and Kang Yang

Empirical Studies Concerning the Maintenance of BPMN Diagrams: A Systematic
Mapping Study . 325

Ursula Campos, Adriana Lopes, Simone Barbosa and Tayana Conte

Session Neural Networks

Multistep Flow Prediction on Car-Sharing Systems: A Multi-Graph Convolutional
Neural Network with Attention Mechanism. 331

Yi Luo, Qin Liu, Hongming Zhu, Hongfei Fan, Tianyou Song, Chang Wu Yu and
Bowen Du

Chinese Text Relation Extraction with Multi-instance Multi-label BLSTM Neural
Networks. 337

Liubo Ouyang, Hui Tang and Guangyi Xiao

A Convolutional Neural Network Pruning Method Based On Attention Mechanism 343

Xiao Jie Wang, Wenbin Yao and Huiyuan Fu

An Integrated Software Vulnerability Discovery Model based on Artificial Neural Network 349

Gul Jabeen, Luo Ping, Junaid Akram and Akber Aman Shah

Session Machine Learning Algorithms for SE

Machine Learning for Learnability of MDD tools . 355

Saad Bin Abid, Vishal Mahajan and Levi Lucio

Assessing the Influence of Size Category of the Project in God Class Detection, an
Experimental Approach based on Machine Learning . 361

Khalid Alkharabsheh, Yania Crespo, Manuel Fernandez-Delgado, José M. Cotos and
Jose Angel Taboada

A Services Development Approach for Smart Home Based on Natural Language
Instructions . 367

Yiyan Chen, Zhanghui Liu, Zhiming Huang, Chuangshumin Hu and Xing Chen

xiv

SEKE2019 Table of Contents

Modeling User Contextual Behavior Semantics with Geographical Influence for
Point-Of-Interest Recommendation . 373

Dongjin Yu, Kaihui Xu and Dongjing Wang

Session Deep Learning/AI

A Deep Learning Model Based on Sparse Matrix for Point-of-Interest Recommendation . . . 379

Jun Zeng, Haoran Tang, Yinghua Li and Xin He

Improving Code Generation From Descriptive Text By Combining Deep Learning and
Syntax Rules . 385

Xiangru Tang, Zhihao Wang, Jiyang Qi and Zengyang Li

Safe-by-Design Development Method for Artificial Intelligent Based Systems. 391

Gabriel Pedroza and Adedjouma Morayo

Session Software Development II

Augmenting App Review with App Changelogs: An Approach for App Review
Classification. 398

Chong Wang, Tao Wang, Peng Liang, Maya Daneva and Marten Sinderen

Prudent Practices for Designing Virtual Desktop Experiments . 404

Peiyu Liu, Wenzhi Chen, Zonghui Wang and Lirong Fu

CrowDevBot: A Task-Oriented Conversational Bot for Software Crowdsourcing
Platform (S) . 410

Zeyu Ni, Beijun Shen, Yuting Chen, Zhangyuan Meng and Junming Cao

Retrieving Curated Stack Overflow Posts from Project Task Similarities (S) 415

Glaucia Santos, Toacy Oliveira, Paulo Alencar and Don Cowan

Session Software Defects

Software Defect Prediction Model Based on Improved Deep Forest and AutoEncoder by
Forest . 419

Wenbo Zheng, Shaocong Mo, Xin Jin, Yili Qu, Zefeng Xie and Jia Shuai

Multi-project Regression based Approach for Software Defect Number Prediction 425

Qiguo Huang, Chao Ni, Xiang Chen, Qing Gu and Kaibo Cao

Cross-Project Defect Prediction via Transferable Deep Learning-Generated and
Handcrafted Features . 431

Shaojian Qiu, Lu Lu, Ziyi Cai and Siyu Jiang

An Investigation of Ensemble Approaches to Cross-Version Defect Prediction 437

Xiaoxing Yang, Xin Li, Wushao Wen and Jianmin Su

Session Software Architectures I

A Multilevel Analysis Method for Architecture Erosion . 443

Tong Wang, Dongdong Wang and Bixin Li

xv

SEKE2019 Table of Contents

The affinity Platform: Modular Architecture based on Independent Components (S) 449

Alexandru Ardelean and Kuderna-Iulian Bent,a

A Mapping Study about Data Lakes: An Improved Definition and Possible Architectures . 453

Julia Couto, Olimar Borges, Duncan D. Ruiz, Sabrina Marczak and Rafael Prikladnicki

Session Software Architectures II

Architecture for Discovery and Customization of Multi-tenant Learning Process as a
service and resources allocation in cloud computing. 459

Sameh Azouzi, Zaki Brahmi and Sonia Ayachi Ghannouchi

An Empirical Study about Software Architecture Configuration Practices with the Java
Spring Framework (S) . 465

Quentin Perez, Alexandre Le Borgne, Christelle Urtado and Sylvain Vauttier

Recover and Optimize Software Architecture Based on Source Code and Directory
Hierarchies (S) . 469

Tong Wang, Yelian Zhang, Xufang Gong and Bixin Li

Session User Centered Design

Automated user-oriented description of emerging composite ambient applications 473

Maroun Koussaifi, Sylvie Trouilhet, Jean-Paul Arcangeli and Jean-Michel Bruel

Usability of Chatbots: A Systematic Mapping Study . 479

Ranci Ren, John W. Castro, Silvia T. Acuna and Juan de Lara

Extending Behavior-Driven Development for Assessing User Interface Design Artifacts (S) 485

Thiago Silva, Marco Winckler and Hallvard Trætteberg

Session Software Development III

A Method to Recommend Artifacts to New Tasks in Software Projects (S) 489

Edson Lucas, Toacy Oliveira and Paulo Alencar

SOTagger - Towards Classifying Stack Overflow Posts through Contextual Tagging (S) . . . 493

Akhila Sri Manasa Venigalla, Chaitanya S. Lakkundi and Sridhar Chimalakonda

An annotated repository for MATLAB code (S) . 497

Antonio Relvas, Nuno C. Marques, Miguel Monteiro and Glauco Carneiro

Session Fuzzy and Stochastic Approaches

BDFIS: Binary Decision Access Control Model Based On Fuzzy Inference Systems. 503

Diogo Domingues Regateiro, Óscar Mortágua Pereira and Rui Aguiar

Fuzzy Bi-Objective Particle Swarm Optimization for Next Release Problem (S) 509

Carlos Antonio Casanova Pietroboni, Giovanni Daian Rottoli, Esteban Schab,
Luciano Bracco, Fernando Pereyra Rausch and Anabella De Battista

Language Independent POS-tagging Using Automatically Generated Markov Chains (S) . . 513

Joaquim Assunção, Paulo Fernandes and Lucelene Lopes

xvi

SEKE2019 Table of Contents

Generating SQL Statements from Natural Language Queries: A Multitask Learning
Approach (S) . 518

Chunqi Chen, Yunxiang Xiong, Beijun Shen and Yuting Chen

Session Software Systems I

Forward Engineering Completeness for Software by Using Requirements Validation
Framework (S) . 523

Nayyar Iqbal, Jun Sang, Min Gao, Haibo Hu and Hong Xiang

Improving Mobile Device interaction for Parkinson’s Disease Patients via PD-Helper. 529

Farzana Jabeen, Linmi Tao, Yirou Guo, Shiyu Zhang and Shanshan Mei

ACNET: Attention-based Convolution Network with Additional Discriminative Features
for DCM Classification (S) . 535

Chao Luo, Wang Xin, Xiaojie Li, Yucheng Chen, Jiliu Zhou, Kunlin Cao, Qi Song,
Xi Wu and Youbing Yin

Discovering Indicators for Classifying Wikipedia Articles in a Domain - A Case Study
on Software Languages . 541

Marcel Heinz, Ralf Lämmel and Mathieu Acher

Session Mobile Software

Model View Controller in iOS mobile applications development . 547

Dragos Dobrean and Laura Diosan

An Empirical Study on Managing Energy and Accuracy Requirements of Location
Based Android Applications (S) . 553

Marimuthu C, Sanjana Palisetti and Chandrasekaran K

LAD: A Layout Anomaly Detector for Android Applications . 557

Cheng-Zen Yang, Chih-Ju Lai, Peng Lu and Zhi-Jun You

Schedulability analysis for real-time mobile systems (S). 563

Cong Chen, Yangyang Chen, Jian-Min Jiang, Shi Zhang, Zhong Hong, Hongping Shu
and Zeng Qiong

Session Requirements

Combining VSM and BTM to Improve Requirements Trace Links Generation 567

Bangchao Wang, Rong Peng, Zhuo Wang and Yaxin Zhao

Themis: a tool for validating ontologies through requirements . 573

Alba Fernández-Izquierdo and Raúl Garćıa-Castro

Communication on Requirements Elicitation and Interaction Design through SPIDe (S) . . 579

Jean Rosa, Beatriz Brito, Filipe Garrido, Pedro Valente, Nuno Nunes and Ecivaldo
Matos

xvii

SEKE2019 Table of Contents

Impact of Agile Practices Adoption on Organizational Learning: a Survey in Brazil 583

Florindo Silote Neto, Bruno Rafael de Oliveira Rodrigues, Renata de Souza França,
Fabŕıcio Ziviani and Fernando Silva Parreiras

Session Information Systems

Towards a customizable Student Information System integrating MDD and SPL (S) 589

Anderson Vale, Sergio Fernandes and Ana Patricia Magalhaes

Towards Detecting and Managing Information Anxiety in the ICT Industry 594

Mark Micallef and Chris Porter

A Case Study of a Software Development Process Model for SIS-ASTROS 600

Camila Hübner Brondani, Otávio da Cruz Mello and Lisandra Manzoni Fontoura

Session Ontologies

Experiences on applying SPL Engineering Techniques to Design a (Re) usable Ontology
in the Energy Domain. 606

Javier Cuenca, Felix Larrinaga and Edward Curry

Identify MVC architectural pattern based on ontology . 612

Yin Qiang, Wang Lulu and Li Bixin

Grouping Semantically Related Change-Sets to Enhance Identification of Logical Coupling618

Neeraj Mathur, Sai Anirudh Karre and Raghu Reddy Y

Session Signal Processing

A Robust Visual Tracker Based on DCF Algorithm. 624

Menglei Jin, Weibin Liu and Weiwei Xing

A Novel Algorithm for Exemplar-based Image Inpainting (S) . 630

Yaru Cheng, Weibin Liu and Weiwei Xing

Trajectory Similarity Computation based on Interpolation and Integration (S) 634

Zengwei Zheng, Wenwang Chen, Yuanyi Chen and Dan Chen

Session Performance

Clustering algorithms performance analysis applied to patent database 640

Cinthia M. Souza, Magali R. G. Meireles and Paulo E. M. Almeida

Automatic Calibration of Performance Indicators for Performance Analysis in Software
Development (S) . 646

Mushtaq Raza and João Faria

Knowledge Engineering Research Topic Mining Based on Co-word Analysis 650

Xiumin Liu and Zheng Liu

Finding Erroneous Components from Change Coupled Relations at Fix-inducing Changes 655

Ali Zafar Sadiq, Ahmedul Kabir and Kazi Sakib

Session Software Quality

xviii

SEKE2019 Table of Contents

Artifact Quality Assessment Plans Generation from Tailored Processes 661

Camila Hübner Brondani, Gelson Bertuol and Lisandra Manzoni Fontoura

Improve Language Modelling for Code Completion through Learning General Token
Repetition of Source Code. 667

Yixiao Yang and Chen Xiang

Improve Language Modelling for Code Completion by Tree Language Model with Tree
Encoding of Context (S) . 675

Yixiao Yang and Chen Xiang

Fast Exhaustive Search Algorithm for Discovering Relevant Association Rules 681

Hend Amraoui, Faouzi Mhamdi and Mourad Elloumi

Session Software Process

Collecting Data from Continuous Practices: an Infrastructure to Support Team
Development . 687

Ana Filipa Nogueira, Emilien Sergeant, Antoine Craske, José Carlos Ribeiro and
Mário Zenha-Rela

Software Engineering Risks from Technical Debt in the Representation of Product/ion
Knowledge . 693

Stefan Biffl, Lukas Kathrein, Arndt Lüder, Kristof Meixner, Marta Sabou, Laura
Waltersdorfer and Dietmar Winkler

A Enhanced Feature Model for Software Product Line and Core Feature Extraction (S) . . 701

Guanzhong Yang, Haoming Chang and Zeya Mou

Session Software Development I

SSLDoc: Automatically Diagnosing Incorrect SSL API Usages in C Programs 707

Zuxing Gu, Jiecheng Wu, Chi Li, Min Zhou and Ming Gu

Multi-Location Program Repair Strategies Learned from Successful Experience (S) 713

Shangwen Wang, Xiaoguang Mao, Nan Niu, Xin Yi and Guo Anbang

Logical Segmentation of Source Code. 717

Jacob Dormuth, Ben Gelman, Jessica Moore and David Slater

TL-GAN: Generative Adversarial Networks with Transfer Learning for Mode Collapse (S) 723

Xianyu Wu, Shihao Feng, Xiaojie Li, Jing Yin, Jiancheng Lv and Canghong Shi

Session Software Systems II

Piecewise Aggregation for HMM fitting. A pre-fitting model for seamless integration
with time series data . 729

Joaquim Assunção, Jean-Marc Vincent and Paulo Fernandes

How do Practitioners Manage Decision Knowledge during Continuous Software
Engineering? (S) . 735

Anja Kleebaum, Jan Ole Johanssen, Barbara Paech and Bernd Bruegge

xix

SEKE2019 Table of Contents

Initial evaluation of the brain activity under different software development situations 741

Rustam Ikramov, Vladimir Ivanov, Sergey Masyagin, Ruslan Shakirov, Ilyas
Sirazidtinov, Giancarlo Succi, Ananga Thapaliya, Alexander Tormasov and Oydinoy
Zufarova

Finding conservative schema evolutions by analysing API changes . 748

Lynda Ait Oubelli, Yamine Ait-Ameur, Judicaël Bedouet, Benôıt Chausserie-Laprée
and Béatrice Larzul

Session Software Systems III

Documenting and Exploiting Software Feature Knowledge through Tags 754

Marcus Seiler and Barbara Paech

Research on Scheduling Area Partition Method Based on Multiple Algorithms 760

Lefeng Li and Shanshan Wang

Anomaly Detection in the Registry of the Secondary Energy Distribution Network (S) 766

Carlos Fonsêca and Alexandre Maciel

Analyzing the impact of Technological KM and Participatory KM in FTA (S) 770

Diego Cardoso Borda Castro, Carlos Eduardo Barbosa, Luis Felipe Coimbra Costa
and Jano Souza

Session Demo and Posters

Complex Networks Analysis for Software Architecture: a Case Study on Hibernate (P) . . . 774

Daniel Henrique Mourão Falci, Bruno Rafael de Oliveira Rodrigues, Orlando Abreu
Gomes and Fernando Silva Parreiras

An Approach for Collecting Real Estate Development News (P) . 776

Vińıcius Ferreira Salgado, Matheus de Oliveira Salim, Daniel Henrique Mourão Falci,
Wladmir Cardoso Brandão and Fernando Silva Parreiras

GraphQL Servers generation from R2RML with morph-GraphQL (D) . 777

Ahmad Alobaid, David Chaves-Fraga, Freddy Priyatna and Oscar Corcho

xx

KSI
Typewritten Text
Note: (S) indicates a short paper, (P) a poster and (D) a demo,

KSI
Typewritten Text

DOI reference number: 10.18293/SEKE2019-112

A DIK-based Question-Answering Architecture

with Multi-sources Data for Medical Self-Service

(KG)

Mengxing Huang1,2,Menglong Li1,2, YuZhang1,2, Wenglong Feng1,2
1 State Key Laboratory of Marine Resource Utiliza tion in South China Sea, Hainan University, Haikou, China

2 College of Information Science &Technology, Hainan University, Haikou, China

Corresponding author: Yu Zhang (Email: yuzhang_nwpu@163.com)

 .

Abstract—Medical data is amplified in terms of speed and

capacity in a very fast way, which creates obstacles for users to

quickly access valid information. We present a DIK-based

Question-Answering Architecture for Medical Self-Service. In

addition, we propose a model based on the attention mechanism to

extract high-quality medical entity concepts from the Chinese

Electronic Medical Records (EMR). Then we modeled the medical

data based on the DIK architecture (Data graph, Information

graph, and Knowledge graph), construct a Question-Answering

model (DIK-QA) for medical self-service that meets the needs of

users to quickly and accurately find the medical information they

need in massive medical data. Finally, we have realized this

approach and applied it to real-world systems. The experimental

results on our medical dataset show that the DIK-QA can

effectively handle 4W (who/what/why/how) questions, which can

help users find the information they need accurately.

Keywords—Data graph, Information graph, and Knowledge graph

(DIK); Question-Answering (QA); Electronic Medical Records

(EMRs); attention mechanism

I. INTRODUCTION

Recently, knowledge graph have increasingly attracted
attention in various fields. Medical Knowledge Graph (MKG)
is also very popular in the medical field due to the unique
expression of knowledge graph. Researchers explore with
various approaches to construct the MKG. Reference [1] used
deep learning method to extract 4 entities and 9 entity
relationships from Chinese electronic medical records (EMR),
then adopted the triple form to import data into the Neo4j and
visualized the data into a knowledge graph. Reference [2] built
a medical field table by using Bootstrapping and Conditional
Random Fields (CRF) and solved the actual problem based on
the obtained knowledge graph.

At present, research on knowledge graph is endless. Cowie
et al. divided the knowledge graph into Data Graph (DG),
Information Graph (IG) and Knowledge Graph (KG) according
to the concept of Data, Information, Knowledge, and Wisdom
(DIKW) [3].

However, there is a gap to fill for combining the MKG with
the QA model. There are basically two major challenges. The
first challenge is no effective framework for the union between
QA and MKG for medical services. The second challenge the
reliability of medical knowledge base. By addressing two
major challenges, we solve and successfully construct a DIK-
based QA for medical self-services. The complete structure of
the DIK-QA is shown in Fig. 1.The contributions of our work
are: 1) According to [4], we constructed the medical self-
service DIK-QA based on the DIK. It can model massive
amounts of data and qucikly and accuratelly find the
inforamtion users need and provide services to users in a
friendlier manner, 2) We guarantee the data reliability of the
medical knowledge base from two perspectives: clinical
knowledge and health information. For clinical knowledge, we
use the model BiLSTM-Attended-CRF model to obtain a
higher quality medical entity concept. For health information
we adopt the distributed crawlers to collect richer information,
such as dietary advice and rehabilitation exercises.

II. FRAMEWORK

We divide the work into three parts: a) designing a DIK-QA

framework (including three layers of knowledge graph), b) data

acquisition, c) DIK-QA implementation. As shown in Fig. 1.

A. DIK-QA Architecture

According to the DIKW [3] idea, the medical knowledge graph

can be divided into three categories: 1) Data graph, 2)

Information graph, 3) Knowledge graph.

Data Graph Data graph can record the frequency of the data,

including spatial frequency and structure frequency. We refer

to the definition of data frequency in [4] to define the medical

data frequency as a two-tuple.

 ,spatial structureDFreq f f (1)

Where the spatial frequency, structure frequency of data are

represented by spatialf , and
structuref , respectively. The frequency

of structure and spatial are the medical department of the

disease and the treatment, respectively. As shown in Fig. 2.

1

Data

Output Answers

Question Parsing

 DIK-QA

Electronic

Medical

Records

Online

Medical

Communi

ty

BiSLTM-Attended-CRF

Distributed Crawler

Medical Data, Information, Knowledge Graph

Methoods

Data: who
Information:

what

Knowledge:
how/why

Query on Neo4j

Knowledge Integration

Figure 1. Overview of the DIK-QA Architecture for Medical Self-Service

Disease: Tonsillitis
Medical department:

Otolaryngology,Pediatrics,Respiratory
Medicine

Treatment: Medical, Surgical, Recovery

Pharyngalgia

Sore throat

...

CT examination of

Otorhinolaryngology

... Bezoar

antidotal pills

...
Lily porridg

...

Overworked
Viral infection

...

7-14 Days
Exercise

...

99.8%

fspatial:3
fstructure:3

Figure 2. Statistics on
spatialf and

structuref of medical data.

Information Graph Information is extracted from the data

for analysis and interpretation. We store the collected data as

the medical knowledge base in dictionary format, as shown

in Fig. 3. We define the medical knowledge base as the

directed graph (,)G V E . The nodes and edges are denoted by

V, E, respectively.[4]

 _ deg deg degCom ree (2)

 Im _ degpor DFreq Com ree (3)

The in-degree and out-degree of the node are represented by

deg , deg , respectively. In order to prevent the loss of the

information, we adopt (3) to further measure the importance

of the nodes. The weights of the DFreq and the

_ degCom ree is denoted by , .

Knowledge Graph Knowledge is the overall understanding

and awareness gained from the accumulated information.

1 2

1 2

() ()

(, ,)
| |

Q

P E E

Cr E R E
Q

 (4)

We use (4) to calculate the correctness of the relationship

between E1 and E2. Before we construct a medical

knowledge graph, we need to design the knowledge graph:

entity type nodes and entity relationship nodes, as shown in

TABLE 1, 2.

Where all path between E1 and E2 are represented by Q, the

weights of single path and path are represented by () , .

We comprehensively evaluate the importance of the nodes

on the knowledge graph according to (5). N is the number of

the relationship types. The weight of Re il is represented by

i .

1

Re

_ Im Im

n

i i

i

l

Final por por
n

 (5)

After completing the design of the DIK-based medical

knowledge graph, we use the py2neo module in Python to

import the dictionary type data into the Neo4j. As shown in

Fig.1.
TABLE 1. The definition of the entity nodes

Entity nodes Meaning

Department Disease department

Disease Disease name

Drug Drugs for treating the disease

Cause Cause of the disease

TABLE 2. The definition of the relationship nodes

Relation node Meaning

do_eat Recommended food for the disease

recommend_drug Recommended drug for the disease

has_symptom Disease corresponding symptoms

cure_way Treatment for disease

B. Data Acquasition

In [1], we have extracted five entity types and nine entity
relationship types by the BiLSTM-CRF model. However, we
propose a novel model based on the Chinese EMR to
improve the accuracy of the entity recognition, combining
BiLSTM-CRF model with attention mechanism, as shown in
Fig.4. Please refer to [1] for the BiLSTM-CRF model.

TABLE 3. The labeling rules of the Chinese EMR

Label
Prefix

Label Suffix Meaning

B DISEASE,TREATMENT,
CHECK, ,BODY, SIGNS

Head of the entity

I DISEASE,TREATMENT,
CHECK, ,BODY, SIGNS

Middle and tail of the
entity

O None Other words

2

以 腹 部 疼

O B-Body I-Body B-SIGNS
CRF Layer

h1 h2 h3 h4

h1 h2 h3 h4

H1 H2 H3 H4

I-SIGNS

痛

h5

h5

H5

tanh Layer

Attention Layer

Forward LSTM

Backward LSTM

Embedding Layer

Text Layer

Figure 4. The structure of the BiLSTM-Attended-CRF model

BiLSTM-Attended-CRF Attention mechanism is a
mechanism to simulate the attention of the human brain. The
core idea is to draw on the attention of the human brain to
things at a certain moment, it will focus on a certain key
point, and ignore other key points [5]. We introduce the
attention mechanism between the BiLSTM layer and the
CRF layer to solve the challenge of extracting more precise
semantic features for named entity recognition of Chinese
EMR. Specifically, the attention mechanism is applied to the
hidden layer of BiLSTM and then produces the newly hidden
layer vectors. The implementation of the attention
mechanism is as shown in (6)-(8).

 tanhije V (𝑈1ℎ⃗ 𝑖 + 𝑈2ℎ⃖⃗𝑗 + 𝑏𝛼) (6)

 𝛼𝑖𝑗 =
exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑗)
𝑇
𝑗=1

 (7)

 𝐻𝑖
⃗⃗⃗⃗ = ∑ 𝛼𝑖𝑗

𝑇
𝑗=1 ℎ𝑗

⃗⃗ ⃗ (8)

Where ije represents energy value of the jth word to the ith

word, that is to say, the relationship between the two words.
We use

ij represents the attention weight of the jth word to

the ith word, reflecting the influence of each vocabulary in

the input text X.V ,
1U ，

2U ， b is the parameter trained

with the model. The new feature representation after the
attention mechanism in Forward-LSTM Layer and

Backward-LSTM is represented by 𝐻𝑖
⃗⃗⃗⃗ , respectively. We

combine two new feature representations to form the final

feature representation𝐻𝑖 = [𝐻𝑖
⃗⃗⃗⃗ , 𝐻𝑖

⃖⃗⃗⃗⃗]. After the attention layer,
it will pass the activation function tanh layer, then pass the
mapping results of tanh layer to the CRF Layer. Finally, the
model can output the predicted label sequence for input text,
as shown in Fig. 4.

Disease-Oriented We constructed a medical entity
dictionary for recognition of the BiLSTM-Attended-CRF
model. We take the knowledge fusion based on the medical
concept in the dictionary to eliminate some ambiguous
entities. The Disease-Oriented Knowledge base has the
advantages: the disease can integrate various information

such as symptoms, checks, causes, foods and drugs et al. into
one line, as shown in Fig. 2.

C. DIK-QA Implementation

The DIK-QA model is consist of three parts: Analysis

question, Question division, Query knowledge. As show in

Fig.1.

Analysis question The DIK-QA can analysis the question in

plain language way by the BiLSTM-Attended-CRF model.

In this part, we can get the medical entity in the question,

then we submit the identified results to the next part-

Question division.

Question division After the analysis question, we can get

the category of question. By classifying the user’s questions,

we can accurately get the intent of user. According to the

frequency statistics on the types of questions and vocabulary

that appear in the Q&A module on the medical website, we

summarize two main types of questions: 1) Entity

relationship template. It can solve the question of entity

relationship query, including disease and symptoms, disease

and drug, food, treatment and so on. For example, “what are

the symptoms of hypertension?”, ”Recently dizzy, what

disease might I get? ”, etc. 2) Entity attribute template. It can

solve the question of entity attribute query, including disease

prevention, cause and so on. For example, ”why do I get the

hypertension?”, “Precautionary measures for the

hypertension?”.

Query knowledge We can take the query on the Neo4j

based above part. We take the Aho-Corasick (AC) algorithm

[6] as the core method to realize the Query knowledge. AC

automaton is the most classic multi-pattern matching

algorithm. It uses a plurality of pattern strings to construct a

finite state pattern matching automaton. The DIK-QA

performs knowledge reasoning on the corresponding

knowledge graph (DIK) according to different question

types, so that the answer can be quickly found. We can

convert the question to cypher query statement and search

the corresponding answer, and then return it. Cypher is a

graph query language designed for operating Neo4j that

efficiently queries and updates knowledge graphs. It has

more powerful than SQL in relational capabilities. For

example, Question: what are the symptoms of tonsillitis?

Cypher statement: Match (m: tonsillitis) –[r: has_symptom]

 (n: Symptom) where m.name = ‘{0}’ return m.name,

r.name, n.name. Where r, m, n are the variables of the

disease name, relation: has_symptom, and symptom node,

respectively. Node definition refer to TABLE 1, 2.

III. EXPERIMENTS AND RESULTS

A. Eexperiments on BiLSTM-Attended-CRF

To evaluate the performance of the BiLSTM-Attended-CRF
model, we compared several basic model. The EMR data

3

from the local hospital. Other medical data comes from two
medical websites1. The evaluation indicator adopts accuracy,
recall rate, and F value. The comparison algorithm uses
common models such as CRF, BiLSTM, and BiLSTM-CRF.
We tested 100, 128, 200, 256 and 300 on word vector
dimension. The BiLSTM-Attended-CRF model has a good
performance when word vector dimension is 128. Learning
rate is 0.001, the LSTM layer is 4. Dropout is 0.4. The
experimental results are shown in Table 4.

TABLE 4. Experimental results of each model for entity recognition

Model P (%) R (%) F (%)

CRF 60.45 58.72 60.13

BiLSTM 61.42 58.23 57.68

BiLSTM-CRF
BiLSTM-Attended-CRF

83.53
89.76

78.38
85.51

80.35
88.90

The experimental results show that the BiLSTM-Attended-
CRF model has better performance than state-of-the-art
baselines in entity recognition. F-value and accuracy
increased by 6%. In our model, all three evaluation marks
have been improved.

B. Eexperiments on the DIK-QA

To evaluate the effectiveness of the DIK-QA, we selected
five common diseases as small sample data, including cold,
pediatric cold, hypertension, diabetes, cervical spondylosis.
Observed from Fig.5, we can know that the DIK-QA can
solve effectively some common question.

DIK-QA work situation

…

User: 如何治疗感冒？(How to cure a cold?)

Doctor: 感冒可尝试如下治疗：中医治疗，支持性治疗，对症治疗。(You can try the treatments for

cold: Chinese medicine treatment, supportive treatment, symptomatic treatment.)

User: 感冒的症状都有什么？(What are the symptoms of a cold?)

Doctor: 感冒的症状有：鼻塞，咽痛，发热，头痛等。(The symptoms of a cold are nasal

congestion, sore throat, heat, and headache etc.)

User: 感冒忌吃什么食物？(What food can't you eat when you have a cold?)

Doctor: 感冒忌吃：猪油，咸鱼，白扁豆，油条等. (Avoid eating: lard, salted fish, and fritters , etc)

User: 感冒应该吃什么食物？(What food should I eat for a cold?)

Doctor: 感冒应该吃：鸡蛋，芝麻，南瓜子仁，鹌鹑蛋。(Recommend eating: egg, pumpkin seed

kernel, sesame, quail eggs)

User：为什么会感冒？(Why do people catch a cold?)

Doctor：感冒的可能成因：病毒感染（70%-80%）, 有受凉、淋雨、过度疲劳等诱发因素，导致

抵抗力下降。(The possible causes of a cold: viral infection(70%-80%), or factors such as cold, rain,

excessive fatigue, etc., which can reduce the resistance...)

…

Figure 5. The DIK-QA’s work situation

IV. RELATED WORK

In 2006, Rowley [7] revisits the data-information-
knowledge-wisdom (DIKW) hierarchy and analyses the
statement about the nature of data, information, knowledge,
and wisdom. Through this process we get a consensus on
definitions and transformation about DIKW. It makes the
theoretical development of the further development of the
DIKW. Duan et al. [8] proposes to clarify the expression of
knowledge graph as a whole for lacking a unified definition
and standard expression form of knowledge graph. They
clarify the architecture of knowledge graph from data,
information, knowledge and wisdom aspects respectively.
They also propose to specify DIKW-based knowledge graph.
Moreover, Song et al. [9] proposed a processing optimization
mechanism of typed resources in a wireless-network-based

1 http://www.xywy.com

three-tier architecture consisting of DIK mechanism.
Simulation results show that the proposed approach improve
the ratio of performance over user investment.

V. CONLUSIONS

The main task of this paper is: 1) we propose a highly

accurate medical entity recognition model--BiLSTM-

Attended-CRF to extract the high-quality medical concepts,

2) we construct the DIK-QA for medical self-service. The

DIK-QA is mainly focused on some common diseases and

questions such as colds, headaches, fever, ligament strains

and some special diseases: pneumonia, etc.

However, there are still some shortcomings in this paper. We

can combine DIK-QA with the deep learning method to

automatically analyze the problem. Then, we can construct a

smarter medical self-service. We can also try to construct a

wider application of the DIKW architecture.

ACKNOWLEDGMENT

This work was supported by the Key R&D Project of
Hainan province (Grant #: ZDYF2019020), National Natural
Science Foundation of China(Grant #: 61662019 and
61862020), Major Science and Technology Project of
Hainan province (Grant #: ZDKJ2016015), Higher
Education Reform Key Project of Hainan province (Grant #:
Hnjg2017ZD-1).

REFERENCES

[1] M.X. Huang, M.L. Li, H.R. Han, “Research on entity recognition and
knowledge graph construction based electronic medical records,” in
press.

[2] Y.B. Zhang, Research on the construction of medical knowledge
graph and its application. Ph.D. Thesis, Harbin Institute of Technology.
Harbin, China: Haibin Institue of Technology, 2018.

[3] J. Cowie, W. Lehnert, Information extraction. Berlin, Hei-delberg:
Springer, 2004.

[4] L.X. Shao, Y.C. Duan, Z.B. Zhou, et al., “Design of recommendation
services based on data, information and knowledge graph architecture,”
Journal of Frontiers of Computer Science and Technology, Biejin,
China, vol. 13, 2019, pp.214 - 225.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N.
Gomez et al., “Attention is all you need,” Advances in Neural
Information Processing Systems 2017, pp.5998-6008.

[6] A.V. Aho, M.J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, 1975,
pp.333-340.

[7] Rowley, Jennifer (2007). "The wisdom hierarchy: representations of
the DIKW hierarchy". Journal of Information and Communication
Science. 33 (2): 163–180.

[8] Y.C. Duan, L.X. Shao, G.Z. Hu, “Specifying Knowledge Graph with
Data Graph, Information Graph, Knowledge Graph, and Wisdom
Graph,” IJSI vol.6, 2018, pp.10-25.

[9] Z.Y. Song, Y.C. Duan, S.X. Wan, X.B. Sun, Q. Zou, H.H. Gao, D.H.
Zhu, “Processing Optimization of Typed Resources with Synchronized
Storage and Computation Adaptation in Fog Computing,” Wireless
Communications and Mobile Computing , 2018, pp.1-13.

[10] L.X. Shao, Y.C. Duan, L.Z. Cui, Q. Zou, X.B. Sun, “A Pay as You
Use Resource Security Provision Approach Based on Data Graph,
Information Graph and Knowledge Graph,” IDEAL, 2017, pp.444-451.

[11] Y.C. Duan, G.H. Fu, N.J. Zhou, “Everything as a Service (XaaS) on
the Cloud: Origins, Current and Future Trends,” IEEE 8th
International Conference on Cloud Computing (CLOUD). IEEE, 2015.

4

Constructing a Knowledge Base of Coding

Conventions from Online Resources

Junming Cao, Tianjiao Du, Beijun Shen*, Wei Li, Qinyue Wu, Yuting Chen

School of Electronic Information and Electrical Engineering

 Shanghai Jiao Tong University, Shanghai, China

{junmingcao, tjsoulshe, bjshen, li_wei, wuqinyue, chenyt}@sjtu.edu.cn

Abstract—Coding conventions are a set of coding guidelines used

by software developers to improve the readability of source code,

increase software maintainability, and promote the reuse of coding

patterns. In this paper, we introduce CCBase, a knowledge base of

coding conventions, that was constructed from online resources.

Specifically, CCBase was constructed as follows. We designed the

ontology of the coding convention domain, crawled data related to

coding conventions from a variety of online resources, and then

extracted entities and relations using an NLP-enabled rule

matching method. To uncover the latent relations, we further

proposed a similarity metric to reveal the similar-to and relate-to

relations, and developed a RCE algorithm to establish a unified

type hierarchy of coding conventions. The resulting knowledge

base contains 3139 coding conventions for Java and C++, with

3761 entities and 767 relations. Furthermore, we have extended the

usability of CCBase by developing a question answering system on

the base. We have conducted experiments to evaluate CCBase. The

experimental results show that CCBase has a wide coverage on

entities and relations in coding conventions domain, and the QA

system achieves an F1 score of 84.5% on 214 questions raised in

StackOverflow.

Keywords - Knowledge Base; Coding Convention; Type

Hierarchy; Question Answering

I. INTRODUCTION

Coding conventions are a set of guidelines for a particular
programming language that recommend programming styles,
practices, and methods for each aspect of a program written in
that language. During increasingly large and complex software
development, programmers are strongly encouraged to follow
these guidelines to help improve the readability, reliability, and
maintainability of their source code [1]. These coding
conventions can also assist code related software engineering
activities, like auto-detection of code bad smells [2] and code
analysis [3].

However, programmers now encounter the following
problems when applying coding conventions. One is that coding
conventions specified in single document are incomplete

because it could hardly cover a·ll coding details, and also the

relations between coding conventions could not be expressed
explicitly. The second problem is that coding conventions are
inconvenient to access. Programmers need to know relevant
keywords to search using a search engine like Google or search

in documents, which is especially difficult for some novice
programmers who lack professional knowledge.

In order to solve the above problems, we construct a coding
conventions knowledge base, CCBase. CCBase is a domain-
specific knowledge base, which is constructed from online
resources using a top-down approach. Specifically, we first
design the ontology of coding conventions domain. Then we
collect data related to coding conventions from various online
resources and extract entities and relations with an NLP-enabled
rule matching method. The main challenge is to discover latent
relations between coding conventions, including similar-to,
relate-to, and especially subsumption relations, from these
heterogeneous textual documents. So we designed a similarity
metric to discover similar-to and relate-to relations, and propose
the RCE (Relation based Cluster Expansion) algorithm to
establish a unified type hierarchy of coding conventions and
assign types of each coding convention. Finally, we develop a
question answering system over CCBase to answer natural
language questions automatically. CCBase, its SPARQL
interface, and QA system can be accessed in our online platform1.

Our main contributions are summarized as follows:

1) To our best knowledge, CCBase is the first knowledge
base of coding conventions. It contains 3139 coding conventions
of Java and C++, 3761 entities and 767 relations.

2) We propose the RCE algorithm to establish a unified type
hierarchy of coding conventions. Structures of online resources
entail original type hierarchies for coding conventions. However,
some coding convention resources lack a hierarchy. The
hierarchy extracted from one document is usually unilateral, and
also different from another extracted hierarchy. Besides, every
coding convention only has one type value with the original type
hierarchy, which is also not comprehensive. Therefore, a novel
unsupervised algorithm (RCE) is designed to build a unified type
hierarchy according to the similar-to relations and assign new
type values to coding conventions.

3) We develop a coding convention question answering
system over CCBase, CCQA. The main algorithm of CCQA is
subgraph matching, and we make two significant improvements
to this algorithm. First, the entity linking method is changed to
identify the entities regarding coding conventions in the question.
Second, we collect common question templates and recognize

DOI reference number: 10.18293/SEKE2019-123
 Corresponding author
1 http://202.120.40.28:4463/

 5

these templates from user questions, which improves the
accuracy of subgraph building

4) A set of comprehensive experiments has been carried out
to evaluate CCBase. The results show, CCBase is larger and
more hierarchical than existing knowledge bases regarding code
conventions; and our QA system achieves an F1 score of 84.5%
on 214 questions raised in StackOverflow.

II. RELATED WORK

A. Construction of Knowledge Base

There are two ways to construct a knowledge base: top-down
and bottom-up. Top-down means pre-defining the ontology of a
knowledge base, and then importing entities and relations
according to the ontology into the knowledge base. Knowledge
bases of specific domains mostly adopt this way [5]. Bottom-up
means directly obtaining entities and relations by syntactic
analysis without ontology, which is common for general
knowledge bases [6]. These two ways include similar steps such
as information extraction and knowledge fusion.

In the software engineering domain, a few researchers have
tried to build a domain knowledge base, like SEBase [5] and
APIBase [7]. However, to our best knowledge, there is no
published work on coding convention knowledge base.

B. Type Hierarchy Building

Types are common in knowledge bases to organize entities,
and type hierarchy is their key knowledge or meta-knowledge.
[8] proposed an entity-driven approach to construct type
hierarchy of knowledge base systems without hierarchy
structures. The type hierarchy construction problem is similar to
the community detection problem. Semi-supervised algorithms,
like LPA [9], are widely used in community detection, and [10]

proposed SLPA to deal with overlapping communities. However,
these methods aren’t suitable for our work, because our relations
in CCBase are too sparse to propagate labels from a few seed
entities, and structures of documents are very helpful to build the
type hierarchy. Thus in this paper, we propose a novel
unsupervised algorithm (RCE) by fully utilizing structures of
documents.

C. Question Answering over Knowledge Base

Some research effort has been conducted to KBQA
(Question Answering over Knowledge Base) systems [12][13],
which led to major advances. So far there exist two mainstreams
of KBQA methods. One mainstream is semantic parsing. The
main idea of this kind of solution is to translate the questions into
logical forms such as query graph, then generate executable
queries [12]. Information retrieval is another mainstream, which
selects candidate answers directly and then ranks these answers
by various approaches, such as deep learning [13].

Our work belongs to the first one. Since natural language is
complex and ambiguous, semantic parsing usually requires
multiple steps, like part-of-speech tagging and entity linking.

III. CONSTRUCTION OF CCBASE

We construct CCBase in a top-down way for the following
reasons: 1) Bottom-up is difficult to meet the quality
requirements of domain-specific knowledge base. 2) The
complexity of entities and relations in the coding conventions
domain is tractable enough to be designed in advance. 3) Entities
and relations could not be automatically obtained by syntactic
analysis, so ontology is necessary to guide the extraction of
entities and relations.

Figure 1. Overview of Our Approach

6

The overall approach is shown in Fig. 1. We first design the
ontology of CCBase, then extract the information from the semi-
structured and unstructured data, and finally discover the latent
relations between coding conventions.

A. Ontology Design

We collect massive coding conventions from various online
resources, including coding conventions published online by
companies, standards organizations, research groups and experts,
coding conventions in open source tools, books, wiki pages, etc.
The ontology is initialized from the investigation of these data.
We use Protégé2, an open source software developed by Stanford,
to design the ontology.

Then we use the competency question-driven method to
perform ontology improvement [14]. We select 30 competency
questions from 214 coding convention related questions from
StackOverflow, and improve the ontology until these questions
could be answered with the ontology. The final ontology has 11
key concepts and 14 kinds of relationships, as shown in Fig. 2.

Figure 2. Ontology of CCBase

B. Information Extraction

Guided by the ontology, we extract instance data from
collected textual materials and store them in CCBase.

The syntactic analysis approach [15] is widely used to extract
<subject, predicate, object> triples from sentences, but it isn’t
applicable for constructing CCBase. It is because entities and
property values of coding conventions could not be directly
collected from sentences, and also predicates in triples parsed by
syntactic analysis approach could not be used as relations in
CCBase. Therefore, we propose a semi-automated method to
import entities and relations into CCBase, which consists of four

steps：

1) Parse file structures of documents.

2) Define a set of rules based on keywords like "example",
"benefits" and "author" to match candidates of entities,
relations, and properties of entities.

3) Extract candidate entities and relations by rule matching.

4) After quality checking by experts, the final results are
imported into CCBase.

The semi-automated method is more accurate than the
syntactic analysis method, while it does not cost as much as fully
human collection method. Fig. 3 shows some entities and
relations gained from information extraction, except for similar-
to and relate-to relations, which would be discovered further in
section C.

Figure 3. One Fragment of Instances in CCBase

C. Relation Discovery

It is necessary to further discover the latent relations between
entities. According to the ontology structure of CCBase, the
relations between entities include the relations between different
coding conventions, and relations between coding conventions
and other types of entities. The latter, like hasSource and
hasMaster in Fig. 2, could be obtained through information
extraction. Thus we focus on discovering latent relations
between coding conventions.

Figure 4. Relation Discovery

We propose a semantic similarity measuring approach to
discover these following relations, as shown in Fig. 4.

2 https://protege.stanford.edu/

7

1) similar-to. [16] lists a set of widely accepted metrics to
measure the similarity between entities. Considering most
properties of entities in CCBase are long texts, we adopt
WHIRL as the similarity metric, which is based on TF-IDF.
Then we set up a threshold by experiments to obtain the
Similarity Matrix, which contains entity pairs with high
WHIRL metric values. Finally, experts decide on whether entity
pairs in Similarity Matrix have similar-to relations.

2) relate-to. There are two types of relate-to relations in
CCBase. One is referential relations between coding
conventions from the same document. The description of a
coding convention may refer to other coding conventions in the
same document. For example, the coding conventions named
"Package Statement" in the Google Java Style Guide is
described as "The package statement is not line-wrapped. The
column limit (Section 4.4, Column limit: 100) does not apply to
package statements." It refers to the coding convention named
"Column limit: 100". For this type of relations, we could find
them through information extraction. Another kind of relate-to
relations come from entity pairs in the Similarity Matrix that do
not have similar-to relations.

3) subsumption. There is an original type hierarchy of code
conventions in each document. For example, coding convention
named "Naming Convention" includes "Function Naming
Convention", "Variable Naming Convention", etc. However,
original type hierarchies have three shortcomings as described
in the introduction section. Thus, we propose the RCE algorithm
to establish a unified type hierarchy for coding conventions from
all documents.

Algorithm: RCE

Input: Given entity set E, document set D, original type hierarchy

set S. 𝑆𝑖𝑗 is the 𝑗𝑡ℎ primary type of type hierarchy 𝑆𝑖 from 𝐷𝑖 and

𝑆𝑖𝑗𝑘 is the 𝑘𝑡ℎ secondary type belonging to 𝑆𝑖𝑗.

Procedure:

1: Expand candidate entity clusters with the same type C according

to relations.

 for i, j in range(0, length(D)), range(0, length(𝑆𝑖)):

 𝐶𝑖𝑗 . 𝑒𝑛𝑡𝑖𝑡𝑦 ← ∅

 𝐶𝑖𝑗 . 𝑙𝑎𝑦𝑒𝑟 ← 𝑝𝑟𝑖𝑚𝑎𝑟𝑦

 for k in range(0, length(𝑆𝑖𝑗):

 𝐶𝑖𝑗𝑘 = Entities of 𝑆𝑖𝑗𝑘

 for e in Entities of 𝑆𝑖𝑗𝑘

𝐶𝑖𝑗𝑘 . 𝑒𝑛𝑡𝑖𝑡𝑦 ← 𝐶𝑖𝑗𝑘 . 𝑒𝑛𝑡𝑖𝑡𝑦 ∪ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠(𝑒)

𝐶𝑖𝑗𝑘 . 𝑙𝑎𝑦𝑒𝑟 ← 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

 𝐶𝑖𝑗 . 𝑒𝑛𝑡𝑖𝑡𝑦 ← 𝐶𝑖𝑗 . 𝑒𝑛𝑡𝑖𝑡𝑦 ∪ 𝐶𝑖𝑗𝑘 . 𝑒𝑛𝑡𝑖𝑡𝑦

2: Filter out replicated clusters and clusters with too few entities.

Name every cluster to get type hierarchy R.

for 𝑐1, 𝑐2 in C:

 if similarity(𝑐1, 𝑐2) > 𝜃:

 C.remove(𝑐2)

 similarity(𝑐1, 𝑐2) = |𝑐1. 𝑒𝑛𝑡𝑖𝑡𝑦 ∩ 𝑐2. 𝑒𝑛𝑡𝑖𝑡𝑦| /

 |𝑐1. 𝑒𝑛𝑡𝑖𝑡𝑦 ∪ 𝑐2. 𝑒𝑛𝑡𝑖𝑡𝑦|
 for c in C:

 if |c| < 𝛿:

 C.remove(c)

 else:

 𝑡. 𝑒𝑛𝑡𝑖𝑡𝑦 ← c.entity

 𝑡. 𝑙𝑎𝑦𝑒𝑟 ← c.layer

𝑡. 𝑛𝑎𝑚𝑒 ← select one name from
 original types of 𝑡. 𝑒𝑛𝑡𝑖𝑡𝑦

 𝐨𝐫 make a new name

 T.push(t)

3: Generate type lists for entities.

for t in T:

 for e in t:

 if t.layer is primary:

 e.primary_type_list.push(t.name)

 else:

e.secondary_type_list.push(t.name)

Output: Unified Type hierarchy T, entities set 𝐸′ with

primary and secondary type lists.

The unified type hierarchy T holds two layers: the primary
layer, and the secondary layer. As we expand clusters with
similar-to relations in Step 1, some entities would belong to
multiple clusters and finally multiple types, like entities in
Freebase. Thus, we use lists to store primary types and secondary
types in Step 3. Although there are no direct relations between
entities that share the same types, we could group these entities
easily by type. This is the reason that we take it as a kind of
relation. As a result, a unified type hierarchy for coding
conventions is built with 16 primary types and 53 secondary
types, as shown in Fig. 5.

Figure 5. Part of the Unified Type Hierarchy

When applied in CCBase, RCE has the following advantages
over LPA and LPA-based algorithms, like SLPA:

 As LPA-based algorithms are semi-supervised, they
need many labeled seeds or dense relations between
entities to propagate labels, but relations in CCBase are
too sparse. Since RCE is unsupervised, it does not
suffer from this problem.

 RCE fully utilizes original type hierarchies of
documents, while only one layer of original type
hierarchies could be used as labels in LPA-based
algorithms.

8

IV. QUESTION ANSWERING OVER CCBASE

To demonstrate the value of CCBase, we develop a question
answering system over it, called CCQA. It can assist
programmers to retrieval information about coding conventions
in a more natural manner.

Inspired by Hu et al.’s work [4], we propose the LE (long
entity) Node-First framework to answer coding convention
questions by subgraph matching. As Fig. 1 shows, we first
extract semantic relations based on the dependency tree of
question sentences to build a semantic query graph Qu. A
semantic relation is a triple <rel; arg1; arg2>, where rel is a
relation phrase, and arg1 and arg2 are its associated node
phrases. After that, a SPARQL query statement is generated
from Qu and then executed to get final answers.

LE (long entity) Node-First framework improves Hu et al.’s
work from the following two points.

First, since entities about coding conventions are usually
complete sentences instead of words or phrases, we use Jena Full
Text Search and combine rule-based method for entity linking.
We merge words within specific property of entities into one
node to obtain clearer sentence structures, and thus the further
generated dependency tree can achieve higher accuracy.

Second, when building a query graph Qu, the algorithm of [4]
also extracts wh-words (what, how, why etc.) as nodes. However,
if a question only contains one entity and does not contain any
wh-word or relation, the query graph Qu will only be formed as
one node and the query will be failed. Thus it could not answer
Yes/No questions and declarative sentence. To improve the

ability of CCQA, we collect some common question templates，

such as questions begin with “Is there any”. These templates will
also be recognized as nodes from questions.

So far CCQA has been developed as a plugin in IntelliJ
IDEA, which can be downloaded from our Github project3.

V. EVALUATION

Several experiments have been conducted to evaluate
CCBase and CCQA.

A. Performance of Information Extraction
We construct CCBase in a top-down way, extracting entities

and relations from unstructured documents guided by ontology.
To evaluate the effectiveness of this method, we compare it with
two bottom-up extraction methods: the popular open
information extraction tool – open IE [20] and a domain-
specific extraction method – HDSKG [15]. Three popular
metrics are selected: precision, recall and F1 score.

We collect 8 documents about coding conventions as the
dataset of this experiment, and then we ask three experts to label
the data manually. Fig. 6 shows the results of the comparison.
Open IE and HDSKG both extracts the dependencies from
sentences to generate relation triples. However, the entities and
relations in coding convention domain are too complex to be
directly extracted from one single sentence. The top-down
extraction method outperforms HDSKG by 44.2% in F1 score.

Furthermore, we also conduct an experiment to compare the
algorithms of relation discovery. We use LPA, SLPA, and RCE
to build different versions of knowledge bases. The results are
shown in Fig. 7. We can find that SLPA and RCE perform much
better than LPA, because types generated by LPA do not
overlap, which is unreasonable for coding conventions.
Benefiting from the original type hierarchies of documents,
RCE outperforms SLPA by 4.3% in F1 score.

Figure 6. Evaluation of Information Extraction Methods

Figure 7. Evaluation of Relation Discover Methods

B. Comparison with other Knowledge Bases

As there are no public knowledge bases in the field of
coding convention, we compare CCBase with related subsets of
a software engineering knowledge bases such as SEBase [5] and
software.zhishi.schema [19]. We also compare it with YAGO
[18], a general knowledge base.

TABLE I: Comparison with Other Knowledge Bases

 CCBase SEBase zhishi YAGO

Concept 3761 128 38 31

Subsumption 181 57 50 0

Relate-to 524 12 0 0

Similar-to 62 0 0 0

3 https://github.com/14dtj/code-convention-robot

9

Table I shows the number of entities and relations of each
dataset. We could discover that our knowledge base is larger
than other existing datasets as for the entity number related to
coding conventions. Besides, the relations between entities are
richer, especially as for subsumption and related-to relations.

C. Performance of Question Answering

We crawled 214 code convention questions from
StackOverflow as experimental datasets. The performance of a
QA system is measured by the ratio of questions that are
answered correctly.

Figure 8. Evaluation of Question Answering Methods

We compare our approach (LE Node-First Framework) with
Node-First Framework by Hu et al. [4]. Fig. 8 reveals the results
on 214 questions. Node-First Framework adopts CrossWikis
dictionary [17] to map entities in user questions, which is not
suitable for long entity linking. Besides, it could not handle
Yes/No questions and declarative sentences. It is shown that our
LE Node-First Framework achieves 84.5% in F1 score, while
the F1 score of original Node-First Framework is only 77.5%.

VI. CONCLUSION

In this paper, we designed and constructed CCBase, the first
coding convention knowledge base, from online resources. And
for programmer's convenient access, a question answering
system over CCBase was further developed. Experiments show
that CCBase contains much more entities and relations about
coding conventions than previous knowledge bases, and our
QA system achieves an F1 score of 84.5% on 214 questions
raised in StackOverflow.

As for future work, we will try to extract more entities and
relations about coding conventions from Github and other Web
sites to enrich CCBase. Moreover, it would be interesting to
explore more potential applications based on this CCBase such
as code bad smell detection.

VII. ACKNOWLEDGEMENT

This research was sponsored by the National Key Research
and Development Program of China (Project No.
2018YFB1003903), National Nature Science Foundation of
China (Grant No. 61472242 and 61572312), and Shanghai
Municipal Commission of Economy and Informatization (No.
201701052).

REFERENCES

[1] Bahman Arasteh, Jalal Najafi, “Programming guidelines for improving
software resiliency against soft-errors without performance overhead”,
Computing 100(9): 971-1003 (2018)

[2] CHEN, H., CHEN, W., and Lee, C. C. (2018). “An Automated
Assessment System for Analysis of Coding Convention Violations in Java
Programming Assignments”, Journal of Information Science and
Engineering, 34(5), 1203-1221.

[3] Tourwe, Tom, and Kim Mens, "Mining aspectual views using formal
concept analysis.", Source Code Analysis and Manipulation, Fourth IEEE
International Workshop on, 2004, pp. 97-106.

[4] Hu S, Zou L, Yu J X, et al, “Answering natural language questions by
subgraph matching over knowledge graphs” in IEEE Transactions on
Knowledge and Data Engineering, 2018, 30(5): 824-837.

[5] Kai Chen, Xiang Dong, Jiangang Zhu, Beijun Shen, “Building a Domain
Knowledge Base from Wikipedia: a Semi-supervised Approach”, SEKE,
2016, pp. 191-196

[6] Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a
collaboratively created graph database for structuring human knowledge”,
in SIGMOD ’08 Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 1247-1250.

[7] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei
Liu, Xuejiao Zhao, “Improving API Caveats Accessibility by Mining API
Caveats KnowledgeGraph”, ICSME 2018, pp. 183-193.

[8] Jiang, Jyun-Yu, Pu-Jen Cheng and Chin-Yew Lin, “Entity-driven Type
Hierarchy Construction for Freebase.”, WWW,2015, pp. 47-48.

[9] J. Xie and B. K. Szymanski, “Community detection using a neighborhood
strength driven label propagation algorithm,” in Network Science
Workshop (NSW), 2011 IEEE, pp. 188–195.

[10] J. Xie, B. K. Szymanski and X. Liu, "SLPA: Uncovering Overlapping
Communities in Social Networks via a Speaker-Listener Interaction
Dynamic Process," in IEEE 11th International Conference on Data
Mining Workshops, Vancouver, 2011, pp. 344-349.

[11] W. Yih, M. Chang, X. He, and J. Gao, “Semantic parsing via staged query
graph generation: Question answering with knowledge base,” in Proc.
53rd Annu. Meet. Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural
Language Process. Asian Fed. Natural Language  Process., 2015, pp.
1321–1331.

[12] C. Unger, L. Bühmann, J. Lehmann, A.-C. N. Ngomo, D. Gerber, and P.
Cimiano, “Template-based question answering over RDF data,” in Proc.
World Wide Web, 2012, pp. 639–648.

[13] L. Dong, F. Wei, M. Zhou, and K. Xu, “Question answering over free-
base with multi-column convolutional neural networks,” in Proc. 53rd
Annu. Meet. Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural Lan-
guage Process. Asian Fed. Natural Language Process, 2015, pp. 260–269.

[14] Ren, Yuan, Artemis Parvizi, Chris Mellish, Jeff Z. Pan, Kees van Deemter
and Robert Stevens. “Towards Competency Question-Driven Ontology
Authoring.” , ESWC, 2014, pp. 752-767.

[15] X. Zhao, Z. Xing, M. A. Kabir, N. Sawada, J. Li and S. Lin, "HDSKG:
Harvesting domain specific knowledge graph from content of webpages,"
2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), Klagenfurt, 2017, pp. 56-67

[16] A. K. Elmagarmid, P. G. Ipeirotis and V. S. Verykios, "Duplicate Record
Detection: A Survey," in IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 1, 2007, pp. 1-16.

[17] V. I. Spitkovsky and A. X. Chang, “A cross-lingual dictionary for english
wikipedia concepts,” in Proc. 8th Int. Conf. Language Resources Eval.,
2012, pp. 3168–3175.

[18] Suchanek F M, Kasneci G, Weikum G., ”Yago: a core of semantic
knowledge in Proceedings of the 16th international conference on World
Wide Web”, ACM, 2007, pp. 697-706.

[19] Zhu, Jiangang, Haofen Wang, and Beijun Shen. "Software. zhishi. schema:
A Software Programming Taxonomy Derived from Stackoverflow", In
International Semantic Web Conference (Posters & Demos), 2015.

[20] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld, “Open information
extraction from the web”, Communications of the ACM, vol. 51, no. 12,
pp. 68–74, 2008.

10

Combining Time, Keywords and Authors Information

to Construct Paper Correlation Graph

Hanwen Liu, Huaizhen Kou, Xiaoxiao Chi, Lianyong Qi*

School of Information Science and Engineering

Qufu Normal University, Rizhao, China

E-mail: lianyongqi@qfnu.edu.cn

Abstract—Nowadays, recommender systems have become one of
the main tools and methods for users to search for their interested
papers from massive candidates. Typically, through analyzing the
typed keywords by a user, a recommender system can easily
retrieve the papers that cover the keywords, in an efficient and
economic manner. However, one paper often only contains partial
keywords that the user is interested in; therefore, the
recommender system needs to analyze a pre-built paper citation
graph and then return a set of papers that collectively satisfy the
user’s requested keywords. While the existing paper citation graph
does not consider the possible self-citations and potential
correlations among the papers that are not connected in the paper
citation graph but with close publication time. Considering the
above drawbacks, in this paper, we propose a link prediction
approach that combines time, keywords and authors information
for constructing a new relation graph. Finally, a case study is
employed to explain our approach step by step and demonstrate
the feasibility of our proposal.

Keywords-link prediction; paper citation graph; paper
correlation graph; time; keywords; author information

I. INTRODUCTION

Currently, when searching for interested papers via existing
paper search websites, e.g., Google Scholar and Baidu
Academic, users can type their preferred keywords and then the
websites will recommend appropriate papers that cover the
typed keywords to the users [1]. Generally, a paper often
contains only partial keywords that a user is interested in;
therefore, to meet the user’s paper search requirement, a paper
recommender system often needs to return the user a set of
papers that collectively cover all the requested keywords.
However, the keywords of a paper can only represent the paper
topics or themes; therefore, considering keywords only in paper
search process may generate a set of papers that belong to
different research domains and are actually not correlated, which
fails to satisfy the original user requirements on deep and
continuous research on a certain domain or topic.

Fortunately, paper citation graphs that depict the citation
relationships among different papers have provided a promising
way to model the paper correlations from both width and depth
perspectives. However, current paper citation graphs still face a
big challenge, i.e., they do not consider the possible self-
citations from authors and potential correlations among the
papers not connected in the paper citation graphs but with close
publication time.

DOI reference number: SEKE161

Considering this challenge, we propose a novel link prediction
approach to improve the traditional paper citation graphs, as link
prediction has already been proven the best solution for various
link optimization problems in graphs [2][3]. More specifically,
link prediction attempts to estimate the likelihood of the
existence of a link between two nodes based on the existing
properties information of nodes and network structures.

Overall, our contributions in this paper are three-fold:

⚫ We propose a novel link prediction approach to construct
new relation graphs among papers (i.e., paper correlation
graphs). Our proposal considers a wide range of factors that
influence the correlations among different papers, such as
paper publication time, paper keywords and paper authors.
In addition, our link prediction approach takes the network
structure of paper citation graphs into considerations,
which makes the predicted results more reasonable and
convincing.

⚫ We improve the existing paper citation graphs by reducing
the negative influence of intentional self-citations from
partial authors.

⚫ At last, we evaluate the feasibility of our proposal through
a case study.

The rest of paper is organized as follows. Related work is

presented in Section Ⅱ. In Section Ⅲ, we introduce the research

motivation. In Section Ⅳ , the details of our proposed link

prediction approach is described. A case study is investigated in

Section Ⅴto demonstrate the effectiveness of our link prediction

approach. Finally, in Section Ⅵ, we summarize this paper.

II. RELATED WORK

Currently, link prediction has made massive strides in many
research areas and played an important role in more and more
fields. According to [4], link prediction approaches can be
classified into three categories: similarity-based methods,
maximum likelihood approaches and probabilistic methods.
However, the similarity-based methods can be used to the large-
scale networks, which is because it can calculate the similarity
score between two nodes [5]; although maximum likelihood
approaches can obtain specific parameters and probabilistic
methods can predict missing links by using the trained model,
maximum likelihood approaches and probabilistic methods
often fail to deal with the large-scale networks [6]. Therefore, in
our research we mainly consider the similarity-based approach.
In addition, the work in [7] investigated the use of link strength DOI reference number: 10.18293/SEKE2019-161

11

for the link prediction problem, and they proposed the weighting
criterion was based absolutely on topological data: the frequency
of existing interactions (i.e. the number of edges) between nodes
in the social networks. But they don’t take full advantage of node
information in the weighting criterion.

In view of existing link prediction approaches, a novel the
link prediction approach to construct the paper correlation graph,
that is, the similarity-based weighting method.

III. RESEARCH MOTIVATION

V2{k2}

{a1,a2}{2016}

V4{k1,k3}

{a1} {2016}

V5{k3,k4}

{a7} {2007}

V6{k5}

{a1,a2,a3} {2012}

V7{k1,k3,k5}

{a2} {2013}

V1{k1,k3,k4}

{a1,a2,a3} {2017}

V9{k1,k3,k4}

{a1} {2014}

V8{k1,k3,k5,k6}

{a1,a2,a3} {2012}

V3{k1,k2,k4}

{a5,a6} {2018}

V10{k1,k3,k4,k5}

{a1,a2,a3} {2017}

(a)

V2{k2}

{a1,a2}{2016}

V4{k1,k3}

{a1} {2016}

V5{k3,k4}

{a7} {2007}

V6{k5}

{a1,a2,a3} {2012}

V7{k1,k3,k5}

{a2} {2013}

V1{k1,k3,k4}

{a1,a2,a3} {2017}

V9{k1,k3,k4}

{a1} {2014}

V8{k1,k3,k5,k6}

{a1,a2,a3} {2012}

V3{k1,k2,k4}

{a5,a6} {2018}

V10{k1,k3,k4,k5}

{a1,a2,a3} {2017}

(b)

Figure 1. (a) Paper citation graph and (b) Paper correlation graph.

An intuitive example is presented in Fig.1 to motivate our

paper. Assume that there is a paper citation graph 𝐺𝐶 and a

paper correlation graph 𝐺𝑝, Fig.1(a) and Fig.1(b) are a part of

𝐺𝐶 and 𝐺𝑝, respectively. Fig.1 contains 10 nodes, i.e., 𝑣1, … , 𝑣10,

each of which represents a paper and contains some node

attributes (i.e., paper publication time, paper keywords and

paper authors). In Fig.1(a), the self-citation relationship

between node 𝑣1 and node 𝑣2 in the paper citation graph is

generated merely due to the common authors of 𝑣1 and 𝑣2 ,

which is not reasonable and fair for accurate paper

recommendation. Therefore, in this paper, we need to reduce the

effect of the intentional self-citation phenomenon through a

weighted approach. Besides, in Fig. 1(a), node 𝑣1and node 𝑣10

are published in same period and they also have common

keywords and common authors, but there is no link (edge)

between them. Thus, in Fig.1 (b), we need to establish the new

link between node 𝑣1and node 𝑣10 by using the link prediction

approach. In view of the aforementioned analyses, a link

prediction approach is necessary to improve current paper

citation graphs, which will be introduced in detail in Section Ⅳ.

IV. LINK PREDICTION APPROACH

According to the analysis of the research motivation, we
propose a link prediction approach by using the attributes
information and network structure of nodes. To the best of our
knowledge, the fundamental process of the unsupervised link
prediction model follows the task sequence, which was first
proposed by Kleinberg [8]. Concretely, our process of link
prediction approach can be seen from Fig. 2. This process mainly
consists of the following five activities:

Activity 1: Pre-processing of the graph. In our research, the
paper citation graph (𝐺𝐶) is regarded as an undirected paper
citation graph (𝐺), which is because it is easier to construct the
paper correlation graph.

Activity 2: Graph partition. In this activity, the 𝐺 is divided
in to two parts. One is training sub-graph (𝐺𝑡𝑟𝑎𝑖𝑛) and another
one is test sub-graph (𝐺𝑡𝑒𝑠𝑡). In the 𝐺𝑡𝑟𝑎𝑖𝑛, we need to get the
Maximum Score from existing pairs of nodes. And in the 𝐺𝑡𝑒𝑠𝑡,
we need to get the weighted values of the two unconnected nodes.

Directed

citation graph

Undirected

citation graph

Graph

Partitioning

Train

Graph

Tested

Graph

Graph

Weighting

Weighted

Graph

Score Calculation

And Ranking

Maximum Score

Unconnected Node

Weighting

Score Calculation

And Ranking

Reserved Score
Reserved Score

>Maximum Score

Connected Note

Figure 2. Process for weighting-based link prediction.

Activity 3: Graph to be weighted. The weights of the two

connected nodes are calculated by using the weighting criteria in

the 𝐺𝑡𝑟𝑎𝑖𝑛 and the weights of two unconnected nodes are

calculated in the 𝐺𝑡𝑒𝑠𝑡.

Activity 4: Score calculation and ranking. (1) Firstly, we use

a similarity function formula WCN to calculate a weight value

of two unconnected nodes in the 𝐺𝑡𝑟𝑎𝑖𝑛 . Then we produce a

ranking list in descending order of score. At last, the Maximum

Score is saved in 𝑤𝑚𝑎𝑥(𝑣𝑖𝑡𝑟𝑎𝑖𝑛 ,𝑣𝑗𝑡𝑟𝑎𝑖𝑛).

The Weighted Common Neighbor - 𝑊𝐶𝑁(𝑣𝑖𝑡𝑟𝑎𝑖𝑛 ,𝑣𝑗𝑡𝑟𝑎𝑖𝑛)

and the Maximum Score - 𝑤𝑚𝑎𝑥(𝑣𝑖𝑡𝑟𝑎𝑖𝑛 ,𝑣𝑗𝑡𝑟𝑎𝑖𝑛):

12

(v) (v)

(,) w(,)

2
ztrain itrain jtrain

itrain ztrain jtrain ztrain

v

w v v v v

+
 (1)

()
(),

,
(v) (v)

itrain jtrainWCN
train itrain jtrain

itrain jtrain

WCN v v
w v v =

 (2)

() ()max train
, 1,

, arg max ,itrain jtrain itrain jtrain
i j N

w v v w v v
=

= (3)

Where (v) (v)itrain jtrain represents the number of common

neighboring nodes of node itrainv and node
jtrainv .

(2) In the 𝐺𝑡𝑒𝑠𝑡 , we will perform score calculation of two

unconnected nodes and produce a descending ranking list.

Activity 5: Connecting nodes. LP (link prediction) is defined
as in equation (4):

 () () max, ,test itest jtest itrain jtrainLP w v v w v v= (4)

A. Proposed Weighting Criteria

Consider that each paper of the 𝐺 contain paper attributes

information (time, keywords and authors). In addition, the link

prediction approach offers the similarity functions WCN that can

be used for the weight calculation. Therefore, here we consider

three sets of those functions: Time, Keyword and Author, and

we propose the general weighting model as described in Eq. (5),

where time Time , keyword Keyword , author Author

and , , 0,1time keyword authorx x x .

(), keywordtime author
xx x

i jw v v time keyword author = (5)

The proposed general weighting model allows the generation

of the different weighting criteria by Eq. (5). In addition, it is

significant to emphasize that the product between the weighting

criteria in link prediction approach formulation ensures that the

selected node attributes must be considered simultaneously.

Thus, we propose two different weighting criteria as below:

Keywords and Authors Weighting. In our research, if the

number of common keywords and co-authors of two papers

increases, the weighted values between the two nodes will be

greater. But when there is no common keyword in two papers,

the weighted values between the two nodes will decrease as the

number of co-authors increases. Such strategies have been

adopted to reduce the effect of the self-referencing. Thus, the

weighting criteria for a pair of nodes 𝑣𝑖 and 𝑣𝑗 are defined as in

equations (6)-(9):

γ = {
1 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑐𝑜𝑚𝑚𝑜𝑛 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6)

K K
(K ,K)

K K

i j

i j

i j

a a
v va a

v v
a a
v v

cosine

=

 (7)

(,)
i j

i j

i j

a a
v va a

v v
a a
v v

A A
cosine A A

A A

=

 (8)

() (
() ()

())1 cos (K ,K) 1 cos (A ,A) cos (A ,A)

, 1
a a a a a a
v v v v v vi j i j i j

ine ine ineKA
i jw v v C r r

− −

= + − (9)

Where α/𝛽 (0 < 𝛼, 𝛽 < 1) is arbitrary damping parameters
used to calibrate the importance of authors and keywords in the

weighting criteria. 𝐴𝑣𝑖

𝑎 / 𝐴𝑣𝑗

𝑎 (𝐾𝑣𝑖

𝑎 / 𝐾𝑣𝑗

𝑎) is a set of authors

(keywords) of the node 𝑣𝑖 𝑣𝑗 . 𝐴𝑣𝑖
𝑎 ∩ 𝐴𝑣𝑗

𝑎 /𝐾𝑣𝑖
𝑎 ∩ 𝐾𝑣𝑗

𝑎 represents

the node 𝑣𝑖 and node 𝑣𝑗 have same authors/keywords. A

constant 𝐶 is defined for convenience of calculation.

Time, Keywords and Authors Weighting. According to the
Keywords and Authors Weighting, if the published time of two
papers are relatively close, the weighted values between the two
nodes will be greater. Thus, the weighting criteria for a pair of
nodes 𝑣𝑖 and 𝑣𝑗 are defined as in equations (10)-(11):

()
()

max ,
(t)

min ,

vv ji

vv ji

c p p

p

c p p

t t t
k

t t t

−
=

−
 (10)

() (
() ()

())1 cos (K ,K) 1 cos (A ,A) cos (A ,A)

, (t) 1
a a a a a a
v v v v v vi j i j i j

ine ine ineTKA
i j pw v v C k r r

− −

= + −

(11)

Where 𝑡𝑝𝑣𝑖
/𝑡𝑝𝑣𝑗

indicates the time of publication of the paper

𝑝𝑣𝑖
/𝑝𝑣𝑗

, 𝑡𝑐 is the current time.

B. Paper Correlation Graph

Definition1. Paper correlation graph: Paper correlation graph is

represented by 𝐺𝑝 = {𝑉𝑝, 𝐸𝑝}, where 𝑉𝑝and 𝐸𝑝denotes its sets of

nodes and edges respectively. In addition, the paper correlation

graph is undirected. Meanwhile, for each paper, the paper

correlation graph 𝐺𝑝has a corresponding node v, and for each of

nodes pair (𝑣𝑖 , 𝑣𝑗) , the paper correlation graph contains the

edge e(𝑣𝑖 , 𝑣𝑗) between 𝑣𝑖 and 𝑣𝑗.

V. A CASE STUDY

In this section, a case study is discussed to demonstrate the
process of link prediction approach. Due to the limitation of the
length of the paper, the case study only considers the first
weighting criteria (i.e., the Keywords and Authors Weighting)
for the link prediction task. Thus, the process of constructing the
paper correlation graph is demonstrated as follows:

V1{k1,k3,k4,k5}

{a1,a2,a3} {2017}

V2{k2}

{a1,a2}{2018}

V3{k3,k4}

{a7} {2013}

V4{k1,k3,k5}

{a2} {2013}

V5{k1,k2}

{a8}

{2017}

V7{k2,k3,k5}

{a1,a2}{2018}

V8{k3,k4}

{a7} {2018}

V6{k1,k2,k3}
{2015}

{a1,a2}

 (a) (b)

Figure 3. Paper citation graph.

Step1: Pre-processing of the graph. In our case, we regard the

paper citation graph of Fig.3 as an undirected citation graph.

Step2: Graph partition. In our case, the 𝐺 is divided into two

parts. One is training sub-graph (𝐺𝑡𝑟𝑎𝑖𝑛)and another one is test

sub-graph (𝐺𝑡𝑒𝑠𝑡). Therefore, in the Fig. 3, the (a) is the 𝐺𝑡𝑟𝑎𝑖𝑛

and the (b) is the 𝐺𝑡𝑒𝑠𝑡.

13

Step3: Graph to be weighted. We use the Keywords and
Authors Weighting to calculate the weight of two connected
nodes in the (a) and two unconnected nodes in the (b).
Meanwhile, we range the values of α (0 < 𝛼 < 1) from 0.5 to
0.7 with step 0.2, and 𝛽=0.5 (see Table 1). Here, we set up the
different parameters value that will obtain the different weight
value.

TABLE I. PARAMETERS SET.

Similarity Parameters set

function α β

𝑤𝐾𝐴(𝑣𝑖 , 𝑣𝑗) 0.5 0.5

𝑤𝐾𝐴(𝑣𝑖 , 𝑣𝑗) 0.7 0.5

(1) we use: 𝛽=0.5, α=0.5 and 𝐶=1:

Weighted calculation in training sub-graph:

() ()
1 2 1 21 2 1 2, : 0; (K ,K) 0; (A ,A) 0.81; , 0.29a a a a KA

v v v vv v r cosine cosine w v v= =

() ()
1 3 1 31 3 1 3, : 1; (K ,K) 0.71; (A ,A) 0; , 0.41a a a a KA

v v v vv v r cosine cosine w v v= =

() ()
1 4 1 41 4 1 4, : 1; (K ,K) 0.87; (A ,A) 0.58; , 0.68a a a a KA

v v v vv v r cosine cosine w v v=

 Weighted calculation in test sub-graph:

() ()
5 6 5 65 6 5 6, : 1; (K ,K) 0.82; (A ,A) 0; , 0.44a a a a KA

v v v vv v r cosine cosine w v v= =

() ()
6 8 6 86 8 6 8, : 1; (K ,K) 0.41; (A ,A) 0; , 0.33a a a a KA

v v v vv v r cosine cosine w v v= =

() ()
7 8 6 87 8 7 8, : 1; (K ,K) 0.41; (A ,A) 1; , 0.66a a a a KA

v v v vv v r cosine cosine w v v= =

 (2) we use: 𝛽=0.5, α=0. 7 and 𝐶=1:
Weighted calculation in training sub-graph:

() ()
1 2 1 21 2 1 2, : 0; (K ,K) 0; (A ,A) 0.81; , 0.37a a a a KA

v v v vv v r cosine cosine w v v= =

() ()
1 3 1 31 3 1 3, : 1; (K ,K) 0.71; (A ,A) 0; , 0.57a a a a KA

v v v vv v r cosine cosine w v v= =

() ()
1 4 1 41 4 1 4, : 1; (K ,K) 0.87; (A ,A) 0.58; , 0.79a a a a KA

v v v vv v r cosine cosine w v v=

 Weighted calculation in test sub-graph:

() ()
5 6 5 65 6 5 6, : 1; (K ,K) 0.82; (A ,A) 0; , 0.62a a a a KA

v v v vv v r cosine cosine w v v= =

() ()
6 8 6 86 8 6 8, : 1; (K ,K) 0.41; (A ,A) 0; , 0.47a a a a KA

v v v vv v r cosine cosine w v v= =

() ()
7 8 6 87 8 7 8, : 1; (K ,K) 0.41; (A ,A) 1; , 0.66a a a a KA

v v v vv v r cosine cosine w v v= =

Step4: Score calculation and ranking.
(1) For KA weighting criteria, when 𝛽 = 0.5 and α=0.5, we

can get the Maximum Score, i.e., 𝑤𝑚𝑎𝑥(𝑣𝑖𝑡𝑟𝑎𝑖𝑛, 𝑣𝑗𝑡𝑟𝑎𝑖𝑛) =
 𝑤𝑡𝑟𝑎𝑖𝑛(𝑣2, 𝑣4) ≈0.55. When 𝛽 = 0.5 and α =0.7, we can get
the Maximum Score, i.e., 𝑤𝑚𝑎𝑥(𝑣𝑖𝑡𝑟𝑎𝑖𝑛, 𝑣𝑗𝑡𝑟𝑎𝑖𝑛) =
𝑤𝑡𝑟𝑎𝑖𝑛(𝑣2, 𝑣4) ≈0.68.

(2) In the 𝐺𝑡𝑒𝑠𝑡 , we can get such a ranking list that
𝑤𝐾𝐴(𝑣7, 𝑣8) > 𝑤𝐾𝐴(𝑣5, 𝑣6) > 𝑤𝐾𝐴(𝑣7, 𝑣8).

Step5: Connecting nodes. Seen from the Step 4, When 𝛽 =
 0.5 and α =0.5, we can get such a ranking result that
𝑤𝐾𝐴(𝑣7, 𝑣8) > 𝑤𝑚𝑎𝑥(𝑣𝑖𝑡𝑟𝑎𝑖𝑛 , 𝑣𝑗𝑡𝑟𝑎𝑖𝑛) > 𝑤𝐾𝐴(𝑣5, 𝑣6) >
𝑤𝐾𝐴(𝑣7, 𝑣8). Therefore, we can draw a conclusion that 𝑣7 with
𝑣8 constructs a new link. And we can construct the paper
correlation graph by connecting a pair of nodes 𝑣7 with 𝑣8.

VI. CONCLUSIONS

In this paper, we mainly put forward a novel link prediction
approach to construct the paper correlation graph. In addition,
we investigated whether the combination of time, keywords and
authors information in the weight computation could reduce the

effect of the self-citation. Finally, the feasibility of this the link
prediction approach is validated by a case study. In the future
work, we will design and deploy a set of real-world experiments
to further prove the feasibility of our proposal. Besides, as
recommendation process often involves the data privacy issues
[9-18], we will further refine our work by considering the
privacy-preservation.

ACKNOWLEDGMENT

This research is partially supported by the National Science
Foundation of China (No. 61872219).

REFERENCE

[1] L. Pan, X. Dai, S. Huang, J. Chen, Academic Paper Recommendation
Based on Heterogeneous Graph. Chinese Computational Linguistics and
Natural Language Processing Based on Naturally Annotated Big Data.
Springer. (2015), pp.381–392.

[2] B. Yan, S. Gregory, Finding missing edges in networks based on their
community structure, Phys. Rev. E 85 (5) (2012), pp. 056112-056117.

[3] P. Wang, B. Xu, Y. Wu, X. Zhou, Link prediction in social networks: the
state-of-theart, Sci. China Inf. Sci. 58 (1), (2015), pp.1–38.

[4] L. Lü, T. Zhou. Link prediction in complex networks: a survey. Phys. A.
390 (6), (2011), pp.1150–1170.

[5] A. Clauset, C. Moore, M.E. Newman. Hierarchical structure and the
prediction of missing links in networks. Nature 453, (2008), pp.98-101.

[6] R.H. Li, J.X. Yu, J. Liu, Link prediction: the power of maximal entropy
random walk, Proceedings of the 20th ACM International Conference on
Information and Knowledge Management, CIKM ’11, (2011), pp.1147-
1156.

[7] C. P. Muniz, R. Goldschmidt, and R. Choren, Combining contextual,
temporal and topological information for unsupervised link prediction in
social networks, Knowledge-Based Syst., vol. 156, (2018), pp.129–137.

[8] P.M. Chuan, L. H. Son, M. Ali, T. D. Khang, N. Dey, Link prediction in
co-authorship networks based on hybrid content similarity metric. Applied
Intelligence, 48(8), (2018), pp.2470-248.

[9] L. Qi, X., W. Dou, Q. Ni. A Distributed Locality-Sensitive Hashing based
Approach for Cloud Service Recommendation from Multi-Source Data.
IEEE Journal on Selected Areas in Communications, 35(11): 2616-2624,
2017.

[10] Y. X, H. Liu, C. Yan. A privacy-preserving exception handling approach
for dynamic mobile crowdsourcing applications in EURASIP Journal on
Wireless Communications and Networking, 2019, pages:113.

[11] Y. Xu, L. Qi, W. Dou, J. Yu. Privacy-preserving and Scalable Service
Recommendation based on SimHash in A Distributed Cloud Environment.
Complexity, Volume 2017, Article ID 3437854, 9 pages, 2017.

[12] L. Qi, R. Wang, S. Li, Q. He, X. Xu, C. Hu. Time-aware Distributed
Service Recommendation with Privacy-preservation. Information Sciences,
480: 354-364, 2019.

[13] L. Qi, Y. Chen, Y. Yuan, S. Fu, X. Zhang, X. Xu. A QoS-Aware Virtual
Machine Scheduling Method for Energy Conservation in Cloud-based
Cyber-Physical Systems. World Wide Web Journal, 2019.

[14] W. Gong, L. Qi, Y. Xu. Privacy-aware Multidimensional Mobile Service
Quality Prediction and Recommendation in Distributed Fog Environment.
Wireless Communications and Mobile Computing, vol. 2018, Article ID
3075849, 8 pages, 2018.

[15] L. Qi, W. Dou, W. Wang, G. Li, H. Yu, S. Wan. Dynamic Mobile
Crowdsourcing Selection for Electricity Load Forecasting. IEEE ACCESS,
6: 46926-46937, 2018.

[16] C. Yan, X. Cui, L. Qi, X. Xu, X. Zhang. Privacy-aware Data Publishing
and Integration for Collaborative Service Recommendation. IEEE
ACCESS, 6: 43021-43028, 2018.

[17] L. Qi, X. Zhang, W. Dou, C. Hu, C. Yang, J. Chen. A Two-stage Locality-
Sensitive Hashing Based Approach for Privacy-Preserving Mobile Service
Recommendation in Cross-Platform Edge Environment. Future Generation
Computer Systems，88: 636-643, 2018.

[18] L. Qi, S. Meng, X. Zhang, R. Wang, X. Xu, Z. Zhou, W. Dou. An Exception
Handling Approach for Privacy-preserving Service Recommendation
Failure in A Cloud Environment. Sensors, 18(7): 1-11, 2018.

14

Modeling and Simulation of CPS based on SysML

and Modelica(KG)

Fei Deng,Yunqiang Yan, Feng Gao, Linbo Wu

Institute of Computer Application

China Academy of Engineering Physics

MianYang,China

fax_caep@163.com

Abstract—Cyber-Physical Systems (CPS) is usually

associated with large numbers of domains. The domain

relevance allows system engineers’ knowledge to spread many

domains. The efficiency and accuracy of modeling are not able

to be guaranteed. Therefore, in this paper, a set of CPS modeling

guideline is proposed based on SysML, and the system’s 4-layer

abstract hierarchy and the kind of modeling products obtained

on each layer are defined. Based on this, a modeling specification

containing seven sub-processes is designed. In order to verify the

correctness of CPS function and the consistency of the business

logic at the primary phase of the design, we summarize the

mapping rules of SysML-Modelica and define the algorithm of

model conversion. Finally, a simple CPS case is used to verify

our task. The results show that this method can be effective in

CPS’s modeling and Simulation.

Keywords—Cyber-Physical Systems; Modeling ;SysML; Modelica;

I. INTRODUCTION

CPS is organic and in-depth integrity of Computation,
Communication, and Control technologies, and a next-
generation intelligent system that closely integrates and
coordinates computational resources with physical resources
[1-3]. CPS integrates such systems engineering as
environmental perception, embedded computing, and network
communication, closely coordinates computing and physical
resources, covering all aspects of social life. As computing
technology, network technology and control technology are
constantly developing,CPS has become a new trend of
research and development of modern information technology.
Modeling and simulation are quite significant to the
construction of CPS. It can not only verify the CPS at the
primary phase of the design but also is an important section of
model-based development and testing.

Since CPS is usually associated with multiple domains and
the domain relevance allows the system engineers’ knowledge
to associate with many domains [4]. The efficiency and
accuracy of modeling are not able to be guaranteed. Therefore,
a set of the modeling guide of the CPS system based on SysML
is proposed in this paper, and 4-layer abstract hierarchy of the
system and the kind of modeling products obtained on each
layer are defined. Based on this, a modeling specification
containing seven sub-processes is designed. In order to verify
the correctness of CPS function and the consistency of
business logic at the primary phase of design, we summarize
the mapping rules of SysML to Modelica model and define the
algorithm of model conversion. Finally, a simple temperature
control system case is used to verify our method.

The structure of this paper is organized as follows: In the

DOI reference number: 10.18293/SEKE2019-167

second section, the background and the related work are
overviewed. In the third section, the overall framework is
proposed, and CPS modeling method, model mapping cabinet
and conversion algorithm are described in detail. In the fourth
section, the case analysis is performed. In the fifth section,
summary and prospects are made.

II. BACKGROUND AND RELATED WORK

A. Cyber-Physical System

The typical CPS architecture mainly includes the
following three kinds of parts: sensor, actuator, and controller
[6]. The sensor is used to perceive all information of the
physical domain. The controller can accept information from
the sensor and send orders according to the control logic. The
actuator receives a control order and begins to control the
physical objects. The operation mechanism among the basic
components is shown in Fig. 1.

Network

fabric

Platform1Platform1

Sensor1
Controller1

Sensor2 Controller2

Controller3
Actuator1

Merge

Physical
interface

Physical

Plant

Physical
interface

Fig. 1. C typical Cyber-physical system

In the simulation study of the CPS system, Lin Jing et al.
from the Missouri University of Technology used agent-based
modeling to construct a model of CPS [7]. Based on the
service-oriented architecture (SOA), the University of Texas
proposed Physical-entity service model for CPS modeling [8].
Frank Wawrzik et al. proposed a SysML-based CPS modeling
simulation method SICYPHOS CPS [4].

SysML (System Modeling Language) is a system
modeling language extended from UML (United Modeling
Language) [5,9-10].Based on the nine types of SysML graphs,
system engineering personnel can easily regulate term, model,
design, and analysis and verification on the system [11],
which is widely used in the industry field. Although SysML is
widely used now, from the perspective of system security
analysis, the current SysML specification cannot effectively
support the dynamic simulation of physical engineering
systems. Therefore, Modelica[12-13] will be selected for
dynamic simulation of CPS in this paper.

III. MODELING AND SIMULATION OF CPS

Based on the analysis of SysML and Modelica features and
the current challenges for CPS simulation and verification, we
designed a CPS modeling and simulation framework based on

15

mailto:fax_caep@163.com

SysML and Modelica, and realized the SysML-Modelica
automatic conversion tool (Fig.3).

M
o
d
elin

g
 a

n
d
 S

im
u
latio

n
 o

f

C
P

S

Mapping SysML →Modelica

XMI File Parsing

Requirements

CPS Modelling

(SysML)

Activity

Diagram

Block

Definition

Diagram

Conversion

Module

CPS SImulation

(Modelica)

(*.xmi) (*.mo)

Simulation Result

Fig. 2. Logic framework diagram of conversion

The overall logical framework is shown in Fig. 2: Firstly,
construct SysML model according to the files and
requirements of system design, and export of XMI [14] data
model, and the automatic conversion of SysML-Modelica is
realized according to the mapping rules of the construction
model. Finally, input the Modelica model to verify the
correctness of CPS function and the consistency of the
business logic.

Fig. 3. Model Conversion Tool GUI

The workflow of data conversion processing and
conversation in this process is shown in Fig. 4:

1) Use Enterprise Design (EA) to construct the CPS

behavior model and structural model, and use export function

owned by the EA tool to export the CPS SysML model as the

XMI file;

2) Analyze XMI files with Java-based extension tool

DOM4J;

3) Convert the extracted information into the grammatical

format conforming to the Modelica modeling language, and

output Modelica Text semantically equivalent to SysML

information;

4) Use OpenModelica to simulate Modelica Text.
SysML Module

（XMI）
Simulation

Result

DOM Parsing
Open

Modelica

Modelica

Text
Transformation

Extraction

of model

elements

Fig. 4. Flow of data processing

There are two main technical points to achieving this work:
(1) CPS modeling: Due to the increasing complexity of CPS,
it makes the system modeling process more complex and
difficult; (2) The conversion rules of SysML-Modelica
modeling languages: Since SysML and Modelica are two
different modeling languages, there are differences in

grammatical descriptions in many model elements. Therefore,
we need to construct a set of semantic equivalent model
conversion rules based on model semantics.

A. CPS Modeling

From the above analysis on the structure of the CPS system,
it can be clearly known that all physical entities in the CPS
only belong to one of these three types. When modeling the
static structure, a structural model can be constructed for each
entity. After structural modeling, it is required to model the
dynamic behavior of each entity. When the industry world
constructs the corresponding SysML model, select Block
Definition Diagram (BDD) and Internal Block Diagram (IBD)
that can express system architecture information, to construct
a structure model and use Activity Diagram (ACT), Sequence
Diagram (SD), or State Machine Diagram (STM) to express
dynamic activity information. Considering the semantic
features contained in our Modelica model, mainly use BDD to
construct the structure model of CPS and use ACT to construct
the activity model of CPS in this paper.

a) Modeling Guidelines

The complex structure and activity of CPS allow the
modeling process of the system to be more complicated and
difficult to grasp. One of the most effective ways to solving
these problems is to construct a hierarchical model for the
system. Abstraction layers that are hierarchical and clearly
defined can effectively reduce system complexity which helps
system modeling personnel to create and manage system
models at different levels of granularity. We define the system
4-layer abstract hierarchy, which is the system layer, function
layer, software and hardware layer, and deployment layer
from top to bottom with an increasing amount of granularity
described in each layer.

In the practical modeling, from the primary requirement
of CPS, the modeling design process is divided into 7 sub-
processes based on the four levels, and in each modeling
process, different modeling tasks need completing.

SP3

Develop

component

RE, BE, SC

SP4

Integrating

RE, BE,

SC

SP5

Develop software

and hardware

RE, BE, SC

SP6

Integrate

RE, BE,

SC

SP7

Deployment
RE

RE

BE&SC

 products

SP1

Development

initial RE

SP2

Develop initial

BE scenarios &

architectures

BE&SC

Integrated RE, BE, SC

products

New ideas, find

inconsistencies

Integrated

 RE, BE, SC

products

New ideas, find

inconsistencies

Integrated RE, BE, SC

products

Defects and

inconsistencies

RE:Requirement;Be:Behavior;SC:structure

Abstract

layer

Input Subprocess

System

layer
Function layer Software & hardware layer Deployment layer

Fig. 5. Modeling process

1) Sub-process SP1 supports the development of primary

requirements for system layer. The top-level requirements of

the system are described from the angel of system realization

according to the system prospect and the needs of relevant

stakeholders.

2) Sub-process SP2 supports system layer initial activity

scenarios and the development of system structure. The initial

behavior scenario describes a coarse- granular workflow; The

development of the initial architecture mainly includes

limiting system boundaries, defining system interfaces, and

linkage between systems and external environment entities.

3) Sub-process SP3: Based on the output of SP1 and SP2,

refine and expand the initial requirements, activity scenarios,

and architecture, and focus point shifts to the internal system.

16

This process is a constant iterative course until the system

engineering gets a satisfactory result.

4) Sub-process SP4 is responsible for coordinating and

integrating the cross-system layer and functional layer as well

as the inconsistencies of requirements, activities, and

structural products.

5) Sub-process SP5 develops the requirements, activities,

and architecture of the hardware and software layer based on

the results of SP4 integration. The focus shifts from logical

functional components to hardware or software components.

6) Sub-process SP6 is similar to sub-process SP4, in

charge of coordinating and integrating across functional layer

and hardware layer as well as inconsistencies in requirements,

activities, and structural products within the software layer.

7) Sub-process SP7 is responsible for the designing

scheme of deploying software and hardware to physical units.

B. XMI file Parsing

The information in the diagram can be read by parsing the
XMI file of the active graph and the module definition graph.

The block definition diagram displays the static structure
information of the system. Its main element is block. We can
obtain the information contained in the entity through parsing
block and its value attribute tags, and use Variable and
Parameter respectively to save them. The Variable data type is
used to store variables information in a block. As shown in
Table 1, it includes two attributes: name and type, the name
represents the variable name, and type represents the variable
type. The Parameter data type stores information of
parameters in a block, containing attributes’ type, name, and
value. The attributes’ name and type have the same meaning
as the Variable data type, and the value attribute represents the
default value of the parameter.

TABLE I. THE MAPPING RELATIONSHIP BETWEEN XMI TAGS AND GRAPH ELEMENTS

Model
Graph

element
XMI Label

Define data

types
Contains properties

BDD block
<packagedElement

xmi:type=“uml:Class”>
Variable type, name

Value

attribute
<ownedAttribute> Parameter

type, name,
value

ACT

Activity

zoning
<group> ActivityPartition name,classname, id

node <node>\<ownedParameter> Node id,name,classname,owner,type

Transfer
edge

<edge>\<guard> Transition id,source,target,guard

The main elements in the activity diagram include nodes,
edges, detection values of the edge, activity parameters, and
active partitions. The basic element information corresponds
to node, edge, guard, ownedParameter, and group of the label
in the XMI file. As shown in Table 1, we store the parsed
active graph elements into the following three data types:
Node, Transition, and ActivityPartition. The Node data stores
information of the control nodes, action nodes, object nodes,
and active parameter elements in the SysML activity diagram,
which contains 5 attributes in total: ID name, classname,
owner, and type, respectively. Among them, type represents
the node type and contains owned Parameter. The Transition
data type stores information of the edge elements in the
SysML activity diagram. Its specific type is shown as follow
and contains 4 attributes in total like ID, source, target, and
guard. id uniquely identifies one edge, source and target are
the id values of the edge source node and the target node, and
guard is the monitor value, that is, the transfer condition of the
edge. The ActivityPartition data type stores information of
active partition elements in the SysML activity diagram and
contains three attributes in total like id, name, and classname.
Id uniquely identifies an active partition, name is the name of
the active partition, and classname is the type of active
partition.

Based on the above analysis of the block definition graph
and activity graph XMI file and customized data types, the
element information under the tags is stored according to the
corresponding data type created by traversing each label in the
XMI file as required.

C. Mapping Rule of SysML2Modelica

According to the modeling rules for CPS in the previous
section, we will obtain a series of block definition diagrams
and activity diagrams. After establishing the mapping rule,

SysML model can be converted to Modelica model. The
element in the block definition diagram is mainly converted to
an element in the Modelica model declaration area, and the
elements in the activity diagram are mainly converted to
elements in the Algorithm area of Modelica model.

The block of the block definition diagram is the basic unit
in SysML and corresponds to an instance of the Modelica
model, thus establishing the mapping rules for SysML block
and Modelica model. The value property of the block maps the
variables of Modelica model; The port and components of the
block (Instances of other modules) map to the member type in
Modelica model. They are directly mapped to Modelica model
equation if modular constraints are not combined with other
SysML activity diagrams. At this, the structure of the module
has been basically built successfully in Modelica model.

When modeling CPS, we use activity charts to represent
the activity of CPS. The action in the activity diagram
represents processing or transformation, so it is mapped to the
equation of Modelica. Determines that the node is mapped to
if-else judgment, and the merge node indicates that the above
input continues to execute when arriving, and is mapped to
continue executing downwards in the code of Modelica model.

The following table summarizes the rules for mapping
elements in the above two SysML diagrams to Modelica
elements.

TABLE II. MAPPING RULES BETWEEN SYSML AND MODELICA

 SysML Modelica

BDD

block model

interfaceblock connector
port node instance of

connector

value variable

17

constraint equation

ACT

decision node if-else

merge node execute sequentially

action equation

State Step
Transition(no

trigger)

Transiton

According to the above mapping rules, the model
conversion algorithm is defined according to section 3.4, and
the SysML diagram can be directly converted to Modelica
code.

D. Model Conversion Algorithm

The conversion algorithm converts the block definition
diagram and activity diagram into the Modelica model
according to the conversion rules. The input of the algorithm
is the XMI file for the block definition diagram and the active
graph, and the output is Modelica model. The basic idea as
follows: Firstly, use the resolution algorithm of the active
graph XMI file to obtain all active partition collections, node
collections, and edge collections. Construct a Modelica model
for each active partition, and use the XMI file resolution
algorithm in block definition graph to obtain the
corresponding block variable collection and parameter
collection, and then declare these variables and parameters in
the model declaration area. If the activity diagram contains
latency actions for relative time events, Declare an instance of
Timer in the model declaration area. Then, go down from the
starting node of the active partition and output different
contents in the model algorithm region according to the node
type, including selection, circulation, and concurrent structure
processing. The specific model conversion algorithm is shown
in Table 3 of the arithmetic.

TABLE III. SYSML-MODELICA CONVERSION ALGORITHM

Algorithm: SysML2Modelica

Input：Activity zoning set AP, node set N, edge set T, variable set V,

parameter set P

Output：Modelica model

Procedure SysMLtransformModelica(M) Begin

1. for each ap in AP do
2. Create Modelica Model;

3. Export variables and parameter declarations based on V and P;

5. Get the set of all waiting time action nodes: TimerNodes;
6. for each TimerNode in TimerNodes

7. Declare an instance of ModelicaTimer;

8. end for
10. node= Initial node of activity zoning;

11. while(node!=null) do

12. if(node =="Action") then output"node.name";
14. else if(node =="Decision") then output "if + node.name + then";

16. else if(node=="AcceptEvent") then output "if + node.name +
then";

18. else if(node=="AcceptEventTimer") then

19. if Relative time events then output "if time > Relative time
then";

21. else output "when time > Absolute time then";

23. end if
24. else if(node=="Merge") then

25. if Merge nodes and decision nodes form a cycle then

26. output "while +Decision node name Attribute value+ loop";
27. else output "end if;"

29. end if

30. else if(node=="Fork") then
31. Each concurrent branch continues to call the transformation

algorithm;

32. else if(node =="ActivityFinal" or "FlowFinal") then

33. output End statement that match statements if、when

34. break;

35. end if
36. Find the next node of node;

37. node=nextNode;

38. end while

39.end for

End Procedure SysML2Modelica

IV. CASE

In this section, a simple temperature control system [15] is
used to illustrate how to model CPS, to convert into the
Modelica model by mapping rules and finally conduct
stimulation. The temperature control system is a temperature
adjustment system involving temperature sensors, air
conditioners and switch controllers. The system requires
temperature control between 16 °C and 28 °C and limits the
season to be summer. The temperature sensor senses room
temperature and transmits the temperature to the switch
controller. The controller learns the temperature and sends the
coolOn or coolOff order after judging. The air conditioner
implements cooling operations according to the corresponding
order. If the air conditioning does not work, the temperature
will gradually increase as time. Due to the space limitation, in
this paper mainly take the switch controller as an example to
illustrate.

A. Structure Modeling

The structure analysis on the temperature control system
shows that temperature sensor corresponds to sensor entity in
CPS, air conditioner corresponds to the actuator entity, and
controller corresponds to the controller entity. For each such
entity, block is used to define the basic information in the
block definition diagram. The temperature sensor has 2 ports
with one port perceiving temperature and one port transmitting
temperature information to the switch controller. In this case,
we require the temperature sensor to learn the temperature
directly from the temperature port of the air conditioner. The
controller also has two ports, one of which learns the
temperature from the temperature sensor as described above,
and one port sends order to the air-conditioning. Similarly, the
air conditioner has a port for receiving order and a port for
transmitting temperature. Besides, air conditioners accept
different order and follow different temperature variable
equation constraint. Temperature sensors follow only one
working equation constraint. At this point, the block definition
diagram for each entity and that for the port can be given. The
BDD of the system is shown in Fig. 6.

Fig. 6. System Entity Block Definition Chart

B. Behavior modeling

As mentioned above, for controllers SysML activity graph
is used to represent activity information, controllers usually
have complex control logic. The biggest advantage of activity
graph is that they can represent the logical information well.

18

Fig. 7 is the activity diagram of the switch controller in the
temperature control system.

Fig. 7. Activity Chart of Switching Controller

C. SysML-Modelica Model Conversion

Firstly, according to the entity block definition diagram,
we know that there are three different entities in the entire
system, and each entity corresponds to Modelica model. In
terms of the switch controller, combined with the block
definition diagram and the activity diagram, according to the
SysML-Modelica model mapping rule in Section 3.3,
Modelica code shown in Fig. 8 (a) can be obtained.

Fig. 8. Modelica code Code for Switch Controllers and Systems

Though temperature sensors and air conditioners belong to
different types of CPS entities, alike switch controllers, they
can be converted to Modelica code combined with module
diagrams and model mapping rules. For all models required
for StateGraphics library, automatically a line of Modelica
code is required to "addinner
Modelica.StateGraph.StateGraphRootstateGraphRoot; ". It is
pointed out particularly that the two temperature variance
equations are quadratic equations of time t. After the time T is
derived, two Timer types are required to add to the Modelica
code to calculate the temperature variable. Finally, the
important step is to connect all Modelica models according to
BDD to form the entire temperature control system. From Fig.
6, we can see the system model Modelica code as shown in
Fig. 8.

D. Analysis of Simulation Results

Introduce all model converted code into the OpenModel
tool for simulation. We can know the variation of room
temperature with the time in the temperature control system,
as shown in Fig. 9. The entire room temperature fluctuates
directly from 16 °C to 28 °C according to the switch controller.

Fig. 9. Temperature variable curve

V. SUMMARY AND DISCUSS

In this paper, firstly the architecture of CPS is analyzed and
divide it into three types: sensors, actuators, and controllers.
For the two aspects of structure and behavior, CPS is
hierarchical modeling with SysML. In order to be able to
simulate modeling, the mapping rules between the SysML-
Modelica models are summarized. On this basis, the model
conversion algorithm is designed, the SysML-Modelica model
automatic conversion tool is realized, and an case analysis is
conducted by the temperature control system. Although in this
article the CPS modeling and simulation process based on
SysML and Modelica has been realized, there are still
shortcomings. We will further study the following two aspects:
1) Extend SysML-Modelica mapping rules to support
automatic conversion of more SysML-Modelica models; 2)
Provide more modeling language interfaces, such as SystemC.
Establish a unified modeling and simulation framework for
CPS that can be applied to more domains.

REFERENCES

[1] Lv, C., et al. "Simultaneous Observation of Hybrid States for Cyber-
Physical Systems: A Case Study of Electric Vehicle Powertrain. " IEEE
Transactions on Cybernetics 48.8(2018):1-11.

[2] Zanero, Stefano. "Cyber-Physical Systems."IEEE Computer50.4
(2017): 14-16.

[3] Mo, Haining, Neeti Sharad Wagle, and Michael Zuba. "Cyber-physical
systems."ACM Crossroads Student Magazine20.3 (2014): 8-9.

[4] Wawrzik F, Chipman W, Molina J M, et al. Modeling and simulation
of Cyber-Physical Systems with SICYPHOS[C] International
Conference on Design & Technology of Integrated Systems in
Nanoscale Era. IEEE, 2015.

[5] OMG, “Systems Modeling Language (SysML) specification,” OMG
standards, formal/2013-06-01

[6] Modelica by Example. http://book.xogeny.com/

[7]]Lin J, Sedigh S, Miller A. A General Framework for Quantitative
Modeling of Dependability in Cyber-Physical Systems: A Proposal for
Doctoral Research[J]. 2009, 1:668-671.

[8] Huang J, Bastani F, Yen I L, et al. Extending service model to build an
effective service composition framework for cyber-physical
systems[C]// IEEE International Conference on Service-Oriented
Computing and Applications. 2009:1-8.

[9] Friedenthal S, Moore A, Steiner R. A Practical Guide to SysML[J]. San
Francisco Jung Institute Library Journal,2013, 17(1):41-46.

[10] Delligatti, Lenny. SysML Distilled: A Brief Guide to the Systems
Modeling Language. 2013.

[11] Weilkiens T. Systems engineering with SysML/UML: modeling,
analysis, design[M]. Morgan Kaufmann, 2011

[12] Fritzson P. Principles of object-oriented modeling and simulation with
Modelica 2.1[M]. John Wiley & Sons, 2010.

[13] Introduction to physical modeling with Modelica[M]. Springer Science
& Business Media, 2012.

[14] Kovse J, Härder T. Generic XMI-based UML model
transformations[C]//International Conference on Object-Oriented
Information Systems. Springer, Berlin, Heidelberg, 2002: 192-198.

[15] Chen X, Ye R, Sun H, et al. Deriving Requirements Specification with
Time: A Software Environment Ontology Based Approach[J].
2013:431-43

19

http://book.xogeny.com/

AgileCritPath: Identifying Critical Tasks in Agile
Environments

Rachel Vital
PESC/COPPE

Universidade Federal
do Rio de Janeiro

Rio de Janeiro, Brazil
rachelvital@cos.ufrj.br

Glaucia Melo
David R. Cheriton

School of Computer
Science

University of Waterloo
Waterloo, Canada

gmelo@uwaterloo.ca

Toacy Oliveira
PESC/COPPE

Universidade Federal
do Rio de Janeiro

Rio de Janeiro, Brazil
toacy@cos.ufrj.br

Paulo Alencar
David R. Cheriton

School of Computer
Science

University of Waterloo
Waterloo, Canada

palencar@uwaterloo.ca

Don Cowan
David R. Cheriton

School of Computer
Science

University of Waterloo
Waterloo, Canada

dcowan@uwaterloo.ca

Abstract—Planning and monitoring the execution of software
development activities in agile environments are not trivial proce-
dures. One of the main flaws of agile planning is not considering
the dependencies that exist between project tasks. Dependencies
between tasks found in software development project plans may
lead to the emergence of critical paths, where tasks need to be
handled in a strict sequence because the completion of some tasks
depends on the completion of others. Not managing such critical
paths may reduce team performance and delay product delivery.
We performed a study to demonstrate that not identifying
dependencies may impair team performance and even increase
the risk of costly project delays. The study is divided into three
parts: (1) an exploratory study performed in the industry; (2)
the development of a tool, AgileCritPath, as a way to support
development teams in identifying critical project tasks; and (3)
an in vivo evaluation of AgileCritPath based on the Technology
Acceptance Model (TAM). The results of the exploratory study
provided empirical evidence that there is a need to identify and
control dependencies between the tasks in the development of
software in agile environments. Using the AgileCritPath tool,
allowed us to introduce the Critical Path Method concepts in
an agile software development organization. Moreover, the in
vivo evaluation demonstrated the benefits of managing tasks
dependencies.

Index Terms—Software Engineering, Critical Path Method,
Agile, Software Development.

I. INTRODUCTION

The software development principles behind the “Manifesto
for Agile Software Development” are widely used in software
development project management. Although the adoption of
such agile principles brings numerous benefits, including the
delivery of software products on time and budget [1], estimat-
ing and planning projects using agile methodologies is still
a complex process. Part of this complexity comes from the
difficulty of identifying dependencies between tasks, which is
a critical factor for coping with agile project failures [2].

Dependencies between tasks often lead to decreases in
team’s agility level [3] and can adversely impact the delivery
time of software products. For Bick and his colleagues [4],
managing task dependencies is a fundamental issue in agile
software development, because it can be used as a basis to
define the coordination between project tasks. Additionally,

proper identification of task dependencies is important to
maximize project efficiency and reduce risks [5], [6], [7], [8],
[9], [10].

The critical need to manage dependencies found in agile-
based software development projects is a topic that has been
already explored in the literature [5], [11], [4], [12], but,
currently, empirical studies on the subject are still scarce.
There is a clear need to investigate this topic further, given
that the lack of knowledge about task dependencies may
have consequences for project duration, coordination, risk, and
efficiency.

To understand the problem of identifying the dependencies
properly between agile projects and software development
tasks, we conducted an exploratory study in a software devel-
opment organization. Through this study, we obtained empiri-
cal evidence that this is a real problem that can negatively af-
fect software development organizations, especially when they
use agile methods. After performing the exploratory study, we
used the techniques of the Critical Path Method (CPM) to
inform a team in a specific software development organization
that already uses agile methods about the critical tasks. We
have also developed a tool, which we call AgileCritPath,
to evaluate the adoption of CPM in an organization. The
evaluation followed the Technology Acceptance Model (TAM)
[13] approach.

This paper is structured as follows. After a brief introduction
in Section I, Section II describes supporting concepts. Section
III presents an Exploratory Study. Section IV presents the
AgileCritPath tool and a TAM evaluation of this tool. Finally,
Section VI presents conclusions and future work.

II. BACKGROUND

The increased adoption of agile practices has caused tradi-
tional project management to be redefined.

Many agile methods provide some level of management
for tasks, but out of the main techniques applied [14] none
guarantees that teams follow what was planned. Cohn [2], in
his book ”Agile Estimating and Planning”, addresses the main
flaws of agile planning. Among them, the author cites that
tasks are not independent and that it is an error for the agileDOI reference number: 10.18293/SEKE2019-004

20

teams to plan the tasks as if they were separate, with no need
for task coordination.

In agile methods, the technical work of the development
team is defined through tasks. Each team estimates tasks and,
generally, they represent a small part of the expected work [2].
Tasks can be visualized using the Kanban board presented in
Figure 1. Kanban boards visually depict work at various stages
of a process using cards to represent tasks and columns to
represent each stage of the process. Cards are moved from
left to right to show progress and to help coordinate the teams
performing the work. The Kanban board is a visual approach
that teams use to monitor task execution.

Fig. 1. Kanban board example.

Progress monitoring is an essential activity in Software
management, whereby it ensures that a project plan advances
according to budget, schedule, and quality expectations [15],
[16]. The implementation of progress monitoring mechanisms
in an agile environment is fundamental to the success of the
project.

Although the Kanban framework is widely adopted in
organizations, it does not show task dependencies. It is not
possible to see on the Kanban board which tasks can block
the execution of others and, for this reason, the flow of task
execution becomes unclear to the team.

The Agile Kanban method lacks a mechanism for progress
tracking. Thus, it needs to be integrated with other methods
because it does not have a standard definition for software
development and its specific practices have not yet been
rigorously defined [12].

However, although managers can have, based on the Kanban
board, support to understand progress status and progress
better, they can not get information about the impact of the
execution of the flow of tasks, especially when it comes to
task dependencies.

III. EXPLORATORY STUDY - IDENTIFYING CRITICAL
TASKS

To correctly understand the dynamics of the organization
concerning project planning in an agile environment, we con-
ducted an exploratory study in a specific software development
organization. Exploratory studies have proved to be adequate
in software engineering to study new ideas [17].

Through the exploratory study, we have: (1) observed the
existence of dependencies between tasks in real software

development projects that use agile methods; (2) applied
concepts based on the Critical Path Method to identify critical
tasks in projects that use agile methods; (3) collected, analyzed
and discussed the results. The exploratory study is divided into
the following steps: definition of the study, data collection,
data analysis, and presentation of results.

A. Definition

The study was conducted in a Brazilian software develop-
ment company that has a staff of 30 employees, most of whom
are software developers. The organization has been using agile
methods for at least 10 years. Teams are small, usually groups
of 3 to 8 people.

B. Data collection

The task execution log has been extracted from the Red-
mine1 project management tool. Through the organization’s
task management system, we were able to identify which tasks
were planned and which tasks were performed. We retrieved
data from three iterations of the same project for analysis.

C. Data analysis

In this step, we identified the dependencies between tasks.
The dependency identification was performed with the help of
an experienced developer who was familiar with the scope of
the tasks, the processes of the organization, and knew the tech-
nological architecture used in the project. Task dependencies
were classified into Process and Context dependencies, follow-
ing a classification suggested in a taxonomy of dependencies
[5].

D. Results and discussion

From the analysis of the data, the projection of the maxi-
mum effort rate per period was obtained. Therefore, regardless
of the number of people on the team, we can not plan
activities with effort higher than the maximum effort rate. For
the calculation of the maximum effort rate, we consider the
estimated effort of the tasks performed by the team and their
respective dependencies.

Figure 2 illustrates the planning performed by the team (blue
line) and the maximum effort rate of the tasks (red line). The
red line represents the shortest time to complete the activities
and indicates the maximum rate of production (speed) at which
the team can work. Regardless of the number of people, the
tasks will not be completed before this deadline (red line). In
this case, we can see that the team planned a delivery that can
not be performed on the expected date.

Table I presents the number of dependencies identified in
the study and the number of tasks defined by the team, which
are extracted through the task execution log. The number of
dependencies is higher than the number of tasks, within the
three analyzed iterations.

1redmine.org

21

Fig. 2. The burndown graph with maximum effort rate.

TABLE I
PERCEIVED DEPENDENCIES.

Release Task Dep %
Dep

Process
Dep

Business
Dep

Release 2.12 100 96 96% 52 44
Release 2.13 69 77 112% 53 24
Release 2.14 70 84 120% 67 17

Our results show that handling task dependencies may not
be straightforward when there are many tasks. Another factor
we noticed was that there were several tasks, and consequently,
dependencies, that are were not planned but were identified
during the iteration execution.

During the analysis of the Iteration execution log, we
verified that some tasks were discovered during the execution
of the iteration and, consequently, the execution flow of the
tasks changed because the new tasks had dependencies that
should have been considered. This shows that the identification
of critical tasks should occur throughout an iteration, and not
only at the end.

Based on the exploratory study we conclude that there is
evidence that when considering task dependencies it is possible
to find the critical tasks, which if delayed, can have serious
consequences, including the product release delays. Because
of this evidence, we decided to develop the work further and
implement AgileCritPath, a tool that could help developers
identify critical tasks. The tool implementation and details are
presented in Section IV.

IV. THE AGILECRITPATH TOOL

The AgileCritPath tool implements the Critical Path Method
to be used in agile environments and support teams to identify
and prioritize critical tasks that can block the execution of
other tasks and cause costly project delays.

A. Identifying Critical Tasks

During the exploratory study, we identified that some tasks
compromise or block the flow of execution of other tasks.
These tasks are referred to as Critical Tasks because they can
decrease the agility level of the team.

The critical path is the longest duration path through the net-
work. The tasks that lie on the critical path cannot be delayed

without delaying the release. In agile environments, Critical
Tasks are identified by building a network diagram of tasks.
This network diagram is built to represent task dependencies.
Figure 3 presents an example of a network diagram with seven
tasks. The solid lines represent dependencies between tasks,
and the dashed lines represent the association of the tasks
from the beginning to the end of the graph. Critical tasks are
identified as the tasks that make up the longest delivery path.

Fig. 3. Network Diagram with Critical Tasks.

B. Proposed Model

Figure 4 illustrates in detail the mechanism used to find out
the Critical Task in GitHub projects.

Fig. 4. Illustration of AgileCritPath.

In step (1), the application connects to the task manager to
load all tasks and their dependencies. In step (2), the associa-
tions between tasks are created according to the dependencies.
In step (3), the resulting graph is created. Tasks without
predecessors are automatically linked to the initial node of the
graph. The tasks without successors are automatically linked to
the final node of the graph. In step (4), the Depth-First Search
(DFS) algorithm is applied to find all paths in the graph. While
reading the path, the total effort to complete the task flow is
calculated.

All the found paths are displayed in descending order,
from the longest path to the shortest path, according to the
calculated effort for each path. Next to the path listing is the
status of the task, the developer responsible for the execution
of the task, and the effort of each task that makes up the path.
The path size is calculated by the sum of the planned effort

22

reported in the individual tasks that are part of the path. If the
task is finished, we consider the effort to complete the task.

Knowing all the paths in the network task is important
because we can identify the “Near-Critical Paths”. Other
important paths through are considered the “Near-Critical
Paths” if they are at risk of becoming the Critical Path. To
make this information visible to the team, we display all the
paths found in the task network.

Fig. 5. Query results.

Figure 5 presents the result of querying the paths of a task
network from a GitHub repository.

C. Architecture model

AgileCritPath was developed following the architecture pre-
sented in Figure 6.

Fig. 6. The AgileCritPath architecture.

The application works autonomously and connects to the
task manager through an integration API (task manager API).
The Extract, Transform and Load (ETL) module performs the
necessary information processing, according to the information
available in the task manager. An ETL module was developed
to meet the integration requirements with GitHub, ZenHub and
Redmine. The ETL loads objects from the application domain,
which works in isolation from the task management tools. The
Core ACP module loads a task-oriented graph and implements
a Depth-First Search algorithm that searches for all paths in
the task network.

Planning in an agile environment is different from ap-
proaches used in traditional plan-oriented software develop-
ment models [18]. Rather than employing plans in projects
based on a set of predefined factors and constraints, agile
models rely on the human factor to self-organize. In this work,
we seek to offer systemic support, allowing the information
to be accessible to all team members, and the decisions about
the order of task execution to be made at any time.

V. THE AGILECRITPATH TOOL EVALUATION

The evaluation of the AgileCritPath tool was performed
according to the Technology Acceptance Model (TAM). The
TAM approach was proposed by Davis in 1989 [19] and
suggests the acceptance of a new IT technology depending
on two variables: (1) perceived ease of use and (2) perceived
utility usefulness. For Davis, people tend to use or not use
technology to improve their performance at work - perceived
utility. However, even if a person understands that a particular
technology is useful, its use may be impaired if the application
is too complicated, so effort does not compensate for use -
perceived ease.

A. Procedures

The general objective of using TAM was to evaluate the po-
tential of the AgileCritPath tool in an industrial environment.
The evaluation was performed in a company that has been
working in the area of software engineering for 20 years and
adopts development processes based on agile practices. The
project used in the evaluation was selected by the organization.
The selected company uses Redmine as a task management
tool. For the execution of the study, we modified our tool so
it could access Redmine.

B. Execution

The study was performed in-vivo. In-vivo studies are studies
that involve people in their own working environment under
realistic conditions [20]. Case studies made in an industrial
environment are an important type of in-vivo study since they
allow the analysis of a particular process in the context of a
software life cycle [21] .

To ensure that the study did not impact the organization’s
software development process, we restricted ourselves to ob-
serving the tasks performed in the team’s daily routine and
added to their lists the activities required to use the tool, as
presented in Figure 7.

Figure 7 presents the activities performed in the organiza-
tion. The activities in red are the activities we included so that
CPM could be used by the team.

At the iteration planning meeting, the team began to include
task dependencies. During the execution of the iteration,
the team performs daily meetings (daily Scrum meeting).
As suggested in Scrum [22], daily meetings should last 15
minutes, where the team discusses what has been done in
the last 24 hours, the plan for the next 24 hours, and what
task impediments (anything that keeps a team from being
productive) occurred. The meeting is held in front of a

23

Fig. 7. The activities performed during an iteration.

Kanban board. The visualization of the paths calculated by
the AgileCritPath tool was presented at the end of the daily
meetings.

During the planning and execution of the iteration, the
participants had access to the AgileCritPath tool, and in the
daily meetings, the tasks that were part of the critical path were
presented to the team. The iteration lasted two weeks, and at
the end, the participants were asked to answer the questions
directed towards the evaluation of the tool.

At the end of the iteration, the participants completed
the Participation Consent and Clearance Form, Participants
Characterization Form and the TAM Model Evaluation. The
forms were completed individually and without any contact
between participants.

C. Discussion

A team of six employees participated in the study. Partici-
pation was free and voluntary. The questionnaire was sent to
all developers of the company. The participants, in general,
have a bachelor’s degree, except for one participant, who is in
the process of concluding a bachelor’s degree. The academic
experience varies greatly among the research group since
the team has 2 senior, 1 junior and 1 trainee members. All
participants are familiar with the basics of project management
and are knowledgeable about the Scrum methodology.

From the results of the study, based on the Perceived Utility
evaluation criterion, we verified that the participants agreed
that the use of the tool could improve the productivity and
quality of the work of the team members. All participants rec-
ognized the tool as useful for performing their tasks. Regarding
the Perceived Usability Facility variable, the team indicated
that identifying dependencies between tasks and identifying
the Critical Path as reasonably difficult activities. Even though
the team has indicated difficulties in identifying dependencies
and evaluating the critical path, 75% of respondents felt
inclined to use the tool during the planning and execution of
tasks. Despite having to make a more significant effort in task
dependency identification, the team recognized the benefits
that the use of the tool can provide.

The participants were asked to identify the benefits and
limitations of the tool. The key highlighted benefits were: the
visualization of dependencies between tasks, as a facilitator to
determine which tasks should be prioritized, and the improved
visualization of the total planned effort to complete critical
path tasks. As a tool limitation, the participants recognized
that it would be nice if the tool could display estimated versus
realized information of the tasks in progress and could provide
more metrics for monitoring work progress.

During the daily meetings using the tool, we were able to
capture observations made by the team as follows:

• The team observed that using the tool allows everyone
on the team to get a sense of what tasks are critical;

• The team found it interesting to leave the critical tasks to
the most experienced developers on the project, especially
when the deadlines for these tasks are tight;

• Visualizing the critical path is also a way of evaluating
the most complex points of the project;

• The team observed that the task priority they provide at
the time of task planning did not make sense and, in some
cases, the team acknowledges that they might have had
a greater gain prioritizing critical path tasks;

• The team evaluated the critical path analysis as a tool
complementary to the Kanban framework because in the
Kanban framework they could not keep track of the
dependencies between the tasks.

The lack of knowledge about dependencies between planned
tasks in agile environments emerges in a misaligned business
plan that the team may not be able to execute. Also, the
lack of awareness about the dependencies that exist between
the tasks of the software development process constitutes
a possible explanation for inefficient team coordination and
project delays.

The AgileCritPath tool enables organizations to use depen-
dency information across tasks to improve task prioritization
in agile environments by identifying which dependencies can
compromise or block the flow of task execution.

In this study, the evaluation of the usability of the Agile-
CritPath tool in the industry was conducted. Usability is one
of the aspects related to the quality of use of systems, being
one of the most important acceptance criteria for interactive
applications in general, and in particular for Web applications
[23]. The acceptance of technology is related to the quality
and use of its systems, the quality of the provided information
and user satisfaction [24]. Through the use of the acceptance
model, it was possible to evaluate the use of the AgileCritPath
tool in an industrial environment.

VI. CONCLUSION

Agile approaches are based on the idea that developers can
self-organize and perform their work collaboratively [4]. How-
ever, some studies suggest that large and complex software
development projects can benefit from the combination of the
flexibility inherent in agile teamwork and models that support
a plan-oriented structure [25], [26], [27].

24

Bick et al. [4] and Badampudi et al. [18] propose that
organizations should continue to adopt agile methods, includ-
ing the established practices of traditional methodologies that
guarantee more predictability, reliability, stability and effective
use of resources. In addition, through analysis of dependencies,
the team can evaluate the shorter time for product delivery.
Not considering the dependencies between tasks can generate
delivery plans that are not aligned with the reality of the
organization.

Considering dependencies on software projects is crucial to
identifying critical tasks. Critical tasks are tasks that can delay
the execution of others and thereby delay the delivery of the
product. In this paper, we present an exploratory study that
demonstrated that in a real software development scenario,
the number of dependencies could be large and difficult to
manage. Through the results of the exploratory study, we
proposed the use of the Critical Path Method (CPM) concepts
to identify critical tasks in agile projects. Critical Path Method
has already consolidated in traditional project management
models. In Agile Environments, this technique can help the
team identify critical tasks, and thus direct their efforts toward
tasks that can impact the development of other tasks.

The proposal presented in this article was materialized in the
AgileCritPath tool, which allows development teams to have a
view of dependencies between the tasks and, therefore, identify
at any time which tasks are critical. The tool is compatible
with any agile methodology and can support development
teams to make decisions easily and quickly. The tool was
developed in open source format and is available on GitHub
(https://github.com/RachelVital/CritPath).

The evaluation of the use of the tool was based on the TAM
technological acceptance model. During the evaluation, we
were also able to gather insights and encourage the adoption
of the tool in the industry. Through the responses obtained in
the TAM application, we were able to evaluate that, despite the
additional effort to identify the dependencies, the use of the
CPM in agile environments proved to be relatively simple and
viable in the selected organization. At the end of the evaluation
of the use of technology, we could verify that the whole team
was able to perceive the utility of the identification of critical
tasks.

As future work, we plan to evaluate the use of AgileCritPath
in continuous software development and DevOps environ-
ments. The application of the acceptance model could also
be conducted in other software development companies.

ACKNOWLEDGMENT

The authors thank the Natural Sciences and Engineering
Research Council of Canada (NSERC), the Emerging Leaders
in the Americas Program (ELAP) and MITACS.

REFERENCES

[1] J. Lynch. Standish group 2015 chaos report - q&a with jennifer lynch.
[Online]. Available: https://www.infoq.com/articles/standish-chaos-2015

[2] M. Cohn, Agile Estimating and Planning. Pearson Education, google-
Books-ID: BuFWHffRJssC.

[3] C. D. W. Lomas, J. Wilkinson, P. G. Maropoulos, and P. C. Matthews,
“Measuring design process agility for the single company product
development process.” vol. 9, no. 2, pp. 105–112.

[4] S. Bick, K. Spohrer, R. Hoda, A. Scheerer, and A. Heinzl, “Coordination
challenges in large-scale software development: A case study of planning
misalignment in hybrid settings,” vol. 44, no. 10, pp. 932–950.

[5] D. E. Strode, “A dependency taxonomy for agile software
development projects,” vol. 18, no. 1, pp. 23–46. [Online]. Available:
http://dx.doi.org/10.1007/s10796-015-9574-1

[6] M. Korkala and F. Maurer, “Waste identification as the means for
improving communication in globally distributed agile software devel-
opment,” vol. 95, pp. 122–140.

[7] M. Shen, G.-H. Tzeng, and D.-R. Liu, “Multi-criteria task assignment in
workflow management systems,” in System Sciences, 2003. Proceedings
of the 36th Annual Hawaii International Conference on. IEEE, pp.
9–pp.

[8] J. Duggan, J. Byrne, and G. J. Lyons, “A task allocation optimizer for
software construction,” vol. 21, no. 3, pp. 76–82.

[9] Y. Jiang and J. Jiang, “Contextual resource negotiation-based task
allocation and load balancing in complex software systems,” no. 5, pp.
641–653.

[10] J. Sutherland and K. Schwaber, “The scrum guide. the definitive guide
to scrum: The rules of the game.”

[11] W. Aslam and F. Ijaz, “A quantitative framework for task allocation in
distributed agile software development,” vol. 6, pp. 15 380–15 390.

[12] H. Alaidaros, M. Omar, and R. Romli, “Identification of criteria affecting
software project monitoring task of agile kanban method,” in AIP
Conference Proceedings, vol. 2016. AIP Publishing, p. 020021.

[13] Y. Lee, K. A. Kozar, and K. R. Larsen, “The technology acceptance
model: Past, present, and future,” vol. 12, no. 1, p. 50.

[14] VersionOne. 12th annual state of agile report. [Online].
Available: https://explore.versionone.com/state-of-agile/versionone-
12th-annual-state-of-agile-report

[15] M. L. Despa, “Comparative study on software development methodolo-
gies,” vol. 5, no. 3, pp. 37–56.

[16] Hazır, “A review of analytical models, approaches and decision support
tools in project monitoring and control,” vol. 33, no. 4, pp. 808–815.

[17] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,” vol. 14,
no. 2, pp. 131–164. [Online]. Available: http://link-springer-
com.ez29.capes.proxy.ufrj.br/article/10.1007/s10664-008-9102-8

[18] D. Badampudi, S. A. Fricker, and A. M. Moreno, “Perspectives on
productivity and delays in large-scale agile projects,” in International
Conference on Agile Software Development. Springer, pp. 180–194.

[19] F. D. Davis, “A technology acceptance model for empirically
testing new end-user information systems : theory and results,”
http://hdl.handle.net/1721.1/15192, 7 1986, thesis (Ph. D.)–
Massachusetts Institute of Technology, Sloan School of Management,
1986.; MICROFICHE COPY AVAILABLE IN ARCHIVES AND
DEWEY.; Bibliography: leaves 233-250.

[20] G. H. Travassos and M. O. Barros, “Contributions of in virtuo and
in silico experiments for the future of empirical studies in software
engineering,” in 2nd Workshop on Empirical Software Engineering the
Future of Empirical Studies in Software Engineering, pp. 117–130.

[21] F. Shull, J. Carver, and G. H. Travassos, “An empirical methodology for
introducing software processes,” in ACM SIGSOFT Software Engineer-
ing Notes, vol. 26. ACM, pp. 288–296.

[22] P. Deemer, G. Benefield, C. Larman, and B. Vodde. The scrum primer
version 2.0.

[23] E. Insfran and A. Fernandez, “A systematic review of usability evaluation
in web development,” in International Conference on Web Information
Systems Engineering. Springer, pp. 81–91.

[24] S. Petter, W. DeLone, and E. R. McLean, “The past, present, and future
of” IS success”,” vol. 13, no. 5, p. 341.

[25] J. B. Barlow, J. S. Giboney, M. J. Keith, D. W. Wilson, and R. M.
Schuetzler. Overview and guidance on agile development in large
organizations.

[26] L. Cao, K. Mohan, P. Xu, and B. Ramesh, “How extreme does extreme
programming have to be? adapting XP practices to large-scale projects,”
in System Sciences, 2004. Proceedings of the 37th Annual Hawaii
International Conference on. IEEE, pp. 10–pp.

[27] N. Ramasubbu, A. Bharadwaj, and G. K. Tayi, “Software process
diversity: conceptualization, measurement, and analysis of impact on
project performance.”

25

Evaluating Software Developers’ Acceptance of a
Tool for Supporting Agile Non-Functional

Requirement Elicitation

Felipe Ramos§, Antônio Pedro¶, Marcos Cesar¶, Alexandre Costa§,
Mirko Perkusich¶, Hyggo Almeida‡ and Angelo Perkusich‡‡

Intelligent Software Engineering Group, Federal University of Campina Grande,
Campina Grande - PB, Brazil, Zip Code 58429-140

§CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF, Zip Code 70.040-020
§{feliperamos, antonioalexandre}@copin.ufcg.edu.br,

¶{antonio.abreu, marcos.cesar, mirko.perkusich}@embedded.ufcg.edu.br
‡hyggo@dsc.ufcg.edu.br, ‡‡perkusic@dee.ufcg.edu.br

DOI reference number: 10.18293/SEKE2019-107

Abstract—Due to the need for flexibility to requirements
changes, agile software development methods have been attract-
ing the attention of academic and industrial domains. Unlike
traditional approaches, agile methods focus on the rapid delivery
of business value to customers through empirical and incremen-
tal development processes. Despite being effective in delivering
quality functional requirements, agile practices generally neglect
non-functional requirements until the later stages of software
development. However, neglecting non-functional requirements
during requirements analysis can lead to project failures. In this
paper, we present the NFRec tool, which aims to support software
developers in the elicitation of non-functional requirements in the
context of agile software development. Additionally, we report the
results from a case study to evaluate the acceptance of the NFRec
tool from the point of view of software developers of four projects
from a Brazilian software company. To gather information about
the tool acceptance, we applied a questionnaire based on the
indicators from the Technology Acceptance Model. Overall, the
four teams considered the NFRec tool useful and easy to use for
supporting the management of non-functional requirements in
agile projects.

Keywords—Non-functional requirements; agile requirement en-
gineering; supporting tool; empirical study; technology acceptance.

I. INTRODUCTION

Since the declaration of the Agile Manifesto in 2001,
academic [8] and industrial [16] communities have devoted
considerable attention to agile software development (ASD)
methods, such as Scrum and eXtreme Programming. One of
the key aspects of the ASD is to rapidly adapt to volatile
requirements [8], following a development process that places
a great emphasis on frequent delivery of business value for
customers [8].

Although agile practices are considered effective in the
delivering of valuable functional requirements (FRs) [14],
non-functional requirements (NFRs) are commonly neglected
until the later stages of software development [14]. However,
neglecting NFRs can lead to software failure [2], since NFRs
are often more critical to determine the perceived success or
failure of a software product than FRs [9].

By addressing this problem, some studies proposed tech-
niques to support the NFR elicitation in the agile context [10],
[11], [12], [13]. Maiti and Mitropoulos [12], [13] presented
a methodology to collect NFRs metadata from software re-
quirements artifacts such as documents and images available
in the initial stages of projects. Farid et al. [10], [11] proposed
a solution based on decision trees to predict NFRs from future
iterations of agile projects based on the metadata collected
with the methodology proposed in Maiti and Mitropoulos [12],
[13]. However, to the best of our knowledge, none of these
works proposed the use of historical data of previous projects
to provide suggestions of NFRs for ongoing ones. Additionally,
there is a lack of empirical evaluations of proposed solutions
in real industrial environments.

In our previous work [15], we proposed a non-functional
requirement recommendation system (RS) for Scrum-based
projects, which is based on the analysis of information from
past projects. As a result, our solution achieved a recall rate of
up to 81%, showing the feasibility of automating the definition
of NFRs through historical data of Scrum-based projects. To
allow the applicability of the proposed recommendation system
on industrial environments, we developed a tool based on
an improved version of the solution presented in [15], called
NFRec.

In the current paper, we focus on the empirical assessment
of the NFRec tool and report the results obtained through
a case study to evaluate its acceptance in a real industrial
environment. For matters of validation, our work focus on
Scrum, which is the most popular agile method [17]. As a
result, the subjects of the case study considered the NFRec
tool useful and easy to use for supporting the management of
non-functional requirements in agile projects.

This paper is organized as follows. Section II presents a
background and a motivation to use a supporting tool for
NFRs elicitation in ASD context. Section III shows the NFRec
tool. Section IV presents details about the empirical evaluation.
Section V discusses the threats to validity. Finally, Section VI
details our conclusions and perspectives for future works.

26

II. BACKGROUND AND MOTIVATION

Non-functional requirements play a key role in the suc-
cessful development of software products [2]. Moreover, they
are considered as a factor of differentiation among software
products that present similar FRs [1].

In this sense, Bourimi et al. [3] proposed a framework that
aims to conceptually impose the early consideration of NFRs,
by considering the adoption of the stakeholder of NFRs in the
Scrum team. In contrast, Farid [7] proposed a framework for
modeling NFRs in the context of ASD.

Although the presented techniques provide a means for
identifying NFRs on agile projects, there is still room for im-
provement. For example, solutions such as the ones proposed
by Bourimi et al. [3] and Farid [7] present only a conceptual
reinforcement or/and the addition of artifacts and roles in the
agile process. Therefore, no solutions are proposed to support
automated NFR elicitation. In contrast, solutions presented
by Farid et al. [10], [11] and Maiti and Mitropoulos [12],
[13] require that project documents and images are available
on early stages of the software development, which is not
common when dealing with ASD. The presented needs have
been considered in the NFRec tool.

III. NFREC TOOL

In this section, we present the NFRec tool, which aims
to support developers in the early elicitation of NFRs during
the Sprint Planning Meetings1. NFRec comprises the following
two activities: (i) Structuring of Project Information; and (ii)
NFR Recommendation.

A. Structuring of Project Information

To enable the generation of the NFRs recommendations, it
is necessary to structure the projects’ information to guarantee
the retrieval of information by the recommendation system. In
the NFRec tool, user stories and project profiles are structured
based on the assignment of categories and tags.

The first activity accomplished in the NFRec tool by Scrum
teams is to create project profiles based on the assignment
of tags referring to the five factors that directly affect the
definition of NFRs [15], i.e., platform (e.g., web, mobile,
embedded, desktop, etc.), project domain (e.g., health, banking,
etc.), project objective (e.g., product or prototype), software
architecture (e.g., client-server, MVC, multilayered, etc.), and
technology tags, which represent basic technologies for the
development of a software product (e.g., programming lan-
guage, database, etc.). In Figure 1, we present an example
of a structured project profile created in the NFRec tool. The
project is from the domain Development Tools (1), its objective
is to develop a Product (2), the software architecture is Client-
server (3), the platform is Web (4) and the technologies used
are the programming languages Java and JavaScript (5) and
the frameworks Angular and Spring Boot (6). We highlight
that previously stored tags must be reused by Scrum teams to
avoid data inconsistencies.

Besides project profiles structuring, all user stories (USs)
specified in the NFRec tool must be categorized to enable the
retrieval of information by the RS. Therefore, during the Sprint

1Sprint Planning Meeting is an event of the Scrum in which the Scrum
team plans the work to be performed in the Sprint.

Fig. 1: Example of a structured project profile created in the
NFRec tool

Planning Meetings, developers use the NFRec tool to create
and store USs, which are classified by a category (module)
and a subcategory (operation) that indicate the purpose of the
FR specified by the US. In Figure 2, we present an example
of a structured user story created in the NFRec tool. The
US is classified with the module Registration (1) and the
operation Retrieve data (2). We highlight that previously stored
categories (i.e., modules and operations) must be reused by
development teams to avoid data inconsistencies.

B. NFR Recommendation

For each US defined by the development team, the NFRec
tool recommends a list of NFRs based on historical data

27

Fig. 2: Example of a structured user story created in the NFRec
tool

analysis. NFRs are represented in the tool by a type, an
attribute, and a sentence. The classification with type and
attribute follows the indications presented by Mairiza et al.
[9]. Additionally, NFR sentences are written following the
indications presented by Eckhardt et al. [5], [6].

In Figure 3, we present an example of NFR recommenda-
tions presented in the NFRec tool, in which three NFRs are
suggested for a US of the module Registration (4) and the op-
eration Retrieve data (5). In the example, the developers have
already accepted/considered one of the three recommendations

Fig. 3: Example of a NFR recommendation presented in the
NFRec tool

(6), a NFR of type security (1), attribute access control (2), and
sentence “The system must provide the capability for users to
see just the information they have permission to access.” (3).

By using the tool, developers can visualize suggestions
of NFRs for each US of current or future Sprints. Thus,
NFRs can be considered early in the software development
process, mitigating the risk of negligence with non-functional
requirements resulted from agile practices.

IV. EMPIRICAL EVALUATION

To evaluate the practical use of the NFRec tool, we
conducted a case study in four ongoing Scrum-based projects
from a Brazilian software company. We intend to: (i) assess
the acceptance of the NFRec tool by agile software developers;
(ii) evaluate the precision of generated recommendations.

A. Case Study Design

We performed an embedded case study [18] in which each
project was considered a unit of analysis and each development
team the subject of study. This step of the research lasted a
month and each project executed two Sprints of 15 days during
this period. Meanwhile, we collect information from different
recommendation scenarios, and hence, we consider a sufficient
period to answer the research questions.

The overall objective of the case study is to evaluate
the cost-benefit of the NFRec tool from the perspective of
development teams, regarding the support of non-functional
requirements management. To accomplish that, we formulate
the following research questions (RQs):

• RQ1: is the NFRec tool useful to assist in eliciting
non-functional requirements in Scrum-based software
projects?

• RQ2: is the cost to use the NFRec tool in Scrum-based
software projects acceptable?

• RQ3: what is the precision of the recommendations
of the NFRec tool?

28

Therefore, we consider the cost-benefit of the NFRec tool
worthwhile if the questions are positively answered.

As previously stated, we consider four software projects as
study analysis units, referred as Project A, Project B, Project
C and Project D. All of them consisting of Web information
systems with the following scopes:

• Project A: development of a system with a cloud ser-
vice and a Web client to enable independent or shared
writing of poetry. It is composed of two developers;

• Project B: development of a Web client for generating
graphics resources such as badges and business cards.
It is composed of three developers;

• Project C: development of a system with a cloud
service and a Web client to support the management of
training projects through the management of students’
activities and schedules, selections of participants to
projects, etc. It is composed of five developers;

• Project D: development of a system with a cloud
service and a Web client to assist the building and
executing of Bayesian Networks. It is composed of
five developers.

Prior to the case study, all projects performed requirements
management during the Sprint Planning Meetings using a tool
without NFR recommendation. Therefore, they did not perform
any direct activity to define NFRs through the tool. They
described them as acceptance criteria, DoD items, functional
requirements, failures identified by test cases, etc.

To gather data for evaluating the acceptance of the NFRec
tool, we apply a questionnaire based on the Technology
Acceptance Model [4]. TAM aims to explain why individuals
choose to adopt or not adopt a specific technology when ac-
complishing a task and it is based on two variables: Perceived
Usefulness (PU) and Perceived Ease of Use (PEU). PU is
related to the degree to which an individual believes that the
use of a certain technology would increase his/her performance
in the work. In contrast, PEU refers to the degree to which an
individual believes that the use of a certain technology would
be free of mental and physical effort.

Therefore, by adapting the TAM to the context of this
work, we formulate 14 questions to evaluate the PU of the
NFRec tool (RQ1) and 14 to assess its PEU (RQ2). For each
question, we use a five-level Likert scale to collect participants’
responses. The scale adopted the values: (1) Strongly Disagree,
(2) Disagree, (3) Neither agree nor disagree, (4) Agree, and
(5) Strongly Agree. In addition, we calculate the precision of
the recommendations processed during the case study (RQ3).

Overall, we collected 4 answers for the questionnaire, i.e.,
one for each development team. On average, the teams of
projects B and C have one year of experience in Scrum-based
software projects. On the other hand, the teams of projects A
and D had a mean of three years of experience in the same
type of project.

B. Case Study Execution

To run the case study, we make the NFRec tool available
to the teams of each project via a web link. The execution of
the study comprised two stages: (i) training, and (ii) execution.

During the training phase, we presented concepts about
the structuring of project information and the non-functional
requirements recommendation, followed by a demonstration
of the NFRec tool. The training lasted 1 hour. After this
phase, the teams started using the NFRec tool at their projects’
Sprint Planning Meetings, i.e., a real evaluation scenario in the
industry.

First, they used the tool to create the profiles of their
respective projects based on the assignment of tags referring to
the five factors that affect the definition of NFRs (i.e., applica-
tion domain, platform, project objective, software architecture,
and technologies [15]). None of the teams had reported any
troubles at this step.

Next, for each current Sprint, the teams used the NFRec
tool to support the requirement management process during
the Sprint Planning Meetings, in which they created structured
USs. For each created US, the teams received NFRs recom-
mendations and they could freely interact with the tool, accept-
ing or rejecting suggestions. The duration of the meetings did
not change in any of the projects, i.e., they continued within
the planned interval of 1 hour. In the following, we present
the activities carried out in the first moment of the case study.

In the first observed Sprint of Project A, the team selected
one US, which received two NFR recommendations. The team
accepted only one of them. Therefore, the RS achieved a
precision rate of 50% for the corresponding Sprint from Project
A.

For the first observed Sprint of Project B, the team selected
two USs. For the first described US, the NFRec tool generated
six NFR recommendations. The team accepted five of them.
In contrast, for the second US, the tool generated two NFR
recommendations, but the team accepted only one of them.
Therefore, the RS achieved a precision rate of 75% for the
first evaluated Sprint from Project B.

In the first observed Sprint of Project C, the team se-
lected three USs and the NFRec tool generated three NFR
recommendations for each one them. For two of the USs,
the team accepted all the suggestions. On the other hand,
for the remaining one, the team accepted only two of the
recommendations. Therefore, the RS achieved a precision rate
of 88.88% for the respective Sprint from Project C.

Finally, in the first observed Sprint of Project D, the team
selected three USs. Two of them received three NFR recom-
mendations, which were accepted by the team. In contrast, for
the remaining one, the tool presented two suggestions of NFRs,
of which only one was accepted by the team. Therefore, the
RS achieved a precision rate of 87.5% in the first evaluated
Sprint from Project D.

We highlight that the Product Owners of each project
validated the recommendations accepted by the development
teams. However, we did not evaluate whether the constraints
specified by the recommended NFRs were considered in the
development of the USs within the current Sprints since this
issue is not part of the scope of this work. In the following,
we present the activities carried out in the second moment of
the case study.

In the second observed Sprint of Project A, the team
selected two USs during the Sprint Planning Meeting. The
NFRec tool presented one recommendation for one of the US

29

and three for the other. The team accepted all the suggestions.
Therefore, the RS achieved a precision rate of 100% in the
second evaluated Sprint from Project A.

In the second observed Sprint of Project B, the team
selected two USs during the Sprint Planning Meeting. The
NFRec tool recommended one NFR for two of them. For the
other one, the tool presented two recommendations. Overall,
the team accepted two of the four suggestions. Therefore, the
RS achieved a precision rate of 50% in the second first Sprint
evaluated from Project B.

In the second observed Sprint of Project C, the team
selected two USs. The NFRec tool recommended one NFR for
the first described US and two for the later. The team accepted
all the suggestions. Therefore, the RS achieved a precision rate
of 100% for the corresponding Sprint.

Finally, for the second observed Sprint of project D, the
development team selected three USs and the NFRec tool
generated two NFR recommendations for each one of them.
The team accepted all the suggestions for two of the USs but
rejected one of the recommendations for the remaining one.
Therefore, the RS achieved a precision rate of 83.33% for the
corresponding Sprint from Project D.

At the end of the case study, all subjects filled in the
questionnaire regarding their acceptance of the NFRec tool.

C. Results and Discussion

After the case study execution, we calculated the precision
of the recommendations generated during the observed period.
In Table I, we present the results of the overall precision
and the precision for each project. Overall, the NFRec tool
recommended 44 NFRs, of which 36 were accepted by the
developers, resulting in a precision rate of 81.8% of the
recommendations for the 20 considered USs. Therefore, we
considered the results promising, concluding that RQ3 was
positively answered. Among the four evaluated projects, we
observed a higher precision rate in Project C (91.7 %), which
is composed of professionals with previous experience in the
use of the structured model of USs. On the other hand, we
observed the lowest precision rate in Project B (66.7 %), which
is the only one of the four projects that it is not developing
a cloud service (back-end). Therefore, some recommendations
were rejected for suggesting back-end assumptions/constraints
such as validating the integrity of data sent to the server.
Additionally, the team of Project B reported difficulties during
the classification of the USs with modules and operations.

TABLE I: Results of precision calculated from the data ob-
tained in the case study

Project Num. USs Num. accep. NFRs Num. rec. NFRs Precis.
Project A 3 5 6 83,3%
Project B 5 8 12 66,7%
Project C 5 11 12 91,7%
Project D 7 12 14 85,7%

Total 20 36 44 81,8%

As mentioned before, at the end of the case study, each
development team answered a questionnaire to assess the
acceptance of the solution regarding the perceived usefulness
and perceived ease of use. To evaluate the responses, we
summarized them as follows: Likert scale values represented
by (1) and (2) were considered as indicative of disagreement

(Disagreement); (3) as indicative of neutrality (Neutral); and
(4) and (5) as indicative of agreement (Agreement).

In Tables II and III, we present the data collected for
PU and PFU, respectively. Positive responses to variables are
highlighted in bold. The maximum number of answers per
question is four since we considered four subjects in the
study. Therefore, as we formulate 14 questions for each TAM
variable, the maximum number of responses per variable is 56.
The final result for each analyzed variable is given by the sum
of the answers per positive indicative (i.e., Agreement) divided
by the maximum number of responses to the corresponding
variable (i.e., 56).

By analyzing the data of the Table II, we verify that the
research participants showed good acceptance for 13 of the
14 analyzed items of PU. Only items PU9 and PU12 did not
receive mostly positive evaluations. For PU9, participants gave
three neutral answers and one positive. In contrast, for PU12,
they gave two positive responses and two neutral ones. Overall,
the PU was positively assessed in 48 of 56 possible responses.
The evaluation demonstrated an acceptance of the perceived
usefulness of 85.7%. Therefore, it is possible to state that the
research participants considered the tool useful (RQ1).

By analyzing the data of the Table III, we verify that the
respondents showed good acceptance for 12 of the 14 analyzed
items of PFU. Only the items PFU1, PFU11, PFU12, PFU13,
and PFU14 did not receive mostly positive evaluations. For
PFU1 and PFU13, the respondents gave two positives and
two negative responses. In contrast, for PFU11, PFU12, and
PFU14, they gave two positives and two neutral responses.
Overall, the respondents positively assessed PFU in 41 of 56
answers, i.e., an acceptance of the perceived ease of use of
73.2%. Initially, some developers encountered difficulties in
structuring USs and defining modules and operations. This
fact may explain why PFU acceptance values were lower than
those of PU. Even so, it is possible to state that the research
participants considered the tool easy to use (RQ2).

TABLE II: Results for perceived usefulness from TAM

ID Item Agreement Neutral Disagreement
PU1 Job Difficult Without 4 0 0
PU2 Control Over Work 4 0 0
PU3 Job Performance 4 0 0
PU4 Addresses My Needs 4 0 0
PU5 Saves Me Time 3 1 0
PU6 Work More Quickly 4 0 0
PU7 Critical to My Job 4 0 0
PU8 Accomplish More Work 3 1 0
PU9 Cut Unproductive Time 1 3 0
PU10 Effectiveness 4 0 0
PU11 Quality of Work 3 1 0
PU12 Increase Productivity 2 2 0
PU13 Makes Job Easier 4 0 0
PU14 Useful 4 0 0

V. THREATS TO VALIDITY

In this work, we consider the classification of validity
threats proposed by Wohlin et al. in [18]. In what follows,
we present the identified threats to validity.

Conclusion validity threats. We conducted the case study
for two 15-day Sprints only, which represents a conclusion
validity threats since we could get different answers with a
longer period. However, to mitigate this threat, we evaluated
four teams simultaneously, which returned similar results. In

30

TABLE III: Results for perceived ease of use from TAM

ID Item Agreement Neutral Disagreement
PFU1 Confusing 2 0 2
PFU2 Error Prone 0 1 3
PFU3 Frustrating 0 0 4
PFU4 Dependence on Manual 0 1 3
PFU5 Mental Effort 0 0 4
PFU6 Error Recovery 4 0 0
PFU7 Rigid and Inflexible 1 1 2
PFU8 Controllable 4 0 0
PFU9 Unexpected Behavior 0 0 4
PFU10 Cumbersome 0 1 3
PFU11 Understandable 2 2 0
PFU12 Ease of Remembering 2 2 0
PFU13 Provides Guidance 2 0 2
PFU14 Easy to Use 2 2 0

addition, we collected data regarding the different types of
USs, i.e., we could observe different recommendation scenar-
ios during the case study.

Internal validity threats. On average, developers from two
of the four projects had just one year of experience. This fact
can lead to a threat to internal validity, since they may not
be mature enough to properly answer the questionnaire. To
mitigate this threat, developers of each project answered the
questionnaire together, and hence, they had the opportunity
to discuss their responses with each other, aggregating their
knowledge. Another threat to internal validity refers to the
construction of the questionnaire. However, to mitigate this
problem, we generated it based on the TAM, which is a
validated and extensively used model in the literature to
evaluate new technologies.

Construct validity threats. Factors related to the type of
project (e.g, scope, complexity, familiarity with technology,
team experience, etc.) might affect the acceptability of the tool,
which can lead to a threat to construct validity. To mitigate this
problem, we tried to select projects with different scopes and
domains. However, we reinforce that further research is needed
to investigate this threat to validity.

External validity threats. The case study was carried out
with four projects from the same company and, consequently,
it is not possible to generalize the obtained results to other
companies that use Scrum. However, as future work, we intend
to continue the empirical evaluation of the NFRec tool in more
projects from different companies.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the NFRec tool for supporting
agile non-functional requirement elicitation. We reported the
results of a case study to evaluate the acceptance of the tool
from the point of view of development teams of four software
projects from a Brazilian software company.

The empirical evaluation indicated that the NFRec tool
seems to be able to accurately recommend NFRs, responding
positively to the research question RQ3. Furthermore, the
results of the case study obtained through the questionnaire
showed that most of the subjects considered the NFRec tool
useful and easy to use for supporting the elicitation of non-
functional requirements, responding positively to the research
questions RQ1 and RQ2.

For future work, we intend to replicate this study with a
greater number of subjects, analyzing different projects from
distinct software companies to mitigate the validity threats.

ACKNOWLEDGMENT

The authors would like to thank CAPES for supporting this
work.

REFERENCES

[1] B. M. Aljallabi and A. Mansour. Enhancement approach for non-
functional requirements analysis in agile environment. In 2015 Inter-
national Conference on Computing, Control, Networking, Electronics
and Embedded Systems Engineering (ICCNEEE), pages 428–433, Sept
2015.

[2] V. Bajpai and R. P. Gorthi. On non-functional requirements: A survey.
In Electrical, Electronics and Computer Science (SCEECS), 2012 IEEE
Students’ Conference on, pages 1–4, March 2012.

[3] M. Bourimi, T. Barth, J. M. Haake, B. Ueberschär, and D. Kesdogan.
AFFINE for enforcing earlier consideration of NFRs and human factors
when building socio-technical systems following agile methodologies.
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 6409
LNCS:182–189, 2010.

[4] F. D. Davis. Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS quarterly, pages 319–340,
1989.

[5] J. Eckhardt, A. Vogelsang, and H. Femmer. An approach for creating
sentence patterns for quality requirements. In 2016 IEEE 24th Interna-
tional Requirements Engineering Conference Workshops (REW), pages
308–315, Sep. 2016.

[6] J. Eckhardt, A. Vogelsang, H. Femmer, and P. Mager. Challenging
incompleteness of performance requirements by sentence patterns. In
2016 IEEE 24th International Requirements Engineering Conference
(RE), pages 46–55, Sep. 2016.

[7] W. M. Farid. The normap methodology: Lightweight engineering of
non-functional requirements for agile processes. In Proceedings of
the 2012 19th Asia-Pacific Software Engineering Conference - Volume
01, APSEC ’12, pages 322–325, Washington, DC, USA, 2012. IEEE
Computer Society.

[8] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee. Systematic literature
reviews in agile software development: A tertiary study. Information
and Software Technology, 85:60 – 70, 2017.

[9] D. Mairiza, D. Zowghi, and N. Nurmuliani. An investigation into the
notion of non-functional requirements. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC ’10, pages 311–317, New
York, NY, USA, 2010. ACM.

[10] R. R. Maiti, A. Krasnov, and D. M. Wilborne. Agile software
engineering & the future of non-functional requirements. Journal of
Software Engineering Practice, 2(1):1–8, december 2018.

[11] R. R. Maiti, A. Krasnov, and M. Wilborne. Predicting nfrs in
agile software engineering. In Proceedings of the 19th Annual SIG
Conference on Information Technology Education, SIGITE ’18, pages
161–161, New York, NY, USA, october 2018. ACM.

[12] R. R. Maiti and F. J. Mitropoulos. Capturing, eliciting, predicting
and prioritizing (cepp) non-functional requirements metadata during the
early stages of agile software development. In SoutheastCon 2015,
pages 1–8, April 2015.

[13] R. R. Maiti and F. J. Mitropoulos. Capturing, eliciting, and prioritizing
(cep) nfrs in agile software engineering. In SoutheastCon 2017, pages
1–7, March 2017.

[14] B. Ramesh, L. Cao, and R. Baskerville. Agile requirements engineering
practices and challenges: an empirical study. Information Systems
Journal, 20(5):449–480, 2010.

[15] F. Ramos, A. Costa, M. Perkusich, H. Almeida, and A. Perkusich. A
non-functional requirements recommendation system for scrum-based
projects. In The 30th International Conference on Software Engineering
and Knowledge Engineering, 2018.

[16] S. Stavru. A critical examination of recent industrial surveys on agile
method usage. Journal of Systems and Software, 94:87 – 97, 2014.

[17] VersionOne. 12th Annual State of Agile Survey, 2018. Acessado
em: 19 de dezembro de 2018. https://explore.versionone.com/state-of-
agile/versionone-12th-annual-state-of-agile-report.

[18] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln. Experimentation in Software Engineering. Springer
Publishing Company, Incorporated, 2012.

31

Automatic Generation of Virtual Assistants
from Databases using Active Ontologies

Martin Blersch and Sebastian Weigelt and Walter F. Tichy
Institute for Program Structures and Data Organization

Karlsruhe Institute of Technology
Karlsruhe, Germany

blersch@kit.edu, weigelt@kit.edu, tichy@kit.edu

Kevin Angele
Semantic Technology Institute

University of Innsbruck, Innsbruck, Austria
and ONLIM GmbH, Telfs, Austria

kevin.angele@sti2.at

Abstract—Virtual assistants such as Siri or Google Assistant
are omnipresent. However, their development remains costly. One
must either manually model the problem domain or provide
thousands of labeled samples.

We propose to automatically create virtual assistants based on
Active Ontologies for interacting with databases. Our approach
generates Active Ontologies; we use the database structure
to derive a concept hierarchy and database values together
with synonyms to extract information from user queries. Our
approach also learns common phrases from samples, e.g. from
existing Dialogflow agents. We extract pre- and postfixes and
attach them to concepts, e.g. at to detect a succeeding location.
The generated Active Ontologies reply to previously unseen
and composed requests. The approach is not limited to virtual
assistants but can be applied to any system with a textual or
voice-based conversational interface such as chatbots.

We evaluate our approach in three domains: tourism, hotel,
and web cams. The study shows that automatically generated Ac-
tive Ontologies extract relevant information from user utterances
with a precision of 58%. The precision increases to 79% (recall
46%, F1 58%) when we use sample utterances. Our approach
successfully transfers between domains, e.g. we learn phrases
from the tourism domain and use them to reply to hotel requests
without any adjustments.

I. INTRODUCTION

Virtual assistants and other systems with conversational
interfaces (CI) are used by an ever-growing number of people.
Users ask Siri for their next meeting, talk to chatbots, or tell
Alexa to turn on the lights. While these systems are a blessing
for casual users, they remain a curse for developers. They are
complicated to build and hard to maintain. Today’s virtual
assistants are either trained on thousands or even millions
of (manually) labeled samples, or their linguistic competence
is modeled manually, i.e. they are built by domain experts.
Both require serious manual effort to make the system appear
human-like to the user. However, users will soon expect CIs
for all kinds of applications. Thus, the efficient creation of CIs
(i.e. developer assistance, transferability, automation, etc.) will
become one of the major challenges in software engineering.

We propose to generate systems with CIs largely automati-
cally. As underlying technology we use Active Ontologies [1],
[2] (AO) that originally were at the core of Apple’s Siri.
AOs are hierarchical domain models equipped with processing

DOI reference number: 10.18293/SEKE2019-077

rules. In terms of structure they are trees, where the leaves
react to words in user utterances. The inner nodes join infor-
mation and the root creates a services call, e.g. a restaurant
reservation.

As a prerequisite for our generation process, we assume
that a service provider stores information in a database, e.g.
the addresses, ratings, and names of restaurants. Having this
information, our AOs are supposed to answer requests such as,
“Show me restaurants in Lisbon.” We automatically generate
AOs from the databases in two steps. First, we use the structure
of the database to infer the concept hierarchy of the AO.
Second, we add leaf nodes to provide the AO with linguistic
competence. We generate those from database values and add
synonyms obtained from Wiktionary1. Optionally, if a data set
of sample user utterances is present, we can further improve
the linguistic competence. We extract related phrases for each
concept. For example, we can learn the phrase where can I
find for the concept location from examples like, “Where
can I find an Italian restaurant.” Our generated AOs reply
to previously unseen request, e.g. finding a hotel in a city
(which was learned from finding web cams and listing tourist
attractions in a city). Moreover, they correctly respond to
complex requests composed of two or more simple requests,
e.g. asking for both, the location and opening hours of a
restaurant, at the same time. The developer reviews the result
of the generation process and adapts the AO. Usually, this
involves altering the type of inner nodes and adding common
phrases to leaf nodes.

The remainder is structured as follows. First we introduce
the basic elements of Active Ontologies in section II. Then, we
discuss related work in section III. In section IV we present
our approach and the generative process in detail together
with a discussion about its inherent limitations. Afterwards,
we evaluate our approach in section V. We conclude our work
and discuss further improvements in section VI.

II. ACTIVE ONTOLOGIES

Active Ontologies were first proposed by Guzzoni et al. [1],
[2]. Originally, they were used to build virtual assistants.
However, they can be used as a generic CI. We present

1Wiktionary: https://www.wiktionary.org/

32

mailto:blersch@kit.edu
mailto:weigelt@kit.edu
mailto:tichy@kit.edu
mailto:kevin.angele@sti2.at
https://www.wiktionary.org/

Root Reservation

Voc. Action Select Subject

Gather Cinema

Voc. Movie title

Gather Restaurant

Gather Address

RegEx ZIP Voc. City Voc. Street

Voc. Style

Fig. 1. An AO for the problem domain “reservations”. The AO is can create
service calls to cinema and restaurant reservation systems. The root node is
colored in gray, the inner nodes in light gray, and leaf nodes are white.

the fundamental elements and basic processing of AOs. All
upcoming examples refer to the AO depicted in Figure 1.
Detailed descriptions may be found in the above reference.

AOs combine concept hierarchies with processing rules.
On the one hand, they model the domain as an ontology.
On the other hand, AOs process natural language requests
and turn them into service calls. The concepts and relations
form trees, i.e. an AO is a concept hierarchy of a problem
domain. Information is processed bottom-up. The leaf nodes
react to words in the user utterances. The concept nodes (i.e.
the inner nodes) join information and gradually create an
abstract representation of the utterance. Finally, the root node
gathers all information and initiates a service call. Basically, all
nodes react to input as follows. When they receive a message
(i.e. a piece of information), they decide whether they send
information upwards or not. For the creation of new messages,
nodes often use parts of the received information. Additionally,
they attach a confidence to the fired message. This may support
the decision-making processes of nodes at higher levels. The
decision whether, what, and with which confidence they fire
depends on the particular usage. All of that is implemented by
rule sets. In the following we describe common node types.

Basic leaf nodes (called vocabulary nodes) simply match a
predefined set of keywords, e.g. city names. Often, pre- and
postfix nodes are used. They define a pre-/succeeding word or
phrase, e.g. the prefix “from” to match the departure airport
for flight booking systems. Another common type of leaf node
is the regex node that matches input with a regular expression,
e.g. to detect ZIP codes. Usually, there are two types of inner
nodes: gather nodes and selection nodes. Gather nodes simply
collect information sent by their child nodes; e.g. an address
gather node might collect ZIP, city, and street facts. Selection
nodes decide which information will be passed on; e.g. a
subject selection node might decide whether the user talks
about restaurants or cinemas. Most commonly, selection nodes
decide on the basis of the confidences of the respective inputs.

However, other strategies are possible. The most common type
of root node is the call node. It creates a service call and passes
it to the service broker. The service broker is a sub-system
that selects the most suitable service provider(s) for the call.
A language generation module post-processes the response to
the service call. The result is presented to the user.

III. RELATED WORK

In this section, we first review proprietary virtual assis-
tants (see subsection III-A). Then, we present platforms for
developers to create systems with CIs, e.g. chatbots and the
like (see subsection III-B). Finally, we discuss work from
the research area natural language interfaces to databases (see
subsection III-C).

A. Proprietary Virtual Assistants

Virtual assistants both for home environments (e.g., Amazon
Echo, Google Home) and mobile use (e.g., Apple Siri, Google
Assistant, Microsoft Cortana) are omnipresent. However, little
is known about the technology behind these assistants. US
patent no. 8,677,377 [3] suggests that Apple’s Siri makes
use of Active Ontologies. Amazon’s Alexa interacts with
third-party services through so-called ”skills”. Google uses a
knowledge graph to answer user queries2 and Amazon states
that they use “deep learning technologies”3 to develop Alexa.

B. Platforms for Conversational Interfaces

Besides proprietary assistant systems, all major companies
provide platforms for developers to create CIs, e.g. IBM
Watson4 , Microsoft LUIS5 , Facebook’s WIT6 , Amazon Lex7

, and Google’s Dialogflow8 .
Dialogflow provides an API for developers to add natural

language processing capabilities to applications. One can build
CIs to create chatbots and the like. Developers build so-called
agents. Agents determine the user’s intent from an utterance.
Each agent deals with one or more intents, e.g. requests
for weather forecasts or web cams. When an agent grasps
an intent, it extracts relevant information and passes it to a
connected service. Since users may express intents in different
ways, it is necessary to provide Dialogflow agents with a
variety of different phrases for each intent. The developer
does not only have to provide the phrases but also annotate
actions and parameters in all phrases. One must also specify
the parameter mapping, i.e. which word must be translated to
which parameter in the service call.

Almond [4], developed by the Stanford University, is an
open and crowd-sourced platform to build virtual assistants.
Almond is composed of three modules: a virtual assistant,
the knowledge base Thingpedia, and the runtime environment

2Andreas Blumauer, Semantic Web Company: https://semantic-web.com/
2018/08/23/knowledge-graphs-connecting-dots-increasingly-complex-world/

3Amazon Alexa: https://developer.amazon.com/de/alexa/science/
4Watson Assistant: https://www.ibm.com/cloud/watson-assistant/
5LUIS: https://www.luis.ai/
6wit.ai: https://wit.ai/
7Amazon Lex – Build Conversational Bots: https://aws.amazon.com/lex/
8Dialogflow: https://dialogflow.com/

33

https://semantic-web.com/2018/08/23/knowledge-graphs-connecting-dots-increasingly-complex-world/
https://semantic-web.com/2018/08/23/knowledge-graphs-connecting-dots-increasingly-complex-world/
https://developer.amazon.com/de/alexa/science/
https://www.ibm.com/cloud/watson-assistant/
https://www.luis.ai/
https://wit.ai/
https://aws.amazon.com/lex/
https://dialogflow.com/

Internal Rep.

Non-Leaves
<empty>

Leaves
<empty>

Internal Rep.

Non-Leaves
. Taxonomy

Leaves
<empty>

Internal Rep.

Non-Leaves
. Taxonomy

Leaves
. Keywords

Internal Rep.

Non-Leaves
. Taxonomy

Leaves
. Keywords
. Synomyms

Internal Rep.

Non-Leaves
. Taxonomy

Leaves
. Keywords
. Synomyms
. (Pre-/Postfix)

Database Database Wiktionary Dialogflow

Structure

V
alues

Synonym
s

Phrases
Fig. 2. The process to automatically create AOs. We use an (initially empty) internal representation that is successively populated from different sources:
database structures and values, synonyms from Wiktionary, and – optionally – sample utterances from Dialogflow or similar sources.

ThingSystem. The virtual assistant translates natural language
queries to the specialized programming language ThingTalk.
The code is executed on ThingSystem, which creates ser-
vice calls to the respective providers. Developers contribute
to Thingpedia, a crowd-sourced public knowledge base of
open APIs and their natural language interfaces. They specify
trigger-actions such as If-This-Than-That (IFTTT) structures.
The virtual assistant uses trigger-actions during code genera-
tion. The evaluation of the prototype shows that about 40%
of tasks provided by a user familiar with the system are
understood by Almond.

C. Natural Language Interfaces to Databases

Natural language interfaces to databases (NLIDB) have
been studied since the late sixties; the associated conference
(NLDB) is in the 24th iteration. Androutsopoulos et al. [5]
give an introduction to the research area. Pazos R. et al. [6]
review the state of the art. In the following, we briefly present
representatives for common approaches.

Many NLIDB systems use specialized grammars. Rao et
al. [7] use a semantic grammar to translate natural lan-
guage to SQL queries. With customized production rules SQL
queries are directly derived from the words in the utterances.
Some NILDB systems employ intermediate representations
to grasp the intent of the natural language query. C-Phrase
[8] uses an intermediate representation based on first order
logic supplemented by additional higher-order predicates. It
uses synchronous context-free grammars and lambda calculus
expressions to convert natural language queries into the inter-
mediate representation. Then, the intermediate representation
is converted to an SQL query. More recent NILDB approaches
use machine learning techniques. Neelakantan et al. [9] use
neural networks to map from language to SQL. Zhong et al.
[10] employ reinforcement learning to improve quality.

All the above need developer-generated information: sample
sentences, specialized grammars, or rules sets. We derive AOs
directly from the database with minimal human effort.

IV. AUTOMATIC GENERATION OF ACTIVE ONTOLOGIES

We aim to create CIs for virtual assistants, chatbots, and
the like (semi-)automatically. This way, we lower the effort
for service providers to make their data accessible through
a natural language interface. The sole precondition for our
approach is that the service provider stores all information it
wants to provide through the CI in databases. For example, if
a service provider wants to publish information about touristic
attractions it must store addresses, ratings, and the like of
restaurants, museums, or galleries in accessible databases.

As underlying technology we use Active Ontologies. Usu-
ally, AOs are built manually. However, we have shown that it
is possible to create AOs (semi-)automatically from web forms
[11], [12]. In this work, we leverage the information provided
by databases.

In contrast to web forms, databases always provide values,
i.e. instances of concepts. We use the database values and
synonyms to raise the linguistic competence of our AOs.
Moreover, if sample utterances are present, we are able to
add even more linguistic competence through an automatic
extraction of common phrases. Our AOs are able to react to
previously unseen user requests. Furthermore, they reply to
composed requests.

Figure 2 shows an overview of our approach. We use an
internal representation that is populated step by step. First, we
extract the database structure and infer the concept hierarchy.
Then, we create basic leaf nodes from the values in the
database tables. Next, we add synonyms from Wiktionary,
where applicable. If utterance samples are present, we add
common phrases to the respective concepts. Finally, we gen-
erate the Active Ontology from the internal representation.

In the upcoming subsections we first describe the extraction
of the concept hierarchy of the AOs from database schemes
(subsection IV-A). Then we show how we increase the lin-
guistic competence, i.e how we add the leaf nodes to the AOs
(subsection IV-B). Finally, we discuss the limitations of the
approach, i.e. what a developer must review or add to the
automatically generated AOs (subsection IV-C).

34

A. Taxonomy Extraction from Database Structures

AOs are hierarchic domain models. Inner nodes typically
join information (gather nodes) to create a more complete
view to the user’s request. We observed that database schemes
follow the same intuition. For example, a database table restau-
rant may store information about addresses. The addresses
again may be composed of a ZIP, a city, and a street. The
restaurant table itself maybe used in different contexts. Thus,
the restaurant table defines a concept that includes the sub-
concepts address, ZIP, city, and street. For our prototype we
use deductive databases. 9. However, our approach can also
be applied to relational databases as both database types store
data in a structured way.

The structure is used to create the concept hierarchy of
the Active Ontology, i.e the hierarchy of inner nodes. The
database type only affects the way the database structure is
extracted. Deductive databases contain triples that consist of an
internal ID, the name of the property, and the property value. A
property value may refer to another internal ID. For example,
information about a restaurant is represented as follows:

[id01, @type, restaurant]
[id01, name, The Golden Eagle]
[id01, address, id01.address]
[id01.address, city, Karlsruhe]
[id01.address, ZIP, 76131]

We collect all property names and create a concept for
each. Through the references in property values we infer
hierarchies. For the above example the hierarchy in Figure 3
arises. Concept nodes can either be converted into gather or
selection nodes. For our prototype we decided to only create
gather nodes, because this is the best choice in most cases.
Even though we found that for some concepts selection nodes
would be the better choice, we were not able to come up with
a generic rule to make this decision.

B. Leaf Node Generation

Now that we have created the hierarchy of concepts we
need to extend the AO with linguistic competence. Up to now,
the AO can join information only (and create a service call).
However, it can not gather any information from a natural
language request at all. Therefore, we create leaf nodes that
match certain words or phrases in the utterance. We connect
these leaf nodes to the respective inner nodes. For example, to
create a leaf node that recognizes restaurants by their names

9A deductive database is a database equiped with a rule set. The rules
are written in dialog, a simplified variant of logic programming [13], [14].
The deductive component of the database deviates additional knowledge
from the data via rule executions. Queries are also composed in datalog.
Ramakrishnana and Ullman describe deductive database systems as, “[...]
database management systems whose query language and (usually) storage
structure are designed around a logical model of data. As relations are
naturally thought of as the ‘value’ of a logical predicate, and relational
languages such as SQL are syntactic sugarings of a limited form of logical
expression, it is easy to see deductive database systems as an advanced form
of relational systems. [15]”

restaurant

@type name address

ZIP city street

Fig. 3. A hierarchy extracted from database property names.

we can use the list of restaurants obtained from the database
and attach it to the inner node name.

Besides vocabulary nodes, we generate all kinds of common
node types (see section II), e.g. pre- and postfix nodes and
specialized nodes such as date nodes. We use information from
different sources to create leaf nodes. Next, we describe the
sources, which kind of information we extract, the strategies
to create leaf nodes, and which type of leaf nodes we create
respectively.

1) Database Values: We create vocabulary, regex, and date
nodes from database (property) values. For all string-valued
properties we create vocabulary nodes. We join all values
that belong to the same property (name). Thus, all names of
restaurants are joined in a single vocabulary node. For numeric
database values, e.g. phone numbers, ZIP codes, lengths, and
the like, we use regex nodes. This way, we are able to extract
any numeric information from the natural language input.
Finally, to cope with specific phrases that contain date or time
information such as “the day after tomorrow” we use date
nodes. Date nodes recognize such phrases in the input and
transform them into a machine-readable format.

2) Lexical Databases and Dictionaries: To amplify the
linguistic competence of Active Ontologies one can add syn-
onyms from lexical databases or dictionaries such as WordNet
[16], [17], Wiktionary, or OpenThesaurus10. For our prototype
we used Wiktionary for two reasons. First, as the values in our
test databases are from Austrian service providers we need to
recognize German utterances; Wiktionary provides the most
extensive collection of German synonyms. Second, synonyms
listed in Wiktionary are of high quality.

To retrieve synonyms, we first query Wiktionary for syn-
onyms of the respective word. For each synonym we again
look for synonyms. If no synonyms are available, we extract
the so-called similar words. For each similar word we also
search for synonyms. The list of synonyms and similar words
is stored in a leaf node. Note that the leaf node does not pass
the synonym to its parent nodes. Instead, the value of the
associated property is used. For example, the leaf node that
is supposed to recognize the word “Gaststätte” (German for
“restaurant”) and all its (German and English) synonyms, e.g.
“inn”, “restaurant”, or “eatery” passes the value Gaststätte to
its parent nodes even if it recognizes the word “restaurant”

10OpenThesaurus: https://www.openthesaurus.de

35

https://www.openthesaurus.de

in an utterance. This also reliefs us from the issue that some
values are German and others are English.

3) Utterance Samples: So far the generated AOs are ca-
pable to match keywords (or phrases) and their synonyms;
they additionally detect dates and other regex-specified values.
However, some user queries do not mention keywords directly.
For example, a user might ask, “Where can I get pasta and
tiramisu?” The utterance neither mentions restaurants directly
nor the keyword “address”. However, obviously the user is
interested in the address of an italian restaurant. To overcome
this limitation we automatically add common phrases that hint
at a concept. Technically, such phrases form pre- and postfix
nodes. We extract the phrases from sample utterances.

We are aware that sample utterances are not available for all
domains/services. Thus, this step is optional. Alternatively, a
developer can manualy add pre- and postfix nodes to the AO.

For our prototype we use sample utterances from Dialogflow
agents. Therefore, we extract all sample utterances from an
agent and use the intent and entities as labels. With the help
of the intent we are able to discover the appropriate AO
part, e.g. restaurant requests. The entities have been linked
to the respective database properties by the developer of
the Dialogflow agent. Thus, we can determine the according
concept in the AO. Additionally, often synonyms for entities
are given. We add these to the synonym vocabulary nodes
attached to the respective concept.

To extract pre- and postfixes we consider all entities in an
utterance. We use all words preceding an entity as prefix and
all succeeding as postfix. Of course, we stop discovery at
the next entity. We consolidate all pre- and postfixes from
all utterances for the same entity. Then we create one pre-
and one postfix node per entity and attach them to the re-
spective concept node. Given the Dialogflow sample utterance,
“[Find me a [place to sleep]ent:type in [Lisbon]ent:city]int:hotel”,
we can identify the synonym place to sleep for the concept
@type of the hotel AO part. Additionally, we extract the
prefixes find me a (concept @type) and in (concept city) as
well as the postfix in (concept @type).

C. Limitations

To automatically generate AOs, we have to make design
decisions. For example, since we cannot automatically decide
between selection and gather nodes, we create gather nodes
for all concepts. However, in rare cases selection nodes are
more appropriate. A developer can determine which node type
is most suitable and select it accordingly. Another design
decision concerns database values. We create word lists (for
vocabulary nodes) for all string-valued properties. However,
regex nodes might be more suitable to extract particular words
or phrases, e.g. sub-strings.

In some cases, the extracted pre- and postfixes are either to
specific or not specific enough. Modifying the phrases could
improve matching with utterances. Entirely missing prefixes
cause false positive matches and consequential conflicting
hypotheses. Therefore, we expect that adding missing pre- and
postfixes improves the accuracy of the AOs considerably. The

same applies to synonyms; a manual review improves accuracy
since an automatic extraction of synonyms is error-prone.

V. EVALUATION

We evaluate our approach in three domains: tourism, hotels,
and webcams. For each we have a deductive database and
Dialogflow agents. The tourism dataset comprises information
about local restaurants, ski rentals, events and the like. The ho-
tel and web cam datasets contain information about the names
and locations of hotels and web cams. In total, we included
3,861 data elements: 1,873 elements from the tourism, 1,303
from hotel, and 685 from web cam dataset.

We generate AOs for each domain in different variants.
The basic AOs are created from the databases and synonyms
only. All other configurations use sample utterances from
Dialogflow agents to add pre- and postfix nodes. We use
phrases from individual domains and all possible combinations
of domain. For each domain we use all available samples
provided by the agents for phrase extraction.

Note that any AO is enriched with pre-/postfixes where
applicable. In other words, if we extract phrases from the
web cam domain only but the other domains share concepts
(e.g. locations) the respective phrases are added to all AOs.
With that, we asses the impact of phrase extraction (the more
the better?) and synergy effects (can we employ phrases from
other domains?).

The database values are a mixture of English and German
words. However, the sample utterances are in German. During
AO generation we translate database values in the synonym
mapping step (see subsubsection IV-B2). The generated leaf
nodes are defective in some cases due to incorrect translations.
However, we cannot measure the effect (if existing).

To asses the quality of our generated AOs we compare them
to the Dialogflow agents. Therefore, we match the replies for
a request returned by the AOs against Dialogflow. We assume
that replies given by the Dialogflow agents are always correct,
since all sample utterances have been manually annotated with
intent and entity labels by developers. The Dialogflow agents
contain 1,652 sample utterances (tourism: 1,140, hotels: 378,
web cams: 134) with 4,597 entities (tourism: 2,430, hotels:
727, web cams: 1,440). To limit the effort, we analyzed
a randomly sampled subset. We used 100 test utterances
per domain for the configuration with no sample utterances,
i.e. AOs built from databases and synonyms, and for the
configuration with samples from all domains. For the other
configurations we used 50 samples each.

The results of our study are depicted in Table I; the highest
values for each configuration and per measure are highlighted.
The first column shows the configuration for the phrase
extraction, i.e from which domain we took samples during
AO generation: (T)ourism, (H)otel, and (W)eb cam. For all
configurations we determine accuracy, recall, precision, and
F1 for the test utterances for individual domains (T, H, and
W) and all domains (∀). Note that we determine accuracy on a
per-reply level, i.e. we count only answers that exactly match
the Dialogflow result as correct. For precision, recall, and F1

36

TABLE I
EVALUATION RESULTS FOR DIFFERENT PHRASE EXTRACTION SETTINGS. WE EITHER USED NONE, PHRASES FROM TOURISM (T), HOTEL (H), AND

WEBCAM (W) AGENTS, OR VARIOUS COMBINATIONS.

Phrase Accuracy Recall Precision F1

Extr. T H W ∀ T H W ∀ T H W ∀ T H W ∀
none 0.11 0.00 0.16 0.09 0.12 0.06 0.29 0.18 0.34 0.60 0.79 0.58 0.18 0.11 0.42 0.27
T 0.30 0.02 0.22 0.18 0.50 0.22 0.29 0.35 0.72 0.45 0.42 0.55 0.59 0.30 0.34 0.40
H 0.14 0.00 0.06 0.06 0.04 0.10 0.26 0.17 0.13 0.40 0.75 0.48 0.06 0.16 0.39 0.25
W 0.14 0.02 0.24 0.13 0.19 0.31 0.51 0.34 0.42 0.63 0.84 0.66 0.26 0.42 0.63 0.45
T+H 0.26 0.04 0.22 0.17 0.43 0.25 0.55 0.28 0.71 0.47 0.45 0.52 0.55 0.35 0.37 0.36
T+W 0.32 0.02 0.40 0.24 0.44 0.33 0.55 0.46 0.78 0.52 0.96 0.79 0.57 0.40 0.70 0.58
H+W 0.02 0.14 0.34 0.16 0.18 0.24 0.55 0.33 0.26 0.50 0.78 0.51 0.21 0.32 0.65 0.43
T+H+W 0.30 0.08 0.28 0.22 0.45 0.35 0.50 0.45 0.74 0.62 0.79 0.78 0.54 0.43 0.61 0.57

we compare each element (i.e. entity in Dialogflow, concept
in the AO) of the service call separately.

If an element is identified correctly, it is considered a true
positive. Elements that were extracted mistakenly, i.e. they
do not match an element extracted by the Dialogflow agent,
are false positives. Any missing elements account for false
negatives. Assuming that the service call elements for the
exemplary request, “Find me a hotel in Lisbon,” are:

• Dialogflow: [hotel]ent:type, [Lisbon]ent:location
• Active Ontology: [hotel]ent:type, [sauna]ent:feature

In this example, hotel is a true positive, Lisbon a false negative,
and the sauna accounts for a false positive.

The results indicate that our approach is feasible. Using the
databases and synonyms for values only we achieve a precision
of 58% (recall 18% and F1 27%). However, the accuracy
(9%) shows that there is still much room for improvement.
The evaluation also shows that enriching the AOs with sample
utterances improves the quality in almost all cases. The best
accuracy (40%), recall (55%), precision (96%), and F1 (70%)
are achieved for web cam requests when we use sample
utterances from both the tourism and web cam domains.
This clearly shows that phrases from other domains improves
the linguistic competence of AOs. The effect can be further
assessed with the results from the tourism domain with phrases
extracted from the web cam domain (row H). Accuracy, recall,
and precision improve in comparison to the configuration
without any phrase extraction. This is due to shared concepts
in both domains and similar sample utterances. For example,
our approach extracts the prefixes are there for the concept
@type and in for location from the web cam sample:
“Are there [live pictures]ent:type in [Salzburg]ent:location?”11

The prefixes can be applied to requests from the tourism
domain such as, “Are there ski schools in Seeberg?”12

However, extracting sample utterances from the hotel do-
main often degrades the results as one can see, e.g. in the rows
H and H+W. This is due to requests with many enumerations
that occur frequently such as, “I am looking for a designer
hotel with free parking, sauna, whirlpool, wifi, tennis court,

11Original: “Gibt es [Live Bilder]ent:type in [Salzburg]ent:location?”
12Original: “Gibt es Skischulen in Seeberg?”

and a restaurant voucher.”13 Pre- and postfixes extracted from
such samples produce both false positives and false negatives.
For example, if the sample does not have an entity annotation
for free parking our approach extracts the prefix with free
parking for the concept feature (instance sauna) that causes
false positives. Vice versa, if free parking has an annotation
our approach misses the (correct) prefix with as we discontinue
phrase extraction at the next annotation.

The best results for the hotel domain are achieved if we
extract phrases from the web cam domain (see rows W, T+W,
T+H+W). The results for tourism and web cams both improve
when phrase samples from their own domain are used.

Accuracy values are low. However, using any kind of sample
utterances increases the accuracy in all domains in almost all
cases and reaches 40% in the best case.

We identified three errors classes that primarily affect the
results. Rare errors are false positive elements due to missing
pre-/postfixes. Concepts never mentioned in sample utterances
are still part of the AO. These concept nodes have vocabulary,
regex, or date nodes attached. Therefore, they might match
requests even though the request have different intents. For
example, a hotel might have a laundry but no sample mention-
ing it. The hotel AO then has a vocabulary node that reacts to
any “laundry” in user requests. This may create false positives
from requests such as, “I’m looking for laundries.”

Another error class is the incorrect selection of service calls.
Our approach consolidates all concepts from each domain in
a single AO. This way, we assure that only one service call
is created from all hypothesis (combinations of elements).
In some cases correct hypothesis have lower confidences
than incorrect ones. If so, the root node chooses the wrong
hypothesis and creates an incorrect service call.

Missing or incorrect synonyms form the third error class.
Missing synonyms cause false negatives, while incorrect syn-
onyms may produce false positives. An example for the latter
is the German synonym Haufen (engl. pile/bunch) for the word
Berg (engl. mountain) that is often used in colloquial idioms.
This causes the AO part responsible for information on ski
tours (to particular mountains) to react to phrases such as “ein
Haufen Leute” (engl. “a bunch of people”).

13Original: “Ich suche ein Designerhotel mit gratis Parkplatz, Sauna,
Whirlpool, WLan, Tennisplatz und einem Restaurantgutschein.”

37

VI. CONCLUSION AND FUTURE WORK

We have presented an approach to automatically create
virtual assistants from databases. Our virtual assistants use
Active Ontologies to model the problem domain and process
user utterances.

To generate AOs we first infer a concept hierarchy from
database schemes and create word lists and regular expressions
from extracted database values. We extend the word lists with
synonyms from Wiktionary. Additionally, if sample utterances
are present, we build pre- and postfix nodes to enhance the
linguistic competence of our AOs.

Our evaluation in the domains tourism, hotel, and web
cams shows that our approach successfully generates AOs
that extract relevant information from user utterances. When
we use sample utterances, precision and recall increases. Our
approach successfully learns phrases from a domain (e.g.
tourism) and uses it for queries from another (e.g. hotel).

We plan to improve the AO generation process. For the time
being, we create one AO per domain. We experiment with
smaller AOs, that may extract intents with higher confidences.
This also evades the duplication of subtrees (e.g. for addresses
of restaurants and cinemas).

Another improvement involves the general structure of the
AOs. In some caeses multiple pre- and postfix nodes fire
at the same time, which makes intent extraction ambiguous.
An additional layer of selection nodes that selects the most
reasonable pre-/postfix may be beneficial.

We observed that some phrase segments are more meaning-
ful than others. Therefore, we have implemented an alternative
to pre-/postix nodes. Instead of using full pre-/postfix phrases
we extract single words and create a vocabulary node for each.
We attach all of them to an additional layer of gather nodes
that represent the original pre-/postfixes. This way, we create
subtrees that capture bags of words. We calculate the TFIDF
for each word per intent (each intent is a document and all
intents correspond to the document set). The TFIDF value is
used as confidence for the new vocabulary nodes.

A first case study shows the potential of this approach. We
used 239 sample utterances from Dialogflow agents for the
intent “request opening hours”. Additionally, we created 13
synthetic requests for addresses (e.g., What is the address of
the restaurant The Toothless Shark in Cologne?).

We created bag-of-words subtrees for both intents and
integrated them into the AO. On the test set the AOs answered
opening hours request with an accuracy of 65% and addresses
with an accuracy of 23%. The low accuracy for the latter is
due to the small number of sample utterances.

With the bag-of-words subtrees the AOs can extract multiple
intents from single user utterance. For the time being, virtual
assistants such as Dialogflow cannot combine different intents.
Thus, our approach improves the state of the art. Composed
requests such as, “Give me the address and the opening hours
of the hotel Tivoli Oriente in Lisbon,” achieve an accuracy of
40%. In the future, we plan to further investigate the bag-of-
words-approach and evaluate it on a larger data set.

VII. ACKNOWLEDGEMENT

The evaluation of our approach was partially supported by
Onlim GmbH14 that provided the data for testing. We thank Dr.
Ioan Toma (Onlim GmbH) who greatly assisted our research.

REFERENCES

[1] D. Guzzoni, C. Baur, and A. Cheyer, “Active: A Unified Platform for
Building Intelligent Web Interaction Assistants,” in Proceedings of the
2006 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology - Workshops, Hong Kong, China, 18-22 December 2006.
IEEE Computer Society, Dec. 2006, pp. 417–420.

[2] D. Guzzoni, “Active: A unified platform for building intelligent appli-
cations,” PhD Thesis, École Polytechnique Fédérale De Lausanne, Jan.
2008.

[3] A. Cheyer and D. Guzzoni, “United States Patent: 8677377 - Method and
apparatus for building an intelligent automated assistant,” USA Patent
8 677 377, Sep., 2005.

[4] G. Campagna, R. Ramesh, S. Xu, M. Fischer, and M. S. Lam, “Al-
mond: The architecture of an open, crowdsourced, privacy-preserving,
programmable virtual assistant,” in Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2017, pp. 341–350.

[5] I. Androutsopoulos, G. Ritchie, and P. Thanisch, “Natural language in-
terfaces to databases – an introduction,” Natural Language Engineering,
vol. 1, no. 01, pp. 29–81, Mar. 1995.

[6] R. A. Pazos R., J. J. González B., M. A. Aguirre L., J. A. Martinez F.,
and H. J. Fraire H., “Natural Language Interfaces to Databases: An
Analysis of the State of the Art,” in Recent Advances on Hybrid Intel-
ligent Systems, ser. Studies in Computational Intelligence, O. Castillo,
P. Melin, and J. Kacprzyk, Eds. Springer Berlin Heidelberg, 2013, no.
451, pp. 463–480.

[7] G. Rao, C. Agarwal, S. Chaudhry, N. Kulkarni, and D. S. Patil, “Natural
language query processing using semantic grammar,” International jour-
nal on computer science and engineering, vol. 2, no. 2, pp. 219–223,
2010.

[8] M. Minock, “C-Phrase: A system for building robust natural language
interfaces to databases,” Data & Knowledge Engineering, vol. 69,
no. 3, pp. 290–302, 2010, special Issue: 13th International Conference
on Natural Language and Information Systems (NLDB 2008) – Five
selected and extended papers.

[9] A. Neelakantan, Q. V. Le, M. Abadi, A. McCallum, and D. Amodei,
“Learning a natural language interface with neural programmer,” arXiv
preprint arXiv:1611.08945, 2016.

[10] V. Zhong, C. Xiong, and R. Socher, “Seq2SQL: Generating Structured
Queries from Natural Language using Reinforcement Learning,” CoRR,
vol. abs/1709.00103, 2017.

[11] M. Blersch and M. Landhäußer, “Easier: An Approach to Automatically
Generate Active Ontologies for Intelligent Assistants,” in Proceedings
of the 20th World Multiconference on Systemics, Cybernetics and
Informatics (WMSCI 2016), Orlando, FL, USA, Jul. 2016.

[12] M. Blersch, M. Landhäußer, and T. Mayer, “Semi-automatic Generation
of Active Ontologies from Web Forms for Intelligent Assistants,” in
Proceedings of the 6th International Workshop on Realizing Artifi-
cial Intelligence Synergies in Software Engineering, ser. RAISE ’18.
Gothenburg, Sweden: ACM, 2018, pp. 28–34.

[13] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted to
know about Datalog (and never dared to ask),” IEEE Transactions on
Knowledge and Data Engineering, vol. 1, no. 1, pp. 146–166, Mar. 1989.

[14] M. Krötzsch, S. Rudolph, and P. H. Schmitt, “A closer look at the
semantic relationship between Datalog and description logics,” Semantic
Web, vol. 6, no. 1, pp. 63–79, 2015.

[15] R. Ramakrishnan and J. D. Ullman, “A survey of deductive database
systems,” The Journal of Logic Programming, vol. 23, no. 2, pp. 125–
149, 1995.

[16] G. A. Miller, “Wordnet: A lexical database for english,” Commun.
ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995. [Online]. Available:
http://doi.acm.org/10.1145/219717.219748

[17] C. Fellbaum, WordNet: An Electronic Lexical Database. MIT Press,
1998.

14Onlim GmbH: https://www.onlim.com

38

http://doi.acm.org/10.1145/219717.219748
https://www.onlim.com

GADIS: A Genetic Algorithm for Database Index
Selection

Priscilla Neuhaus, Julia Couto, Jonatas Wehrmann, Duncan D. Ruiz and Felipe Meneguzzi
School of Technology, PUCRS - Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre, Brazil

Email: [priscilla.neuhaus, julia.couto, jonatas.wehrmann]@edu.pucrs.br, [duncan.ruiz, felipe.meneguzzi]@pucrs.br

Abstract—Creating an optimal amount of indexes, taking
into account query performance and database size remains a
challenge. In theory, one can speed up query response by creating
indexes on the most used columns, although causing slower data
insertion and deletion, and requiring a much larger amount of
memory for storing the indexing data, but in practice, it is very
important to balance such a trade-off. This is not a trivial task
that often requires action from the Database Administrator. We
address this problem by introducing GADIS, A Genetic Algorithm
for Database Index Selection, designed to automatically select
the best configuration of indexes adaptable for any database
schema. This method aims to find the fittest individuals for
optimizing both query response time, and disk required for the
indexed data. We evaluate the effectiveness of GADISthrough
several experiments we developed based on a standard database
benchmark, compare it to three baseline indexing strategies, and
show that our approach consistently leads to a better resulting
index configuration.

Index Terms—Database, Indexing, Artificial Intelligence, Ge-
netic algorithms, Learning system.

I. INTRODUCTION

Creating indexes is the main action to improve database
query performance [7, Chap. 15], since the indexes are
the most used technique to speed up queries response [9].
However, it is important to properly choose the columns
to be indexed, given that it also affect time to insert and
update data and increase disk consumption. The Database
Management Systems (DBMS) optimizer is responsible for
analyzing queries and choosing the most efficient way to
access information. The goal of an optimizer is to find options
for running a given query and evaluate the cost of each choice,
so that the chosen one would provide the best performance for
retrieving the data.

Achieving the best indexing configuration for a database
is not a trivial task [6]. Ideally, all the frequently queried
columns should be indexed for a faster data retrieval. However,
it is quite complex to find a balanced trade-off between
performance and storage required. It is quite often the case
when the cost-based optimizer is not able to find a proper
solution, requiring the DBA to make a final decision on the
database architecture regarding indexing strategies.

In this paper we developed GADIS, an approach based on
Genetic Algorithms (GA) to help finding an optimal index
configuration. We use two fitness functions: 1) an optimization
objective to maximize the database performance considering
INSERT, DELETE and SELECT queries; and 2) designed to

optimize the query response time by search for faster index
configurations when compared to the initial one.

We perform a set of experiments using TPC-H, a well
known database benchmark [11], and we compare our results
with three baseline approaches: (i) the initial index configura-
tion; and (ii) indexes derived from a random-search algorithm.
Results show that GADIS outperforms the baselines, allowing
for better index configuration on the optimized database.
Finally, we observe that our approach is much more prone
to find a proper solution that the competitive methods.

II. BACKGROUND

A. Genetic Algorithms

Holland [3] developed the concept of Genetic Algorithm
inspired by the evolutionist theory. GA simulates the principles
of biological evolution by repeatedly modifying a population
of individual using rules modelled on reproduction and gene
combinations. In this simulation of evolution, it leverages
the best genes from the fittest individuals of a population to
continue across the next generations. GA models individuals in
terms of their genome, typically represented as strings of bits.
Each generation replaces the previous population by its fittest
offspring, where fitness is computed by a fitness function that
assigns a score to each individual. Fitness typically measures
how well an individual solves the problem at hand. The algo-
rithm initializes with a random population and works through
selection, crossover, and mutation. That process continues
until the optimize criterion is satisfied or a certain number of
generations is reached. Due to its random nature, GA improves
the chances of finding a global solution.

B. TPC-H Benchmark

TPC 1 is a a non-profit corporation that produces database
benchmarks. We chose TPC-H because it models a busi-
ness database having realistic ad-hoc queries. TPC-H has a
database schema, a workload and performance metric tests.
The database size varies according to a constant named scale
factor (SF). The workload is composed of 22 queries of
varying complexity, and 2 refresh functions, that simulate data
insertions and deletions in the two larger tables (orders
and lineitens). In the performance test, the benchmark
executes a power test and then a throughput test. The power

1TPC: http://www.tpc.org/DOI reference number: 10.18293/SEKE2019-135

39

TABLE I
GA DEFINITIONS APPLIED IN THE CONTEXT OF THE DBMS

GA
Definition DBMS Application

Gene 0 if the column is not indexed; 1 otherwise
Individual a database state represented by a vector that refers the

columns of the schema
Population collection of database states
Parents two database states selected to be combined and next create

a new database state
Mating
pool

a collection of parents that are used to create the next
population

Fitness a function that tells us how good each database state is by
running the benchmark

Mutation a way to introduce variation in our population by randomly
swapping the genes (0 - 1) of two individuals

Elitism a way to carry the best individuals into the next generation

test (POWER@SIZE), calculates how fast the system com-
putes answers to single queries. It executes a function to
insert data, then it runs all queries in parallel, then it ex-
ecutes another function to delete data. The throughput test
(THROUGHPUT@SIZE) measures how many queries were exe-
cuted in the elapsed time for parallel query streams to simulate
multiple users. It computes the ratio between the total number
of queries and the total time spent to run the queries. TPC-
H also presents the query-per-hour metric (QPHH), obtained
from the geometric mean of power and throughput test. It
captures the overall performance level of the system, both for
single-user and multi-user mode.

III. METHOD

We already saw that indexes can speed up the data access.
However, when we create or delete indexes we must verify
which combination of indexes is the best one for queries
selection. Specifically, for optimizing the TPC-H database,
there are 245 possible combinations for column indexing.
Our approach is based on GAs trained directly on a running
database, designed to evolve individuals that represent the
whole index structure (i.e., all the columns on the database).
We map GA definitions to the DBMS context in Table I.

A. Individual Representation

We use a straightforward individual representation that is
based on binary vectors. In this strategy, each vector position
denotes whether a column is indexed or not. Formally, we
represent an individual as a binary vector x, where |x| = C
and C is the number of all columns in the whole database
schema. Hence, xi denotes whether the ith column should be
indexed by the DBMS. Naturally, both primary and foreign
keys are always indexed, and therefore not affected by any
crossover, mutation or additional random-based action on x.

The initial population with n individuals is randomly created
by sampling bits from an uniform distribution. Each bit
corresponds to a specific gene having two possible actions:
create or drop one index. Each individual is a concatenation
of the binary representation of all columns from all tables.
TPC-H contains 61 columns across 8 tables, with 16 primary

and foreign keys indexed by default. From the remaining
columns, only 24 are used on the benchmark queries. Hence,
each individual is comprised by C = 24 mutable genes,
which generates a search space containing 224 = 16, 777, 216
possible combination of indexes.

B. Fitness Function

During the evolutionary process, we use a fitness function
to estimate the degree of adaptation to the environment for
each individual in the population. We first use the QPHH as
fitness function that aims to optimize the performance for
running queries while being computationally cheaper for data
insertion and removal. We also propose a simpler approach,
which optimizes the speed-up time for running all the 22 select
queries in the benchmark.

More specifically, we want to find an individual represented
by a genome that is capable of achieving high QPHH, but
using the very least memory as possible. Formally, let Q(x),
H(x) and P(x) be the functions that estimate the QPHH,
THROUGHPUT@SIZE and POWER@SIZE for a given x. Note
that the estimate of P(x) is calculated by running all the
queries in the benchmark, including delete and insert ones that
are quite slow in heavily indexed databases. Thus, a database
in which most of the columns are indexed would most likely
yield lower POWER@SIZEvalues. The QPHH-based fitness
function would be hereby referred as Q(x), calculated by
Eq. 1.

Q(x) =
√
P(x)×H(x) (1)

Our second fitness function optimize the time performance
for running the SELECT queries in the benchmark. In this case,
we want to find individuals that are capable of retrieving data
efficiently, without considering data insertion and removal.
This is achieved by optimizing the speed-up of the current
individual when compared to a baseline one, namely, the initial
state of the database. In this case, we refer to the function that
calculates the total query time for a given individual as T (x).
Finally, the speed-up-based fitness function is given by

S(x) = T (xI)

T (x)
(2)

where xI denotes the individual for the initial state of the
database. Therefore, individuals with lower values of T (x)
have higher fitness values than those that take more time to
run the benchmark. In this case, we are necessarily optimizing
the database storage requirements for index data. In summary,
the proposed fitness functions are two-fold: (i) Q(x), which
optimizes the performance for INSERT, DELETE and SELECT
commands, and by transitivity, it also helps to lower memory
requirements for indexes; and (ii) T (x) that directly optimizes
the running time for all queries.

C. Selection

Our approach uses the popular and effective tournament
method as selection technique, developed by Horn et al. [8]. It
is a strategy for selecting the fittest candidates from the current
generation in a GA. The process initiates with two candidate

40

points selected randomly from the current population, that
compete for survival in the next generation. The next step
is to compile points randomly to compose a tournament set,
where each member is compared with other members. We
need to specify the size of the tournament set as a percentage
of the total population. Hence, the tournament set size implies
the degree of difficulty in surviving. If the tournament size
is larger, weak candidates have a smaller chance of getting
selected as it has to compete with a stronger candidate. We
use the selection pressure to determine the rate of convergence
of the GA. This is a probabilistic measure of a candidate like-
lihood of participation in a tournament. Here, the convergence
rate is proportional to the selection pressure, and the GA is
capable of identifying optimal or near-optimal solutions over
a wide range of selection pressures. The tournament selection
works either for positive or negative fitness values.

D. Crossover and Mutation

After obtaining the individual from selection method, we
apply the crossover genetic operator on population. In this
phase, two individuals exchange information to produce the
offspring. Both crossover and mutation occur only with respect
to some probability previously defined. The main goal of
the use of crossover is to make it possible for the genes of
two individuals to generate an improved individual. Higher
crossover values lead to in-depth exploitation of the current
population individuals, but constraining the exploration of the
search space. We employ the two-point operator [10], that
determines two random crossover points to mark at which
points of the two parents will occur the split. Next, the tails of
their two parents are swapped to get a new offspring, which
would integrate the population. It is important to define the
crossover probability (cp), which controls the frequency of
the application of the crossover operator on the individuals.
For instance, when using cp = 1.00, crossover is applied over
the entire population. On the other side, when cp = 0.00, the
entire new generation is made from exact copies of individuals
from old population (which can suffer mutation as well).

The next step is the mutation operator, that introduces
random changes into the characteristics of the individuals.
Mutation plays a critical role in GA, as crossover leads
the population to converge by making the individuals in the
population alike. Mutation reintroduces genetic diversity back
into the population. In this phase, we need to set the mutation
probability and the mutation rate. The first parameter sets the
chance of each individual to be mutated, whilst the second
one refers to the number of genes that would be changed.

Frequently, the mutation rate is rather small and depends
on the length of the individuals. Therefore, new individuals
produced by mutation will not be very different from the
original one. Since we set each individual as a bit vector, the
mutation operator is responsible to change the bit value of 1
to 0 or vice-versa. We also provide some experiments using a
linear decay for the mutation probability. Such a decay allows
for larger exploration during the initial generations, increasing

the genetic diversity, while allowing for in depth exploitation
during the latter stages of the optimization procedure.

IV. EXPERIMENTAL SETUP

We carried out all experiments in hardware with Intel(R)
Xeon(R) Platinum 8175M CPU @ 2.50GHz, 30GiB RAM and
Non-Volatile memory controller (SSD), running Ubuntu Linux
16.04. We used DEAP [2], an open-source Python package, to
implement the genetic algorithm. To evaluate all approaches,
we use the TPC-H benchmark with scale factor of 1GB. We
run the performance test and calculate the POWER@SIZE and
THROUGHPUT@SIZE metrics for each execution of TPC-H.
Then we calculate the QPHH for each individual (Q(x)).

A. Baselines

For evaluating our approaches we defined three main
baseline strategies for database indexing. We compared our
approach with the following strategies: (1) TPC-H initial
state (only primary and foreign keys are indexed); (2) results
achieved via a random-search algorithm that optimizes the
proposed fitness functions. We run the random search using the
same number of individuals as in our optimization algorithm.

B. Evaluation Measures

In our experiments, we run the final evaluation using a
different set of query streams to the database, in order to make
sure that our GA was not overfitting the training examples.
First, we set the best indexing configurations found during the
whole training phase, in order to run the complete benchmark.
For quantitative evaluation, we used QPHH and the storage
required by the index data (in MB).

C. Parameters

The first three experiments were designed to optimize the
fitness function Q(x), in order to maximize the QPHH metric.
The two latter ones focused on minimizing the second fitness
function, namely the benchmark runtime given by T (x). For
all experiments we used a initial population of 50 individuals,
evolved during 50 generations, with mutation rate of 0.05 and
elite size of 4. Parameters such as fitness function, mutation
probability (mp), crossover probability (cp) and mutation de-
cay (md) are defined as follows: GADIS-[Q, mp=0.9, cp=0.8,
md=0.05] and GADIS-[T , mp=0.9, cp=0.6]. The complete
training procedure for each of those experiments (including
random search) took about a week.

V. RESULTS

Figure 1 shows the performance of our approaches during
the training phase. The chart shows values of QPHH as fitness
for all evolved individuals; and the second chart depicts values
of time required to run the test benchmark (only with SELECT
queries), by using our second fitness function, namely T (x).
GADIS have shown to be much better in terms of consistency,
once it can find several good database configurations with
ease when comparing to the baseline. It is clear that both
GADIS-[Q] GADIS-[T] present similar performance during

41

0 200 400 600 800 1000
Individual

1900

2000

2100

2200

2300

2400

2500

QP
HH

QPHH
Random

0 200 400 600 800 1000
Individual

80

85

90

95

100

Ti
m

e
(s

)

QPHH
Time
Random

Fig. 1. QPHH and Time during training procedure.

TABLE II
RESULTS IN TERMS OF QPHH, TIME AND INDEX SIZE

Methods QPHH Time Index Size

Initial State 1678 149.3s 599 MB
Random Search 1864 145.3s 1196 MB
GADIS-[Q] 2631 71.2s 1193 MB
GADIS-[T] 3077 60.6s 1600 MB

the training phase, thought the latter presents itself as a much
faster approach.

Table II shows quantitative results in terms of QPHH, Time
and Index Size for each one of the approaches. Note that
the best performing approach as measure in QPHH and Time
is achieved by GADIS-[T]. Additionally, both versions of
GADIS were able to achieve top results in all used metrics.
GADIS-[Q] also requires roughly the same disk space when
compared to the baseline, though with 40% better QPHH per-
formance.

VI. RELATED WORK

In the past years, other researchers have used GA to
improve database performance. Korytkowski et al. [4] present
an automatic way to find the best set of indexes for a database,
using GA. Different from our approach, their fitness function
is based on time spent in insert operations and a single query,
and they make experiments with just one table.

Pedrozo et al. [5] modelled an index tuning architecture
applied to hybrid storage environments using GA to create
indexes in the DBMS. They also use TPC-H benchmark to
evaluate their approach, but unlike us, they did not apply the
performance test provided by the benchmark.

Boronski et al. [1] propose a model to optimize the response
time of a set of queries by creating indexes in a relational
database. Unlike us, they use the response time of each group
of queries to measure their performance and then compare it
with the Oracle advisor.

VII. CONCLUSIONS

In this paper we developed a Genetic Algorithm-based
approach for automatic index selection in databases called
GADIS. This approach can find database configurations that
outperform all the baselines in most of the scenarios, while
saving storage requirements. We have observed that the train-
ing procedure of GADIS is very consistent, which allows us to
find proper database configurations within only a few genera-
tions. In addition, GADIS is easily suited to be implemented on
any database system. The main limitation of our work is that
to find a good solution one has to run several distinct database
configurations and evaluate them by using a benchmark. Such
a procedure is somewhat costly, and required about a week
of processing to optimize the indexes for the used database.
For future work, we plan to improve GADIS so we can learn
general rules for database agnostic indexing using metadata
rather than performing a per-database optimization.

REFERENCES

[1] R. Boronski et al., “Relational database index selection algorithm,” in
CN, A. Kwiecień et al., Eds. Springer, 2014, pp. 338–347.

[2] F.-A. Fortin et al., “DEAP: Evolutionary algorithms made easy,” Journal
of Machine Learning Research, vol. 13, pp. 2171–2175, jul 2012.

[3] J. H. Holland, Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[4] M. Korytkowski et al., “Genetic algorithm for database indexing,” in
ICAISC, L. Rutkowski et al., Eds. Springer, 2004, pp. 1142–1147.

[5] W. G. Pedrozo et al., “An adaptive approach for index tuning with
learning classifier systems on hybrid storage environments,” in HAIS.
Springer, 2018, pp. 716–729.

[6] E. Petraki et al., “Holistic indexing in main-memory column-stores,” in
SIGMOD. ACM, 2015, pp. 1153–1166.

[7] R. Ramakrishnan et al., Database Management Systems, 3rd ed.
McGraw-Hill, Inc., 2003.

[8] J. rey Horn et al., “A niched pareto genetic algorithm for multiobjective
optimization,” in CEC, vol. 1, Citeseer. IEEE, 1994, pp. 82–87.

[9] P. Rob et al., Database Systems Design, Implementation and Manage-
ment, 5th ed. Course Technology Press, 2002.

[10] W. M. Spears et al., “An analysis of multi-point crossover,” in Founda-
tions of genetic algorithms. Elsevier, 1991, vol. 1, pp. 301–315.

[11] A. Thanopoulou et al., “Benchmarking with TPC-H on off-the-shelf
hardware,” in 14th International Conference on Enterprise Information
Systems. Springer, 2012, pp. 205–208.

42

Research on Page Object Generation Approach
for Web Application Testing

Yimei Chen, Zheng Li, Ruilian Zhao and Junxia Guo∗

College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing, China

∗Corresponding: gjxia@mail.buct.edu.cn

Abstract—Test code generated by using the page object design
pattern during web testing is easy to maintain. Page clustering is
an essential stage of the page object approach. However, existing
methods only consider the DOM structure in page clustering,
which leads to inaccuracy when generating page objects. A
state with the same DOM structure may result in an entirely
different migration. The method of considering only the DOM
structure cannot accurately generate page object classes. In
order to improve the accuracy of page object generation, this
paper not only considers DOM structure information but also
considers CSS styles and the attributes of DOM elements in
page clustering. Based on the experimental evaluation results,
our method can automatically generate page objects that cover
most of the application functions, which is more effective for the
creation and maintenance of web test cases.

Index Terms—Web applications, Automated testing, Page ob-
ject.

I. INTRODUCTION

As an essential stage of software development, software
testing can be described as the process of identifying the cor-
rectness of programs. The primary purpose is to find possible
errors in programs [1]. The cost of software testing is about
50% of entire software development cycle [2]. With the faster
step of business, the software development cycle also becomes
shorten and shorten. As a result, software testing needs to
be finished in limited time, especially for quick-updated web
applications. Because of cost constraints, software companies
want to test their software as quickly as possible. Thus,
research on automated testing has received significant attention
in both industry and academia. Automated testing can run
frequently, shorten the test cycle, quickly respond to changing
requirements, and make the development process more agile.

The existing end-to-end automated test tools have a similar
problem of maintaining test scripts during software evolution.
Although those test tools can make testing easier, they can-
not help testers write well-structured test scripts. To adapt
to changing web applications, testers need to change test
suites, which represents a considerable workload. Thus, the
techniques for both test suite generation and maintenance are
needed.

The page object pattern [3] is an effective mode on enhanc-
ing test suite maintenance and can reduce code duplication. A
page object is an object-oriented class that acts as an interface

DOI reference number: 10.18293/SEKE2019-010

to the web page of applications under test. Individually, all
element attributes and element operations of a page object
are encapsulated in a class. Whenever testers need to interact
with elements of the user interface, the test case will use
the approaches of the page object class. The test code is
separated from the page elements and its methods of operation,
in order to reduce the impact of changes in page elements
on the test code. If page elements are changed, we only
need to modify the code of the corresponding page object
(the corresponding class) without modifying the test code.
Therefore, it is beneficial to adopt the page object mode in
maintaining web test suites.

However, the existing tools based on page object mode
have their limitations. Only the DOM state is used for page
clustering, which leads to the inaccuracy of generating page
objects. Two web pages with the same DOM structure can
show different visual effects and trigger completely different
events, which should be divided into two page objects. To ad-
dress this problem, we propose an approach for automatically
generating page objects for web application testing, which is
more accurate and efficient.

In this paper, we conduct in-depth research on page object
generation and use it in web testing. Its main contributions are
listed as follows.

1. Oriented to the automated generation of page object, we
theoretically analyze influence factors related to page
clustering. Based on the consideration of the DOM
structure of two pages, we also consider CSS styles and
attributes of DOM elements. According to the multiple
influence factors, we propose a two-stage clustering al-
gorithm.

2. We implement a prototype tool for automatically gen-
erating test cases for web applications, which combines
multiple influence factors we propose in page clustering.
In this way, we effectively solve the problems of repeated
inaccurate testing in the automated testing process and
improve the efficiency of the test.

3. We do a series of experiments with several kinds of web
applications to evaluate the approach of this paper.

The organization of this paper is as follows. Section II
presents the motivation. Section III introduces our approach,
theoretically analyzing influence factors on page clustering and
also proposes a clustering algorithm of multiple influence fac-

43

Fig. 1. A simple DOM tree of pageA.

Fig. 2. A simple DOM tree of pageB.

tors. Section IV presents the experimental results to assess the
effectiveness of our approach and its limitations. The relevant
research is presented in Section V. Section VI concludes and
presents the future works.

II. MOTIVATION

Generally, generating page objects starts from a state-based
model (graph) of the web application. The model consists of
nodes and edges, where nodes are dynamic DOM states of
web pages and edges are attribute-based transitions between
nodes. The information of nodes and edges can be crawled
from the web application. Then, the similar web pages are
grouped into an abstract representation by the page clustering
algorithm. Consequently, the related interactions between the
web pages may change according to the clustering results.
Finally, a set of page objects is generated for the abstract web
pages and their interaction.

From the above analysis, we can find that the accuracy
of page clustering is a crucial aspect when generating page
objects. Page clustering relies on the similarity between web
pages. However, the existing studies focus on structural fea-
tures only, such as tag frequency, URL, DOM elements and so
on, ignoring CSS styles and the attributes of DOM elements,
to measure the similarity between web pages. This leads to
the inaccuracy of page clustering and page object generation.

As an example, assume that two web pages with the same
DOM structure can show different visual effects and trigger
completely different events, which should be grouped into
two page objects. However, the existing tools which only
use the DOM structure information for clustering web pages
will classify these two pages into one category, causing the
inaccuracy of page objects. For instance, as shown in the
Fig.1 and Fig.2, different attribute(i.e. id) values are set to
the <div> tags with the same DOM structure. Meanwhile,
different attribute handlers button1 and button2 are set to

Fig. 3. An overview of the approach.

different ids. Even if their tags and structures are identical,
pageA and pageB represent different states, and they should
be divided into two page objects.

For measuring the similarity between web pages, the fea-
tures which are using in existing approaches are insufficient.
To solve this problem, we conduct an in-depth analysis of
page information and raise a novel set of features considering
the structure, CSS styles and attributes of pages, as well as
the corresponding similarity measurement to distinguish pages
with the same DOM structures but different functions.

III. OUR APPROACH

A. Approach Overview

The overview of our approach is shown in Fig.3. This paper
design an automated testing framework which has five main
steps. In the first step, by using a specific crawler, we can
simulate user actions to get information. Then, we theoretically
analyze factors that affect page clustering, including DOM
structures, CSS styles and attributes of DOM elements. In this
step, we get their respective characteristic values. In step three,
according to the two-stages clustering algorithm mentioned in
this article, web pages are clustered. Next, page objects can
be generated for every clustered page. Finally, test cases can
be generated by calling page elements in corresponding page
object classes.

B. influence factors related to page clustering

1) influence factors of DOM structure: DOM is a neutral
interface between platform and language that allows programs
or scripts to dynamically access content, styles and structure
of updated documents [4]. The DOM structure represents the
hierarchical structure of a web page and is very important for
quantifying the similarity degree of web pages. In this paper,
we use tree edit distance (TED) [5] to calculate the similarity
of DOM. The Tree Edit Distance is the minimum number of
tree editing operations that convert tree T to tree T’.

2) influence factors of CSS styles: In web applications,
HTML tags not only display information about the structure
and content of the page but also show some information about
performance. Cascading Style Sheets (CSS) define how HTML

44

elements are displayed. Web developers nowadays put the
information not only in the HTML tag hierarchy but also in
the style sheets. CSS styles of web pages are also important
information for page clustering.

In CSS, each style is usually named by a class value. The
HTML elements in a web page are rendered by referring to the
class values. The HTML elements with the same class value
have the same style. Therefore, we consider using information
on class attributes as a kind of assist for page clustering when
generating page objects. This may avoid the misclustering
case where the DOM structure of two pages is the same, but
different CSS styles are used, which should not be classified
into one category.

The process of building a style matrix between two pages
is as follows. Firstly, we parse the HTML document of the
web page and get a collection of all class values used in this
page. We can record the class value information of the two web
pages into two sets A and B. Then we can use Jaccard distance
to calculate the distance between the class value matrix of two
pages. The calculation method is listed in Equation 1.

Dj (A,B) = 1− J (A,B) =
A4B

|A|+ |B| − |A ∩B|
(1)

When A = B, Dj(A,B) = 0. The smaller the value, the
more similar the two pages are. We use the calculation result
of Jaccard distance as the style matrix values. According to the
above steps, the style matrix values of any two pages can be
respectively calculated and stored in the corresponding vectors.

3) influence factors of the attributes of DOM elements: If
the structure of the two pages is the same, but the attributes
of DOM elements bound on the nodes are different, different
functions will be triggered. So the attributes of DOM elements
may be helpful in clustering. HTML pages contain different
HTML elements which may have different attributes and
different functions. If all the attributes are taken into account,
it will not only significantly increase the complexity of the
method, but also reduce the accuracy of comparison, for
example, the src attributes of nodes.

The id value in a web page is a kind of unique identifier for
a DOM node. Usually, scripting languages use id as a tag to
find the node where id is located. So id value is significant for
migration between states. We can distinguish different events
bound to a node by id. Therefore, we consider that id value
is a useful attribute in clustering and state migration.

We use Jaccard distance of id values to construct an
attribute-based matrix between two pages. We get a collection
of all the id values of a web page and use Equation 1 to
calculate the id-distance of two web pages.

4) Using tag filter to reduce the DOM state: There are a
large number of tags in HTML pages. Different tags have
different effects. Not all tags in the HTML document are
helpful in page clustering. We propose a tag filter method to
reduce the pending tags in the HTML document, which focus
on the effective tags and improves the usability and accuracy
of the discovered tags. So that in page clustering, tag filter

can remove some interference, which can improve accuracy
and speed.

In HTML pages, tags like <head>, <style>, <script>
and <link> contain data that is not displayed to the user as
content, which is a factor in clustering with DOM structures.
In theory, by removing these tags that are not used for structure
analysis, not only will the DOM structure will become smaller
and simplified, but also the consumption time will be reduced.
DOM is the foundation of web application display. The more
accurately the page structure is analyzed, the more completely
its functions are understood. Based on the DOM structure, tag
filter optimizes the clustering approach and indirectly improves
the accuracy of subsequent operations.

C. A two-stages clustering algorithm using multiple influence
factors

The factors affecting page clustering mentioned above have
their pros and cons. They have different effects on different
types of websites. If we only use one of them to measure
all types of web pages, there will be inaccurate classification
problems that affect the accuracy of page object generation.

Algorithm 1 A two-stages clustering algorithm using multiple
influence factors
Input: HTML pages Pn crawled by crawler
Output: A set of clustering results Sj of HTML pages

1: Get P ′
n by using tag filter on Pn

2: Calculate DOM tree edit distance matrix MDOM of P ′
n

3: Generate Si using hierarchical clustering on MDOM

4: n = number of crawled HTML pages in P ′
n

5: i = number of clustering results in Si

6: j = number of clustering results in Sj

7: for all (s1, s2, ..., si) ∈ Si do
8: if Consider CSS styles then
9: Get class values sets SCSS of P ′

n

10: Calculate MCSS of SCSS based on Equation 1
11: Generate Sj using hierarchical clustering on MCSS

12: return Sj

13: else if Consider attributes then
14: Get id values sets Sid of P ′

n

15: Calculate Mid of Sid based on Equation 1
16: Generate Sj using hierarchical clustering on Mid

17: return Sj

18: else if Consider CSS styles and attributes then
19: Calculate MCid based on Equation 2
20: Calculate MCid based on Equation 1
21: Generate Sj using hierarchical clustering on Mid

22: return Sj

23: else
24: return Si

25: end if
26: end for

Therefore, we propose a two-stage clustering algorithm
using multiple influence factors as shown in Algorithm 1.
We use tag filter on the pages crawled for preprocessing

45

TABLE I
TEST SUBJECTS.

Application states URLs edges DOM length
Aminer 12 4 17 58.714 kB
Termonline 57 3 56 26.194 kB
Musicbible 27 7 42 185.73 kB
BUCT 13 5 12 46.917 kB
DBLP 8 8 14 31.698 kB
CBA 17 17 51 31.156 kB
Chinacoop 55 49 108 18.26 kB
Xinxishibao 49 15 48 196.542 kB
Wanshifu 35 27 79 49.965 kB

to simplify the DOM structure. In the first stage, we use
hierarchical clustering to cluster pages based on the DOM
tree edit distance matrix of two pages. According to the
clustering results of the first stage, we re-cluster the pages that
are grouped into the same category. In the second stage, we
consider different influence factors for clustering, CSS style
and id attribute. Finally, the clustering results are returned
according to different factors. This algorithm can correctly
classify most different types of websites with better accuracy.

For any two web pages obtained by the crawler, the matrix
MCSS based on the influence factor of CSS styles can be
obtained by calculating Jaccard distance of class value sets
based on Equation 1 and the attribute matrix Mid can be
gotten by computing Jaccard distance of id value sets. The final
matrix value MCid of multiple influence factors according to
a certain weight is calculated using Equation 2.

MCid = ω ×MCSS + (1− ω)×Mid (2)

ω and (1−ω) respectively represent the weight of the matrix
value of CSS styles and the attributes of DOM ids. Setting rea-
sonable weights in the final calculation is necessary. In order to
determine the value of the above two weight parameters, this
paper performs parameter adjustment experiments on several
web applications.

IV. CASE STUDIES

In order to study the effectiveness of page object generation
approach proposed in this paper, we selected thirty web
applications in six fields as test objects, which contains the
fields of information search, arts, portals, sports, governments
and life services. Due to the limited space, we chose one or
two of each category for display.In this section we list the
result of nine web applications, including Aminer, Termonline,
Musicbible, BUCT, DBLP, CBA, Chinacoop, Xinxishibao and
Wanshifu. Then we use a two-stage clustering algorithm using
multiple influence factors on these applications and analyze its
impact on the accuracy of page object generation.

A. Test subjects

Table I gives the information about the nine experimental
objects, including each application’s name, the number of
states, the number of visited URLs, the number of edges and
the average length of the DOM.

TABLE II
COMPARISONS OF EIGENVALUES OF USING TAG FILTER OR NOT.

HTML Tag Fliter The Value of Eigenvector

index N 0,731,0,697,719,734,742,772
Y 0,727,0,693,715,730,738,766

state6 N 731,0,731,151,79,65,80,1195
Y 727,0,727,151,79,65,80,1184

state14 N 697,151,697,0,128,145,147,1151
Y 693,151,693,0,128,145,147,1140

state23 N 772,1195,772,1151,1183,1192,1211,0
Y 766,1184,766,1140,1172,1181,1200,0

Fig. 4. Comparison of time consumption (in ms) in generating DOM-based
feature matrix with or without tag filter.

B. Experimental results

1) Research on the effectiveness of tag filter on DOM states
reduction: We compare page objects generated by using tag
filter or not. We find that the page states generated before and
after tag filter are the same.

Table II is the data of feature vector based on the DOM
tree edit distance extracted from test subject DBLP. The first
column shows the labels instead of different HTML pages. The
second column shows whether tag filter is used to reduce DOM
states. The remaining columns are the experimental value of
the feature vector.

In Table II, the size of the number represents the degree of
difference between DOMs. By observing experimental data,
we find that tag filter can simplify DOM structure and make
it more similarity.

Fig.4 shows a comparison of the time consumption of
generating a DOM-based feature matrix using tag filter or not.
It shows that the times using the tag filter are shorter.

Therefore, We can say that using tag filter will not only
produce more reasonable page objects but also reduce time
consumption. So we use tag filter to simplify DOM structure
before generating a feature matrix.

2) Research on the effectiveness of two-stages clustering
algorithm using multiple influence factors and weight setting:
We compare generated page objects with different influence
factors for test subjects and manually analyze page objects
generated of each web application. The analysis results are
used as criteria for judging the effects of each influence factor.

46

TABLE III
COMPARISON OF THE EFFECTS OF VARIOUS INFLUENCE FACTORS.

Application DOM DOM+CSS DOM+ID
Aminer 1.52% 0.00% 0.00%
Termonline 0.88% 0.88% 0.00%
Musicbible 6.55% 6.55% 5.13%
BUCT 12.82% 0.00% 12.82%
DBLP 14.29% 0.00% 14.29%
CBA 13.97% 6.62% 8.82%
Chinacoop 14.41% 0.00% 5.39%
Epaperxxsb 0.00% 1.70% 1.70%
Wanshifu 2.52% 2.18% 1.01%
total 66.95% 17.93% 49.15%

Table III shows the result of the two-stage clustering al-
gorithm proposed in this paper with the percentage of the
mis-classified page combination number vs. the total page
combination number. The first column is web applications
under test. Second column shows the results that only using the
DOM structure for page clustering. The third column shows
the results that consider the DOM structure and CSS style for
page clustering. The fourth column shows the results using
DOM structure and attribute influence factors. The last line is
the sum of the error rates for each method on all test subjects.

Through the data in Table III, we can find that for the
application Aminer, the result of page objects generated when
considering CSS style and DOM attribute for page clustering
is the same as the result of the manual analysis. Moreover,
they are both better than only considering the DOM structure.
For the application Termonline, Musicbible and Wanshifu, the
results that use DOM attribute have the lowest error rate
when generating page objects. For the application BUCT,
DBLP, CBA and Chinacoop, page objects generated by DOM
structure and CSS styles have the lowest error rate. In addition
to application Epaperxxsb, results of CSS-assisted DOM or
ID-assisted DOM are better than using only DOM.

Therefore, we conclude that the generating accuracy of page
object generated using our clustering algorithm is better than
the method that only considering the DOM structure. However,
the results of DOM structure with CSS styles and DOM
structure with attribute have different performance for different
applications. Therefore, we also do experiment that combine
those two influence factors with different weights to achieve
the best classification accuracy.

To set reasonable weights for CSS styles and DOM at-
tributes in the final calculation, we did experimental research.
In addition, we need to find the suitable condition for starting
the second stage. If the result of first stage shows that the
two pages are quite different, the second stage need not to be
started. Therefore, We set the trigger threshold of the second
stage in page clustering to be 0.5. When the distance between
two pages exceeds the threshold in first stage, the clustering
algorithm will start the second stage’s processing.

The weights of the CSS style and DOM attribute values are
set based on Equation 2. Then we raise the threshold of starting
the second stage and adjust the weight of two influence factors.
Through manual analysis, we get a reasonable threshold and

TABLE IV
COMPARISON OF EFFECTS OF DIFFERENT WEIGHTS.

Threshold ω=0.2 ω=0.4 ω=0.6 ω=0.8
0.5 6.55% 6.55% 6.55% 6.55%
0.6 6.55% 6.55% 6.55% 6.55%
0.7 6.55% 6.55% 6.55% 6.55%
0.8 6.55% 6.55% 6.55% 6.55%
0.9 6.55% 6.55% 6.55% 3.13%

weight set. The result of the manual analysis is used in our
experiments.

The experimental results are shown in Table IV. Here we
show the result of test subject Musicbible. The first column is
the threshold of starting the second stage in page clustering.
It is incremented from 0.5 to 0.9 to determine which weight
has the best effect. The lines show the weight of CSS style
influence factors based on Equation 2. The numbers in the
table indicate the pages that are the percentage of the mis-
classified page.

When the threshold of starting second stage is 0.9 and the
respective weights of MCSS and Mid are 0.8 and 0.2, the
result of generating page object is most similar to the result
of manual judgment results. Therefore, the best effect of two-
stages clustering algorithm using multiple influence factors is
to take 0.9 as the threshold of starting the second stage in page
clustering, with the weight of o.8 for MCSS and 0.2 for Mid.

V. RELATED WORKS

There are a number of testing approaches for web applica-
tions. Some of those approaches are suitable for the early days
of Web applications, while others are more suitable for solving
modern web technologies, such as AJAX and node.js [6], [7].
Some technologies are based on service-oriented framework,
for example research [8]. Some use web page information
extraction techniques. As a commonly used approach, the
DOM similarity is used to judge the location of the required
information, and the location information can be extracted
directly without being disturbed by the noise information [9].

Web applications are different from traditional application
software. web applications use BS structures and communicate
with servers through browsers. However, local applications can
run off the network. The difference is that web applications
can only be run in various forms of browsers. In the traditional
test [10], the web test is divided into two different test forms:
black box and white box. Researchers use the corresponding
models, such as control flow graphs or navigation maps, to
conduct web application system testing studies. For example,
Arcuri A [11] proposes a automated white-box testing method,
in which test cases are generated automatically using evo-
lutionary algorithms. Tests will be rewarded based on code
coverage and fault finding metrics. Binkley D proposed a
functional road map for testing web applications [12]. Liu X
combined statement-based fault classification with spectrum-
based software fault location in order to improve the accuracy
of fault location and provide more possible fault information

47

for programmers [13]. In the research of Milani and Mirza-
aghaei [14], by mining the human minds contained in the
manually written test cases, they generate test cases for those
points that are not found in the program under test. However,
when the same function has multiple possible outcomes, a
considerable amount of redundant test cases are generated. In
the research of Yu Bing [15], a method based on a page object
model for automatically generating web application testing is
proposed. In this approach, the same function has multiple
possible results, resulting in a significant probability that the
generated page object is repeated, and finally, a redundant test
case is generated.

When facing massive data information, it is possible to ob-
tain incomplete or irrelevant information even through search
engines, but with the development of web data mining, the
problem is alleviated [16], [17]. Web data mining analyzes
web page content to measure the importance of one page.
Many algorithms have been proposed to extract content using
the DOM tree. For example, in the method proposed in the
research of Elyasov A [18], the DOM of the page is analyzed
as an input to propose a testing framework of Javascript
evolutionary. In the method proposed by Pagi V B [19], by
using the embedded semantic tree kernel they can extract
opinion content from web pages. In order to address repairing
Internationalization Presentation Failures problems in web
pages, Mahajan S [20] uses clustering to group stylistically
similar elements in a page. It then performs a guided search
to find suitable CSS fixes for the identified clusters.

Web pages contain a considerable amount of content that
is not related to the web page theme. When acquiring infor-
mation, this irrelevant information will affect efficiency and
accuracy. It is often necessary to do some preprocessing on
the web page. Uma [21] proposes an approach that cleans
up and displays important information from web pages in
standard format by eliminating noise and using unsupervised
technology.

VI. CONCLUSIONS AND FUTURE WORKS

The existing generated page object tools only consider the
DOM structure as the influence factor, which causes incorrect
classification. In order to solve this problem, this paper the-
oretically analyzes the influence factors, which considers not
only DOM structure, but also CSS styles and the attributes of
DOM elements, and uses tag filter to simplify DOM structure.
We propose a two-stage clustering algorithm using multiple
influence factors when generating page objects. Therefore, the
problem of incorrect classification of page objects is opti-
mized. Moreover, we implement a prototype tool to automat-
ically generate test cases for web applications to improve test
efficiency based on page object. With experimental research,
we find a suitable weight set for influence factors and threshold
and verify the validity of our approach.

In future, we would like to analyze more factors. For
example the type of events in client side scripts, which can
handle different triggerable events. Moreover, in order to get
more available information, we may use machine learning to

determine whether state and function are related. Besides, we
will extend tested objects into other types of applications.

ACKNOWLEDGMENT

The work described in this paper is supported by the
National Natural Science Foundation of China under Grant
No.61702029, No.61672085 and No.61872026.

REFERENCES

[1] Offutt J, Ammann P.: Introduction to Software Testing. Cambridge
University Press (2008)

[2] DENG Zhidan, YANG Haiyan, WU Ji.: Test data generation and
selection approach for Web application based on constraint-solving.
Computer Engineering and Applications 52(18), 214–221(2016)

[3] PageObjects, http://code.google.com/p/selenium/wiki/PageObjects. Last
accessed 13 Mar 2015

[4] W3C, https://www.w3.org/DOM/. Last accessed 1 Jun 2019
[5] Stefan Schwarz, Mateusz Pawlik, Nikolaus Augsten.: A New Perspective

on the Tree Edit Distance. In: International Conference on Similar-
ity Search and Applications 2017, LNCS, vol. 10609, pp. 156–170.
Springer, Cham (2017).

[6] Serdar Dogana, Aysu Betin-Cana, Vahid Garousia.: Web application
testing: A systematic literature review. Journal of Systems and Software
91(1),174–201(2014)

[7] Wang Lina, Li Huai, Zhao Lei.: Ajax Web automatic testing model based
on simulation of users. Journal of Huazhong University of Science and
Technology (2016)

[8] Torsel A M.: A Testing Tool for Web Applications Using a Domain-
Specific Modelling Language and the NuSMV Model Checker. In: Pro-
ceedings of the 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, pp. 383–390.(2013)

[9] Pan Xinyu, Chen Changfu, Liu Rong, Wang Meiqin.: Content extraction
based on the similarity of the Web pages’ DOM tree nodes path.
Microcomputer and its Applications 35(19), 74–77(2016)

[10] Myers G J, Sandler C, Badgett T.: The Art of Software Testing. 2nd
edn.(2004)

[11] Arcuri A.: RESTful API Automated Test Case Generation. ACM Trans-
actions on Software Engineering and Methodology (2019)

[12] Binkley D, Ceccato M, Harman M.: Tool-Supported Refactoring of
Existing Object-Oriented Code into Aspects. IEEE Transactions on
Software Engineering 32(9), 698–717(2006)

[13] Liu X, Liu Y, Li Z.: Fault Classification Oriented Spectrum Based Fault
Localization. Computer Software and Applications Conference. IEEE
(2017)

[14] MilaniFard A, Mirzaaghaei M, Mesbah A.: Leveraging existing tests
in automated test generation for web applications. In: ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2014, pp. 67–78.(2014)

[15] Yu B, Ma L, Zhang C.: Incremental Web Application Testing Using
Page Object. In: Third IEEE Workshop on Hot Topics in Web Systems
and Technologies. IEEE Computer Society, 2015, pp. 1–6.(2015)

[16] ZHANG Nai-Zhou, CAO Wei, LI Shi-Jun.: A Method Based on Node
Density Segmentation and Label Propagation for Mining Web Page.
Chinese Journal of Computers 38(2), 349–364(2015)

[17] HUANG Yanjiao, WU Qin, LIANG Jiuzhen.: Boosted constrained con-
ditional random fields for Web object information extraction. Computer
Engineering and Applications 51(23), 143–148(2015)

[18] Elyasov A, Prasetya I S W B, Hage J.: Search-Based Test Data Genera-
tion for JavaScript Functions that Interact with the DOM. In: Memphis,
U.S.A, proceedings of the, IEEE 29th International Symposium on
Software Reliability Engineering.(2018)

[19] Pagi V B , Wadawadagi R S.: Opinion Content Extraction from Web
Pages Using Embedded Semantic Term Tree Kernels. International
Conference on Computational Intelligence and Data Engineering, pp.
345–358(2018)

[20] Mahajan S, Alameer A, Mcminn P.: Automated Repair of International-
ization Presentation Failures in Web Pages Using Style Similarity Clus-
tering and Search-Based Techniques. In: 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST).
IEEE Computer Society.(2018)

[21] Uma R, Latha B.: Noise elimination from web pages for efficacious
information retrieval. Cluster Computing, pp. 1-20(2018)

48

A Class-level Test Selection Approach Toward Full
Coverage For Continuous Integration

Yingling Li∗‡, Junjie Wang∗‡, Qing Wang∗†‡§, Jun Hu∗‡
∗Laboratory for Internet Software Technologies, †State Key Laboratory of Computer Science

Institute of Software,Chinese Academy of Sciences,Beijing,100089,China
‡University of Chinese Academy of Sciences,Beijing,100089,China,§Corresponding author

email:{yingling,wangjunjie,wq,hujun}@itechs.iscas.ac.cn

Abstract—Continuous Integration (CI) is an important practice
in agile development. With the growth of integration system,
running all tests to verify the quality of submitted code, is clearly
uneconomical. This paper aims at selecting a proper test subset
towards full coverage of all changed and affected code so as
to reduce the cost of CI testing. We proposes FEST, a novel
approach, which searches for the full dependencies of changed
code at the class level and then selects test classes related to
the changed and affected classes. We assess FEST from fault
detection efficiency and cost effectiveness based on 18 open
source projects with 261 continuous integration versions from
Eclipse and Apache communities, and compare it with the state-
of-the-art approach ClassSRTS (as baseline). Results show that
FEST (1) can not only cover all faults detected by actual CI
testing and baseline, but also find new faults in 25% and 18%
versions respectively. (2) shows better or equal test scale benefits
than actual CI testing (in 98% versions) and baseline (in 99%
versions); and can compensate risk of omitting necessary tests
for actual CI testing (in 62% versions) and baseline (in 73%
versions).

I. INTRODUCTION

Continuous Integration (CI) is a widely-applied develop-
ment practice which requires developers to integrate their
code into the master codebases frequently. It can improve
the productivity, facilitate fast feedback of quality problems,
and help projects release more often [1], [2]. One of the
best practices in CI is to make your build self-testing, called
CI testing. Each programmer must do a complete build and
run (and pass) all or eligible unit tests before submitting
work [1], [3]. With the growth of integration system, running
all tests to verify the quality of submitted code, is clearly
uneconomical. The big challenge of CI testing is how to
optimize the test set to reduce test size as much as possible
without sacrificing quality. These are many test case selection
techniques proposed to tackle this problem [2], [4]–[16].

Generally speaking, the methods of test case selection can
be split into static and dynamic techniques. Dynamic selection
technique collects test dependencies by dynamically running
tests on the previous revision, and selects a test set that may
reach the code changes [7]–[9], [15], [17]. However, dynamic
test dependencies for large projects may be time-consuming
to collect, and for real-time systems, dynamic selection tech-
niques may not be applicable, because code instrumentation
for obtaining dependencies may cause timeouts or interrupt

normal test run [5], [15]. Besides, for programs with non-
determinism (e.g., due to randomness or concurrency), de-
pendencies collected dynamically may not cover all possible
traces, leading to omission of necessary tests [5], [6]. Static
selection technique does not require to execute tests; it uses
static program analysis to infer the dependencies between
changed code, affected code and test code [4], [5], [13], [18],
[19]. It is easier to manipulate than dynamic technique thus
draws more and more attention. However, the drawback of
existing static approaches is that the selected test sets either
cannot fully cover the necessary tests or are too redundant due
to inefficient static analysis techniques [4]–[6], [13], [20].

In this paper, we propose a novel test selection approach
called FEST (i.e., Full dEpendency based class-level test
SelecTion) to select a proper test subset for CI testing based on
class-level static dependencies. FEST first locates the changed
classes of submitted commits, and generates full dependencies
of source code at the class level. It then searches a complete set
of affected classes and identifies affected test classes. Finally,
it extends the test classes based on recently failed tests.

We experimentally evaluate FEST from fault detection effi-
ciency and cost effectiveness on 261 CI versions of 18 projects
from two large open source communities (i.e., Eclipse and
Apache). For comparison, we refer the real-world practice of
CI testing as the actual CI testing and apply the state-of-the-
art approach ClassSRTS [5], [13] as baseline. The results show
that (1) FEST can cover all faults detected by actual CI testing
and baseline, and find new faults in 25% and 18% versions
respectively; (2) compared with baseline, FEST shows better
or equal test scale benefits in 99% versions, and higher risk
compensation in 73% versions.

The main contributions of the paper are as follows:
• We design a new class-level test selection approach

(FEST) to select a proper test subset towards fully cover-
ing all changed code and affected code. It can resolve full
dependency relations at the class level, which improves
previous work by capturing the dependencies of hidden
references; and design an algorithm to incrementally and
iteratively search the affected tests.

• We conducted experiments on 261 integration versions
of 18 open source projects to evaluate the fault detection
efficiency and cost-effectiveness of our approach, and
results are promising.DOI reference number: 10.18293/SEKE2019-011

49

II. APPROACH

This paper proposes an approach, called FEST (i.e., Full
dEpendency based class-level test SelecTion). There are four
major steps in FEST (shown in Figure 1), the following
subsections will explain the details of the four steps.

Fig. 1. The overview of FEST

A. Locating the changed classes of submitted commits

For each CI, we have three phases to analyze and locate the
changed classes. Firstly, we look for the names of changed
files from the log message of the commits. Secondly, we look
for the changed lines of each changed file by applying “git
diff ”, and filter the blank lines and annotation lines. Thirdly,
we locate the changed code on associated classes. In detail,
an improved open source tool Doxygen (named as Doxygen#)
is applied to analyze the structure and dependencies of source
code. We further parse the xml files generated by Doxygen#
to obtain the code structure information of each file, including
class names, the start line and end line of each class, and anno-
tation information of each method (e.g., @Test, @BeforeClass,
@Before). Based on the code structure information, we map
the changed lines to their corresponding classes, and then label
them as changed classes. Note that the commits can involve
both program code and test code. We also locate changed test
classes for better selecting the related tests. After this step,
FEST will output a set of changed classes (C Set).

B. Generating the full dependencies of code version

To ensure the full dependencies of code captured, we refer
to the relations defined in UML. There are six relations among
classes or objects defined in UML. Table I presents these
relations and their representation in code (refer Orso’s work
[21]), as well as the corresponding relations in code. There are
two categories of relations in code: inheritance and invocation
[22]. Some of the invocation types can be directly obtained
with code dependency analysis tools (e.g., Doxygen#), and
we call it as direct reference (short for R). Other invocation
types can not be directly obtained with existing tools, and we
call it hidden reference (short for HR). These hidden reference
relations are usually ignored in the existing approaches [5],
[20] or tools for code dependency analysis (e.g., Doxygen)
because they are hard to resolve. We carefully consider and
resolve the relation.

For inheritance and reference relations of invocation cat-
egory, we directly capture them using the tags (e.g., de-
rivedcompoundref, referencedby) in xml files outputted by
Doxygen#. For hidden reference, we parse the xml files based
on its representation in code (as shown in Table I) and the code
structure information of class files obtained in Step 1. Take the
first dependency relation as an example (i.e., the invocation

TABLE I
MAPPING OF RELATIONS BETWEEN RELATIONS IN UML AND IN CODE

Relations
in UML

Representation
in code

Relations
in code

Generalization A subclass e1 extends its superclass e2. Inheritance
Realization Class e1 implements an interface e2 Inheritance

Dependency

A Method of Class e1 usesClass e2
as an argument, e.g., the invocation by
“Class.forName(‘P.e2’)” in reflection

Invocation
(HR)

A Method of Class e1 uses Class e2
in a cast operation.

Invocation
(HR)

Class e1 instantiates Class e2 in e1’methods,
then invokes its methods or variables.

Invocation
(R)

Association

Class e1 uses Class e2
as a member variable.

Invocation
(HR)

A method in Class e1 invokes methods
or member variables of member Class e2.

Invocation
(R)

Class e1 defines a member variable, and
initiates it by invoking Class e2’s methods

or variables, or using e2 in a cast operation.

Invocation
(HR)

Aggregation Class e1 uses Class e2 as
an argument to instance.

Invocation
(HR)

Composition If Class e2 is a component of Class e1,
it can only be instantiated in Class e1.

Invocation
(R)

by “Class.forName(‘P.e2’)” in reflection), for each xml file,
we check whether there is such hidden reference relation by
its representation in code. If there is “Class.forName” in the
xml file, we regard it as this case, and obtain the information
of the referenced class (i.e., e2 as the name of referenced
class, P as the name of e2’s package), and record its position
(i.e., line of code); then we map the position to corresponding
class based on the code structure information, and obtain the
reference class and its information (e.g., class name). Finally,
the hidden reference can be built with the obtained information
of reference and referenced classes.

For convenience of step 3, FEST outputs an inheritance
relation graph (HRG) and an invocation relation graph (VRG).

C. Searching affected classes and identifying related test
classes

In this section, we design a BFS-based (i.e., Breadth-First
Search) search algorithm to incrementally and iteratively look
for a complete set of affected classes and identify related test
classes. Note that since our approach considers the class-level
dependency relations, the tests in this paper means the test
classes.

In detail, for each changed class Ci in C Set, firstly, we use
BFS to search its all subclasses from HRG, and all referenced
classes from VRG which invoke class Ci or its subclasses, and
add them to the set of affected classes A Set. Then, for the
changed class Ci or each affected class, we check whether it
is a test class. Note that we also check the changed class Ci,
which ensures to select the newly-added tests or changed tests.
Following existing work [6], [20], if it contains at least one
method (the method name started with “test” or the method
has the annotation “@Test”, “@BeforeClass”, “@Before”), we
regard it as a test class. If it is a test class, we will add it to the
set of related tests T Set. Finally, when this loop is over, and
A Set is not null, for each class ai in A Set, we apply BFS
iteratively to search its subclasses and referenced classes until
there is no new class found, and identify new test classes, add

50

them to T Set. After the above process, we search affected
classes and identify the set of related tests T Set.

D. Extending test classes

In this section, we aim to complement some tests to re-
detect the deferred faults. These faults detected in the previous
versions might have not been fixed and deferred to subsequent
versions. This strategy has also been applied in existing studies
[2], [11], [23]. In detail, we look for the failed test classes in
recent n versions, then check whether they run again. If not,
we add them into T Set. We have experimented n from 1 to
30, and results showed that the performance is better and more
stable when n is 10. Hence, we apply the recent 10 versions
in the following experiments. Finally, we obtain a final test
set (T Set).

III. EXPERIMENT DESIGN AND EVALUATION METRICS

A. Subject projects and data preparation

According to the activeness and CI testing history avail-
ability, we chose 12 Eclipse projects and 6 Apache projects to
evaluate our approach presented in Section II. We collected the
CI testing history from November 2017 to January 2018 for
the chosen projects, which contains test classes, test methods,
results, etc. From which we can obtain the failed test infor-
mation for each CI version. Then we collected commits from
the Git repository by executing “git log”, checked out source
code by executing “git checkout”; and built the relationship of
the three datasets by the commit id of CI versions. Finally, we
chose the versions for our experiment, in which the number
of changed classes and the number of executed CI tests are
greater than 0; and obtained 261 versions from the 18 projects.

We ran all experiments on a 3.40 GHz Intel Core i7-3770
machine with 8 GB of RAM, running Ubuntu Linux 14.04.3
LTS and Java 64-Bit sever version 1.8.0 73.

B. Baseline approach

To further evaluate the performance of our approach, we
take ClassSRTS [5], [13], the state-of-the-art class-level static
selection technique, as baseline. Besides, we also compare
FEST with the selected tests of actual CI testing, which are
recorded in the repositories.

We did not select any dynamic approach as baseline because
in the most recent work [5], ClassSRTS is compared to
the state-of-the-art dynamic approach, and results show that
ClassSRTS is comparable with the dynamic approach. The
reason we did not compare with dynamic selection is because
it needs to run tests to obtain the dependency information,
which is costly and limits its realization in our study.

C. Evaluation metrics

Following existing work, faults denote failed test classes
where a test class is regarded as fail if at least one of the
test cases in the test class fails, otherwise, it is regarded as
pass. For each CI version, we compare the selected tests and
the failed tests in the CI testing history, and count the failed
test classes contained in the set of selected tests to get the

TABLE II
BASIC METRICS USED IN THE STUDY

Metrics Description
Ct A set of actual CI tests (i.e., actual tests ran during CI testing).

St
A set of selected tests by FEST or ClassSRTS

(marked by St@F and St@C respectively).
Cft A set of faults detected by actual CI testing.

Tft
A set of total faults detected by FEST or ClassSRTS

(marked by Tft@F and Tft@C respectively).

number of detected faults. Regarding a new test class which
is not included in the current set of actual CI testing, it will
be labeled as a detected fault if its first run in the subsequent
versions fails by following previous work [24]. It is because it
should be detected in the previous version, but it was omitted
by actual CI testing. To facilitate understanding, we present
basic metrics used in this paper in Table II.

1) Fault detection efficiency: In this dimension, we define
two metrics to evaluate fault detection efficiency.

(a) Fault coverage (Fcovg) means the percentage of the
faults found by test selection approach (i.e., FEST or ClassS-
RTS) compared with the faults detected in actual CI testing.
Following existing work [4], [12], [20], [25], it is defined as
Equation 1.

Fcovg =
|Tft ∩ Cft|
|Cft|

× 100% (1)

In it, Tft is the faults detected by the measured approach, it can
be Tft@F (for FEST) or Tft@C (for ClassSRTS). This metric
is also used to evaluate the coverage of the faults detected
by FEST compared with the faults detected by ClassSRTS,
where Cft will be replaced by Tft@C. When |Cft| is 0, we
treat Fcovg as 100%.

(b) Fault detection enhancement (Fenhm) means the new
faults which are detected by the measured approach compared
with actual CI testing or ClassSRTS. It is defined as NewFt.

2) Cost effectiveness: In this dimension, we evaluate the
cost effectiveness from test scale benefits and risk compensa-
tion ability.

(a) Test scale benefits (Testscal) evaluates the return on
investment (ROI), i.e., the number of detected faults divided
by the number of running tests, as the existing work [9], [26],
[27]. As we could not obtain the exact set of all faults, we
use the union set of the faults detected by all investigated
approaches and actual CI testing, as previous work [12], [20].
Therefore, we apply a penalty coefficient to adjust ROI, which
is the proportion of the number of faults detected by current
approach to the number of all faults. Hence, Testscal is defined
as Equation 2. The higher value of Testscal the better.

Testscal =
|Tft|
|St|

× |Tft|
|Cft ∪ Tft@F ∪ Tft@C|

(2)

Here, Tft is the fault set of the measured approach, i.e., it can
be Cft (for actual CI testing), Tft@F (for FEST) or Tft@C
(for ClassSRTS). When |St| or |Cft ∪ Tft@F ∪ Tft@C| is
0, we simply treat Testscal as 0.

(b) Risk compensation ability (Riskcomp): Running insuf-
ficient tests for CI could lead to omit some potential faults,
while running necessary and sufficient tests will decrease the

51

quality risk even if sometimes they did not find more faults.
We define risk compensation ability to evaluate the ability of
compensating the omitted necessary tests by actual CI testing.
It is defined as Equation 3.

Riskcomp =
|St| − |(St@F ∪ St@C) ∩ Ct|

|St@F ∪ St@C|
(3)

Here, St is the test set of the measured approach, it can
be St@F or St@C (for Riskcomp of FEST or ClassSRTS).
St@F ∪ St@C means the union set of tests selected by FEST
and ClassSRTS respectively. (St@F∪St@C)∩Ct is the test set
running in actual CI testing and also selected by FEST or base-
line. The positive Riskcomp means that the measured approach
can compensate risk for actual CI testing, the higher value of
Riskcomp the better. In contrast, the negative Riskcomp means
it can not compensate risk. When |St@F ∪ St@C| is 0, we
simply treat Riskcomp as 0.

IV. EXPERIMENT RESULTS AND ANALYSIS

Based on the number of faults detected by actual CI testing
and FEST, we divide the experiment project versions (261)
into four categories. The following subsections will present
their results and analysis respectively.

• Category Dual F (9%:23): both actual CI testing and
FEST detected faults.

• Category FEST F (20%:51): actual CI testing did NOT
detect faults, while FEST detected faults.

• Category Dual NF (70%:184): both actual CI testing and
FEST did NOT detect faults.

• Category CI F (1%:3): actual CI testing detected faults,
while FEST did NOT detect faults.

A. Category Dual F

In Figure 2, the size of bubbles refers to the number of
tests. We order versions by reduced test size between FEST
and actual CI testing, then assign the ID sequentially.

Fig. 2. Number of selected tests and number of detected faults for Dual F

We can easily see that blue bubbles are either higher or
inside other bubbles. It means that FEST can find more or
equal number of faults than ClassSRTS or actual CI testing.
Particularly, in some versions, the difference is quite large.

1) Fault detection efficiency: In Figure 3, FEST can not
only cover all faults detected by actual CI testing and
ClassSRTS, but also find new faults in 65% (15/23) and 83%
(19/23) versions respectively. While ClassSRTS can cover
the faults detected by actual CI testing only in 43% (10/23)
versions, and find new faults in 48% (11/23) versions.

Fig. 3. Fault coverage and detection enhancement compared with actual CI
testing for Dual F

2) Cost effectiveness: In Figure 2, we observe that FEST
selects slightly more tests than ClassSRTS in some versions.
We further analyze the cost effectiveness of FEST.

Test scale benefits: From Figure 4, we can see that FEST
shows better Testscal than actual CI testing in 96% (22/23) ver-
sions. Only in one version (v21), both FEST and ClassSRTS
show slightly lower Testscal than actual CI testing. Compared
with ClassSRTS, FEST shows better or equal Testscal in 87%
(20/23) versions; in other three versions (v2, v19, v20), FEST
shows lower Testcal. For these 4 versions where FEST shows
lower Testcal, it has higher Riskcomp (see the next paragraph),
which indicates our proposed approach can mitigate the risk
of omitting necessary tests.

Fig. 4. Test scale benefits for Dual F (the enlarged figure on the right shows
the details)

Risk compensation ability: In Figure 5, compared with
actual CI testing, FEST has positive Riskcomp in all versions,
while ClassSRTS shows negative Riskcomp in 35% (8/23)
versions. It means that in these 35% versions, ClassSRTS
omits some necessary tests, which might lead to omit faults.

Fig. 5. Risk compensation ability for Dual F

Compared with ClassSRTS, FEST shows higher Riskcomp
in 96% (22/23) versions. It indicates that FEST can compen-
sate more necessary tests than ClassSRTS, even though FEST
selects more test in some cases. Only in 1 versions (v5), FEST
shows lower Riskcomp than ClassSRTS. This is because when
computing Riskcomp, we treat the union set of tests selected
by FEST and ClassSRTS as ground truth of necessary tests.
However, ClassSRTS has selected some unnecessary tests. In
detail, it treats the selected tests as the difference between
the set of all tests and the set of non-affected tests (tests not
affected by changed code). However, the set of all tests could
include some unnecessary classes, e.g., the basic classes which

52

do not have test cases. Hence, the lower Riskcomp@FEST
does not indicate the low effectiveness of our approach.

B. Category FEST F

Similar to category Dual F, in Figure 6, the size of bubbles
refers to the number of tests.

1) Fault detection efficiency: In Figure 6, all green bubbles
lie on X-axis due to |Cft| = 0. It indicates that compared
with actual CI testing, the fault coverage of both FEST and
ClassSRTS are all 100%. More than that, FEST can cover all
faults detected by ClassSRTS and detect more new faults in
57% versions.

Fig. 6. Number of selected tests and number of detected faults for FEST F

2) Cost effectiveness: In Figure 6, test size of FEST is
smaller than actual CI testing, and similar or slightly larger
than ClassSRTS.

Test scale benefits: In this category, Testscal@CI = 0 in all
versions. From Figure 7, we can observe that FEST shows
better Testscal than actual CI testing, and better or equal
Testscal than ClassSRTS in all versions. Especially, in 8
versions, Testscal of FEST is more than three times as large
as that of ClassSRTS.

Fig. 7. Test scale benefits for FEST F (the enlarged figure on the right shows
the details)

Risk compensation ability: In Figure 8, FEST has pos-
itive Riskcomp in 90% (46/51) versions and none negative
Riskcomp, while ClassSRTS shows negative Riskcomp in 24%
versions. Meanwhile, compared with ClassSRTS, FEST has
better or equal Riskcomp in 96% (49/51) and 2% (1/51)
versions respectively. The reason of lower Riskcomp in other 1
version (v63) is similar with the discussion in Section IV-A2.

Fig. 8. Risk compensation ability for FEST F

C. Category Dual NF

In all versions of this category, neither actual CI testing nor
FEST or ClassSRTS detected faults (i.e., Fcovg, Fenhm and
Testscal are 0). Therefore, we only discuss risk compensation
ability for this category.

Risk compensation ability: In Figure 9, FEST has positive
Riskcomp in 49% versions and none negative Riskcomp, while
ClassSRTS shows positive and negative Riskcomp in 28% and
47% versions respectively. Compared with ClassSRTS, FEST
presents higher or equal Riskcomp than ClassSRTS in 91%
(118/261) versions, among which Riskcomp of FEST is twice
as large as that of ClassSRTS in 109 versions. The reason of
lower Riskcomp in 9% versions is similar with the discussion
in Section IV-A2.

Fig. 9. Risk compensation ability for Dual NF

D. Category CI F

1) fault detection efficiency: In all three versions (i.e.,
v259, v260 and v261) of this category, actual CI testing
detected a few faults while ran a large size of tests. Both FEST
and ClassSRTS selected very small test sets while detected no
faults. We further examine the detail of these 3 versions.

In the 3 versions, the faults which are not covered by FEST
do not have any dependencies with the changed and affected
code, and have no failed test history in recent 10 versions. In
other words, these faults were committed in earlier versions,
and should be detected earlier. Hence, detecting these faults is
not the responsibility of current CI testing. This indicates that
the bad performance does not due to the drawback of FEST.

2) Cost-effectiveness: In this category, both FEST and
ClassSRTS did not detect any faults, Testscal of both FEST
and ClassSRTS are zero, lower than actual CI testing.

Risk compensation ability: Regarding risk compensation
ability, both FEST and ClassSRTS positively compensate risk
in all versions, but FEST can get much higher Riskcomp
for all of them even though it did not find any faults. It
is because actual CI testing ran some redundant tests while
omitting necessary tests which results in a high risk of omitting
faults. Meanwhile, FEST presents better or equal Riskcomp
than ClassSRTS in all versions.

Summary: Based on the detailed results and analysis of
the 4 categories, we obtain the summary of FEST across all
categories: (1) FEST can cover all faults detected by actual
CI testing and baseline, and find new faults in 25% and 18%
versions respectively; (2) FEST shows better or equal Testscal
than actual CI testing (in 98% versions) and ClassSRTS (in
99% versions); can compensate risk of omitting necessary tests
for actual CI testing (in 62% versions) and baseline (in 73%
versions).

53

V. VALIDITY

The internal validity of our study arises from the imple-
mentation of baseline and FEST. We implemented baseline by
strictly following the steps described in the original paper [13].
For both baseline and FEST approaches, we have employed
213 test cases to test their functionality. For the suspicious
results, we have manually checked the code, and found they
do not due to the defect in code.

The external validity concerns about our experimental
dataset. We can not guarantee that our results can be fully
generalize to other projects. However, the size of the dataset
(18 projects with 261 versions) and the diversity of domains
relatively reduce this risk.

VI. RELATED WORK

CI test selection based on dynamic dependency: Gligoric
et al. [7] and Vasic et al. [19] implemented a test selection
approach based on dynamic dependencies at the file level
for Java and .NET respectively, and analyzed the strengths
and drawbacks of file-level and module-level test selections.
Because of that, Zhang [15] proposed a hybrid test selection
technique that combined file-level and method-level analysis.
Furthermore, Celik et al. [8] designed a file-level test selection
across JVM boundaries, which can find more dependencies and
improve precision of selection.

CI test selection based on static dependency: Soetens et
al. [25] and Parsai et al. [4] proposed an approach to select
tests on method-level static dependencies and improved it to
deal with invocation in polymorphism. Legunsen et al. [5],
[13] implemented class-level and method-level test selection
techniques based on static dependencies. But the class-level
approach would still omit some tests because it can not obtain
all dependencies (e.g., the dependencies in reflection and
cast operation), while the method-level approach shows worse
performance in fault detection and time cost.

Generally speaking, the drawbacks with existing dynamic
selection approaches are long running tests, non-determinism,
and real-time constraints; while the drawbacks of existing
static selection approaches lie in omitting some tests or select-
ing some unnecessary tests [4]–[6], [13], [20]. Our approach
belongs to static test selection which improves existing ap-
proaches by resolving full dependency relations and selecting
a test set towards fully covering all changed and affected code.

VII. CONCLUSION

In this paper, we propose FEST to select a proper test subset
towards full coverage of all changed and affected code so as
to reduce the cost of CI testing. Evaluations are conducted on
18 projects with 261 CI versions from Eclipse and Apache
communities. Results show that FEST can outperform actual
CI testing and the state-of-the-art ClassSRTS in terms of fault
detection efficiency and cost-effectiveness in most cases.

VIII. ACKNOWLEDGMENTS

We sincerely thank Yun Yang for his contribution to the pa-
per. This work is supported by National Natural Science Foun-
dation of China under Grant No.61602450, No.61432001.

REFERENCES

[1] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
FSE’15, pp. 805–816.

[2] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in FSE’14, pp. 235–245.

[3] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in
ASE’16, pp. 426–437.

[4] A. Parsai, Q. D. Soetens, A. Murgia, and S. Demeyer, “Considering
polymorphism in change-based test suite reduction,” in Agile’14, pp.
166–181.

[5] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in FSE’16, pp. 583–594.

[6] V. Blondeau, A. Etien, N. Anquetil, S. Cresson, P. Croisy, and
S. Ducasse, “Test case selection in industry: An analysis of issues related
to static approaches,” SQJ’16, pp. 1–35.

[7] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in ISSTA’15, pp. 211–222.

[8] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression test
selection across JVM boundaries,” in FSE’17, pp. 809–820.

[9] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing
less without sacrificing quality,” in ICSE’15, pp. 483–493.

[10] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming google-scale continuous testing,” in ICSE’17,
pp. 233–242.

[11] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in ISSTA’17, pp. 12–22.

[12] D. Mondal, H. Hemmati, and S. Durocher, “Exploring test suite diver-
sification and code coverage in multi-objective test case selection,” in
ICST’15, pp. 1–10.

[13] O. Legunsen, A. Shi, and D. Marinov, “Starts: Static regression test
selection,” in ASE’17, pp. 949–954.

[14] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and combining
test-suite reduction and regression test selection,” in FSE’15, pp. 237–
247.

[15] L. Zhang, “Hybrid regression test selection,” in ICSE’18, pp. 199–209.
[16] K. Wang, C. G. Zhu, A. Celik, J. Kim, D. Batory, and M. Gligoric,

“Towards refactoring-aware regression test selection,” in ICSE’18, pp.
233–244.

[17] G. Wikstrand, R. Feldt, J. K. Gorantla, and C. Zhe, W.and White,
“Dynamic regression test selection based on a file cache: An industrial
evaluation,” in ICST’09, pp. 299–302.

[18] E. D. Ekelund and E. Engström, “Efficient regression testing based on
test history: An industrial evaluation,” in ICSME’15, pp. 449–457.

[19] M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric, “File-level vs.
module-level regression test selection for .Net,” in FSE’17, pp. 848–
853.

[20] Q. D. Soetens, S. Demeyer, A. Zaidman, and J. Pérez, “Change-based
test selection: An empirical evaluation,” ESE’16, vol. 21, no. 5, pp.
1990–2032.

[21] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large
software systems,” Acm Sigsoft Software Engineering Notes, vol. 29,
no. 6, pp. 241–251, 2004.

[22] B. Meyer, Object-Oriented Software Construction. Prentice Hall, New
York, N.Y., second edition, 1997.

[23] S. Yoo, R. Nilsson, and M. Harman, “Faster fault finding at google using
multi objective regression test optimization,” in ESEC/FSE’11, pp. 1–4.

[24] A. Beszédes, T. Gergely, L. Schrettner, J. Jász, L. Langó, and
T. Gyimóthy, “Code coverage-based regression test selection and pri-
oritization in webkit,” in ICSM’12, pp. 46–55.

[25] Q. D. Soetens, S. Demeyer, and A. Zaidman, “Change-based test
selection in the presence of developer tests,” in CSMR’13, pp. 101–
110.

[26] S. Mirarab, S. Akhlaghi, and L. Tahvildari, “Size-constrained regression
test case selection using multicriteria optimization,” TSE’12, pp. 936–
956.

[27] E. EngstrÖm, P. Runeson, and A. Ljung, “Improving regression testing
transparency and efficiency with history-based prioritization - an indus-
trial case study,” in ICST’11, pp. 367–376.

54

Amplifying Tests for Cross-Platform Apps
through Test Patterns

Thiago Botti de Assis, André Augusto Menegassi, and Andre Takeshi Endo
Department of Computing

Federal University of Technology – Parana (UTFPR)
Cornélio Procópio, Brazil

thiagobotti@gmail.com, andremenegassi@hotmail.com, andreendo@utfpr.edu.br

Abstract—Cross-platform app development has achieved
meaningful results in practice with frameworks like React Native,
Xamarin, and Apache Cordova. Unlike native apps, such frame-
works support the development of a mobile app that can run in
different platforms. Nevertheless, the literature lacks techniques
to test cross-platform apps since most of the existing works
focus on native Android apps. A promising strategy for native
apps is to amplify test suites so that the specific characteristics
of mobile apps can be tested. This paper aims to investigate
the test amplification of cross-platform apps. To do so, we
apply four test patterns that verify well-known characteristics of
mobile computing and amplify existing test suites. The proposed
approach has been implemented in a tool capable of generating
Appium test scripts and was evaluated with nine cross-platform
apps. The amplified test suites exercise new scenarios, uncovering
23 unique bugs in eight out of nine apps.

I. INTRODUCTION

Smartphones, tablets, e-readers, and wearables have domi-
nated the consumption of digital information and data traffic;
the number of these devices has grown exponentially over the
years [1]. The software running in such devices, so-called
mobile apps (or just apps for short), radically changed the
lifestyle of billions of people around the world, being used
for several hours every day and helping users to perform
a wide variety of activities [2]. To meet the ample range
of users, millions of apps have been developed and are
available for download [3]. Currently, the dominant operating
systems (OSs) for mobile devices are Google’s Android and
Apple’s iOS; they provide their own software development
kits, characterizing the single-platform native development.

In order to reach more end users, the software industry has
shown an upward trend in adopting cross-platform mobile app
development. In such a paradigm, a unique code base is used
to deliver the same app in different platforms (e.g., Android,
iOS, Windows) and their versions [4], [5]. This is aided by
several open source and commercial cross-platform develop-
ment frameworks and tools; the most notable examples are
React Native, Xamarin, and Apache Cordova. Developed by
Facebook, React Native leverages the well-known web library
React to generate mobile apps with native user interfaces (UIs)
and coded in Javascript [6]. Acquired by Microsoft in 2016,
Xamarin offers C# or F# as a common programming language
to develop apps for the three main platforms: Android, iOS and

DOI reference number: 10.18293/SEKE2019-076

Windows. According to Microsoft, 75% of the code is shared
among the platforms on average; this figure can be close
to 100% if the UI toolkit Xamarin.Forms is employed [7].
Finally, Apache Cordova fosters the development of hybrid
apps using standard web technologies like HTML5, CSS3, and
Javascript [8]. As such, it is popular among web developers
and has supported other mobile frameworks like Ionic and
PhoneGap [9], [10].

Apart from this trend, research efforts in engineering high-
quality mobile apps have focused on native development for
Android [11], [12]. The demand for quality in mobile apps
has grown along with their spread; the users want the apps to
be reliable, robust, and efficient. As a consequence, mobile
software engineers must adopt adequate quality assurance
techniques [2]. Software testing is the primary activity to
reduce risks and minimize the presence of bugs in the software.
In a nutshell, testing involves the process of running a software
system with the purpose of uncovering bugs [13].

As mobile apps possess specific features to be checked,
Test Amplification [14] has been investigated in literature to
go beyond functional test cases. Test amplification can be
defined as the extension of existing test cases to verify other
properties of the software under test. This is a promising
strategy for mobile apps that are susceptible to bugs related
to device rotation, interruptions, loss of resources, unique
UI events/components, and so on. The verification of such
specific features can be described in a well-defined set of
generic actions and expected behavior called test pattern [15],
[19]. The amplification by test patterns has been explored in
native Android apps and results have shown effective bug
detection [15], [16], [18], [19]. However, little is known on
how test amplification performs in mobile apps developed with
cross-platform frameworks.

This paper introduces an approach for test amplification of
cross-platform apps. In particular, we describe four test pat-
terns that aim to verify well-known characteristics of mobile
computing and amplify test cases. The proposed approach has
been implemented in a tool, called x-PATeSCO, capable of
producing test scripts for cross-platform apps. We evaluated
the approach and its supporting tool with nine real-world
apps, developed with frameworks React Native, Xamarin, and
Cordova.

This paper is organized as follows: Section II presents the

55

background and related work. Section III brings the test ampli-
fication approach proposed for cross-platform apps. Section IV
presents the evaluation setup and the results are analyzed in
Section V. Finally, Section VI makes the concluding remarks
and sketches future work.

II. BACKGROUND AND RELATED WORK

Mobile computing brings a diverse set of features that may
cause failures in the software developed for such platform.
Holl and Elberzhager [22] propose a failure classification
based on a literature review and a study with developers and
testers of mobile apps. They list events that might make apps
to fail, namely, temporarily disconnected network, network
change (3G - WiFi), GPS temporarily disconnected, weak
battery, globalization (localization, language, date or time
differences between clients and servers), UI changes due to
orientation, screen changes, OS-specific native functionality,
interruptions via incoming calls or text messages, unexpected
termination of an app process, and permissions. Similarly,
Linares-Vásquez et al. [21] manually searched for bugs in
Android apps related to specific features like GPS failures,
loss of access to network data, slow data reception, and device
rotation. The authors used this bug set to elaborate Android-
specific mutation operators and developed a mutation testing
tool for Android apps.

These well-known features have also been used to amplify
existing test cases in a systematic way. Zaeem et al. [16]
also performed a study with bugs from the most popular
open source app projects, identifying feature interactions that
might cause errors. The authors proposed an approach to
verify automatically the feature interactions and a tool was
developed to exhaustively test them. Morgado and Paiva [15]
introduce a catalog of behavioral principles of the Android
UI elements. Such behavioral principles are described as test
patterns related to UI menu elements (drawer style) and device
rotation. They also propose patterns related to features like
GPS and 3G connection. Adamsen et al. [18] explore the
injection of adverse conditions in existing test suites. The
adverse conditions are related to common usage of apps like
pause-stop-resume, rotation, as well as missing or changed
resources such as loss of GPS accuracy, change of mobile
network, and transition between Internet networks (3G-WiFi-
3G). Their results show that the approach is effective in finding
critical flaws and the additional cost in the test time is low,
compared to the number of bugs found.

While test amplification and test patterns have been investi-
gated [15], [16], [18], the state of the art in mobile app testing
is focused on native Android apps [11], [12]. On the other
hand, cross-platform app development has gained momentum
by winning a meaningful market share, and being supported by
big players of the software industry like Facebook, Microsoft,
and Apache Software Foundation. In this context, one might
wonder if the testing techniques developed for native apps are
seamlessly applicable to cross-platform apps. In this paper, we
inquire into test amplification for cross-platform apps; to our
best knowledge, this is the first study on the topic.

III. TEST AMPLIFICATION APPROACH

This section describes the approach we define to test
amplification of cross-platform apps; Figure 1 shows an
overview of the approach. There is a component called
Test Amplification Generator that receives as in-
put a set of system-level test cases TC1, TC2, ..., TCn and
a one or more test patterns. Then, it produces as output a
combination of test cases and test patterns, the amplified test
script. Such scripts can then be executed in the app under test
(AUT).

Fig. 1. Overview of the proposed approach.

The following sections explain how we implemented the
approach. Section III-A details how a test case and a test
pattern are combined to amplify the tests. In particular,
we leverage four test patterns that verify well-known char-
acteristics of mobile apps. Section III-B focuses on the
Test Amplification Generator, describing how we
made the approach applicable to cross-platform apps.

A. Test Patterns

We herein describe the four test patterns adopted in this
work. All test patterns assume that a test case is provided
as a sequence of system-level events, mostly UI actions like
clicking a button, selecting an item, or filling a text field.
The test pattern contains not only a pre-defined sequence of
specific events that should be executed, but also a mechanism
to identify a potential bug (i.e., a test oracle). To simplify
the presented algorithms, we do not treat exceptions that can
be thrown when a given event is executed in the app (e.g., a
crash). Nevertheless, our tool deals with it by capturing the
exception and recording the bug information in a log (further
details in Section III-B). The literature on Android app testing
reports different strategies to amplify test suites [4], [16],
[18], [21]; this study adopts four test patterns, well-known in
literature and that we found relevant to cross-platform apps.

1) Lost Connection (LC): This pattern aims to verify how
the AUT behaves when the Internet connection is lost [15],
[21], [22]. As mobile devices are susceptible to unstable
networks, the AUT is supposed to be aware and react when a
connection is lost. By reacting, we assume that some feedback
is provided to the end user, like an error message or a
warning [17], [20].

56

Algorithm 1 describes how a test case is amplified to
verify a lost connection. It receives as input a test case as
an array of events, and a map of states recorded during the
original execution of the test case. First, the procedure turns
the connection off and starts the app (Lines 4-5). In each
iteration, it checks if the current state is different from the
original state (Line 8); i.e., the connection lost had an impact
on the UI. If the current state has no sign of feedback for the
user (like an error message) (Line 9), we record the scenario
as a bug (Line 10). To resume the verification in the following
events of the test case, we turn the connection on (Line 12),
execute the events normally until the current state (Line 13).
The connection is then turned off (Line 14) and the iteration
continues to the next event (Line 16).

Algorithm 1 Lost Connection Test Pattern
1: procedure LOSTCONNECTION(allEvents[], origStates[])

2: input allEvents[] - Test case as an array of events
3: input origStates[] - Map of states collected from the original execution

4: connection(OFF);
5: startApp();
6: for each event ∈ allEvents do
7: currentState = getActualState();
8: if currentState != origStates[event] then //changed GUI
9: if ! existLostConnectionMsg(currentState) then //no feedback

10: RecordBugInfo();
11: end if
12: connection(ON);
13: bringAppTo(currentState);
14: connection(OFF);
15: end if
16: executeEvent(event);
17: end for
18: end procedure

2) Back Event (BE): This pattern aims to verify how the
AUT behaves when the Back event is triggered during a test
case [16], [22]. We assume that when running, the Back event
must go to a previous screen of the application [17], [20].

Algorithm 2 describes how the test case is amplified to
verify the execution of the Back event. It receives as input
a test case as an array of events. Initially, the procedure starts
the application (Line 3). In each iteration, we execute the
corresponding event, then it is checked if the state after the
event execution is equal to the state before execution (Line 8).
The procedure executes the Back event, and validates whether
the application has returned to the previous state (Lines 9-11).
If the states are different after running the Back event, we
record this scenario as a bug (Line 12). If the states are equal,
the procedure follows the verification for the next event.

3) Side Drawer Menu (SDM): This pattern aims to verify
how AUT behaves when having a side menu [16], [22]. The
menu opens when the user slides from the screen to the center
or clicks in a menu icon or label [15]. We validate if all the
menu items take the app to a different screen.

Algorithm 3 describes how the test case is amplified to
validate the application menus. It receives as input a test
case as an array of events. Initially, the procedure starts the
application (Line 3). For each iteration, we check whether the
application has a menu (Lines 6-23). If there is a menu in

Algorithm 2 Back Event Test Pattern
1: procedure BACKEVENT(allEvents[])

2: input allEvents[] - Test case as an array of events

3: startApp();
4: for each event ∈ allEvents do
5: beforeState = getActualState();
6: executeEvent(event);
7: afterState = getActualState();
8: if beforeState != afterState then //there is a screen transition
9: ExecuteBack();

10: afterBackState = getActualState();
11: if beforeState != afterBackState then //bug detected
12: RecordBugInfo();
13: end if
14: bringAppTo(afterState);
15: end if
16: end for
17: end procedure

the AUT, the procedure checks the menu items empirically
by clicking on them and checking if the application changes
the screen after entering a menu item (Lines 28-33). If the
application does not change screen, we record this scenario
as a bug (Line 31). If no menu item is found, the procedure
proceeds to the next iteration (Line 35).

Algorithm 3 Side Drawer Menu Test Pattern
1: procedure SIDEDRAWERMENU(allEvents[])

2: input allEvents[] - Test case as an array of events

3: startApp();
4: for each event ∈ allEvents do
5: beforeMenuState = getActualState();
6: haveMenu = false;
7:
8: //Try do detect menu by horizontal swipe
9: initialState = beforeMenuState;

10: Swipe();
11: finalState = getActualState();
12: if initialState != finalState then
13: haveMenu = true;
14: else
15: //Try do detect menu by menu button
16: initialState = getActualState();
17: LocateAndClickMenuButton();
18: finalState = getActualState();
19:
20: if initialState != finalState then
21: haveMenu = true;
22: end if
23: end if
24:
25: if haveMenu then
26: menuState = getActualState();
27: for each item ∈ getMenuItems() do
28: tap(item);
29: afterTapItemState = getActualState();
30: if afterTapItemState ∈ {beforeMenuState, menuState} then
31: RecordBugInfo();
32: end if
33: bringAppTo(menuState);
34: end for
35: bringAppTo(beforeMenuState);
36: end if
37: executeEvent(event);
38: end for
39: end procedure

4) Don’t Change State (DCS): This pattern aims to verify
how the AUT behaves when external events triggered by the
user occur during the test case [15], [16], [18]. As mobile
devices are susceptible to these actions, the AUT is supposed

57

to be aware and prevent failures because of external events.
We assume that after the execution of external events, the app
should return to the state it was before [17], [20].

Algorithm 4 describes how a test case is amplified to verify
the external events performed by users. It receives as input a
test case as an array of events, and the type of the external
action to be executed. The types currently supported are
Rotate, Pause-Stop-Resume, Zoom, Swipe, and Scroll. First,
the procedure starts the application (Line 4). For each iteration,
it records the state before and after the external event (Lines 7-
9). If the states are different (the AUT did not return to the
same screen) (Line 10), we record the scenario as a bug (Line
11). The procedure then continues to the next event (Line 12).

Algorithm 4 Don’t Change State Test Pattern
1: procedure DONTCHANGESTATE(allEvents[], type)

2: input allEvents[] - Test case as an array of events
3: input type ∈ {Rotate, PauseStopResume, Zoom, Scroll, Swipe}

4: startApp();
5: for each event ∈ allEvents do
6: executeEvent(event);
7: beforeState = getActualState();
8: execute(type); //execute one of the 5 types
9: afterState = getActualState();

10: if beforeState != afterState then //didn’t come back to the same screen
11: RecordBugInfo();
12: bringAppTo(beforeState);
13: end if
14: end for
15: end procedure

B. Test Amplification Generator

We developed a tool named x-PATeSCO (cross-Platform
App Test Script reCOrder) to support cross-platform mobile
app testing. The tool is built on top of Appium [23], an open
source framework to automate UI tests in native, Web and
hybrid apps. Moreover, Appium is cross-platform and makes
it possible to automate tests for iOS and Android platforms,
using a Selenium WebDriver API. x-PATeSCO is able to read
the elements of an app’s UI and assist the tester in selecting
these elements to design automated test cases.

The Test Amplification Generator component
has been implemented within x-PATeSCO. The four test
patterns aforementioned are embedded into the tool as code
templates, that are integrated with the recorded test cases. Such
integration is realized when the test scripts are generated;
currently, x-PATeSCO produces scripts coded in C#. These
scripts are capable of executing the four test patterns in the
original test case automatically, therefore no manual effort is
required to apply test amplification in cross-platform apps.

IV. EVALUATION SETUP

To evaluate the proposed approach, we set out the following
research questions (RQs):

• RQ1. Can test amplification detect bugs in cross-platform
apps?

• RQ2. What is the impact of test amplification on test
execution?

• RQ3. Are the results replicable in different settings (e.g.,
OS version)?

To answer RQ1, we record the number of unique bugs
detected as a consequence of the test amplification. As our
approach may show false alarms, the number of tests present-
ing failure (failures) and false positives are also collected. So,
for each failure, we try to reproduce it by manually performing
the test steps. For a successful reproduction, we have a bug,
otherwise a false positive. As for RQ2, we measure the
overhead of the amplified tests in test execution time. Given
that Torig is the runtime of the original test cases and Tamp is
the runtime of the amplified tests, the overhead is calculated
by Tamp/Torig. Finally, RQ3 analyzes the results collected
in RQ1 from the perspective of different configurations. In
this study, we only considered different versions of the OS
Android.

Table I lists the nine apps evaluated; for each app, it shows
the project size in number of lines of code (LOC), the cross-
platform app development framework, the number of test cases
(#TCs) and their events (#Ev.). Such cross-platform apps’
size ranges from around 400 LOC to up to 178 KLOC,
and are implemented in different cross-platform development
frameworks (namely, Apache Cordova, React Native, and
Xamarin). Two apps are industrial (namely, MemesPlay and
Bargains) and have been provided by partner IT companies.
The other seven are open source projects obtained from
GitHub. Each app has two or three test cases (with nine to
20 events each), designed by independent participants.

TABLE I
APPS UNDER TEST.

App Size-LOC Framework #TCs (#Ev.)
Fresh-Food-Finder 13824 Cordova 3 (20)

OrderApp 71565 Cordova 3 (16)
MemesPlay 5484 Cordova 3 (12)
Agenda 1038 Cordova 3 (18)

TodoListCordova 9304 Cordova 3 (10)
MovieApp 2088 React Native 3 (10)
TodoList 405 React Native 3 (13)
Tasky 654 Xamarin 3 (9)

Bargains 178266 Xamarin 2 (10)

x-PATeSCO was used to support the experimental evalua-
tion; it connects to Appium which, in turn, connects to mobile
devices to run the test cases and log pieces of information to
answer RQ1, RQ2, and RQ3. The apps were installed in two
devices, one with Android 6.0 and another with Android 7.0,
and all tests were executed in both devices. Besides the mobile
devices, the test projects were run from a computer with an
Intel Core i5 dual-core (2.5 GHz) processor and 8 GB of RAM
without any further processing or communication load in order
to avoid CPU and memory saturation. An Appium server was
also installed in this machine.

To foster future replication and overcome possible threats
to this study, we make the tool and the experiment ob-
jects available as an open source experimental package in
https://goo.gl/7CF4oZ

58

V. ANALYSIS OF RESULTS

a) Bug detection: Table II shows the number of bugs
found, failing test cases (Fail), and false positives (FP); rows
identify the apps and OS version (OS V.), while columns
group the test patterns: Back Event (BE), Lost Connection
(LC), Side Drawer Menu (SDM), and Don’t Change State
(DCS). Column DCS takes into account the results of Ro-
tate, PauseStopResume, Zoom, Scroll, and Swipe. Symbol ’-’
indicates that the test pattern is not applicable in a given app.
For instance, Agenda does not use Internet connection, so
LC is not applicable. In this part, we focus our analysis on
the OS version that had more bugs revealed (namely, Android
6.0).

As for BE, this pattern revealed seven bugs in seven different
apps. We did not observe false positives since all failures were
caused by the identified bugs. In general, this pattern finds a
faulty scenario in which the app does not return to a previous
screen using the back button. Instead, the app terminates, goes
to the background, or returns to a different screen. Concerning
LC, this pattern revealed five bugs in four out of five apps in
which is applicable. It shows a smaller number of failures
and no false positives. This is likely due to the low number
of events that depend on an Internet connection to properly
execute. For instance, OrderApp does not give a feedback on
a lost message due to a failing Internet connection. MovieApp
presents the same bug, and in other scenario of connection lost
the app crashes.

There is no bug, failure or false positive for SDM. While
four apps have menus, all menu items are accessible and
navigate to different screens correctly. We surmise that menus
are built with well-tested UI components and developers pay
special attention to them due to their relevancy in the app.
As a consequence, menus are more tested and less susceptible
to bugs. The DCS test pattern uncovered 11 bugs in eight
apps. Notice that this pattern showed a high number of
failures and false positives. This occurred due to issues related
to the Appium framework. Actions like Zoom, Scroll and
Swipe caused exceptions during the automated test execution,
but we failed to reproduce these scenarios manually. As
for the bugs, the OrderApp, TodoList, Bargains, and
Memesplay apps restarted after a Pause-Stop-Resume action.
Agenda, Fresh-Food-Finder, MovieApp, TodoList,
and Bargains slowed down when performing the zoom
action.

The amplified tests detected 23 unique bugs in eight out of
the nine cross-platform apps. Among the four test patterns,
only SDM did not reveal a bug. A reasonable number of false
positives has been observed, except for DCS. We believe that
new Appium versions and adjustments in x-PATeSCO can
reduce the presence of false alarms in future. The results give
evidence that supports a positive answer for RQ1.

b) Overhead in test execution: Table III shows the over-
head of the amplified tests in test execution time. The overhead
of the test patterns shows some variation among the apps. For

instance, the BE’s overhead ranges from 0.71 to 4.5 times
in comparison with the original test suite. On average, BE
also poses the highest overhead (2.97x), while SDM shows
the lowest average (2.06x). DCS and LC had intermediate
averages, 2.42x and 2.68x, respectively.

TABLE III
OVERHEAD IN THE TEST EXECUTION TIME.

App OS V. BE LC SDM DCS
Fresh-Food-Finder 6.0 4.50 1.70 1.71 2.59

7.0 4.55 1.72 1.70 2.69
OrderApp 6.0 4.25 3.37 - 3.91

7.0 3.36 2.66 - 3.09
Memesplay 6.0 4.25 5.56 3.09 4.47

7.0 2.40 3.58 1.96 2.70
Agenda 6.0 3.44 - 1.82 2.07

7.0 3.42 - 1.64 2.29
TodoListCordova 6.0 3.71 - - 2.62

7.0 4.17 - - 2.87
MovieApp 6.0 2.20 2.54 3.10 2.04

7.0 0.71 0.82 1.02 0.65
TodoList 6.0 1.43 - - 2.40

7.0 1.39 - - 1.99
Tasky 6.0 1.97 - - 2.38

7.0 2.00 - - 2.43
Bargains 6.0 2.22 3.04 - 1.77

7.0 2.50 2.31 - 1.99
Max 4.50 5.56 3.10 4.47
Min 0.71 0.82 1.02 0.65
Avg 2.97 2.68 2.06 2.42

The results show that amplified tests execute from 0.65
to up to 5.56 times the runtime of the original test suite.
Answering RQ2, the impact can be reasonable depending on
the app and test pattern, though the (low) cost of CPU time
might be compensated by the bug detection capabilities of
the proposed approach.

c) Different settings: Due to space limitations, we an-
alyze the results using two settings: Android 6.0 and An-
droid 7.0. As we used two devices with different hardware
configurations, variations in the runtime were expected and
natural (see Table III). So, we focus on the results summarized
in Table II. Notice that there is no discrepancy between the
OS versions for test patterns BE, LC, and SDM. So, the 12
bugs detected by them were detected in both devices. From
the 23 bugs found in Android 6.0, 11 were not observed in
Android 7.0. Fewer failures were also noticed in Android 7.0,
yet the number of false positives was slightly higher.

As all false positives were caused by Appium’s issues,
newer versions of Android seem to be more robust for
automated tests. Surprisingly, all bugs found by DCS in
Android 6.0 were not detected in Android 7.0. We believe
that Android policies for background processes (app not in
focus) may differ between the OS versions. This might cause
a faulty behavior in a specific version.

The different results obtained in Android 6.0 and Android
7.0 give initial evidence that supports a negative answer to
RQ3. This motivates further investigation on different Android
versions and other target OSs like iOS and Windows.

59

TABLE II
NUMBER OF BUGS, FAILURES (FAIL), AND FALSE POSITIVES (FP).

BE LC SDM DCS Total
App OS V. Bug Fail FP Bug Fail FP Bug Fail FP Bug Fail FP Bug Fail FP

Fresh-Food-Finder 6.0 1 10 0 0 0 0 0 0 0 1 31 15 2 41 15
7.0 1 10 0 0 0 0 0 0 0 0 16 16 1 26 16

OrderApp 6.0 1 15 0 1 6 0 - - - 1 9 0 3 30 0
7.0 1 15 0 1 6 0 - - - 0 9 9 2 30 9

Memesplay 6.0 1 8 0 1 6 0 0 0 0 1 23 21 3 37 21
7.0 1 8 0 1 6 0 0 0 0 0 17 17 2 31 17

Agenda 6.0 1 8 0 - - - 0 0 0 1 40 38 2 48 38
7.0 1 8 0 - - - 0 0 0 0 12 12 1 20 12

TodoListCordova 6.0 1 3 0 - - - - - - 1 11 10 2 14 10
7.0 1 3 0 - - - - - - 0 11 11 1 14 11

MovieApp 6.0 1 8 0 2 6 0 0 0 0 3 46 39 6 60 39
7.0 1 8 0 2 6 0 0 0 0 0 46 46 3 60 46

TodoList 6.0 0 0 0 - - - - - - 1 18 13 1 18 13
7.0 0 0 0 - - - - - - 0 15 15 0 15 15

Tasky 6.0 0 0 0 - - - - - - 0 2 2 0 2 2
7.0 0 0 0 - - - - - - 0 2 2 0 2 2

Bargains 6.0 1 3 0 1 5 0 - - - 2 21 5 4 29 5
7.0 1 3 0 1 5 0 - - - 0 20 20 2 28 20

Total 6.0 7 55 0 5 23 0 0 0 0 11 201 136 23 279 143
7.0 7 55 0 5 23 0 0 0 0 0 148 148 12 226 148

VI. CONCLUSION

This paper presented and evaluated an approach to generate
amplified test scripts for cross-platform apps. To do so, we
employed four test patterns that check well-known features of
a mobile application: namely, Lost Connection, Back Event,
Side Drawer Menu, and Don’t Change State. We developed a
supporting tool called x-PATeSCO and nine apps were used
in the experiments. The results gave evidence that test ampli-
fication is capable of uncovering new bugs in cross-platform
apps, though there exists a reasonable overhead in the test
execution time. We also noticed variations between different
versions of Android; this motivates further investigation on
automated tests in multiple configurations of hardware, OSs,
and so on.

ACKNOWLEDGMENT

Andre T. Endo is partially financially supported by CNPq/Brazil
(grant number 420363/2018-1).

REFERENCES

[1] Dzhagaryan, A. and Milenkovi, A. (2016) “Models for Evaluating
Effective Throughputs for File Transfers in Mobile Computing”, In:
ICCCN 2016. doi: 10.1109/ICCCN.2016.7568547.

[2] Amalfitano, D., Riccio, V., Paiva, A. C. R. and Fasolino, A. R. (2017)
“Why does the orientation change mess up my Android application?
From GUI failures to code faults”, STVR journal (September), p. 1–27.

[3] Rumee, S. T. A. and Liu, D. (2013) “DroidTest: Testing Android
Applications for Leakage of Private Information”, In: ISC 2013.

[4] Joorabchi, M. E., Ali, M. and Mesbah, A. (2015) “Detecting inconsis-
tencies in multi-platform mobile apps”, In ISSRE 2015, p. 450–460.
doi: 10.1109/ISSRE.2015.7381838.

[5] El-kassas, W. S., Abdullah, B. A., Yousef, A. H., Member, S. and Wahba,
A. M. (2016) “Enhanced Code Conversion Approach for the Integrated
Cross-Platform Mobile Development (ICPMD)”, 42(11), p. 1036–1053.

[6] Build native mobile apps using JavaScript and React. Available at:
https://facebook.github.io/react-native/ (Accessed: March 2019).

[7] Platform Xamarin. Available at: https://www.xamarin.com/platform (Ac-
cessed: March 2019).

[8] Apache Cordova. Available at: https://cordova.apache.org (Accessed:
March 2019).

[9] Malavolta, I., Ruberto, S., Soru, T. and Terragni, V. (2015) “Hybrid
Mobile Apps in the Google Play Store: An Exploratory Investigation”,
p. 56–59. doi: 10.1109/MobileSoft.2015.15.

[10] Bosnic, S., Papp, I. and Novak, S. (2016) “The development
of hybrid mobile applications with Apache Cordova”. doi:
10.1109/TELFOR.2016.7818919.

[11] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé and J. Klein, ”Automated
Testing of Android Apps: A Systematic Literature Review,” 2018 in
IEEE Transactions on Reliability. doi: 10.1109/TR.2018.2865733

[12] Zein, S., Salleh, N. and Grundy, J. (2016) “A systematic mapping
study of mobile application testing techniques”, Journal of Systems and
Software. Elsevier Inc., 117, p. 334–356. doi: 10.1016/j.jss.2016.03.065.

[13] Myers, G. J., Thomas, T. M. and Wiley, J. (2004) The Art of Software
Testing.

[14] Danglot, B., Vera Perez, O., Yu, Z., Monperrus, M., and Baudry, B.
(2017) “A Snowballing Literature Study on Test Amplification”. CoRR.
Available at: https://arxiv.org/abs/1705.10692

[15] Morgado, I. C. and Paiva, A. (2015b) “The iMPAcT Tool: Testing
UI Patterns on Mobile Applications”, 30th IEEE/ACM International
Conference on Automated Software Engineering The, p. 876–881. doi:
10.1109/ASE.2015.96.

[16] Zaeem, R. N., Prasad, M. R. and Khurshid, S. (2014) “Automated gen-
eration of oracles for testing user-interaction features of mobile apps”,
In: IEEE 7th International Conference on Software Testing, Verification
and Validation, ICST 2014, p. 183–192. doi: 10.1109/ICST.2014.31.

[17] Android Core App Quality. Available at:
https://developer.android.com/docs/quality-guidelines/core-app-quality
(Accessed: March 2019).

[18] Adamsen, C. Q., Mezzetti, G. and Møller, A. (2015) “Systematic
Execution of Android Test Suites in Adverse Conditions”, In: The
International Symposium on Software Testing and Analysis (ISSTA).

[19] Morgado, I. C. and Paiva, A. (2015a) “Testing approach for mobile
applications through reverse engineering of UI patterns”, 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing Workshop (ASEW), p. 42–49. doi: 10.1109/ASEW.2015.11.

[20] Apple iOS Human Interface Guidelines. Available
at: https://developer.apple.com/design/human-interface-
guidelines/ios/overview/themes/ (Accessed: March 2019).

[21] Linares-vásquez, M., Bavota, G., Tufano, M., Moran, K., Penta, M. Di,
Vendome, C., Bernal-cárdenas, C. and William, C. (2017) “Enabling
Mutation Testing for Android Apps”. doi: 10.1145/3106237.3106275.

[22] Holl, K. and Elberzhager, F. (2014) “A Mobile-specific Failure
Classification and its Usage to Focus Quality Assurance”. doi:
10.1109/SEAA.2014.19.

[23] Appium. Available at: http://appium.io/ (Accessed: March 2019).

60

Algebraic Convergence to Software-Knowledge:
Deep Software Learning (TSE)

Iaakov Exman and Assaf B. Spanier
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel

iaakov@jce.ac.il, shpanier@jce.ac.il

Abstract— It is an empirical observation that Software
Engineering and Knowledge Engineering seem to converge to a
single discipline which may be suitably called Software-Knowledge.
However, mere empirical observations are not satisfactory. These
should be justified by plausible arguments. There are three
convergence aspects, semantic, algebraic and topological, and this
paper focuses on the algebraic aspect. Linear algebra is the basis
for Linear Software Models, a rigorous theory of software systems
composition from sub-systems, recently developed. Linear algebra,
with added non-linearity, is also the basis for Deep Learning, a
successful Artificial Intelligence domain. This work suggests and
analyzes Deep Software Learning, i.e. Deep Learning specific to
Software development problems. We then conjecture on deep
reasons for Software-Knowledge convergence.

Keywords: 1 Linear Software Models; Software Composition;
Laplacian Matrix; Deep Software Learning; Software-Knowledge
Convergence; RNN; LSTM; Sequential and Structured Data.

I. INTRODUCTION

It has been observed empirically that the Software
Engineering and Knowledge Engineering disciplines seem to
converge along their relatively short histories. Convergence is
interesting theoretically and in practice. This paper analyzes
Deep Software Learning as a mutual Software and Knowledge
interaction for Software Development problems.

This work ultimate goal is to point out concrete directions to
the rationale of Software-Knowledge convergence, starting from
plausible conjectures. It offers a discussion roadmap for the
Theory of Software Engineering special session on Software-
Knowledge convergence, within the SEKE’2019 conference.

A. Concise Historical Overview

Software as a discipline starts in 1956 with Backus’ Fortran
a high-level programming language. Software Engineering
itself was coined only in the celebrated NATO 1968
conference. Software history is since then a continuous increase
in abstraction level of languages and design techniques. From
structured programming, to object-oriented languages, as Java,
to modeling languages, as UML, and model-driven-engineering

DOI: 10.18293/SEKE2019-213

up to ontologies as conceptual refinement of classes and
inheritance by subclasses.

Knowledge, an Artificial Intelligence (AI) field, started in
1950, with Shannon’s [15], and Turing’s [16] pioneer papers.
Next appear classical AI expert-systems, e.g. Dendral to resolve
chemical structural formulas. These systems separated
inference engines from knowledge bases. Ontologies resulted
from this research thread.

An early algebraic learning theory is the 1969 Perceptrons
by Minsky and Papert [13]. A neural networks sub-field
developed, remaining in research laboratories, for the lack of
computing power. They were renamed “Deep Learning” with
the industrial applications surge, due to added computing power
(e.g. GPU), big data sets, and algorithmic improvements.

B. Aspects of Software-Knowledge
Convergence

This paper is motivated by the following conjecture:

Software-Knowledge convergence consists of three aspects:
1) Semantic – the importance of concepts and

ontologies in both software and knowledge fields;
2) Algebraic – mostly linear algebra as the basis of

software composition theory and Deep Learning in
diverse knowledge domains; this paper’s focus;

3) Topological –graphs (planar or upon manifolds),
with meaningful entities in nodes linked by edges.

Semantics got prominence within Software Engineering with

the claim by Frederick Brooks in his books [1] [2] that
“Conceptual Integrity is the most important consideration for
software system design”. This has been followed by recent
research, e.g. by Jackson [8] and Exman. Semantics within
Knowledge Engineering is prevalent since classical AI research,
somewhat eclipsed by Deep Learning. Ontologies (e.g. the
Protégé tool) are an important facet of it.

Software-Knowledge Conjecture
Software Engineering and Knowledge Engineering are
converging to a single discipline which we call
Software-Knowledge.

61

The Algebraic Software Engineering aspect, recognizing the
importance of Software mathematical theory, e.g. that Linear
Software Models [3], [4] gradually gains traction. The Algebraic
Knowledge aspect, recognizing Deep Learning’s applied surge.

II. RELATED WORK

A. Deep Learning for/by Software
Engineering

Relevant neural networks are Recurrent Neural Networks
(RNN), proposed in 1986 by Rumelhart, Hinton and Williams
[14], and Long Short-Term Memory (LSTM) a special kind of
RNN, proposed by Hochreiter and Schmidhuber [7] in 1997.

Software Engineering applications of Deep Learning for
higher abstraction levels include: program generation from user
intention (Lili Mou et al. [12]); program comprehension, to
generate comments to Java code. (Xing Hu et al. [20]); API
functions extraction from annotated code snippets collected
from GitHub (Xiaodong Gu et al. [19]); and software modeling
for various tasks (Hoa Khanh Dam et al. [6]).

Practical tools deal with software Traceability (Jin Guo et al.
[11]), and fixing of C program errors (Rahul Gupta et al. [5]).
Wei Fu and Tim Menzies [17] combine classical AI with Deep
Learning to shorten training tasks.

B. Algebraic Software Theory: Linear
Software Models

Software composition algebraic theory formalizes Brooks’
Conceptual Integrity idea. Software is a hierarchical system,
where each level is represented by a Modularity Matrix [3], [4].
Matrix columns stand for structural units, object-oriented
classes, and matrix rows for functional units, i.e. class methods.

Brooks’ principles translated into linear algebra demand that
all matrix column vectors be linearly independent and similarly
all the row vectors be linearly independent, obtaining a square
matrix. If vector subsets are disjoint to other subsets, the matrix
displays a block-diagonal form, i.e. the modules are orthogonal.

Modularity matrices may have outliers coupling between
modules. Spectral methods for the Modularity Matrix [3], or the
respective Laplacian Matrix [4], resolve couplings. A Laplacian
obtains the same modules as the Modularity Matrix. The
Fiedler vector, fitting the lowest Laplacian non-zero eigenvalue,
allows locating outliers and splitting of too sparse modules.

III. DEEP SOFTWARE LEARNING: THE PROBLEMS

Deep Software Learning has to assume that software is a
collection of diverse assets: requirements, class diagrams,
statecharts for design, a variety of graphs, models and code.

A. Software Problems to be Solved

Software problems dealt with by Deep Learning can be
classified by their abstraction levels (Fig. 1). Higher abstraction
activities, such as API Extraction, Program Generation and
Program Comprehension depend on a suitable underlying
software modeling. Modeling is high-level abstraction, since
many activities involve translation between models.

Figure 1. Deep Learning to Software Engineering applications, classified by
abstraction levels. In between, the essential Linear Algebra Techniques.

Even lower abstraction level activities, such as correcting
program errors, as done in DeepFix [5] need modeling. Every
programmer has experience with accumulated bugs that result
from misinterpretation (by the compiler!) of only a few bugs.

Linear algebra techniques are essential for Deep Learning.
Richard Wei et al. [18], in their Compiler Infrastructure for
Deep Learning, emphasize linear algebra representation in their
system, such as a first class tensor type, algebraic operators such
as “dot” and “tanh” (a typical sigmoid-like activation function).

B. Software Characterization: Sequential but not
Consecutive, and Structured

Often program feature pairs are sequential but not
appearing in each other neighborhood. Examples are: left and
right parentheses (or braces); open and close a file; Java try
and catch. Code modeling is sequential, but not of consecutive
tokens. Dealing with such sequences, demands specific Deep
Learning (DL) networks. Software also has more complex
structures such as abstract syntax trees, dependency graphs,
design diagrams. Sequences are not enough for software DL.

IV. RECURRENT NEURAL NETWORKS

Recurrent Neural Networks (RNNs) are dedicated to
continuous data, such as text, audio and video. It reuses previous
information about a word in a sentence or video frame to
understand the next word or frame. RNNs handle tasks, like free
text comprehension and text sequences generation from scratch.
To reuse previous information to handle the next input, RNN
has recourse to persistence loops. RNNs have difficulty applying
prediction of long-distance natural language dependencies. Most
translation, voice recognition, and image classification
successes, are due to LSTM a special class of RNNs.

A. LSTM = Long Short-Term Memory

LSTMs remember information for long periods. Forgetting
must be explicitly handled. LSTMs also have a loop structure
of repeating neural network units. The main difference of a
typical LSTM unit from an RNN unit, is 4 layers instead of a
single one. A hidden state Z is the key to LSTMs functioning. It
has an input zt-1 from its predecessor, runs throughout the chain
of (unrolled loop) units, affected by controlled interactions, and
outputs zt to its successor unit. Three gates (in Fig. 2) update
the hidden state Z in each cycle, filtering the output Y parts:

62

• Forget gate ft – sigmoid taking yt-1 and xt and producing
a number between 0 and 1 for each zt-1 value; the part of
the hidden state Z to (fully or partially) discard;

• Input gate – has 2 layers: sigmoid it sets which values
will be updated; tanh creates a new vector of values ,
multiplied by the sigmoid output giving candidate values
actually added to Z:

• Output gate – sigmoid ot filters what will be the output
and what remains the Z output: tanh normalizes zt values
between -1 and +1, then multiplied by the sigmoid ot:
 yt = ot * tanh(zt).

Figure 2. LSTM Deep Learning Network Schematic diagram - The upper (blue)
horizontal line is the Z hidden state, with input zt-1 and hidden output zt. The
lower horizontal line passes the output yt between consecutive units. The three
vertical gates are: the (red) forget gate ft; the (green) input gate it with two
parallel layers (σσσσ and tanh); the (violet) output gate ot. (Color online)

A realistic LSTM test, keeping track of long-range attributes,
takes a large source code and randomly concatenates it into a
long file (e.g. Linux Kernel [9] about 6*106 characters). The
LSTM network is trained to predict special source code
symbols, as whitespace, quotation marks and brackets. To
predict a close bracket, the model must be aware of a matching
open bracket, appearing many time steps ago. LSTM performs
much better than other learning models due to an additional
state feature (hidden state Z) explained above, in contrast to the
standard RNN single hidden state. Results can be improved
with an attention mechanism [21] or bidirectional-LSTM [10].

V. DEEP SOFTWARE LEARNING IN PRACTICE
The Deep Learning (DL) mechanism in the Xing Hu [20]

work deals with sequential code, and Abstract Syntax Tree
(AST) structure, translating sequence-to-sequence, code to
comments. The Encoder/Decoder (both LSTMs) architecture
uses one Encoder pass to traverse the AST, learning the code
relevant to the comments. A second Encoder pass composes the
gathered comment pieces into meaningful sentences.

Rare tokens clutter a vocabulary with single instances.
Practical projects exchange numerals/strings by generic tokens
<NUM> and <STR>, and rare words by “unknowns” <UNK>.

VI. DISCUSSION

Today’s software and knowledge (DL) theories have two

important characteristics: 1- they heavily involve linear algebra;
2- the algebra is totally independent of concepts’ semantics.

Remaining issues are: The algebraic software theory is up to
now strictly linear, while Deep Learning involves non-linearity.
Will there be a convergence also in this sense? The Laplacian
matrix is central to the software theory, while not so prominent
in Deep Learning; will it be important for Deep Learning too?

References

[1] F.P. Brooks, The Mythical Man-Month, Essays on Software Engineering,

Anniversary Edition, Addison-Wesley, Boston, MA, USA, (1995).

[2] F. Brooks, The Design of Design, Essays from a Computer Scientist,
Addison-Wesley, Boston, MA, USA, 2010.

[3] I. Exman, “Linear Software Models: Decoupled Modules from
Modularity Eigenvectors”, Int. Journal on Software Engineering and
Knowledge Engineering, vol. 25, pp. 1395-1426, October 2015. DOI:
10.1142/S0218194015500308

[4] I. Exman and R. Sakhnini, “Linear Software Models: Bipartite
Isomorphism between Laplacian Eigenvectors and Modularity Matrix
Eigenvectors”, Int. Journal of Software Engineering and Knowledge
Engineering, Vol. 28, No 7, pp. 897-935, 2018. DOI:
http://dx.doi.org/10.1142/S0218194018400107

[5] R. Gupta, S. Pal, A. Kanade and S. Shevade, “DeepFix: Fixing Common
C Language Errors by Deep Learning”, Proc. 31st AAAI Conference, pp.
1345-1351, (2017).

[6] Hoa Khanh Dam, Truyen Tran and Trang Pham, “A deep language model
for software code”, arXiv:1608.02715, (August 2016).

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural
Computation, Vol. 9, pp. 1735-1780, (1997).

[8] D. Jackson, “Conceptual Design of Software: A Research Agenda”, MIT-
CSAIL-TR-2013-020, August 8, 2013.

[9] A.Karpathy, J. Johnson and L. Fei-Fei, “Visualizing and Understanding
Recurrent Networks, https://arxiv.org/pdf/1506.02078.pdf.

[10] E. Kiperwasser and Y. Goldberg, “Simple and accurate dependency
parsing using bidirectional LSTM feature representations”, Trans. Assoc.
Computational Linguistics, Vol. 4, pp. 313-327, (2016).

[11] Jin Guo, Jinghui Chang and Jane Cleland-Huang, “Semantically
Enhanced Software Traceability Using Deep Learning Techniques”,
arXiv:1804.02438 (April 2018).

[12] Lili Mou, Rui Men, Ge Li, Lu Zhang and Zhi Jin, “On End-to-End
Program Generation from User Intention by Deep Neural Networks”,
arXiv:1510.07211, (October 2015).

[13] M. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge, MA, USA,
1969.

[14] D.E. Rumelhart, G.E. Hinton and R.J. Williams, “Learning internal
representations by error propagation”, in Rumelhart and McClelland
(eds.) Parallel Distributed Processing, vol. 1, pp. 318-362, MIT Press,
Cambridge, MA, USA, (1986).

[15] C. E. Shannon, “Programming a Computer for Playing Chess”, Phil.
Mag., Series 7, Vol. 41, 18 pages (March 1950).

[16] A.M. Turing, “Computing Machinery and Intelligence”, Mind, New
Series, Vol. 59, pp. 433-460, (October 1950).

[17] Wei Fu and Tim Menzies, “Easy over Hard: A Case Study on Deep
Learning”, ESEC/FSE’17, arXiv:1703.00133, (June 2017). DOI:
https://dx.doi.org/10.1145/3106237.31052546

[18] R. Wei, L. Schwartz and V. Adve, “DLVM: A Modern Compiler
Infrastructure for Deep Learning Systems, Workshop track ICLR 2018,
arXiv:1711.03016, (February 2018).

[19] Xiaodong Gu, Hongyu Zhang, Dogmei Zhang and Sunghun Kim, “Deep
API Learning”, Proc. FSE’16, arXiv:1605.08545 (2017). DOI:
http://dx.doi.org/10.1145/1235

[20] Xing Hu, Ge Li, Xin Xia, David Lo and Zhi Jin, “Deep Code Comment
Generation”, Proc. ICPC IEEE/ACM Int. Conf. Program Comprehension,
11 pages (May 2018). DOI: https://doi.org/10.475/123_4

[21] W. Yin, H. Schutze, B. Xiang and B. Zhou “Abcnn: Attention-based
convolutional network for modeling sentence pairs”, Trans. Assoc.
Computational Linguistics, Vol. 4, pp. 259-272 (2016).

63

Formal ontologies and data shapes within the
Software Engineering development lifecycle (TSE)

Jose María Alvarez Rodríguez
Department of Computer Science and Engineering

Carlos III University of Madrid
Madrid, Spain

josemaria.alvarez@uc3m.es

Valentín Moreno, Juan Llorens
Department of Computer Science and Engineering

Carlos III University of Madrid
Madrid, Spain

{vmpelayo,llorens}@inf.uc3m.es

Abstract— Business models, organizational activities and

corporate strategies are now being reshaped to meet the new needs

of a challenging and evolving environment in which more up-to-

date, secure, safer, cost-efficient and personalized software

products and services must be timely delivered. This new digital

context also represents an opportunity for the improvement and

extension of existing software engineering methods. One of the

current trends in Software Engineering development lies in

boosting interoperability and collaboration between tools and

people through the sharing of existing artifacts under common

data models, formats and protocols to improve the practice and

reuse of existing software artifacts. In this context, formal

ontologies and data shapes play a key role to model and exchange

data and to provide services for data validation (consistency

checking) or type inference as part of a knowledge management

strategy. In this document, an initial review of the different

approaches to model and exchange data of software artifacts is

done to finally evaluate and discuss the proper mechanisms to

technically support the upcoming needs in the Software

Engineering development lifecycle.

Keywords: software development lifecycle; ontologies; data

shapes; interoperability; knowledge representation

I. INTRODUCTION
The Digital Age, the “Society 5.0” in Japan or the “4th

Industrial Revolution” [1] has come to say that any industry,
business or even our daily life will suffer a deep transformation
being driven by software systems.

This new digital context also represents a challenge and an
opportunity for the improvement and extension of existing
software engineering methods. After 50 years [2], the Software
Engineering (SE) discipline has focused on ensuring the
efficiency, correctness, robustness and reliability of software
systems. The development of some SE knowledge areas [3] have
set the foundations of the discipline. Furthermore, the definition
of methodologies, methods and models, software development
lifecycles and their technological support have also represented
a major step to improve the SE practice from both organizational
and scientific/technological points of view[4] [5].

On the other hand, knowledge management techniques have
gained enough momentum in the SE discipline to elevate the
meaning of the implicit knowledge coded into software pieces.
Software as a knowledge asset is becoming a commodity that is
embedded in products, business or manufacturing processes. It

is a new kind of intellectual asset that can help us to reduce costs
and time to market, and to generate competitive advantage. In
this light, knowledge management techniques [6] can be applied
to capture, structure, store and disseminate software artifacts to
directly support methods such as software reuse.

However, one of the cornerstones in knowledge management
lies in the selection of an adequate representation paradigm.
After a long time [7], this problem still persists since a suitable
representation format (and syntax) can be reached in several
ways.

Obviously, different types of knowledge, such as those in the
SE discipline (requirements, source code, test cases, etc.),
require different types of representation [8] [9]. But, on the other
hand, knowledge management also implies the standardization
of data and information within the development lifecycle. Any
bit of information must be structured and stored for supporting
other application services such as business analytics or
knowledge discovery.

One of the current trends in SE development lies in boosting
interoperability and collaboration between tools and people
through the sharing of existing artifacts under common data
models, formats and protocols to improve the practice and reuse
of existing software artifacts. In this context, OSLC (“Open
Services for Lifecycle Collaboration”), model-driven
approaches, etc. are defining a collaborative software
development ecosystem [10] through the definition of data
shapes that serve us as a contract to get access to information
resources through standardized.

In particular, the Representational State Transfer (REST)
software architecture style is commonly used to manage
information and software resources such as requirements, test
cases or even source code that are publicly represented and
exchanged in standard formats such as RDF or just XML.
Obviously, these approaches represent a big step towards the
integration and interoperability between the agents involved in
the software development lifecycle.

However, a knowledge management strategy to take
advantage of software artifacts is beyond of the mere exchange
of data. Consistency checking, type inference, data integrity,
etc. are common operations expected in a knowledge-centric
framework that can help us to improve the practice in the SE
discipline.

64

chema-dell
Typewriter
DOI reference number: 10.18293/SEKE2019-114

In this paper, authors review and discuss the role of
ontologies and data shapes as a mean to represent, exchange and
consume software-related artifacts with the aim of improving
and enriching software development methods providing
capabilities for consistency checking, type inference or data
integrity.

II. BACKGROUND
The Software Engineering discipline [11] [12] [13] initially

focused on the definition of methodologies and methods to
tackle the problem of reliability in software systems and to ease
the reuse of working software products.

The notion of software engineering process was then
defined, and different software development lifecycles (SDLC)
such as the Structured Systems Analysis and Design Method
(SSADM), the Waterfall model, the Rational Unified Process
(RUP), the Rapid application development (RAD) or the Vee
model were established as a method to manage the complexity
of software development. Afterwards, new programming
paradigms, standard notations (e.g. UML or OCL), languages
and tools emerged as way of improving the abstract thinking in
combination with a technological support providing better
development environments.

Once, the methods and the supporting tools were available,
the focus was the reuse of software assets, the quality
management, the definition of maturity models and the
automation of tasks generated during the software development
process. More specifically, the software reuse area gained
momentum through the definition of methods to reuse existing
software components through the abstract description of
different elements, e.g. architectural and design patterns,
libraries, component models or services. Furthermore, coding
practices [14] were also improved adding new foundations such
as the SOLID1 principles or new practices such as refactoring.

Initiatives such as Model-Driven Engineering [15] [16]
(MDE) and Model-Driven Architecture (MDA) later posed the
foundations to automate the production of software for specific
domains. In the last decade, software product lines [17] have also
been subject of study and application as a method for automating
the creation of families of software products.

At the development level, the emerging use of Agile methods
[18], inspired by the Spiral model, such as XP, Scrum or Kanban
and, processes such as BDD (Behavior-Driven Development) or
TDD (Test Driven-Development) have also led us to improve
the software development practice in combination with
approaches such as DevOps [19] (Development and
Operations). The latter are often applying to ease the continuous
transition of software systems from a development to a
production environment as a mean for the early detection of
“bugs” and the improvement of the maintenance and change
management processes.

In summary, the Software Engineering discipline has
reached a great maturity level. There is a huge body of

1 “The Principles of OOD”. Source:
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod (last visited: 20th
of February, 2019)

knowledge and practice that allow us to acknowledge which are,
and which are not, the software engineering practices that really
represent timeless scientific and technological foundations for a
proper software development process. That is why, knowledge
management techniques are aimed at enhancing existing SE
methods by providing a knowledge layer on top of the data
generated during the development lifecycle.

III. FORMAL ONTOLOGIES VS DATA SHAPES
In the early days of the Semantic Web, formal ontologies

[20] designed in RDFS (Resource Description Framework
Schema) or OWL were the key technologies to model and share
knowledge.

From upper ontologies such as DOLCE (Descriptive
Ontology for Linguistic and Cognitive Engineering) or SUMO
(The Suggested Upper Merged Ontology) to specific
vocabularies such FOAF (Friend Of A Friend) or SKOS (Simple
Knowledge Organization System), the process to share
knowledge consisted in designing a formal ontology for a
particular domain and populate data (instances) for that domain.
Although the complete reuse of existing ontologies was
expected, the reality demonstrated that every party willing to
share knowledge and data would create its own ontologies. Thus,
the main idea behind web ontologies was partially broken since
just a few concepts were really reused.

Once the Linked Data initiative (RDF + HTTP) emerged to
unleash the power of existing databases, a huge part of the
Semantic Web community realized that a formal ontology was
not completely necessary to exchange data and knowledge.

Taking into account that ontologies were still present, the
efforts were focused on providing methods for data consistency
[21] through the execution of procedures such as: 1) reasoning
processes to check consistency, and 2) rules, mainly in SWRL
(Semantic Web Rule Language) or SPARQL [22] [23]. These
procedures are not fully recommended, due to performance
issues, when a huge number of instances are available. As a new
evolution, then, the community realized that ontology-based
reasoning was not the most appropriate method for data
validation when data is being exchanged.

That is why in recent times the Semantic Web community
has seen an emerging interest to manage and validate RDF
datasets according to different shapes and schemes. A data shape
can be defined as a resource, i.e. metamodel, that describes
contents of, and constraints on, other resources. In this way, it is
possible to not just improve but to overcome some of the well-
known restrictions [24] of RDF encoded data: 1) lack of support
to represent certain knowledge features N-ary relationships [25],
2) practical issues dealing with reification [26] and blank nodes
[27]. New specifications and methods for data validation
(consistency) are being designed to turn reasoning-based
validation into a kind of grammar-based validation.

65

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Table 1 Comparison of methods for RDF data validation.

These methods take inspiration from existing approaches in
other contexts such as DTD (Document Type Definition), XML-
Schema or Relax NG (REgular LAnguage for XML Next
Generation) for XML, or DDL (Data Definition Language) for
SQL (Structured Query Language).

The W3C launched in 2014 the RDF Data Shapes Working
group having as main outcome the SHACL (Shapes Constraint
Language), W3C Recommendation, and the ShEX (Shape
Expressions) language [31] [32]. Both are formal languages for
expressing constraints on RDF graphs including cardinality
constraints as well as logical connectives for disjunction and
polymorphism. OSLC Resource Shapes [28], Dublin Core
Description Set Profiles [29], and RDF Unit [30] were also
other constraint languages for data validation in the context of
Linked Data.

 Following a more classical approach for RDF data
validation, the Pellet Integrity Constraints is an extension of the
existing semantic web reasoner [34] that interprets OWL
ontologies under the Closed World Assumption with the aim of
detecting constraint violations in RDF data. These restrictions
are also automatically translated into SPARQL queries. This
approach has been implemented on top of the Stardog 2
database, enabling users to write constraints in SPARQL,
SWRL or as OWL axioms. This approach has been reported as
a method for data validation and type inference in some case
studies (e.g. NASA Knowledge Graph)3 were logical models
are translated into OWL instances and, then, a reasoning
process (semantic web based or rule-based) is executed to find
inconsistencies, infer types, etc. However, the complexity and
time to make transformations between object models and
Description Logics seems to be not very effective since the
same information is being modelled at the same time under two
different paradigms. Finally, the SPIN language [35] also
makes use of SPARQL (mainly its syntax) to define constraints
on RDF-based data that can be executed by systems supporting
SPIN (SPARQL Inferencing Notation), such as the TopBraid’s

toolchain.

In conclusion, the relevance of data validation to exchange
RDF-encoded data is clear. RDF Data Shapes in its different
flavors, such as OSLC Resource Shapes, are becoming the

2 http://stardog.com/

cornerstone for boosting interoperability among agents, see
Table 1. It is also clear that ontologies are becoming less
important although a combined approach (data shapes and a
formal ontology) can provide important benefits in terms of
data validation and knowledge inference (if needed). In the
context of SE and reuse, as it has been previously outlined,
software artifacts must take advantage of new technologies to
enable practitioners the automatic processing of exchanged
data.

IV. KNOWLEDGE MANAGEMENT WITHIN THE SOFTWARE
ENGINEERING PROCESS

Software is becoming a commodity, knowledge that is
embedded in every product, business and development or
manufacturing process. Assuming that a software artifact is a
knowledge asset, the ground truth about knowledge
characteristics [36] is also valid for software artifacts:

• Use of knowledge does not consume it.
• Transfer of knowledge does not imply losing it.
• Knowledge is abundant; the problem lies on the proper

use and exploitation.
• Much of an organization’s valuable knowledge walks

out the door at the end of the day.

According to the current SE context, it seems that graph-
approaches based on a semantic network and deployed under a
set of standards in a service-oriented environment, are the most
appropriate candidates. Considering this environment, the
following knowledge representation paradigms (focusing on
web-oriented technologies) have been selected for comparison:

1-The Resource Description Framework (RDF) [37] is a
framework for representing information resources in the Web
using a directed graph data model. The core structure of the
RDF abstract syntax is a set of triples, each consisting of a
subject, a predicate and an object. A set of such triples is called
an RDF graph. An RDF graph can be visualized as a set of
nodes and directed-arcs diagram, in which each triple is
represented as a node-arc-node link. RDF has been used as the
underlying data model for building RDFS/OWL ontologies,
gaining momentum in the web-based environment due to the
explosion of the Semantic Web and Linked Data initiatives that

3 https://www.stardog.com/blog/nasas-knowledge-graph/

Process Type Creation Scope Refs.

Consistency check Vocabulary-based Semantic Web reasoner RDF datasets [21]
Data validation

(integrity)
Query-based Hand-made RDF templates RDF datasets [22]
Vocabulary-based Hand-made RDF datasets [23]
Vocabulary-based Hand-made or automatically

generated by an OSLC API
OSLC Resource Shape [28]

Vocabulary-based Hand-made Dublin Core Description Set Profiles [29]
Query-based RDF Unit (test creation) RDF datasets [30]
Query-based

(generated from ShEX
expressions)

Automatic generation of SPARQL
queries

RDF datasets [31] [32]
[33]

Vocabulary and Query-
based

Automatic generation of SPARQL
queries

OWL and RDF under Closed World
Assumption

[34]

Query-based SPIN language + SPARQL queries RDF datasets [35]

66

aim to represent and exchange data (and knowledge) between
agents and services under the web-based protocols.

2-The RDF Schema (RDFS) [38, p. 1] provides a data-
modeling vocabulary for RDF data. It represents a first try to
support the creation of formal and simple ontologies with RDF
syntax. RDFS is a formal and simple ontology language in
which it is possible to define class and property hierarchies, as
well as domain and range constraints for properties. One of the
benefits of this property-centric approach is that it allows
anyone to extend the description of existing resources.

3-The OWL (Ontology Web Language) [39] is an ontology
language for capturing meaningful generalizations about data in
the Web. It includes additional constructors for building richer
class and property descriptions (vocabulary) and new axioms
(constraints), along with a formal semantics. OWL 1.1 consists
of three sub-languages with different levels of expressivity: 1)
OWL Lite, 2) OWL DL (Description Logics) and 3) OWL Full.

4-The OWL 2.0 [39] family defines three different profiles:
OWL 2 EL (Expressions Language), OWL 2 QL (Query
Language) and OWL RL (Rule Language). These profiles
represents a syntactic restriction of the OWL 2 Structural

Specification and more restrictive than OWL DL. The use of
profiles is motivated by the needs of different computational
processes. OWL EL is designed for enabling reasoning tasks in
polynomial time. The main aim of OWL 2 QL is to enable
conjunctive queries to be answered in LogSpace using standard
relational database technology. Finally, OWL 2 RL is intended
to provide a polynomial time reasoning algorithm using rule-
extended database technologies operating directly on RDF
triples. In conclusion, OWL 2.0 adds new functionalities
regarding OWL 1.x. Most of them are syntactic sugar but others
offer new expressivity [39]: keys, property chains, richer
datatypes, data ranges, qualified cardinality restrictions,
asymmetric, reflexive, and disjoint properties; and enhanced
annotation capabilities.

3-The RIF Core (Rule Interchange Format) [40] comprises
a set of dialects to create a standard for exchanging rules among
rule systems, in particular among Web rule engines. RIF was
designed for exchanging rather than developing a single one-
fits-all rule language. RIF dialects fall into three broad
categories: first-order logic, logic-programming, and action
rules. The family of dialects comprises: 1) logic-based dialects
(RIF-BLD) including languages that employ some kind of logic
such as First Order Logic (usually restricted to Horn Logic) or
non-first-order logics; 2) rules-with-actions (RIF-PRD) dialects
comprising rule systems such as Jess, Drools and JRules as well
as event-condition-action rules such as Reaction RuleML. RIF
also defines compatibility with OWL and serialization using
RDF.

5-The SRL (System Representation Language) [41] [42] is
based on the ground idea that whatever information can be
described as a group of relationships between concepts.
Therefore, the leading element of an information unit is the
relationship. For example, Entity/Relationship data models are
certainly represented as relationships between entity types;

software object models can also be represented as relationships
among objects or classes; in the process modeling area,
processes can be represented as causal/sequential relationships
between sub-processes. Moreover, UML (Unified Modeling
Language) or SysML (System Modeling Language)
metamodels can also be modeled as a set of relationships
between metamodel elements.

SRL also includes a repository model to store information
and relationships with the aim of reusing all kind of knowledge
chunks. Furthermore, text-based information can certainly be
represented as relationships between terms by means of the
same structure. Indeed, to represent human language text, a set
of well-constructed sentences, including the
subject+verb+predicate (SVP) should be used. The SVP
structure can be then considered as a relationship typed V
between the S and the predicated P. In SRL, the simple
representation model for describing the content of whatever
artifact type (requirements, models, tests, maps, text docs or
source code) is as follows:

SRL representation for artifact α = 𝑖α =
{(𝑅𝑆𝐻𝑃1), (𝑅𝑆𝐻𝑃2), … , (𝑅𝑆𝐻𝑃𝑛)} where every single RSHP
(relationship) is called RSHP-description and must be described
using terms.

One important consequence of this representation model is
that there is no restriction to represent a particular type of
knowledge. Furthermore, SRL has been used as the underlying
information model to build general-purpose indexing and
retrieval systems, domain representation models [41],
approaches for quality assessment of requirements and
knowledge management tools such as knowledgeMANAGER.

Obviously, a plethora of other knowledge representation
mechanisms and paradigms can be found as it is presented
below. However, we focus here on comparing those that satisfy
the three basic ideas of this study: 1) a language for representing
any artifact metadata and contents; 2) a system for indexing and
retrieval and 3) a standard input/output interface (data
shape+REST+RDF) to share and exchange artifact metadata
and contents.

The SBVR (Semantics of Business Vocabulary and Rules).
It is an OMG standard to define the basis for formal and
detailed natural language declarative description of a complex
entity. The Ontology Definition Metamodel (ODM). It is an
OMG standard for knowledge representation, conceptual
modeling, formal taxonomy development and ontology
definition. It enables the use of a variety of enterprise models as
starting points for ontology development through mappings to
UML and MOF.

ODM-based ontologies can be used to support: 1)
interchange of knowledge; 2) representation of knowledge in
ontologies and knowledge bases; and 3) specification of
expressions that are the input to, or output from, inference
engines. The Reusable Asset Specification (RAS), an OMG
standard that addresses the engineering elements of reuse. It

67

http://en.wikipedia.org/wiki/Natural_language

attempts to reduce the friction associated with reuse
transactions through consistent, standard packaging.

V. EVALUATION AND DISCUSSION

The previous section has reviewed the main approaches for
knowledge representation in a web-oriented environment for
exchanging software artifacts. As a result, Table 2 (in the
Annex) shows the main characteristics and capabilities that can
be found in RDF, RDFS, OWL and SRL with special focus on
those regarding knowledge management and, more specifically
knowledge representation. In order to select the proper
mechanism for knowledge representation of software artifacts,
the following points must be considered:

• RDF is based on a directed graph and it can only
represent binary relationships (unless reification and
blank nodes are used). As a representation mechanism,
RDF presents some restrictions that have been outlined
in several works [24] . For instance, N-ary relationships
[25], practical issues dealing with reification [26] and
blank nodes [27] are well-known RDF characteristics
that do not match the needs of a complete framework for
knowledge representation. Furthermore, RDF is built on
two main concepts: resources and literals. However, a
literal value cannot be used as the subject of an RDF
triple. Although this issue can be overcome using a
blank node (or even reification) and the property
rdf:value, it adds extra complexity for RDF users.
Finally, RDF has been designed to represent logical
statements, constraining also the possibility of
representing other widely used paradigms such as
objects or entity-relationships models. Due to these
facts, it seems clear that RDF can be used for
exchanging data, but it is not the best candidate for
knowledge representation.

• RDFS is a good candidate for modeling lightweight
formal ontologies including some interesting
capabilities close to object-oriented models. RDFS
ontologies can be serialized as RDF, but this feature can
also be a disadvantage due to expressivity restrictions of
RDF. Again, RDFS has been designed for expressing
logical statements that describe web resources, so its use
for other types of information seems to be not advisable.

• Building on the previous discussion, OWL presents a
family of logic dialects for knowledge representation. It
is based on strong logic formalisms such as Description
Logic or F-Logic. It was also designed for asserting facts
about web resources although it can be used as a general
logic framework for any type of knowledge. One of the
main advantages of OWL is the possibility of
performing reasoning processes to check consistency or
infer types. However, reasoning can be considered
harmful in terms of performance and most of times it is
not necessary when data is being exchanged. Besides,
OWL is not the best candidate for data validation, a key
process in knowledge exchange.

• RIF Core and the family of RIF dialects have been
included in this comparison due to the fact that most of

domain knowledge is embedded in rules. However, RIF
was not designed for data validation and its acceptance
is still low (just a few tools export RIF and less are
capable of importing RIF files). On the other hand, RIF
makes use of the web infrastructure to exchange rules,
what means also that this environment is a very good
candidate to exchange data, information and knowledge.

• SRL, based on relationships, allows domain experts to
create relationships between terms, concepts or even
artifacts (containers). It provides a framework for
knowledge representation with capabilities for
expressing any kind of cardinality and N-ary
relationships. SRL is based on undirected property
graphs, enhancing expressivity. Although it has not been
directly designed for data validation, its metamodel
allows the possibility of checking cardinality, value
constraints, domain and range restrictions. One of the
strong points of SRL is the native support of a tool such
as knowledgeMANAGER and the possibility of
automatically providing semantic indexing and retrieval
mechanisms. Both have generated a relevant acceptance
in the industry for authoring and quality checking.

Finally, as a general comment, there is also a lack of tools
working natively on RDF. Furthermore, RDF was conceived to
exchange information over the web. Although some RDF
repositories can provide capabilities for indexing and searching
RDF resources through an SPARQL interface, the experience
has demonstrated that most of times RDF is translated into the
native data model of a tool.

Based on this evaluation and considering the three basic
requirements of this review, we conclude that RDF is a good
alternative to exchange data. Since formal ontologies and
reasoning processes are not completely necessary and, instead,
data validation is a key aspect for boosting interoperability and
reuse of software artifacts, it also seems clear that an approach
like SRL can perfectly fit to the major objective of knowledge
representation in the SE discipline. However, we recognize that
the use of formal RDFS or OWL ontologies is not incompatible
with data shapes, but possible. RDFS and OWL are languages
for building domain vocabularies, while SRL is already a
domain vocabulary for knowledge representation, so it is
possible to define SRL in a formal RDFS/OWL ontology.

VI. CONCLUSIONS AND FUTURE WORK

The application of the Linked Data principles to exchange
data in the software development lifecycle is gaining
momentum. Software artifacts reuse via interoperability is a key
enabler for boosting collaboration in the development of
complex software systems. The concept of continuous
engineering is becoming a reality since it is possible to integrate
data and services under common protocols and data models.

In this context, the capability of reusing existing software
artifacts is a key factor that can ease teams to develop systems
faster and safer. However, software is not anymore, a piece of
logical instructions but a kind of knowledge and organizational
asset. That is why a proper environment for knowledge

68

management of software artifacts should provide the
appropriate mechanisms for representing, storing, indexing and
retrieving any kind of software artifact. However, some
approaches such as OSLC relying on Linked Data principles
cannot easily deployed due to issues regarding expressivity in
RDF or the need of tools for easily process RDF (mainly from
a developer perspective). In this context, the use of well-
documented REST APIs (e.g. based on standards such the
OpenAPI Specification) are good enough to access and
exchange data generated during the development lifecycle.

ACKNOWLEDGMENTS
The research leading to these results has received funding

from the Celtic Next-EUREKA initiative under code Nº
C2017/3-2-IoD (Internet of DevOps) and from specific national
programs and/or funding authorities.

REFERENCES
[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann,

“Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014.
[2] M. Kersten, “Five Predictions for the Coming Decades of Software,”

IEEE Softw., vol. 35, no. 5, pp. 7–9, Sep. 2018.
[3] P. Bourque, R. E. Fairley, and others, Guide to the software

engineering body of knowledge (SWEBOK (R)): Version 3.0. IEEE
Computer Society Press, 2014.

[4] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From

metaphor to theory and practice,” Ieee Softw., vol. 29, no. 6, pp. 18–

21, 2012.
[5] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical

debt,” J. Syst. Softw., vol. 86, no. 6, pp. 1498–1516, 2013.
[6] I. Nonaka and H. Takeuchi, The knowledge-creating company: How

japanese companies create the dynamics of innovation. New York:
Oxford University Press, 1995.

[7] R. Hull and R. King, “Semantic database modeling: Survey,
applications, and research issues,” ACM Comput. Surv. CSUR, vol. 19,
no. 3, pp. 201–260, 1987.

[8] R. Davis, H. Shrobe, and P. Szolovits, “What is a knowledge
representation?,” AI Mag., vol. 14, no. 1, p. 17, 1993.

[9] T. Groza, S. Handschuh, T. Clark, S. Buckingham Shum, and A. de
Waard, “A short survey of discourse representation models,” 2009.

[10] K. Manikas and K. M. Hansen, “Software ecosystems – A systematic
literature review,” J. Syst. Softw., vol. 86, no. 5, pp. 1294–1306, May
2013.

[11] R. Pressman, Software Engineering: A Practitioner’s Approach, 7th
ed. New York, NY, USA: McGraw-Hill, Inc., 2010.

[12] I. Sommerville, Software engineering, Tenth edition. Boston: Pearson,
2016.

[13] C. Ebert, “50 Years of Software Engineering: Progress and Perils,”

IEEE Softw., vol. 35, no. 5, pp. 94–101, Sep. 2018.
[14] R. C. Martin, Ed., Clean code: a handbook of agile software

craftsmanship. Upper Saddle River, NJ: Prentice Hall, 2009.
[15] D. C. Schmidt, “Guest Editor’s Introduction: Model-Driven

Engineering,” Computer, vol. 39, no. 2, pp. 25–31, Feb. 2006.
[16] M. Brambilla, J. Cabot, and M. Wimmer, “Model-Driven Software

Engineering in Practice,” Synth. Lect. Softw. Eng., vol. 1, no. 1, pp. 1–

182, Sep. 2012.
[17] P. Clements and L. Northrop, Software product lines: practices and

patterns. Boston: Addison-Wesley, 2002.
[18] R. C. Martin, Agile software development: principles, patterns, and

practices. Prentice Hall, 2002.

[19] L. Bass, I. M. Weber, and L. Zhu, DevOps: a software architect’s
perspective. New York: Addison-Wesley Professional, 2015.

[20] V. R. Benjamins, D. Fensel, and A. Gómez-Pérez, “Knowledge

Management through Ontologies,” in PAKM, 1998.
[21] K. Baclawski, M. M. Kokar, R. J. Waldinger, and P. A. Kogut,

“Consistency Checking of Semantic Web Ontologies,” in

International Semantic Web Conference, 2002, pp. 454–459.
[22] C. Bizer and R. Cyganiak, “Quality-driven information filtering using

the WIQA policy framework,” Web Semant. Sci. Serv. Agents World

Wide Web, vol. 7, no. 1, pp. 1–10, Jan. 2009.
[23] A. Hogan, J. Umbrich, A. Harth, R. Cyganiak, A. Polleres, and S.

Decker, “An empirical survey of Linked Data conformance,” Web

Semant. Sci. Serv. Agents World Wide Web, vol. 14, pp. 14–44, Jul.
2012.

[24] S. Powers, Practical RDF. Beijing ; Sebastopol: O’Reilly, 2003.
[25] N. Noy and A. Rector, “Defining N-ary Relations on the Semantic

Web,” W3C Working Group, 2006.
[26] V. Nguyen, O. Bodenreider, and A. Sheth, “Don’t like RDF

reification?: making statements about statements using singleton
property,” 2014, pp. 759–770.

[27] A. Mallea, M. Arenas, A. Hogan, and A. Polleres, “On blank nodes,”

in The Semantic Web–ISWC 2011, Springer, 2011, pp. 421–437.
[28] A. G. Ryman, A. L. Hors, and S. Speicher, “OSLC Resource Shape: A

language for defining constraints on Linked Data,” in LDOW, 2013.
[29] K. Coyle and T. Baker, “Dublin Core Application Profiles Separating

Validation from Semantics,” W3C, Mar. 2013.
[30] D. Kontokostas et al., “Test-driven evaluation of linked data quality,”

in 23rd International World Wide Web Conference, WWW ’14, Seoul,

Republic of Korea, April 7-11, 2014, 2014, pp. 747–758.
[31] I. Boneva, J. E. L. Gayo, S. Hym, E. G. Prud’hommeau, H. R. Solbrig,

and S. Staworko, “Validating RDF with Shape Expressions,” CoRR,
vol. abs/1404.1270, 2014.

[32] J. E. L. Gayo, E. Prud’hommeaux, I. Boneva, and D. Kontokostas,
“Validating RDF Data,” Synth. Lect. Semantic Web Theory Technol.,
vol. 7, no. 1, pp. 1–328, Sep. 2017.

[33] J. Alvarez-Rodríguez, J. Labra-Gayo, and P. Ordoñez de Pablos,
“Leveraging Semantics to Represent and Compute Quantitative
Indexes: The RDFIndex Approach,” in Metadata and Semantics

Research, vol. 390, E. Garoufallou and J. Greenberg, Eds. Springer
International Publishing, 2013, pp. 175–187.

[34] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” J Web Sem, vol. 5, no. 2, pp. 51–53,
2007.

[35] Holger Knublauch, James A. Hendler, and Kingsley Idehen, “SPIN -
Overview and Motivation,” W3C, Member Submission, Feb. 2011.

[36] D. Morey, M. T. Maybury, and B. M. Thuraisingham, Knowledge

management: classic and contemporary works. Cambridge, Mass.:
MIT Press, 2002.

[37] P. Hayes, “RDF Semantics,” World Wide Web Consortium, Feb.

2004.
[38] D. Brickley and R. V. Guha, Eds., RDF Schema 1.1. W3C

Recommendation, 2014.
[39] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S.

Rudolph, “OWL 2 Web Ontology Language Primer,” World Wide
Web Consortium, W3C Recommendation, Oct. 2009.

[40] H. Boley, G. Hallmark, M. Kifer, A. Paschke, A. Polleres, and D.
Reynolds, Eds., RIF Core Dialect (Second Edition). W3C
Recommendation, 2013.

[41] I. Dı́az, J. Llorens, G. Genova, and J. M. Fuentes, “Generating domain
representations using a relationship model,” Inf. Syst., vol. 30, no. 1,
pp. 1–19, Mar. 2005.

[42] J. M. Alvarez-Rodríguez, J. Llorens, M. Alejandres, and J. M.
Fuentes, “OSLC-KM: A knowledge management specification for
OSLC-based resources,” INCOSE Int. Symp., vol. 25, no. 1, pp. 16–

34, Oct. 2015.

69

Annex I

Feature RDF [37] RDFS [38, p. 1] OWL [39] RIF Core [40] SRL [41]

Full Name Resource Description Framework Resource Description
Framework Scheme

Ontology Web Language Rule Interchange Format System Representation Language

First Version 1.0 (February 2004) 1.0 (February 2004) 1.0 (February 2004) First edition (December 2012) v1 (January 2004)
Last version 1.1 (February 2014) 1.1 (February 2014) 2.0 (December 2012) Second edition (February 2013) v14 (January 2015)
Designed for Representation of logical statements Data modeling vocabulary

for RDF data
Formal ontology design Definition of Horn rules Representation of relationships between

knowledge items
Target use Data exchange of facts, rules and ontologies Data model Ontology creation Rule interchange Universal knowledge representation and re-use
Data model Directed graph Directed graph Directed graph Object Model Undirected (property) graph
Underlying

semantics

RDF formal semantics RDFS Semantics OWL 2. Direct Semantics and RDF-
based Semantics

RIF Core Semantics Explicit metamodel

Expressivity Simple RDF triples (s, p, o) to represent
binary relationthips.

Classes (sub and super
classes) and Properties
(domain and ranges)

OWL 1.1:
• DL (Description Logic),
• Lite,
• Full
OWL 2.0:
• EL (Expressions Language)
• QL (Query Language)
• RL (Rule Language)

• RIF-Core (Core Dialect)
• RIF-BLD (Basic Logic Dialect)
• RIF-PRD (Production Rule

Dialect)
• RIF-FLD (Framework for

Logic Dialects)
• RIF-OWL 2 RL and RIF RDF
• RIF XML

Any kind of relationship (𝐒𝐕𝐏).
• N-ary relationships.
• Non logic formalism.
• Knowledge containers. (reification)

Validation RDF Data Shapes:
• OSLC Resource Shapes, SHACL

(Shapes Constraint Language)
• SheX (Shape Expressions)
• SPIN (SPARQL Inferencing

Notation) and SPARQL Rules

Semantic reasoning + see
RDF

Semantic reasoning + see RDF Metamodel conformity Metamodel conformity

Inference Not at graph level. Yes, but restricted to type
inference and super/sub
classes and properties

Yes, depending on the underlying
logic formalism: First Order Logic,
F-Logic, DL, etc.

Yes Not at graph level.

Identifiers URIs (HTTP URIs if Linked Data).
Unique Name Assumption (UNA).

See RDF See RDF Internal IDs and UNA. Internal IDs and UNA.

Access protocol HTTP-based (REST resources) See RDF See RDF See RDF and native APIs Native API
Query language SPARQL and RDQL See RDF SWRL XPATH (if XML is used as

serialization format)
RSHP query language

Storage RDF repository (native RDF repositories,
graph-based databases, and wrappers on top
of existing relational databases)

See RDF See RDF Native API SQL or NonSQL database

Formats (syntax) RDF/XML, JSON, Turtle, N3, Manchester See RDF See RDF XML RDF/XML, ISO 25964-“The international

standard for thesauri and interoperability with
other vocabularies”, etc.

Visualization RDF visualization libraries such as Allegro
graph or RDFgravity and other general-
purpose graph visualization frameworks
Graphviz, Touchgraph, Gephi, Cytoscape,
D3.js.

See RDF See RDF Native Rule IDEs RSHP visualization language and the
aforementioned general-purpose graph
visualization frameworks.

Application Integration of databases, applications and
services through a common and shared data
model.

See RDF See RDF Interchange of business rules and
connection with existing ontologies

Semantics-based information retrieval using a
natural language interface to support other
services such as traceability or quality.

Status W3C recommendation W3C recommendation W3C recommendation W3C recommendation Industry-oriented
Tools Protégé, SWOOP or Terminae, TopBraid

Composer (ontology editors)
See RDF and RDFS
reasoners such as Pellet,
Racer or Jess

See RDFS JRules, Drools or Jess (mainly
exporters not importers)

knowledgeMANAGER (a complete suite for
knowledge management with RDF import/export
capabilities)

Table 2 A comparison among the main approaches for knowledge representation using an underlying semantic network.

70

Towards an Ontology to Support Decision-making
in Hospital Bed Allocation (TSE)

Debora Engelmann, Julia Couto, Vagner Gabriel, Renata Vieira, and Rafael H. Bordini
School of Technology, PUCRS - Pontifical Catholic University of Rio Grande do Sul - Porto Alegre, Brazil
Email: [debora.engelmann, julia.couto, vagner.gabriel]@edu.pucrs.br, [renata.vieira, rafael.bordini]@pucrs.br

Abstract—Using advanced technologies is imperative to sup-
port quick decision-making in a hospital, where people work with
complex and critical processes. An example of a complex and very
important task is to make the best decision about in which room
and bed a patient should be admitted to hospital, considering the
patient needs, characteristics, and available resources. In this
case, bad decisions can even compromise patient health. With
this study, we aim to facilitate patient-related decisions related
to bed allocation, based on an ontology. To do so, we developed
an ontology that takes patients’ information into account to help
health professionals decide where to allocate them. Our main
contribution is an ontology, with classes, relationships, individu-
als, and rules to be used in specific scenarios. Additionally, we
exemplify some scenarios in which the rules could be applied.

Index Terms—Ontology, health care, hospital bed allocation.

I. INTRODUCTION

Hospital decision-making is an important and complex task,
which demands a great deal of cognitive effort from health
professionals [13]. In this way, tools and technologies that
facilitate decision making are great alternatives to help health
professionals reduce their cognitive load and possible errors
caused by fatigue.

Information technology is widely adopted in modern medi-
cal practice, especially to support administrative tasks, patient
electronic records, and data management [15]. Artificial Intel-
ligence (AI) has also been highlighted in several applications
in the medical field, e.g. to predict patient inflow [8], identify
high-quality physicians based on big data [24], and estimate
surgical time duration [21].

Ontologies provide the basis to establish an explicit formal
concept specification in a specific domain, allowing the devel-
opment of relationships between these concepts and the reuse
and integration of domain knowledge [10]. In the hospital
domain, ontologies provide information associated with a
wealth of knowledge about clinical decisions [3], medication
[2], diagnoses [19], medical records [11], and so on.

In this paper, we report the development of an ontology for
bed allocation, which we developed for the Portuguese lan-
guage. Our ontology is composed of classes, object properties,
and individuals, enabling us to present real scenarios that can
be tested using its rules. The main function of our ontology is
to assist decision making about the place where patients will
be allocated when being admitted to hospital, according to the
patient’s records, characteristics, and the bed allocation rules
used in the particular hospital.

II. THEORETICAL BACKGROUND

The development, dissemination, and use of common com-
munication standards, vocabularies, and ontologies are impor-
tant for the development of health systems [13]. Therefore, in
this section we explore some of the main concepts related to
our work, such as hospital bed allocation and ontologies.

A. Hospital bed allocation
Hospital bed management is an important part of operational

capacity planning and control, and it involves the efficient use
of resources [17]. Each hospital has its own rules, but there
are some factors that must be considered when choosing a bed
for a patient, such as age, patient condition, and gender.

Effective management of beds has always been a challenge
for managers, given that hospital settings are highly dynamic
and uncertain. It is necessary to accommodate both scheduled
and emergency patients, requiring multiple expertise in a
wide range of hospital departments with various different
constraints [4].

Furthermore, in a hospital there are many other resources
that need to be allocated and many decisions that always
need to be made as quickly as possible. An ontology-based
decision support system can be useful to quickly make the
right decisions, even helping save lives.

B. Ontology
An ontology is an explicit and formal specification of

a shared conceptualisation made up of concepts or classes,
relationships, instances, attributes, axioms, restrictions, rules,
and events [20]. An ontology communicates what kinds of
things exist and how they are related to each other [22]. A
standard for representing ontologies that is widely used both in
academia and industry is the OWL (Ontology Web Language),
is a language for representing ontologies that is based on
formal logic, a discipline that evolved from philosophy and
mathematics [22].

For instance, Protégé1 is a open source tool that implements
OWL. A Protégé ontology consists of classes, properties,
individuals, and rules. Classes are concepts in the domain of
discourse. Object properties are slots that describe properties
or attributes of classes. Individuals are class instances, and
rules are axioms specifying additional constraints. The on-
tology and its class individual instances with specific values
comprise a knowledge base on Protégé [14].

1https://protege.stanford.eduDOI reference number: 10.18293/SEKE2019-130

71

https://protege.stanford.edu

III. BED ALLOCATION ONTOLOGY

The inspiring approach [5] was used in the development of
the ontology containing 95 classes, 85 object properties, and
78 individuals. We created the original version in Portuguese,
but we translated the terms here for consistency with the
study report. Next, we explain its components, and present
and exemplify the rules we created based on the hospital bed
management context. Due to space constraints, we are not able
to present here all the details, properties, rules and ontology
visual representation, so we provide it in a repository at
GitHub: https://github.com/DeboraEngelmann/Hospital-Bed-
Allocation-Ontology.

A. Classes

In this section, we detail the classes we created. Note that
all the concepts described here refer to the scenario created
by the researchers, and they can have different meanings in
different contexts.

Attendance: The term attendance is used to refer to the
whole period the patient attended any activity in a hospital,
either ambulatorial or hospitalisation. Ambulatorial is the
assistance that occurs via prior scheduling or by emergency
need. It has Elective (when it is scheduled) and Emergency
sub-classes (when it occurs without scheduling, because of
an urgent need of the patient). Hospitalisation occurs when
the patient needs to stay in hospital for more than one day,
occupying a Hospital_Bed.

Risk_Classification: A risk category assigned to patients
when they start being cared for, widely used in the emer-
gency sector to prioritise patients in worst health conditions.
We describe it based on Manchester protocol, defined by
Mackway-Jones, Marsden, and Windle [9]. Sub-classes range
from immediate to non urgent. A patient that has risk of
death is classified as Very_urgent. Patients with immediate
risk of limb loss or loss of organ function are classified
as Very_urgent. Patients with conditions that can worsen if
not helped soon are Urgent. Patients with low risk of health
damage are Standard, and the ones without any immediate risk
of health damage are Non_urgent.

Temporal_concept: Concepts related to the timing of
events. It includes the following sub-classes: Now, Year, Date,
Day, Today, Hour, Time interval, Month, and Week.

Document: It refers to the documents generated during
or after a patient’s attendance. It includes diagnosis, report,
prescription, and medical records. (1) Diagnosis: made by a
doctor, it determines the disease nature and cause, based on the
patient history, symptoms, examination, etc. (2) Report: made
by a specialist doctor, it usually contains the analysis of exams,
such as radiology, laboratory, etc. (3) Prescription: made by a
doctor, it includes drugs and treatments recommended to the
patient. 4) Medical_records: it includes all the data related to
the patient that can be accessed and stored by the hospital.

Disease: Biological alteration of a person’s health state,
manifested by a set of symptoms.

Speciality: Represents the medical specialisation or exper-
tise that the doctor possesses or that the patient needs.

State: it represents patient conditions, and has 5 sub-classes:
Coma, In treatment, Stable, Severe, and Vegetative.

Situation: it represents hospital bed conditions, and has 5
sub-classes: Blocked, Clean, Free, Occupied, and Dirty.

Local: places inside a hospital. Sub-classes are: Corridor,
Pharmacy, Bed, Room, Reception, and Hospitalisation_Unit.
The hospitalisation_Unit also has sub-classes named: Spe-
ciality_Unit, Nursery, Pediatrics, Intensive_Care Unit, and
Special_Care_Unit.

Medication: the drugs stored on the Pharmacy, which are
meant to treat the patients.

Furniture: All the furniture that belongs to the hospital. For
this study, we describe just two sub-classes: Bed and Stretcher.

Person: People who belong to the hospital ecosys-
tem. Sub-classes are: Companion, Man, Woman, Patient,
and Employee. Employee has the following sub-classes:
Administration, Cleaner, Receptionist, Security_Guard, and
Health_Professional. The last one comprehends Nurse, Nurs-
ing_Technician, and Doctor. Doctor also have sub-classes
named: Generalist, Resident, and Specialist. Specialist has the
following sub-classes: Cardiologist, Dermatologist, Neurolo-
gist, Oncologist, Pediatrician, Pneumologist, Radiologist, and
Traumatologist.

Restriction: rules to restrict bed allocation. (1) Routing:
Origin of the patient, for example if he came from the
emergency or is an elective patient. (2) Age: person’s age
group, which can be adult, teenager, or child. (3) Gender: male
or female. (4) Isolation: Refers to the cases where the patient
cannot be in the a room with other patients. (5) Puerperal:
Women who just gave birth. (6) Length_Of_Stay: Predicted
time of patient stay in the hospital, can be turn-fast or long-
stay. (7) Hospital_Care: Hospital care the patient needs, can
be surgical or clinical. (8) Type_Of_Care: Type of care that
the patient needs, can be minimal, semi-intensive or intensive.

Symptom: Signs to which the patient refers when talking
about his illness (pain, fever, etc.).

Treatment: Set of instructions of procedures that the doctor
recommends for the patient undergo.

B. Object Properties

We created 85 relationships between the classes, and some
of them presented in Table I. The full list is available at
GitHub. We have not included all possible relationships be-
tween classes, only those we consider interesting for this
domain, so we could see clearly how the classes relate to each
other, to help us test the rules.

C. Individuals

We instantiated 78 individuals, so we could use the reasoner
to test our rules. Individuals we created include Patient, Room,
Hospital_Bed, Symptoms, and so on. To create them, we used
names such as Patient1, 100, 100A, Headache, and so forth.

D. Rules

Our ontology aims to help decision making about the
beds where patients can be allocated according to the bed

72

https://github.com/DeboraEngelmann/Hospital-Bed-Allocation-Ontology
https://github.com/DeboraEngelmann/Hospital-Bed-Allocation-Ontology

TABLE I
BED ALLOCATION ONTOLOGY – OBJECT PROPERTIES

Domain Object Property Range Inverse of Domain Object Property Range Inverse of

Companion accompanies Patient is-accompanied-
by

Hospital_Bed bed-is-of-the-
age-group

Age

Attendance happens-in Temporal_concept Hospital_Bed bed-is-the-
attendance

Hospital_Care

Nurse allocates Hospital_Bed is-allocated-by Hospital_Bed bed-is-care Type_Of_Care
Health_Profess. analyses Document is-analysed-by Hospital_Bed bed-is-routing Routing
Patient presents-one Disease Hospital_Bed bed-is-stay Length_Of_Stay
Employee attend Patient is-attended-by Hospital_Bed bed-is-of-the-

gender
Gender

Doctor attend-the-
speciality

Speciality Hospital_Bed bed-is-
puerperal

Puerperal

Health_Profes. evaluates Patient is-evaluated-by Hospital_Bed own-one Situation
Patient consumes Medication is-consumed-by Bedroom bedroom-is-

speciality
Speciality

Doctor discharges Patient is-discharged-by-
the

Bedroom bedroom-is-
the-attendance

Hospital_Care

Patient vacates-one Hospital_Bed is-vacated-by Bedroom bedroom-is-
care

Type_Of_Care

Doctor diagnoses-one Patient is-diagnosed-by Bedroom bedroom-is-
routing

Routing

allocation constraints. Thus, we establish rules that propagate
information about restrictions by registered individuals. We
are aware that a lot of rules can be created to help decision
making related to bed allocation in hospitals. We present a
sample of the ones we created for our ontology in Table II.

1) First scenario: For some hospitals, there are a number
of bedrooms that have no preferential gender. It means one
can allocate male or female patients to those bedrooms, but
not both.Let us say there is a bedroom with two empty beds,
and then a man is allocated to one of those beds. Thereafter,
while there is a man in this bedroom, only another man can
occupy the other bed. Nevertheless, as soon as the bedroom is
empty, women can occupy it too, according to the priority in
the queue of patients to be hospitalised. In this scenario, our
rules work as follows. If a male patient is placed in a bed,
RULE 1 infers that the patient is male, RULE 23 infers that the
bed has become male only, RULE 29 infers that if a bed of
the bedroom is for male patients, then the bedroom must also
be male only, and finally, RULE 19 infers that if a bedroom is
male only, all the beds in that room are too.

2) Second scenario: Patient disease and condition also
influences bed allocation. For instance, when a woman is
suspected to have a disease transmitted by air and highly
contaminating, she must be isolated, having her own bedroom,
and be attended by a Pneumologist doctor. In this case, when
allocating this patient in a bed, RULE 21 infers that if the
patient is of the Pneumology speciality then the bed where
she was allocated is also of that speciality. RULE 9 infers that
the bedroom where this bed is also is of the Pulmonology
speciality. Finally, RULE 8 infers that if there are other beds
in that bedroom, they all have that same speciality. In addition,
because it is a patient in isolation, rule 20 infers that if the
patient is in isolation, so is the bed. RULE 2 infers that if the
bed is for isolation then the bedroom should also be. And

finally, RULE 27 infers that all beds in the bedroom should be
of the same type of isolation.

3) Third scenario: Another important restriction related
to bed allocation is age group. When a child has to be
hospitalised, we can only allocate them in the same bedroom
with people up to 12 years old. The rules we can apply in
this case are: RULE 24 that infers that if the patient in a bed
is of a certain age group then the bed is also; RULE 16 infers
that the bedroom is the same age group as the bed that has a
person allocated; and RULE 18 that infers that all other beds
in the bedroom have the same age group.

4) Fourth scenario: When a healthy baby is born, its
mother must be allocated in a bed in the Maternity Unit,
because she needs a baby crib next to her bed. In this case,
RULE 12 infers that if the patient is of a puerperal type, then
the bed is of the same type. RULE 7 infers that the bedroom to
which the bed belongs will be of the same puerperal type, and
RULE 28 infers that in this case, the other beds in that bedroom
must only be allocated women who just gave birth to a healthy
child. In addition to these scenarios, we create rules with this
same type of reasoning for all other constraints.

IV. RELATED WORK

A considerable number of papers studied ontologies on
hospital domains. In this Section, we summarise some of
them. Rubin [18] presents Radlex, a standard terminology
widely used in the radiology field. Mhiri and Despres [12]
use ontologies as indexing support to generate more accurate
clinical reports. Kataria et al. developed HIWO [6], a for-
mal description of an intelligent hospital domain, based on
a ontology. The Nurse Call System (oCS) [15], developed
by Ongenae et al., uses an ontology to manage context
information about patient profiles and team members. An
Ontology for Hospital Scenarios (OntHoS), created by Becker
et al. [1], aims to establish a basis for a description of these

73

TABLE II
RULES OF THE ONTOLOGY

Rules

1. Patient(?X),Man(?X)→ is− of − the− gender(?X,Male)

2. Hospital_Bed(?Y), Bedroom(?Z), is− in(?Y, ?Z), bed− is− isolation(?Y, ?I)→ bedroom− is− isolation(?Z, ?I)

7. Hospital_Bed(?Y), Bedroom(?Z), is− in(?Y, ?Z), bed− is− puerperal(?Y, ?Q)→ bedroom− is− puerperal(?Z, ?Q)

8. Hospital_Bed(?Y), Bedroom(?Z), is− in(?Y, ?Z), bedroom− is− speciality(?Z, ?S)→ bed− is− speciality(?Y, ?S)

9. Hospital_Bed(?Y), Bedroom(?Z), is− in(?Y, ?Z), bed− is− speciality(?Y, ?S)→ bedroom− is− speciality(?Z, ?S)

12. Patient(?X), is− puerperal(?X, ?Q), Hospital_Bed(?Y), occupy − one(?X, ?Y)→ bed− is− puerperal(?Y, ?Q)

16. Hospital_Bed(?Y), Bedroom(?Z), is− in(?Y, ?Z), bed− is− of − the− age− group(?Y, ?G)→ bedroom− is− of − the− age− group(?Z, ?G)

18. Hospital_Bed(?Y), Bedroom(?Z), is− in(?Y, ?Z), bedroom− is− of − the− age− group(?Z, ?G)→ bed− is− of − the− age− group(?Y, ?G)

19. Hospital_Bed(?Y), Bedroom(?Z), is− in(?Y, ?Z), bedroom− is− of − the− gender(?Z, ?H)→ bed− is− of − the− gender(?Y, ?H)

21. Patient(?X), is− speciality(?X, ?S), Hospital_Bed(?Y), occupy − one(?X, ?Y)→ bed− is− speciality(?Y, ?S)

23. Patient(?X), is− of − the− gender(?X, ?H), Hospital_Bed(?Y), occupy − one(?X, ?Y)→ bed− is− of − the− gender(?Y, ?H)

24. Patient(?X), is− of − the− age− group(?X, ?G), Hospital_Bed(?Y), occupy − one(?X, ?Y)→ bed− is− of − the− age− group(?Y, ?G)

27. Hospital_Bed(?Y), Bedroom(?Z), is− in(?Y, ?Z), bedroom− is− isolation(?Z, ?I)→ bed− is− isolation(?Y, ?I)

28. Hospital_Bed(?Y), Bedroom(?Z), is− in(?Y, ?Z), bedroom− is− puerperal(?Z, ?Q)→ bed− is− puerperal(?Y, ?Q)

29. Hospital_Bed(?Y), Bedroom(?Z), is− in(?Y, ?Z), bed− is− of − the− gender(?Y, ?H)→ bedroom− is− of − the− gender(?Z, ?H)

scenarios and facilitate their interoperability. We also found a
UML-based ontology to describe hospital information system
architectures [23], an ontology for intelligent assistants in pa-
tient management based on rules [16], and an ontology-based
health context information model to implement omnipresent
environments [7]. Different from our work, none of them
focuses on bed allocation.

V. CONCLUSIONS

In this paper we presented the concepts, properties, and rules
we developed for an ontology that can be used to help decision
making about the place where the patients will be allocated
when hospitalised, according to predefined bed allocation
rules. We also present four different examples of scenarios in
which the ontology could be used. Our ontology has not been
used yet in a real scenario, although it is freely available online
and we hope it can motivate people to use it. The full version
of our ontology has 95 classes, 85 object properties, and 78
individuals. As future work we plan to evaluate our ontology
with domain specialists. Our ontology can also be extended
and explored in other directions such as the definition of the
number of patients per nurse, distribution and classification of
the patients in beds, among other possibilities.

REFERENCES

[1] M. Becker et al., OntHoS - an Ontology for Hospital Scenarios.
Birkhäuser Verlag, 2003, pp. 87–103.

[2] J.-J. Chen et al., “Applying ontology techniques to develop a medication
history search and alert system in department of nuclear medicine,”
Journal of Medical Systems, vol. 36, no. 2, pp. 737–746, Apr 2012.

[3] B. Cánovas-Segura et al., “A lightweight acquisition of expert rules
for interoperable clinical decision support systems,” Knowledge-Based
Systems, vol. 167, pp. 98 – 113, 2019.

[4] M. d. S. Grübler et al., “A hospital bed allocation hybrid model based
on situation awareness,” CIN, vol. 36, no. 5, pp. 249–255, May 2018.

[5] C. W. Holsapple et al., “A collaborative approach to ontology design,”
Commun. ACM, vol. 45, no. 2, pp. 42–47, Feb 2002.

[6] P. Kataria et al., “Implementation of ontology for intelligent hospital
wards.” in HICSS. IEEE Computer Society, 2008, p. 253.

[7] J. Kim et al., “Ontology-based healthcare context information model to
implement ubiquitous environment,” Multimedia Tools and Applications,
vol. 71, no. 2, pp. 873–888, Jul 2014.

[8] D. A. Kottalanka Srikanth, “An efficient patient inflow prediction model
for hospital resource management,” Indonesian Journal of Electrical
Engineering and Computer Science, vol. 7, no. 3, pp. 809–817, 2017.

[9] K. Mackway-Jones et al., Emergency triage: Manchester triage group.
John Wiley & Sons, 2013.

[10] H. Martin et al., “Medical ontologies for machine learning and decision
support,” mar 2011, uS Patent 7,899,764.

[11] R. Messaoudi et al., “An ontological model for analyzing liver cancer
medical reports,” in Information Systems, M. Themistocleous et al., Eds.
Cham: Springer International Publishing, 2019, pp. 369–382.

[12] S. Mhiri et al., “Ontology usability via a visualization tool for the
semantic indexing of medical reports (dicom sr),” in USAB. Springer,
2007, pp. 409–414.

[13] J. Nealon et al., “Agent-based applications in health care,” in Applica-
tions of software agent technology in the health care domain. Springer,
2003, pp. 3–18.

[14] N. F. Noy et al., “The knowledge model of protégé-2000: Combining
interoperability and flexibility,” in Knowledge Engineering and Knowl-
edge Management Methods, Models, and Tools, R. Dieng et al., Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 17–32.

[15] F. Ongenae et al., “An ontology-based nurse call management system
(oncs) with probabilistic priority assessment,” BMC Health Services
Research, vol. 11, no. 1, p. 26, Feb. 2011.

[16] V. L. Payne et al., “Hospital care watch (hcw): an ontology and rule-
based intelligent patient management assistant,” in CBMS, June 2005,
pp. 479–484.

[17] N. C. Proudlove et al., “Can good bed management solve the overcrowd-
ing in accident and emergency departments?” Emergency Medicine
Journal, vol. 20, no. 2, pp. 149–155, 2003.

[18] D. L. Rubin, “Creating and curating a terminology for radiology:
ontology modeling and analysis,” Journal of digital imaging, vol. 21,
no. 4, pp. 355–362, 2008.

[19] L. Subirats et al., Personalization of Ontologies Visualization: Use Case
of Diabetes. Cham: Springer International Publishing, 2019, pp. 3–24.

[20] M. Tovar et al., “A metric for the evaluation of restricted domain
ontologies,” Computación y Sistemas, vol. 22, no. 1, pp. 147–162, Mar
2018.

[21] J. P. Tuwatananurak et al., “Machine learning can improve estimation
of surgical case duration: A pilot study,” Journal of Medical Systems,
vol. 43, no. 3, p. 44, Jan 2019.

[22] M. Uschold, “Demystifying owl for the enterprise,” Synthesis Lectures
on Semantic Web: Theory and Technology, vol. 8, no. 1, pp. i–237, May
2018.

[23] A. Winter et al., “A uml-based ontology for describing hospital informa-
tion system architectures,” Studies in health technology and informatics,
vol. 84, no. Pt 1, p. 778—782, 2001.

[24] Y. Ye et al., “A hybrid it framework for identifying high-quality physi-
cians using big data analytics,” International Journal of Information
Management, vol. 47, pp. 65 – 75, 2019.

74

A Software System is Greater than its Modules’ Sum:
Providers & Consumers’ Modularity Matrix (TSE)

Iaakov Exman and Harel Wallach
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel

iaakov@jce.ac.il, harel.wallach@gmail.com

Abstract— Modularity Matrices and their Laplacians enable
finding software system modules by a rigorous algebraic
procedure. However, Modularity Matrices have up to now focused
mainly on structors as providers of functionals. This paper takes a
broader view at the software system as a whole. The Software
System Modularity Matrix, besides displaying provider
relationships, also describes which structors consume functionals
provided by other structors. This broader view improves software
system design in two ways. First, consumer relationships set
realistic expectations for consumer numbers and roles. Second, the
Software System Modularity Matrix generates standard design
criteria for interacting providers and consumers. This standard
System matrix obeys linear independence of its constituent vectors,
and block-diagonality of its recognizable modules. The novelty
consists of modules being composed into a whole working Software
System by means of a limited number of consumers playing the
role of module connectors. Modules and their connectors are
formally obtained by the same spectral method applied to the
respective Laplacian, which obtained provider matrices. This is
illustrated by case studies. 1

Keywords: Linear Software Models; Spectral Software Design;
Modularity Matrix; Laplacian Matrix; Providers; Consumers;
Modules; Connectors; Linear Independence; Block-Diagonality.

I. INTRODUCTION

Linear Software Models represent each abstraction level of a
given Software System by means of a Modularity Matrix [8],
[10] or its corresponding Laplacian Matrix [13], [14]. These
models enable rigorous software design of any given system:

• Standard Matrix – is defined as an exact criterion

to compare different proposed designs;
• Matrices highlight the need of redesign –

pinpointing eventual coupling problem locations.

A Modularity Matrix is made of column structors – a
generalization of classes in object-oriented programming
languages – and row functionals – a generalization of class
methods. A matrix element is 1-valued if its structor provides
the respective functional. Otherwise, the element is zero-valued.

DOI: 10.18293/SEKE2019-003

The meaning of a structor as a provider of a functional is e.g.
a class containing the declaration/definition of a method, usable
by other classes. Another structor using such a functional is
called a consumer (e.g. a class calls a method of another class).

This paper’s goal is to propose and deal with the broader
sense of Modularity Matrix, and its corresponding Laplacian,
displaying not only providers, but also matrix elements standing
for consumers. This extended Modularity Matrix is a more
complete representation of Software from the system
perspective and is of practical interest for software design.

This Introduction concisely reviews concepts of Modularity
and Laplacian matrices.

A. Software Modularity

A central problem to be solved by software engineering is
the hierarchical composition of a software system from sub-
systems, down to software architecture units, typically classes,
considered indivisible by the designer.

 Solving the software system composition problem involves
software modularity. Applying Linear Software Models, one
designs one or more Modularity Matrices, obtaining modules
by spectral methods. One then compares their quality with a
square and block-diagonal standard matrix, resolving eventual
coupling problems, highlighted by the matrices.

A simple example of a schematic Modularity Matrix with
providers only is shown in Fig. 1. It has five structors and five
functionals. It displays three modules, the blocks along the
diagonal. It is a standard Modularity Matrix as it does not have
any outlier, a 1-valued matrix element outside the modules.

B. Modularity Matrices and their Laplacians

A Laplacian Matrix is easily generated from a Modularity
Matrix in two steps:

• Extract a bipartite graph – with a structors’ vertex set
and a functionals’ vertex set having edges corresponding
to 1-valued matrix elements of the Modularity Matrix;

• Generate the Laplacian Matrix – from the bipartite
graph, according to equation (1):

L D A= − (1)

75

where L is the Laplacian matrix, D is the Degree matrix of the
graph vertices and A is the Adjacency matrix of vertex pairs.

Figure 1. Schematic Providers Modularity Matrix – It has 5 structors (S1 to S5),
5 functionals (F1 to F5) and three modules, the (blue) blocks along the diagonal:
upper-left and lower-right with 2*2 size and middle block of size 1*1. It is a
standard matrix as it does not have outliers (1-valued elements outside modules).
(All figures are in color online).

A bipartite graph, obtained from the Modularity Matrix in
Fig. 1, is shown in Fig. 2.

Figure 2. Bipartite Graph from Modularity Matrix in Fig. 1 – It has two vertex
sets: the upper set of structors (S1 to S5), and the lower set of functionals (F1 to
F5). A bipartite graph only has edges linking vertices in different sets. Arrows
pointing down mean that structors provide functionals. The (blue) rectangles
separate vertices belonging to given connected components (the modules).

A schematic Laplacian Matrix, generated from the bipartite
graph in Fig. 2, is shown in Fig. 3.

Figure 3. Schematic Providers Laplacian Matrix – This Laplacian is generated
from the bipartite graph in Fig. 2. By equation (1) its diagonal is D the Degree
matrix (in green) showing the degrees of each vertex of the Bipartite graph. The
upper-right quadrant (and its reflection in the lower-left quadrant) is the negative
of A the graph Adjacency matrix, which is identical to the Modularity Matrix.

C. Paper Organization

The rest of the paper is organized as follows. Section II
mentions related work. Section III introduces Consumer
Matrices to be included in the whole System Matrices, which is
done in Section IV. Section V illustrates the provider and
consumer matrices by means of a server case study. Section VI
concludes the paper with a discussion.

II. RELATED WORK

Here one finds a concise review of the extensive literature
about Modularity approaches, by spectral and other methods.
Also shortly reviewed are some references to consumers.

A. Linear Software Models

Linear Software Models have been developed by Exman
and collaborators (e.g. [8], [9]) as a rigorous theory to solve the
hierarchical software system composition problem from sub-
systems. Linear Software Models are based on linear algebra
operations and theorems. One assumes that all structors should
be mutually linearly independent and also all functionals are
linearly independent, an assumption motivated by minimization
of the number of structors and functionals needed to build the
system. Given this assumption, a linear algebra theorem
demands that the Modularity Matrix be square. This is not a
trivial result for software systems; it demands some effort to
understand the theorem’s rationale and implications.

Moreover, if sub-sets of structors/functionals are disjoint to
other sub-sets, a second theorem states that these sub-sets can
be rearranged into a block-diagonal matrix. These diagonal
blocks are recognized as the modules in that software system
level (for detailed proofs and examples see the work by Exman
[10] and references therein).

A given software system modularization may display
undesirable provider outliers coupling between modules. A
procedure to compare different designs of the same software
system, and to improve design is given by spectral methods as
described in [11]. The Perron-Frobenius theorem (see e.g.
Gantmacher [17]) is central for the Modularity Matrix theory.

Exman and Sakhnini [13], [14] have shown how to generate
a Laplacian Matrix from the Modularity Matrix. The Laplacian
matrix obtains the same modules as the Modularity Matrix, by
similar spectral methods. The Fiedler theorem [1], [15] is
central for the Laplacian theory. The so-called Fiedler
eigenvector fits the lowest non-zero eigenvalue of the Laplacian
Matrix. It allows locating outliers and splitting of too sparse
software modules.

B. Alternative Approaches to Modularity

There exist a variety of techniques applying matrices for
modularity analysis. For instance, Baldwin and Clark describe a
Design Structure Matrix (DSM) in their “Design Rules” book
[2]. DSM has been applied to many systems, including software
engineering, see e.g. Cai and Sullivan [5].

Conceptual lattices, another algebraic structure relevant to
software design, were introduced by Wille in 1982 [21] as part
of Formal Concept Analysis (FCA). They have been used for

76

software system design e.g. by Siff and Reps [19] and by
Exman and Speicher [12].

Alternative clustering techniques to obtain software modules
are found e.g. in Shtern and Tzerpos [18].

C. Theoretical Approaches to Consumers

There have been modelling systems in the literature
representing provider and consumer interactions. Yau and
Caglayan [22] use Petri Nets to design distributed software
systems. One of their examples is a producer-consumer system.

Clark et al. [6] describe experiences with PEPA
(Performance Evaluation Process Algebra) modelling tools. In
particular they refer to Producer-Consumer relations.

Browning [4] suggests that system modelers often build two
DSM matrices, one for information supplier and another for the
consumer, similar to our providers/consumers pairs of matrices.

III. THE NATURE OF CONSUMER MATRICES

Consumer matrices display Structors and Functionals
consumed by the referred Structors. This section describes
assumptions needed to generate Consumer matrices.

A. Consumer Matrices Shape and Size

Consumer matrices are not by themselves the aim of this
paper. The goal of consumer matrices, jointly with provider
matrices, is a more complete description of a software system,
showing the interactions between the given sets of Structors and
Functionals, from a system perspective.

Given this goal, we assume that Structors and Functionals of
the consumer matrices are identical to those of the provider
matrices. Thus, a consumer matrix fitting a standard providers’
matrix is also square. We emphasize that the reason for
consumer matrices being square is essentially different from the
provider matrices. As stated in section II standard provider
matrices are square by algebraic considerations. Consumer
matrices are square just to enable unification of providers and
consumers into a single system matrix, as described below.

We often refer to sub-systems, to allow for the possibility
that consumer matrices leave outside, e.g. service functionality,
obtained from external libraries. Alternatively, functionals
provided by our sub-system may be consumed by other sub-
systems, not included in our provider/consumer matrices.

Modularity and Laplacian matrices are tools to solve
software design problems resulting from coupling interactions
between different architectural units – structors and their
functionals – in a given hierarchical level. Functionals provided
and consumed by the same Structor do not appear in either of
the provider/consumer matrices, as these are not interactions
between different structors at that level.

B. Theoretical Properties of Consumer Matrices

Given the above assumptions on Consumer Matrices, we
state easily verifiable theoretical properties.

Property 1 – Complementarity to Provider Matrices.
Since Consumer Matrices have exactly the same Structors

and Functionals as the Provider Matrices, and the matrices do

not display Functionals provided and consumed by the same
Structor, consumer Matrices are complementary to Provider
matrices of the same sub-system. In other words, there is no
overlap of non-zero matrix elements of the consumer matrix
with non-zero matrix elements of the provider matrix.

Property 2 – Consumer Matrices may have empty (totally
zero-valued) columns or rows, while Provider matrices
cannot.

This may happen since the Sub-system Under Design (SUD)
may interact with other external sub-systems or libraries not
represented in the matrices of the SUD. For example, if an SUD
Structor in the Provider matrix provides a Functional consumed
only by external sub-systems, the respective SUD Consumer
matrix will have an empty row corresponding to the Functional
consumed externally. Another example, if an SUD Structor
appearing in the Provider matrix does not consume any
Functional, the respective SUD Consumer matrix will have an
empty column corresponding to the referred Structor. Provider
matrices cannot have empty columns or empty rows, since they
display only Structors actually providing Functionals.

Property 3 – Consumer Matrices per se generally neither
display linear independence of their Structors/Functionals,
nor have block-diagonal modules, in contrast with Provider
matrices.

This happens, since besides the empty columns/rows already
mentioned in the previous property, it may be that a single given
Structor consumes several Functionals originating identical
rows. In other words, the rank of a Consumer Matrix is
generally less than its size would permit. This does not occur
with Provider matrices as already mentioned in section II.

C. An Example of Consumer Matrix

Now we reveal that the provider modularity matrix in Fig.
1 refers to the Command Design Pattern code in CSharp found
in [7]. We use the same Structors and Functionals to show the
respective Consumer matrix (in Fig. 4). The Command Design
Pattern serves as an introductory running example, and as a
first case study, in this and in the next section.

Figure 4. Command Design Pattern, Consumers only Modularity Matrix – This
consumers matrix fits the Providers Modularity Matrix in Fig. 1. Both matrices
have the same Structors (S1,…,S5) and the same Functionals (F1,…,F5), and
both comply with the Properties enumerated in sub-section B. The consumers
matrix has just two 1-valued matrix elements (green hatched background),
respectively (S3, F1) and (S2,F4) and is much sparser than the providers matrix.

77

IV. SYSTEM MODULARITY MATRICES: PROVIDERS AND

CONSUMERS

This section finally deals with whole system modularity
matrices including providers and consumers. The same algebraic
techniques, previously used to identify provider-only matrix
modules, are applied for the whole system matrices. This is done
here for the Command Design Pattern Laplacian matrix.

A. System Weighted Modularity Matrices

We obtain the System Modularity Matrix by straightforward
superposition of the provider matrix with the consumer matrix in
a single overall matrix. This is possible as, by Property 1 above,
there is no overlap between non-zero matrix elements of these
two matrices. But simple superposition would imply loss of
“direction” information, i.e. whether a Functional is provided or
consumed by a given Structor. To avoid this ambiguity one
assigns a different weight to each direction: a functional
provided by a structor is assigned a weight of “2” and a
functional consumed by a structor is assigned a weight of “1”.

In this context, it is important to state that Fiedler [15] has
extended the algebraic connectivity properties of Laplacians to
those for weighted edge graphs (see e.g. de Abreu [1]).

A System Weighted Modularity Matrix for the Command
Design Pattern is show in Fig. 5, combining the provider matrix
of Fig. 1 with the consumer matrix of Fig. 4.

Figure 5. Command Design Pattern, System Weighted Modularity Matrix –
This matrix is obtained by superposition of the Consumers Matrix in Fig. 4 with
weights of “1”, upon the Providers Matrix (blue modules) in Fig. 1 with
weights of “2”, to distinguish the consumers from the providers direction.

The weighted bipartite graph obtained from the System
Modularity Matrix in Fig. 5, is shown in Fig. 6.

Figure 6. Command Pattern Weighted Bipartite Graph from Modularity Matrix
in Fig. 5 – It has two vertex sets: the upper set of structors (S1 to S5), and the
lower set of functionals (F1 to F5). Structors providing functionals are shown
by (black) arrows pointing down with weight=2. Structors consuming
functionals are shown by (red) arrows pointing up with weight=1. The (blue)
rectangles denote providers’ connected components (within the providers’
modules). Consumer arrows are connectors between providers’ modules.

B. Generation of the Weighted Laplacian

In order to identify the whole system modules including
providers and consumers, we obtain from the Weighted Bipartite
Graph (Fig. 6), the Weighted Laplacian Matrix in Fig. 7.

C. Connector Discovery from the Weighted

Laplacian

As a last step towards the modules of the whole Command
Pattern system, including both providers and consumers, we
apply the same algebraic spectral method previously used (in
[14]) for the providers-only Laplacian. It consists of:

a) Calculate eigenvalues and eigenvectors – of the
Laplacian Matrix;

b) Obtain Modules from eigenvectors – whose
eigenvalues are zero-valued;

c) Discover Module connectors by splitting modules –
using the Fiedler eigenvector.

Figure 7. Command Pattern Weighted Laplacian Matrix from bipartite graph in
Fig. 6 – It weights (by 2) Laplacian providers in Fig. 3, and adds the consumer
elements, with negative weight=1 and a hatched (green) background. Diagonal
degrees are changed to guarantee that all rows and columns sum to zero.

Laplacian Matrix Eigenvalues

Eigenvalues are shown in Fig. 8. The only zero-valued
eigenvalue is the sixth one: it shows Modules in the Laplacian
by the fitting eigenvector. The lowest eigenvalue closer to zero
is the seventh one and is the Fiedler eigenvector, which allows
further splitting of the Module.

Figure 8. Command Pattern Weighted Laplacian Matrix eigenvalues – these are
shown in the middle row of the figure.

78

Laplacian Matrix Eigenvectors

Eigenvectors’ in Fig. 9 fit the Fig. 8 eigenvalues: the 2nd row
from the top Modules eigenvector has all equal elements,
implying one big whole system module; the 3rd row Fiedler
eigenvector splits the whole system into two modules, by its
element signs. Negative signs cluster (F1, F2, F3, S1, S2, S3)
into one module and positive signs the vertices (F4, F5, S4, S5)
into another module. In this first splitting iteration, the single
structor module (F3, S3) seen in Fig. 5 and in Fig. 6, is left
inside the 1st module. The 2nd Fiedler vector splitting iteration, in
the bottom row of Fig. 9, finally separates the smaller module
(F3, S3), obtaining all the three modules in this system.

Laplacian eigenvectors obtain only modules (either directly
or by Fiedler vector splitting), as modules are mathematically
“connected components” [20] of the graph.

Consumers, as external “connectors”, are the remaining
positive elements of the Modularity Matrix by exclusion, after
the modules were directly characterized. For instance, in the 1st
splitting iteration the consumer (F1,S3) is left inside the 1st
module, while the consumer (F4,S2) is outside both modules. In
the 2nd splitting iteration which obtains all modules, also obtains
by exclusion both external connectors.

Figure 9. Command Pattern Weighted Laplacian eigenvectors – the top row has
vertex indices; the 2nd row from top has all Modules vector elements equal 0.32;
the 3rd row Fiedler different sign elements split the system into two modules 3*3
(negative, blue) and 2*2 (positive, yellow); the bottom 2nd Fiedler iteration splits
the previous biggest module into 2*2 (positive, green) and 1*1 (negative).

Connectors Discovery by Splitting Modules

The final iteration from the Laplacian eigenvectors is
displayed in the System Modularity Matrix, with the referred
modules enclosed within dashed rectangles, as seen in Fig. 10.

Figure 10. Command Design Pattern, System Weighted Modularity Matrix with
Connectors – This matrix shows the provider modules as the result of the
Laplacian eigenvectors, seen as delimited by the dashed (black) rectangles.
These are the upper-left and lower-right modules of 2*2 size and the middle
1*1 module. The consumer (F1,S3) links the upper-left and middle modules.
The upper-left module is also linked to the lower-right module by the consumer
(F4,S2). Iterative splitting by the Fiedler vector obtains these two connectors.

The conclusion from this Command Pattern example is that
consumers are connectors linking provider modules. This is seen
in the bipartite graph (in Fig. 6), and corroborated by the
partition by the Laplacian eigenvectors (in Fig. 10).

V. CASE STUDY: AN ASYNCHRONOUS SERVER SYSTEM

This case study is a larger system from the Boost library
written in C++, viz. an Asynchronous Echo Server System [3].
The calculation steps were the same as in the Command Pattern
example. Here are shown only the important steps’ results.

A. Provider and Consumer Modularity Matrices

The Providers Modularity Matrix is strictly diagonal (Fig.
11). The Consumers’ Modularity Matrix in Fig. 12 is very
sparse and barely understood. Consumption is concentrated in
“control” structors, viz. Main, Server and Session.

Figure 11. Asynchronous Server System – Providers-only strictly diagonal
Modularity Matrix.

B. Spectral Approach to System Modules

In order to obtain System Modules, we apply the spectral
method as done previously with the Command Design Pattern.
One superposes the providers and consumers in a single
weighted Modularity Matrix, and obtains the bipartite graph.
Then one generates its Laplacian Matrix and calculate its
eigenvalues and eigenvectors, as shown in Fig. 13 and Fig.14.

Figure 12. Asynchronous Server System Consumers only Modularity Matrix –
– This consumers matrix fits the Providers Modularity Matrix in Fig. 11. Both
matrices have the same Structors (S1,…,S8) and the same Functionals
(F1,…,F8), and both comply with the Properties enumerated in sub-section III
B. The non-zero consumers’ matrix elements are marked (in green hatched
background).

79

Figure 13. Asynchronous Server System Laplacian Eigenvalues – The
eigenvalue #9 is the only one zero-valued, implying one Module in this system.
Eigenvalue #10 is the Fiedler vector allowing splitting of this overall module.

The Modules and the Fiedler eigenvectors are shown in Fig.
14. The Fiedler eigenvalue #10 splits the whole system into two
modules of 5*5 and 3*3 sizes. The next iteration Fiedler vector
(the lowest row) further splits the 5*5 module into two smaller
modules of sizes 2*2 and 3*3 sizes.

Figure 14. Asynchronous Server System Laplacian Eigenvectors – From top
row to bottom: the 1st row shows the vertices (on yellow); the 2nd row is the
eigenvector fitting the single module eigenvalue #9; the 3rd row is the Fiedler
#10 eigenvector splitting the 2nd row eigenvector into two modules according to
the positive and negative signs; the lowest row is the next iteration Fiedler
eigenvector, splitting the larger (green) module in the 3rd row eigenvector into
two smaller modules of sizes 2*2 and 3*3 (light blue and orange background).

C. Connector Discovery in the System Matrix

Modules are discovered by looking at the eigenvectors of
the Laplacian. These modules are the upper-left (F1,F2,S1,S2),
the middle (F3,F4,F5,S3,S4,S5) and the lower-right
(F6,F7,F8,S6,S7,S8) as shown in Fig. 15.

External consumers, the “connectors” between the three
referred modules, viz. (S1, F3) and (S3, F7) are discovered by
exclusion (i.e. outliers), as the remaining positive matrix
elements of the System Modularity Matrix outside the three
modules (Fig. 15). An interesting observation for this system is
the existence of consumers as “internal connectors”, inside the
three modules, where each consumer reasonably links a pair of
provider structors.

Figure 15. Asynchronous Server System Modules – The three modules enclose
the original Provider modules and respective internal connectors. The external
connectors are found in the elements (S1,F3) linking the upper-left and middle
modules, and (S3,F7) linking the middle and lower-right modules.

VI. DISCUSSION

A. Interpretation of System Matrix Results

A Consumer Matrix by itself is rather perplexing: it is very
sparse and not easily interpreted. Consumer Matrices do not
obey any apparent algebraic rules such as structors or
functionals linear independence, or module block-diagonality, as
for Provider Matrix. There are no obvious correctness criteria
for Consumer Matrices by themselves.

When one superposes a Consumer Matrix upon its Provider
Matrix the picture suddenly clarifies: consumers are
“connectors” between pairs of provider modules. One could say
that the Software System is greater than the sum of its modules,
due to the interactions of the external consumer connectors with
provider modules.

There are two slightly different situations with the case
studies in this paper. The Command Design Pattern of the
providers-only Modularity Matrix has the same number of three
modules (Fig. 1) as the System Modularity Matrix with
connectors (Fig. 10). The two connectors are external to the
three modules and actually connect pairs of modules.

In the Asynchronous Server case study the providers-only
Modularity Matrix (Fig. 11) is strictly diagonal and has 8 single-
structor modules. In the System Modularity Matrix with
connectors (Fig. 15) the providers-only modules were re-
configured into three larger modules internally linked by
connectors. In addition there are two external connectors. It is
still true that connectors – both internal and external – link pairs
of modules. The internal connectors link the original providers-
only modules. The external connectors link the re-configured
system modules (containing both providers and consumers,
playing the internal connectors role).

We are led to the following conjecture as a summary of our
currently empirical findings:

B. System Benefits for Software Design

First of all, it has been clear, before this work, that providers-
only Modularity Matrix, the corresponding bipartite graph and
its Laplacian Matrix, were incomplete descriptions of a software
system. The addition of the consumers certainly improves the
ability to judge the overall system design quality.

Once consumers are interpreted as “connectors” of provider
modules, there are clear expectations on consumers' quantity and
matrix element locations for their software system role.

Moreover, there are two System Matrix correctness criteria:
a- Algebraic – the providers and consumers joint modules,

excluding the external connectors, obey linear
independence and block-diagonality;

Conjecture: Software System Modularity Connectors

The Minimal Number of System Module Connectors is
equal to the number of System Provider Modules minus
one, i.e. each System module is connected to at least one
other System module by a consumer Connector.

80

b- Semantic – system modules are semantically sound (e.g.
the Fig. 15 lower-right module clusters read, write, and
stream belong to the same category of messaging
functionals).

C. Future Work

The paper’s results, in particular the Software System
Modularity Connectors conjecture, deserve formal proofs and
extensive verification for a variety of software systems. These
will be presented in an expanded version of this paper.

Although Fiedler (see e.g. [1]) extended the Laplacian
spectral properties validity to weighted graphs, we need to
investigate the specific weights’ influence on modules
calculations done with the Laplacian matrix.

D. Main Contribution

The main contribution of this paper is the introduction of
Consumers in the software System Overall Modularity Matrix,
and in the corresponding Laplacian Matrix, in the role of
connectors between provider modules.

We have thereby shown that the same Linear Software
Models that have been applied to providers-only matrices, is a
generic algebraic theory of software composition, applicable to
the overall system, including consumers.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for

incisive comments that helped to improve this version of the
paper.

REFERENCES
[1] N.M.M. de Abreu, “Old and new results on algebraic connectivity of

graphs”, Linear Algebra and its Applications, 423, pp. 53-73, 2007. DOI:
https://doi.org/10.1016/j.laa.2006.08.017.

[2] C.Y. Baldwin and K.B. Clark, Design Rules, Vol. I. The Power of
Modularity, MIT Press, MA, USA, 2000.

[3] Boost libraries, asio c++11 examples, Christopher M. Kohlhoff. URL:
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/example/cpp
11/echo/async_tcp_echo_server.cpp

[4] T.Y. Browning, “Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New
Directions”, IEEE Trans. Eng. Management, Vol. 48, pp. 292-306, 2001.

[5] Y. Cai and K.J. Sullivan, “Modularity Analysis of Logical Design
Models”, in Proc. 21st IEEE/ACM Int. Conf. Automated Software Eng.
ASE’06, pp. 91-102, Tokyo, Japan, 2006.

[6] G. Clark, S. Gilmore, J. Hillston and N. Thomas, “Experiences with the
PEPA performance modelling tools”, IEE Proceedings, Software, vol.
146, no. 1, pp. 11-19, 1999. DOI: https://doi.org/10.1049/ip-
sen:19990149

[7] CsharpDesignPatterns, by Jason de Oliveira, 2017. URL:
https://csharpdesignpatterns.codeplex.com/SourceControl/latest#DesignPa
tterns/DesignPatterns/DesignPatterns.csproj

[8] I. Exman, “Linear Software Models”, Extended Abstract, in I. Jacobson,
M. Goedicke and P. Johnson (eds.), GTSE 2012, SEMAT Workshop on
General Theory of Software Engineering, pp. 23-24, KTH Royal Institute
of Technology, Stockholm, Sweden, 2012. Video:
http://www.youtube.com/watch?v=EJfzArH8-ls

[9] I. Exman, “Linear Software Models are Theoretical Standards of
Modularity”, in J. Cordeiro, S. Hammoudi, and M. van Sinderen (eds.):
ICSOFT 2012, Revised selected papers, CCIS, Vol. 411, pp. 203–217,

Springer-Verlag, Berlin, Germany, 2013. DOI: 10.1007/978-3-642-
45404-2_14

[10] I. Exman, “Linear Software Models: Standard Modularity Highlights
Residual Coupling”, Int. Journal on Software Engineering and Knowledge
Engineering, vol. 24, pp. 183-210, March 2014. DOI:
10.1142/S0218194014500089

[11] I. Exman, “Linear Software Models: Decoupled Modules from
Modularity Eigenvectors”, Int. Journal on Software Engineering and
Knowledge Engineering, vol. 25, pp. 1395-1426, October 2015. DOI:
10.1142/S0218194015500308

[12] I. Exman and D. Speicher, “Linear Software Models: Equivalence of the
Modularity Matrix to its Modularity Lattice”, in Proc. 10th ICSOFT’2015
Int. Conference on Software Technology, pp. 109-116, ScitePress,
Portugal, 2015. DOI: 10.5220/0005557701090116

[13] I. Exman and R. Sakhnini, “Linear Software Models: Modularity Analysis
by the Laplacian Matrix”, in Proc. 11th ICSOFT’2016 Int. Conference on
Software Technology, Volume 2, pp. 100-108, ScitePress, Portugal, 2016.
DOI: 10.5220/0005985601000108

[14] I. Exman and R. Sakhnini, “Linear Software Models: Bipartite
Isomorphism between Laplacian Eigenvectors and Modularity Matrix
Eigenvectors”, Int. Journal of Software Engineering and Knowledge
Engineering, Vol. 28, No 7, pp. 897-935, 2018. DOI:
http://dx.doi.org/10.1142/S0218194018400107

[15] M. Fiedler, “Algebraic Connectivity of Graphs”, Czech. Math. J., Vol. 23,
(2) 298-305, 1973.

[16] E. Gamma, R. Helm, , R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley,
Boston, MA, 1995.

[17] F.R. Gantmacher, The Theory of Matrices, Volume Two, Chelsea
Publishing Co., New York, NY, USA, 1959. Chapter XIII, page 53,
Available in the Web (out of copyright):
https://archive.org/details/theoryofmatrices00gant.

[18] M. Shtern and V. Tzerpos, “Clustering Methodologies for Software
Engineering”, in Advances in Software Engineering, vol. 2012, Article ID
792024, 2012. DOI: 10.1155/2012/792024

[19] M. Siff and T. Reps, “Identifying modules via concept analysis”, IEEE
Trans. Software Engineering, Vol. 25, (6), pp. 749-768, 1999. DOI:
10.1109/32.824377

[20] R. Todd and E.W. Weisstein, “Connected Component”, Wolfram,
MathWorld.

[21] R. Wille, “Restructuring lattice theory: an approach based on hierarchies
of concepts”. In: I. Rival (ed.): Ordered Sets, pp. 445–470, Reidel,
Dordrecht, Holland, 1982.

[22] S.S. Yau and M.U. Caglayan, Distributed software system design
representation using modified Petri Nets, IEEE Trans. Software
Engineering, Vol. SE-9, pp 733-745, 1983.

81

An Effort Estimation Support Tool for Agile
Software Development: An Empirical Evaluation

Emanuel Dantas§ ¶ ‖, Alexandre Costa ‖ ¶, Marcus Vinicius ¶, Mirko Perkusich§ ¶ ,
Hyggo Almeida¶ , Angelo Perkusich¶

§ Federal Institute of Paraı́ba
Monteiro, Paraı́ba, Brazil, 58500-000

{emanueldantas, mirkoperkusich}@ifpb.edu.br
¶ Intelligent Software Engineering (ISE) Group, Federal University of Campina Grande

Campina Grande, Paraı́ba, Brazil, 58429-140
{marcusbarbosa, alexandrecosta, almeida, perkusich}@embedded.ufcg.edu.br

‖ CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF, Zip Code 70.040-020

DOI reference number: 10.18293/SEKE2019-141

Abstract—Accurate effort estimation is an important part
of the software process. In Agile Software Development, the
techniques for predicting effort are mostly based on expert
judgment, but there are approaches based on Machine Learning.
The theme continues to be challenging and a subject of further
studies given the difficulty of finding accurate solutions to the
problem. This paper proposes and evaluates a tool based on the
decision tree method for effort estimation in agile projects. We
evaluated our tool given its accuracy and ease of use collecting
data from four projects. To evaluate the accuracy, we compared
the values of Magnitude of Relative Error from the teams’
estimations with the values provided by the tool. To evaluate
the ease of use, we used the Technology Acceptance Mode. The
initial results show that the tool can be reliably used with minimal
training. In terms of accuracy, the tool achieved lower error
compared to the estimates provided by the teams (mean: 19.05%
vs 33.32%), and the evaluation means in TAM were higher than
4.0 in ten of the eleven variables analyzed on a Likert scale.
From this work, we conclude that estimation by decision tree is
a viable technique that, at the very least, can be used by project
managers to complement current estimation techniques.

Keywords—Agile Software Development; Effort Estimation;
Machine Learning; Decision Tree.

I. INTRODUCTION

Since 2001, there has been an increasing interest in agile
methodologies. Nowadays, these methods are widely used in
software industry projects, especially, because of its volatility
and flexibility. Agile software development (ASD) focuses on
the needs of the rapidly changing environment by embracing
the proposal of iterative and incremental development [7].
According to a recent study [2], Scrum stands out as an
agile development process with 56% of preference. Scrum is
a framework for developing and sustaining complex products
[1]. One of its main events is the Sprint Planning Meeting
in which occurs the task breakdown. During this process, the
Scrum team defines tasks to be developed and estimates the
effort to complete them.

In ASD context, effort estimation consists of predicting the
effort needed to fulfill a given task [24], which is an important
part of the development process, since it is one of the many
steps that can lead to successful project completion. Due to

the dynamic nature of ASD [8] and limited documentation
[36], effort estimation is considered a complex and critical task
[4]. Traditionally, it depends heavily on the expert experiences
[36] and the estimated values usually are far away from
the real ones, resulting in low accuracy. On the other hand,
accurate estimations can improve the development planning by
enabling optimal assignments of both stories and developers
[22]. Additionally, high accurate values can be used in different
prediction models to improve the outputs. For instance, to
increase project velocity [14], to optimize developer effort
across different projects in the organization, and different
projects inside the organization can be centrally coordinated
to increase efficiency.

Over the past years, there has been a growing interest in
effort estimation researches [21], [37], [32]. In previous work
[9], we identified different approaches proposed to estimate
effort using historical data and expert opinions based techni-
ques. A significant amount of these used Artificial Intelligence
or Machine Learning techniques to support effort estimation
in ASD, which contributed to achieve higher accuracy. Despite
the contributions of recent studies, low accurate prediction is
still considered a gap in effort estimation.

In this study, we focus on the empirical evaluation of an
effort estimation support tool for agile software development.
The proposed tool is based on historical data and uses a
Decision Tree to estimate effort during software development.
In the evaluation, we aim to measure (i) the accuracy of
the proposed tool and (ii) its usefulness and ease of use.
To do so, we used Magnitude of Relative Error (MRE) to
compare the estimations made by the project team members
and those ones provided by the tool with the real effort (in
hours). Furthermore, through a questionnaire based on the
Technology Acceptance Model (TAM) [10], professionals with
experience in software development used the tool and reported
their perceived usefulness and perceived ease of use. As a
result, the proposed tool achieved lower MRE values compared
to ones provided by the teams (mean: 19.05% vs 33.32%). As
also, most of the professionals who participated in the study
found the approach to be useful and easy to use to support
the estimation process (evaluation mean was higher than 4.0
in ten of the eleven variables analyzed on a Likert scale [16]).

The remainder of this paper is organized as follows: Section

82

II presents the background information. Section III details the
proposed tool. Section IV presents the empirical evaluation,
followed by the results and discussion in Section V. Finally,
threats to validity and conclusions are described in Sections
VI and VII, respectively.

II. BACKGROUND AND RELATED WORK

This section presents the background and related work on
this paper. A considerable number of studies has been pu-
blished on this subject. A Systematic Literature Review (SLR)
[39] performed in 2014 aggregated and described the state
of the art related to estimation techniques, effort predictors,
accuracy measures and agile methods used. In 2018, Dantas
et al. [9] updated this review and observed a strong indication
of solutions based on Artificial Intelligence (AI) and Machine
Learning (ML) methods for effort estimation in ASD. The
purpose of the identified studies is to support human judgment
during effort estimation. The main techniques observed were:
Bayesian Network and Decision Tree.

In general, the studies use different factors in their ap-
proaches to estimate effort more accurately, either to support
traditional estimation methods such as Planning Poker or in
ML and AI solutions. These factors are known as Cost Drivers
and represent personal or project factors that influence the
estimated values [9]. For instance, to support Planning Poker,
Lenarduzzi [19] considered technical ability, competence level,
and managerial skill. While Grapenthin et al. [13] used factors
related to the project: complexity and flexibility.

Artificial Intelligence is a branch of computer science
formed by techniques that support activities of optimization
or knowledge discovery [45]. A popular AI technique is the
Bayesian Network which is used to estimate values considering
the uncertainty of the variables (cost drivers) and can be cons-
tructed using historical data and experts. In the context of effort
estimation, Mendes [25] proposed a Bayesian Network for
Web effort estimation using knowledge from a domain expert.
Karna and Gotovac [17] presented another model, including
the relevant cost drivers with turnover, priority, and severity.
Zahraoui et al. [46] adjusted story points using: priority, size,
and complexity. The complexity and importance of a user story
were considered by Lopez et al. [20], while Dragicevic et al.
[11] considered the skills of the developers and requirements
complexity. These approaches use historical data and expert
knowledge to estimate effort with better accuracy.

Machine Learning is a current application of AI based on
the idea that a system can learn from data rather than through
explicit programming. Thus, the ML methods aim to improve
the performance at certain tasks learning from the observed
data. Many studies use ML to estimate effort in software
projects. For instance, in Satapathy and Rath [32] Decision
Tree, Stochastic Gradient Boosting and Random Forest were
compared to assess effort estimation given a dataset composed
by 21 projects. Porru et al. [29] used Support Vector Machine,
K-Nearest Neighbors and Decision Tree for the same purpose
given data from eight open source projects. Several Neural
Networks were used in Panda et al. [27]. The purpose of these
works is to support human judgment during effort estimation.

In this study, we use a Decision Tree which is a decision
support method indicated for establishing classification or re-
gression based on multiple covariates for developing prediction
algorithms for a target variable [35]. This method constructs

prediction models by recursively partitioning the data and
fitting a simple prediction model within each partition [6],
till a halting paradigm is fulfilled [32]. For this purpose, it
uses a sequential process to identify the predictor variables
that best differentiate groups along with the outcome variable
of interest.

Effort estimation is still attractive to researchers since
a reliable estimation process is crucial for correct project
planning and a good management of the resources [33]. Several
other studies on the subject can be found in the literature,
mainly focus on designing a good estimator [18], [3], new
cost metrics [26] or other aspects [15].

III. PROPOSED TOOL

A. Overview

The effort estimation support tool presented in this paper
uses historical data to construct a decision tree predictive
model. The purpose of the tool is to support teams during
task effort estimations. Therefore, it assists in the development
process during the planning phase. The tool consists of a web
application with an interface implemented in Angular that can
be accessed from computers or smartphones. The key parts of
the tool are discussed below.

B. Dataset

Agile projects often manage user requirements with models
called User Stories (US). These artifacts are used to describe
features that deliver value to the customer. USs are written
in natural language, which makes it difficult to retrieve infor-
mation [30]. Therefore, to build a dataset we have defined a
model to represent the main features of software projects.

The model was built by specialists and is organized in a
hierarchical structure of 03 levels to represent each feature.
The first level is called Module, the second is Operation, and
finally for each operation we have different types of Tasks in
the third level. Tho whole model is composed by 03 Modules,
18 Operations and 131 Tasks types. Table I shows an example
of operations defined to the ”Authentication”module.

Table I: Examples of previously defined operations for Authentication module

Module Operation

Authentication

Perform login with username and password
Perform login with OAuth
Password recovery
First login
Validate user permissions
Update profile
Create account
Remove account

With the defined model, we analyzed the backlog of dif-
ferent organizations to create our dataset. All companies work
with agile processes based on Scrum and develop projects on
the web platform. We have analyzed 26 backlogs, containing
a total of 530 USs and 1879 tasks. At the end, we were able
to map 52% of tasks according to the model, which results in
977 items that form our dataset. For each record, in addition to
the information representing the feature (Module, Operation,
Task), we extract information from the following cost drivers:
effort, human resource and technology. The information was
taken from the teams during the planning meetings.

83

C. Prediction Algorithm

The proposed tool adopts the M5P algorithm for building
the Decision Tree [43]. This algorithm represents an appro-
priate choice because it implements as much decision trees
as linear regression for predicting a continuous variable. To
train the algorithm, we used a 10-fold cross validation [5]
and choose Effort (in hours) as the dependent variable. In
Figure 1 we can see the relations of the cost drivers used
to construct the predictive model. Category corresponds to
the feature according to the model, human resource is the
professional responsible. Finally, the predominant technology
in the feature is also used to forecast the varying effort. Several
Cost Drivers were analyzed using the Weka software, but these
were chosen for achieving a result with the least error.

Figure 1: Cost Drivers Relation.

D. Design

The architecture of the proposed tool consists of a proces-
sing layer which executes the Decision Tree algorithm and
a serving layer which exposes a REST API. The database
has been implemented in MySQL and contains tables to store
the historical data of the projects. To perform the processing,
we used the class M5P1 in Weka, version 3.8.0. Its interface
was build using Angular framework, version 6.1.2. The tool is
available 2 and can be accessed in any web browser.

The tool was developed for supporting agile teams during
Sprint Planning. As shown in Figure 2, the tool has a view
that shows all the tasks types and the structure is represented
in three hierarchical levels (see the area of the screen indicated
by 1). These tasks are in agreement with the model created in
the construction of our dataset. Once selected the task type, the
tool processes the decision tree algorithm and displays an effort
estimation (see area of the screen indicated by 2). Finally,
clicking on “detail”, the user can have access to the historical
values of this task.

IV. EMPIRICAL EVALUATION

This section presents the case study performed to evaluate
the proposed tool, which is detailed in the following sub-
sections.

A. Case Study Planning

The evaluation is oriented towards design science in soft-
ware engineering [42]. The improvement problem is the low
accuracy from effort estimation tasks. The artifact used is a

1http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/M5P.html
2https://mot-client-web.herokuapp.com/

Figure 2: Screenshot of tool.

historical data based tool to support decision making during
planning meetings. Therefore, we seek to answer the following
research questions:

• RQ1: Category, Human resource and Technology can
be used to construct a decision tree predictive model
capable to reduce effort estimation errors during plan-
ning meetings?

• RQ2: The perceived usefulness and ease of use have
a positive impact on the tool adoption?

To investigate the research questions, we conducted an
exploratory case study [28] in a Brazilian software develop-
ment company. Four agile software projects, based on Scrum,
were available to participate in the study. Each project was
composed of six developers and one Scrum Master who also
performs the project manager role, each developer works
exclusively on one project. According to the company practice,
the Scrum Master does not participate in the effort estimation
process, only the developers. All the projects belong to web
development platform and were implemented with similar
technologies.

The study lasted six sprints with 15 days each, resulting
in three months of evaluation. Before the beginning, the
participants were submitted to 15 minutes of training to get
familiar with the proposed tool. At this moment, they received
instructions and examples of use to learn how to utilize the
tool.

Most participants were graduate developers (84.61%), who
worked full time at the company and had more than three
years of experience in software development. The remaining
participants (15.49%) were undergraduate students from a
computer science course, who worked part-time and had at
least a year of experience in software development.

B. Case Study Execution

During the case study, the tasks were created by the teams
and recorded in a spreadsheet. The authors of this paper were
responsible for analyzing each task and for mapping them to
the corresponded category of the model presented in Section
III-B. Thereafter, the project teams estimated the effort of the
tasks. At this moment, they could estimate the values by their
own or use the tool to assist in the process. At the end of
the study, 76% of the tasks were mapped, which corresponds

84

to 121 items. For each task, we recorded three values: (i) the
team estimation, (ii) the tool estimation and (iii) the real effort.

To answer the RQ1, we choose the MRE (Equation 1)
which measures the difference between real and estimated
effort relative to the real one. Therefore, we compared the
team MRE values with the tool MRE values, resulting in two
value lists. Then, we use a confidence interval (with 95%
confidence level) to do a statistical analysis. This procedure is
recommended to characterize the uncertainty associated with
a certain parameter estimated [41].

MRE =
Real effort− Estimated effort

Real Effort
(1)

To answer the RQ2 we applied a questionnaire based on
the indicators presented in the TAM [10]. The questionnaire
aims at assessing users’ beliefs about the usefulness and ease
of use of a technology that is expected to support their work.
It has been used extensively to explain and predict users’
acceptance of information technology [34]. According to TAM,
two variables impact adoption: perceived usefulness and per-
ceived ease of use. Perceived usefulness refers to the degree to
which an individual believes that using a particular technology
would enhance his or her job performance. Perceived ease of
use refers to the degree to which an individual believes that
using a particular technology would be free of physical and
mental effort [40]. Table II shows the applied questionnaire.
The questions are divided by type: Perceived usefulness (PU),
Perceived ease of use (PEoU), External variables (EV) and
Attitude (AT) . The type of response follows a Likert scale
[16] with five possible answers ranging from strongly disagree
(mapped to number 1) to strongly agree (mapped to number
5). The participants were asked to respond to each statement in
terms of their own degree of agreement or disagreement [23].
The questionnaire was applied at the end of the six sprints and
all the participants submitted their answers.

V. RESULTS AND DISCUSSION

This section outlines the results with respect to the research
questions, which are answered in different sub-sections.

A. RQ1: Category, Human resource and Technology can be
used to construct a decision tree predictive model capable to
reduce effort estimation errors during planning meetings?

After collecting data from the case study, we were able to
calculate MRE values from 121 tasks, resulting in two types of
errors: team MRE and tool MRE. As mention before, we used
the confidence interval to analyze the data. In several regres-
sion applications, these intervals are computed by supposing
the errors follow a normal (Gaussian) distribution or another
more general distribution with a number of parameters [31].

In Table III, are shown the mean, standard deviation and
confidence intervals (with 95% confidence level) for the MRE
values. We can observe that the tool has achieved lower MRE
mean values when compared to each project team values. The
overall result shows a 19.05% MRE mean value for the tool
and 33.32% for the teams, i.e., the proposed tool can provide
more accurate estimations. Also, the lower overall standard de-
viation obtained by the tool indicates that the estimated values
tend to be close to the mean, generating more homogeneous

predictions. The overall confidence intervals (14.87% - 23.62%
and 25.55% - 41.42%) do not intersperse, thus the two group
values can be considered statistically different.

Regarded to the RQ1, we can conclude that the selected
cost drivers can be used to construct a decision tree predictive
model capable to reduce effort estimation errors during the
planning meeting. Therefore, the proposed tool can provide
accurate estimations when compared to the ones given by the
project teams.

B. RQ2: The perceived usefulness and ease of use have a
positive impact on the tool adoption?

In order to carry on a qualitative evaluation, we used the
TAM. Table II shows the assigned variables for this study.

Table IV describes the values for median, mean, standard
deviation (SD) for questions of the perceived usefulness. All
average values were higher than 4.0, indicating that partici-
pants generally had positive attitudes toward the tool.

Table IV: Perceived usefulness
Variable Definition Mean Median SD

V1 Using the tool is useful for estimating
task effort. 4.32 4 0.712

V2 Using the tool allows quick access to
a historical basis 4.82 5 0.743

V3 The tool is accessed at all planning
meetings 4.12 4 1.04

In Table V, all mean values related to the ease of use are
above the midpoint and the standard deviations are within the
range from 0.716 to 0.926 indicating a narrow spread around
the mean.

Table V: Perceived ease of use
Variable Definition Mean Median SD

V4 Learning to use the tool was
easy for me 4.74 5 0.786

V5
I often get confused in researching
and understanding information
in the tool

3.94 4 0.926

V6 Access to the tool is simple 4.78 5 0.716

The variable V9 in Table VI has the lowest mean value.
This occur because the tool was recently adopted, thus the
motivation among co-workers was expected to be low. Also,
the standard deviation of V9 was greater than one, representing
a high dispersion of the information.

Table VI: External variables
Variable Definition Mean Median SD

V7
The navigation features (menus,
icons, links and buttons) are all
clear and easy to find

4.34 4 0.696

V8 The tool has a nice interface 4.74 5 0.556

V9 My co-workers encourage me
to use the tool 3.42 3 1.213

The results of Table VII show that the participants per-
ceived the attitude of the information systems, since, for all
variables, the average has resulted in more than 4.0, showing
agreement on all the statements.

Table VII: Attitude
Variable Definition Mean Median SD

V10 I believe it’s best to use the tool
instead of traditional planning. 4.46 4 0.879

V11 My intention is to use the tool
to better plan my project tasks 4.24 4 0.786

85

Table II: Questionnaire Statements on: Perceived usefulness, Perceived ease of use, External variables and Attitude
Type Definition Variables

Perceived usefulness (PU) The level at which a person believes that using the tool
improves the performance of their tasks.

V1: Using the tool is useful for estimating task effort.
V2: Using the tool allows quick access to a historical basis
V3: The tool is accessed at all planning meetings

Perceived ease of use (PEoU) Level at which the person presents their perception
of the tool in terms of ease of learning and operation.

V4: Learning to use the tool was easy for me
V5: I often get confused in researching and understanding information
in the tool
V6: Access to the tool is simple

External variables (EV) External variables provide a better understanding of
what influences perceived utility and ease of use.

V7: The navigation features (menus, icons, links and buttons) are all
clear and easy to find
V8: The tool has a nice interface
V9: My co-workers encourage me to use the tool

Attitude (AT) Intention of the individual to use the tool V10: I believe it’s best to use the tool instead of traditional planning .
V11: My intention is to use the tool to better plan my project tasks

Table III: Results of the MRE calculation
Team MRE Tool MRE

Mean (%) Standard
Deviation (%)

Lower Confidence
Interval (%)

Upper Confidence
Interval (%) Mean (%) Standard

Deviation (%)
Lower Confidence

Interval (%)
Upper Confidence

Interval (%)
Project A 43.27 55.12 38.43 42.12 25.67 15.23 23.16 32.19
Project B 26.56 38.77 22.48 31.02 14.78 10.12 13.21 19.43
Project C 31.45 42.24 26.38 33.10 18.21 27.34 16.33 22.91
Project D 32.05 58.12 30.21 36.39 17.54 26.21 15.88 20.32
Overall 33.32 51.33 25.55 41.42 19.05 22.92 14.87 23.62

When using Likert-type scales it is imperative to calculate
and report Cronbach’s alpha coefficient for internal consistency
reliability [12]. The Cronbach’ s alpha is an index of inter-item
homogeneity that describes how related a set of items is as a
group [38]. In table VIII, we can see the coefficient for each
variable. All multi-item constructs should meet the guidelines
for a Cronbach’s alpha of greater than 0.70. Table VIII
demonstrates that the coefficient values, for all constructs in
the measurement model, exceeded the recommended threshold.
Therefore, based on the presented results related to the RQ2,
we can conclude that the tool is easy to use and has utility for
the teams.

Table VIII: Descriptive statistics
Construct Variables Mean Cronbach’s
Perceived usefulness V1 4.32 0.8829
Perceived usefulness V2 4.82 0.9084
Perceived usefulness V3 4.12 0.8779
Perceived ease of use V4 4.74 0.8745
Perceived ease of use V5 3.94 0.8238
Perceived ease of use V6 4.78 0.8779
External variables V7 4.34 0.8989
External variables V8 4.74 0.8779
External variables V9 3.42 0.8229
Attitude V10 4.46 0.9208
Attitude V11 4.24 0.8779

VI. THREATS TO VALIDITY

This section presents the main threats to validity identified
in the study, according to Wohlin et al. [44]. The analysis
of the threats aims to examine the relationship between the
conclusions reached and the reality.

A threat to external validity identified is related to the
platform of the selected projects. All of them were web deve-
lopment projects with similar technologies, thus our findings
can not be generalized. To address this threat, we intend to
conduct a new case study with projects from mobile and
desktop platforms. Another identified threat refers to internal
validity. The teams that participated in the case study were
composed by graduate developers and undergraduate students,
with different levels of experience, which can impact the error
measurement. Therefore, the results from this study must be
considered as indicators and further evaluation with different
contexts must be conducted.

VII. CONCLUSION AND FUTURE WORK

This paper proposed and evaluated an effort estimation
support tool for agile software development. The tool uses
historical data to construct a decision tree predictive model
to provide effort estimations during the planning meeting. To
evaluate the tool, we performed a case study in a Brazilian
software development company, in which four agile projects
(based on Scrum) and 24 professional participated. The case
study lasted three months and thereafter we performed a
quantitative and qualitative analysis.

The achieved results indicate that the tool can support
the planning meeting, reducing the errors related to the task
estimation process. Also, we concluded that the majority of
the professionals who participated in the study found the tool
useful and easy to use for supporting the effort estimation, and
they would regularly use the tool for future plannings in their
job.

As a limitation, we realize that the low numbers of teams
and the types of projects are prohibitive to generalize our
findings. In the future, we plan to conduct another case
study with more projects and different contexts. Additionally,
we would like to evaluate the usage of the tool with more
experienced teams.

ACKNOWLEDGMENT

The authors acknowledge the financial support given by
CAPES/Brazil.

REFERÊNCIAS

[1] Sutherland j, schwaber k. the scrum guide. https://www.scrumguides.
org/docs/scrumguide/v1/Scrum-Guide-US.pdf. accessed in 23/02/2019.

[2] Versionone. 9th annual state of agile development survey results. https://
www.versionone.com/pdf/state-of-agile-development-survey-ninth.pdf.
accessed in 23/02/2019.

[3] M. A. Ahmed, I. Ahmad, and J. S. Alghamdi. Probabilistic size proxy
for software effort prediction: A framework. Information and Software
Technology, 55(2):241–251, 2013.

[4] M. S. S. Basha and D. Ponnurangam. Analysis of empirical software
effort estimation models. CoRR, abs/1004.1239, 2010.

86

[5] N. Bhargava, S. Dayma, A. Kumar, and P. Singh. An approach for
classification using simple cart algorithm in weka. In Intelligent Systems
and Control (ISCO), 2017 11th International Conference on, pages 212–
216. IEEE, 2017.

[6] L. Breiman. Classification and regression trees. Routledge, 2017.
[7] M. Brhel, H. Meth, A. Maedche, and K. Werder. Exploring princi-

ples of user-centered agile software development: A literature review.
Information and Software Technology, 61:163–181, 2015.

[8] A. Cockburn. Agile Software Development. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2007.

[9] E. Dantas, M. Perkusich, E. Dilorenzo, D. Santos, H. Almeida, and
A. Perkusich. Effort estimation in agile software development: an
updated review. In Proceedings of the30th International Conference
on Software Engineering and Knowledge Engineering, 2018.

[10] F. D. Davis. Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS quarterly, pages 319–340,
1989.

[11] S. Dragicevic, S. Celar, and M. Turic. Bayesian network model for task
effort estimation in agile software development. Journal of Systems and
Software, 127:109–119, 2017.

[12] J. A. Gliem and R. R. Gliem. Calculating, interpreting, and reporting
cronbachs alpha reliability coefficient for likert-type scales. Midwest
Research-to-Practice Conference in Adult, Continuing, and Community
Education, 2003.

[13] S. Grapenthin, M. Book, T. Richter, and V. Gruhn. Supporting feature
estimation with risk and effort annotations. In Software Engineering
and Advanced Applications (SEAA), 2016 42th Euromicro Conference
on, pages 17–24. IEEE, 2016.

[14] P. Hearty, N. Fenton, D. Marquez, and M. Neil. Predicting project
velocity in xp using a learning dynamic bayesian network model. IEEE
Transactions on Software Engineering, 35(1):124–137, 2009.

[15] M. Jørgensen. The influence of selection bias on effort overruns in
software development projects. Information and Software Technology,
55(9):1640–1650, 2013.

[16] A. Joshi, S. Kale, S. Chandel, and D. Pal. Likert scale: Explored and
explained. British Journal of Applied Science & Technology, 7(4):396,
2015.

[17] H. Karna and S. Gotovac. Estimating software development effort using
bayesian networks. In Software, Telecommunications and Computer
Networks (SoftCOM), 2015 23rd International Conference on, pages
229–233. IEEE, 2015.

[18] E. Kocaguneli, T. Menzies, A. Bener, and J. W. Keung. Exploiting
the essential assumptions of analogy-based effort estimation. IEEE
Transactions on Software Engineering, 38(2):425–438, 2012.

[19] V. Lenarduzzi. Could social factors influence the effort software
estimation? In Proceedings of the 7th International Workshop on Social
Software Engineering, pages 21–24. ACM, 2015.

[20] J. López-Martı́nez, R. Juárez-Ramı́rez, A. Ramı́rez-Noriega, G. Licea,
and R. Navarro-Almanza. Estimating user stories complexity and
importance in scrum with bayesian networks. In World Conference on
Information Systems and Technologies, pages 205–214. Springer, 2017.

[21] J. López-Martı́nez, A. Ramı́rez-Noriega, R. Juárez-Ramı́rez, G. Licea,
and S. Jiménez. User stories complexity estimation using bayesian
networks for inexperienced developers. Cluster Computing, pages 1–
14, 2017.

[22] O. Malgonde and K. Chari. An ensemble-based model for predicting
agile software development effort. Empirical Software Engineering,
pages 1–39, 2018.

[23] J. McIver and E. G. Carmines. Unidimensional scaling, volume 24.
Sage, 1981.

[24] E. Mendes. Cost Estimation Techniques for Web Projects. IGI Global,
Hershey, PA, USA, 2007.

[25] E. Mendes. Knowledge representation using bayesian networksa case
study in web effort estimation. In Information and Communication
Technologies (WICT), 2011 World Congress on, pages 612–617. IEEE,
2011.

[26] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes. Validation
methods for calibrating software effort models. In Proceedings of the
27th international conference on Software engineering, pages 587–595.
ACM, 2005.

[27] A. Panda, S. M. Satapathy, and S. K. Rath. Empirical validation of
neural network models for agile software effort estimation based on
story points. Procedia Computer Science, 57:772–781, 2015.

[28] M. Q. Patton. Qualitative research evaluation methods. SAGE
Publications, Inc; 3rd edition, 2003.

[29] S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli.
Estimating story points from issue reports. In Proceedings of the The
12th International Conference on Predictive Models and Data Analytics
in Software Engineering, page 2. ACM, 2016.

[30] M. Robeer, G. Lucassen, J. M. E. van der Werf, F. Dalpiaz, and
S. Brinkkemper. Automated extraction of conceptual models from user
stories via nlp. In Requirements engineering conference (RE), 2016
IEEE 24th international, pages 196–205. IEEE, 2016.

[31] F. Sarro, A. Petrozziello, and M. Harman. Multi-objective software
effort estimation. In Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on, pages 619–630. IEEE, 2016.

[32] S. M. Satapathy and S. K. Rath. Empirical assessment of machine
learning models for effort estimation of web-based applications. In
Proceedings of the 10th Innovations in Software Engineering Confe-
rence, pages 74–84. ACM, 2017.

[33] E. Scott and D. Pfahl. Using developers’ features to estimate story
points. In Proceedings of the 2018 International Conference on Software
and System Process, ICSSP ’18, pages 106–110, New York, NY, USA,
2018. ACM.

[34] J. Silva, D. Ramos, and M. S. Soares. On criteria to choose a content
management system: A technology acceptance model approach. In
SEKE, 2016.

[35] Y.-Y. Song and L. Ying. Decision tree methods: applications for clas-
sification and prediction. Shanghai archives of psychiatry, 27(2):130,
2015.

[36] B. Tanveer, L. Guzmán, and U. M. Engel. Understanding and improving
effort estimation in agile software development: An industrial case
study. In Proceedings of the International Conference on Software and
Systems Process, ICSSP ’16, pages 41–50, New York, NY, USA, 2016.
ACM.

[37] B. Tanveer, L. Guzmán, and U. M. Engel. Effort estimation in
agile software development: Case study and improvement framework.
Journal of Software: Evolution and Process, 29(11):e1862, 2017.

[38] M. Tavakol and R. Dennick. Making sense of cronbach’s alpha.
International journal of medical education, 2:53, 2011.

[39] M. Usman, E. Mendes, F. Weidt, and R. Britto. Effort estimation in agile
software development: A systematic literature review. In Proceedings
of the 10th International Conference on Predictive Models in Software
Engineering, PROMISE ’14, pages 82–91, New York, NY, USA, 2014.
ACM.

[40] L. G. Wallace and S. D. Sheetz. The adoption of software measures:
A technology acceptance model (tam) perspective. Information &
Management, 51(2):249–259, 2014.

[41] L. Wasserman. All of statistics: a concise course in statistical inference.
2013.

[42] R. J. Wieringa. Design science methodology for information systems
and software engineering. Springer, 2014.

[43] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[44] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wes-
sln. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated, 2012.

[45] S. Zahraee, M. K. Assadi, and R. Saidur. Application of artificial
intelligence methods for hybrid energy system optimization. Renewable
and Sustainable Energy Reviews, 66:617–630, 2016.

[46] H. Zahraoui and M. A. J. Idrissi. Adjusting story points calculation in
scrum effort & time estimation. In Intelligent Systems: Theories and
Applications (SITA), 2015 10th International Conference on, pages 1–8.
IEEE, 2015.

87

Towards an artifact to support agile teams in
software analytics activities

Joelma Choma∗, Eduardo M. Guerra∗, Tiago Silva da Silva†, Luciana A. M. Zaina‡, Filipe Figueiredo Correia§¶
∗National Institute for Space Research, São José dos Campos, Brazil

Email: jh.choma@hotmail.com, guerraem@gmail.com
†Federal University of São Paulo, São José dos Campos, Brazil

Email: silvadasilva@unifesp.br
‡Federal University of São Carlos, Sorocaba, Brazil

Email: lzaina@ufscar.br
§Faculty of Engineering, University of Porto, Porto, Portugal

¶INESC TEC, FEUP Campus, Porto, Portugal
Email: filipe.correia@fe.up.pt

Abstract—Software analytics supports data-driven decision
making, which allows software practitioners to leverage valuable
insights from software data to improve their processes and many
quality aspects of the software. In this paper, we present an
artifact designed from a set of patterns to support agile teams
to plan and manage software analysis activities, named Software
Analytics Canvas. Further, we report the study undertaken to
evaluate the ease of use and the utility of our canvas from
the practitioners’ viewpoint, and a participatory design session
carried out to collect information about possible artifact improve-
ments. In general, subjects found the artifact useful, but some of
them reported difficulties in learning and understanding how to
use it. In the participatory design, they pointed out improvement
points and a new layout for the canvas components. The results
of both studies helped us refine the proposed artifact, improving
both the terms used in each element and the layout of the blocks
to make more sense for its users.

Index Terms—software analytics, agile teams, decision making,
software data

I. INTRODUCTION

An increasing number of companies around the world have
used data analytics to make decisions about their businesses.
Analytics refers to the use of analysis, data, and systematic
reasoning to inform the decision making process [1].

Nowadays, researchers and practitioners already use an-
alytics applied to software data for better decision making
concerning many aspects of software quality and its develop-
ment process [2]. Zhang et al. [3] coined the term “Software
Analytics” (SA) to label research in this area. Since then,
SA has been widely adopted by large companies. However,
it has not yet reached its full potential for broad industrial
adoption. For small companies, for example, SA is an open
question and rarely addressed [4]. Furthermore, to the best
of our knowledge, there is no consolidated approach on how
to introduce software analytics concepts and practices into an
agile development context.

By emphasizing short feedback cycles, agile teams regard
changes as an opportunity to improve the product at any time

DOI reference number: 10.18293/SEKE2019-146

in the development process, always focusing on delivering
value [5]. In this sense, software analytics can support agile
teams to make more appropriate changes based on actual
data, rather than only on their personal experiences or intu-
itions. Additionally, the adoption of data-driven continuous
improvement can help agile teams to save resources and
decrease the cost of building and maintaining the software
[6]. Process improvement is one of the main reasons for
measurement in agile software development [7]. However, the
measurement tends to be immediate and straightforward, since
agile principles emphasize measuring progress in terms of
working software over measuring intermediate work products
[5].

Currently, various tools provide structure on top which data-
driven improvement processes can be implemented. However,
due the perceived complexity and effort required to set up
such tools and to establish a measurement program, agreed
with the urgency of the product delivery, lack of time, and
others reasons, many agile teams end up not systematically
using metrics to track product and process performance [8].
There is a lack tools to ease the adoption of software analytics,
but also a lack of approaches to effectively change the habits
within agile teams towards data-driven decision making.

Seeking a practical method to introduce software analytics
into agile teams, we have outlined an artifact to support soft-
ware analytics activities in agile environments named Software
Analytics Canvas (SA Canvas). It was designed based on a
set of patterns that we have identified from experience reports
of researchers and practitioners in the software analytics area
[9], [10]. In this paper, we present the canvas and report two
studies designed to (i) evaluate the usefulness and ease-of-
use perceived by the users, and (ii) refine the design of the
proposed artifact. The goal of these studies is to answer the
following research questions (RQs):

• RQ1: What are the users’ perceptions about the useful-
ness and ease-of-use of the SA Canvas?

• RQ2: What characteristics can be improved in the design
of the SA Canvas?

88

To answer RQ1, we recruited six software practitioners for
planning and managing activities from a software analytics
project using the canvas. As input to the project, we provide
information from a web-based system in the Space Weather
area. After three iterations with the canvas, the participants
were able to evaluate the usefulness and ease of use of
the artifact. To answer RQ2, we call the same subjects for
a participatory design session to provide ideas for possible
artifact enhancements.

II. BACKGROUND

A. Software Analytics

Software analytics allows software practitioners (developers,
testers, designers, and managers, to name a few) to leverage
insightful information (accurate and in-depth) and actionable
(with real practical value) for completing various tasks around
software systems, software users, and software development
processes [11]. The SA process comprehends monitoring,
analysis, and understanding of software data to support the
decision-making process throughout the different phases of the
software lifecycle [3].

Within the SA context, we refer to the software data as
any data generated from different sources such as code, bug
reports and test executions recorded in software repositories
(e.g., version control systems and issue-tracking systems), and
information about data of usage typically stored in the log
files [12]. Furthermore, SA has been used to address different
type of concerns, such as issues related to the source code
(e.g., code quality, bug proneness, number of defects, and
amount of effort to fix bugs) [13]; development process (e.g.,
productivity and ROI) [4]; product business (e.g., usage of
features, data quality, and user satisfaction) [14]; and software
runtime properties (e.g., performance, number of transactions
and error log) [15].

B. Software Analytics Patterns

Considering software analytics as an essential practice for
leveraging value delivery in agile contexts, we have identi-
fied in previous studies a set of eight patterns focusing on
how to incorporate SA activities into agile practices on a
continuous basis to inform the decision-making process of
software practitioners, including project managers, analysts
and software developers from small, large, or multiple teams.
Below, we present the eight SA patterns and a brief description
of the proposed solutions in each of them. For a more detailed
description of these patterns, see [9] and [10].

1) What You Want to Know: refers to defining the key
issues that the development team wants to focus on, in
order to guide their selection of the appropriate means
for measurement, assessment and monitoring these is-
sues throughout the project.

2) Choose the Means: refers to defining the data sources
and most appropriate means, such as tools, techniques
and other approaches for selecting and collecting data
that will be useful for future decisions.

3) Software Analytics Planning: refers to adding tasks
related to the software analytics on the to-do list to be
prioritized with the regular project tasks according to the
team’s demand for information.

4) Analytics in Small Steps: it means that the tasks related
to the software analytics can be distributed throughout
the project, adding information to the team about the
system at small portions by adjusting the granularity of
the analytic activities.

5) Reachable Improvement Goals: refers to defining
reachable improvement goals from the software analyt-
ics findings and break the activities down into smaller
tasks to fit together with the other tasks.

6) Learning from Experiments: refers to create an al-
ternative solution and perform an experiment collecting
data that allow the comparison with the current solution.

7) Define Quality Standards: refers to define quality
standards and establish minimal or maximum thresholds
for any software aspect that the team intends to monitor.

8) Suspend Measurement: refers to suspend measurement
of the issues with a low possibility of recurrence, or
measurement of the issues that need to be continually
monitored, but the team has defined that, for some
reason (e.g., effort, cost or other project constraints),
the monitoring of these issues cannot be implemented
immediately.

III. RESEARCH APPROACH

In order to develop an artifact to support agile teams
throughout the software analytics activities, our research ap-
proach follows the guidelines of Design Science Research
(DSR), as proposed by Hevner et al. [16]. DSR is a problem-
solving paradigm, where “knowledge and understanding of a
problem domain and its solution are achieved in the building
and application of the designed artifact”.

In this paper, we describe the design process of the SA
Canvas artifact, which includes the building and evaluation
cycles. A first version of the canvas emerged from patterns
previously identified from experiences reports in the SA field
(Section II-B). Aiming at evaluating the artifact and improving
its characteristics, we have carried out a formative evaluation
in two rounds (Section V).

For the first round, we selected six subjects (in pairs) to plan
and manage software analysis activities using the SA Canvas.
After the hands-on experience of handling the artifact, we
gathered the users’ perceptions of usefulness and ease of use of
the proposed artifact, using the Technology Acceptance Model
(TAM) [17]. According to Davis [17], perceived usefulness
(PU) refers to “the degree to which a person believes that
using a particular system would enhance his or her job perfor-
mance”; and perceived ease of use (PEU) refers to “the degree
to which a person believes that using a particular system would
be free of effort”. We measured both variables within the TAM
through a multiple-item questionnaire using a 6-point Likert
scale – from “Completely Disagree” to “Completely Agree”.

89

For the second round, we organized a redesign session using
principles of participatory design (PD) [18] to collect informa-
tion for artifact improvement, involving the same participants
of the first round. During the PD session, the participants were
encouraged to draw sketches as an idea for the canvas redesign.

IV. SOFTWARE ANALYTICS CANVAS DESIGN

This section presents the SA Canvas template we have
designed as an artifact to support the software analytics ac-
tivities into agile development environments. Canvas artifacts
are visual maps – structured and preformatted – used to
support the collaborative teamwork in their communication
processes. Canvas is considered a hands-on tool that fosters
understanding, discussion, creativity, and analysis on a given
matter [19]. Nowadays, there is a range of applications using
canvas – e.g., development of new businesses, conception,
and planning of projects, strategic alignment of projects, value
proposition, among others.

The SA patterns presented in Section II-B were the basis
for the creation of our canvas. As shown in Figure 1, it is
composed of seven blocks with names based on the patterns.
The seven names are Key Issues, Data Sources, Data Gath-
ering, Analytics Implementation, Insights, Incremental Goals,
and Quality Thresholds. Note that, we added in each block a
guiding question to help beginner users.

Fig. 1. Software Analytics Canvas [1st Version]

The explanation of each canvas block is presented below,
including its description, the related patterns, and its corre-
sponding guiding question.

• Key Issues. As a first step, the team can raise issues that
need to be verified, analyzed and improved. As mentioned
in Section , the issues can be, for example, related to the
internal quality of the system (e.g., code quality), external
quality of the system (e.g., performance, bug density, the
effort required to fix defects), productivity (e.g., effort
estimation), and/or usage patterns (e.g., usability, user
satisfaction). This element is related to the pattern called
What You Want to Know. The guiding question is: What

do we want to know about the software, process and/or
usage patterns?

• Data Sources. After defining the key issues, the team
identifies what kind of data is needed to know more
about the issue raised, and from which sources the data
should be extracted, for example, a dump of the database
system on recent transactions, source code, behaviors’
user, historical data about bugs incidence, etc. For specific
issues, the team may recognize the need to collect data
from multiple sources for cross-referencing. The two
patterns related to this element is Choose the Means
and Learning from Experiments. The guiding question is:
What are the data sources that can provide information
on the issues raised?

• Data Gathering. After identifying the data sources, the
team should decide which metrics and tools will be used
to gather the data. The team can, for example, enable
the collection of specific code metrics in the development
environment, export from SGBD data referring to a given
period, verify the need to create a specific script to extract
data from the software repository, etc. Furthermore, the
team needs to decide which methods and tools will
be used to analyze the data collected. The team can
employ from simple statistical methods (e.g., descriptive
and inferential statistics) to more sophisticated methods
(e.g., data mining, natural language processing, machine
learning, etc.), according to the type and amount of data.
Also, the team also needs to decide on the tools to support
their analysis. For example, the team can opt for software
analytics platforms which can be configured according
to the team’s needs. This element also is related to both
Choose the Means and Learning from Experiments. The
guiding question is: How to collect and analyze software
data related to this issue?

• Insights. The team analyzes the results obtained from
the collected data and discusses possible solutions and
insights to making-decision. For example, the team find
that “tests have low coverage in module X”, “customers
prefer this approach” and so on. Then, Insights are raised
from the search for solutions. Notice that, sometimes,
the data analysis did not reveal significant information
about the issue raised. So, the team will decide whether
to continue the investigation by collecting new data or if
the issue is disregarded, once no action is necessary. This
element is a trigger for Reachable Improvement Goals
pattern. The guiding question is: What have we found
out from the analysis?

• Quality Thresholds. When implementing the improve-
ments via informed decision-making, the team can eval-
uate the impact of the changes by collecting feedback
from stakeholders. From collecting feedback, the team
will have enough information to decide whether to con-
sider the issue resolved, or whether the issue should be
monitored for longer. Concerning unresolved issues, the
team will decide whether they will be re-analyzed from
new data, or discarded. Ideally, the team should establish

90

the quality thresholds values for any issue that the team
decides to evaluate or to keep in monitoring. For example,
in issues related to coverage testing, the response time
cannot exceed 2 seconds, or the test coverage must be at
least 80%. Define Quality Standards is the patterns related
to this element. The question is: What parameters we can
establish to evaluate the quality of our decisions?

• Analytics Implementation. The team should plan how to
conduct analysis activities to seek meaningful information
from collected data. These activities should be included
on the to-do list and prioritized along with the other de-
velopment tasks. In order to avoid overloading the team,
such activities – that also includes the preparation of the
analytical infrastructure – can be distributed throughout
the project and executed by steps resulting in something
deliverable. This block is divided into two regions, the
first for the works to be done, and the other to control the
work done. Software Analytics Planning and Analytics in
Small Steps are the patterns related to this element. The
guiding question is: How to implement software analytics
tasks along with other tasks?

• Incremental Goals. From their insights, the team dis-
cusses and define reachable goals to put their solutions
into practice, considering that these improvements can
be made incrementally. Therefore, the most important in
this step is to define where the team wants to reach and
what goals they want to achieve. Reachable Improvement
Goals is the related pattern to this element. However,
if the current goals have been fulfilled, the pattern is
Suspend Measurement. The main question is: What in-
cremental goals can we define based on the insights from
data analysis?

V. ARTIFACT EVALUATION

This section describes the two studies conducted to evaluate
the SA Canvas built to aid agile teams during the planning and
managing of software analytics activities.

A. Perceived Usefulness and Ease-of-use (RQ1)

We have conducted the first study in order to investigate the
users’ perceptions of the usefulness and ease-of-use of the SA
Canvas (RQ1). This study was conducted in the Laboratory
of Computation and Applied Mathematics at the National
Institute for Space Research in Brazil, where we selected six
subjects from the course of Agile Projects. Participants had at
least three years of experience in software development, and
only one of them had no experience with agile methods. We
divided the participants into three pairs, seeking to balance
them based on the experience of each participant. Table I
shows the participants’ background and their experience time
in developing software (in years).

During the study, participants were invited to plan and
manage a software analytics project based on a real case using
SA Canvas. For this purpose, we prepared for each team a SA
Canvas using a whiteboard and a document describing the
case study which should be used as input for the planning

TABLE I
PARTICIPANTS CHARACTERIZATION

Pairs Subjects Background Professional Experience

G1 P1 web development 6 to 10
P2 software architecture 16 to 20

G2 P3 systems analysis 3 to 5
P4 systems analysis 11 to 15

G3 P5 computer programming 3 to 5
P6 systems analysis 16 to 20

and management of the software analytics project. As for the
case study, we describe a real case of EMBRACE, one of
the research centers in the area of space weather at INPE. In
the document, we described the context of study related to a
web system to make available some of the products developed
by the researchers working in the EMBRACE. In addition to
the information about the products developed, we included
in the document some concerns related to the web portal
that the researchers of the space weather had the intention
to investigate and solve. Considering the possible demands
described in the document for a software analytics project, we
prepared a list of possible data sources to give participants
some examples. Moreover, then, we created a tutorial printed
on A4 with the illustration of the canvas, the description of
its components, and the guiding questions (in Portuguese).

We conducted a pilot study with two researchers from
the computer lab to evaluate their iteration with the SA
Canvas on the whiteboard and the other materials – case
study description, list of possible data sources, and canvas
tutorial. From the pilot study, (i) we established that peers
should have to raise at least two issues of software analytics;
and that (ii) we should carry out a warm-up exercise together
with all participants before they begin planning their projects.
After that, we held four weekly meetings with participants, as
showed in Figure 2.

Fig. 2. Meetings over time.

1st Meeting. At the first meeting, we introduced concepts
about software analytics, provided an overview of SA patterns,
and presented SA Canvas using the practical example related
to code coverage improvement. For more information, we
asked the participants to read the two articles on software
analytics patterns [9] [10] before the next meeting. After the
meeting, participants read and signed an informed consent
form to participate in this study.

91

2nd Meeting. At the second meeting, we invited the partic-
ipants to a practical exercise to understand how they should
use the canvas. One of the participants provided us with a real
example of his own work. From this example, we helped them
to plan software analytics activities on the board using sticky
notes. This activity took approximately one hour.

After warming up, a pair of participants at a time should
fill out four blocks of the Canvas (Key Issues, Data Sources,
Data Gathering, and Analytics Implementation) based on
information written in the document on the EMBRACE case
study and the support material (list of possible data sources
and the canvas tutorial). Additionally, we asked teams to use
different color sticks for different key issues. Each pair took
from 25 to 40 minutes to fill the four blocks with at least two
key issues. The sessions were recorded for future analyzes,
and one of the researchers observed the activities in silence,
taking notes on the interaction of participants with the artifact.

After the first iteration, we prepared a report with (i) feed-
back about how they had used the canvas (including corrective
actions), and (ii) fictional information on the evolution of the
activities planned by them and executed by the developers.
Also, we have introduced some insights mixed into the text to
be extracted by them. Because each team raised different key
issues, we then prepared three different documents for each of
them.

3rd Meeting. The report’s information was used as input for
the second iteration when the team should adjust some fill-in
mistakes pointed out by researchers, update the canvas with
the tasks done, proceed in the planning their activities for the
next iteration, and fill in the remaining canvas blocks from the
insights. As in the first iteration, the sessions were recorded
and observed by one of the researchers. The sessions took
from 40 to 60 minutes. From the results of this iteration, we
prepared a new report for each team with the feedback on
the use of the canvas, other fictitious information about the
evolution of the project, and new insights mixed into the text.

4th Meeting. As in the previous iteration, from the researchers’
report, the teams should adjust some fill-in mistakes pointed
out by researchers, update the canvas with the tasks done,
proceed in the planning their activities for the next iteration,
and fill in the remaining canvas blocks from the insights.
The sessions took on average 40 minutes, and just like the
previous ones, they were recorded and observed by one
of the researchers. At the end of the iteration, we asked
the participants individually to answer a questionnaire with
questions of the TAM [17], based on their experiences during
the software analytics project when they used SA Canvas to
plan and manage its activities.

Findings. The questions answered by the participants can be
found in the following link: https://goo.gl/ZbEcC3. Figure 3
shows the responses from the questionnaire, where to some
degree all participants agree that the SA Canvas is useful.
However, there was some disagreement concerning the ease of
use. Some participants do not agree that it was easy to learn
and understand what should be done at certain times (PEU1

and PEU2). The learning curve certainly will have an impact
on the user ability to handle the artifact (PEU5). Furthermore,
users tend to be more critical as to the usefulness of the artifact
when its use is not effortless.

Fig. 3. Perceived usefulness and use of use.

B. Participatory Redesign (RQ2)

To identify what and how we could improve in the SA
Canvas (RQ2), we conducted a participatory design session
with the same participants from the previous study. The
method used to conduct the redesign section was divided
into three steps. In the first step, each participant received
a document with the description of all the components of the
canvas and a form to inform their particular suggestions to
improve SA Canvas. After that, each participant should sketch
a redesign proposal. In the second step, they consolidated their
opinions with their peers by drawing a new sketch for canvas
redesign. Lastly, in the third step, all participants discussed
their redesign proposals and proposed a single sketch to the
canvas. Two of the researchers participated in the session as
observers making notes of relevant information. On average,
each step lasted 30 minutes.

Findings. From the participants’ suggestions, we can identify
the need to better clarify at least three blocks:

• In “Insights”, three participants suggested making it clear
that insights should be described from the results of the
analysis.

• The name of the “Quality Thresholds” block seems not
to be suitable. Participants suggested making it clear that
the values may be minimum or maximum.

• Understanding what should be considered in “Incremental
Goals” was difficult for them. Some have suggested a
more appropriate name since the main idea is to imple-
ment the improvements.

As a final result, the participants sketched the canvas with
the following characteristics:

• At the top of the canvas, there are five blocks reserved
for planning (inputs and outputs): “Key Issues”, “Data
Sources”, “Data Gathering”, “Incremental Goals”, and
“Quality Threshold”.

• The “Quality Threshold” block has been subdivided into
two parts to include a minimum acceptable value (mini-
mum) and the goal to achieve (goal).

• At the bottom of the canvas, there is a block called
“Analitycs Tasks” block instead of “Analytics Implemen-

92

tation”. This block has been subdivided into four parts to
accommodate the tasks to do, in progress, done, and the
impediments.

VI. DISCUSSION, CONCLUSION AND FUTURE WORK

Although feedback, continuous improvement, inspection,
and adaptation are always present in the agile speech, there
is little evidence on measurement in practice. Often this
measurements and adaptation are adopted on an ad hoc basis.
Software analytics is an approach that aims at data-driven
continuous improvement, but it is not very widespread in
practice.

To bridge this gap, we previously identified patterns on
how software analysis could be introduced into the software
development process continuously. By looking for a more
efficient and practical way to apply the SA patterns into agile
development context, we proposed a canvas addressed to the
software analytics activities taking into account how teams
communicate and collaborate. SA Canvas can be considered
a goal-focused approach, similar to the well-known Goal
Question Metric (GQM) approach proposed by Basili et al.
[20]. The goal-focused approaches are good ways to ensure
that measurement goals are articulated with the metrics being
collected, and also, to avoid having useless measurements.

We argue that the SA Canvas is a suitable artifact to
agile teams’ informative workspaces where various techniques
and tools for software visualization are commonly applied as
information radiators – e.g., count of velocity automated tests,
continuous integration status, incident reports, and so forth
[21].

In our viewpoint, our canvas has two interesting charac-
teristics. First, it can work as a hub in terms of information
flow related to software analytics projects. Information hubs
can be considered spaces where information flows meet and
decisions are made. Second, the proposed artifact is a situation
awareness channel, which considers how people are kept
informed about what is happening [22]. For Agile teams,
the support of different visualization techniques and tools
throughout the software development process is crucial to
foster awareness and communication. Additionally, this factor
can have a positive impact on the sense of purpose [8] when
the professionals follow the evolution of their actions within
a cycle of continuous improvement.

As a contribution of this paper, we present the methods used
for formative evaluation of the artifact. As a result, we found
that the SA Canvas is a useful artifact, but some participants
reported difficulties in learning and understanding how to use
it. To investigate what could be improved, we carried out a
participatory design session, where the same subjects pointed
out the components of the canvas that needed to be redefined
and provided a sketch with a new layout of the canvas’ blocks.
These results will help us to refine the proposed artifact. In
future work, we will empirically investigate the use of SA
Canvas in an industrial setting and experienced agile teams
in order to get more relevant research results concerning its
effectiveness and impact on the software analytics process.

ACKNOWLEDGMENT

This work is financed by National Funds through the
Portuguese funding agency FCT – Fundação para a Ciência e
a Tecnologia – within project: UID/EEA/50014/2019.

REFERENCES

[1] T. H. Davenport, “Make better decisions,” Harvard business review,
vol. 87, no. 11, pp. 117–123, 2009.

[2] R. P. Buse and T. Zimmermann, “Analytics for software development,”
in Proceedings of the FSE/SDP workshop on Future of software engi-
neering research. ACM, 2010, pp. 77–80.

[3] D. Zhang, Y. Dang, J.-G. Lou, S. Han, H. Zhang, and T. Xie, “Software
analytics as a learning case in practice: Approaches and experiences,”
in Proceedings of the International Workshop on Machine Learning
Technologies in Software Engineering. ACM, 2011, pp. 55–58.

[4] R. Robbes, R. Vidal, and M. C. Bastarrica, “Are software analytics
efforts worthwhile for small companies? the case of amisoft.” IEEE
software, vol. 30, no. 5, 2013.

[5] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for agile software development,” 2001.

[6] A. E. Hassan and T. Xie, “Software intelligence: the future of mining
software engineering data,” in Proceedings of the FSE/SDP workshop
on Future of software engineering research. ACM, 2010, pp. 161–166.

[7] D. Hartmann and R. Dymond, “Appropriate agile measurement: using
metrics and diagnostics to deliver business value,” in Agile Conference,
2006. IEEE, 2006, pp. 6–pp.

[8] O. Liechti, J. Pasquier, and R. Reis, “Supporting agile teams with
a test analytics platform: a case study,” in Proceedings of the 12th
International Workshop on Automation of Software Testing. IEEE Press,
2017, pp. 9–15.

[9] J. Choma, E. M. Guerra, and T. S. Silva, “Patterns for implementing
software analytics in development teams,” in Proceedings of the 24th
Conference on Pattern Languages of Programs. ACM, 2017, p. 12.

[10] ——, “Learning from experiments, define quality standards, suspend
measurement: Three patterns in a software analytics pattern language,”
in Proceedings of the 12th Latin American Conference on Pattern
Languages of Programs (SLPLoP). ACM, 2018, p. 10.

[11] D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and T. Xie, “Software
analytics in practice,” IEEE software, vol. 30, no. 5, pp. 30–37, 2013.

[12] F. Shull, “Data, data everywhere...” IEEE software, no. 5, pp. 4–7, 2014.
[13] J. Guo, M. Rahimi, J. Cleland-Huang, A. Rasin, J. H. Hayes, and

M. Vierhauser, “Cold-start software analytics,” in Proceedings of the
13th International Workshop on Mining Software Repositories. ACM,
2016, pp. 142–153.

[14] S. Pachidi, M. Spruit, and I. Van De Weerd, “Understanding users’
behavior with software operation data mining,” Computers in Human
Behavior, vol. 30, pp. 583–594, 2014.

[15] R. Musson, J. Richards, D. Fisher, C. Bird, B. Bussone, and S. Gan-
guly, “Leveraging the crowd: how 48,000 users helped improve lync
performance,” IEEE software, vol. 30, no. 4, pp. 38–45, 2013.

[16] A. Hevner and S. Chatterjee, “Design science research in information
systems,” in Design research in information systems. Springer, 2010,
pp. 9–22.

[17] F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” MIS quarterly, pp. 319–340,
1989.

[18] S. Bϕdker, K. Grϕnbæk, and M. Kyng, “Cooperative design: techniques
and experiences from the scandinavian scene,” in Readings in Human–
Computer Interaction. Elsevier, 1995, pp. 215–224.

[19] A. Osterwalder and Y. Pigneur, Business model generation: a handbook
for visionaries, game changers, and challengers. John Wiley & Sons,
2010.

[20] V. R. Basili, G. Caldiera, and D. H. Rombach, “The goal question
metrics approach,” Encyclopedia of Software Engineering, vol. 1, pp.
528–532, 1994.

[21] K. Beck and C. Andres, “Extreme programming explained: Embrace
change,” 2004.

[22] E. Berndt, D. Furniss, and A. Blandford, “Learning contextual inquiry
and distributed cognition: a case study on technology use in anaesthesia,”
Cognition, Technology & Work, vol. 17, no. 3, pp. 431–449, 2015.

93

Sprint Performance Forecasts in
Agile Software Development

The Effect of Futurespectives on Team-Driven Dynamics

Fabian Kortum∗, Jil Klünder∗, Wasja Brunotte∗, and Kurt Schneider∗
∗Software Engineering Group

Leibniz University Hannover, Germany
Email:{fabian.kortum, jil.kluender, wasja.brunotte, kurt.schneider}@inf.uni-hannover.de

Abstract—In agile software development, the sprint perfor-
mances and dynamics of teams often imply tendencies for the
success of a project. Post mortem strategies, e.g., retrospectives
help the team to report and share individually gained experiences
(positives and negatives) from previous sprints, and enable them
to use these experiences for future sprint planning. The interpre-
tation of effects on sprint performance is often subjective, espe-
cially with concern to social-driven factors in teams. Involving
strategies from predictive analytics in sprint retrospectives could
reduce potential interpretation gaps of dynamics, and enhance the
pre-knowledge, also awareness situation when preparing for the
next sprint. In a case study involving 15 software projects with a
total of 130 involved undergraduate students, we investigated the
post-effects on team performances and behavioral-driven factors
when providing predictive analytics in retrospectives. Besides
measures for productivity, we consider human factors, e.g., team
structures, communication, meetings and mood affects in teams
as well as project success metrics. We developed a unique JIRA
plugin called ProDynamics that collects performance information
from projects and derives trend-insights for next sprints. The
ProDynamics plugin enables the use of a times series and neural
network model within a JIRA system to interpret factorial
dependencies and behavioral pattern, thus to show the next sprint
course of a team.

Index Terms—team dynamics, human factors, data analytics,
futurespectives, sprint performances, agile

I. INTRODUCTION

In agile software development, accurate sprint estimations
and development performances by teams are essential and
can cause the difference whether project goals will be suf-
ficiently completed in time, or neglected [1] [2]. However,
studies with the focus on software process improvement are
often motivated by increasing the overall success of projects,
with the help of using modern methods or technologies that
enable additional feedback [3] [4]. For organizations, sprint
feedback is important and valuable because it allows the teams
to receive both subjective and objective information from
different perspectives, e.g., productivity monitoring systems
like JIRA, customer responses, and team perceptions also
experiences. The feedback mentioned above strongly relies
on human factors [5]. While tool-oriented technologies and
development frameworks are continuously improved, do the
social-driven factors of the team present particular difficulty

DOI reference number: 10.18293/SEKE2019-224

in the development process chain. Accordingly, the need for
understanding the effects of human factors has continuously
grown in relevance for the software engineering discipline, in
particular for the improvement of the development process [6]
[7]. Towards this, team feedback with focus on past sprints
conditions can provide a substantial insight towards earlier
experiences, dysfunctional habits or positive performance in-
fluences. For example, feedback through retrospective sprint
characterization and visualizations benefits of post-mortem
summaries, similarly to sprint reports [8]. However, depen-
dency implications or trend highlighting concerning team
behavior or performances changes over time are barely con-
sidered or hard to grasp. This leads to possible knowledge and
interpretation gaps when preparing follow-up sprints because
previous effects may not be fully identified or adequately
encountered. It is highly desirable to give teams a more
sustainable feedback opportunity that involves sprint feedback
involving both, retrospective and future characterization. Sub-
sequently, we derive the following two research questions from
the above-reported context.

We addressed and investigated RQ1 and RQ2 within a
case study involving 130 undergraduate students working in
15 software projects, all founded from industrial, govern-
ment or public institutional partners. The teams followed a
Scrum-oriented development process with support through the
project management software JIRA. The case study involves
weekly self-assessments resolved in JIRA. The question set
covers team behavioral driven features, to gain the situational
dynamics in a project with effect for the performances in
sprints — satisfactory reflections of customer became ad-
ditionally elicited at the end of every sprint. Productivity
information, e.g., velocity during sprints, estimation gaps or
sprint interventions become tracked and accessed directly by

94

JIRA. Half of the projects (seven) were granted to obtain a
JIRA plugin called ProDynamics [8]. The plugin is based on
earlier studies, enabling teams to give and receive additional
retrospective feedback for a better knowledge transfer at the
end of sprints [8] [9]. In this study, we extended the primarily
retrospective feedback in ProDynamics with two predictive
analytics features. Teams with access to ProDynamics can
additionally perform time series analyzes for short-term fore-
casts, also sprint performance tendencies with the help of a
neural network encoder-decoder model [10].

This paper is structured as follows. In Section II, we discuss
related work on team behavioral effects, feedback and data
analytics adaptions. Section III provides a brief overview of
the study context. In Section IV, we address the methodology
about self-assessments in sprints, also time series and neural
network forecasts. In Section V, we describe and interpret
results. Section VI concludes our research and future work.

II. RELATED WORK

This study builds on previous results and related work with
the focus on human-centered software engineering, and the
relevance of fast feedback in an agile context.

Human-centered software engineering takes an import role
in modern software development [5]. The focus on team
communication, self-organization, and well-working relation-
ships within teams reflect the need for better understanding
of behavior-driven factors [9]. When planning sprints in ag-
ile software development, pre-knowledge on people having
different personalities, skills, and ambitions within the orga-
nizational structure is crucial [7]. By means, understanding
such human interdependencies enrich project improvements
throughout better team performances due to a reduction of
estimation gaps [11]. Besides, e.g., the meeting and communi-
cation manner or atmosphere changes over time can grant valu-
able project directions towards potential follow-up conflicts
or misleading habits that endanger the sprint performances
[12] [13]. Nevertheless, human-centered software engineering
strongly depends on the contribution and self-reflection of
teams, in sharing experiences from previous sprints [14].

Whenever targeting sprint performance improvements in
agile development, team feedback, and change adaptions
should be sincerely considered [15] [4]. In the early 2000s,
research results by Rising et al. [16] subsequently revealed
that team feedback during iterative development phases helps
the teams most when also involving customer feedback and
reflections. The customer perception forms a substantial base
in the improvement process by associating group subjective
sprint perceptions with the team and development expectation
of stakeholder. Vetrò et al. [3] also focused on the effect of
fast feedback cycles in software development. The authors
observed the impact of different feedback mechanism when
gathering information from software development teams di-
rected affects for the quality and transferability of experiences
and knowledge with changes in following sprints.

Retrospectives are commonly applied in Scrum and most
other agile processes to share and interpret team experi-

ences on performance effectiveness collected during the last
sprint [5] [11]. Knowledge gained this way is then taken
into account to estimate the next sprints more effectively
according to previous outcomes. However, the interpretation of
team-behavioral pattern often remains subjectively. However,
computer-supported interpretation of sprint performance be-
comes increasingly important and visible - study results, e.g.,
reported by Vetrò et al. [15] show the improvement potentials
in combining data analytics with traditional team feedback
appraisals to improve future sprint estimations [17] [15]. The
authors applied multiple-regression analyzes to characterize
behavioral pattern on, e.g., meeting and development manner,
to grant teams better insights on factorial influences over
time, especially for efficiency hazards occurred during sprints.
Our case study combines feedback mechanisms and predictive
analytics about human-centered sprint performance factors.

III. CONTEXT OF COMPARATIVE CASE STUDY

This approach focuses on the effects of feedback on de-
velopment performance by teams when providing additional
feedback that involves forecasts and sprint tendencies. The
futurespectives considered in this study base on computer-
supported analyzes that relates to team and customer reflec-
tions. Predictive analytics is also integrated to characterize
interdependencies of behavior pattern. We analyzed RQ1 and
RQ2 using a comparative study design [18] by observing 130
undergraduate students working in fifteen project teams (eight
to nine student per team). Each project was pre-estimated with
an approximated development complexity of 2,000 working
hours, equally distributed over 15 weeks. Seven of the fifteen
teams used the ProDynamics JIRA plugin, enabling them to
characterize the previous team and development performances,
and to esteem next sprints with the support of times series
forecasts and neural network prediction models.

Fig. 1. Comparative Study: Projects, Sprints and Self-Assessments

Figure 1 shows a process overview of the comparative case
study design. Participating in the software projects is eligible
for students in the fifth semester of their computer science
undergraduate studies. The main focus is to collect practical
team experience following an iterative development process

95

including agile methods and practices, such as weekly scrums
and storyboards. Students do not receive gradings for par-
ticipating or performances during the projects. Nevertheless,
the course is compulsory within the syllabus. As mentioned
before, Scrum was mandatory in each project. All teams had to
self-organize inner structures, meetings, and communication,
and to manage sprint tasks on a Scrum-board using the project
management software JIRA.

For a primary information flow and status exchange, each
team was requested to meet face-to-face for at least once a
week. For product progress updates, a subsequent meeting
with the customer was regularly scheduled once a week.
During the sprints, change request could occur, which led to
adjusted or discarded issues. At the end of each sprint, teams
used retrospectives to highlight and reflect on positive and
negative sprint situations. This has mostly been experiences
that help the team to better estimate the next sprint tasks
and organizational structures. During the projects, additional
customer-reflections and satisfaction feedback were assessed
to monitor group and development performances also from
customer perspectives.

IV. METHODOLOGY

This methodology section starts with (A) the ideology of our
JIRA plugin for advanced sprint retrospective and future trend
support. The chapter covers the role and realization of (B) the
self-assessments on teams and customer satisfaction that were
collected as part of the case study. Furthermore, we show how
the elicited team and sprint information is later used within
(C) the time series and neural network prediction models. In
the last subsection, we describe (D) the monitoring process
for the sprint performances with a focus on RQ1 and RQ2.

A. ProDynamics –Retrospectives & Futurespective Support:

The project management system JIRA is worldwide known
for its team-oriented sprint planning and issue tracking sup-
port, commonly used in agile software development. Its usage
is scalable from large industrial projects to small entrepreneur
solutions. The standard features of JIRA provide substantial
help for teams to monitor not yet completed sprints and
to derive performance reports for past sprints (development
velocity). Lessons learned or experiences gained during a
sprint are often reflected by the teams through post-mortem
retrospectives [19]. This way, dysfunctional or beneficial sprint
characteristics, as well as other individually gained insights,
become shared and discussed within the team, enabling them
to plan the next sprint in addition to pre-experienced situations
or manners. However, reasons for performance affects are
not always easy to explain, in particular since the standard
JIRA system only characterizes productivity statistics without
further implication. We addressed this problem in enabling
teams to access fast feedback through a JIRA plugin called
ProDynamics [8]. In Fig. 2, we give an overview on the sprint
analysis features currently provided in ProDynamics.

The red box highlights the two newly integrated sprint
forecasting features of this study. The plugin addresses the
ideology to support and increase the team’s understanding
and awareness for factorial effects on team-driven sprint
behavior and development performance. Previous study results
have shown that after suitable preparation of retrospective
data, teams can be supported by retrospective computer-aided
feedback [8] [15]. However, we believe that the support for
such teams in their sprint estimations can further enrich the
organizational and development performances with the help of
integrated data analytics solutions.

Fig. 2. Behavior-Driven Feedback Support on Sprint Futurespectives in JIRA

96

B. Self-Assessments for Teams, and Customer-Satisfaction:

Interpretations of previous sprint dynamics or estimations of
follow-up sprints concerning the social nature of agile teams
can be challenging [7]. Various human factors, such as mood,
communication or meeting manner have a direct effect for the
ongoing project, while dysfunctional behavior often remains
undetected or hard to grasp until problems enlarge [9] [20].

Our approach is designed for teams with an open mentality
for self-reflection in exchange for sustainable feedback that
enables opportunities for change-driven improvements of or-
ganizational and development structures [14] [4]. Using the
ProDynamics plugin, we enable an integrated self-assessment
solution for a systematic elicitation of team dynamics in
ongoing sprints. During our comparative case study with n
= 15 projects, three different assessments were applied to
grasp the maximal descriptive team characteristics over time.
The assessment designs and question features are based on
previous studies, also related work [21] [9], and continuously
refined to reach the currently applied versions. The question
set is self-adapting, e.g., the information elicitation about
communication or meeting behavior only occur for members
with active information exchange. With this, the interviewees’
effort to complete a survey could be minimized to a length
of 1-2 minutes. All assessments are realized through 5-points
Likert scales, determining his or her level of agreement on
a symmetric agree-disagree scale with predefined sprint or
team behavioral statements. In the following, we explain the
three assessment types in detail. A summary of the variants,
in particular, the intervals, self-assessment sprint information
by categories, and interviewees are shown in Fig. 3.

Fig. 3. Self-Assessment Intervals, Interviewees and Features

1) Self-Assessment at the End of each Week: During the
15 weeks of this case study, seven out of the fifteen student
developer teams voluntarily participated in the study.

Besides the access to the ProDynamics retrospective and
futurespective sprint features, the participation included a
weekly self-assessment for each team member. The assess-
ments capture social- and organization features, such as:

• who-to-whom communication and media channel use
• meeting quantity and average duration
• the atmosphere in the group, personal mood
• satisfaction about the last weeks’ performances

We derived other team and sprint metrics, e.g., meeting
participation, maverick trends, and centralized communication
structures from each team member’s response. A summary of
all assessment information is shown in Fig. 3. Subsequently,
all category features that are currently considered by the
time series and neural network model, including productivity
measures from JIRA, become listed in Fig. 5.

2) Self-Assessment at the End of each Sprint: The second
self-assessment question set on the satisfaction with the team
and development performances for all 15 software projects
was also answered by the customer, and the scrum master
at the end of each sprint (except the first). We activated the
performance assessments with the second sprint, because the
first three weeks of the project were mainly for exploration, to
create and fill the backlog, form team structures, get to know
the customer and reach a steady state before the next sprint.

However, the survey covers in total ten questions, four about
the team organization, four on the development performance
as well as two items focusing on the overall satisfaction with
the team and product. The question structure became realized
through 5-points Likert scales, determining the customers and
scrum master’s level of agreement on a symmetric agree-
disagree scale, similar to the other two self-assessments. The
question set was used as one reference indicator between
team-driven dynamics during the sprints and potential effects
for the customers’ satisfaction. The scrum masters’ responses
become utilized to determine possible offsets between external
views and the team inside knowledge. For the comparison
of satisfaction changes between the teams with access to
ProDynamics and those that did not, the customer and scrum
master of all fifteen projects were invited to complete this
self-assessment form.

3) Self-Assessment at the End of each Project: The third
self-assessment took place only once at the end of each
project and became applied to all 130-student developer. The
survey includes questions on the personal perception of the
developers, e.g., whether there were moments with a need
for additional feedback during the sprints, and if there were
recognizable effects (positive or negative) within the own team
in case of provided feedback. The following four assessment
features became only ones elicit at the end of each project for
the validation of every student’s perception of their team and
development performances during the 15 weeks:

• importance of organizational feedback for the team
• importance of product feedback for the development
• perceived effect in the team because of team feedback
• perceived effect in the team because of product feedback

97

Fig. 4. Time Series Sprint Forecasts derived in ProDynamics

The responses were compared with the customer and scrum
master satisfaction after each sprint. This survey also involves
questions about the need and usefulness, e.g., of a centralized
feedback solution in JIRA. Also, whether JIRA was an ade-
quate solution to manage and organize sprints during the case
study project. Those are by-product information, in particular
with no relevance to answer RQ1 and RQ2.

C. Sprint-Trends through Time Series and Neural Networks

With this case study, we investigated whether teams can
gain a more sustainable use of feedback when considering
both, past retrospective records and future sprint performance
predictions. Besides this, we incorporated retrospective sprint
characteristics (e.g., organization structures, communication-
and meeting behavior, productivities, motivation) with two
predictive models to grant teams an additional trend char-
acterization on behavior-driven factors when esteeming the
next sprints. We chose both predictive methods based on
their functional properties in supporting inference-statistical
analysis, e.g., sprint series. The analysis helps to estimate
sprint and team measurements in the future based on past
team-behavior in sprint sequences.

The times series forecast used for the sprint-trend esteems
based on an open source java library published by Workday1.
The library provides time series analyzes, involving ARIMA-,
Mean-, Naı̈ve- and Drift-forecasts. The forecasting model in
this study become fitted by the measurements listed in Fig. 4.

The ARIMA-model characterizes seasonal inferences from
past and forecasts future points in the series [10]. The Mean-
method derives the arithmetic mean from the sequence of
sprint data to esteem follow-up values within fitted parameter
ranges. The seasonal Naı̈ve-method uses sprint metrics from
the second sprint week on to predict the third sprint parame-
ters. The prediction of the fourth sprint metrics is derived with
the values from the third sprint, and so on. The Drift-method
obtains a straight line between the first and last data point to
characterize the sprint metrics tendency drift. Seasonal patterns

1 https://github.com/Workday/timeseries-forecast

are not taken into account with this Drift-method. Figure 4
shows a time series forecast for the communication metrics
Media Channel Usage and Perceived Intensity.

The time series viewer enables the teams to choose from
one to four supported forecasting methods. The interactive
chart allows a user to select different past sprints and the
underlying metrics. With this, the chosen sprint metric(s)
become analyzed and forecast with the help of the four
forecasting methods. The prediction interval can reach a
maximal length smaller than the number of yet completed
sprints. The colored lines within the gray background area
shown in Fig. 4 present the real data points for two selected
communication parameters. The colored areas on the right half
of the chart mark the 95% confidence interval of the prediction
of each forecast. For example, the maximally available forecast
horizon in Fig. 4 is two sprints, because the time series model
derives its prediction based on three yet completed sprints.
Sprint forecasts are labeled on the time axis through a counter
and completed sprints name tags.

The ProDynamics – Neural Network viewer focuses on
the second prediction approach for estimating social-driven
team measurements based on retrospective sprint and team
records. The neural network is implemented in using the open
source library Deeplearning4j. The Deeplearning4j-library
covers cross-platform algorithms on machine learning and
artificial intelligence is implemented in Java and runs in a
JVM such as used by the JIRA system. Similar to our time
series forecast solution the neural network viewer provides
past sprint metric plots based on the user selections.

Also, the neural network model allows the team to re-
view past sprint conditions covering organizational structures,
social-driven team behavior, customer satisfaction, productiv-
ity measures as well as problem and conflict appearances. An
overview of all covered factors is listed in Fig. 5, which is
a result of the assessed team and customer responses as well
of development performances that is natively tracked in JIRA.
The model is trained with the listed data features considering
the availability of already completed sprint records.

98

Fig. 5. Neural Network Sprint Predictions derived in ProDynamics

Training the model requires enlarged computation effort
for the data encoding process. Therefore, model updates are
performed automatically, but only once during the weekend.
The neural network viewer enables the teams to choose
individual real data plots of past sprints, or with an active
future horizon. The maximal size of future-horizon is limited
to the number of yet completed sprints minus one, similar
to the time series model. The interactive chart allows a user
to select between the sprint metrics and plot trends for the
considered team-driven factors. The colored lines in front of
the dash border line present the real data points for the two
chosen communication parameter Media Channel Usage and
Perceived Intensity. The colored lines on the left side of the
dashed border present the computed prediction according to
the feature records encoding of three yet completed sprints.

D. Sprint Performance Monitoring

In this study, the sprint performances of teams’ base on the
development (velocity of tasks) as well on the organizational
performances during each sprint. The velocities in all teams
are comparable productivity measures tracked within JIRA,
thus did not require to be separately assessed. This enabled
us a direct performance comparison was between a particular
group and the average of all other teams during a sprint.
Besides the sole productivity measures of teams, we used
the customer and scrum master satisfaction feedback after
each sprint to determine whether the development outcome
also fulfilled product expectations according to quality and
functional requirements.

However, the team performances over time with concern on
social-driven changes due to futurespective feedback became
solely traced through the customer, and scrum master feedback
elicit at the end of every sprint. We are reasoning this
processing with the fact, that only half of all teams could

access the ProDynamics futurespectives, and also frequently
completed the self-assessments on social-driven behaviors. In
considering the customer and scrum master perceived team
performances during each sprint, we could compare the or-
ganization performance changes of all teams. Subsequently,
the effects and trends could become characterized due to the
comparative study subjects with different sprint estimation
and planning support. Of course, at this appraisal level, sole
factorial influences become not closer taken into account.
However, it allowed us first interpretations about whether
teams adopt the ProDynamics usage, also whether groups with
access get used to derive better sprint estimations with constant
or even positively improving customer satisfaction outcome,
on organizational and product aspects.

V. INTERPRETATION AND VALIDITY OF RESULTS

In the following two subsections, we statistically interpret
and discuss the effects of ProDynamics futurespectives on the
sprint performances, also emphasize related threats to validity.

A. Interpretation of statistical measures

In Section IV, we described the sprint performances as
a result of sprint productivity (velocity), also the customer
and scrum master satisfaction responses on the team and
product performances after every sprint. With the help of Pear-
son correlation analysis and 2-paired t-Tests, we determined
sprint performance differences between the seven groups that
actively used the ProDynamics prediction features and the
other eight teams without access. We found out that the
teams with access to the provided sprint forecasts showed
fewer estimation errors, therefore with more optimal velocity
distribution at 98% as the comparison of the orange boxes
(1) in Fig. 6 and Fig. 7 reveal. The overall sprint estimation
error for those teams was ±9 %. In particular, do the groups

99

Fig. 6. Team Projects without ProDynamics-Futurespective access

without access to ProDynamics showed strong tendencies for
over-estimating their sprint tasks during the first two sprints,
followed by underestimations that caused strong deviations
between the number of scheduled tasks and completed ones.
Due to this, an overall sprint estimation error of ±19 %
was identified. However, in comparing the yellow markings
(2) in both figures, the team’s organizational performances
revealed no benefits given due to the additionally provided
sprint forecasts. Moreover, the outcome is on a constant level,
while both, customer and scrum master reflected a sustainable
organization and communication structure in most teams.

The third factor of the sprint performances involves the
software product, in particular, the quality, and requirements
fulfillment after each sprint. The futurespective in ProDy-
namics enabled a few teams to preview customer satisfaction
according to previous performances. However, the forecasts
only highlight chances for adjustment, while the teams decide
whether to use the available information to improve the previ-
ous situation. By comparing the blue boxes (3) in Fig. 6 and
Fig. 7, an affect for teams with ProDynamics usages becomes
reflected throughout an increasing product satisfaction by the
customer and scrum master. The satisfaction increase can be of
course also because of excitement about the product majority.

Nevertheless, a significant rise in teams with customer
feedback knowledge could be measured, while comparable
projects remained on a constant level. For redundancy, we
also considered the product satisfaction of scrum master,
which significantly correlates with our interpretation. Beside
results of this case study showed strong accordance between
customer and scrum master perceived team and development
performances. While the scrum master usually tends to have
more team internal information and critical knowledge about
accomplishments, does the deviation with external customer
ratings present a low perception gap.

B. Threats to validity

Construct validity: We looked at the social-driven team
affects only through statistical and artificial methods. The
sprint information features obtained in ProDynamics are cho-
sen based on previous studies [18] [13]. However, the ac-

Fig. 7. Team Projects with ProDynamics-Futurespective access

curacy of the predictions strongly depends on the quality
and completeness of the self-assessed data. The effects on
performances depend on whether the teams considered the
sprint forecasts in follow-up esteems. Customer satisfaction
responses as one success indicator might have involved offsets,
because of unjustified expectation or lack of experience.

Internal validity: The interpretations and results of this
study rely on the self-assessed team and customer feedback.
Only voluntary groups completed surveys, in exchange for
accessing additional prediction support in JIRA. Therefore,
team responses can be assumed to be accurate and unbiased
[16]. Participating teams accepted the privacy limitation, e.g.,
communications and performances were viewable, but exclu-
sively by the assigned team.

External validity: Since we examine student teams, the
results should not be overgeneralized. However, the software
projects are founded by a real customer from industry, public
institutions or governments. Hence, data collected from other
company or university projects could lead to different results.
Due to further limitations like the involvement of social-driven
factors and unknown domain influences, our interpretations
may not embrace all possibly existing project scenarios.

Conclusion validity: All interpretations are plausible and
statistically valid. However, there may be different self-
assessment responses when repeating the project with the
same participants: team-behavioral factors, emotions, skills
or unknown influences could have changed in the meantime.
Subsequently, the accuracy of predictions could vary due to
differently completed surveys, and project progresses. How-
ever, the methodology can be generalized and applied to
various agile projects that allow assessments on team and
sprint information.

VI. CONCLUSION

This study focuses on the effects of social-driven dynam-
ics in agile software developments when providing teams
additional feedback on sprint tendencies. To determine the
impact of futurespective feedback, we realized a JIRA plugin
named ProDynamics that simplifies the elicitation of team-
driven factors as well as performance measures within JIRA.

100

The feedback becomes resolved through sprint series forecasts
and neural network predictions in an integrated JIRA plugin
solution. The computer-based sprint analyzes use team and
customer reflections that were frequently assessed, analyzed
and characterized for factorial interdependencies on develop-
ment performances and team-driven behavioral pattern.

With the help of a comparative case study involving fifteen
software projects with 130 students, throughout 15 weeks, we
gathered weekly information about communication, meeting
and emotional metrics from half of the projects. The elicit data
became frequently used to train time series and neural network
models, enabled the 7 out of 15 groups to gain additional
insights about previous sprint and team performances, also
derive trend-forecasts for follow-up sprints. Measuring the
performance differences between the groups with pro-active
feedback and those without involved customer and scrum mas-
ter feedback from all 15 projects, that became repeatedly elicit
at the end of every sprint. The feedback covered past sprint
perceiving on both, team and development performances.

Pearson correlation statistics helped us to interpret the
effects on sprint performance, in particular, the team and
development performance in each project. We found statistical
evidence towards that the groups with access to the addi-
tionally provided ProDynamics forecasts showed a definite
decrease for sprint estimation gaps by 10%, while the groups
without ProDynamics access tend to have more volatile veloc-
ity performances. We could show, that the additional use of
forecasting methods supports the groups to interpret customer
satisfaction better, thus improve the product outcome at the
end of sprint. The study also revealed, that teams not neces-
sarily adjust internal organization structures due to predictive
information. Most of the groups showed an almost steady level
in their weekly communication and meeting behavior, towards
no significant affects could be determined.

We can conclude that the ProDynamics futurespectives
enabled a sustainable team organizational and development
performance improvement for the groups with access to the
plugin. The team performances dynamics during the sprint
sequences showed strong stabilizing characteristics, due to
more accurate sprint esteems compared with the comparison
groups that only used general sprint information in JIRA,
e.g., burndown- and velocity charts. Besides, the ProDynamics
plugin realized a simplified data elicitation for social-driven
team factors, while some group had could reach a positive
effect for follow-up sprint executions.

We are currently working on a newer version for the
ProDynamics plugin, that does extend the retrospective, and
futurespective sprint analyzes, by a planning-oriented simu-
lation feature. With this, we believe that teams can poten-
tially improve sprint estimations because of training effects.
Various scenarios could be explored before an official sprint
start, by incorporating past performances with a generalized
simulation model for agile development processes, e.g., system
dynamics. A simulation-based approach could grant the team a
better insight about appearing behavioral dynamics over time,
also help to discover new characteristics, that would remain

undetermined otherwise. Generally spoken, simulations could
gain further knowledge and train the sprint estimation skills
of teams and project manager.

ACKNOWLEDGMENT

This work was funded by the German Research Society
(DFG) under the project name Team Dynamics (2018-2020).
Grant number 263807701.

REFERENCES

[1] N. Agarwal and U. Rathod, “Defining ‘success’ for software projects:
An exploratory revelation,” International journal of project management,
vol. 24, no. 4, pp. 358–370, 2006.

[2] P. Mohagheghi and M. Jørgensen, “What contributes to the success of
it projects? an empirical study of it projects in the norwegian public
sector.” JSW, vol. 12, no. 9, pp. 751–758, 2017.

[3] A. Vetrò, S. Ognawala, D. M. Fernández, and S. Wagner, “Fast feedback
cycles in empirical software engineering research,” in Proceedings of
the 37th International Conference on Software Engineering-Volume 2.
IEEE Press, 2015, pp. 583–586.

[4] L. Williams and A. Cockburn, “Agile software development: it’s about
feedback and change,” IEEE Computer, vol. 36, no. 6, pp. 39–43, 2003.

[5] A. Cockburn and J. Highsmith, “Agile software development: The people
factor,” Computer, no. 11, pp. 131–133, 2001.

[6] F. Kortum, J. Klünder, and K. Schneider, “Characterizing relationships
for system dynamics models supported by exploratory data analysis,” in
29th International Conference on Software Engineering and Knowledge
Engineering. KSI Research Inc, vol. 15, 2017, pp. 39–43.

[7] E. Whitworth and R. Biddle, “The social nature of agile teams,” in Agile
2007 (AGILE 2007). IEEE, 2007, pp. 26–36.

[8] F. Kortum, J. Klünder, and K. Schneider, “Behavior-driven dynamics in
agile development: The effect of fast feedback on teams,” in Proceedings
of the 2019 International Conference on Software and System Process.
ACM, 2019.

[9] K. Schneider, O. Liskin, H. Paulsen, and S. Kauffeld, “Media, mood, and
meetings: Related to project success?” ACM Transactions on Computing
Education (TOCE), vol. 15, no. 4, p. 21, 2015.

[10] G. P. Zhang, “Time series forecasting using a hybrid arima and neural
network model,” Neurocomputing, vol. 50, pp. 159–175, 2003.

[11] N. B. Moe and T. Dingsøyr, “Scrum and team effectiveness: Theory and
practice,” in International Conference on Agile Processes and Extreme
Programming in Software Engineering. Springer, 2008, pp. 11–20.

[12] S. Kauffeld and N. Lehmann-Willenbrock, “Meetings matter: Effects
of team meetings on team and organizational success,” Small Group
Research, vol. 43, no. 2, pp. 130–158, 2012.

[13] J. Klünder, K. Schneider, F. Kortum, J. Straube, L. Handke, and S. Kauf-
feld, “Communication in teams-an expression of social conflicts,” in
Human-Centered and Error-Resilient Systems Development. Springer,
2016, pp. 111–129.

[14] C. J. Stettina and W. Heijstek, “Five agile factors: Helping self-
management to self-reflect,” in European Conference on Software Pro-
cess Improvement. Springer, 2011, pp. 84–96.

[15] A. Vetro, R. Dürre, M. Conoscenti, D. M. Fernández, and M. Jørgensen,
“Combining data analytics with team feedback to improve the estimation
process in agile software development,” Foundations of Computing and
Decision Sciences, vol. 43, no. 4, pp. 305–334, 2018.

[16] L. Rising and N. S. Janoff, “The scrum software development process
for small teams,” IEEE software, vol. 17, no. 4, pp. 26–32, 2000.

[17] F. A. Batarseh and A. J. Gonzalez, “Predicting failures in agile software
development through data analytics,” Software Quality Journal, vol. 26,
no. 1, pp. 49–66, 2018.

[18] T. Dybå and T. Dingsøyr, “Empirical studies of agile software devel-
opment: A systematic review,” Information and software technology,
vol. 50, no. 9-10, pp. 833–859, 2008.

[19] J. Highsmith and A. Cockburn, “Agile software development: The
business of innovation,” Computer, vol. 34, no. 9, pp. 120–127, 2001.

[20] K. Schneider, J. Klünder, F. Kortum, L. Handke, J. Straube, and
S. Kauffeld, “Positive affect through interactions in meetings: The role of
proactive and supportive statements,” Journal of Systems and Software,
vol. 143, pp. 59–70, 2018.

[21] J. A. Ross, “The reliability, validity, and utility of self-assessment,” 2006.

101

Research on Multi-constraint Combinatorial Test

Technology for High Confidence Embedded Software
Feng Gao ,Fei Deng,Yunqiang Yan

Institute of Computer Application

China Academy of Engineering Physics

MianYang,China

achang85@163.com

Abstract—The importance and complexity of software in

embedded devices are increasing. It becomes an active research

topic on how to carry out the full and efficient testing of

military high confidence embedded software such as weaponry,

aerospace and so on. The combinatorial test is an effective test

case generation technique. But the complexity of the

constructor of the combinatorial test suites is NP-complete. The

effectiveness and complexity of combinatorial test methods

have attracted researchers in the field of combined

mathematics and software engineering to study it deeply. For

the characteristics of military embedded software, a multi-

constraint combinatorial test method is proposed. This method

takes into consideration the constraint relationship among

parameters, and uses it to guarantee the covering of the seed

combination and the simplification of the use case set. And it

implements the test case generation tool based on this method.

The results show that this tool generates a few use cases and

can guarantee the covering of key combinations.

Key Words: High Confidence; Embedded Software; Multi-

constraint; Combinatorial Test

I. INTRODUCTION

With the development of information technology, the
importance and complexity of embedded system are higher
and higher. The software caused by the embedded system
fails covers about 70%[1-2];Software becomes an important
factor restricting the quality of embedded system. Software
testing is an important means to ensure software quality. It
becomes an active research topic on how to carry out the
verification and verification (V&V) of high - efficient and
high - quality weapon equipment, aerospace and other high
confidence embedded software[3-6]. A lot of practice shows
that combinatorial testing is an effective software testing
method. It generates a small amount of high-quality test data
and systematically tests the combination of parameters.
Testing case set generation is a hot topic in combinatorial
testing research. People have presented many mathematical
methods, heuristic search methods and various greedy
algorithms. But these methods have their own limitations and
can only have certain advantages when solving some certain
problems. For example, TConfig[6] is a mathematical
method to construct the recursive structure by using the
orthogonal tables and other basic components. This method
has a fast generating speed. But the downside is that it need
to rely on existing algebra or combined objects. For the
heuristic search, we can use tabu search [7], simulated
annealing (SA)[8] and other methods to generate small test

DOI reference number: 10.18293/SEKE2019-016

case sets. But these methods generally take a long time. In
contrast, heuristic greedy algorithms are not only flexible but
also fast. At present, a variety of heuristic greedy algorithms
have been presented such as AETG[9-11], etc.TCG[12],
DDA[13-14] and IPO[15]. Each of these methods has its own
advantages. They are all universal methods which are not
ideal for solving some specific problems.

In this paper, according to the characteristics of military
high confidence embedded software such as weapon
equipment, aerospace and so on, a multi-constraint
combination test method which can configure seed
combinations, covering strength and parameter constraints is
proposed. This method takes into consideration the
importance of different parameters and the constraint relation
between the parameters, taking advantage of them to ensure
the covering of the seed combinations and the simplification
of the use case set. And it implements the test case generation
tool based on this method. The test result shows that this tool
generates a few use cases and can guarantee the covering of
key combinations.

The second section introduces the basic concepts and
models of combinatorial test. The third section presents the
multi-constraint combinatorial test methods. And the fourth
section describes the experimental design and the results,
finally the summary and outlooks.

II. THE BASIC MODEL OF COMBINATORIAL TEST

Assume n parameters are affecting the system software

SUT(software under testing), recorded as F ={f1,f2,…, fn}.

These parameters can be SUT configure parameter internal
events external input, etc. The parameter fi has ai possible
values by equivalence partitioning, boundary value method
and other pre-parametric decomposition, forming the value

set Vi={a1,a2,…, ai},1 ≤i ≤n .

Definition 1. Regard n-tuple (v1,v2, …vn) as a test case

for SUT, and v1∈V1，v2∈V2，…, vn∈Vn.

Correspondingly, regard a collection of n tuples as a test
case set for SUT. In the combinatorial test, the test case set is
often referred to as a combination covering table (Covering
Array for short).

Definition 2. The t-dimension overlay table of the system

SUT CA(N;t,n,(v1,v2, …vn,)) is an N*n array. The i column

corresponds to the i parameter, which is recorded as vi. The
subarray of N*t that is formed by any t parameter contains all

102

of the t tuples of the t parameter, in which t is the strength of
the combinatorial test.

According to the definition of the covering array
CA(covering array) which is given by Cohen et al. to
describe the set of test cases in a combinatorial test case,
generally, an array of overrides that can cover any two
parameters of any parameter is called a two-dimensional
combination (2-way) or Pairwise combination. t-way is the
combination of values that can cover the t parameters. When
t is equal to the number of parameters n, the override array
can override all of the combined conditions of the parameter
system, which is 100% full coverage. Therefore, the
mathematical model of the combinatorial test case set is often
non-continuous, multi-objective and nonlinear constraint
solving the problem.

III. MULTI-CONSTRAINT HCESCT COMBINATORIAL

TEST METHOD

The most important difference between military
embedded software and general software is that the security
and reliability requirements of military embedded software
are extremely high, and it is best to have 100% test case
coverage. But some special system software that has a
combination explosion or an important level of software can't
reach 100% complete coverage because of many
considerations for military software testing, the complexity
of operating environment, time and cost. Reasonable use of
combinatorial test technology for the military embedded
system software to select effective test case set can make up
the randomness of artificial design cases and randomness of
test cases.

HCESCT（High Confidence Embedded Software Test

Generation Method for Combinatorial Testing ） is the

combinatorial test case generation method presented by this
paper with military embedded software as the test target. In
combination with the characteristics of high reliability and
security requirements, HCESCT method is mainly concerned
with adopting reasonable strategies to solve the problem of
explosion of cases in the test process. At the same time,
ensure that important values are not missed. The
combinatorial test method process in this paper is shown in
Fig. 1.

SUT

Seed Combination
 Requirements
Decomposition

Constraint
Information

Requirement Combination
And Modeling

Transition
Constraint

Test CaseGeneration
Algorithm

Optimal
Solution

 Test Case Suite

Input script

Generation
Method

Rarameter
Information

Fig. 1. The Combinatorial Test Method Flow Chart

According to the characteristics of high confidence
embedded software, some key parameters must be covered.
Depending on the importance of parameters, some require
only 2-dimensional coverage, but some combination of
parameters need to be covered in higher dimensions. In real
software, there is always a certain dependence relation
between the parameters of software, which leads to some
constraint relationship among some values in these
parameters. In order to support the various flexible strategies
of the military embedded software combinatorial test method,
important combinations must be guaranteed not missing.
Here are a few effective generation strategies.

A. Seed Combinations

In high confidence embedded software with high-
reliability requirements, it is particularly important to have
some parameter combinations. If these parameter
combinations go wrong, they can have disastrous
consequences. Therefore, the Seed combination (Seed)
strategy is added. At the stage of software portfolio testing
modeling, add the combination of parameters that must be
combined in the software application scenario as a seed
combination to ensure that the use case set generated at the
end of the HCESCT algorithm is sure to screen out these
important combinations. The modeling approach is as
follows:

[SEED]

P1:v1,P2:v2,P3:v3;

This constraint statement (P1,P2,P3)=(v1,v2,v3) must be
present in the test case

B. Variable Intensity Coverage

Also in order to ensure the coverage of the tested
software, the coverage of about 70% of the matched pairs is
obviously poor. In multi-parameter systems such as
influencing factors, software input and pattern categories, it
is necessary to adopt a flexible and variable strategy to
ensure the high-dimensional combination of important
parameters and the secondary parameter matching
combination. For example, on a loaded software, functional
requirements specify that the most important parameters
affecting software output include the launch mode
parameters Mod, temperature Tem, wind power WindF and
the wind condition WindD. In parametric system modeling,
the variable intensity coverage strategy should be used to
cover the four parameters in a 3-way or 4-way combination.
At the same time, other parameters with little effect on the
launch function such as humidity, launch time and altitude
use a matching combination. Enter in the modeling script:

[STRENGTHS]

default : 2; // The global coverage intensity is matched.

Mod，Tim，WindF，WindD : 3； // Variable intensity,

important parameter high dimensional combination

With some scripts as input, this algorithm combines the
parameters of different important levels with varying
intensity.

C. Parameter Constraint

In military software， there’re always situations that

signal A is received, but parameter b-e fails or signal B is
received, but parameter M-N fails. This situation is called a

103

conflict among parameters. To solve this problem, the
parameter constraint description is added to the script during
the parameter modeling phase. Adding the parameter
constraint strategy, while searching in the generation
algorithm, for any parameter:

 Collect all the conditions that block this parameter;

 The parameter is blocked when any condition is
satisfied;

 This parameter must be valid when all conditions
are not satisfied.

In accordance with the above judgment logic, the
algorithm is able to automatically block the combination of
invalid parameters that have been identified, and prevent the
algorithm from generating too many invalid test cases. The
parametric constraint modeling method is as follows:

[CONSTRAINTS]

P1==v1->P2!=v2;

P3==v3->P4==v4& P5>v5。

D. HCESCT Algorithm Introduction

As mentioned above, HCESCT uses the greedy algorithm
that incorporates a flexible and practical combined strategy.
Adopt the classic line-by-line search and a one-time-one-line
generation strategy:

1) Initialize covering requirements （ Target
combination: a combination that needs to be covered）

 Intensity——combination of all two parameters

2) Generate test cases per article

 Try to cover many of the uncovered target
combinations.

 The new test case must satisfy all constraints.

 Combinatorial optimization problem

3) When a new target combination cannot be
overridden, stop.

 The remaining uncovered target combination
violates the constraint and cannot be overridden.

The methods of constraint in the algorithm are as

follows：

 Convert to a forbidden combination

 The constraint solving technique is adopted to
ensure the correctness of the results.

The algorithm framework is shown below：

TABLE I. ALGORITHM KERNEL ALGORITHM OF HCESCT

Algorithm Kernel algorithm of HCESCT
1: init(combination_set);
2: while true do

3: gen_opt_problem();

4: if solve() == OK then
5: new_test_case= translate_solver _output();

6: test_suite.add(new_test_case);

7: update(combination_set, new_test_case);
8: else

9: break;

10: end if

11: end while

 The traditional greedy algorithm produces a new test
case that determines and overrides the uncovered
combination in the while. This is an optimization problem for
both search methods and heuristic methods. There are some
algorithms for handling parameter constraints. Distribution
parameter values in the algorithm, for example, they call
external solver or other methods to determine whether the
test cases to satisfy the constraints, or to determine which
parameter values can be assigned to the parameters in
recycling. In contrast, our algorithm integrates generation
optimization and constraint solving together. In each while,
every time a new test case is generated, only the optimization
problem is considered to ensure that the new test case covers
at least one uncovered combination. The judgment and retry
process that generates the use case satisfies the constraints
are done in the external solution function, not in the upper
algorithm while. Because the constraint solving function
solve the parameter constraint judgment problem very well,
this will save a lot of resources in the overall cost of the
algorithm. HCESCT algorithm diagram is shown in Fig. 2.

Schematic Diagram of HCESCT Algorithm

Parameter
Decomposition

Improved Greedy
Algorithm

Constraint Aolver
Generating Test

Case Suite

Initialization
Coverage

Requirements

Generation of
Test Case by Ttem

If can't cover a
new combination,

Stop

Conversion to
Prohibited

Combination

Constraint Solving

Fig. 2. HCESCT Algorithm Diagram

IV. THE COMBINATORIAL TEST EXPERIMENT AND THE

GENERATION EFFECT CONTRAST

To illustrate the method of combinatorial test strategy in
this paper and contrast the generation effects of existing main
tools, some high confidence embedded data processing
software are taken as an example. The software is in the
demand analysis phase. And the type of input is shown in the
table below:

TABLE II. INPUT DATA TYPE

A Group

P Data

A Group

M Data

B Group

M Data

B Group

M Data

Data Source 1 0 0 0 0

Data Source2 0 0 0 0

Data Source3 0 0 0 0

Data processing software has three different types of data
sources, and each data source is independent of each other.
The software can accept data from three sources at a time.
The data format of each data source is one of the four types
of A group P data, A group M data, B group P data and B
group M data. Among them, the A group P data of data
source 1 and the B group P data of data source 3 is an
important combination of data sources and the most
frequently processed data of software. Similarly, data source
1 and data source 2 will not send B group P data to the data

104

processing software when the B group P data of data source 3
is available.

As is shown in HCESCT combinatorial test method flow
chart, after this data is decomposed into embedded software
requirements, a requirement combination is required. That
means taking A group P data of data source 1 as a parameter
value. The parametric model after modeling is shown in table
3.

TABLE III. COMBINATORIAL TEST PARAMETER

A Group

P Data

A Group

M Data

B Group

M Data

B Group

M Data

No

Data

Parameter

V1
1_A_P 1_A_M 1_B_P 1_B_M 1_NO

Parameter

V2
2_A_P 2_A_M 2_B_P 2_B_M 2_NO

Parameter

V3
3_A_P 3_A_M 3_B_P 3_B_M 3_NO

In the data processing model of this instance, there are
three input parameters. V1, V2 and V3 represent the different
values of three data sources. The combination of these
conditions is all data processing of the software being tested.
To guarantee 100% covering rate, a full combination of three
parameters requires 5*5*5, a total of 125 inputs. Assuming
that in each input case, the combination of the four
parameters needs to be tested, and each parameter range has
three parameter values, then the final generated use case is
125*3*3*3*3, in total 10125 test cases. Because every data
preparation and data processing test for this tested model
weapon data processing software takes a long time and the
testing of these test cases one by one consumes a lot of
resources, it is far beyond the cost of the test.

The HCESCT combinatorial test method was used to
analyze the demand of the measured parts and integrate and
model the requirements. The seed combinations are: V1 =
1_A_P , V2 = 2_NO , V3 = 3_B_P. When the parameter
constraint is V3 = 3_B_M, V2 != 2_B_M; When the

parameter constraint is V3 = 3_B_P, V2！=2_B_P , V3 !=

3_B_P. Use the script as shown in the following diagram to
generate input for the combinatorial test case generation
algorithm.

Fig. 3. The Combinatorial Test Case Generation Algorithm Input

The results generated by the combinatorial test case
generation program and the PICT[16] execution results are
shown in Fig. 4. There are 29 use cases generated by this
method, and PICT generates 31 test cases. Furthermore, the
syntax of this article is more concise, which avoids tools like
PICT using complex syntax such as judgment statements to
express parameter constraints.

Fig. 4. The comparison of using effect between the method in this paper
and PICT

V. SUMMARY AND FUTURE WORK OUTLOOK

In this paper, according to the characteristics of the
military high Confidence embedded software testing, in the
traditional high resource overhead test mode based on all
matched pairs of parameter values, a line-by-line search
method is used to Generate test case sets that cover a higher
value and make up for the omission of tests that have been
used to extract the quality of test cases. Secondly, this paper
takes the use case generation strategy as the example of seed
combinatorial parameter constraint variation and tries and
successfully combines the combinatorial test algorithm,
which provides more sophisticated means to improve the
quality of test cases of embedded software in military.
Finally, the use case generation tool based on this method is
compared with PICT. The result shows that the method of
this paper generates a few use cases and can guarantee the
covering of key combinations. Further research on test case
screening strategies can be strengthened from existing work.
For example, in certain conditions, consider multiple
parameters as one parameter to filter test cases in this
granular manner.

REFERENCES

[1] Yang, Shunkun, and J. Fu. "A Model-Driven Testing Environment for
Embedded Software." Energy Procedia 11(2013):1517-1525.

[2] Hopf, Michael, and J. Ovtcharova. "Integration of Virtualized
Environments in PDM Systems for Embedded Software Product
Development ☆." Procedia Cirp 11(2013):346-351.

[3] Wu, Yumei, Z. Yu, and Z. Liu. "Study of task profile oriented
embedded software test aiming to improve reliability." International
Conference on Future Computer and Communication IEEE, 2010:
V2-58-V2-62.

[4] Yin, Yongfeng, Z. Li, and B. Liu. "Real-time Embedded Software
Test Case Generation Based on Time-extended EFSM: A Case
Study." Wase International Conference on Information Engineering
IEEE, 2010:272-275.

[5] Wang, Yichen, X. Lan, and Y. Wang. "Modeling Embedded Software
Test Requirement Based on MARTE." IEEE, International
Conference on Software Security and Reliability-Companion IEEE,
2013:109-115.

[6] Williams, A. W., and R. L. Probert. "A practical strategy for testing
pair-wise coverage of network interfaces." International Symposium
on Software Reliability Engineering, 1996. Proceedings IEEE,
1996:246-254.

[7] Nurmela, Kari J. Upper bounds for covering arrays by tabu search.
Elsevier Science Publishers B. V. 2004.

105

[8] Cohen, Myra B., et al. "Constructing Test Suites for Interaction
Testing."International Conference on Software Engineering, 2003.
Proceedings IEEE, 2003:38-48.

[9] Cohen, D. M, et al. "The AETG System: An Approach to Testing
Based on Combinatorial Design." IEEE Transactions on Software
Engineering 23.7(1997):437-444.

[10] Cohen, D. M, et al. "The Automatic Efficient Test Generator (AETG)
system." IEEE (1994):303-309.

[11] Cohen, David M., et al. "The Combinatorial Design Approach to
Automatic Test Generation." Software IEEE 13.5(1996):83-88.

[12] Tung, Yu Wen, and W. S. Aldiwan. "Automating test case generation
for the new generation mission software system." Aerospace
Conference Proceedings IEEE Xplore, 2000:431-437 vol.1.

[13] Colbourn, Charles J., M. B. Cohen, and R. Turban. "A deterministic
density algorithm for pairwise interaction coverage." Iasted
International Conference on Software Engineering DBLP, 2004:345-
352.

[14] Bryce, Renée C, and C. J. Colbourn. "The density algorithm for
pairwise interaction testing." Software Testing Verification &
Reliability 17.3(2010):159-182.

[15] Tai, K. C., and Y. Lie. A Test Generation Strategy for Pairwise
Testing. IEEE Press, 2002.

[16] Qin X, Duan J, Feng G, et al. Test Scenario Design for Intelligent
Driving System Ensuring Coverage and Effectiveness[J]. International
Journal of Automotive Technology, 2018, 19(4):751-758.

106

Specification-based Testing with Simulation Relations

Canh Minh Do, Kazuhiro Ogata
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Email: {canhdominh,ogata}@jaist.ac.jp

Abstract—We propose a concurrent program testing tech-
nique that is a specification-based one and uses simulation
relations from concurrent programs to formal specifications.
For a formal specification S, a concurrent program P and
a simulation relation r from P to S, the proposed technique
is outlined as follows: (1) state sequences s0, s1, . . . , sn are
generated from P , (2) state sequences s′′0 , s

′′
1 , . . . , s

′′
m for S

are obtained by converting s0, s1, . . . , sn with r and (3) it is
checked that S can accept s′′0 , s

′′
1 , . . . , s

′′
m. (1) is very crucial,

but we first tackle (2) and (3) and then the present paper
focuses on (2) and (3).

Keywords-concurrent program testing; Maude; meta-
programming; simulation-based testing; simulation relations

I. INTRODUCTION

Major concepts of programming languages that can be
used to write concurrent programs emerged in the 1980s
and since nearly then studies on testing concurrent programs
have been conducted. Arora, et al. have comprehensively
surveyed testing concurrent programs [1]. They categorize
it into eight classes: (a) reachability testing, (b) structural
testing, (c) model-based testing, (d) mutation-based testing,
(e) slicing-based testing, (f) formal method-based testing,
(g) random testing, and (h) search-based testing. Model
checking concurrent programs has been intensively studied,
which may be classified into (c) and/or (f). Java Pathfinder
(JPF) [2], [3] is such a model checker. Model checking is
superior to the other testing techniques in that the former
exhaustively checks all possible execution paths (or com-
putations). However, model checking concurrent programs
often encounters the notorious state explosion, which has
not yet been conquered reasonably well.

We need a concurrent program testing technique that
can scale reasonably well because most important software
systems are in the form of concurrent programs, which are
large-scale. We then propose a concurrent program testing
technique in this paper toward this aim. The technique is a
specification-based one. We suppose that programmers write
concurrent programs based on formal specifications. The
FeliCa team has demonstrated that use of formal specifi-
cations is useful as well as feasible in a practical setting [4].

This work was partially supported by JSPS KAKENHI Grant Number
JP26240008 & JP19H04082.

DOI reference number: 10.18293/SEKE2019-027

Therefore, our assumption must be reasonable. Programmers
need to comprehend formal specifications and must know
their concurrent programs well and then they must be able to
find some good relations between formal specifications and
concurrent programs. Such relations should be simulation
relations from the latter to the former. Then, we use such
simulation relations to test concurrent programs.

Given a formal specification S, a concurrent program
P and a simulation relation r from P to S, the pro-
posed technique is outlined as follows: (1) state se-
quences s0, s1, . . . , sn are generated from P , (2) state se-
quences s′′0 , s

′′
1 , . . . , s

′′
m for S are obtained by converting

s0, s1, . . . , sn with r and (3) it is checked that S can accept
s′′0 , s

′′
1 , . . . , s

′′
m. (1) is very crucial, but we first tackle (2) and

(3) and then the present paper focuses on (2) and (3).
Our approach uses formal specifications to test concurrent

programs. Testing programs based on formal specifications
has been studied [5]. Among such techniques are a CSP-
based one [6] and an Event-B model-based on [7]. One dif-
ference between existing such techniques and our approach
is that test cases are generated from formal specifications
in the former, while the counterparts are generated from
concurrent programs.

The rest of the paper is organized as follows: § II Pre-
liminaries, § III Toward Concurrent Program Testing, § IV
Specification Testing with Simulation Relations, §V Exper-
iments, and §VI Conclusion.

II. PRELIMINARIES

A state machine M , 〈S, I, T 〉 consists of a set S of
states, the set I ⊆ S of initial states and a binary relation
T ⊆ S×S over states. (s, s′) ∈ T is called a state transition
and may be written as s →M s′. Let →∗M be the reflexive
and transitive closure of→M . The set RM ⊆ S of reachable
states w.r.t. M is inductively defined as follows: (1) for each
s ∈ I , s ∈ R and (2) if s ∈ R and (s, s′) ∈ T , then s′ ∈ R.
A state predicate p is called invariant w.r.t. M iff p(s) holds
for all s ∈ RM . A finite sequence s0, . . . , si, si+1, . . . , sn
of states is called a finite semi-computation of M if s0 ∈ I
and si →∗M si+1 for each i = 0, . . . , n − 1. If that is the
case, it is called that M can accept s0, . . . , si, si+1, . . . , sn.

Given two state machines MC and MA, a relation r over
RC and RA is called a simulation relation from MC to

107

Figure 1. A simulation relation from MC to MA

MA if r satisfies the following two conditions: (1) for each
sC ∈ IC , there exists sA ∈ IA such that r(sC , sA) and (2)
for each sC , s

′
C ∈ RC and sA ∈ RA such that r(sC , sA)

and sC →MC
s′C , there exists s′A ∈ RA such that r(sA, s′A)

and sA →∗MA
s′A [8] (see Fig. 1). If that is the case, we may

write that MA simulates MC with r. There is a theorem
on simulation relations from MC to MA and invariants w.r.t
MC and MA: for any state machines MC and MA such
that there exists a simulation relation r from MC to MA,
any state predicates pC for MC and pA for MA such that
pA(sA) ⇒ pC(sC) for any reachable states sA ∈ RMA

and sC ∈ RMC
with r(sC , sA), if pA(sA) holds for all

sA ∈ RMA
, then pC(sC) holds for all sC ∈ RMC

[8]. The
theorem makes it possible to verify that pC is invariant w.r.t.
MC by proving that pA is invariant w.r.t. MA, MA simulates
MC with r and pA(sA) implies pC(sC) for all sA ∈ RMA

and sC ∈ RMC
with r(sC , sA).

States are expressed as braced soups of observable compo-
nents, where soups are associative-commutative collections
and observable components are name-value pairs in this
paper. The state that consists of observable components oc1,
oc2 and oc3 is expressed as {oc1 oc2 oc3}, which equals
{oc3 oc1 oc2} and some others because of associativity and
commutativity. We use Maude [9], a rewriting logic-based
computer language, as a specification language because
Maude makes it possible to use associative-commutative
collections.

Simple Communication Protocol (SCP), a communication
protocol, is used as one running example in this paper. SCP
consists of a sender, a receiver and two channels between
them. One channel called dc (data channel) is a cell that is
used to transfer pairs 〈d, b〉, where d is a data value and b
is a Boolean value, to the receiver from the sender, and the
other channel called ac (ack channel) is a cell that is used
to deliver Boolean values (as ack) to the sender from the
receiver. Both cells are unreliable in that the contents may
drop. The sender maintains two pieces of information that
are sb (sender bit) and data. sb is a Boolean value and data
is the data to be delivered next to the receiver. The receiver
maintains two pieces of information that are rb (receiver
bit) and buf . rb is Boolean value and buf is the list of data
received so far. Initially, sb is true, data is d(0), rb is true,

Figure 2. A state of SCP

buf is empty, dc is empty and cc is empty. The sender has
two actions to do that are d-snd and d-rec. d-snd does the
following: the pair 〈data, sb〉 is put into dc. d-rec does the
following: if ac has a Boolean value b, then b is extracted
and if b 6= sb, then data is set to the next data and sb
is negated and otherwise nothing changes. The receiver has
two actions to do that are a-snd and a-rec. a-snd does the
following: rb is put into ac. a-rec does the following: if dc
has 〈d, b〉, then 〈d, b〉 is extracted and if b = rb, then d is
added to buf at the end and rb is negated and otherwise
nothing changes. There are two more actions that are d-drp
and a-drp. d-drp does the following: if dc is not empty,
dc becomes empty. a-drp does the following: if ac is not
empty, ac becomes empty. Fig. 2 shows a state of SCP.

A state of SCP is expressed as follows:

{(scp-sb: b1) (scp-data: d(n)) (scp-rb: b2)
(scp-buf: dl) (scp-dc: cell1) (scp-ac: cell2)}

Each of the six actions in SCP is formalized as state tran-
sitions, which are described in Maude (conditional) rewrite
rules (or rules) as follows:

rl [d-snd] : {(scp-sb: B)(scp-data: D)
(scp-dc: DC) OCs}
=> {(scp-sb: B)(scp-data: D)
(scp-dc: (< D,B >)) OCs} .

crl [a-rec1] : {(scp-sb: B)(scp-data: d(N))
(scp-ac: B’) OCs}
=> {(scp-sb: (not B))(scp-data: d(N + 1))
(scp-ac: empc) OCs} if B =/= B’ .

crl [a-rec2] : {(scp-sb: B)(scp-data: D)
(scp-ac: B’) OCs}
=> {(scp-sb: B)(scp-data: D)(scp-ac: empc)
OCs} if B = B’ .

rl [a-snd] : {(scp-rb: B)(scp-ac: AC) OCs}
=> {(scp-rb: B)(scp-ac: B) OCs} .

crl [d-rec1] : {(scp-rb: B)(scp-buf: Ds)
(scp-dc: (< D,B’ >)) OCs}
=> {(scp-rb: (not B))(scp-buf: (Ds | D))
(scp-dc: empc) OCs} if B = B’ .

crl [d-rec2] : {(scp-rb: B)(scp-buf: Ds)
(scp-dc: (< D,B’ >)) OCs}
=> {(scp-rb: B)(scp-buf: Ds)
(scp-dc: empc) OCs} if B =/= B’ .

108

Figure 3. Specification-based concurrent program testing with a simulation
relation

rl [d-drp] : {(scp-dc: P) OCs}
=> {(scp-dc: empc) OCs} .

rl [a-drp] : {(scp-ac: B) OCs}
=> {(scp-ac: empc) OCs} .

The search command given by Maude can conduct reacha-
bility analysis of state machines specified in Maude. Let s1
and s2 be the following states:

{(scp-sb: true)(scp-data: d(0))
(scp-rb: false)(scp-buf: d(0))
(scp-dc: < d(0),true >)(scp-ac: false)}

{(scp-sb: false)(scp-data: d(1))
(scp-rb: false)(scp-buf: d(0))
(scp-dc: < d(0),true >)(scp-ac: false)}

The search command “search [1,2] in SCP : s1
=>* s2 .” checks if s2 is reachable from s1 in depth 2,
where SCP is the module in which SCP is specified. If so,
the command finds one transition sequence from s1 to s2.
Because there is such a transition sequence, the commands
finds it. If [1,1] is used instead of [1,2], then because
there is no transition sequence from s1 to s2 in depth 1, the
command does not find any such transition sequences.

Maude has meta-programming (or reflexive programming)
facilities with which we can develop software tools, such
as Real-Time Maude. The first search command can be
expressed in the term: metaSearch(upModule(’SCP,
false), upTerm(s1), upTerm(s2), nil, ’*, 2,
0), where upModule converts a module to its meta-
representation, the term representing the module, and
upTerm converts a term to its meta-representation. By
reducing the term, we can essentially get the same result
as the one obtained by the first search command.

III. TOWARD CONCURRENT PROGRAM TESTING

Testing concurrent programs is inherently different from
testing sequential programs. All we need to test the latter is
basically to check the output for each input, although there
is some room to generate better test cases. Even though there
is no decidable test oracle, we could use the metamorphic

Figure 4. Specification-based specification testing with a simulation
relation

testing technique. Concurrent programs have multiple active
entities, such as threads, and therefore can lead to lots of
execution scenarios. What execution scenario will be taken
depends a scheduler, such as Java VM thread scheduler.
It is usually impossible to control such a scheduler with
an ordinal program. There may be some nondeterminism
in concurrent programs. Hence, it does not suffice to have
concurrent programs run on real machines to test such
programs because we cannot check all possible execution
scenarios.

One possible remedy is to use software model checkers,
such as Java Pathfinder (JPF) [3]. JPF has its own VM run-
ning on a native Java VM and controls its own VM to cover
all possible execution scenarios of concurrent programs.
Many case studies with JPF have been reported and several
techniques for JPF that may mitigate the notorious state
explosion have been proposed. Even so, non-JPF experts can
often encounter the state explosion that cannot be mitigated
at all. We have written an ABP simulator in Java and tried to
model check with JPF running on a computer that carries a
32GB memory the simulator in which each channel capacity
is 3 and 3 messages are delivered to the receiver from the
sender [10]. We have spent several days but the information
we have obtained was out of memory. Thus, we do not think
that it would suffice to use software model checkers, such
as JPF, to test concurrent programs.

We propose a concurrent program testing technique that
is a specification-based testing one (see Fig. 3). Let S be
a formal specification of a state machine and P be a
concurrent program. A state machine could be extracted
from P , for example, as what is done by JPF. What we
would like to do is to test if P is an implementation of S,
or S simulates P . To this end, we use a simulation relation
candidate r from P to S. For a formal specification S, a
concurrent program P and a simulation relation r from P to
S, the proposed technique does the following: (1) finite state
sequences s1, s2, . . . , sn are generate from P , (2) each si of
P is converted to a state s′i of S with r, (3) one of each two
consecutive states s′i and s′i+1 such that s′i = s′i+1 is deleted,
(4) finite state sequences s′′1 , s

′′
2 , . . . , s

′′
m are then obtained

109

and (5) it is checked that s′′1 , s
′′
2 , . . . , s

′′
m can be accepted by

S. We suppose that programmers write concurrent programs
based on formal specifications, although it may be possi-
ble to generate concurrent programs (semi-)automatically
from formal specifications in some cases. The FeliCa team
has demonstrated that programmers can write programs
based on formal specifications and moreover use of formal
specifications can make programs high-quality. Therefore,
our assumption is meaningful as well as feasible. If so,
programmers must have profound enough understandings of
both formal specifications and concurrent programs so that
they can come up with simulation relation candidates from
the latter to the former.

In our approach, state sequences generated from P are test
cases. Therefore, it is really crucial that what state sequences
are generated from P and how they are generated. The
former and the latter have something to do with the quality of
test cases and the scalability of our approach, respectively.
Some may say that our approach has the same problems
as software model checkers. Our approach never checks
any properties while generating state sequences from P . It
would take non-trivial time to check properties. Thus, we
anticipate that our approach can scale better than software
model checkers.

IV. SPECIFICATION TESTING WITH SIMULATION
RELATIONS

This paper mainly focuses on the left part of the diagram
shown in Fig. 3. However, we need something, which is
substituted for P , from which state sequences are generated.
We use an abstract specification SA as S and a concrete
specification SC as P in this paper (see Fig. 4).

It is often the case that any state sequences generated from
SC cannot be accepted by SA. A simulation relation r from
SC to SA is not necessarily a function from SC states to SA

states or from SA states to SC states in general. Because
states in SC are often designed by refining those in SA,
however, we conjecture that r is a function from SC states
to SA states in practice.

Given a finite sequence s0, s1, . . . , sn of states generated
from SC , each state is converted into a state in SA with r,
generating s′0, s

′
1, . . . , s

′
n, where s′i = r(si) for each i and r

is used as a function from SC states to SA states. There may
be two consecutive states s′i and s′i+1 such that s′i = s′i+1.
If so, one of them is deleted. We then generate a sequence
s′′0 , s

′′
1 , . . . , s

′′
m of states in SA such that there does not exists

i such that s′′i = s′′i+1 (see the bottom part of Fig. 4). We
finally check if s′′0 , s

′′
1 , . . . , s

′′
m is a finite semi-computation

of SA (see the left part of Fig. 4).
Let sim be a function from SC states to SA. The function

simList that converts s0, s1, . . . , sn to s′′0 , s
′′
1 , . . . , s

′′
m is

defined as follows:

eq simList(C | L, S)
= if S == {empty}

Figure 5. A state of ABP

then sim(C) | simList(L, sim(C))
else (
if compareTo(sim(C),S)
then simList(L, S)
else sim(C) | simList(L, sim(C)) fi) fi .

where _|_ is used as the constructor of state sequences.
compareTo(sim(C),S) checks if there are two consec-
utive states such that they are equal.

Given a module mQid in which a state machine is
specified, two states S1 & S2 and the depth B, the function
checkSttTrans checks if S2 is reachable from S1 in B
w.r.t. the state machine, which is defined as follows:

ceq checkSttTrans(mQid, S1, S2, B)
= if sttTrans? :: ResultTriple

then true else false fi
if sttTrans? :=

metaSearch(upModule(mQid, false),
upTerm(S1), upTerm(S2), nil, ’*, B, 0) .

metaSearch is used to check if S2 is reachable from S1
in B w.r.t. the state machine specified as mQid.

Given a module mQid in which a state machine is
specified, a sequence of the state machine states and a
depth B, the function checkConform checks if the state
sequence is a finite semi-computation of the state machine,
which is defined as follows:

eq checkConform(mQid, S1 | S2 | L, B)
= $checkConform(mQid, S2 | L, S1, 0, B).
eq $checkConform(mQid, nil, S, N, B)
= success .
eq $checkConform(mQid, S2 | L, S1, N, B)
= if checkSttTrans(mQid, S1, S2, B)

then $checkConform(mQid, L, S2, N + 1, B)
else {msg: "Failure",from: S1,to: S2,

index: N, bound: B} fi .

checkSttTrans(mQid, S1, S2, B) checks if S1
→∗mQid S1 in the depth B.

V. EXPERIMENTS

We use a specification of Alternating Bit Protocol (ABP)
as SC . ABP is a communication protocol as SCP. A state in
ABP is shown in Fig. 5. The difference between ABP and
SCP is as follows: instead of the two cells used in SCP, ABP
uses as two channels two queues that are unreliable in that

110

an element in the queues may drop and/or be duplicated.
Therefore, there are two actions for each queue: d-drp and
d-dup for dc and a-drp and a-dup for ac. There are totally
eight actions in ABP.

A state of ABP is expressed as follows:

{(abp-sb: b1) (abp-data: d(n)) (abp-rb: b2)
(abp-buf: dl) (abp-dc: q1) (abp-ac: q2)}

Each of the eight actions in ABP is formalized as state
transitions, which are described in Maude rules as follows:

rl [d-snd] : {(abp-sb: B)(abp-data: D)
(abp-dc: Ps) OCs}
=> {(abp-sb: B)(abp-data: D)
(abp-dc: (Ps | < D,B >)) OCs} .

crl [a-rec1] : {(abp-sb: B) (abp-data: d(N))
(abp-ac: (B’ | Bs)) OCs}
=> {(abp-sb: (not B)) (abp-data: d(N + 1))
(abp-ac: Bs) OCs} if B =/= B’ .

crl [a-rec2] : {(abp-sb: B) (abp-data: D)
(abp-ac: (B’ | Bs)) OCs}
=> {(abp-sb: B) (abp-data: D)
(abp-ac: Bs) OCs} if B = B’ .

rl [a-snd] : {(abp-rb: B)(abp-ac: Bs) OCs}
=> {(abp-rb: B) (abp-ac: (Bs | B)) OCs} .

crl [d-rec1] : {(abp-rb: B)(abp-buf: Ds)
(abp-dc: (< D,B’ > | Ps)) OCs}
=> {(abp-rb: (not B))(abp-buf: (Ds | D))
(abp-dc: Ps) OCs} if B = B’ .

crl [d-rec2] : {(abp-rb: B)(abp-buf: Ds)
(abp-dc: (< D,B’ > | Ps)) OCs}
=> {(abp-rb: B)(abp-buf: Ds)(abp-dc: Ps)
OCs} if B =/= B’ .

rl [d-drp] : {(abp-dc: (Ps1 | P | Ps2)) OCs}
=> {(abp-dc: (Ps1 | Ps2)) OCs} .

rl [d-dup] : {(abp-dc: (Ps1 | P | Ps2)) OCs}
=> {(abp-dc: (Ps1 | P | P | Ps2)) OCs} .

rl [a-drp] : {(abp-ac: (Bs1 | B | Bs2)) OCs}
=> {(abp-ac: (Bs1 | Bs2)) OCs} .

rl [a-dup] : {(abp-ac: (Bs1 | B | Bs2)) OCs}
=> {(abp-ac: (Bs1 | B | B | Bs2)) OCs} .

Let sim be a simulation function that converts an ABP
state

(abp-sb: S)(abp-data: D)(abp-rb: R)
(abp-buf: BUFF)(abp-dc: DC2)(abp-ac: AC2)

to a SCP state

{(scp-sb: S)(scp-data: D)(scp-rb: R)
(scp-buf: BUFF)(scp-dc: norm(hd(DC2)))
(scp-ac: norm(hd(AC2)))}

where hd returns the top element if a given queue is not
empty and an error element otherwise and norm returns the

Figure 6. Time taken when the length of each state sequence is fixed
(100) and the number of state sequences is changed (100, 1000, 10000,
50000, 100000, 500000 & 1000000)

cell in which the element is stored if the argument is an
element and the empty cell if it is an error element.

Let seqABP100 be a sequence of states randomly
generated from the ABP specification such that its
length is 100. Let seqSCP be the sequence of states
obtained by simList(seqABP100, {empty}).
We can check if seqSCP is a finite semi-
computation of the SCP specification in the depth 2
by checkConform(’SCP, seqSCP, 2). The result is
success. If we use 1 as the depth instead of 2, we get
the following result:

{msg: "Failure",from: {scp-sb: true scp-data:
d(0) scp-rb: false scp-buf: d(0) scp-dc:
< d(0),true > scp-ac: false},to: {scp-sb:
false scp-data: d(1) scp-rb: false scp-buf:
d(0) scp-dc: < d(0),true > scp-ac: false},
index: 20,bound: 1}

This is because two state transitions need to be taken to
move the state following from: to the state following to:
in SCP as described in Sect. II.

It is also important to know how many state transitions
need to be taken to move one state to the next state in the
state sequence of SA obtained by converting a state sequence
of SC with a simulation function. We also conjecture that
programmers who have written a concurrent program based
on a formal specification can guess such information because
they need to understand the formal specification well and
know a simulation relation from the concurrent program to
the formal specification.

We used the SCP and ABP specifications in Maude
to measure time taken to generate state sequences from
the ABP specification, transform them with the simulation
relation from ABP to SCP to other state sequences, and
check if the state sequences obtained can be accepted by
the SCP specification. We used one node of SGI UV3000

111

Figure 7. Time taken when the number of state sequences is fixed (1)
and the length of the state sequence is changed (100, 1000, 10000, 50000,
100000, 250000 & 500000)

that carries 2.90GH microprocessor and 256GB memory for
the experiments. Two sets of experiments were conducted.
One set is to fix the length of each state sequence, which is
100, and modify the number of state sequences generated,
which is one of 100, 1000, 10000, 50000, 100000, 500000
and 1000000. The other set is to fix the number of state
sequences generated, which is one, and modify the length of
the state sequence, which is one of 100, 1000, 10000, 50000,
100000, 250000 and 500000. For both sets of experiments,
2 was used as the depth of state transitions. Fig. 6 shows
the experimental results for the first set. The time taken
increases almost linearly as the number of state sequences
generated increases. Fig. 7 shows the experimental results
for the second set. The time taken increases a bit greater
than linearly as the length of the state sequence generated
increases.

VI. CONCLUSION

We have proposed a concurrent program testing technique
that is a specification-based one and uses simulation re-
lations from concurrent programs to formal specifications.
For a formal specification S, a concurrent program P and
a simulation relation from P to S, the proposed technique
is outlined as follows: (1) state sequences s0, s1, . . . , sn are
generated from P , (2) state sequences s′′0 , s

′′
1 , . . . , s

′′
m for S

are obtained by converting s0, s1, . . . , sn with r and (3) it is
checked that S can accept s′′0 , s

′′
1 , . . . , s

′′
m. The present paper

has focused on (2) and (3).
The first set of experiments (shown in Fig. 6) indicates

that it would be feasible to (almost) exhaustively check if
state sequences whose length is small and that are generated
from a concurrent program can be accepted by a formal
specification with a simulation relation (candidate) from the
program to the specification. This must be useful because
of the small world hypothesis [11], which means that most
flaws of programs lurk in a shallow depth and could be found

with such exhaustive testing in a shallow depth. The second
set of experiments (shown in Fig. 7) indicates that it would
not be feasible to exhaustively test state sequences whose
length is large and that are generated from a concurrent
program with a formal specification and a simulation relation
(candidate) from the program to the specification. There may
be flaws lurking in programs in a non-shallow depth [12].
Therefore, it is worth testing state sequences whose length
is large. It seems feasible to do so selectively. What and how
long state sequences are selected is one piece of our future
work.

The present paper does not mention anything about how to
generate state sequences from concurrent programs. We plan
to use Java as a programming language to write concurrent
programs and to use JPF to generate state sequences from
concurrent programs.

REFERENCES

[1] V. Arora, R. K. Bhatia, and M. Singh, “A systematic review
of approaches for testing concurrent programs,” Concurrency
Computat.: Pract. Exper., vol. 28, no. 5, pp. 1572–1611, 2016.

[2] K. Havelund and T. Pressburger, “Model checking JAVA
programs using JAVA PathFinder,” STTT, vol. 2, no. 4, pp.
366–381, 2000.

[3] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda,
“Model checking programs,” Autom. Softw. Eng., vol. 10,
no. 2, pp. 203–232, 2003.

[4] T. Kurita, M. Chiba, and Y. Nakatsugawa, “Application of
a formal specification language in the development of the
”Mobile FeliCa” IC chip firmware for embedding in mobile
phone,” in FM 2008, 2008, pp. 425–429.

[5] M. Gaudel, “Software testing based on formal specification,”
in PSSE 2007, 2007, pp. 215–242.

[6] A. Cavalcanti and M. Gaudel, “Testing for refinement in
CSP,” in ICFEM 2007, 2007, pp. 151–170.

[7] D. H. Vu, A. H. Truong, Y. Chiba, and T. Aoki, “Automated
testing reactive systems from Event-B model,” in 4th NAFOS-
TED Conf. Info. & Comp. Sci., 2017, pp. 207–212.

[8] K. Ogata and K. Futatsugi, “Simulation-based verification for
invariant properties in the OTS/CafeOBJ method,” in Refine
2007, 2007, pp. 127–154.

[9] M. Clavel, et al., All About Maude, ser. Lecture Notes in
Computer Science. Springer, 2007, vol. 4350.

[10] K. Ogata, “Model checking designs with CafeOBJ – a con-
trast with a software model checker,” Workshop on Formal
Method and Internet of Mobile Things, ECNU, Shanghai,
China, 2014.

[11] D. Jackson, Software Abstraction. The MIT Press, 2012.

[12] K. Ogata, M. Nakano, W. Kong, and K. Futatsugi, “Induction-
guided falsification,” in 8th ICFEM, 2006, pp. 114–131.

112

A Survey Study on the Inference Problem in
Distributed Environment

Adel Jebali
Tunis El Manar University,

 Faculty of Mathematical Physical
and Natural Sciences of

Tunis,Tunisia
VPNC Laboratory

 adel.jbali@fst.utm.tn

Salma Sassi
Jendouba University, Faculty of

Law Economics and
 Management of Jendouba, Tunisia

 VPNC Laboratory
salma.sassi@fsjegj.rnu.tn

Abderrazak JEMAI
Carthage University, Polytechnic

School of Tunisia,
 SERCOM Laboratory,

INSAT, 1080, Tunis, Tunisia
abderrazekjemai@yahoo.co.uk

Abstract— Traditional access control models aim to prevent

data leakage via direct accesses. A direct access occurs when a

requester poses his query directly on the desired object.

However, these models fail to protect sensitive data from being

accessed with inference channels. An inference channel is

produced by the combination of the legitimate response which

a user receives from the system and metadata. Detecting and

removing inference in database systems guarantee a high-

quality design in terms of data secrecy and privacy. Parting

from the fact that data distribution exacerbates inference

problem, we give in this paper a survey of the current and

emerging research on the inference problem in both

centralized and distributed database systems and highlighting

research directions in this field.

Keywords- Access Control, Inference Control, External

Knowledge, Data Distribution, Secrecy and Privacy 1

I. INTRODUCTION
Access control models protect sensitive data from direct

disclosure via direct accesses, however they fail to prevent
indirect accesses [10]. Indirect accesses via inference
channels occur when a malicious user combines the
legitimate response that he received from the system with
metadata. According to [11], external information to be
combined with data in order to produce an inference channel
could be database schema, system's semantics, statistical
information, exceptions, error messages, user-defined
functions and data dependencies. Detecting and removing
inference in database systems guarantee a high-quality
design in terms of data secrecy and privacy since this latter is
considered as a new vision of the inference problem.
Absolutely, this diversity of techniques to bypass access
control mechanisms with inference channels has attracted
considerable attention in recent years. A growing body of
literature has examined the inference problem but no one of
the proposed solutions seems to be the universal one. In
reality, for each of the underlying techniques a specific
solution has been proposed for handling each particular
attack. There is consensus among security community that
data distribution exacerbates inference problem. This is why
several attempts have been done in the last two decades to

DOI reference number: 10.18293/SEKE2019-062

address this problem. This paper investigates current and
emerging research on the inference control in centralized
database systems, then it highlights inference in distributed
environment. The reminder of this paper is organized as
follows: Section 2 provides a brief description of research
efforts on controlling inference in centralized database
systems, section 3 review works on the inference control in
distributed environment. Research directions are given in
section 4. Finally, we conclude in section 5.

II. INFERENCE CONTROL IN CENTRALIZED DATABASE
SYSTEMS

Traditional access control models aim to prevent data
leakage via direct accesses. A direct access occurs when a
requester poses his query directly on the desired object.
However, these models fail to protect sensitive data from
being accessed via indirect accesses [10]. An inference
problem (also called inference aggregation problem) occurs
when a user deduces sensitive information from a sequence
of innocuous information in the database. It has been widely
investigated in the literature since 1987 with the emergence
of multilevel database systems. The first works in this field
are presented in [16, 20, 22].

A. Inference Attacks and Prevention Methods

According to [10], there are three types of inference
attack: Statistical attacks, semantic attacks and inference due
to data mining. For each of the mentioned techniques,
researchers have devoted a lot of efforts to deal with
inference problem. For statistical attacks, techniques like
Anonymization and Data-perturbation have been developed
to protect data from indirect access. For security threats
based on data mining, techniques like privacy-preserving
data mining and Privacy-preserving data publishing was
carried out. Furthermore, a lot of works have investigated the
semantic attacks [3, 15, 20].

There exist in the literature more than one criteria to
classify approaches that deal with inference. One proposed
criteria is to classify these approaches according to data level
and schema level [28]. In such classification, inference
constraints are classified into schema constraints level and
data constraints level. Other criteria could be according to

113

the time when the inference control techniques are
performed. According to this criteria, the proposed
approaches are classified in two categories: design time [7,
13, 14, 15, 20, 26] and query run time [1, 3, 11, 21, 22].

B. Discussion of the Inference Prevention Methods

 The purpose of inference control at design time is to
detect inference channels from earliest stage and eliminate
them. These approaches provide a better performance for
the system since no monitoring module is needed when the
users query the database, by consequence improving query
execution time. Nevertheless, design time approaches are
too restrictive and may lead to over classification of the
data. Besides, it requires that the designer has a good
concept of how the system will be utilized. On the other
hand, run time approaches provide data availability since
they monitor the suspicious queries at run time. However,
run time approaches lead to performance degradation of the
database server since every query needs to be checked by
the inference engine. Furthermore, the inference engine
needs to manage a huge number of log files and users. As a
result, this could induce slowing down query processing. In
addition, run time approaches could induce a non
deterministic access control behavior (users with the same
privileges may not get the same response).

To summarise, the main evaluation criteria of these

techniques is a trade-off between availability and system
performance. We assert that the distribution of the data
exacerbates the inference and privacy problems. In the next
section we investigate the inference problem in distributed
environment.

III. INFERENCE CONTROL IN DISTRIBUTED ENVIRONMENT
Inference control in distributed environment have been

investigated from early 2000 until now. This field of study
has received intention from researchers in database security,
due to the fact that distribution aggravates inference
problems and privacy concerns. In this section, we start by
investigating research efforts on inference prevention in
distributed database systems, then we review inference in
data integration systems and discuss different works for
mitigating this later. We survey inference problem in data
integration systems through the Mediator/Wrapper
architecture for the reason that this is the most suitable
design to access distributed, heterogeneous and autonomous
data sources. Additionally, we highlight inference prevention
methods in data outsourcing scenario.

A. Inference Control in Distributed Database Systems

In [4], the authors have considered the inference
problem where the data is combined from distributed
database and released to the final users. In this situation of
data dissemination, problem arises when non-sensitive
attributes compromise sensitive attributes. According to
presented work, one technique to mitigate inference is by
modifying the non-sensitive data in the database.

Nevertheless, even with this modification, sensitive
attributes still deducible when data from other databases is
incorporated. The main idea behind this work is to not
release certain non-sensitive information that can lead to
probabilistic inference about the sensitive information while
minimizing the loss of functionality. Consequently, the
outputs are records that have been modified in order to
anonymize sensitive attributes.

The authors of [24] have built on [4] to develop a work

turning around inference prevention in distributed database
systems. They proposed an inference prevention approach
that enables each of the database in a distributed system to
keep track of probabilistic dependencies with other
databases and by consequence use that information to help
preserve the confidentiality of sensitive data. The
methodology is called "Agent-based" because every node in
the distributed system is augmented with an agent to keep
track of other nodes so that single point of failure and
communication bottleneck are avoided. However, this
approach has some limits. It treats the case where the
distributed databases are overlapped (similar or have
common attributes). Moreover, it assumes that the records in
the distributed databases share the same keys constraints.

Inference problem have been also investigated in Peer-

to-Peer environment through the work in [6]. The authors
pinpoint the inference that occurs in homogeneous peer
agent through distributed data mining and call this process
peer-to-peer agent-based data mining systems. They assert
that performing Distributed Data Mining (DDM) in such
extremely open distributed systems exacerbates data privacy
and security issues. As a matter of fact, inference occurs in
DDM when one or more peer sites learn any confidential
information about the dataset owned by other peers during a
data mining session. The authors firstly classified inference
attacks in DDM in two categories: inside attack scenario and
outside attack scenario. After identifying DDM inference
attacks, the authors propose an algorithm to control potential
attacks (inside and outside attacks) to particular schema for
homogeneous distributed clustering, known as KDEC.
However, the algorithm proposed by the authors need to be
improved from an accuracy point to expose further possible
weakness of the KDEC schema.

B. Inference Control in Data Integration Systems

Inference control in data integration systems have been
investigated in the last decade through the works in [12, 17,
18]. In such systems, a mediator is defined as a unique entry
point to the distributed data sources. It provides to the user a
unique view of the distributed data. From a security point of
view, access control is a major challenge in this situation
since the global policy must comply with the source policies.
Complying with source policies means that a prohibited
access at the source level should be also prohibited at the
global level. [12, 17, 18] have demonstrated that despite the
generation of a global policy at the mediator level that
synthesizes and enforces the back-end data sources policies,

114

security breaches still possible via inference channel
produced by semantic constraints. The problem is that the
designer of the system cannot anticipates the inference
channels that arise due to the dependencies that appear at the
mediator level.

The first work attempting to control inference in data
integration systems was introduced in [12]. The authors
propose an incremental approach to prevent inference with
functional dependencies. The proposed methodology
includes three steps: synthesizing global policies, detection
phase and Reconfiguration phase. In this work, authors have
discussed only semantic constraints due to functional
dependencies. Neither inclusion nor multivalued
dependencies was investigated. Besides, other mapping
approaches need to be discussed such as LAV and GLAV
approaches.

The authors of [18] have inspired from [12] to propose

an approach aiming to control inference in data integration
systems. The proposed methodology resort to formal
concept analysis as a formal framework to reason about
authorization rules and functional dependencies as a source
of inference. The authors adopt an access control model
with authorization views and propose an incremental
approach with three steps: generation of the global policy,
global schema and global FD, Identifying disclosure
transactions and Reconfiguration phase.

In [17] the authors have examined inference that arise in

the web through RDF store. They propose a fine-grained
framework for RDF data, then they exploit close graph to
verify the consistency propriety of an access control policy
when inference rules and authorization rules interact.
Without accessing the data (at policy design-time), the
authors propose an algorithm to verify if an information
leakage will arise given a policy P and a set of inference
rules R. Furthermore, the authors demonstrate the
applicability of the access control model using a conflict
resolution strategy (most specific takes precedence).

C. Inference and Data Outsourcing

Inference problem was not only investigated in previous
distribution scenarios but also in data outsourcing. In this
case, data owners place their data among cloud service
providers in order to increase flexibility, optimize storage,
enhance data manipulation and decrease processing time.
Nonetheless, data security is widely recognized as a major
barrier to cloud computing and other data outsourcing or
Database-As-a-Service arrangements. Users are reluctant to
place their sensitive data in the cloud due to concerns about
data disclosure to potentially untrusted cloud providers and
other malicious part [27]. It is from this perspective that
inference problem was investigated in [2, 8].

In [2] authors resort to a controlled query evaluation

strategy (CQE) to detect inference based on the knowledge
of non-confidential information contained in the outsourced

fragments and priori knowledge that a malicious user might
have. Regarding that CQE relies on logic-oriented view on
database systems, the main idea of this approach is to model
fragmentation logic-oriented too allowing for inference
proofness to be proved formally even the semantic database
constraints that an attacker may hold. Besides, vertical
database fragmentation technique was considered by authors
in [8] to ensure data confidentiality in presence of data
dependencies among attributes. Those dependencies allow
unauthorized users to deduce information about sensitive
attributes. To tackle this issue, authors reformulate the
problem graphically through an hypergraph representation
and then compute the closure of a fragmentation by
deducing all information derivable from its fragments via
dependencies to identify indirect access. Nevertheless, the
major limit of this approach is that it explores the problem
only in single relational database.

IV. RESEARCH DIRECTIONS
Since the discussed works are recent, there are a number

of concepts associated to security policies, privacy, data
distribution and semantic constraints which could be
considered to ensure better security and prevent inference
from occurring in distributed environment. Hence, there are
many research directions to pursue:

• Absence of modularity in data integration
systems: in the case where a new source joins
the system it is necessary to revise the global
schema and the global policy. This is not
suitable for distributed environment where the
source joins and leaves the system continuously
(e.g. Mobile environment).

• Authors deal only with semantic constraints
represented by functional dependencies and
probabilistic dependencies as a source of
inference. However, other semantic constraints,
example inclusion dependencies, join
dependencies and multivalued dependencies
should be considered as sources of inference.

• In data integration scenario, all approaches aim
to handle inference at query run time by
keeping track of the history of user queries and
the current query. In the case where the system
deals with a large volume of data and users
number, run time approaches will lead to
performance degradation by slowing down
query processing, consequently, this may push
the server (mediator) to bottleneck. Hence,
design time approach should be adopted to
overcome these problems since it is performed
offline.

• Another weakness in these approaches is the
negligence of collaborative inference. In fact,
authors propose to block a sequence of
violating transaction from being achieved to
prevent the inference channel, but, what if this
violating transactions results from a

115

combination of a set of queries from more than
one user?

• Functional dependencies should be considered
as a source of inference in data outsourcing
scenario. although data dependencies may
resemble functional dependencies, they model a
different concept. In future work, we will
present a study aiming to prevent inference
from occurring in distributed cloud database.
Our approach is graph-based that firstly detects
inference channels caused by functional
dependencies and secondly breaks those
channels by exploiting vertical database
fragmentation while minimizing dependencies
loss.

V. CONCLUSION
This paper has surveyed the inference problem from two

perspectives: centralized and distributed design. We first
gave a review of current and emerging research about the
inference control in centralized database systems, we have
introduced different inference attacks and their prevention
methods and discussed the trade-off between them.
Furthermore, an insightful discussion about inference
control in distributed environment was provided. We also
pinpoint potential issues that are still unresolved. These
issues are expected to be addressed in future work.

REFERENCES
[1] Xiangdong An, Dawn Jutla, and Nick Cercone. 2006. Dynamic

inference control in privacy preference enforcement. In Proceedings
of the 2006 International Conference on Privacy, Security and Trust:
Bridge the Gap Between PST Technologies and Business Services.
ACM, 24.

[2] Joachim Biskup, Marcel Preuß, and Lena Wiese. 2011. On the
inference-proofness of database fragmentation satisfying
confidentiality constraints. In International Conference on
Information Security. Springer, 246–261.

[3] Alexander Brodsky, Csilla Farkas, and Sushil Jajodia. 2000. Secure
databases: Constraints, inference channels, and monitoring
disclosures. IEEE Transactions on Knowledge and Data Engineering
12, 6 (2000), 900–919.

[4] LiWu Chang and Ira Moskowitz. 2003. A study of inference problems
in distributed databases. In Research Directions in Data and
Applications Security. Springer, 191–204.

[5] Yu Chen and Wesley W Chu. 2008. Protection of database security
via collaborative inference detection. In Intelligence and Security
Informatics. Springer, 275–303.

[6] R Lopez de Mantaras and L Saina. 2004. Inference attacks in peer-to-
peer homogeneous distributed data mining. In ECAI 2004: 16th
European Conference on Artificial Intelligence, August 22-27, 2004,
Valencia, Spain: Including Prestigious Applicants [sic] of Intelligent
Systems (PAIS 2004): Proceedings, Vol. 110. IOS Press, 450.

[7] Harry S. Delugach and Thomas H. Hinke. 1996. Wizard: A database
inference analysis and detection system. IEEE Transactions on
Knowledge and Data Engineering 8, 1 (1996), 56–66.

[8] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia,
Giovanni Livraga, Stefano Paraboschi, and Pierangela Samarati.
2014. Fragmentation in presence of data dependencies. IEEE
Transactions on Dependable and Secure Computing 11, 6 (2014),
510–523.

[9] Josep Domingo-Ferrer. 2002. Advances in inference control in
statistical databases: An overview. In Inference Control in Statistical
Databases. Springer, 1–7.

[10] Csilla Farkas and Sushil Jajodia. 2002. The inference problem: a
survey. ACM SIGKDD Explorations Newsletter 4, 2 (2002), 6–11.

[11] Marco Guarnieri, Srdjan Marinovic, and David Basin. 2017. Securing
Databases from Probabilistic Inference. In Computer Security
Foundations Symposium (CSF), 2017 IEEE 30th. IEEE, 343–359.

[12] Mehdi Haddad, Jovan Stevovic, Annamaria Chiasera, Yannis
Velegrakis, and Mohand-Saïd Hacid. 2014. Access control for data
integration in presence of data dependencies. In International
Conference on Database Systems for Advanced Applications.
Springer, 203–217.

[13] Thomas H Hinke. 1988. Inference aggregation detection in database
management systems. In Security and Privacy, 1988. Proceedings.,
1988 IEEE Symposium on. IEEE, 96–106.

[14] Thomas H Hinke, Harry S Delugach, and Randall P Wolf. 1997.
Protecting databases from inference attacks. Computers & Security
16, 8 (1997), 687–708.

[15] CE Landwehr and S Jajodia. 1992. The use of conceptual structures
for handling the. inference problem. (1992).

[16] Matthew Morgenstern. 1988. Controlling logical inference in
multilevel database systems. In Security and Privacy, 1988.
Proceedings., 1988 IEEE Symposium on. IEEE, 245–255.

[17] Tarek Sayah, Emmanuel Coquery, Romuald Thion, and Mohand-Saïd
Hacid. 2015. Inference leakage detection for authorization policies
over RDF data. In IFIP Annual Conference on Data and Applications
Security and Privacy. Springer, 346–361.

[18] Mokhtar Sellami, Mohand-Said Hacid, and Mohamed Mohsen
Gammoudi. 2015. Inference control in data integration systems. In
OTM Confederated International Conferences" On the Move to
Meaningful Internet Systems". Springer, 285–302.

[19] Jessica Staddon. 2003. Dynamic inference control. In Proceedings of
the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery. ACM, 94–100.

[20] T-A Su and Gultekin Ozsoyoglu. 1991. Controlling FD and MVD
inferences in multilevel relational database systems. IEEE
Transactions on Knowledge and Data Engineering 3, 4 (1991), 474–
485.

[21] Bhavani Thuraisingham, William Ford, Marie Collins, and Jonathan
O’Keeffe. 1993. Design and implementation of a database inference
controller. Data & knowledge engineering 11, 3 (1993), 271–297.

[22] MB Thuraisingham. 1987. Security checking in relational database
management systems augmented with inference engines. Computers
& Security 6, 6 (1987), 479–492.

[23] Tyrone S Toland, Csilla Farkas, and Caroline M Eastman. 2010. The
inference problem: Maintaining maximal availability in the presence
of database updates. Computers & Security 29, 1 (2010), 88–103.

[24] James Tracy, LiWu Chang, and Ira S Moskowitz. 2003. An agent-
based approach to inference prevention in distributed database
systems. International Journal on Artificial Intelligence Tools 12, 03
(2003), 297–313.

[25] Hui Wang and Ruilin Liu. 2011. Privacy-preserving publishing
microdata with full functional dependencies. Data and Knowledge
Engineering 70, 3 (2011), 249 – 268.

[26] Jingwen Wang, Jie Yang, Fen Guo, and Huaqing Min. 2017. Resist
the Database Intrusion Caused by Functional Dependency. In Cyber-
Enabled Distributed Computing and Knowledge Discovery (CyberC),
2017 International Conference on. IEEE, 54–57.

[27] Xiaofeng Xu, Li Xiong, and Jinfei Liu. 2015. Database fragmentation
with confidentiality constraints: A graph search approach. In
Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy. ACM, 263–270.

[28] Raymond W Yip and EN Levitt. 1998. Data level inference detection
in database systems. In Computer Security FoundationsWorkshop,
1998. Proceedings. 11th IEEE. IEEE, 179–189.

116

Towards human-centric software testing
Samantha Catania

Department of Computer Science
University of Malta

samantha.catania.12@um.edu.mt

Chris Porter
Department of Computer Information Systems

University of Malta
chris.porter@um.edu.mt

Mark Micallef
Department of Computer Science

University of Malta
mark.micallef@um.edu.mt

Abstract—Software testing is widely perceived to be the main
activity in the software development process that provides con-
fidence in the quality of a product prior to release. However,
the term software testing itself provokes a multitude of different
definitions and opinions as to the nature of the profession, the
role of software testers and the utility of different processes and
tools that come with the territory [1][2]. We argue that in order
for researchers to effectively study the field and contribute to
its progress, a consensus first needs to be reached about the
entity being studied. In this paper we present an empirical study
based on the modified Delphi card sort method involving four
cohorts of testers in Malta and London. The result of this study
is a consolidated consensus-based mental model outlining how
software testers perceive their profession. This mental model can
be used to align any future research efforts and tool development
with testers’ own perception of their context.

Index Terms—Software testing, human factors and ergonomics,
mental models

I. INTRODUCTION

“Ergonomics [or human factors] is the scientific discipline
concerned with the understanding of interactions among hu-
mans and other elements of a system, and the profession
that applies theory, principles, data and methods to design
in order to optimise human well-being and overall system
performance.” [3]

Testing is a human-intensive activity, requiring constantly
changing information, in different formats, from various
sources with different levels of access and over a variety
of channels and tools. The level of experience and training
background adds up to the complex nature of the domain,
all of which contribute to high levels of cognitive workload.
To date, and to the best of our knowledge, testing as a
discipline in its various forms and shapes has never been
treated scientifically from an ergonomics and human factors
perspective. The terms ‘ergonomics’ and ‘human factors’ are
interchangeable, however their use implies either the imme-
diate physical environment (e.g. the workbench), or to the
wider context in which work is carried out (e.g. the process),
respectively [4].

In the past, we have attempted to treat this domain from
both an ergonomics perspective (e.g. augmented reality in
workbenches, just-in-time information and cognitive workload
as well as from a human-factors perspective (e.g. the impact
of training on tester performance [5], human-centred test

DOI reference number: 10.18293/SEKE2019-065

frameworks). Throughout this period we also immersed
ourselves in practice within industry teams, as much as
possible, to be able to experience and discuss issues with
industry professionals.

It transpires that there is a more pressing need that needs
to be tackled first before we are able to further this line of
investigation. Due to the complexity of the domain, different
people will have different and often wide-ranging perceptions
and expectations of testing in practice and theory. Therefore,
to be able to reason in terms of human factors and ergonomics
in testing, we first need to build a clear picture of how testers
reason about testing in general. This paper aims to achieve
this. We therefore present a mental-model built following an
empirical exercise with software testing professionals in Malta
and London using the modified Delphi card sorting method.
This mental-model aims at providing a common vocabulary
through which we can study problems and propose solutions
which would ultimately benefit software testers and their well-
being.

A mental model or a conceptual model, represents the
“cognitive shorthand” [6] of how a person, or a group of
people, understand a complex product or domain. Looking at
this from the perspective of a website, this conceptual model
is enough to help users navigate and interact with the site,
however if the implementation varies widely from the users’
mental model, users will find it close to impossible to reach
their goals without having to think hard about their actions
and how the site is reacting.

Although we understand that testing is complex in nature,
we present a mental model based on a consensus-driven em-
pirical exercise which elicits testers’ beliefs about the domain
and its various aspects. This aims to inform human factors
and ergonomics researchers and designers in their effort to
contribute towards this domain. Through an understanding of
how testing professionals perceive this domain, contributions
could be better aligned and communicated to resonate with
the nature of their work. A designer’s primary goal is to build
user interfaces that map as closely as possible with the users’
mental models, abstracting away the internal complexities
[7]. This same principle applies for research efforts, whereby
we first need to understand the primary stakeholders’ beliefs
and perceptions driving everyday work before being able to
improve working conditions. Closing the gap between testers’
mental models and researchers’ perceptions or beliefs about
the domain increases the chances of (a) improving the tester’s

117

well-being by solving the right problems at the right level,
and (b) adoption of research outcomes in industry. As in
design, research efforts need to be aligned with the user’s
mental model. For this to happen, researchers need to use
their expertise in research and frame their efforts as closely to
the testers’ mental model as possible, building a model which
bridges their knowledge and efforts with testers’ perceptions.
Cooper defines this as the “represented model” which is “one
of the designer’s most important goals“. Cooper states that “it
is critical that designers understand in detail how their target
users think about the work they do with the software” [6].

II. SOFTWARE TESTING

Software testing is an activity predominantly associated with
ensuring that a product meets a certain level of quality before
it is released to customers. Despite its widespread use and
numerous practitioners worldwide, software testing is arguably
the least understood part of the development process [2]. In the
two decades that we have studied and practised in the field, the
lack of consensus on the nature of the field, its processes, tools
and practitioners’ role has been an ever palpable characteristic.
Many conversations that we have had about software testing
decisions in the industry have involved phrases like “I do not
believe in automated testing”, “that is not what I think your
role as a tester should be” or “we need to release tomorrow,
can you test this quickly please?”.

Even definitions by respected authorities differ, albeit with
some overlap. The British Standards Index refers to software
testing as the activity of exercising software with the intent
of finding errors and verifying that is satisfies specified re-
quirements [8]. The IEEE has a similar definition but includes
the notion that a system can be tested without being exercised
(inspection). The ISTQB syllabus [9] (the de facto standard
for tester certification) makes reference to testing being a
measurement of software quality.

Within the field itself, there are a multiplicity of roles,
taxonomies, strategies, techniques, processes and tools. The
correct time, place and usage of each of these elements is
the subject of frequent debate, which has also given rise to
different schools of thought within the industry. Engineering-
driven schools treat testing as a standards-driven industry
which practitioners can consequently be trained and certified
in. On the other end of the scale, the ”Context-Driven” school
of thought claims that the value of any practice depends on
its context and the concept of a one-size-fits-all definition of
the field and its practices is misguided [10].

In a widely cited paper charting the progress and future
direction of the field, Bertolino [1] makes reference to the
multiplicity of meanings that arise from the term “software
testing”, as well as the particular research challenges that
this fact generates. Bertolino goes on to set out the field’s
achievements to date, ongoing challenges and future dreams.
The first dream she outlines is that of the development of a
unified theory of testing.

This lack of clarity is a contributing motivation behind this
work. Before one can design research, tools and processes that

cater for the human tester more effectively, one first needs to
understand the role and subsequent needs of the human tester.
To this end, we undertook a consensus-based investigative
approach as discussed in the following section.

III. METHODOLOGY

Motivated by the objective of establishing a consensus-
based mental model amongst practitioners in the field about the
nature of software testing, we selected a methodology centred
around the Modified Delphi Card Sort method. The Delphi
technique is a widely used and accepted method for gathering
data from respondents within their domain of expertise [11].
Originally developed in the 1950s by Dalkey and Hemler [12],
it has been widely used and adapted in various disciplines as a
means of seeking out information that can generate consensus
amongst participants.

Whereas initial versions of the technique involved using
questionnaires with participants, we have chosen to use a card-
sort variant whereby participants are asked to group concepts
from their domain under categories using index cards. This
can be done in one of two ways. The first is to utilise an open
card-sort approach, whereby participants start with an empty
slate and build a representation from there. The second way
involves providing the first participant with a so-called seeded
deck, that is, an initial model of the domain which she may
choose to agree or disagree with in whole or in part. The
participant can make any changes she sees fit by changing
categories, adding terms and removing others. The result of
the first participant’s card sort are used as the seeded deck for
the next participant, and so on. This technique has been shown
to converge to a consensus with as little as 8-10 participants
[13].

As depicted in Figure 1, two card sort exercises were carried
out: one during a meeting of professional testers in Malta and
another at a similar meeting organised by the British Computer
Society in London.

Fig. 1. An overview of the process used during the study.

Following an initial deck seeding exercise (Section III-A),
two parallel card sort exercises were carried out (Section
III-B) by two cohorts of participants, which resulted in two
sorted decks that were subsequently merged (Section III-C).
A second card sort (Section III-D) then took place, again
with two parallel cohorts, one using the original seeded deck

118

and the other using the merged deck from the first card sort.
This resulted in two final decks of cards which were fed into
an analysis process (Section III-E) in order to produce the
consolidated mental model. Each of these stages are discussed
in turn below.

A. Deck Seeding

The seeded deck was compiled from a subset of terms found
in a glossary published by the International Software Testing
Qualifications Board (ISTQB) [14]. Given that the glossary
contains over 600 terms, our initial processing of the glossary
involved the removal of outlier terms and synonyms. Whilst
outlier terms consisted of terms which we felt would not be
helpful as part of the seeded deck (e.g. Agile Manifesto and
Myers-Briggs Type Indicator), it is worth noting that should
we be mistaken, it was entirely permissible for the terms to be
reintroduced by participants during the card sort. At this point,
we carried out a manual categorisation of the remaining terms
into five broad categories: (1) Testware refers to entities that
exist in the most part to enable and/or support the planning and
execution of testing activities on a project; (2) Artefact refers
to entities that are created, used and manipulated by testers
or other stakeholders at some point during the testing process;
(3) Runtime: refers to terms which represent entities that come
into play in the period that a system is being executed as part
of a test; (4)Tools: refers to devices, typically embodied as
software systems that help support testers in a variety of tasks;
and finally (5) Test Strategy, a category containing terms that
identify different types of plans of action that testers can use
to achieve their goal during software testing.

Once these categories were identified, we manually reduced
the amounts of terms in each category based on our knowledge
of the testing domain. Therefore, whereas a category called
Test Strategy initially contained eighty terms, we manually
reduced this to seven by keeping the most common strategies
(e.g. Acceptance Testing) and removing the more obscure ones
(e.g. Monkey Testing).

The resulting seeded deck consisted of five categories and
twenty-five terms as shown in Table I.

TABLE I
THE CONTENTS OF THE INITIAL SEEDED DECK.

Category Seeded Terms

Testware Test Outcome, Test Data, Reports,
Documentation, Test Suite, Test Script

Artefact Features, Bugs, Code

Runtime Configuration, System Under Test,
Environment, Tester

Tools
Static Analysis Tools, Coverage Tools,
Performance Testing Tools, Bug Tracking Tools,
Automated Testing Tools

Test Strategy
Acceptance Testing, Ad Hoc Testing, Branch Testing,
Exploratory Testing, Integration Testing,
Performance Testing, Regression Testing

The materialisation of this seeded deck enabled us to move
on to the next stage of the study.

B. First Card Sort - Malta

Armed with two copies of the seeded deck, we attended
a gathering of software testing professionals in Malta and
recruited sixteen participants, who we split evenly into two
cohorts. Each participant was asked to reflect on their mental
model of software testing and subsequently spend as much
time as needed to modify the deck so that it accurately fit
his/her mental model. This was done by any combination of (1)
adding new terms or groups; (2) moving cards between groups;
and (3) removing terms or groups which they considered not to
be a fit for purpose. When a participant was finished, the next
participant was asked to come in and continue the exercise.

At the end of the exercise, the two decks were analysed
and merged into a single deck as discussed in the following
section.

C. Merging of Decks

The two decks resulting from the parallel card sorts carried
out in Malta were merged using a five-step process as follows.
The first step involved discarding replicated terms such that
terms which were added multiple times in the same deck
were earmarked for discarding so that only one instance of
each term remained. In cases where the terms appeared in
different categories, reference to the ISTQB Glossary [14]
was made in an effort to choose the category that best fit the
emerging mental model. The next step involved renaming of
synonyms to make sure that any instances whereby testers were
referring to the same concept using different labels, one term
was selected and used in place of all the synonyms. We then
turned our attention to categories and automatically retained
any categories that were common in both decks for the merged
deck. Similarly we also retained terms that appeared in both
decks. If the terms appeared in different groups, a judgement
was made as to which group was the best fit for that term.
Finally, we discarded any empty categories. Any categories
that contained no terms following the preceding steps in the
merge were discarded.

The two card sort exercises in Malta both retained the
original five categories from the seeded deck and added
four groups between them. However, the merging process
resulted in the four new categories having no terms and were
consequently removed. This resulted a merged deck with the
characteristics described in Table II.

TABLE II
THE NUMBER OF INITIAL (I), RETAINED (R), ADDED (A), DELETED (D)
AND FINAL (F) TERMS FOLLOWING THE FIRST CARD SORT AND MERGE.

Category I R A D F
Testware 6 5 (83%) 2 (33%) 1 (17%) 7 (+17%)
Artefact 3 2 (67%) 5 (166%) 1 (33%) 7 (+133%)
Runtime 4 3 (75%) 2 (50%) 1 (25%) 5 (+25%)
Tools 5 4 (80%) 8 (160%) 1 (20%) 12 (+140%)
Test Strategy 7 5 (71%) 7 (100%) 2 (29%) 12 (+71%)
Totals: 25 19 (76%) 24 (96%) 6 (24%) 43 (+72%)

The figures in Table II indicate that there was an overall
increase of 72% in the size of the mental model with about

119

24% of our initial seeded deck being rejected by participants.
The highest relative increases where in the Tools category
(+140%) and the Artefact category (+133%).

D. Second Card Sort - London

In order to further refine the emerging mental model, two
cohorts of seven volunteers attending a one-day software
testing conference organised by the British Computer Society
in London were tasked with carrying out a further card sort.
One cohort started with the original seeded deck whilst the
other one started with the merged deck. The exact same
protocol that was used in the first card sort was utilised in
the second card sort with the results being fed into the final
stage of the study.

E. Analysis

The card sort exercises generated 83 terms in total and each
was either seeded, added, removed or moved at one or more
points during this study. In order to make sense of this data,
a scoring system was devised whereby every time participants
interacted with a term, the term would gain or loose a certain
amount of points. Therefore, when a term was seeded by a
researcher, added by a participant or removed by a participant,
it gained 1 point, 2 points and lost one point respectively.
Whilst these values may seem arbitrary, they were designed
to (1) characterise each term’s journey through the study into
a single score; and (2) assign more importance to terms which
were added by participants without any prior mention.

The result was a ranked list of 83 terms in five categories
which was then analysed by researchers with a view of
establishing a cutoff point in each category that would indicate
which terms should be included in the consolidated mental
model. The cutoff decision was made based on (1) identifying
points in the list where a significant scoring gap occurred
between one term and the next; and (2) manually removing
terms which objectively did not fit the category or were
synonyms for other terms that were already included. The
result was a mental model with the same categories as those
designed in the original seeded deck.

IV. DISCUSSION

The mental model resulting from the research is respre-
sented in the form of a mind map in Figure 2. In this section,
we discuss characteristics of this mental model and comment
on its convergance, evolution and its implications on testers’
perception of their field.

A. Convergence

Consistent with other studies that used the Modified Delphi
Card Sort method, participants appear to converge towards a
consensus relatively quickly. As shown in Table III, whereas
the first card sort resulted in an increase in deck size from 25
to 43 terms (72%), there was only a net decrease of 2 terms
(-5%) in deck size following the second card sort. Also, as
shown in Table IV, more terms were retained, and less were
added or removed as research progressed from the first to the
second card sort.

TABLE III
COMPARING MENTAL MODEL SIZE FROM THE SEEDED DECK (∆s)

THROUGH TO THE MERGED DECK (∆m) AND THE FINAL MENTAL MODEL.

Seeded Merged Final
Category # # ∆s # ∆s ∆m

Testware 6 7 +17% 5 -17% -29%
Artefact 3 7 +133% 10 +233% +43%
Runtime 4 5 +25% 6 +50% +20%
Tools 5 12 +140% 9 +80% -25%
Test Strategy 7 12 +71% 11 +57% -8%
Totals: 25 43 +72% 41 +64% -5%

TABLE IV
TERMS RETAINED, ADDED AND DELETED BETWEEN SUCCESSIVE DECKS.

Seeded → Merged Merged → Final
Retained 19 (76%) 37 (86%)
Added 24 (+96%) 4 (+9%)
Deleted 6 (-24%) 6 (-14%)
Net Churn: 18 (+72%) -2 (-5%)

B. How the seeded model evolved

The contents of the Testware category remained mostly
unchanged with no terms being added and one term (Doc-
umentation) being moved to the Artefacts category. The Arte-
facts category itself grew threefold in size from three terms to
nine with practitioners strongly backing terms that the original
seeded model had left out. Interestingly, the term Features
was consistently removed by participants but was replaced
by multiple other terms such as Specification and Acceptance
Criteria.

The Runtime category retained all but one of its seeded
terms (Tester) and doubled in size from three to six terms with
the testers introducing the terms Mocking, User and Bugs.

Finally, practitioners retained most of the terms from the
Tools and Test Strategies categories, removing two terms
from each category but also supplemented each category
considerably. Six new types of tools were added, as well as
six new testing strategies. All terms added received consistent
backing from participants in successive card sorts.

C. Interesting Observations

The process of obtaining information about the mental
model of software testers from practitioners themselves pro-
vided some interesting insights.

Firstly, testers do not see themselves as part of their own
mental model. The term Tester was presented to three cohorts
as a result of being part of the seeded deck. However, it
was removed every single time. This indicates to us that
contrary to our view that the tester should be at the centre
of any discussion related to the testing process, the testers
take themselves out of the equation. This flies contrary to
many discussions we witnessed in the industry whereby testers
would express frustration at not being included enough in the
software development process.

Secondly, testers need to somehow effectively use as many
as eleven different testing strategies in their day-to-day job.
This is complemented by nine different types of testing tools,

120

Fig. 2. The tester’s mental model that resulted from the card sorts.

which hopefully make the testers’ lives easier. This indicative
of the highly complex nature of the testing profession.

In the multiple opportunities that presented themselves
throughout this study (from seeding through multiple card
sorts), the term Usability Testing was only mentioned once
and did not make it into the consolidated mental model. This
is interesting because it indicates that testers do not perceive
usability testing as a core part of their job. Rather, they are
concerned with ensuring that the product meets the stated
specifications, even if the specifications do not necessarily
provide the customer with the experience they desire. Given
the ease with which customers can move to competitors in
today’s dynamic online markets, this type of thinking could be
counterproductive and end up producing high quality software
that customers do not want [15].

V. RELATED WORK

In this section, we compare and contrast our work with simi-
lar research efforts. Different works in the literature concerned
with understanding the software testing domain exist for one
of three reasons: (1) understanding the application of testing in
a specific domain; (2) knowledge management; or (3) forming
a more coherent understanding for pedagogical purposes.

With regards to domain-specific work, Nasser et al. [16]
present an ontology based on state machine based testing
whilst Sapna and Mohanty’s [17] work focuses on scenario-
based testing. Yu et al. [18] focus on understanding software
testing as a service (TAAS). Whilst such studies have value at
forming an in-depth understanding of testing within individual
domains, our work is more focused on forming a wider
practitioner-oriented understanding of the field. Nevertheless,

it is interesting to note how the organisation of different
models differs based on their focus. For example, Yu et al. [18]
proposed categories such as Test Type, Target Under Test, Test
Environment and Test Schedule. Whilst these categories bare
resemblance to those in our work and the work of others, the
emphasis can be seen to focus on scenarios whereby testing
is perceived (and even sold) as an outsourced service.

Focusing on increasing testcase reuse through knowledge
management, Guo et al. [19] develop an ontology centred soley
around the test case. They develop and propose the use of
their unified standard format for test cases and argue that this
can promote reuse. Focusing on web services, Bai et al. [20]
propose a so-called Test Ontology Model that models testing
artefacts and relationships between them. Barbosa et al. [21]
propose OntoTest a collection of six sub-ontologies of testing
named as Testing Process, Testing Phase, Testing Artifact,
Testing Step, Testing Resource, and Testing Procedure.

Perhaps the work that is most closely related to this pa-
per is that by Arnicans and Straujums [22] who propose a
hierarchical model of the testing domain constructed from the
800 entries in the ISTQB Glossary [14], the same source used
for creating the seeded deck in our study. Using a technique
whereby each term in the glossary was assigned a weight and
subsequently related to other words, they converted the ISTQB
Glossary into a browsable hierarchical concept map. They
found that the ‘weightiest’ nine terms where testing, test, tool,
software, process, analysis, capability, technique and cover-
age. These top-level terms contain 425 (70%) of the glossary’s
entries between them. There are some similarities between
Arnicans and Straujums’ top terms and the categories in our
mental model but the mapping is not direct. For example, the

121

term tool maps to our tools category whilst software maps
to artefact and technique maps to test strategies. However,
the terms contained in each of these mapped categories are
not the same. One example is that some techniques that we
refer to as strategies, are referred to as being part of the
process category in Arnicans and Straujum’s work. One should
note that the scope behind the work differs from ours in that
whilst Arniscans and Straujum are concerned with making the
ISTQB Glossary more understandable, we are interested in
understanding the mental model held by practitioners in the
field.

VI. CONCLUSIONS AND FUTURE WORK

We motivated this study by arguing that since testing is
a human-intensive activity, the human tester needs to be at
the centre of research contributions to the field. This implies
that testing, as a discipline, would benefit from being treated
scientifically from an ergonomics and human-factors perspec-
tive. However, our initial work in this area uncovered a lack
of clarity as to what exactly constitutes software testing from
the tester’s perspective.

As a result of the study presented in this paper, we propose
a mental model elicited from practitioners using a consensus
building approach. Having this mental model available pro-
vides researchers with an insight into how testing practitioners
perceive their professional context and can thus form as a basis
for aligning research efforts with practitioners’ views. The
A. Future Work

With regards to future work, we would like to pursue two
main paths of research. Firstly, we would like to continue
to validate the model through further card sorts in order to
reduce external threats to validity whilst also gaining a deeper
understanding about whether cohorts of testers with specific
characteristics (e.g. experience testers or testers working in
a specific domain) would diverge from the model. Our initial
discussions with peers about the results presented here resulted
in questions regarding issues such as how the background of
participants might have affected the results or why certain
terms do not appear. It would be interesting to investigate these
questions and also repeat these exercises on a regular basis to
understand if and how practitioner perceptions evolve. Sec-
ondly, we would like to revisit our work on treating software
testing from an ergonomics and human factors perspective
(e.g. augmented reality workbenches, just-in-time information
and cognitive workload) in light of the mental model and
its implications. This will help us refocus such efforts so as
to increases the chances of (a) improving the tester’s well-
being by solving the right problems at the right level, and (b)
adoption of research outcomes by industry stakeholders.

mental model by no means covers the whole testing domain
but we argue that aligning research efforts to this model is
more likely to provide value to the practitioners who created
it.

REFERENCES

[1] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 85–103.

[2] J. A. Whittaker, “What is software testing? and why is it so hard?” IEEE
software, vol. 17, no. 1, pp. 70–79, 2000.

[3] I. E. Association, “Definition and domains of ergonomics,” 2016.
[Online]. Available: https://www.iea.cc/whats/

[4] C. I. of Ergonomics and H. Factors, “What is ergonomics? find out
how it makes life better.” [Online]. Available: https://bit.ly/2SoLsJz

[5] M. Micallef, C. Porter, and A. Borg, “Do exploratory testers need
formal training? an investigation using hci techniques,” in 2016 IEEE
Ninth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 2016, pp. 305–314.

[6] A. Cooper, R. Reimann, and D. Cronin, About face 3: the essentials of
interaction design. John Wiley & Sons, 2007.

[7] J. Nielsen, “Mental models,” 10 2010. [Online]. Available:
https://www.nngroup.com/articles/mental-models

[8] S. C. Reid, “Bs 7925-2: The software component testing standard,” in
apaqs. BSI, 2000, p. 139.

[9] A. Roman, “2018 foundation syllabus overview,” in A Study Guide to the
ISTQB R© Foundation Level 2018 Syllabus. Springer, 2018, pp. 3–11.

[10] C. Kaner and J. Bach, “What is context-driven testing,” 2009.
[11] C.-C. Hsu and B. A. Sandford, “The delphi technique: making sense of

consensus,” Practical assessment, research & evaluation, vol. 12, no. 10,
pp. 1–8, 2007.

[12] N. Dalkey and O. Helmer, “An experimental application of the delphi
method to the use of experts,” Management science, vol. 9, no. 3, pp.
458–467, 1963.

[13] A. Soranzo and D. Cooksey, “Testing taxonomies: beyond card sorting,”
Bulletin of the Association for Information Science and Technology,
vol. 41, no. 5, pp. 34–39, 2015.

[14] I. ISTQB, “Glossary of testing terms,” ISTQB Glossary http://www.
istqb. org/downloads/finish/20/193. html, 2015.

[15] E. Ries, The lean startup: How today’s entrepreneurs use continuous
innovation to create radically successful businesses. Crown Books,
2011.

[16] V. H. Nasser, W. Du, and D. MacIsaac, “Knowledge-based software test
generation.” in SEKE, 2009, pp. 312–317.

[17] P. Sapna and H. Mohanty, “An ontology based approach for test scenario
management,” in International Conference on Information Intelligence,
Systems, Technology and Management. Springer, 2011, pp. 91–100.

[18] L. Yu, L. Zhang, H. Xiang, Y. Su, W. Zhao, and J. Zhu, “A framework of
testing as a service,” in 2009 International Conference on Management
and Service Science. IEEE, 2009, pp. 1–4.

[19] S. Guo, J. Zhang, W. Tong, and Z. Liu, “An application of ontology
to test case reuse,” in 2011 International Conference on Mechatronic
Science, Electric Engineering and Computer (MEC). IEEE, 2011, pp.
775–778.

[20] X. Bai, S. Lee, W.-T. Tsai, and Y. Chen, “Ontology-based test modeling
and partition testing of web services,” in 2008 IEEE International
Conference on Web Services. IEEE, 2008, pp. 465–472.

[21] E. F. Barbosa, E. Y. Nakagawa, and J. C. Maldonado, “Towards the
establishment of an ontology of software testing,” in SEKE, 2006, pp.
522–525.

[22] G. Arnicans and U. Straujums, “Transformation of the software testing
glossary into a browsable concept map,” in Innovations and Advances in
Computing, Informatics, Systems Sciences, Networking and Engineering.
Springer, 2015, pp. 349–356.

122

Semantic Analysis for Deep Q-Network in Android GUI Testing

Tuyet Vuong∗, Shingo Takada∗

∗Dept. of Information and Computer Science, Keio University, Yokohama, Japan

{tuyet, michigan}@doi.ics.keio.ac.jp

Abstract— Since the big boom of smartphone and conse-
quently of mobile applications, developers nowadays have many
tools to help them create applications easier and faster. How-
ever, efficient automated testing tools are still missing, especially
for GUI testing. We propose an automated GUI testing tool
for Android applications using Deep Q-Network and semantic
analysis of the GUI. We identify the semantic meanings of GUI
elements and use them as an input to a neural network, which
through training, approximates the behavioral model of the
application under test. The neural network is trained using the
Q-Learning algorithm of Reinforcement Learning. It guides the
testing tool to explore more often functionalities that can only
be accessed through a specific sequence of actions. The tool
does not require access to the source code of the application
under test. It obtains higher code coverage and is better at fault
detection in comparison to state-of-the-art testing tools.

Keywords: Automated Android Testing; GUI Testing;
Reinforcement Learning, Deep Q-network

I. INTRODUCTION

In 2017, the number of monthly active Android devices
reached a new milestone of 2 billion [1], accompanied by
about 3 million applications in the Google Play Store [2]. The
mobile application market is on-demand and so competitive
that a small bug in the software can cause users to uninstall
the product and opt for another. Assuring application quality
is hence very important. Even though a lot of effort has
been made to develop automated testing techniques, we still
heavily rely on manual testing in practice, with only 3%
of developers fully engaging in automation [3]. Developers
also admitted in recent surveys that Graphical User Interface
(GUI) testing is especially labor-intensive, time-consuming,
and challenging to automate because GUI tests must be
constantly rewritten when changes, even small, are made [3].

Android application’s GUIs contain various types of com-
ponents such as button, text input, slide bar, switch, etc.
Moreover, users can interact with each type of component
in multiple ways through events: click, long click, swipe,
scroll, etc. This complexity makes GUI testing techniques
like random testing inefficient because it attributes a uniform
probability distribution to all combinations of components
and events, while an efficient testing strategy should select
and follow the specific paths that reveal application’s func-
tionalities.

DOI reference number: 10.18293/SEKE2019-080.

In our previous work [4], we presented an automated
testing tool implementing the classic Q-Learning algorithm
of reinforcement learning, which demonstrated positive im-
provements in code coverage. In this paper, we continue to
follow the reinforcement learning approach and propose two
main contributions:

• Improve the learning of the application’s behavioral
model by analyzing the semantic representations of GUI
components.

• Use Deep Q-Network [5] to approximate the behavioral
model of the application under test.

The remainder of this paper is organized as follows:
Section II reviews related work in Android automated testing
and the application of reinforcement learning in software
testing. Section III provides a brief introduction to Deep Q-
Network. Section IV elaborates our proposed approach and
implementation details. Section V analyzes the evaluation
results and finally section VI concludes the paper along with
suggestions for future works.

II. RELATED WORK

In recent years, researchers have tried different approaches
to test Android applications, among the most popular trends
are random testing, model-based testing, and heuristic-based
testing. Tools such as Puma [6] and A3E [7] build a model
of the application under test then systematically explore the
application based on this model. On the other hand, Evodroid
[8] and Acteve [9] use special algorithms such as symbolic
execution and evolutionary algorithms to test the application.
As our paper proposes a black-box GUI testing method, we
investigate further in black-box GUI testing tools.

Monkey [10] is a random event generator which is em-
bedded in the Android Development Toolkit. It is therefore
commonly used thanks to its simplicity and availability. It
performs tests by sending thousands of events per second
to the application and usually obtains high code coverage
in comparison to other testing tools [11]. Despite the high
code coverage, faults discovered by Monkey are hard to
locate because tests are hard to reproduce and closer to
stress tests than functionality tests. Dynodroid [12] improves
random testing strategy by analyzing the context of the
application then executes the most relevant event at each
step (RandomBiasedStrategy). Developers can provide inputs
such as authentication information beforehand to the tool to

123

unblock some steps. Dynodroid is also capable of generating
system events by analyzing the listeners of the application.

Reinforcement Learning was used in software testing
in the past and has shown its ability to improve random
exploration strategy. Mariani et al. proposed a tool called
AutoBlackTest [13], a black-box GUI testing tool for Java
desktop software. The tool uses Q-Learning algorithm to
build a behavioral model of the software, represented as a
multi-directional graph. Using this behavioral model, the tool
can plan its exploration route in order to get to hard-to-reach
GUIs (which can only be reached through a specific sequence
of actions). TESTAR [14] also uses Q-Learning to generate
test sequences based on GUI. The Q-Learning algorithm was
proven to be beneficial, provided that we choose an adequate
set of parameters.

There are currently two main approaches when applying
reinforcement learning to Android testing. The first approach
is proposed by Koroglu, et al. [15], where they train a single
matrix across multiple apps using random exploration then
use it to test other applications. The Q-value distribution
matrix is trained for two objectives: increasing activity cov-
erage and crash detection. Overall, their tool obtained higher
activity coverage and number of distinct crashes compared
to other state-of-the-art testing tools. The second approach is
presented in our previous work [4] and the work of D. Adamo
et. al [16], where a unique set of Q-value is calculated for
each application.

III. DEEP Q-NETWORK

Reinforcement Learning (RL) is a field in Artificial In-
telligence where an agent learns to behave optimally in its
environment through trial-and-error interactions [17], step by
step. At each time step t, it observes the state st of the
environment and takes an action at based on its policy π.
The environment then transitions to a new state st+1 based
on st and at. It also outputs a scalar reward rt+1 as feedback
that the agent then uses to update its knowledge. The goal
of the agent is to learn a policy π∗ that maximizes the
expected cumulative reward of a sequence of actions in the
environment.

The reinforcement learning problem can be formulated as
a Markov decision process [17], defined by:

• A set of possible states: S
• A set of possible actions: A
• A reward function for the next state given a (state,

action) pair: R(st, at, st+1)
• A transition probability i.e distribution over the next

state given a (state, action) pair: T (st+1|st, at)
• A discount factor γ ∈ [0, 1], where lower γ emphasizes

more on immediate rewards.
There are two major directions in solving RL problems:

algorithms based on value functions and algorithms based on
policy search [18]. Q-Learning falls into the first category.
For each policy π, we define an action-value function or
quality function (Q-function). The value Qπ(st, at) is the
expected cumulative reward that can be achieved by exe-
cuting a sequence of actions that starts with an action at

from a state st and then follows the policy π. The optimal
Q-function Q∗ is the maximum expected cumulative reward
achievable for a given (state, action) pair, over all possible
policies.

Q∗(st, at) = max
π

∑
t>0

(γtrt|s = st, a = at, π) (1)

Intuitively, if the optimal quality function Q∗ is known, at
each step st, the optimal strategy is to take the action that
maximizes the sum: r + γQ∗(st+1, at+1) where r is the
immediate reward of the current step. This is known as the
Bellman equation in dynamic programming [19]:

Q∗(st, at) = R(st, at) + γmax
at+1

Q(st+1, at+1) (2)

The Q-learning algorithm uses equation (2) to estimate the
value of Q∗ iteratively. The Q-function is initialized with a
default value. Every time the agent executes an action at
from state st to reach state st+1 and receives a reward rt+1,
the Q-function is updated as:

Q(st, at)← Q(st, at)+α(rt+1+γmax
a

Q(st+1, a)−Q(st, at))

(3)
In this formula, α ∈ [0, 1] is the learning rate and regulates
the impact of a new observation on the estimated values.
The Q-learning algorithm is guaranteed to converge to Q∗

if applied to a Markovian environment, with a bounded
immediate reward and with state-action pairs continually
updated [20].

The main motivation for the birth of Deep Reinforcement
Learning (DRL) is to scale the classic RL problems to more
complex state and action spaces [5] [18]. In brief, DRL trains
a neural network to approximate the optimal policy and/or
optimal value functions. In the case of Q-Learning, the state-
value function Q is estimated by a Deep Q-Network (DQN)
with weight w:

Q(st, at, w) ≈ Qπ(st, at) (4)

The weight of the DQN is updated based on a loss function
defined as:

L(w) = (rt + γmax
a

Q(st+1, a, w)−Q(st, at, w))
2 (5)

which leads to the following Q-Learning gradient:

(rt+γmax
a

Q(st+1, a, w)−Q(st, at, w))
∂Q(st, at, w)

∂w
(6)

The stochastic gradient descent method can then be used
to minimize the loss L(w) and the Q-Network will grad-
ually converge toward the optimal Q-function Q∗. In the
next section, we explain how we use Deep Q-Network to
incorporate the semantic representations of GUI states to the
reinforcement learning algorithm.

IV. PROPOSED APPROACH: SEMANTIC ANALYSIS OF
GUI AS AN INPUT FOR DEEP Q-NETWORK IN ANDROID

GUI TESTING.

In our previous work [4] we used Q-Learning algorithm
as an exploration strategy to test Android applications. We

124

dynamically built a behavioral model of the application under
test while interacting with it. With classic Q-Learning, we
calculated and constantly updated a dictionary holding the
Q-value of each pair of (state, event). Even though the
experiment demonstrated positive results, we noticed two
main weaknesses in our model:

• The purpose of the reinforcement learning algorithm is
to guide the exploration toward revealing and testing the
application’s hard-to-reach functionalities. However, a
path that reveals the application’s functionalities should
consider the semantic meaning of the components upon
which we take action. Take the example of an alarm
clock application: the sequence of actions that reveals
the functionality Change timezone should be described
as click on a menu component - scroll down the list
- click on setting - click on change timezone button,
instead of simply click - scroll - click - click. The latter
sequence of events would have very different outcomes
when being executed on different sets of components.

• The algorithm cannot scale well when the number
of states, GUI components in each state, and events
increase. Mobile applications are becoming more and
more complex and the Android OS can now support
more and more gestures (events). Our testing tool should
be able to handle large and complex GUIs.

The first point is addressed by a semantic analysis of GUI
components that we elaborate in the following section. As
for the second point, we propose using Deep Q-network to
potentially solve the complexity problem of reinforcement
learning.

A. Semantic classification of Android GUI components

GUI testing tools usually interact with the application
under test by sending events to UI components but few of
them have considered the meaning of the components they
interact with. QBE [15] took some initiatives by separating
the actions on hard buttons of the phone from the on-screen
events (click, long-click, etc). However, they didn’t consider
any semantic meaning of the GUI components on the screen.
In our approach, we use the semantic information of GUI
components as an input to guide the exploration.

Recent works of T.F. Liu et. al presented a guideline to
identify the semantic meaning of mobile app GUI [21]. They
established a lexical database of 25 types of UI components,
197 text button concepts and 135 icon classes. We’re inter-
ested in the classification of UI components in particular,
where components are separated into groups such as Input,
List Item, Toolbar, Background Image, etc. They employed
a code-based heuristics approach: using a lexical database,
they classified a component by examining its Android class
and the classes of its parent components.

In our testing tool, we use the same method to classify
components. However, instead of classifying all visible com-
ponents, we only classify actionable components, which are
either clickable, long-clickable, scrollable or checkable. If a
parent component is actionable, then all of its children nodes
are also actionable of the same type. We reduce the number

TABLE I
CLASSIFICATION OF UI COMPONENTS

Group Class name
Input EditText, SearchBox, AutoCompleteTextView,

AutoSuggestView, Field, Input, CheckBox, DatePicker,
RadioButton, CheckedTextView, Switch, SeekBar

Navigation Toolbar, TitleBar,ActionBar, Menu,
Navigation, SideBar, Drawer, AppBar, TabWidget

List ListItem, ListView, RecyclerView,
ListPopUpWindow, GridView, GroupView

Button Button, GlyphView, TextView, ImageView

of component types down to four main groups: Navigation,
Input, Button, and List, as these group can cover the majority
of actionable components [21]. The reference for classifying
each group is presented in Table I, inspired by the one
provided by T.F. Liu et. al.

We identify UI components in Navigation and List group
by their parent nodes. In other words, once we identify a
List or Navigation component by its class name, all of its
children fall under the same group respectively. The Input
group should be understood in a large sense, including all
components that receive information from the user. Finally,
only actionable TextView and actionable ImageView are clas-
sified as Button (Text Button and Image Button respectively).

B. Deep Q-Network as an Android Testing Tool

Fig. 1. The overall architecture

Our testing tool QDroid, whose architecture is presented
in Figure 1, consists of 5 main modules: Environment,
Observer, Deep Q-Network (including a replay memory),
Planner, and Executor. QDroid interacts with the application
under test step by step in order to estimate a behavioral model
of the application, represented by the Deep Q-network.
The goal of the testing tool is to generate test cases that
test application’s hard-to-reach states, cover the most code
possible, and reveal faults, all in a limited amount of time.

A test case is created when the testing tool executes
a sequence of actions in the application under test, this
sequence is also known as an episode in reinforcement
learning. In our implementation, an episode ends when one
of the following conditions is met:

• It reaches the maximum number of 20 steps (transi-
tions). After an empirical study where we vary the
episode’s length from 10 to 50, the value 20 was chosen
because it gave the best average coverage across apps.

• Its last action leads to exiting the application.

125

• The screen is frozen (no changes in GUI) for the last
10 steps.

After an episode, the environment is reset, and the testing
tool jumps to a random activity of the application. We
reset the environment by killing all running processes in the
emulator, then uninstalling and reinstalling the application.
Each step of an episode proceeds as follows:

1) The Observer observes the application under test and
builds the abstract representation of the GUI (the
current state).

2) The Observer converts the current state into an input
that we then use to feed to the Deep Q-Network.

3) The Deep Q-Network outputs a probability distribution
over the next component that we should act on and
passes it to the Planner.

4) The Planner chooses the next component to execute
based on an ε− greedy policy.

5) The Executor executes an event on the chosen compo-
nent.

6) The Environment transitions to a new state and returns
the reward of the transition.

7) The transition, consisting of the old state, the new state,
the executed component, and the reward, is added to
the Replay Memory.

8) The Deep Q-network updates its weight by learning
from a sampled batch of transitions from the Replay
Memory.

This workflow is similar to the one in our previous work
because both of them follow the Q-Learning algorithm.
Nevertheless, the main difference with this architecture is
concerned with the Deep Q-Network and the Observer,
which also leads to changes in the Executor and the Planner.
The implementation details of each module are given below:

1) Environment: The Environment is an interface that
allows us to interact with the Android emulator and the
application under test. Besides communicating with the Ob-
server and the Executor, its most important role is to hold a
function that calculates the reward value for each transition.
We consider that a transition is better than another if it
triggers more UI changes [13] [4]. Given two states s1 and
s2, the reward function calculates the degree of change from
s1 to s2 by counting the number of GUI events in s2 but
not in s1, described as |s2\s1|. The relative change is then
defined by the ratio |s2\s1|/|s2| where |s2| is the number of
GUI events in |s2|.

2) Observer: During run time, the Observer extracts the
current screen’s GUI hierarchy using Android UI Automator
[22], obtaining the GUI tree. It then analyzes the GUI tree
and classifies all actionable UI components into semantic
categories as presented in Table I. It creates an abstract
representation of the screen, also known as a state. A state
consists of the activity’s name and a set of GUI components.
Each component is represented by a tuple containing the fol-
lowing information: semantic group, coordinates, class name,
resource id, and four booleans indicating if the component is
clickable, long-clickable, scrollable, checkable. The Observer

only acknowledges components that belong strictly to the
application under test in order to assure the accuracy of the
model. However, it also takes into account two hard buttons
of the phone: the menu button and the back button, which are
important and necessary to navigate in the application. The
two hard buttons are classified in the Navigation semantic
group.

The Observer creates a vector of length 4 where the
elements hold the number of components belonging to the
semantic groups given in Table I. The vector is then passed
as an input of the DQN.

3) Deep Q-Network and replay memory: Following Mnih,
et. al’s guidelines [8], we integrate a Deep Q-Network into
our testing tool while simplifying its structure, because the
dimension of our input is much smaller than in the case
of learning from raw images. Our Deep Q-Network has
two fully connected layers, each one is followed by ReLu
activation and the loss function is defined as in section III.
We implement a Replay Memory with a capacity of 500
transitions and a target Q-network which is updated every
20 learning steps. We train the Deep Q-Network every 5
transitions with a batch of 32 transitions sampled randomly
from the Replay Memory.

4) Planner: The Planner is the principal actor that guides
the testing tool to explore the application. It receives a
probability distribution over the four GUI component groups
and decides which component to act on next based on a
ε − greedy policy. The policy selects a random component
with the probability ε and follows the prediction of the Deep
Q-Network with the probability 1−ε. At the beginning of the
testing process, we want to encourage exploration behavior
so that we can rapidly populate the state space. After a certain
number of episodes when the Deep Q-network has collected
enough transitions and has gained a certain knowledge about
the application under test, we encourage the exploitation
behavior: using the knowledge of the DQN to navigate in a
more intelligent way. Hence, we decided to set ε = 1 at the
first episode and gradually decrease ε to 0.5 over the first 100
episodes (equivalent to about 2000 transitions). The value of
ε is then maintained constant until the end of the testing
process. When the Planner acts according to the Deep Q-
Network prediction, it selects a component on the screen that
has the highest probability value. For example, if the DQN
outputs the probability distribution for (Input, Navigation,
List, Button) respectively as (0.6, 0.2, 0.1, 0.1), the Planner
will look for a component of group Input first. If there is not
any component of group Input, it will look for a component
of group Navigation and continue in the same manner until
finding a component.

5) Executor: Unlike the executor in the testing tool of
our previous work, which knows exactly which event to
send to which component on screen, in this approach the
executor only receives the information of which compo-
nent on the screen that it needs to take action on. Based
on the component’s semantic group and clickable/long-
clickable/checkable/scrollable information, the executor de-
cides the type of event that it needs to send to the component.

126

For example, if the component is in the group Input and class
EditText, the executor generates a random text to fill the input
field. If the component is in the List group and scrollable, the
executor executes a scrolling event. The testing tool currently
supports 7 types of events: click, long click, scroll up, scroll
down, swipe left, swipe right, text input.

V. EVALUATION

A. Overview

We aim to answer three research questions:
• RQ1: Does QDroid achieve higher code coverage than

our previous approach and state-of-the-art testing tools?
• RQ2: Does QDroid achieve high code coverage faster

than other state-of-the-art testing tools?
• RQ3: Can the tool reveal faults during test? Is it better

than other tools ?
We measure code coverage (line and method coverage) and
count the number of distinct faults as metrics for evaluation.
We compare the results of QDroid with our previous work
(ClassicQ) [4] and state-of-the-art testing tools: Dynodroid
(Dyno) [12], Puma [6], A3E [7] and GuiRipper (GuiR) [23].

We use AndroTest [11], a framework for comparing dif-
ferent automated testing tools to set up virtual machines
and run each testing tool separately. Each virtual machine
runs Ubuntu 32-bit, has 6114Mb of base memory and 2
processors. Each testing session is run for 2 hours, on a fresh
Android emulator with all the data from the previous session
removed. AndroTest also provides a set of instrumented
open-source applications. Because a lot of apps provided are
either too simple (containing only one activity with few GUI
changes) or fail to start before the testing begins, we selected
12 apps which are stable for most of the testing tools.

After each test session on an application, QDroid provides
developers with:

• The record of each action taken during each episode,
which can be used to reconstruct test cases.

• The evolution of coverage during test.
• Android execution log, which is used to detect faults.
• The number of crashes occurred during the test.

B. Results

1) RQ1: Does QDroid achieve higher code coverage than
our previous approach and state-of-the-art testing tools?:
Table II gives details of the average method coverage ob-
tained by each testing tool on each application. It also
calculates the p-value of the hypothesis that QDroid obtains
higher code coverage than each of the other testing tools in
average. Fig. 2 shows the distribution of line and method
coverage across target applications for QDroid, ClassicQ,
Dynodroid, Puma, A3E and GuiRipper.

QDroid performs better than our previous tool ClassicQ,
but it was not statistically significant (p = 0.14). As for
other tools (Dynodroid, Puma, A3E and GuiRipper), QDroid
obtained higher code coverage at a statistically significant
level (p < 0.05). Its best and worst coverage is also higher
than the best and worst coverage of all the other four tools.

TABLE II
METHOD COVERAGE AFTER TWO HOURS (%) AND P-VALUE FOR

QDROID PERFORMS STATISTICALLY SIGNIFICANT BETTER THAN EACH

OF THE STATE-OF-THE-ART TESTING TOOLS

Application Qdroid ClassicQ Dyno Puma A3E GuiR
Any Memo 35.09 35.36 15.39 - - 3.63

My Expenses 64.18 42.50 29.56 35.24 15.05 17.04
Who has my stuffs 89.01 88.09 58.93 67.48 51.15 29.92

Tippy Tipper 56.11 55.75 46.61 52.49 52.49 20.54
Munch Life 53.85 60.00 83.08 61.54 50.00 43.85

Mini Note Viewer 54.55 40.21 20.85 35.25 5.02 7.18
Mileage 35.29 34.73 26.85 34.06 2.99 16.38

Multi SMS sender 43.71 36.13 41.33 33.06 15.32 31.29
Hot Death 64.34 13.13 29.80 39.10 3.66 37.24

Random Music Player 58.73 58.73 58.73 58.73 3.17 41.27
Dalvik Explorer 83.51 83.40 23.82 70.87 41.08 5.39

Weight Chart 38.35 18.64 35.73 16.50 - 7.28
Mean 56.39 47.22 39.22 42.03 19.99 21.75

Standard deviation 16.64 22.02 18.80 20.23 20.98 13.96
p-value - 0.14 0.02 0.047 0.0008 0.00009

One exception is with Munch Life where QDroid performs
worse. In this case, we need to repeat the same action several
times on the screen where the GUI skeleton doesn’t change
to be able to unlock a new state. Because QDroid favors
the actions that trigger changes in UI and the test case is
designed to end early when no GUI change is detected,
QDroid isn’t able to unlock the new state.

Fig. 2. Distribution of average coverage of each testing tool across apps

2) RQ2: Does QDroid achieve high code coverage faster
than state-of-the-art testing tools?: The evolution of code
coverage for QDroid, Dynodroid, Puma, A3E and GuiRipper
(the average across all target applications and all runs) is
presented in Fig. 3. On average, QDroid kick-starts with
a high coverage and its performance improves over time.
This proves that QDroid learns the behavioral model of the
application gradually, and exploits this model more and more
at the later phase of the testing process.

Fig. 3. Evolution of code coverage during test

127

TABLE III
NUMBER OF UNIQUE FAULTS DISCOVERED ACROSS ALL RUNS

App Qdroid Dyno Puma A3E GuiR
Any Memo 11 9 0 0 0

My Expenses 0 0 0 0 0
Who has my stuffs 0 0 0 0 0

Tippy Tipper 0 0 0 0 0
Munch Life 0 0 0 0 0

Mini Note Viewer 1 1 1 0 0
Mileage 1 0 0 0 0

Multi SMS sender 0 0 0 0 0
Hot Death 2 0 0 0 0

Random Music Player 0 0 0 0 0
Dalvik Explorer 1 0 0 0 0

Weight Chart 1 1 0 0 0

3) RQ3: Fault detection ability: Table III gives the
number of distinct faults discovered by each testing tool.
The number of faults in each application before test is
unknown. Distinct faults are identified by their unique error
messages in the emulator’s log. QDroid is able to detect
faults during tests and outperforms the four other tools.
The majority of the exceptions discovered belong to six
main classes java.lang, java.io, java.net, android.database,
android.content and android.system. Notice that even though
different testing tools can have the same number of faults for
one application, the faults are not necessarily identical. This
is the case of Mini Note Viewer where the faults discovered
by QDroid, Dynodroid and Puma are all different. For Any
Memo and Weight Chart, the faults discovered by QDroid
and Dynodroid have overlaps. Note that the framework we
used, AndroTest, did not specifically state how many faults
existed in each of the apps. Thus, we cannot determine the
fault detection percentage of each tool. Nevertheless, QDroid
performed the same or better compared to all other tools.

C. Threats to validity

The number of applications used in our evaluation is
limited, hence raises a threat to external validity. Even though
the target applications are chosen of different sizes and
categories, it is unsure that the result can be generalized.

Training of a deep neural network can give very different
outcome between different runs, which introduces a threat
to internal validity. We ran each testing tool five times and
took the average as the final result to reduce this threat.

VI. CONCLUSION

In this paper, we present a new approach using semantic
analysis of GUI components and Deep Q-Network to conduct
tests on Android applications. Our automated testing tool
QDroid analyses the semantic information of GUI com-
ponents and uses it as input to train a Deep Q-Network.
The neural network, based on the principle of reinforcement
learning, estimates a behavioral model of the application
and exploits this model to guide the exploration inside the
application. Evaluation has shown that QDroid presents an
improvement in code coverage in comparison to state-of-the-
art testing tools and it is effective in detecting faults.

As the integration of Deep Q-Network in the testing tool
shows positive result, future work on this topic includes an

evaluation of QDroid on applications having more complex
GUI. Specifically, we plan on extending the action space (by
combining event and component as one action) and the state
space (for example, adding more information to distinguish
similar states).

REFERENCES

[1] Google’s announcement:
https://twitter.com/Google/status/864890655906070529.

[2] Total Apps on Google Play:
https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/.

[3] M. E. Joorabchi, A. Mesbah and P. Kruchten, “Real Challenges
in Mobile App Development”. Proc. of ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement,
2013, pp. 15-24.

[4] Thi Anh Tuyet Vuong and Shingo Takada. 2018. “A reinforcement
learning based approach to automated testing of Android applications”.
Proc. of A-TEST 2018, 31-37.

[5] Mnih et al. “Human-level control through deep reinforcement learn-
ing” Nature. 518. 529-33, 2005.

[6] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh
Govindan.2014. “PUMA: programmable UI-automation for large-scale
dynamic analysis of mobile apps”. Proc. of MobiSys 2014, 204–217.

[7] Tanzirul Azim and Iulian Neamtiu. 2013. “A3E - Targeted and Depth-
first Exploration for Systematic Testing of Android Apps”. Proc. of
OOPSLA 2013, 641–660.

[8] R. Mahmood, N. Mirzaei, and S. Malek. 2014. “EvoDroid: segmented
evolutionary testing of Android apps” Proc. of FSE 2014, 599-609.

[9] S. Anand, M. Naik, M. J. Harrold, and H. Yang. 2012. “Automated
concolic testing of smartphone apps”. Proc. of FSE 2012, Article no.
59.

[10] Android Monkey:
https://developer.android.com/studio/test/monkey.html

[11] S. R. Choudhary, A. Gorla and A. Orso, “Automated Test Input
Generation for Android: Are We There Yet?”, Proc. of ASE 2015,
pp. 429-440.

[12] A. Machiry, R. Tahiliani, and M. Naik. 2013. “Dynodroid: an input
generation system for Android apps”, Proc. of ESEC/FSE 2013, 224-
234.

[13] L. Mariani, M. Pezze, O. Riganelli and M. Santoro, “AutoBlackTest:
Automatic Black-Box Testing of Interactive Applications”, Proc. of
2012 IEEE Fifth International Conference on Software Testing, Veri-
fication and Validation, 2012, pp. 81-90.

[14] Anna I. Esparcia-Alcazar, Francisco Almenar, Urko Rueda Mirella
Martinez, and Tanja E.J. Vos. 2016. “Q-learning strategies for action
selection in the TESTAR automated testing tool”. Proc. of META
2016. 174–180

[15] Y. Koroglu et al., “QBE: QLearning-Based Exploration of Android
Applications”, Proc. of ICST 2018, pp. 105-115.

[16] David Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée
Bryce. 2018. “Reinforcement learning for Android GUI testing”. Proc.
of A-TEST 2018, 2-8.

[17] Richard S. Sutton and Andrew G. Barto (Eds.). 1998. “Reinforcement
Learning An Introduction”. MIT Press, Cambridge, MA.

[18] Arulkumaran, Kailash, Marc Peter Deisenroth, Miles Brundage and
Anil A. Bharath. “Deep Reinforcement Learning: A Brief Survey.”
IEEE Signal Processing Magazine 34 (2017): 26-38.

[19] Richard Bellman. “On the Theory of Dynamic Programming”. PNAS,
38(8): 716–719, 1952.

[20] Christopher J.C.H. Watkins and Peter Dayan. 1992. “Technical Note:
Q-Learning”. Machine Learning 8, 3-4 (May 1992), 279–292.

[21] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech,
and Ranjitha Kumar. 2018. “Learning Design Semantics for Mobile
Apps” Proc. of UIST 2018, 569-579.

[22] UI Automator for Python: https://github.com/xiaocong/uiautomator
[23] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon. 2012. Using GUI Ripping for Automated Testing of
Android Applications. Proc. of ASE 2012, 258–261.

128

Impacts of Data Uniformity in the Reuse of
Acceptance Test Glue Code

Douglas Hiura Longo, Patrícia Vilain and Lucas Pereira da Silva
Informatics and Statistics Department,
 Federal University of Santa Catarina,

Florianopolis, Brazil
douglas.hiura@posgrad.ufsc.br, patricia.vilain@ufsc.br, lucas.pereira@ ufsc.br

Abstract— This paper presents the design and results of an
experiment to evaluate the impact/effect of data uniformity in
automation of acceptance tests. An experiment to specify
acceptance tests, represented by the User Scenarios through User
Interaction Diagrams (US-UIDs) format, with non-technical user
has been set up involving two projects. In the first project, called
P1, the treatment of data uniformity is held by an expert, while in
the second project, called P2, no treatment of data uniformity is
done. In both projects, automation of acceptance tests was
developed for evaluation and comparison of the following
artifacts: data uniformity, fixture name sharing, automation time,
and glue code volume. The results show that there is a meaningful
statistics difference of uniformity between projects P1 and P2,
where P1 resulted in a better uniformity. However, although the
treatment of data uniformity does not show meaningful statistics
difference according to the strategy of fixture names sharing used,
the time spent in fixture naming was more than two times higher
in P2. In addition, the glue code volume was less than half in P1
comparing to P2.

Keywords-component: Acceptance Test; Agile Software
Development; Glue Code; Uniformity; Reuse; US-UID.

I. INTRODUCTION
In the agile software development, acceptance tests are

adopted to enable the communication and collaboration among
the stakeholders [1, 2, 3]. Some agile developers, users and
clients use acceptance testing as a way of specifying software
requirements instead of using only common artifacts based on
natural language [17, 18]. This is an attempt to improve the
quality of requirements because several problems can arise when
requirements are written in natural language, for example,
readers and writers can use the same word for different concepts,
or express the same concept in completely different ways [18].
In addition, it is estimated that 85% of software defects are
originated from ambiguous, incomplete or illusory software
requirements [19].

Acceptance tests can be specified using semi-structured
formats like user stories (such as Behavior Driven Development
- BDD) [4, 5, 6], tables (such as Fit tables [3, 7]), or diagrams
(such as US-UIDs [8, 9, 10]). However, the development process
of automated acceptance testing is more complex than just
specifying acceptance tests in a chosen format. Independent of
the acceptance test format, it is also necessary to implement the

code that binds each acceptance test to the System Under Test
(SUT). This code is known as glue code [16].

In general, acceptance tests are designed to exercise different
functions of the SUT. However, in order to put the SUT in a
suitable state for execution, the glue code of different acceptance
tests may call some common SUT functions. In this way, the
reuse of the glue code is important to reduce the time and cost of
the maintenance. In line with Borg and Kropp [16], the
maintenance of acceptance tests is an issue that appears from the
very start of a project. The tests need to be constantly maintained
and the test suite should be integrated in a continuous build
process [1].

In the agile development it is desirable that users participate
in the specification of the acceptance tests, while the testers
develop the test automation. It is assumed that a good
specification of acceptance tests facilitates the communication
among the stakeholders, helping the test automation by the
testers. Moreover, specification that involves multiple users can
increase the complexity, mainly when users adopt particular data
for the tests. For example, the data of an end-of-session
requirement can be called "Log out" by one user and "Sign out"
by another one. Both data of end-of-session might communicate
the intent to the tester, however the ambiguity can lead the tester
to a misunderstanding in a way that it is implemented distinct
glue code for the same requirement. In this case it is important
to uniform the test data before automating the test in order to
avoid unnecessary glue code implementation. In [11], Longo
and Vilain proposed a metric to measure the data uniformity of
acceptance tests in order to detect exaggerated variances in data
that may weaken the quality of acceptance tests.

To investigate the impact of data uniformity in automated
acceptance tests, in this work we performed an experiment using
the User Scenarios through User Interaction Diagrams (US-
UIDs) format for the acceptance tests. To execute US-UIDs as
acceptance tests, it is necessary to bind them to the SUT. The
binding between the US-UIDs and the SUT is done through the
fixture names and the glue code [10]. Fixture names are labels
created a-posteriori of the US-UIDs specifications to bind the
US-UID elements to the glue code. The glue code is responsible
for exchanging information between the US-UIDs and the SUT
during the test execution. While the specification of the US-
UIDs representing the acceptance testes is a responsibility of the
clients and users, the fixture naming and glue code creation is a
responsibility of the testers [10].

DOI reference number: 10.18293/SEKE2019-102

129

This paper is organized as follow. Section 2 shows details of
the problem of data uniformity in the automation of acceptance
tests represented by US-UIDs. Section 3 describes the
experiment performed and the evaluation methodology. Section
4 presents the results. Finally, Section 5 shows the conclusions.

II. EXAMPLE OF THE PROBLEM
The User Scenarios through User Interaction Diagrams (US-

UIDs) are used for software requirements specifications [8, 9,
10]. These diagrams can be used as automated acceptance tests.
The US-UIDs have been suggested as a specialization of the
technique UID [20], where the information is replaced with
concrete values from the user scenarios. The applicability of the
US-UIDs is usually made by non-technical users to create
acceptance testing before the development.

In the following we talk about the problem of data uniformity
in the acceptance tests represented by US-UIDs. To illustrate this
problem, Figure 1 shows a pair of US-UIDs. The pair of US-
UIDs shown in this example are for specifying requirements of
an application similar to WhatsApp. The US-UID A refers to the
requirement to respond to a message, and US-UID B refers to
the requirement to check status. The example considers two US-
UIDs with the objective of showing data uniformity problems
only in first interaction state (represented by ellipses [8]). The
uniformity is calculated comparing data from user inputs
(represented by rectangle with string inside [8]) and system
outputs (loose strings [8]) between the US-UIDs.

Figure 1. Two US-UIDs with problems of uniformity in data.

The example highlights two problems of data uniformity,
where the first one is related to the values of the user inputs
“Mary” and “John”. These two values are different from each
other, but, still, have the same meaning. The meaning is clearly
a username. Specially, in US-UIDs with features little known

among the stakeholders, this type of non-uniform data might
cause loss of meaning leading to miss understandings.

The second problem of data uniformity is related to the
system outputs “Enter” (US-UID A, Figure 1) and “Log In” (US-
UID B, Figure 1). Both system outputs represent, in the SUT
implementation, the text of the button for the action for system
access. For communication purposes, the stakeholders are able
to understand that the text in these two system outputs which,
despite the difference, have the same meaning. However, using
these US-UIDs as automated tests leads to an unnecessary
implementation of the glue code, because the glue code must
provide two distinct values (“Enter” and “Log in”) for the same
requirement.

For the example of the US-UIDs from Figure 1 (considering
only the first state of interaction of each US-UID and non-
uniform data), three strategies for fixture naming can be
developed. These strategies impact in different glue code
implementations and also spreads the problems of data
uniformity in different glue code structures. The Figure 2 shows
three different strategies to naming fixtures and Figure 3 shows
de glue code for each strategy.

A. Strategy of Shared Fixture Names (S1)
The strategy of shared fixture names causes two interaction

states (Figure 2, S1) and two user inputs or two system outputs
from different US-UIDs share the same fixture name. Figure 2
shows three possible shared fixture names: “AuthenticationState”
for the two interaction states, “user” for two user inputs, and
“enterButton” for two system outputs. The two interaction states
of the US-UIDs from the example are named by
“AuthenticationState”, sharing, thus, the same fixture name.

The fixture name “user” is used to name the user inputs
“Mary” and “John” which represent the user names. Although
this fixture name is not the same as the input names, there is no
sense of conflict with these names for the example. However,
the fixture name “enterButton” for the system outputs “Enter”
and “Log In” might create doubts. The proper decision of the
developer is to return the US-UIDs to the users or clients and
solve which system output name is the most appropriate.
However, if the developer keeps the names irregular, the glue
code will be developed as shown in Figure 3 (S1).

During the creation of the glue code, it is necessary to
implement the class for the interaction states and the methods for
each user input and system output in order to bind the US-UIDs
to the SUT. The interaction states are linked to the class
“AuthenticationState”. The method getEnterButton is
responsible to bind the SUT to the fixture “enterButton” and to
return the result to fulfill the test exercise. In line 6 (S1, Figure
3) the SUT is represented only by the string "Enter OR Log In?".
In this case a conflict is generated (Figure 3, S1, line 6) because
the method may simply return one value, but in US-UIDs there
are as candidates the values “Enter” or “Log In”, in which, this
way, the irregular data is detected due to the conflict on the
decision of method return. Therefore, the developer will have a
lag upon reviewing the US-UIDs. The reviewing process can
take longer and increase the costs if help from users or clients is
needed.

130

B. Strategy of Fixture Names with Hybrid Sharing (S2)
The strategy of fixture names with hybrid sharing occurs

when two or more interaction states share the same fixture name,
and two user inputs or system outputs have different fixture
names. Figure 2 (S1) shows the possible fixture names that show
a problem of uniformity and both interaction states from US-
UIDs A and B share the same glue code class. The user inputs
“Mary” and “John” have problems of data uniformity but, in
practice, they are easily detected. Therefore, in the example of
strategy of fixture names with hybrid sharing, the user inputs are
not considered. As an example, both interaction states share the
fixture “AuthenticationState” and the fixture names
“enterButton” and “loginButton” are fixture names that are not
shared for the system outputs “Enter” and “Log In”. Therefore,
the system outputs with similar meaning are handled in different
ways. Figure 3 (S2) shows the glue code for the fixture name of
hybrid sharing for the example from Figure 2 (S2).

 Figure 2. Example of three strategies for fixture naming can be developed.

The fixture code allows the use of a class with non-shared
methods, therefore, distinct methods allow returns of different
values. The method getEnterButton is responsible for binding
the SUT to the fixture “enterButton” and for returning the result
to fulfill the test exercise. The method getLoginButton is
responsible for binding the SUT to the fixture “loginButton” and
for returning the value that fulfills the test exercise. Therefore,
both methods have different responsibilities and do not cause
any conflicts. It is important to point out that, in this example,
both methods return the values from test results just because they
are not linked to the SUT yet.

C. Strategy of Non-Shared Fixture Names (S3)
The strategy of non-shared fixture names occurs when two

interaction states to have different fixture names, as well as two
user inputs or two system outputs to have different fixtures.
Figure 2 (S3) demonstrates the possible fixture names that show
a problem of uniformity.

------------------------------------ S1 ---
1 @Fixture(“AuthenticationState”)
2 public class AuthenticationFixture {
3
4 public void setUser(String name) {}
5 public String getEnterButton(
 return "Enter OR Log In?";
/* The return value of the method is conflicting for the two US-UIDs.
When the programmer arrives at this point it is common to detect the
conflict. */
7 }
8 }
------------------------------------ S2 ---
1 @Fixture(“AuthenticationState”)
2 public class AuthenticationFixture {
3
4 public String getEnterButton() {
5 return "Enter";
6 }
7 public String getLoginButton() {
8 return "Log In";
9 }
/* For this type of fixture sharing the problem of data uniformity can be
detected only if we analyze the two methods. */
10 }
------------------------------------ S3 ---
1 @Fixture(“AuthenticationState”)
2 public class AuthenticationFixture {
3
4 public String getEnterButton() {
5 return "Enter";
6 }
7 }
8 @Fixture(“LoginState”)
9 public class LoginStateFixture {
10
11 public String getLoginButton() {
12 return "Log In";
13 }
 /* In this strategy, the data uniformity problem can be detected only if
you parse the two methods, but note that they are in different classes. */
14 }

Figure 3. Glue code for the three examples of Figure 2.

In this example we are only considering both interaction
states and system outputs “Enter” and “Log In”, so there is no
fixture name sharing. This way, the interaction states and system
outputs with similar meaning are treated in different ways.
Figure 3 (S3) shows the glue code for the non-shared fixture
names for the example from Figure 2 (S3).

In the level of fixture code, both US-UIDs use two different
classes for binding the US-UIDs to the SUT, thus classes and
methods are not shared. The class AuthenticationFixture (Figure
2, S3, line 2) contains the methods for the interaction state of
US-UID A (Figure 2, S3, left). For the interaction state of US-
UID B (Figure 2, S3, right) the class LoginState (Figure 2, S3,
line 10) is used. This way, the methods for binding the system

131

outputs “Enter” and “Log In” to the SUT are allocated in
different classes. The method getEnterButton is responsible for
binding the SUT to the fixture “enterButton” and for returning
the result to fulfill the test exercise. The method getLoginButton
is responsible for binding the SUT to the fixture “loginButton”
and for returning the result that fulfills the test exercise.
Therefore, both methods have different responsibilities and do
not cause any conflict. Again, in this example, both methods
return the values from test results because they are not linked to
the SUT yet.

III. EXPERIMENT
The experiment evaluates the treatment of data uniformity in

the automation process of acceptance tests using the US-UIDs
format. In the experiment, activities such as US-UIDs
specification, fixtures naming, and glue code creation are
elaborated. The purpose is to investigate the following research
questions:

• RQ1: Does the help of an expert in the US-UIDs
specification improve the data uniformity?

• RQ2: Does the treatment of uniformity affect any of the
strategies of fixture name sharing?

• RQ3: How long does the fixture naming take? How
much of the volume of glue code is implemented?

A. Methodology for Evaluation
For the evaluation, a specification of US-UIDs from

requirements of a messaging system has been considered. Figure
4 shows an activities diagram with the three steps of the
evaluation: preparation, experiment and result analysis.

1) Preparation. In the preparation step, the participants are
trained on the language of the US-UIDs for about 15 minutes;
this training is the same as the adopted by Longo and Vilain [8,
9]. During the preparation, non-technical participants are
oriented to use pencil, rubber and paper for a small training.
After the training with the US-UID, explanations on the
messaging system are given. The participants are requested to
figure out requisites for an application similar to WhatsApp,
Telegram, Hangout or Messenger and, then, specify the
requisites as US-UIDs.

2) Experiment: In order to answer the questions and to
analyze the treatment of data uniformity in the specification of
US-UIDs by non-technical1 participants, the specifications are
divided in two projects (P1 and P2). In the project P1, the
specification is done by one participant. After the specifying, an
expert2 checks the data uniformity for each US-UID. If the US-
UID does not show data uniformity, it is then returned to the
participant so that he may improve the uniformity according to
the expert guidelines. If, in the evaluation from an expert, the
US-UID shows a good data uniformity, then the US-UID
specification is finished. In the project P2, the specification is
done by four non-technical participants without the expert's

1 Non-technical participants are individuals without technical

training in information technology.

help. After the specification step is finished, the activity of
fixture naming is stated, which is carried out by only one tester.
The time of this activity is timed, as it also shows the tester effort
to understand the US-UIDs. For all the US-UIDs, the fixtures
are named, and this information is necessary for binding the
US-UIDS elements to the glue code. After the activity of fixture
naming is finished, the activity of glue code creation is carried
out. An algorithm has been implemented in order to generate
the glue code. The algorithm has the US-UIDs as an input and
generates the glue code according to the framework proposed
by Longo et al. [10].

Figure 4. Activity diagram for uniformity evaluation.

IV. RESULTS

A. Descriptive Measures of the US-UIDs
In calculating the measures, all the US-UIDs specified by the

participants have been added. This way, there are differences in
the descriptive measures of US-UIDs that specify the same
requirement, as the specification way of each participant is
different. In the project P1, 6 US-UIDs, 31 interaction states, 126
system outputs, 43 user inputs and 25 transitions have been
specified. Whereas in project the P2, 20 US-UIDs, 59 interaction
states, 308 system outputs, 66 user inputs and 39 interaction
states have been specified. There are no doubts that differences
exist in the number of elements of the US-UIDs, but it highlights
that the intention is specifying the same requirement in both
projects.

2 Expert is an experienced developer with US-UIDs.

132

B. Data Uniformity of the US-UIDs (RQ1)
In order to evaluate the data uniformity between both

projects, a metric of data uniformity proposed by Longo and
Vilain [11], is used. The metric compares pairs of US-UIDs and
the results in a quantitative value. The value measured is in the
interval [0%, 100%], where 0% indicates total irregularity and
100% indicates total uniformity. In order to apply the metrics,
the US-UIDs resulted from experiment, and that were described
on paper, are scanned to the tool Sc3n4r103 and, then, the metric
is applied computationally. Question RQ1 can be answered by
the following formula with the following hypothesis:

𝐻0:	𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦./ = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦.1		
𝐻1:	𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦./¹	𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦.1		

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦./ is the uniformity measure of the US-UIDs
from project P1; 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦.1 is the uniformity measure of
the US-UIDs from project P2. The decision for accepting H0 or
H1 is made according to the data collected from the experiment.
The decision for accepting the hypothesis H0 means that the
adding of the treatment of uniformity by the expert has no effect
in the specification. However, when it accepts the hypothesis H1,
it states that the uniformity is different between both projects,
thus it is necessary to compare the uniformity averages to
discover which one is the best.

The distribution of the data uniformity was analyzed through
a Z-Test, at a level of significance of (a = 0.05), obtaining a
meaningful statistic difference among the uniformity of both
projects (Pvalue=2.2e-16). Therefore, then with the inclusion of the
expert, there is significant difference in the uniformity of the US-
UIDs data in both projects (H1).

Figure 5 shows the data uniformity in both projects. Project
P1 generated 30 pairs of US-UIDs with uniformity average of
64%, median of 67% of uniformity, and uniformity interval
between [32%, 100%]. Project P2 generated 380 pairs of US-
UIDs with uniformity average of 12%, median of 6% of
uniformity, and uniformity interval between [0%, 42%], with
some discrepant values above this interval. The discrepant
values occurred by US-UIDs where the participant had noticed
the importance of keeping data uniformity in order to better
specify the US-UIDs.

Figure 5. Uniformity of each project per pair of US-UIDs.

3 https://github.com/douglashiura/us-uid.git

C. Fixture Name Sharing (RQ2)
The strategies of fixture name sharing were measured by the

times that each fixture name is shared, sectioned by interaction
states, system outputs and user inputs. For example, according
to Figure 2 (S1), the fixture name “user” is shared two times, i.e.,
“user” is shared by the user inputs “Mary” and “John.” For the
system outputs and interaction states the count is the same. The
count was applied to each project with the aid of an algorithm
implemented together with tool Sc3n4r10. Question RQ2 can be
answered by a hypothesis test about the number of elements that
share the same fixture name with the following hypothesis:

𝐻0:	FixtureNameSharing./ = FixtureNameSharing.1		
𝐻1:	FixtureNameSharing./¹	FixtureNameSharing.1		

FixtureNameSharing./ is the number of times each fixture
name is shared in US-UIDs from project P1;
FixtureNameSharing.1 is the number of times each fixture
name is shared from project P2.

The hypothesis can be formulated for fixture name shares of
user inputs, system outputs, and interaction states. The decision
for accepting H0 means that the help of an expert has no effect
in the strategies of fixture sharing adopted by the tester.
However, by accepting the hypothesis H1, it is affirmed that the
strategies of fixture sharing adopted by the tester are different
between both projects. Table 1 shows the statistics analysis
about the fixture name sharing for each element type. For each
element type, the statistic tests shown suggest that there is no
meaningful difference in the fixture sharing between projects P1
and P2. Therefore, the treatment of uniformity does not affect
the strategies of fixture sharing for all element type (H0).

TABLE 1. STATISTICAL ANALYSIS.

Elements Test Pvalue Statistical Decision (a = 0.05)
Interactions U Test 0.1301 H0
Outputs Z Test 0.4426 H0
Inputs U Test 0.0685 H0

D. Effort (RQ3)
The effort for fixture naming by the tester is analyzed

through time data. Therefore, it is necessary to compare the time
spent in each project. The glue code volume also indicates
indirectly the effort of the activity of fixture naming.

Figure 6 shows the glue code volume and the time spent in
the activity of fixture naming by the tester. Project P1 resulted
in 255 lines of code and took 240 minutes to name the fixtures.
Project P2 resulted in 834 lines of code and took 552 minutes to
name the fixture.

Figure 6. Measures of code volume and time.

133

V. CONCLUSIONS
This paper proposes the treatment of data uniformity in the

activity of specifications of the US-UIDs and evaluates the effect
of this data uniformity in the glue code reuse. In the evaluation,
the treatment of uniformity was done by a participant who is an
expert during the activities where non-technical participants
specify the US-UIDs. In fact, the result of the treatment by the
expert increase the uniformity, i.e., there is a meaningful statistic
difference between the project with the treatment of uniformity
done by the expert and a project without the same. However, in
the activity of fixture naming, developed by the tester, the
difference of data uniformity does not affect the fixture name
sharing, i.e., the uniformity is not a factor that inclines the tester
in the choosing of strategies of fixture name sharing. The
developing time of the activity by the tester is very different
between a project with uniformity treatment and a project
without treatment. Although the treatment of uniformity does
not show any influence in the strategies of fixture name sharing,
the tester spends more time understanding and naming the
fixture in a proper way; the time difference is twice more for a
project that does not treat the data uniformity. The glue code
volume is also very different. A higher code volume indicates
less reuse and more effort in the activity of maintenance. Thus,
it is concluded that data uniformity should be addressed at the
time of US-UIDs specification, as these later saves time for the
naming of fixtures and significantly reduces the amount of glue
code.

As a threats of validity it is important to emphasize that this
work considered only the initial requirements of a messaging
system, so the results may be different for a scope of applications
with lots of requirements. However, it is important to maintain
uniformity in project implementation because the tests are more
comprehensive, which impacts in less time to develop them
(although there is interaction between developers and customers
for uniformization) and less glue code to maintain during
development. Yet, the software development challenges from
the real world, many times, rely on projects with more
stakeholders, that way we need investigate the problem in
projects with different amounts of participants.

Other works address the quality improvement on specifying
user stories. Lucassen et al. [13, 14] proposed a framework to
evaluate fourteen quality criteria. These criteria are adopted in
the Grimm Method [15] and applied in a case of study in the
industry. However, the applying of the Grimm Method did not
result in a meaningful difference in the software development
process.

Finally, the reliability of an experiment refers to the capacity
of other researchers to reply the methodology [12]. For the
replication, the methodology has been detailed and algorithms
for uniformity measuring and fixture sharing along with the tool
Sc3n4r10 have been made available. This study was financed in
part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior – Brasil (CAPES) - Finance code 001.

REFERENCES
[1] B. Haugset and G. K. Hanssen, Automated acceptance testing: A literature

review and an industrial case study. Agile, 2008. AGILE'08. Conference,
IEEE, pp. 27-38, 2008.

[2] T. Dybå and T. Dingsøyr, Empirical studies of agile software
development: A systematic review. Information and software technology.
Elsevier, vol. 50 , pp. 833-859, 2008.

[3] G. K. Hanssen and B. Haugset, “Automated acceptance testing using fit”
in System Sciences, HICSS'09, 42nd Hawaii International Conference on.
IEEE, pp. 1-8, 2009.

[4] Cohn, Mike. User stories applied: For agile software development.
Addison-Wesley Professional, 2004.

[5] Wautelet, Y., Heng, S., Kolp, M., & Mirbel, I. “Unifying and extending
user story models” in International Conference on Advanced Information
Systems Engineering. Springer, Cham, pp. 211-225, 2014.

[6] Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., & Brinkkemper, S. “The
use and effectiveness of user stories in practice”. in International Working
Conference on Requirements Engineering: Foundation for Software
Quality. Springer, Cham. p. 205-222, 2016.

[7] Druk, Michael, and Martin Kropp. “ReFit: A Fit test maintenance plug-in
for the Eclipse refactoring plug-in." in Developing Tools as Plug-ins
(TOPI), 2013 3rd International Workshop on. IEEE, pp. 7-12, 2013.

[8] D. H Longo., and P. Vilain. User scenarios through user interaction
diagrams. International Journal of Software Engineering and Knowledge
Engineering 25.09n10, pp. 1771-1775, 2015.

[9] D. H Longo., and P. Vilain. Creating User Scenarios through User
Interaction Diagrams by Non-Technical Customers. in Software
Engineering and Knowledge Engineering – SEKE15. KSI Research Inc.
and Knowledge Systems Institute Graduate School, pp.330-335, 2015.

[10] Longo, D. H., Vilain, P., da Silva, L. P., and Mello, R. D. S. A web
framework for test automation: user scenarios through user interaction
diagrams. in Proceedings of the 18th International Conference on
Information Integration and Web-based Applications and Services. ACM,
pp 458-467, 2016.

[11] D. H Longo., and P. Vilain. Metrics for Data Uniformity of User Scenarios
through User Interaction Diagrams”. Software Engineering and
Knowledge Engineering – SEKE18. KSI Research Inc. and Knowledge
Systems Institute Graduate School, pp.1-6, 2018.

[12] A. K. Massey, R. L. Rutledge, A. I. Anton, P. P. Swire. Identifying and
classifying ambiguity for regulatory requirements, ” Requirements
Engineering Conference (RE), 2014 IEEE 22nd International, IEEE, pp.
83 – 92, 2014.

[13] Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., and Brinkkemper, S.
Improving agile requirements: the quality user story framework and tool.
Requirements Engineering, v. 21, n. 3, p. 383-403, 2016.

[14] Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., and Brinkkemper, S.
Forging high-quality user stories: towards a discipline for agile
requirements. in Requirements Engineering Conference (RE), 2015 IEEE
23rd International. IEEE. p. 126-135, 2015.

[15] Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., and Brinkkemper, S.
Improving user story practice with the Grimm Method: A multiple case
study in the software industry. in International Working Conference on
Requirements Engineering: Foundation for Software Quality. Springer,
Cham, 2017.

[16] Borg, Rodrick; Kropp, Martin, “Automated acceptance test refactoring”.
in Proceedings of the 4th Workshop on Refactoring Tools. ACM. p. 15-
21, 2011.

[17] Dos Santos, E. C.; P. Vilain, “Automated Acceptance Tests as Software
Requirements: An Experiment to Compare the Applicability of Fit Tables
and Gherkin Language”. In. International Conference on Agile Software
Development. Springer, Cham. p. 104-119, 2018.

[18] Sommerville, I.: Software Engineering. 9th edn. Pearson Education,
Boston 2015.

[19] Torchiano, M., Ricca, F., M. D. Penta, “Talking tests”: a preliminary
experimental study on fit user acceptance tests. in First International
Symposium on Empirical Software Engineering and Measurement
(ESEM 2007), p. 464–466, 2007.

[20] Zeferino, N. V., and Vilain, P. “A model-driven approach for generating
interfaces from user interaction diagrams” in Proceedings of the 16th
International Conference on Information Integration and Web-based
Applications & Services. ACM, 474-478, 2014.

134

Test Case Generation by EFSM Extracted from
UML Sequence Diagrams

Mauricio Rocha1,2, Adenilso Simão1, Thiago Sousa2, Marcelo Batista2
1Instituto de Ciências Matemáticas e de Computação (ICMC), USP, São Carlos, SP, Brazil

mauriciormrocha@usp.br, adenilso@icmc.usp.br
2Centro de Tecnologia e Urbanismo (CTU), UESPI, Teresina, PI, Brazil

mauricio@ctu.uespi.br, thiago@ctu.uespi.br, marcelo.araujo@uespi.br

Abstract—The effectiveness of Model-Based Testing (MBT)
is mainly due to the potential for automation it offers. If the
model is formal and machine-readable, test cases can be derived
automatically. The Extended Finite State Machine (EFSM) is a
formal modeling technique widely used to represent a system.
However, EFSM is not a common practice in industry. On the
other hand, the Unified Modeling Language (UML) has become
the de-facto standard for modeling software, but due to the
lack of formal semantics, its diagrams can have ambiguous
interpretations and are not suitable for testing automation. In this
context, we present a systematic procedure for generating tests
from a UML model. More specifically, our approach proposes a
mapping from the UML Sequence Diagram into Extended Finite
State Machine in order to provide a precise semantics to them
and uses the ModelJUnit and JUnit libraries in order to generate
test cases automatically.

Index Terms—Model-Based Testing, Model-Driven Engineer-
ing, Sequence Diagram, Extended Finite State Machine, Mod-
elJUnit, JUnit

I. INTRODUCTION

A common practice in most software development processes
is the use of abstract models to aid in the construction of
products. These models represent the essential parts of a
system and allow software engineers to take a conceptual
view of several different software perspectives. An option for
software modeling is the Unified Modeling Language (UML),
since it is widely used and, due to its expressiveness, it is
possible to model both static and structural aspects as well
as dynamic or behavioral [1]. However, due to the lack of
formal semantics, the use of UML can lead to some issues,
such as inconsistency, transformation problems and different
interpretations [2].

An option to minimize these problems is the use of formal
models, since they have a precise semantics to accurately
represent system behavior. However, what is observed in
practice is that formal methods are little used in industry,
probably due to the lack of training and familiarity with the
mathematical notation by the developers.

In the context of software testing, modeling can increase
the productivity of this activity. According to Utting et al. [3],
Model-Based Testing (MBT) allows the automatic generation
of tests from models and other software artifacts, making it
possible to create tests for the software even before coding,

DOI reference number: 10.18293/SEKE2019-133

thus reducing the cost of development. The central idea of
MBT is generating input sequences and their expected outputs
from a model or specification. The input sequences are then
applied to the System Under Test (SUT) and the software
outputs are compared to the outputs of the model. This implies
that the model must be valid, i.e. faithfully represent the
requirements. Basically, MBT are used for functional black-
box testing, where software functionality is examined without
any knowledge of the software’s internal coding.

In MBT, it is recommended to use formal models, since
they can be used as a basis for automating the testing process,
making it more efficient and effective [4]. There are several
formal modeling techniques based on state transition machines
that can be used to specify a test model. Extended Finite
State Machine (EFSM) has been widely used in the formal
methods community, since they make it possible to represent
the flow of control and data of complex systems. Moreover,
EFSM can be implemented as a test model using the the
ModelJUnit [5] library, which was designed as an extension
of JUnit. Therefore, the models are written in Java, a popular
programming language.

In this context, we present a systematic procedure for
generation of test cases from a UML model. The idea is to use
concepts of Model-Driven Engineering (MDE) to transform
the UML Sequence Diagrams into EFSM and using the
ModelJUnit and JUnit libraries in order to generate test cases
automatically. In summary, the main contributions of this paper
include:

1) Definition of transformation rules for mapping the ele-
ments of the UML Sequence Diagram into the Extended
Finite State Machine constructions using Atlas Transfor-
mation Language (ATL) [6].

2) Formalization of the UML Sequence Diagram into
EFSM which is a semantically accurate model.

3) Automatic source code generation of ModelJUnit and
JUnit classes from EFSM using Acceleo [7].

4) Systematic procedure to generate Java tests from UML
Sequence Diagram automatically.

II. BACKGROUND

A. Sequence Diagram
The dynamic behavioral aspect of an object-oriented soft-

ware is defined through the interaction of objects and the

135

exchange of messages among them. The main diagram of
the interaction model is the UML Sequence Diagram, which
presents the interactions between objects in the temporal order
in which they occur.

Lifelines represent participants of the interaction that com-
municate via messages. These messages may correspond to
the operation call, signal sending or a return message. More
complex interactions can be created using combined fragment.
A combined fragment is used to define control flow in the
interaction. It can be composed of one or more operands, zero
or more interaction constraints, and an interaction operator.
An operand corresponds to a sequence of messages that
are executed only under specific circumstances. Interaction
constraints are also known as guard conditions and represent
a conditional expression.

In this paper, we use three interaction operators that model
the main procedural constructs:

• alt: construction of the if-then-else type. Only one
operand will be executed.

• opt: construction of the if-then type. It is very similar to
the alt operator, with the difference being that only one
operand is defined, which may or may not be executed.

• loop: a construct that represents a loop where the single
operand is executed zero or more times.

Other interaction operators defined by UML 2, that can be
found in OMG (Object Management Group) [1], are not in
the scope of this work.

B. Model-Driven Transformation

Model transformation is a key concept within the scope
of Model-Driven Engineering (MDE). The MDE aims at
supporting the development of complex software that involves
different technologies and application domains, focusing on
models and model transformation [8].

Similarly to models, metamodels play a key role on the
MDE. A metamodel makes statements about what can be
expressed in valid models of a given modeling language.
Modeling languages need to have formal definitions so that
transformation tools can automatically transform the models
built into those languages. The OMG has created a special
language called Meta Object Facility (MOF) [9], which is the
default metalanguage for all modeling languages. Thus, each
language is defined by means of a metamodel using the MOF.

Model transformation is the generation of a target model
from a source model. This generation process consists of a
set of transformation rules that describes how the elements
of the source model are mapped into elements of the target
model. The transformations can be performed in two ways:
Model-To-Model (M2M) mapping or Model-To-Text (M2T)
mapping.

C. Extended Finite State Machine

An Extended Finite State Machine (EFSM) consist of
states, predicates, and assignments related to variables between
transitions, so that it can represent the control and data flow
of complex systems.

An EFSM can be formally represented by a 6-tuple (s0, S,
V , I , O, T) [10], where:

• S is a finite set of states with the initial state s0;
• V is a finite set of context variables;
• I is a set of transitions entries;
• O is a set of transitions outputs;
• T is a finite set of transitions.

Each transition tx ∈ T can also be represented formally by a
tuple tx = (si, sj , Ptx, Atx, itx, otx), where si, sj and itx ∈
I represents the input parameters of the beginning of the state
transition tx and otx ∈ O represents the output parameter at
the end of the state transition tx. In addition, Ptx represents
the predicate conditions (guards) with their respective context
variables and Atx the operators (actions) with their respective
current variables.

D. Model-Based Testing

The software test aims to perform an implementation of
the system under construction with test data and verify that
its operating behavior conforms to its specification. This
implementation being tested is named the System Under Test
(SUT).

In MBT, the use of models is motivated by the observation
that, traditionally, the testing process is unstructured, non-
reproducible, undocumented and depends on the creativity of
software engineers. The idea is that artifacts used in SUT
coding can help mitigate these problems [3].

In summary, the MBT covers the processes and techniques
for automatic derivation of test cases from abstract software
models. To achieve success in this activity, rigor is necessary
in this process.

III. OUR APPROACH

In this section we present a systematic process for test
case generation by EFSM extracted from UML Sequence
Diagrams. The Figure 1 illustrates our approach, which is
divided into two main steps as detailed below:

Step 1 - Transformation between models. Scenarios are
written in the form of the UML Sequence Diagram. This
UML Sequence Diagram is transformed into an EFSM through
the mapping between their respective metamodels using Atlas
Transformation Language (ATL). The result of this step is a
formal software model represented by an EFSM.

Step 2 - Generation of test cases. From a model of the
software represented by EFSM, the test cases are generated
using EFSM-based test generation methods from ModelJUnit
and JUnit libraries. In this step, a Model-To-Text (M2T)
transformation is performed using Acceleo, resulting in a set
of test cases.

A. Metamodels

We define the UML Sequence Diagram metamodel (source)
and Extended Finite State Machine metamodel (target). These
metamodels were implemented in Ecore using the Eclipse
Modeling Framework (EMF) [11].

136

Fig. 1. Our Approach.

Fig. 2. Sequence Diagram Metamodel.

The complete official UML specification [1] is very complex
because abstract syntax is represented in several separate
diagrams, which makes it difficult to see all the connections
between the important elements. In addition, the specification
uses the so-called semantic variation points, meaning part
of the semantics is not specified in detail to allow the use
of the UML in many domains. Therefore, the official UML
metamodel is heavily criticized for having many elements
that are seldom used in practice [12], [13]. In this scenario,
the metamodel presented in Figure 2 is simpler than the
one specified by the OMG for the Sequence Diagram, and
does not have constructs that are rarely used in practice.
The metamodel proposed contains 13 metaclasses. The use of
simplified metamodels occurs in most of the papers published
in the literature [14], [15], [16].

The proposed metamodel for EFSM presented in the Figure
3 is based on the formal definition of Yang et al. [10]
explained in section II.C. The metamodel is composed of
six metaclasses, among which, EFSM represents an Extended
Finite State Machine. The EFSM entity is composed of states,
transitions and context variable.

B. Transformation Rules

In this section, we present the transformation rules between
the Sequence Diagram and the Extended Finite State Machine.
The following transformation rules have been defined:

• InitFsm: this rule creates an EFSM with the name of
the sequence diagram and adds the initial state S0. The
previous state and the current state are updated with the
initial state. This rule can only be applied once.

• Transition: for all messages of type signal (type = si) or
operation (type = op), a state is added (which is now the

Fig. 3. Extended Finite State Machine Metamodel.

current state), and a transition that connects the previous
state to the current state of the EFSM. The input for this
transition will be labeled with the name of the message.
If the message operation has a return, the output, guard,
and action of this transition are labeled with the return of
the operation. In addition, the event is labeled with the
name of the operation, its return, and its arguments.

• ContextVariable: for all messages of type operation (type
= op) that have a different return of void, a context
variable is created with the name and return labeled with
the name and return of the operation.

• Alt and Opt: when a fragment combined with the alt
operator or opt operator is found in Sequence Diagram,
it is added a new state for each operand and a new
transition linking the current state to each of the created
states. Every transition will have its input labeled with
the message name and its output labeled with the guard
of the respective operand.

• Loop: when a fragment combined with loop interaction
operator is found in the Sequence Diagram, a reply
message must be defined as the last message of the
snippet. As soon as the process finds this message, a new
state (which is now the current state) and a transition
that connects the previous state to the current state in
the EFSM are added. The input of this transition will be
labeled with the name of the message and the output with
the negation of the operator’s guard. Another transition is
created by connecting the previous state to the last state
created before fragment. The input of this transition will
be labeled with the name of the message and the output
with the guard of the operator.

In our approach, these transformation rules were imple-
mented using Atlas Transformation Language (ATL). ATL
is one of the packages developed in the AMMA (ATLAS
Model Management Architecture) model engineering platform
[6]. ATL rules may be specified either in a declarative style
(Matched Rules) or in an imperative style (Called Rules). Lazy
Rules is kinds of Matched Rules are triggered by other rules.

In order to make feasible the transformations described
above, the following lazy rules were implemented:

• LrInitialState: creates the initial state S0, increments the

137

order of the states, and changes the previous state and the
current state as the initial state created. In addition, the
name of the Sequence Diagram being scanned is saved
in a variable.

• LrState: creates a new state, increments the order of
states, the previous state is changed to the current state
and the current state changed to the new created state.

• LrTransition: creates a transition that connects the pre-
vious state to the current state. The transition input
and event are labeled with Sequence Diagram message
information. The output, guard, and action can be null and
depend on the operator and message type of the Sequence
Diagram.

• LrContextVariable: this rule creates a context variable
with the name and type labeled with the return variable
of the operation and the type of the operation retract,
respectively.

All of these rules implemented in ATL are available in the
Transformation/SD2EFSM/SequenceDiagram2EFSM.atl file
of the approach repository 1.

C. Test Case Generation

For test case generation our approach uses the ModelJUnit
and JUnit libraries, since they are open-source and their
uses are very simple for Java programmers. In addition,
the ModelJUnit library enables the implementation of formal
models widely used in MBT, such as EFSM. Other advantages
of using ModelJUnit is that it provides a variety of useful
test generation algorithms, model visualization features, model
coverage statistics, and other features [17].

The process of implementing the MBT environment in the
ModelJUnit and Junit libraries consists of four steps:

1) The Model: initially, we have implemented the Fsm-
Model interface to define our model in ModelJUnit.
In this Java Class we define in a enumeration variable
(enum State) all the possible states of our EFSM and for
each context variable we define a variable in the class.
For each input in our model, we wrote action methods
(@Action) to define the transitions that link the states of
our model. In addition to these methods, we define in
our model the getState method that returns the current
state and the reset method that takes the machine to the
initial state.

2) The Adapter: in this step we implemented the Adapter
class that allows our model to communicate with and
take control of our SUT. For each one of the action
method define in the model that trigger an event, we
added a similarly named method in the adapter class.
In our model defined in Step 1, we call the correct
adapter method in each action method. In addition, in
the Adapter class we need to instantiate an object for
each class of the SUT.

3) Generation Tests: in this step, we initially need to
instantiate the model defined in Step 1. Then, we have

1https://github.com/TESTSD2EFSM/SEKE2019

to choose the test strategy that will be used. Mod-
elJUnit offers four different strategies: AllRoundTester,
GreedyTester, LookaheadTester and RandomTester. In
our approach we used the LookaheadTester test strategy,
since it is a more sophisticated algorithm and can cover
all transitions and states quickly [17]. Finally, we call the
buildGraph method to build the graph and generate the
tests. This graph will also be used to calculate coverage
metrics for transitions, states, and action.

4) Test Concretization: In this step, the test cases were
implemented in Java using the JUnit library.

These four steps described above were automatically gener-
ated by Model-To-Text (M2T) transformation using Acceleo.
Acceleo is a template-based technology including authoring
tools to create custom code generators. It allows you to
automatically produce any kind of source code from any
data source available in EMF format [7]. We have imple-
mented the generateClassModel, generateClassAdapter, gen-
erateClassTest and generateClassJUnit generators modules.
The input of these modules is the EFSM generated in step
1 of our approach.

These code generators implemented in Acceleo are available
in the Transformation/Efsm2ModelJUnit/src/Common/ folder
of the approach repository 1.

IV. EXAMPLE

In this section, we use an example to illustrate the applica-
tion of our approach. The UML Sequence Diagram of Figure
4 presents interactions of an ATM (Automatic Teller Machine)
for the withdrawal scenario.

Initially, using the Sequence Diagram editor implemented in
the EMF, we created the Sequence Diagram model described
in Figure 4. Then, using the transformation rules implemented
in ATL, the UML Sequence Diagram is converted into an
Extended Finite State Machine. At the end of the execution
of the transformation rules we will have an EFSM as shown
in Figure 5.

In Step 2 of our approach, from the EFSM extracted in Step
1, the test cases are generated. Using the generator modules
implemented in Acceleo, the classes (AtmModel, AtmAdapter,
AtmTest and AtmJUnit) are generated automatically.

The AtmModel class is an implementation of the FsmModel
interface. In this class is defined the variable enumeration State
that represents all the states (S0, S1, S2, S3, S4, S5, S6, S7,
S8, S9, S10, S11, S12 and S13) of our EFSM. The following
@Action annotated methods have been implemented: insert-
Card(), validateCard(), requestPassword(), enterPassword(),
validatePassword, requestValue(), enterValue(), validateBal-
ance(), value(), unavailableBalance(), exit() and cardOut(). In
addition, the getState method, the reset method and context
variables (cardOk, pswOk and valueOk) were defined.

The objects of type User, ATM and Bank that belong
to the SUT were instantiated in the AtmAdapter class. In
this class, a method was created for each event triggered
in EFSM transitions. These methods (insertCard(), validate-
Card(), enterPassword(), validatePassword(), enterValue() and

138

https://github.com/TESTSD2EFSM/SEKE2019
https://github.com/TESTSD2EFSM/SEKE2019

Fig. 4. ATM Sequence Diagram.

Fig. 5. ATM EFSM Model.

validateBalance()) are what make the communication of the
model with the SUT.

In ATMTest class was instantiated the objects of type
ATMModel and we used the LookaheadTester test strategy.
To traverse all the transitions we configure the algorithm to
generate a sequence of 70 test steps. To perform the tests we
set the card attribute equal to 111, the psw attribute equal to
123 and the balance attribute equal to 100.00. These attributes
belong to the Bank class of the SUT.

To verify the behavior of our approach, we performed the
following test cases shown on the Table I. In addition to the
test data (card, psw and value), the Table I shows action, state
and transition coverages.

In addition to the metrics presented in Table I, the
test cases TestValidateCard01, TestValidateCard02, TestVal-
idatePassword01, TestValidatePassword02, TestValidateBal-
ance01 and TestValidateBalance02 were concretized in Java
through the JUnit library. Figure 6 shows an example of the

TABLE I
TEST CASES GENERATED.

id card psw value Action State Trans.
1 222 123 50 12/12 2/2 24/24
2 222 246 200 12/12 2/2 24/24
3 111 246 50 12/12 5/5 60/60
4 111 246 200 12/12 5/5 60/60
5 111 123 50 12/12 12/12 144/144
6 111 123 200 12/12 12/12 144/144

Fig. 6. Example of test case concretized in JUnit.

concrete test case of the AtmJUnit class.
These Java classes (AtmModel, AtmAdapter, AtmTest and

AtmJUnit) are available in the ModelJUnit/src/test/java folder
of the approach repository repository 1.

V. RELATED WORKS

One of the strengths of our approach is the automatic model
transformation. As we have developed a tool to support our
method, this task can be facilitated by the use of MDE con-
cepts. Another advantage is the formulation of a UML model
into formal model, since the UML has semantics problems
and the formal models provide a set of techniques based on
precise notation that can accurately translate the behavior of
a system. In addition, since the main objective of our work
is the generation of tests, our approach uses the ModelJUnit
library to concretize the test cases in the Java programming
language. On the other hand, we identified as a limitation of
our work the use of only one UML diagram. Therefore, in
this section of related works, we will compare our approach
taking into consideration four aspects: used UML diagrams,
tool support, use of formal models and concretization of test
cases in some programming language.

In [18] is described a systematic test case generation method
performed on Model-Based Testing (MBT) approaches by
using UML Sequence Diagram. The UML Sequence Dia-
gram is converted into a graph sequence and the graph is
traversed to select the predicate functions. These predicates
are transformed into Extended Finite State Machine (EFSM).
From the EFSM, test cases are generated taking into account
state coverage, transition coverage and action coverage. This
technique is similar to ours, but EFSM is not automatically
generated from the sequence diagram. Moreover, the technique
does not use some important constructions of the Sequence
Diagrams, such as the combined fragment. In this approach the
test cases are concretized in the Java programming language.

In [19] an approach is presented to generate test cases
using UML Activity and Sequence Diagrams. The approach
consists of transforming the Sequence Diagram into a graph

139

https://github.com/TESTSD2EFSM/SEKE2019

called Sequence Graph and transforming the Activity Diagram
into the Activity Graph. The software graph is formed by
integrating the two graphs that are traversed to generate the
test suite. The proposal uses UML models for generating tests,
but differs from ours since it does not use MDE concepts and
does not use formal models for test generation. In addition, the
approach does not concretize test cases in some programming
language.

In [20] an approach is presented to generate test cases
using UML Sequence Diagrams. The approach consists of
transforming Sequence Diagram in to Sequence Diagram
Graph (SDG) and generate test cases from SDG. The Sequence
Diagram is built with Object Constraint Language (OCL) and
the SDG defines the activities as nodes and the interactions in
the form of paths. The test case is generated by visiting the
nodes and edges in the SDG. This proposal uses UML models
to generate tests, but differs from ours since it does not use
MDE concepts and formal models. In addition, test cases are
not implemented in any programming language.

In the work of Seo et al. [16] is presented a method for
generating test cases from Sequence Diagrams. This method
suggests to generate test cases after conducting an intermedi-
ate transformation from a Sequence Diagram to an Activity
Diagram. The proposal is similar to ours, since it uses model
transformation, but does not use a formal model for generating
test cases. Also we can not identify in the work if the
transformation of models is carried out using MDE concepts,
because it does not describe the manipulated metamodels in
the process. In addition, the approach does not concretize test
cases in some programming language.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a systematic procedure to generate
test cases from UML Sequence Diagrams. Our approach uses
concepts of Model-Driven Engineering to formalize UML
Sequence Diagrams into EFSM and uses the ModelJUnit and
JUnit libraries for automatic generation of test cases.

In Step 1, for the transformation of UML Sequence Diagram
to EFSM, we perform the mapping of the elements of the
respective metamodels through transformation rules. With this,
we can provide a precise semantics to a widely used UML
model.

In Step 2 of the approach, the formal model can be used
as basis for automating the testing process, making it more
efficient and effective. We used the ModelJUnit library to
provide an interface to implement a formal test model, an
adapter that communicates our model with the SUT and some
test strategies already implemented. In addition, the execution
of the tests is measured by coverage of state, actions and
transitions. We use the JUnit library to perform tests in the
Java programming language.

From the example, we can observe the applicability of our
proposal, mainly in the generation of functional tests, since the
approach starts with UML Sequence Diagrams that are impor-
tant tools to model software scenarios and we end with test
cases materialized in the Java programming language. These

tests were performed and metrics were generated allowing to
analyze the behavior of the SUT according to the test model
created.

As future work, other UML diagrams can be incorporated
into the systematic procedure of generating tests and apply-
ing it to real examples through case studies or controlled
experiments. In addition, the generated EFSM can be used
for formal verification, such as checking safety, liveness and
fairness properties.

REFERENCES

[1] O. M. G. OMG. (2015) Unified modeling language 2.5. [Online].
Available: http://www.omg.org/spec/UML/2.5/

[2] M. Petre, “Uml in practice,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 722–731.

[3] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Softw. Test. Verif. Reliab., vol. 22, no. 5, pp. 297–
312, 2012.

[4] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
A. J. H. Simons, S. Vilkomir, M. R. Woodward, and H. Zedan, “Using
formal specifications to support testing,” ACM Comput. Surv., vol. 41,
no. 2, pp. 9:1–9:76, Feb. 2009.

[5] ModelJUnit. (2010) The model-based testing tool. [Online]. Available:
https://sourceforge.net/projects/modeljunit/

[6] J. Bézivin, F. Jouault, and D. Touzet, “An introduction to the atlas model
management architecture,” 03 2005.

[7] E. M. Framework. (2018) Acceleo. [Online]. Available: https:
//www.eclipse.org/acceleo/

[8] S. Kent, “Model driven engineering,” in International Conference on
Integrated Formal Methods. Springer, 2002, pp. 286–298.

[9] O. M. G. OMG. (2016) Mof - meta object facility. [Online]. Available:
http://www.omg.org/spec/MOF/

[10] R. Yang, Z. Chen, Z. Zhang, and B. Xu, “Efsm-based test case gen-
eration: Sequence, data, and oracle,” International Journal of Software
Engineering and Knowledge Engineering, vol. 25, no. 04, pp. 633–667,
2015.

[11] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

[12] S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel, “Meta-model pruning,”
in Model Driven Engineering Languages and Systems, A. Schürr and
B. Selic, Eds. Springer Berlin Heidelberg, 2009, pp. 32–46.

[13] F. Fondement, P.-A. Muller, L. Thiry, B. Wittmann, and G. Forestier,
“Big metamodels are evil,” in Model-Driven Engineering Languages and
Systems, A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. Clarke,
Eds. Springer Berlin Heidelberg, 2013, pp. 138–153.

[14] R. Grønmo and B. Møller-Pedersen, “From sequence diagrams to state
machines by graph transformation,” in Theory and Practice of Model
Transformations, L. Tratt and M. Gogolla, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 93–107.

[15] Z. Micskei and H. Waeselynck, “The many meanings of uml 2 sequence
diagrams: A survey,” vol. 10, pp. 489–514, 10 2010.

[16] Y. Seo, E. Y. Cheon, J. A. Kim, and H. S. Kim, “Techniques to generate
utp-based test cases from sequence diagrams using m2m (model-to-
model) transformation,” in IEEE/ACIS 15th International Conference
on Computer and Information Science (ICIS), June 2016, pp. 1–6.

[17] M. Utting, “How to design extended finite state machine test models
in java,” in Model-Based Testing for Embedded Systems, J. Zander,
I. Schieferdecker, and P. J. Mosterman, Eds. Boca Raton, FL: CRC
Press/Taylor and Francis Group, 2012, pp. 147–170.

[18] V. Panthi and D. P. Mohapatra, “Automatic test case generation using
sequence diagram,” in Proceedings of International Conference on
Advances in Computing, A. Kumar M., S. R., and T. V. S. Kumar, Eds.
New Delhi: Springer India, 2012, pp. 277–284.

[19] A. Tripathy and A. Mitra, “Test case generation using activity diagram
and sequence diagram,” in Proceedings of International Conference on
Advances in Computing, A. Kumar M., S. R., and T. V. S. Kumar, Eds.
New Delhi: Springer India, 2013, pp. 121–129.

[20] M. MD* and B. GB, “A new approach to derive test cases from sequence
diagram,” Information Technology & Software Engineering, 2014.

140

http://www.omg.org/spec/UML/2.5/
https://sourceforge.net/projects/modeljunit/
https://www.eclipse.org/acceleo/
https://www.eclipse.org/acceleo/
http://www.omg.org/spec/MOF/

The Smell of Blood: Evaluating Anemia and
Bloodshot Symptoms in Web Applications

Zijie HUANG, Junhua CHEN, Jianhua GAO*
Department of Computer Science and Technology, Shanghai Normal University, Shanghai, 200234, China

hzjdev@foxmail.com, {chenjh, jhgao}@shnu.edu.cn

Abstract—In web applications that adopt layered architecture,
Domain Layer is formed by Domain Model. Without any
behavior, Anemic Domain Models contain only data. Those
behaviors are dispersed into other layers and causing bloodshot
symptoms in them. Most empirical studies suggest that symptoms
of anemia and bloodshot degrade the maintainability of web
applications, but no quantitative research has been done. This
paper evaluates intensities of anemia and bloodshot symptoms
based on metrics of three Code Smells, i.e. Data Class, Feature
Envy and Blob. Furthermore, correlations of the intensities are
evaluated using Spearman's rank correlation coefficient. The
achieved results of experiments made on multiple versions of
open-sourced projects show that over 65% of the applications are
affected by anemia and bloodshot symptoms, and their intensities
rarely decrease over time. Correlations of the intensities are also
discovered within a single version and among multiple versions.

Keywords-anemic domain model; code smell; web application;
domain driven design

I. INTRODUCTION
Domain Driven Design (DDD) [1] is a model-driven

methodology aims to tackle the complexity of software systems.
DDD introduced a layered architecture consisting of four layers
including Interface, Application (also known as Service [2]),
Domain, and Infrastructure Layer. Data in Domain Layer is
presented by Domain Models. Fowler [3] defines the Domain
Model as an object model of the domain that incorporates both
behavior and data, while Anemic Domain Model (ADM) is a
Domain Model containing little or no such behavior.

Applying ADMs to Domain Layer triggers the anemia of
Domain Layer accompanied by the bloodshot of other layers.
Firstly, the domain behaviors are dispersed into other layers
notably the Service Layer, but those behaviors still depend on
ADMs’ data structure, causing tight coupling of the Service
Layer to the Domain Layer. As a result, the Service Layer
becomes oversized while its cohesion is reduced. Secondly, the
object-oriented program degrades into process-oriented
program [2] with reduced comprehensibility.

Evans [1] suggests the Service Layer should be kept "thin,"
while Fowler [2] concludes that ADM is a common anti-pattern
and their usage should be avoided. Both of them point out that
the core business logic of web applications should be
concentrated on the Domain Layer. However, ADMs are still
widely adopted in enterprise systems [4]. There have been
several discussions questioning whether ADM is an anti-pattern,
which suggests the advantages of ADM should be refocused,
and in some cases, ADM may be the best practice [5, 6].

Above-mentioned symptoms and discussions are presented
in empirical studies. To the best of our knowledge, the pros and
cons of ADMs have not been quantified by any research.

 Code Smell is the symptom of poor design and bad
implementation choices [7]. Fowler [8] proposes 22 Code
Smells for object-oriented programming including God Class
(also known as Blob), Feature Envy, and Data Class. Code Smell
intensities could be evaluated by proper metrics.

 In this paper, we apply metrics of Blob and Feature Envy to
quantify bloodshot symptoms, and Data Class for anemia
symptoms. The source code of 112 MVC-based Java application
together with 96 versions of 10 Java web application are
analyzed, while over 65% of them are affected by anemia and
bloodshot symptoms. The analysis shows that there is a positive
correlation between anemia and bloodshot symptoms, and
intensities of these two symptoms rarely decrease over time. The
results also reveal that although ADMs are built to separate
business logic and data structure completely, most ADM-based
applications are not strictly following the design.

The main contributions of this paper are:

1) Fills the gap in the quantification method of anemia and
bloodshot symptoms in web applications.

2) Confirms Fowler’s empirical discoveries of the negative
impact of ADMs on software systems, while the advantages of
ADMs have not been proved by any experiment.

3) Reveals the persistence and correlations of anemia and
bloodshot symptoms.

The rest of this paper is organized as follows. Section II
introduces the background and related works. Section III details
the Code Smell detection approach and the quantification
methods of anemia and bloodshot symptoms. In Section IV we
have done several experiments to verify the accuracy of our
approaches and presented our evaluation process together with
results. Then, we detail the threats that could affect the validity
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORKS

A. Code Smell Detection
This paper evaluates intensities of 3 following Code Smells.

• Blob is for an oversized class with low cohesion, and it
implements multiple irrelevant responsibilities [9-11].

• Data Class is a class that contains only data but no
behaviors[12].

* Corresponding Author. The work of this paper was supported by the
National Natural Science Foundation of China (Grants 61672355).
DOI reference number: 10.18293/SEKE2019-061

• Feature Envy describes a method more interested in a
class other than the one it is in [9].

141

Fig. 1. Overview of Code Smell quantifying method

TABLE I. COMPARISON OF APPROACHES FOR FEATURE ENVY

TABLE II. COMPARISON OF APPROACHES FOR BLOB

Lanza et al. [10] quantified Code Smells and proposed
several metrics and relevant thresholds, which are widely
adopted in modern Code Analysis tools such as PMD [13].
JDeodorant [14] and DECOR [15] are notable tools detecting
coupling and cohesion Code Smells.

Palomba et al. [11] proposed a pure textual detection
approach called TACO, which is significantly different to
traditional structural approach, aiming to discover conceptional
coupling and cohesion problems. Furthermore, Palomba et al.
[12] built a detection model based on multiple metrics, and they
also evaluated the co-occurrence of Code Smells.

While Data Class metric is commonly accepted [10,12],
multiple approaches of Feature Envy and Blob detection exists
and their compatibilities to tasks in this paper is worth
discussing. The difference in detection approaches is listed in
Table I and Table II.

For Feature Envy, the main difference of the two approaches
is whether an actual coupling target should be detected.
Clarifying actual coupling targets is a must, as the identification
of layer connections is vital. For Blob, both two methods refer
to low cohesion, while Moha et al. [15]'s approach is more
convenient due to its coupling detection and textual rules. In
layered web application, classes and package names follow
specific rules, and coupling with a Domain Model is the cause
of the bloodshot symptom.

B. Web Application Design Problems
Aniche et al. [16] defined several MVC specific Code

Smells, and evaluated their variation together with lifecycles
based on a public dataset of 120 open-sourced GitHub
repositories. This work developed metrics concerning specific
web application code components such as Data Access Object
(DAO), Repository, Controller and Service.

 Cemus et al. and Cerny et al. [17,18] empirically
investigated the negative impacts of ADMs and RDMs, and
proposed a generic modeling method to ensure maintainability.
According to their case studies, ADMs could cause Information
Restatement and Concerns Tangling. RDMs also trigger
coupling and cohesion problems, but intensities of design
problems among Domains are decreased. The coupling
problems within a single Domain could be resolved using
Aspect Domain Model (AsDM).

C. Class Role Inference and Layering
Sakar et al. [19] generated Dependency Graph of modules

and determined layer of each vertex according to their number
of indegree and outdegree, while Hayashi et al. [20] inferred the
role of code component in MVC-based applications using
Dependency Graph.

Hickey et al. [21] split classes into layers according to their
names, this method could lose its accuracy due to different
naming strategies. Fokaefs [14] et al. and Aniche et al. [16]
mentioned role detection of code components using class name
and annotation name in their works.

III. APPROACH
Several fundamental data, i.e. Code Smell intensities and

layers of classes, should be collected before evaluating anemia
and bloodshot intensities. The overview of Code Smell
quantifying method is illustrated in Fig. 1. In the following
paragraphs, we explain each of the steps in detail.

A. Evaluating Data Class Intensity
Data Class is a class with interfaces that (i) provide almost

no functionality and (ii) declare data fields. [10]

As shown in Fig. 2, WMC metric is used for (i), and
NOPA+NOAM together with WOC are adopted for (ii).

 WOC is the number of public methods (with accessors and
constructors excluded) divided by the total number of public
members. NOPA is the number of public attributes of a class,
while NOAM is the number of accessor methods, i.e. getter and
setter. WMC sums the complexity of all methods of a class.

Name / Approach Lanza et al.[10] Fokaefs et al. [14]
Couples With Multiple classes A single class

Precise Coupling
Target

No. It detects coupling
of a class generally.

Yes. It focus on both couplin
g source and target.

Metrics Access to Foreign Data
(ATFD), Local Attribu
te Access(LAA), Forei
gn Data Provider(FDP)

Access to Distinct Foreign
Members, Access to Distinct
 Local Members

Chosen No Yes (Extended to detect mult
iple coupling targets)

Name / Approach Lanza et al.[10] Moha et al. [15]
Metrics Structural:

Access to Foreign D
ata (ATFD),
Weighted Method C
ount (WMC),
Tight Class Cohesio
n (TCC)

Structural: Number of Methods
Defined (NMD), Number of Attr
ibutes Defined(NAD), Lack of C
ohesion of Methods(LCOM5)．
Textual: Class name contains M
anager, Process, Control, etc.
Coupling: Access to at least one
Data Class．

Chosen No Yes

142

Fig. 2. Data Class detection approach

The CYCLO metric is used to calculate method complexity.
The calculation approach of CYCLO defined in PMD following
the standard rules given below is used in this paper:

• Methods have a base complexity of 1;

• +1 for every control flow statement (if, case, catch,
throw, do, while, for, break, continue) and conditional
expression (?:) ;

• else, finally and default do not count;

• +1 for every Boolean operator (&&, ||) .

Thus, the intensity of Data Class could be calculated as (1):

 (1)

B. Evaluating Feature Envy Intensities
 A class is affected by Feature Envy if it access members of
another class more frequently than its local members. [14]

 Given a class Ccurrent, the approach calculates ATLM as the
frequency of distinct local member accessed by Ccurrent. Then, a
set C for all classes in the software system is formed, for each
class Ci in C, the frequency of distinct member access from
Ccurrent to Ci named ai is evaluated. Finally, the classes in C is
sorted by ai in descending order. A class is affected by Feature
Envy if the first class Ctop is not equivalent to Ccurrent.

For each ai, calculate diff=ai－ ATLM(C) and treat all
negative diff value as zero. Then we sum all diffs to obtain the
result of ATFM metric. For each diff > 0, the approach treats the
related Ci as the coupling target of Ccurrent.

The intensity is calculated as (2):

 (2)

C. Evaluating Blob Intensities
As shown in Fig. 3, a Blob class is oversized, with low

cohesion, having controller name pattern and couples with Data
Classes. [15] We ignore name pattern as it is mentioned in
Section D.

Size of a class could be measured according to the sum of
NMD and NAD metrics. The cohesion of class could be
evaluated by LCOM5 metric, the main idea of LCOM5 is to
calculate the rate of access to local members.

 Given a class C, the approach determines the number of
method members k, the number of attribute members l, and the
frequency of access to distinct local members a. LCOM5 could
be calculated as (3):

Fig. 3. Blob detection approach

TABLE III. CLASS ROLE INFERENCE APPROACH

Role/
Approach

Domain Persistence Service Interface

Lowercas
ed name
includes

{domain, vo,
entity, entities}

{dao, repo,
repository}

service {controller, ctrl,
api}

Expected
Layer

1(bottom) 2 3 4(top)

 We pick the 3rd-quartile in Al Dallal's work [22] as threshold
of LCOM5 metric, and the fixed value in Palomba et al. 's [12]
work as threshold of NMD+NAD metric.

The intensity of Blob could be calculated as (4):

 (4)

D. Class Layering
There is no common and generic approach for class layering.

Related works mainly consider two features, class dependencies
[19,20] and class names [14,16,21]. This paper proposed a
mixed layering approach that fits web applications.

 First, the approach generates a Directed Acyclic Graph
(DAG) according to class dependencies. Given a set of all
classes in an application named C, a vertex is generated for each
class. Then, pairs of vertexes are connected as follows:
According to Table III, the likely role of each class could be
inferred. For Ci∈C, Cj∈C and Ci≠Cj, if Ci accessed or called
any member of Cj, and Ci and Cj have different inferred roles,
an edge from Ci to Cj should be generated.

Then, the DAG should be split into 4 layers. At the very
beginning, the approach splits the DAG into 3 layers. Vertexes
with 0 in-degree are moved to the bottom (i.e. Domain) while
those with 0 out-degree are moved to the top (i.e. Interface). For
the rest of the vertexes kept in a temporary layer, we split them
into 2 new layers using the similar method but ignore the
connection of middle layer vertexes with the ones in the top and
the bottom layer. Vertexes with 0 in-degree are moved to the
lower layer (i.e. Persistence classes of Infrastructure), while
other vertexes remain in the upper layer (i.e. Service).

 Additionally, there exist some exceptions. For the vertexes
whose roles cannot be inferred through names, their roles could
be determined according to their actual layers as mentioned in
Table III. If any Data Class has the naming pattern of Data
Transfer Object and are only accessed by Interface Layer
classes, they should be excluded from the DAG as their sole
function is to normalize data during the transfer process.

 Domains of an application could also be detected according
to DAG and class name patterns. A set of words could be derived
through splitting the Camel-cased Domain class names. If any
word in the set appears in the name set of classes in other layers,

() ()() () ()()1dcI C WOC C NOPA C NOAM C= - ´ +

() () () feI C ATFM C ATLM C= -

() () ()() ()5blobI C NMD C NAD C LCOM C= + ´

 (3) 5() a klLCOM C
l kl
-

=
-

143

Fig. 4. The strategy of Anemic Class detection

Fig. 5. The strategy of Bloodshot Class detection

and the two vertexes of classes are connected, a domain could
be determined.

E. Quantifying the symptoms of anemia and bloodshot
For now, we have collected the fundamental data including

the layer of each class and their Code Smell intensities. The
intensities of symptoms should be evaluated as follows.

As mentioned in Fig. 4, ADM is determined if a Data Class
belongs to the Domain Layer, the intensity of anemia is Idc.

As Fig. 5 illustrates, if a non-Domain-Layer class affected
by Feature Envy and couples with a Data Class, we consider it
bloodshot with intensities of two metrics: the extent of low
cohesion Iblob and the extent of high coupling Ife. For any
bloodshot class with Iblob >0 or couples with multiple ADMs, we
regard it as a Severe Bloodshot Class (SBC).

IV. EXPERIMENTS
 This paper implements Code Smell metrics based on PMD
[13] with necessary modifications [23]. Statistical data and plots
are produced by Python scripts after generating reports of Code
Smell intensities. Experiments are conducted to address the
following 5 research questions:

• RQ1 Accuracy: Is the approach able to evaluate class
layers and Code Smell intensities accurately?

• RQ2 Severity: How severe is the symptom of anemia
and bloodshot in web application?

• RQ3 Correlation: What is the relationship between the
symptom of anemia and bloodshot?

• RQ4 Survivability: Do intensities of anemia and
bloodshot symptom decrease over time?

• RQ5 Evaluation: What is the effect of applying ADM?

A. Accuracy of fundamental data
 A typical web application called military-shop is picked
from the dataset [16] consisting of 120 open-sourced Java
applications based on MVC architecture from GitHub. RQ1 is
to be answered in this section using military-shop as a demo.

 Precision and Recall metrics are used to evaluate accuracy.
The metrics can be calculated as (5) and (6):

TABLE IV. ACCURACY OF LAYERING APPROACH

TABLE V. LEVELS OF CORRELATION

Range of ρ Correlation Level
[0.8,1.0] Very Strong
[0.6,0.8) Strong
[0.4,0.6) Moderate
[0.2,0.4) Weak
[0.0,0.2) Very Weak

Fig. 6. Layers, dependencies and domains. The size of a vertex grows if
overlapped. Edges are hidden if they connect vertexes in the same layer.

where Correct denotes the set of items manually identified and
Detected represents the set of items detected by the heuristic.

 Fig. 6 shows the layered DAG of the project, while Table IV
lists the accuracy of the layering approach. A few classes with
ambiguous patterns were not correctly layered. The approach
also detected all 8 domains of the project, and classes with
correct inferred role were all placed into proper domain. The
domain detection heuristic had a Precision of 100% and a Recall
of 91.58%. Relevant Code Smell intensities were also validated.

Compared with the results of manual detection, we can
conclude that fundamental data could be detected correctly.
Manual detection is done independently by the first author and
a developer having 3 years of enterprise web application
development experience. A few disagreements were discussed
and resolved later.

B. The Experiment conducted on single application
 This section use Shopizer [24] as an example to demonstrate
the experiment conducted on each project. The results will not
be fully presented in this section as they are listed in Table VII
and VIII instead.

 For Q2, as shown in Table VII, 60.97% of the classes in the
Domain Layer were ADMs, while Bloodshot occured in 95.16%
of the Interface and Service classes within detected Domain.
About 70% bloodshot classes were SBCs.

 In order to answer Q3, the correlations of Iblob, Ife and Idc
should be evaluated. This paper uses the Spearman's rank
correlation coefficient [25] with a P-value of 0.05 to analyze the
correlation between every pair of intensities. The metric takes
the input value of two sets of values equal in length and produces
the correlation coefficient ρ together with the significance level
P. With P<0.05, the level of correlation could be considered
statically significant with a level presented by ρ ranges in [-1, 1]
as shown in Table V. For example, the metric reported a strong

Role/Metric Domain
Model

Persistence Service Interface Utility

Precision 100% 100% 100% 90% 85.71%
Recall 88.57% 100% 85.71% 94.73% 100%

Samples 35 7 14 19 12

Interface Class

Service Class

Persistence Class

Domain Model
1 2 3 4 5 6 7 8 Domain No.

Inner Domain Dependency

Cross Domain Dependency

Domain Irrelevant Dependency

 Precision	=	 Correct ∩ Detected
Correct

 (5)

 Recall	=	 Correct ∩ Detected
Detected

 (6)

A Domain
A Layer

144

TABLE VI. DETECTION RESULTS OF 59 OPEN-SOURCED PROJECTS

TABLE VII. PROJECT COMPOSITIONS OF 10 OPEN-SOURCED JAVA WEB APPLICATIONS

TABLE VIII. Ρ VALUES OF 10 OPEN-SOURCED JAVA WEB APPLICATIONS

correlation between Iblob and Ife with ρ=0.71 (P=2.62e-12).

 In order to answer Q4, it is necessary to analyze the variation
of the 3 concerned intensities (ΔIblob, ΔIfe and ΔIdc) among all 6
release versions. Intensities between two neighboring versions
were calculated and normalized to the range [0,1]. The
correlations of variations were also evaluated.

For Q5, we calculated the rate of ADMs’ contributions to Ife
in domains, i.e. the sum of Ife of every domain class coupled with
at least 1 ADM divided by the sum of Ife in all domains.

C. Results
Following a similar process of Section B, the experiment

was conducted on 120 applications mentioned in Section A, in
which 112 projects were available for access on GitHub. Among
the 112 projects, 66.96% of them were affected by anemia and
bloodshot symptoms(ADM rate > 0% and bloodshot class rate
> 0%) and 52.68% of them had at least 1 valid ρ value (P<0.05
and 0<|ρ|<1). Table VI reports the result of the applications with
valid ρ value.

The primary cause of the invalid ρ values were: (i) The
project was too lightweight, i.e. contained few lines of code. (ii)
No such correlation exists. Domains were not detected in some
of the applications, in most of the cases they did not have valid
ρ values owing to the fact that these projects were not layered or
they were not web applications.

This dataset was collected using the filter "exists at least 10
controllers" for the analysis of MVC-based applications, most
of them lacked valid release information, which were not
capable for analysis based on multiple versions. So a new dataset
must be picked.

We selected 10 Java web applications with more than 100
commits, more than 100 classes, and at least one commit in
recent 6 months. For each project, we analyzed its latest 10
versions available. 9 out of the 10 projects were affected by
anemia and bloodshot symptoms. DDDLib was an exception
that follows the DDD specification. Dataverse did not have a
clear layering pattern, and the size of each layer was not enough
for the metrics to evaluate correlation data.

“The proportion of decreasing anemia or bloodshot
intensities” named Rdec was calculated as the ratio of “the
number of classes with any of the three intensities decreased” to
“the number of SBCs and ADMs”.

Table VII reports the composition of the applications, while
Table VIII lists multiple correlation coefficients (ρ), any ρ with
P>0.05 will be marked as unavailable(-).

D. Discussions
 For Q2, more than 65% of the 112 projects analyzed by the
experiment were affected by anemia and bloodshot symptoms.
For web application domains based on ADMs, the proportion of
bloodshot classes exceeded 90%, and most of them were SBCs,
indicating the symptoms were common and severe.

 Class/
Domain
Count

SBC rate for
bloodshot classes

Bloodshot rate for
Services and Inter
faces of Domains

ADM contrib
ution to Dom
ain coupling

ADM rate for
Domain Layer

Classes

ρ of
Iblob ,

Ife

ρ of
Idc ,
Iblob

ρ of
Idc ,
Ife Service Interface

Mean 645.34/23 65.30% 65.98% 97.76% 49.88% 50.64% 0.68 0.07 0.09
Variance 333845.04/330 0.09 0.09 0.01 0.05 0.05 0.02 0.15 0.11

Project Name Commit/Fork/
Release

Latest
Version

Class/Do
main

Count

SBC rate for
bloodshot classes

Bloodshot rate for
Services and Interf

aces of Domains

ADM contrib
ution to Dom
ain coupling

ADM rate for D
omain Layer Cl

asses Service Interface
Shopizer 193/941/6 2.2.0 811/31 72.22% 68.18% 95.16% 68.85% 60.97%

OpenLegislation 3192/88/28 2.17 787/36 95.65% 61.11% 98.96% 32.70% 32.04%
LibrePlan 9657/148/32 1.4.1 1294/50 66.67% 100% 99.14% 41.33% 13.91%
OpenCMS 22750/321/228 10.5.4 3382/54 84.61% 76.92% 97.67% 43.63% 18.84%

Thingsboard 1514/676/17 2.1 797/31 100% 63.64% 98.73% 35.67% 8.70%
Sakai 46898/535/21 12.3 4951/45 71.43% 92.00% 100% 38.85% 30.86%

OpenClinica 8521/167/30 4.5.2 1436/38 81.48% 65.06% 96.85% 71.94% 58.41%
Apollo 1944/2873/14 1.0.0 458/24 68.32% 78.27% 100% 57.79% 78.92%

Dataverse 12042/180/30 4.9.2 675/19 33.33% 55.56% 97.43% 44.30% 42.30%
DDDLib 2310/153/18 4.6.1 392/- 0% 0% - 0% 10.00%

Project Name Analyzed
Versions

ρ of
Iblob , Ife

ρ of
Idc , Iblob

ρ of
Idc , Ife

ρ of
ΔIblob ,ΔIfe

ρ of
ΔIdc ,ΔIblob

ρ of
ΔIdc ,ΔIfe

Rdec

Shopizer 6 1.00 - - 0.78 0.70 0.79 0.70%
OpenLegislation 10 0.81 0.71 0.94 0.67 - 0.31 0.00%

LibrePlan 10 - - 0.85 - 0.73 0.64 3.84%
OpenCMS 10 0.80 - - 0.95 0.58 0.47 1.72%

Thingsboard 10 0.99 0.62 - 0.81 0.61 0.74 2.38%
Sakai 10 0.94 - 0.63 0.87 0.51 0.38 1.47%

OpenClinica 10 0.57 - 0.71 0.70 0.28 0.51 0.45%
Apollo 10 1.00 0.96 0.96 0.70 0.36 0.42 1.11%

Dataverse 10 - - - 0.78 - - 0.00%
DDDLib 10 - - - - - - 0.00%

145

For Q3, regarding the ρ values of Table VI and Table VIII,
the two intensities of bloodshot correlated in most of the cases.
Among different versions of the same project, the variations of
the three intensities often correlated. We also analyzed the
correlation of symptom intensities in different layers within
single domains. But we did not find any significant correlation.
The cause might be a large number of design problems within
the domain are related to other domains instead of itself.

For Q4, as shown in the last column of Table VIII, the
symptoms of anemia and bloodshot rarely reduced, which also
confirms the conclusion about structural Code Smells that they
tend to become more severe and are rarely removed [9,15].

For Q5, the result of our experiment is not showing any
advantages of ADM, but confirmed the widely-accepted
conclusion that there are a lot of coupling and cohesion
problems within an ADM-based domain resulting in SBCs. To
our astonishment, applying ADM will not result in a complete
separation of data and business logic as it is designed for in most
of the cases. The ADM-based applications often contain 30% to
70% of non-ADM domain models, in which domain behaviors
are implemented. In conclusion, ADM has an obvious shortage
of keeping single responsibilities.

V. THREATS TO VALIDITY
A threat to Internal Validity is that the layering approach

uses name patterns. If the layering pattern in class name is
ambiguous, the detection will be completed only according to
dependency information, and accuracy will be affected.

 Threats to External Validity are listed as follows: (1)
Detection process could lose its validity on small applications,
as thresholds derive from enterprise applications. (2)There exist
a few applications that do not follow layered design. (3) Our
approach analyses Java-based web application, the conclusion
may not satisfy applications based on weakly-typed languages.

VI. CONCLUSIONS AND FUTURE WORK
It has been 15 years since Fowler first proposed the concept

of ADM and its negative impacts, but ADM-based domain
modeling is still popular. This paper analyzed source code of
112 MVC patterns based Java applications in a public dataset
and 96 versions of 10 Java web applications, and concluded that
over 65% of applications are affected by anemia and bloodshot
symptoms. The analysis also suggests a positive correlation
between the two symptoms, and they rarely decrease over time.
The shortage of ADM are confirmed by experiment results,
furthermore, in most of the cases, the complete separation of
data and business logic are not implemented as ADMs are
designed for.

Our future work involves the investigation of the impact of
commit changes on anemia and bloodshot symptoms, and the
application of Deep Learning approaches to improve the
accuracy of class role detection is also worth trying.

REFERENCES
[1] E. Evans, Domain-driven design: tackling complexity in the heart of softw

are. Boston: Addison-Wesley Professional, 2004.
[2] AnemicDomainModel[Online]. Available: https://www.martinfowler.com/

bliki/AnemicDomainModel.html. [Accessed Feb 28, 2019].
[3] M. Fowler, Patterns of enterprise application architecture. Boston: Addiso

n-Wesley Longman Publishing Co., Inc., 2002.
[4] F. Wang, L. Yan, Z. Peng, S. Wei, and D. Yuan. “The investigation of WEB

software system based on domain-driven design.” in International
Conference on Web Information Systems and Mining, Taiyuan, China, 2011,
pp. 11-18.

[5] The Anaemic Domain Model is no Anti-Pattern, it’s a SOLID design
[Online].Available:https://blog.inf.ed.ac.uk/sapm/2014/02/04/the-anaemic-
domain-model-is-no-anti-pattern-its-a-solid-design/ [Accessed Feb 28,
2019].

[6] R. Wirfs-Brock. "Are software patterns simply a handy way to package
design heuristics?." in Proceedings of the 24th Conference on Pattern
Languages of Programs, Vancouver, Canada, 2017, p. 3.

[7] M. Tufano, F. Palomba, G.Bavota, R. Oliveto, M. Di Penta, A. De Lucia et
al., "When and Why Your Code Starts to Smell Bad (and Whether the
Smells Go Away)," IEEE Transactions on Software Engineering, vol. 43,
no. 11, pp. 1063-1088, 1 Nov. 2017.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts. Refactoring:
improving the design of existing code. Boston: Addison-Wesley
Professional, 1999.

[9] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto and A. De Lucia, "The
Scent of a Smell: An Extensive Comparison Between Textual and Structural
Smells," IEEE Transactions on Software Engineering, vol. 44, no. 10, pp.
977-1000, 1 Oct. 2018.

[10] M. Lanza, R. Marinescu. Object-oriented metrics in practice: Using
software metrics to characterize, evaluate, and improve the design of object-
oriented systems, Berlin: Springer Science & Business Media, 2007

[11] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto and A. Zaidman, "A
textual-based technique for Smell Detection," in IEEE 24th International
Conference on Program Comprehension, Austin, TX, USA, 2016, pp. 1-10.

[12] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia and R. Oliveto, "Toward
a Smell-Aware Bug Prediction Model," IEEE Transactions on Software
Engineering, vol. 45, no. 2, pp. 194-218, 1 Feb. 2019.

[13] PMD[Online].Available: https://pmd.github.io [Accessed Feb 28, 2019].
[14] M. Fokaefs, N. Tsantalis and A. Chatzigeorgiou, "JDeodorant:

Identification and Removal of Feature Envy Bad Smells," in IEEE
International Conference on Software Maintenance, Paris, France, 2007, pp.
519-520.

[15] N. Moha, Y. Gueheneuc, L. Duchien and A. Le Meur, "DECOR: A Method
for the Specification and Detection of Code and Design Smells," IEEE
Transactions on Software Engineering, vol. 36, no. 1, pp. 20-36, Jan.-Feb.
2010.

[16] M. Aniche, G. Bavota, C. Treude, M. Gerosa, and A. Deursen, "Code smells
for model-view-controller architectures." Empirical Software Engineering,
vol. 23, no. 4, pp. 2121-2157, Aug. 2018.

[17] K. Cemus, T. Cerny, L. Matl and J. Michael, “Aspect, Rich, and Anemic
Domain Models in Enterprise Information Systems,” in International
Conference on Current Trends in Theory and Practice of Informatics,
Harrachov, Czech, 2016, pp. 445-456.

[18] T. Cerny, M. Donahoo, “How to reduce costs of business logic maintenance,”
in IEEE International Conference on Computer Science and Automation
Engineering, Shanghai, China, pp. 77-82

[19] S. Sarkar, G. M. Rama and S. R, "A Method for Detecting and Measuring
Architectural Layering Violations in Source Code," in 13th Asia Pacific
Software Engineering Conference, Bangalore, India, 2006, pp. 165-172.

[20] S.Hayashi, F.Minami, M.Saeki, “Detecting Architectural Violations Using
Responsibility and Dependency Constraints of Components,” IEICE
TRANSACTIONS on Information and Systems,vol.101, no.7, pp. 1780-
1789,1 Jul. 2018 .

[21] S. Hickey, M.O. Cinnéide, "Search-Based Refactoring for Layered
Architecture Repair: An Initial Investigation,"in Proceedings of the North
American Search Based Software Engineering Symposium, Dearborn, MI,
USA, 2015, pp:1-16.

[22] J. Al Dallal, "Measuring the Discriminative Power of Object-Oriented Clas
s Cohesion Metrics," IEEE Transactions on Software Engineering, vol. 37,
 no. 6, pp. 788-804, Nov.-Dec. 2011.

[23] Our fork of PMD[Online].Available: https://github.com/CodeSmellD/pmd-
mini [Accessed Feb 28, 2019].

[24] Shopizer[Online].Available: https://github.com/shopizer-ecommerce/shopizer
[Accessed Feb 28, 2019].

[25] J. H. Zar, "Significance testing of the Spearman rank correlation coefficien
t," Journal of the American Statistical Association, vol. 67, no.339, pp.578
-580, 1 Oct. 1

146

Formalization and Verification of RTPS
StatefulWriter Module Using CSP

Jiaqi Yin1 Huibiao Zhu*1 Yuan Fei*2 Qiwen Xu3 Ruobiao Wu4

1Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, Shanghai, China

2School of Information, Mechanical and Electrical Engineering
Shanghai Normal University, Shanghai, China

3Faculty of Science and Technology, University of Macau, China
4Huawei Technology Co., Ltd. China

Abstract—The Real Time Publish Subscribe protocol (RTPS),
as a Data Distribution Service (DDS) protocol for computer
systems, is composed of several modules. We focus on RTPS
StatefulWriter Module which has two patterns, reliable pattern
and best-effort pattern. As the main module of sending and re-
ceiving messages, its security and reliability are of great concern.
The formal method can analyze whether it is a highly credible
model from the mathematical point of view. Our research pays
attention to the reliable pattern. Thus it is of great importance to
model and verify whether the pattern is reliable through formal
methods. In this paper, we model seven components of the module
using Communicating Sequential Processes (CSP). By feeding the
models into the model checker Process Analysis Toolkit (PAT),
we verify four properties, divergence free, acknowledgement
mechanism, data consistency and sequentiality. Consequently, it
can be apparently concluded that the pattern of this module is
reliable, which totally caters for its specification.

Index Terms—RTPS StatefulWriter Module, CSP, PAT, Mod-
eling, Verification

I. INTRODUCTION

Data Distribution Service (DDS) is a new generation of
distributed real-time communication middleware technology
specification developed by Object Management Organization
(OMG) based on HLA and CORBA standards. It adopts
publish/subscribe architecture, emphasizes data-centric and
provides abundant quality of service strategies. The Real Time
Publish Subscribe protocol (RTPS), as a Data Distribution
Service (DDS) protocol for computer systems, transfers data
from publishers to subscribers. StatefulWriter module is one
module of RTPS protocol. It has two modes, which are reliable
pattern and best-effort pattern. Reliable pattern means the data
must be always transferred to subscribers in the specification.
Thus, we follow with interest the reliablity of the reliable
pattern in the module.

The behavior of the module contains acknowledgement
mechanism and heartbeat mechanism. The former guarantees
all messages to be received by subsceibers and the latter
assures the messages to reach the subscribers. Besides, data
consistency and sequentiality need to be ensured in the reliable
pattern. Our work is to model and verify the reliable pattern of

*Corresponding authors: hbzhu@sei.ecnu.edu.cn (H. Zhu).
yuanfei@shnu.edu.cn (Y. Fei).

the module. Thus, through formal modeling and verification of
StatefulWriter module, the specification can be more precisely
modeled and validated, avoiding the ambiguity of natural
language description, which has certain guiding significance.

The most related prior work we identifided is a study
by Liu et al. [5] that mainly verified the security, activity
and priority of DDS in ROS2. In addition, Alaerjan et al.
[1] defined the missing functional behavior in DDS dynamic
model and the semantics of the new operation using Object
Constraint Language (OCL). Some recent research projects
[2], [7], [10] have explored analysis and verification of many
aspects of DDS, such as real-time performance, security of
DDS-based middleware and so on. Our work focuses on the
communication dependability of the module’s reliable pattern
using formal methods.

The remainder of this paper is organized as follows. Section
II gives a brief introduction to RTPS StatefulWriter Module,
the process algebra CSP and model checker PAT. In Section
III, we formalize the seven core components in the module
using CSP. We apply the model checker PAT to implement
the model and verify four properties in Section IV, including
divergence free, acknowledgement mechanism, data consis-
tence and sequentiality. Section V describes the conclusion
and future work.

II. BACKGROUND

This section detailedly describes the flows of the module
which are used in the next section and briefly introduces the
process algebra CSP and model checker PAT.

A. RTPS StatefulWriter Module

RTPS StatefulWriter Module has seven components. There
are Publisher, DDSWriter, RTPSWriter, HistoryCache, Sub-
scriber, DDSReader and RTPSReader. Fig. 1 shows the 22
communications in the module. It can be divided into four
submodules, which are writing data, heartbeat mechanism,
reading data and removing data. Here we combine all of them
in Fig. 1. The detailed messages are as follows.

Writing data submodule contains the first six interactions.
Publisher writes data by invoking the write operation on

DOI reference number: 10.18293/SEKE2019-060 147

RTPSWriter

DDSWriter

Publisher

HistoryCache

1.data 6.complete

2
.
d
a
t
a

3
.
s
e
q
_
n
u
m

4.data & seq_num

5.complete
DDSReader

RTPSReader

Subscriber

16
.r
em
ov
e_
ch
an
ge

(s
eq
_n
um
)

1
7
.
r
e
t
u
r
n

12.return

11.get_data

9.
co
mp
le
te

.d
at
a
&
se
q_
nu
m

1
0
.
t
a
k
e

1
3
.
d
a
t
a

&

s
e
q
_
n
u
m

7.HEARTBEAT

14.ACKNACK

1
5
.
r
e
t
u
r
n
_
l
o
a
n
(
) 1

8
.
c
o
m
p
l
e
t
e

19.is_acked_by_all

(seq_num)

20. complete

22. complete

21. remove_data

8

Fig. 1. Communications of RTPS StatefulWriter Module

DDSWriter. Then, DDSWriter invokes the new change op-
eration on RTPSWriter to create a new CacheChange. Each
CacheChange has a unique sequence number. Also, DDSWrit-
er uses the add change operation to store the CacheChange
into RTPSWriter’s HistoryCache. When functions are invoked,
they return the message that means operation has been exe-
cuted successfully.

HeartBeat mechanism submodule is used to send message
heartbeat to Reader endpoint. If the message is received
smoothly within the specified time and checked by the
Subscribers, RTPSWriter receives the information ACKNACK
indicating confirmation.

Reading data submodule consists of four interactions. Sub-
scriber reads data by invoking the take operation in DDSRead-
er. Then, DDSReader accesses the changes with data and
sequence number from HistoryCache. Ultimately, the take
operation returns the data and sequence number to Subscriber.

Removing data submodule is composed of the remaining
communications. Subscriber invokes the return loan oper-
ation on DDSReader to notify that it no longer uses the
data. Next, DDSReader uses the remove change operation to
remove the data from HistoryCache. Then, DDSWriter invokes
the is acked by all operation to determine whether all the
changes are all received by the Reader endpoints. At length,
DDSWriter calls the remove change operation to remove the
data from HistoryCache.

B. A Brief Introduction to CSP and PAT

CSP [3], [4] is a process algebra proposed by Hoare in
1978. As one of the most mature formal methods, it is tailored
for describing the interaction between concurrent systems by
mathematical theories. For its well-known expressive ability,
CSP has been widely used in many fields [6], [8], [9]. CSP
processes are constituted by primitive processes and actions.
We use the following syntax to define the processes in this
paper, whereby P and Q represent processes, a and b denote
the atomic actions and c stands for the name of a channel.

P,Q = Skip | Stop | a→ P | c?x→ P | c!e→ P |
P�Q | P‖Q | P|||Q | P;Q | P[|X|]Q

where:

• Skip stands for a process which only terminates suc-
cessfully.

• Stop represents that the process does nothing and its
state is deadlock.

• a→ P first performs action a, then behaves like P.

• c?x → P receives a message by channel c and assigns
it to variable x, then behaves like P.

• c!e → P sends a message e through channel c, then
performs P.

• P�Q acts like either P or Q and the environment decides
the selection.

• P ‖ Q shows the parallel composition between P and
Q. The ‖ means that actions in the alphabet of both
operands require simultaneous participation of them.

• P;Q executes P and Q sequentially.

• P[|X|]Q indicates that processes P and Q perform the
concurrent events on the set X of channels.

PAT Analysis Toolkit (PAT), is designed as an extensible
and modularized framework for automatic system analysis
based on CSP. It supports specifying and verifying systems
in many different modeling languages and there are already
various systems such as concurrent real-time systems, probal-
istic systems, activity recognition and in other domains that
have been verified in PAT. PAT can be applied in verifying
various properties such as divergencefree, reachability and
LTL propertites with assertions in distributed systems. Here
we list some notations as below.
• #define N 0 defines a global constant N with the initial

value 0.

• channel c 1 stands for a channel which has the name c
and the buffer size 1.

• var cond = false represents a boolean condition with
the initial value false.

• [cond] P indicates a guarded process, which only exe-
cutes when its guard condition is satisfied.

• #define goal n>0; #assert P reaches goal; defines an
assertion that checks whether process P can reach a state
where the condition goal is satisfied.

• #assert P() | = F; defines an assertion that checks
whether process P satisfies the formula F.

III. MODELING RTPS STATEFULWRITER MODULE

In this section, we give the formal model of RTPS State-
fulWriter Module. The formalization is proceeded based on
the communications in Fig. 1. Our model is constituted by
seven core components: Publisher, DDSWriter, RTPSWriter,
HistoryCache, Subscriber, DDSReader and RTPSReader.

A. Sets, Messages and Channels

Fig. 2 gives the channels of communication in the module.
For more convenience, we give the definitions of sets used in

148

the model. We define the set of Publisher of Publisher com-
ponent, DDSWriter of DDSWriter component, RTPSWriter
of RTPSWriter component, HistoryCache of HistoryCache
component, DDSReader of DDSReader component and RTP-
SReader of RTPSReader component. In addition, we define
the set: REQ of request, SEQ of sequence number messages
and DATA of data information; for simplicity, ALLSETS
defines the unions of all sets of RTPS StatefulWriter module.

Based on the sets defined above, the messages transmitted
among components are defined as follows:

MSG = MSGreq ∪ MSGrep ∪ MSGdata

MSGreq = {msgreq.A.B.content | A ∈ (ALLSETS-Publisher),

B ∈ ALLSETS, content ∈ REQ}
MSGrep = {msgrep.A.B.content | A ∈ ALLSETS,

B ∈ ALLSETS, content ∈ SEQ ∪ REQ}
MSGdata = {msgdata.A.B.content | A ∈ ALLSETS,

B ∈ ALLSETS, content ∈ DATA}

where, MSGreq represents the set of request messages,
MSGrep stands for the set of all kinds of response requests
and MSGdata represents the set of messages transmitting data.
Each message contains a tag from the set {msgreq , msgrep,
msgdata}.

Then, we give the definitions of channels. In this paper, the
channels using COM PATH to represent can be defined as
follows:

ComPW,ComWP,ComWR,ComRW,ComWC,
ComCW,ComCT,ComTC,ComRT,ComTR,
ComCD,ComDC,ComSD,ComDS,ComDT,ComTD

The declarations of the channels are as follows:

Channel COM PATH : MSG

Table I shows the meanings and functionalities of repre-
sentative messages transferred in the channels.

TABLE I
THE EXPLANATIONS OF TYPICAL MESSAGES OF THE MODEL

Messages Functionalities
data, DATA data transferred in the module

seq num, SEQ NUM sequence number
heartbeat judge whether data is received within required time
noinvoke judge whether invoke functions
complete judge whether execute the function

take read data from cache
remove remove data from cache

get change get changes from cache

B. Overall Modelling
System process is composed of all seven subprocesses

running in parallel through their own corresponding channel.
The subprocesses are Publisher, DDSWriter, RTPSWriter,
HistoryCache, Subscriber, DDSReader and RTPSReader. The
behavior of System process is modelled as below.

System =df Publisher || DDSWriter || RTPSWriter ||
HistoryCache || Subscriber || DDSReader || RTPSReader

RTPSWriter

DDSWriter

Publisher

HistoryCache DDSReader

RTPSReader

Subscriber

ComPW ComWP

ComWR ComRW ComDT ComTD

ComWC

ComCW

ComCD

ComDC

ComRT

ComTR

Co
mC
T

Co
mT
C

ComSD ComDS

Fig. 2. Channels of RTPS StatefulWriter Module

C. Publisher
Publisher process is the core part in writing data submodule.

It is used to write data to HistoryCache and receives the com-
plete information from DDSWriter. The behavior of Publisher
process is modelled as below.

Publisher() =df ComPW!msgdata.P.W.data
→ComWP?msgrep.W.P.complete → Publisher()

D. DDSWriter
DDSWriter process plays an important role in writing data

and removing data submodule. First, it sends and receives
messages to write data from Publisher. Then, it applies the ac-
knowldgement mechanism to check if the data has been totally
received. If the return message is ACK, it invokes function to
remove data and sequence numbers from HistoryCache. The
behavior of DDSWriter process is modelled as below.

DDSWriter() =df ComPW?msgdata.P.W.data
→ComDR!msgreq.W.R.data

→GetSeqNum();ComRD?msgrep.R.D.complete

→ComWC!msgreq.W.C.data.seq num

→ComCW?msgrep.C.W.complete

→ComWP!msgrep.W.P.complete

→if (id acked by all(seq num)==true){
ComRD?msgrep.R.D.complete

→ ComWC!msgreq.W.C.remove

→ remove change(seq num);
ComCW?msgrep.C.W.complete

→ DDSWriter()} else {Skip}

In the above formula, GetSeqNum() is used to set the
number of the sequence; id acked by all(seq num) is a func-
tion that judges whether the data with the seq num is ac-
knowledged; remove change(seq num) is used to remove the
changes in the HistoryCache component.

E. RTPSWriter
RTPSWriter process works in writing data and heartbeat

mechanism submodule. First, it produces the unique sequence
number for the uploaded data. Second, it uses heartbeat
mechanism to send heartbeat to RTPSReader for assuring the
data can be transferred within the required interval. Finally, it
helps to check whether the sequence numbers are checked by

149

all Subscribers. The behavior of RTPSWriter is modelled as
below.

RTPSWriter() =df ComDR?msgreq.D.R.data

→ComRD!msgrep.R.D.complete

→DATAHeartBeat();ComRW?msgrep.R.W.ACKNACK

→if(head(ACKNACK)==ACK){
acked changes set(seq num);ComDR?msgreq.D.R.seq num

→ ComRD?msgrep.R.D.complete

→ RTPSWriter()} else {Skip}

ACKNACK contains ACK and seq num, so we
use head(ACKNACK) to retrieve the message ACK.
acked changes set(seq num) checks whether the changes are
set. HeartBeat mechanism is very important in the model. Its
detailed behavior is modelled as follows:

DATAHeatBeat() = Clock(0)|{time}|]SendHBeat();
Clock(i) = (tick → Clock(i+1))

�(time?request → time!i → Clock(i));
SendHBeat() = time!request → time?startTime1{

startTime=startTime1}
if (lastTime - startTime > HBeatInterval){
SendHBeat()}
else{ ComWR!msg req.W.R.heartbeat
→ event{lastTime=startTime; }
→ SendHBeat()}

time is the channel between Clock and SendHBeat();
Clock(i) process returns the current time if receives the request
message. SendHBeat() process sends the heartbeat message if
the time difference is less than HBeatInterval; otherwise, the
process cycle continues.

F. HistoryCache
HistoryCache process is like a database mainly for storing

data and corresponding sequence number. It functions in
every submodule, such as writing data and removing data.
When receiving the request from Publishers or Subscribers, it
invokes the homologous function to handle. The behavior of
HistoryCache process is modelled as below.

HistoryCache() =df ComWC?msgreq.W.C.data.seq num

→ComCW!msgrep.C.W.complete

→ComTC?msgreq.T.C.data.seq num

→ComCT!msgrep.C.T.complete

→complete12:=get changes(seq num);
ComCR!msgrep.C.R.complete12

→ComWC?msgreq.W.C.remove change

→complete23:=remove changes(seq num);
ComCW!msgrep.C.W.complete23

→HistoryCache()

In the above formula, function get changes(seq num) and
remove changes(seq num) is used to get and remove changes
from HistoryCache component, respectively. Both of them can
return the value 1 to indicate the operation is successful;
otherwise, they return 0.

G. Subscriber
Subscriber process is designed for reading data and remov-

ing data submodule. First of all, it calls take function to receive
data from HistoryCache. Next, it notifies other components
that the data will not be used and gets the corresponding
feedback. The behavior of Subscriber process is modelled as
below.

Subscriber() =df ComSR!msgreq.S.R.take

→DATA := take();ComRS?msgrep.R.S.DATA

→ComSR!msgreq.S.R.loan → noinvoke := return loan();

ComRS?msgrep.R.S.noinvoke → Subscriber()

In the above formula, function take() reads data from
HistoryCache component and return loan() indicates the data
is not invoked any more, whose value is assigned to noinvoke.

H. DDSReader
DDSReader process is used for reading data and remov-

ing data submodule. First, it helps the Subscriber get data
and sequence number from HistoryCache. Then, it invokes
remove change function to remove changes in HistoryCache.
The behavior of DDSReader is modelled as below.

DDSReader() =df ComSR?msgreq.S.R.take

→ComRC!msgreq.R.C.get change → ComCR?msgrep.C.R.complete

→ComRS!msgrep.R.S.DATA → ComSR?msgreq.S.R.loan

→ComRS!msgrep.R.S.noinvoke → ComDT!msgreq.D.T.remove

→noinvoke2 := remove changes();ComTD?msgrep.T.D.noinvoke2

→DDSReader()

In the above formula, function remove changes() is the
same as that in process HistoryCache. take and get change
are the messages to invoke take() and get changes() func-
tion, respectively; loan and remove message are to invoke
return loan() and remove changes() function, respectively.

I. RTPSReader
RTPSReader process is applied to hearbeat mechanism and

removing data submodule. First, it receives the heartbeat from
RTPSWriter and sends the timely feedback to RTPSWriter.
Then, it assists the Subscriber to remove the changes and data
in HistoryCache. The behavior of RTPSReader is modelled as
below.

RTPSReader() =df ComWR?msgreq.W.R.heartbeat

→ComTC!msgreq.T.C.data.seq num → ComCT?msgrep.C.T.complete

→ComRW!msgrep.R.W.ACKNACK → ComDT?msgreq.D.T.remove

→ComTD!msgrep.T.D.noinvoke2 → RTPSReader()

In the above formula, RTPSReader receives heartbeat, sends
data and seq num and most importantly, sends ACKNACK to
complete the procedure of the acknowledgement mechanism.

IV. IMPLEMENTATION AND VERIFICATION

In this section, the model in Section III is implemented in
the model checker PAT and the properties abstracted from the
specification are all verified.

150

A. Implementation

First, we need to define important channels, message type
flags and delivery objects as enumerations, and define mes-
sages communicated between channels as global variables. For
the definition of the above variables, we give the following list
as a reference:

channel ComPW 0; enum {msgreq , msgrep, msgdata};
enum {P, W, D, R, C, T, S}; var seq num;

var ACK = 0; var index = 0;

var DATA1; var SEQ NUM;

var dt[5][2]; #define HBeatInterval 5;

All other channels in the model are defined by the above
channel format syntax like ComPW; the enumerated types are
the type of the flag message, including msgreq to represent the
request, msgrep to stand for the reply, and msgdata to represent
the data; P, W, D, R, C, T, S represent the English capital initials
of the seven modules in the RPTS StatefulWriter module
model section. Global variable ACK initialized to 0 means
no data received is checked by the Subscriber; global variable
index initialized to 0 means the number of the data stored in the
array in HistoryCache. seq num means the initialized sequence
number is zero; DATA1 and SEQ NUM are the variable repre-
senting data and sequence number in Subscriber component.
Array dt[5][2] stores data and corresponding suquence number
in HistoryCache component. Also, we give the definitions of
some constant variables, for example, HBeatInterval, whose
manual value is set to 5.

Then, we give the code of one of the processes in PAT as an
example. Here we take the implementation of the DDSWriter()
process as an example:

DDSWriter() = ComPW?msg data.P.W.data1{data=data1}
→ComWR!msg req.W.R.data → GetSeqNum();

ComRW?msg rep.R.W.complete3{complete=complete3}
→ComWC!msg req.W.C.data.seq num
→ComCW?msg rep.C.W.complete5{complete=complete5}
→ComWP!msg rep.W.P.complete
→ComWR!msg req.W.R.is acked all
→if (call(is acked by all,seq num)==1) {

ComRW?msg rep.R.W.complete21{complete=complete21}
→ComWC!msg req.W.C.remove
→Remove()} else {Skip};

From the above process execution code, it can be seen
that data1 event assigns variables and ensures variable values
of all processes in the entire system are consistently changed.
The function is acked by all is invoked by call. GetSeqNum()
and Remove() are other processes used to enhance the read-
ability. Apparently, GetSeqNum() is used to get the sequence
number; Remove() is used to remove the changes from the
HistoryCache component. Their details are as follows.

GetSeqNum() = getSeqNum{
seq num = seq num + 1; } → Skip;

If GetSeqNum() is executed once, seq num pluses 1, which
can keep the sequence number always different and unique.

Remove() = atomic{
if(call(remove change,seq num)==1) {
ComCW?msg rep.C.W.complete23{
complete=complete23} → Skip}
else{ ComCW?msg rep.C.W.nocomplete23{
complete=complete-1;
complete=nocomplete23} → Skip};

We use atomic to define Remove() process, which means
that the event cannot be disturbed until it is finished. com-
plete23 and nocomplete23 are the event used to transimitting
corresponding complete meassge.

Finally, the full definition of the entire system is given as
follows:

SYSTEM() = Publisher() || DDSWriter() ||
RTPSWriter() || HistoryCache() ||
Subscriber() || DDSReader() || RTPSReader();

B. Properties Verification

Based on the implementation of the model in PAT above,
we verify four properties as follows:

1) Divergence free

#assert System() divergencefree;

Divergence free means that any traces of the system can
diverge rather than behave chaotically.

2) Consistency
Property data consistency is so important that the data from

Publisher or HistoryCache or Subscriber component must be
completely identical. In the implementation, the original value
of the transferred data is equal to 2 and its corresponding
sequence number should be equal to 1. If the data and
sequence number are consistent in different components, the
property is satisfied. Thus, we give the definition and assertion
as follows:

#define goal1(dt[0][0]==1&&dt[0][1]==2)
&&(DATA1==2&&SEQ NUM==1)
&&(dt[0][0]==SEQ NUM&&dt[0][1]==DATA1);

#assert SYSTEM() reaches goal1;

3) Acknowledgement Mechanism
The reliable pattern has an acknowledgement mechanism. In

our model, if the final value of the global variable ACK and
index are all changed from 0 to 1, the property is satisfied.
Thus, we give the LTL formula and reachability to verify
whether the property is safe. Their definitions and assertions
are as follows:

#define goal2(ACK==1&&index==1);
#assert SYSTEM() reaches goal2;
#assert SYSTEM() | =<> goal2;

4) Sequentiality
If the Publisher component sends several pieces of data

in sequence, the pattern needs to guarantee that the data
stored in the HistoryCache component must be in order. Thus,
we give three atomic processes SYSTEM02(), SYSTEM03()

151

and SYSTEM04() on the basis of process SYSTEM(). If their
storage order is correct in HistoryCache, the property is
satisfied. Their definitions and assertions are as follows:

SYSTEM02() = atomic{event{data=2;} → SYSTEM()};
SYSTEM03() = atomic{event{data=4;} → SYSTEM()};
SYSTEM04() = atomic{event{data=6;} → SYSTEM()};
SYSTEM05() = SYSTEM04()||SYSTEM03()||SYSTEM02();
#define goal3 (dt[0][1] == 2&&dt[1][1] == 4&&dt[2][1] == 6);

#assert SYSTEM05() reaches goal3;

C. Verification and Results

According to the definitions and assertions, we implement
the code in PAT and as a result, Fig. 3 shows the properties
are all valid, which means the pattern of the module with no
intruders is exactly reliable and also caters for the specifica-
tion.

V. CONCLUSION AND FUTURE WORK

RTPS StatefulWriter module is a vital component in RTPS
protocol. This paper has formalized seven components com-
prising the Publisher, DDSWriter, RTPSWriter, DDSWriter,
HistoryCache, Subscriber, DDSReader and RTPSReader with
CSP. Our work also has applied the model checker PAT to
implement the constructed model. Four properties abstracted
from the specification, including divergence free, acknowl-
edgement mechanism, data consistency and sequentiality, have
been verified. The results are all valid. Consequently, we
conclude that from the perspective of process algebra, the
constructed model meets these properties and the pattern is
absolutely reliable and caters for the specification.

It is naturally a great challenge to model and verify the
whole RTPS protocol. We will explore security analysis and
verification of the module by adding intruders in the future.

VI. ACKNOWLEDGEMNET

This work was partly supported by National Natural Science
Foundation of China (Grant No. 61872145), Shanghai Collab-
orative Innovation Center of Trustworthy Software for Internet
of Things (No.ZF1213) and Special Fund for International
Academic Conferences of Graduate Students in East China
Normal University.

REFERENCES

[1] Alaerjan, A., Kim, D., Kafaf, D.A.: Modeling functional behaviors of
DDS. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computed, Scalable Computing & Communica-
tions, Cloud & Big Data Computing, Internet of People and Smart
City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI
2017, San Francisco, CA, USA, August 4-8, 2017. pp. 1–7 (2017)

[2] Beckman, K., Reininger, J.: Adaptation of the DDS security standard
for resource-constrained sensor networks. In: 13th IEEE International
Symposium on Industrial Embedded Systems, SIES 2018, Graz, Austria,
June 6-8, 2018. pp. 1–4 (2018)

[3] Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicat-
ing sequential processes. J. ACM 31(3), 560–599 (1984)

[4] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall
(1985)

[5] Liu, Y., Guan, Y., Li, X., Wang, R., Zhang, J.: Formal analysis and
verification of DDS in ROS2. In: 16th ACM/IEEE International Confer-
ence on Formal Methods and Models for System Design, MEMOCODE
2018, Beijing, China, October 15-18, 2018. pp. 62–66 (2018)

Fig. 3. Verification Result

[6] Lowe, G., Roscoe, A.W.: Using CSP to detect errors in the TMN
protocol. IEEE Trans. Software Eng. 23(10), 659–669 (1997)

[7] Pérez, H., Gutiérrez, J.J.: Modeling the qos parameters of DDS for event-
driven real-time applications. Journal of Systems and Software 104, 126–
140 (2015)

[8] Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall
(1997)

[9] Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer
Science, Springer (2010)

[10] Youssef, T.A., Hariri, M.E., Elsayed, A.T., Mohammed, O.A.: A dds-
based energy management framework for small microgrid operation and
control. IEEE Trans. Industrial Informatics 14(3), 958–968 (2018)

152

A Sound and Complete Axiomatisation for
Spatio-Temporal Specification Language

Tengfei Li, Jing Liu∗, Dongdong An, Haiying Sun
Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

Abstract—Specifying spatio-temporal aspects is one of the
important areas in cyber-physical systems. Spatio-temporal logic
with changes of truth value in discrete time and dense time
has been researched, but a combination of spatial and temporal
components with changes of spatial entities in dense time hasn’t
been well-done. The major problem is dense time and real-valued
variables of the spatio-temporal properties of cyber-physical
systems. In this paper, we propose a spatio-temporal specification
language, named STSL, which integrates Signal Temporal Logic
(STL) with a spatial logic S4u to deal with the changes of real-
values spatial entities in dense time. The combined language is
divided into two formalisms, STSLPC and STSLOC , which
is applied to interpret the Boolean semantics and quantitative
semantics, respectively. The syntax of the two formalism and
the corresponding semantics are provided. Besides, we present a
Hilbert-style axiomatization for the proposed STSL and provide
the soundness and completeness result by the spatio-temporal
extension of maximal consistent set and canonical model.

Index Terms—Signal Temporal Logic (STL) S4u Spatio-
Temporal Specification Language (STSL) STSLPC

STSLOC Soundness Completeness Axiomatization
System

I. INTRODUCTION

It is a challenging work to model cyber-physical systems,
not only because cyber-physical systems integrate cyber sys-
tems, physical environment and the interactive part of them,
but also because cyber-physical systems combine temporal
and spatial aspects, discrete and continuous behavior, and
uncertainty. Describing spatio-temporal aspects is one of the
important areas in cyber-physical systems. Many works has
been done with hybrid [1] and stochastic behaviors of cyber-
physical systems, but fewer researchers concentrate on spatio-
temporal aspects. The major problem is multidimensional
expressiveness and expensive verifiability for modeling and
analysis of the spatio-temporal behaviors of cyber-physical
systems.

This work aims at building a spatio-temporal specification
language (STSL) by solving spatio-temporal constraints con-
cerning dense time and real-valued variables, as an intelligent
object in physical environment is provided with changes in
specified space and continuous time. More specifically, we
confine ourselves to the combination of topological space
and time constraints with real-valued interval, which may

∗Corresponding Author: jliu@sei.ecnu.edu.cn
DOI reference number: 10.18293/SEKE2019-222

be an open, half-open and half-closed, half-closed and half-
open, or closed interval in a flow of time. We adopt the
modal spatial logic S4u to express topological constraints,
which is one of the most influential formalism and the most
expressiveness for topological relations. As for signal temporal
logic (STL) [2], [3], there are two approaches that can cope
with signals, quantitative semantics and Boolean semantics.
Quantitative semantics obtains real-valued signals from satis-
faction degree of a trace in real-valued interval. While Boolean
semantics evaluates Boolean signals from a trace which can
be booleanized through a set of threshold predicates.

Combining spatio-temporal constraints from temporal logics
and modal spatial logics is a very important problem. Given
a spatio-temporal model M and a STSL formula ϕ, the
satisfiability problem of the formula ϕ is to check if ϕ is
satisfiable in model M.

Since the changes of spatial entities and the flows of time
are not independent, the combination between modal spatial
logics and temporal logics is divided into two formalism,
STSLPC and STSLOC . STSLPC means the changes of
spatial propositions over time, while STSLOC represents the
changes or evolution of spatial objects over time. Each for-
malism is equipped with different expressiveness, so Boolean
semantics and quantitative semantics need to be provided.

Many works have been done on the axiomatization and
completeness of modal logics. Patrick Blackburn [4] present
the completeness of normal modal logic through maximal
consistent set and canonical model. J.M. Davoren [5] proposes
topological semantics for intuitionistic tense logics and multi-
modal logic and provide the Hilbert-style axiomatization and
the completeness result. F.D. David [6] prove the absolute
completeness of S4u for its measure-theoretic semantics. In
this paper, we present an axiomatization system for STSL
and provide the soundness and completeness result of the
axiomatization system.

In this work, there are three contributions:

1) We propose a spatio-temporal specification language
STSL, based on STL and S4u, to specify the changes
in topological space and dense time,

2) We interpret the STSL language from two formalisms:
STSLPC and STSLOC , and provide Boolean seman-
tics and quantitative semantics for the language,

153

3) We present an axiomatization system and provide the
completeness result for the proposed language STSL.

The next section introduces temporal logic STL and modal
spatial logic S4u. Section 3 presents the spatio-temporal
specification language STSL and section 4 presents an ax-
iomatization system for the language STSL. In section 5, we
conclude the work and talk about the future work.

II. SIGNAL TEMPORAL LOGIC AND S4u

The section provides the background to the proposed spatio-
temporal logic, including signal temporal logic (STL) and
spatial logic S4u.

A. Signal Temporal Logic (STL)

An STL signal [2], [7] is defined on dense-time domain T.
A signal function ε : T→ E associates a set of time domain
with a set of signals. Signals with E = B = {0, 1} are called
Boolean signals, while those where E = R+ are called real-
valued or quantitative signals. A Boolean signal, transformed
from real-valued one, can be represented by Metric Temporal
Logic [8], [9]. The comparison of some temporal logics is
listed in Table I.

TABLE I
THE COMPARISON OF LTL, MTL AND STL

Logic Time domain Variable

Linear Temporal Logic (LTL) Discrete time Boolean value

Metric Temporal Logic (MTL) Dense-time Boolean value

Signal Temporal Logic (STL) Dense-time Real-value

An execution trace w is a set of real-valued signals
xw1 , ..., x

w
k bound in some interval I of R+, which is called

the time domain of w [3]. Such an interval I ⊆ R+ is open
(t1, t2), half-closed and half-open [t1, t2), half-open and half-
closed (t1, t2] or closed time interval [t1, t2]. For instance, a
running car checks in and enters a highway at t1 and checks
out and leaves it at t2. We say, the car keeps running on the
highway in the interval [t1, t2].

The syntax of STL is given by

ϕ ::= > | xi ≥ 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2

where xi ≥ 0 is an atomic predicate whose truth value is
determined by the sign of an evaluation based on a signal xi.
The Boolean operators ¬ and ∧ are negation and conjunction,
respectively. The time bounded until operator UI is defined on
the time interval I .

The formula ϕ1 ∨ ϕ2, 3Iϕ and 2Iϕ can be defined by:

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)
3Iϕ = >UIϕ,
2Iϕ = ¬3I¬ϕ.

Formula 3Iϕ indicates that at some time t ∈ I , ϕ is eventually
satisfiable, while 2Iϕ denotes that ϕ is always satisfiable at
each time t ∈ I .

B. An axiomatisation system for STL

The fundamental composition of the axiomatization system
for STL contains all the tautologies like atomic proposition,
boolean and quantitative operator in first-oder logic. Temporal
expressiveness and inference rules are shown as follows:

A0 All classical tautologies of first-order logic
A1 2(φ→ ϕ)→ (2φ→ 2ϕ)
A2 ¬ ◦ φ↔ ◦¬φ
A3 ◦(φ→ ϕ)→ (◦φ→ ◦ϕ)
A4 2(φ→ ◦ϕ)→ (φ→ 2ϕ)
A5 (φUϕ)↔ ϕ ∨ ◦(φUϕ)
A6 (φUϕ)→ �ϕ
MP

φ φ→ ϕ

ϕ

N2

φ

` 2φ

N◦
φ

` ◦φ
C. Spatial Logic: S4u

S4 [10] is a proposition modal logic and τ are spatial
terms under the topological space interpretation. In the absence
of ambiguity, the terminology spatial terms denote spatial
objects. According to an observation by [11], S4 is a logic
of topological spaces, and the propositional variable p is
interpreted as a subset of the topological space. From the
perspective of the topological space, propositional variables of
S4 will be understood as spatial variables [12]. The formula
of S4 is defined as follows:

τ ::= p | τ | τ1 u τ2 | Iτ
where p is named as spatial variables and τ is the comple-

mentary of τ , τ1uτ2 the intersection operation of τ1 and τ2. I is
an interior operator under the topological space interpretation.
The union and closure operator can be defined by:

τ1 t τ2 = (τ1 u τ2), Cτ = Iτ
Cτ refers to the closure of a spatial object τ . For example, In
order to ensure safety, the rear car crear can’t reach the edge of
the front car, the formula can be described by Ccrear

u Ccfront
.

A topological model is a pair of the form M = (L,V(p)),
where L = (U, I) is a topological space. U is a nonempty set
denoting the universe of the space, and I is the interior operator
on U. V(p), as a set of valuations on spatial variables, is a
subset of U. Therefore we get the valuation of other spatial
formulas as follows:

V(τ) = U−V(τ),V(τ1 t τ2) = V(τ1) ∪V(τ2),
V(Iτ) = IV(τ),V(τ1 u τ2) = V(τ1) ∩V(τ2),

V(Cτ) = CV(τ).

A spatial logic is a formal language interpreted over a
class of structures featuring geometrical entities and relations.
Among the well-known spatial logics such as RCC-8 [13],
[14], BRCC-8 and S4u, the most expressive spatial formalism
is S4u [15]. S4u extends S4 with the universal and existential
quantifiers �∀ , 3∃ based on a spatial term τ . 3∃τ refers to that

154

there is at least one element in space τ ; �∀ τ means that all
elements in the space belong to τ). The formula ϕ is defined
in the form of BNF:

ϕ ::= �∀ τ | ¬ϕ | ϕ1 ∧ ϕ2

where, ¬ϕ is the negation of ϕ and ϕ1∧ϕ2 the conjunction
of ϕ1 and ϕ2. Correspondingly, the disjunction and existential
operator can be defined by:

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), 3∃τ = ¬�∀ τ

The axiomatization system for S4u includes the classical
propositional logic in topology L, the modal logics K, T, 4
and ¬ and inference rules.

CP axioms of classical propositional logic in L
2K 2(φ→ ϕ)→ (2φ→ 2ϕ)
2T 2φ→ φ
24 2φ→ 22φ
¬ ¬3φ↔ 2¬φ
and the inference rules

MP
φ φ→ ϕ

ϕ

N2

φ

` 2φ

N3

φ

` 3φ

III. SPATIO-TEMPORAL SPECIFICATION LANGUAGE

STL provides an approach that combines the truth value and
quantitative value of general signals. But it is inadequate to
represent the changes of a spatial entity and the binary relation
between spatial entities and temporal aspects. We propose the
spatio-temporal specification language that combines STL and
S4u to describe the evolution in spatial and temporal domain.

A. Spatio-temporal signal

A spatio-temporal signal is defined with continuous time
and topological space [16], [17]. The time domain T will
usually be a real-valued interval [0, t], where t ∈ R≥0. The
signal function is extended to spatial-temporal domain with
ε : T × L → E, where L denotes the topological space. The
domain of Boolean and quantitative signals extends the domain
of STL signals to topological space.

A spatio-temporal trace w(t, l) provides a notation about
execution sequence of time t and space l. For a spatio-temporal
trace, there are two different interpretations:
• A trace represents a sequence of spatial objects and time

point and each point in the trace evaluates a pair of spatial
objects and time.

• Another interpretation means that a spatio-temporal trace
takes spatial objects as the basic entities and spatio-
temporal primitive relations could be obtained by the
changes of ontology of space over time.

In this work, we treat the spatio-temporal trace as the second
interpretation. The changes of spatial objects are influenced by
the flow of time.

Definition III.1 (Spatio-temporal signal). A spatio-temporal
signal ε(t, l) is an evaluation of spatial entities in a trace
w over time. A Boolean signal µ(t, l) is an evaluation of an
atomic proposition transferred from quantitative signals x(t, l)
by atomic predicate µ(t, l) = (x(t, l) ≥ 0) in a trace w.

ε(t, l) :=

{
µ(t, l) if T× L→ B

x(t, l) if T× L→ R≥0

where boolean function µ : T × L → B gives rise to the
Boolean signals ε(t, l) = µ(t, l), while quantitative signals
are obtained as the real-valued function x : T × L → R≥0,
with ε(t, l) = x(t, l).

B. The interpretation of the combined logic

It is essential that a combined spatio-temporal formalism
should be provided with enough expressiveness to contain the
three parameters [12]:

1) the expressiveness of the spatial component;
2) the expressiveness of the temporal component;
3) the interaction between the two components allowed in

the combined logic.
The interaction between the spatial and temporal compo-

nents should comply with the principle of PC and OC, which
is used to evaluate the interaction:

1) STSLPC : the language should be able to express
changes over time of the truth-values of purely spatial
propositions.

2) STSLOC : the language should be able to express
changes or evolution of spatial objects over time.

STSLPC expresses the change of truth-value of proposition
and it is the elementary requirement for a combined spatio-
temporal logic. For instance:

* Eiffel Tower is located in Paris.
* Two cars running on the road never occupy the same

location simultaneously.
For STSLOC , spatio-temporal properties are described

about the changes of spatial objects over time. We use spatial
objects in topological space to interpret the principle such as

* One wave gradually formed in the sea and disappeared
eventually on the shore.

* If train A will pass the location in one hour that train B
occupies now on the railway, train B must run within one
hour.

* A package from a courier service company will eventual-
ly be delivered to its destination through several transfer
stations.

The spatio-temporal signals are divided into Boolean and
quantitative signals. According to the category of spatio-
temporal signals, we will present syntax and semantics for
the proposed spatio-temporal specification language from two
sides:
• The Boolean semantics returns true if the trace of spatio-

temporal model satisfies the properties described by
STSLPC formulas.

155

• The quantitative semantics returns a real value in different
time that can be interpreted as an evaluation of satisfac-
tion of the STSLOC formulas.

The Boolean semantics of the spatio-temporal specification
language interprets that a formula of STSL over spatio-
temporal traces returns true or false, so it is able to express
changes of the truth-values concerning purely spatial propo-
sitions of PC. Meanwhile, the UI and 2I operators of the
quantitative semantics are able to express changes or evolution
of spatial objects over some fixed finite periods and the whole
duration of time of OC, respectively. So, the expressiveness
power of the combined spatio-temporal logic is enough to
describe the spatio-temporal behavior.

C. The syntax of STSLPC
We extend the real-value interval into spatio-temporal do-

main. Formally, we define the spatial temporal interval I as
[(t, l), (t′, l′)], ∀t, t′ ∈ T and t < t′. The STSLPC is defined
on spatio-temporal terms τ over the spatio-temporal interval I ,
combining temporal logic STL and modal spatial logic S4u.
The syntax of STSLPC is given by:
τ ::= p | τ | τ1 u τ2 | Iτ
ϕ ::= �∀ τ | xi ≥ 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2

• τ is a spatio-temporal term,
• p is a spatio-temporal variable,
• τ is the complementary of τ ,
• τ1 u τ2 is the intersection of τ1 and τ2,
• I is the interior operator under the topological space

interpretation. Moreover, the dual operator of I is the
closure operator C, which means possible or consistent,

• xi ≥ 0 is an atomic predicate,
• ¬, ∨ and ∧ are the Boolean operators,
• UI is the until operator.
We can define equivalence of operators as syntactic

abbreviations:

Cτ = U− Iτ
τ1 t τ2 = τ1 u τ2

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)
©Iϕ = ⊥UIϕ
3Iϕ = >UIϕ
2Iϕ = ¬3I¬ϕ.

Atomic predicates, Boolean operators, and the spatio-
temporal bounded until operator UI are from STL. The new
spatial operators are the interior operator I, the closure oper-
ator C with reference to S4u. The ©I , 3I and 2I operators
are derived unary operators. 2Iϕ denotes that ϕ holds within
the whole trace of spatio-temporal interval I , and 3Iϕ means
that ϕ holds in at least one time point of the spatio-temporal
interval I .

D. The semantics of STSLPC
A spatio-temporal model is defined on topological space

and temporal model. Formally, a spatio-temporal mdoel M =
(T,L,V), where

• T is a pair (T, <), where T is a set of time point and <
R an irreflexive, transitive and asymmetric relation on T
with a linear strict time flow,

• L is a topological space domain with the definition of
U, I in which U is a nonempty set, the universe of the
space, and I is the interior operator on U satisfying the
standard Kuratowski axioms: ∀X,Y ⊆ U, I(X ∩ Y) =
I ∩ Y, IX ⊆ IIX and I(U) = U,

• V is a valuation on the time point set T and the spatial
variable set P, i.e., ∀p ∈ P, and t ∈ T and U(p, t) which
means the space occupied by p at time point t. As for the
spatial term τ , the valuation can be defined as: V(τ , t) =
U−V(τ, t),V(τ1uτ2, t) = V(τ1, t)∩V(τ2, t),V(Iτ, t) =
IV(τ, t).

We define a spatio-temporal trace w as the changes of
spatial objects over time. In spatio-temporal model M, V(p)
evaluates the spatial object p. Further, the spatio-temporal trace
w represents V(p) changes over time t, where t belongs to
the domain T.

The satisfaction relation for a STSLPC formula ϕ over a
spatio-temporal model M is given by:
• (M, t) |= �∀ τ ⇔ V(�∀ τ, t) = >
• (M, t) |= xi ≥ 0 ⇔ V(xi ≥ 0, t) = xi
• (M, t) |= ¬ϕ ⇔ (M, t) 6|= ϕ
• (M, t) |= ϕ1 ∧ ϕ2 ⇔ (M, t) |= ϕ1 and (M, t) |= ϕ2

• (M, t) |= ϕ1UIϕ2 ⇔ ∃t′ ∈ t + I s.t. (M, t′) |=
ϕ2 and ∀t′′ ∈ [t, t′], (M, t′′) |= ϕ1

A model M satisfies ϕ in t, denoted by (M, t) |= ϕ.
For a given formula ϕ and execution trace w, we define the

satisfaction signal χ(ϕ,w, t, l) over a trace w(t, l):

∀t ∈ I, χ(ϕ,w, t, l) :=

{
> if (M, t) |= ϕ

⊥ otherwise
(1)

In order to compute the satisfaction of a formula ϕ, we
divide the formula ϕ into each subformula φi until atomic
formula so that formula ϕ can be computed through the
subformula and atomic formulas instead of the entire satis-
faction signal χ(ϕ,w, t, l). The procedure can be treated as a
hierarchical structure from the full formula ϕ down to each
atomic formula.

E. STSLOC
The difference between STSLPC and STSLOC is that

STSLPC involves in the change of truth-values of propo-
sitions, while STSLOC describes the change of extensions of
predicates. The syntax of STSLOC is given by:
τ ::= p | τ | τ1 u τ2 | Iτ | τ1UIτ2
ϕ ::= �∀ τ | xi ≥ 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2

The change exists in that the operator UI can be applied
to spatial terms τ . τ1UIτ2 refers to τ1 holds until τ2 holds
within the interval I . Similar to the atomic formulas, the ©I ,
2I and 3I of spatio-temporal term can also be derived from
the operator UI . The unary operators 2I and 3I in STSLOC
formulas fuse the 2I and 3I operators of STL with that of
�∀ and 3∃ operators of S4u.

156

A spatio-temporal trace w is a sequence over signals ε.
The Boolean satisfaction relation and satisfaction degree for a
STSLOC formula ϕ over a spatio-temporal trace w is similar
to that of STSLPC formula.

We define ρ to quantify the satisfaction degree of the
property ϕ over the trace w(t, l), and it returns a real number
ρ(ϕ,w, t, l). The quantitative satisfaction relation for a formula
ϕ over a spatio-temporal trace w is given by:

• ρ(�∀ τ, w, t, l) = >
• ρ(xi ≥ 0, w, t, l) = f(w(t, l)) where µ ≡ (f ≥ 0)
• ρ(¬ϕ,w, t, l) = −ρ(ϕ,w, t, l)
• ρ(ϕ1 ∧ ϕ2, w, t, l) = min{ρ(ϕ1, w, t, l), ρ(ϕ2, w, t, l)}
• ρ(ϕ1 ∨ ϕ2, w, t, l) = max{ρ(ϕ1, w, t, l), ρ(ϕ2, w, t, l)}
• ρ(2Iϕ,w, t, l) = inft′∈t+I{ρ(ϕ,w, t′, l′)}
• ρ(3Iϕ,w, t, l) = supt′∈t+I{ρ(ϕ,w, t′, l′)}
• ρ(ϕ1UIϕ2, w, t, l) = supt′∈t+I(min{ρ(ϕ2, w, t

′, l′),
inft′′∈[t,t′](ρ(ϕ1, w, t

′′, l′′)})
The intuitive meaning for ρ(2Iϕ,w, t, l) refers to that we

achieve the infimum of ρ(ϕ,w, t′, l′),∀t′ ∈ t + I over the
trace. Similar to ρ(2Iϕ,w, t, l), ρ(3Iϕ,w, t, l) returns the
supremum of ρ(ϕ,w, t′, l′),∀t′ ∈ t+ I .

Especially, if xi ≥ 0, the satisfaction signal will be

∀t ∈ I, χ(xi ≥ 0, w, t, l) :=

{
> if xi ≥ 0

⊥ otherwise
(2)

The connection is built between Boolean signals and quan-
titative signals by the way of predicate xi ≥ 0 and obtain
the satisfaction signal χ(xi ≥ 0, w, t, l). In the quantitative
semantics, however, atomic predicates xi ≥ 0 do not evaluate
to > or ⊥ but give a real value of the quantitative signals xi
by satisfaction degree ρ(ϕ,w, t, l) representing the distance to
satisfaction or not.

IV. AN AXIOMATIZATION SYSTEM FOR STSL

STSL is a logical system. A proof in STSL is a sequence of
finite formula: A0, A1, ..., An, where each of them is a axiom,
or there exists j, k < i, such that Ai is the conclusion derived
from Aj and Ak using MP inference rule. The last term An
is a theorem in STSL, using the sign ` An, where n is the
length of proof.

The notions of deducibility and consistency [4], [18] is
fundamental to deduce the logic system STSL. A formula A
is deducible from a set of formulas Γ in a system ST , written
Γ ST A, if and only if ST contains a theorem of the form
(A1 ∧ ... ∧ An) → A, where the conjuncts Ai(i = 1, ..., n)
of the antecedent are formulas in Γ. A set of formulas Γ is
consistent in ST , written ConST Γ, just in case the formula
⊥ is not ST -deducible from Γ.

Definition IV.1 (ST -MCS). A set of formulas Γ is maximal
ST -consistent iff

(i) Γ is ST -consistent, and
(ii) for every formula A, if Γ ∪ {A} is ST -consistent, then

A ∈ Γ.

If Γ is a maximal ST -consistent set of formulas then we
say it is an ST -MCS. The (ii) condition refers to that any set
of formulas properly containing Γ is ST -inconsistent.

The canonical model defined by [18] to induce the
soundness and completeness of modal logics. We extend the
notation of canonicalmodel to spatio-temporal systems for
completeness of STSL.

Definition IV.2 (ST -canonical Model). The ST -canonical
model MΓ for a spatio-temporal logic is a triple
(WΓ, RΓ, V Γ) where:

(i) WΓ is the set of all Γ-MCSs;
(ii) RΓ is a topological relation on topological space over a

quasi-order on time. It is the canonical binary relation
on WΓ defined by sRΓ

i s
′ over state s and s′ if for all

formulas φ, φ ∈ s implies φ ∈ s′.
(iii) V Γ is the valuation defined by V Γ(p) = {s ∈WΓ | p ∈

s}. V Γ is called the canonical valuation.

Lemma IV.1 (Truth Lemma). Let ST -canonical model be a
class of tt-model. For all φ ∈ ST -MCS, ST φ iff φ ∈ ST -
MCS.

Proof. The proof is by induction on the structure of φ.
Base case: Suppose φ is a spatial formula �∀ τ or an atomic

predicate xi ≥ 0.
(ST , s) �∀ τ ⇔ V Γ(�∀ τ, s) = > ⇔ �∀ τ ∈ s,
(ST , s) xi ≥ 0⇔ V Γ(xi ≥ 0, s) = xi ⇔ xi ≥ 0 ∈ s.
Inductive step: Suppose φ is an atomic predicate ¬φ, φ1 ∧

φ2, φ1 ∨ φ2, 2φ, 3φ, φUϕ. We show the proof of the case
2φ, and leave the others to reader. We have (ST , s) 2φ⇔
2φ ∈ s (assuming the inductive hypothesis).

(ST , s) 2φ
⇔ ∀s′, sRΓs′ ⇒ ST , s′ φ
⇔ ∀, sRΓs′ ⇒ φ ∈ s′

we need to show that 2φ ∈ s⇔ ∀s′, sRΓs′ ⇒ φ ∈ s′.
⇒ follows immediately from the definition IV.2.
As for ⇐: suppose 2φ /∈ s. We need to show

∃s′, sRΓs′ and φ /∈ s′
⇔ ∃s′, sRΓs′ and ¬φ ∈ s′
⇔ ∃s′, {ϕ | 2ϕ ∈ s} ⊆ s′ and ¬φ ∈ s′
⇔ ∃s′, {ϕ | 2ϕ ∈ s} ∪ {¬φ} ⊆ s′

It is easy to show that {ϕ | 2ϕ ∈ s} ∪ {¬φ} is ST -
consistent. Suppose not, i.e., {ϕ | 2ϕ ∈ s} ∪ {¬φ} is
ST -inconsistent. Then `ST (ϕ1 ∧ ... ∧ ϕn) → φ for some
{2ϕ1, ...2ϕn} ⊆ s. But ST is canonical and s is ST -MCS,
so s must contain (2ϕ1 ∧ ... ∧ ϕn)→ 2φ. From 2ϕi ∈ s, it
follows 2φ ∈ s. This contradicts the hypothesis that 2φ /∈ s

Definition IV.3. The Hilbert-style proof system for the logic
STSL has the following axiom schemes:

A0 All classical tautologies of first-order logic
A1 ¬ ◦ φ↔ ◦¬φ
A2 ¬3φ↔ 2¬φ

157

A3 ◦(φ→ ϕ)→ (◦φ→ ◦ϕ)
A4 2(φ→ ◦ϕ)→ (φ→ 2ϕ)
A5 (φUϕ)↔ ϕ ∨ ◦(φUϕ)
A6 (φUϕ)→ �ϕ
2K 2(φ→ ϕ)→ (2φ→ 2ϕ)
2T 2φ→ φ
24 2φ→ 22φ

And the inference rules:

MP
φ φ→ ϕ

ϕ

N2

φ

` 2φ

N3

φ

` 3φ

Soundness refers to that all the theorems in STSL are
logically valid. Equivalently, A spatio-temporal logic is sound
with respect to tt-model if for all the formula φ, `ST φ implies
 φ. Let ST be a class of tt-model, A spatio-temporal logic
is strongly complete in ST if for any set of formulas Γ∪{φ},
if Γ ST φ then Γ `ST φ. If the semantics of Γ satisfies φ
on ST then φ is deducible from Γ.

Theorem IV.2. The above axiomatization is sound for tt-
model.

Proof. This follows from the fact that all axioms are valid and
all rules preserve validity.

Theorem IV.3. The system for STSL is weakly complete with
respect to tt-model. i.e., for every STSL formula, ST φ
implies `Γ φ.

Proof. We will present the proof with weak completeness of
STSL based on the work [19], [20]. The strong completeness
is equal to frame completeness and compactness in universal
modal logic [19]. Temporal logic in the flow of real time has
weak completeness [20], which proposes finitely complete and
expressively complete, but fails compactness theorem. Further,
a complete result based on the lexicographic products of
modal logics with linear temporal logic is present in [21].
Those conclusions contribute greatly to the proof of weak
completeness.

V. CONCLUSION AND FUTURE WORK

In this paper, we build a spatio-temporal specification lan-
guage, combining STL with spatial logic S4u, specifically
containing dense time and topological space. We provide
the syntax and semantics of the spatio-temporal language,
and guarantee the seamless integration of spatial logic with
temporal aspect from the perspective of the changes of purely
spatial proposition STSLPC and spatial objects STSLOC
over time. A Hilbert-style proof axiomatization system and the
soundness and completeness result is present for the language.

The proposed STSL has a powerful expressiveness. It will
be interesting to find a strongly complete fragment of STSL.
For that, a more constrained axiomatization system need to
be present, and more restricted inference and proof should be
provided.

ACKNOWLEDGMENT

Our deepest gratitude goes to the anonymous reviewers for
their valuable suggestions to improve this paper. This paper is
partially supported by funding under National Key Research
and Development Project 2017YFB1001800, NSFC 61572195
and Shanghai SHEITC Project 2017-GYHLW-01036.

REFERENCES

[1] Ehsan Ahmad, Yunwei Dong, Shuling Wang, Naijun Zhan, and Liang
Zou. Adding formal meanings to aadl with hybrid annex. In Inter-
national Conference on Formal Aspects of Component Software, pages
228–247. Springer, 2014.

[2] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M Murray,
and Sanjit A Seshia. Reactive synthesis from signal temporal logic
specifications. In Proceedings of the 18th international conference on
hybrid systems: Computation and control, pages 239–248. ACM, 2015.

[3] Alexandre Donzé, Thomas Ferrere, and Oded Maler. Efficient robust
monitoring for stl. In International Conference on Computer Aided
Verification, pages 264–279. Springer, 2013.

[4] Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal Logic:
Graph. Darst, volume 53. Cambridge University Press, 2002.

[5] Jennifer M Davoren. Topological semantics and bisimulations for
intuitionistic modal logics and their classical companion logics. In
International Symposium on Logical Foundations of Computer Science,
pages 162–179. Springer, 2007.

[6] David Fernández-Duque. Absolute completeness of s4u for its measure-
theoretic semantics. Advances in modal logic, 8:100–119, 2010.

[7] Alexandre Donzé and Oded Maler. Robust satisfaction of temporal
logic over real-valued signals. In International Conference on Formal
Modeling and Analysis of Timed Systems, pages 92–106. Springer, 2010.

[8] Patricia Bouyer. Model-checking timed temporal logics. Electronic
Notes in Theoretical Computer Science, 231:323–341, 2009.

[9] Haiying Sun, Jing Liu, Xiaohong Chen, and Dehui Du. Specifying cyber
physical system safety properties with metric temporal spatial logic. In
Software Engineering Conference (APSEC), 2015 Asia-Pacific, pages
254–260. IEEE, 2015.

[10] Richard E Ladner. The computational complexity of provability in
systems of modal propositional logic. SIAM journal on computing,
6(3):467–480, 1977.

[11] John Charles Chenoweth McKinsey. A solution of the decision problem
for the lewis systems s2 and s4, with an application to topology. The
Journal of Symbolic Logic, 6(4):117–124, 1941.

[12] David Gabelaia, Roman Kontchakov, Agi Kurucz, Frank Wolter, and
Michael Zakharyaschev. Combining spatial and temporal logics: ex-
pressiveness vs. complexity. Journal of Artificial Intelligence Research,
23:167–243, 2005.

[13] David A Randell, Zhan Cui, and Anthony G Cohn. A spatial logic based
on regions and connection. KR, 92:165–176, 1992.

[14] Weiming Liu, Li Sanjiang, and Renz Jochen. Combining rcc-8 with
qualitative direction calculi: Algorithms and complexity. In Twenty-First
International Joint Conference on Artificial Intelligence, 2009.

[15] Roman Kontchakov, Agi Kurucz, Frank Wolter, and Michael Za-
kharyaschev. Spatial logic+ temporal logic=? In Handbook of spatial
logics, pages 497–564. Springer, 2007.

[16] Laura Nenzi, Luca Bortolussi, Vincenzo Ciancia, Michele Loreti, and
Mieke Massink. Qualitative and quantitative monitoring of spatio-
temporal properties. In Runtime Verification, pages 21–37. Springer,
2015.

[17] Oded Maler and Dejan Nickovic. Monitoring temporal properties of
continuous signals. In Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems, pages 152–166. Springer, 2004.

[18] Brian F Chellas. Modal logic: an introduction. Cambridge university
press, 1980.

[19] Valentin Goranko and Solomon Passy. Using the universal modality:
gains and questions. Journal of Logic and Computation, 2(1):5–30,
1992.

[20] Dov M. Gabbay and Ian M. Hodkinson. An axiomatization of the
temporal logic with until and since over the real numbers. Journal
of Logic and Computation, 1(2):229–259, 1990.

[21] Philippe Balbiani and David Fernández-Duque. Axiomatizing the
lexicographic products of modal logics with linear temporal logic. 2016.

158

Formal Specification and Model Checking of
the Lim-Jeong-Park-Lee Autonomous Vehicle Intersection Control Protocol

Moe Nandi Aung
Faculty of Science

Univ. of Info. Tech. (UIT)
Hlaing Township, PO 11052, Yangon, Myanmar

Email: moenandiaung@uit.edu.mm

Yati Phyo, Kazuhiro Ogata
School of Information Science

Japan Adv. Inst. of Sci. & Tech. (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Email: {yatiphyo,ogata}@jaist.ac.jp

Abstract—We have conducted a case study in which an
autonomous vehicle intersection control protocol is formally
specified in Maude and model checked with Maude model
checking facilities. We found that a function used in the
protocol should be revised while formally specifying it and
a logical clock such that times are total order should be used
to avoid deadlock states during model checking experiments.

Keywords-Autonomous vehicle; Intersection control; LTL;
Maude; Model checking

I. INTRODUCTION

It is predicted that vehicles would be fully autonomous
(https://www.wired.com/2012/09/ieee-autonomous-2040/).
To this end, multiple new technologies should be emerged
and used. One of them is a protocol to control vehicles
on an intersection such that collision must be avoided and
vehicles can eventually cross the intersection. Lim, Jeong,
Park & Lee have proposed such a protocol [1], which is
called the LJPL protocol in this paper. Because such a
protocol is intricate, formal methods should be utilized to
formally verify that the protocol enjoys desired properties.

We have conducted a case study in which the LJPL
protocol is formally specified in Maude [2], a rewriting
logic-based specification/programming language, and model
checked with the Maude model checking facilities (a reach-
ability analyzer and an LTL model checker). While carefully
reviewing the protocol, we found that one function used in
the protocol should be revised. We also found that a logical
clock such that times are total order should be used to avoid
deadlock states during model checking experiments.

Related studies have been conducted, two among which
are mentioned. Ölveczky and Meseguer [3] have reported
on a case study in which a distributed embedded system
(DES) family has been specified and model checked in
Real-Time Maude, where the DES is for a pedestrian and
car 4-way traffic intersection in which autonomous devices
communicate by asynchronous message passing without a

This work was partially supported by JSPS KAKENHI Grant Number
JP26240008 & JP19H04082.

DOI reference number: 10.18293/SEKE2019-021

centralized controller. Asplund, et al. [4] have demonstrated
how a Satisfiability Modulo Theory (SMT) solver can
be used to prove that a distributed coordination protocol
for autonomous vehicles satisfies the intersection collision
avoidance property. Z3 has been used as an SMT solver.
Our approach uses a high abstract notion of time to formally
specify the LJPL protocol, contributing to reduction of
reachable state space sizes. Thus, it is unnecessary to use
any realtime-related concepts and techniques.

The rest of the paper is organized as follows: § II Pre-
liminaries, § III Lim-Jeong-Park-Lee Autonomous Vehicle
Intersection Control Protocol, § IV Formal Specification, §V
Model Checking, and §VI Conclusion.

II. PRELIMINARIES

A Kripke structure K is 〈S, I, T, P, L〉, where S is a set of
states, I ⊆ S is the set of initial states, T ⊆ S×S is a total
binary relation over S, P is a set of atomic propositions
and L ∈ S → 2P is a labeling function. (s, s′) ∈ T is
called a state transition from s to s′ and T may be called
the state transitions. For s ∈ S, L(s) is the set of atomic
propositions that hold in s. The semantics of LTL is defined
over infinite sequences of states generated from K. The LTL
formula used in the paper is in the form ♦ p, where p is a
state formula that does not have any temporal connectives.
K satisfies ♦ p iff for all s0 ∈ I , for all infinite sequencers
of state starting with s0, there exists a state in the sequence
such that p holds.

There are multiple possible ways to express states. We
express a state as a braced associative-commutative (AC)
collection of name-value pairs. AC collections are called
soups, and name-value pairs are called observable compo-
nents. That is, a state is expressed as a braced soup of
observable components. The juxtaposition operator is used
as the constructor of soups. Let oc1, oc2, oc3 be observ-
able components, and then oc1 oc2 oc3 is the soup of
those three observable components. A state is expressed
as {oc1 oc2 oc3}. There are multiple possible ways to
specify state transitions. We specify them as rewrite rules.
Concretely, we use Maude [2], a programming/specification

159

language based on rewriting logic. Maude makes it possible
to specify complex systems flexibly and is also equipped
with model checking facilities (a reachability analyzer and
an LTL model checker). Maude allows us to use what
are called matching equations in the conditional part of a
conditional rewrite rule. A conditional rewrite rule (or just a
rule) is in the form crl [lb] : l => r if . . ./\ p1 := p2
/\ . . . , where lb is the label given to the rule and p1 := p2
is a matching equation, where p1 may have fresh variables
and p2 does not. p1 := p2 holds if p1 matches p2, making
a substitution in which fresh variables in p1 are mapped to
some terms (values) in p2. Matching equations are similar
to let expressions in functional programming languages.

The search command tries to find a state reachable from
t such that the state matches p and satisfies c:

search [1] in M : t =>* p such that c .

where M is a specification of the S and T parts of K.
t typically represents an initial state of K. The search
command can be used to model check that K enjoys an
invariant property if p and c represent the negation of the
state formula concerned.

The search command can also be used to find a deadlock
state:

search [1] in M : t =>! p .

Let init be the only initial state of K and ϕ be
an LTL formula, such as ♦ p. Then, the Maude LTL
model checker checks that K satisfies ϕ by reducing
modelCheck(init,ϕ).

III. LIM-JEONG-PARK-LEE AUTONOMOUS VEHICLE
INTERSECTION CONTROL PROTOCOL

Let us consider the intersection shown in Fig. 1, where
two streets are crossed. Vehicles are supposed to run on the
right-hand side of a street and each side of a street has two
lanes. Each lane is named as shown in Fig. 1. When crossing
the intersection, vehicles on the right lane of one side of a
street, such as lane0, are supposed to go straight or turn
right as shown in Fig. 1 and those on the left lane of one
side of a street, such as lane1, are supposed to turn left as
shown in Fig. 1. The space overlapped by the two streets is
a critical section as shown in Fig. 1, where vehicles should
be controlled so that they never crash into each other.

Vehicles on lane0 and those on lane4 are allowed to
go through the intersection simultaneously, while vehicles
on lane0 and those on lane2 are not. lane0 and lane4
are concurrent, while lane0 and lane2 are conflict. For
i = 0, 2, 4, 6, the conflict lanes of lanei are lanej for
j = (i + 2) mod 8, (i + 5) mod 8, (i + 6) mod 8, (i +
7) mod 8, and the concurrent lanes of lanei are lanej
for j = (i + 1) mod 8, (i + 3) mod 8, (i + 4) mod 8.
For i = 1, 3, 5, 7, the conflict lanes of lanei are lanej for
j = (i + 1) mod 8, (i + 2) mod 8, (i + 3) mod 8, (i +

Figure 1. An intersection

6) mod 8, and the concurrent lanes of lanei are lanej for
j = (i+ 4) mod 8, (i+ 5) mod 8, (i+ 7) mod 8.

Each vehicle is given its status, which is running, ap-
proaching, stopped, crossing or crossed. Note that running
and approaching are not used in the paper [1] in which the
LJPL protocol is proposed. When a vehicle is far enough
from the intersection1, its status is running. Each lane is
given a queue. When vehicles are approaching the inter-
section shortly enough, their statuses become approaching,
their IDs are enqueued into a queue specific to each lane,
and they never change the lane and never pass the vehicles
in front of them. Vehicles then estimate the time when
they are supposed to get to the intersection. The paper [1]
in which the the LJPL protocol is proposed says that “To
control the intersection traffic correctly, we assume that the
time for vehicles is synchronized by retrieving GPS time or
using a logical clock.” The present paper assumes that GPS
is retrieved to synchronize vehicles, namely that there is
a global clock shared by all vehicles. When a vehicle is
enqueued into a queue and there is no other vehicle whose
status is stopped in front on it (note that there are two
such cases: (1) the vehicle is the top of the queue, namely
that there is no other vehicle in front of the vehicle on the
lane and (2) there is another vehicle that is followed by the
vehicle and whose status is crossing on the lane), the vehicle
becomes lead and its status becomes stopped. Otherwise, the
vehicle becomes non-lead and its status becomes stopped.
Any lead vehicle checks if there is no vehicle on any conflict
lanes crossing the intersection and the time given to the
vehicle is earlier than those given to the lead vehicles on
the conflict lanes. If so, the lead vehicle is allowed to go
through the intersection and its status becomes crossing.
At the same time all non-lead vehicles whose statuses are
stopped and that follow the lead vehicle are also allowed
to go through the intersection and their statuses become
crossing. The LJPL protocol treats a series of vehicles as a

1When the LJPL protocol is implemented, we need to define “being far
enough from,” say, 100m or longer. In this paper, however, we leave it
abstract in the specification.

160

train so that the series of vehicles are allowed to go through
the intersection simultaneously. For example, let us consider
the vehicles on lane0 shown in Fig. 1 and let us suppose that
the first one is lead, the second one is non-lead, the third one
is lead and there is no more. When the first one is allowed
to go thorough the intersection, so is the second one and
then the series of the first and second ones are treated as a
train.

A lead vehicle whose status is stopped on a lane ex-
changes some pieces of information with the lead vehicles on
the four conflict lanes. One piece of information exchanged
is the time (called the arrival time in this paper) when
each other vehicle will arrive at the intersection. If the lead
vehicle arrival time is earlier than all the four lead vehicles’
arrival times on the four conflict lanes, then the status of the
lead vehicle becomes crossing. Moreover, the statuses of all
follower vehicles whose statuses are stopped also become
crossing. When a vehicle has crossed the intersection, the
status of the vehicle becomes crossed and its ID is dequeued
from the queue. Such exchanges of pieces of information
among lead vehicles are conducted by Algorithm 1 and
Algorithm 2 [1]:

Algorithm 1. Basic IVC protocol (active thread)
1: begin at each round
2: vehicletarget ← selectVehicle();
3: send(informationlocal, vehicletarget);
4: informationtarget ← receive(vehicletarget);
5: updateInformation(informationlocal,

informationtarget);
6: end

Algorithm 2. Basic IVC protocol (passive thread)
1: repeat
2: vehicletarget ← waitForVehicle();
3: informationtarget ← receive(vehicletarget);
4: updateInformation(informationlocal,

informationtarget);
5: send(informationlocal, vehicletarget);
6: untilforever;

where IVS stands for inter-vehicle-communication [5].
informationx, where x = target, local, consists of the
following pieces of information:
• lane – Lane number from 0 to 7
• arrivalT ime – Arrival time for its own vehicle
• arrivalT imelead – Arrival time for lead vehicle
• lead – True or false
• conflictLane – List of conflict lanes
• concurrentLane – List of concurrent lanes
• concurrentLanePassing – List of concurrent lanes

for passing vehicles
• status – stopped, passing, or passed

Note that running and approaching are also used as status
values in this paper.

The LJPL protocol itself is described as Algorithm 3 [1]:

Algorithm 3. Mutual exclusion algorithm via IVC
1. begin initialization
2. infoV ehiclesi[j]← null,∀i ∈ {1, . . . ,maxlane},

∀j ∈ {1, . . . ,maxvehicle};
3. end
4. begin when entering the intersection
6. lane← getLaneNum();
7. arrivalT ime← getCurrentTime();
8. if no vehicle on the lane,

where status == stopped then
9. lead← true;
10. arrivalT imelead← arrivalT ime;
11. else
12. lead← false;
13. endif
14. status← stopped;
15. end
16. begin at each cycle
17. update infoV ehiclesi[j]

according to Algorithm 1 and Algorithm 2;
18. check infoV ehiclesconflictLane

for passing the intersection;
19. if passingCondition() then
20. status← passing;
21. move and cross the intersection;
22. endif
23. end
24. begin when exiting the intersection
25. status← passed;
26. end
27. function passingCondition()
28. if ∀arrivalT imelead ∈ infoV ehiclesconflictLane

> arrivalT imelead and
∀status ∈ infoV ehiclesconflictLane

== stopped then
29. return true;
30. else if ∃status ∈ infoV ehiclesconcurrentLane

== passing and
∃!lanei ∈ {lanen,∀n ∈ {0, . . . ,maxlane}
| status == passing} and
∀arrivalT imelead
∈ infoV ehiclesconcurrentLanePassing

> arrivalT imelead then
31. return true;
32. else
33. return false;
34. end function

From a vehicle v point of view such that v is located on
a lane l, function passingCondition() returns true even if
there exists a lead vehicle v′ on a conflict lane of l such
that the status is passing (namely that the first condition is

161

Figure 2. An initial state

false) but if the second condition is true. If so, v is permitted
to cross the intersection and may crash into v′. Therefore,
passingCondition() is revised as follows: it returns true if
the first condition is true and returns false otherwise.

IV. FORMAL SPECIFICATION

Let KLJPL be the Kripke structure formalizing the LJPL
protocol.

The four kinds of observable components are used:
• (v[vid]: lid,vstat,t,lt) – vid is a vehicle ID (a

natural number), lid is a lane ID (a natural number) on
which the vehicle vid is located, vstat is the status of
the vehicle vid, t is the time when the vehicle vid will
reach the intersection and lt is the time when the lead
vehicle will reach the intersection if any.

• (lane[lid]: q) – lid is a lane ID (a natural number)
and q is a queue of vehicle IDs (natural numbers).

• (clock: t,b) – t is a natural number that represents
an abstract notion of the current time and b is a
Boolean value. If time is allowed to increase without
any constraints, the reachable state space can quickly
explode. Therefore, the following constraint will be put:
whenever b is true, t can increment and b becomes false
if so. When a vehicle obtains the current time t (which
does not change t, though), b becomes true.

• (gstat: gstat) – gstat is either fin or nFin. If it
is fin, then all vehicles concerned have crossed the
intersection.

Let us consider the initial state as shown in Fig. 2 such that
two vehicles are running on lane0, one vehicle is running
on lane1, two vehicles are running on lane5 and there is
no vehicle on the other lanes. The initial state (referred as
init) is expressed as follows:

{(gstat: nFin) (clock: 0,false)
(lane[0]: oo) (lane[1]: oo) (lane[2]: oo)
(lane[3]: oo) (lane[4]: oo) (lane[5]: oo)
(lane[6]: oo) (lane[7]: oo)
(v[oo]: 0,stopped,oo,oo) (v[oo]: 1,stopped,oo,oo)
(v[oo]: 2,stopped,oo,oo) (v[oo]: 3,stopped,oo,oo)
(v[oo]: 4,stopped,oo,oo) (v[oo]: 5,stopped,oo,oo)
(v[oo]: 6,stopped,oo,oo) (v[oo]: 7,stopped,oo,oo)
(v[0]: 0,running,oo,oo) (v[1]: 0,running,oo,oo)
(v[2]: 1,running,oo,oo) (v[3]: 5,running,oo,oo)
(v[4]: 5,running,oo,oo) }

Each queue for each lane, such as the one represented by
(lane[0]: oo), only consists of oo that represents ∞,
which means that there is no vehicle on the lane close
enough to the intersection. There are eight v[oo] observ-
able components that are used to represent dummy vehicles.
The v[0], v[1], v[2], v[3], and v[4] observable
components represent the five vehicles, the first two of which
are on lane0, the third of which is on lane1 and the last
two of which are on lane5. The global clock represented by
(clock: 0,false) is initially 0. Because the second
value of the clock observable component is false, the
abstract notion of the current time cannot increment. The
value of the gstat observable component is initially nFin.
TLJPL is specified by 12 rewrite rules. The following rule

is used to make TLJPL total:

rl [stutter] : {(gstat: fin) OCs}
=> {(gstat: fin) OCs} .

where OCs is a Maude variable of observable component
soups.

crl [fin] : {(gstat: nFin) OCs}
=> {(gstat: fin) OCs} if fin?(OCs) .

where fin?(OCs) returns true if and only if each vehicle
in OCs has crossed the intersection.

rl [tick] :
{(gstat: nFin) (clock: T,true) OCs}
=>
{(gstat: nFin) (clock: (T + 1),false) OCs} .

where T is a Maude variable of natural numbers. If the
second value of the clock observable component is true,
the abstract notion of the current time T increments and the
second value becomes false.

Two rules are used to specify a set of transitions that
change a vehicle status from running to approaching. One
rule deals with the case in which there is no vehicle close
enough to the intersection on the lane where the vehicle is
running, and the other deals with the case in which there
exists at least one vehicle close enough to the intersection
on the lane. The two rules are as follows:

rl [approach1] :
{(gstat: nFin) (clock: T,B) (lane[LI]: oo)
(v[VI]: LI,running,oo,oo) OCs}

=>
{(gstat: nFin) (clock: T,true)
(lane[LI]: VI) (v[VI]: LI,approaching,T,oo)
OCs} .

rl [approach2] : {(gstat: nFin) (clock: T,B)
(lane[LI]: (VI’ ; VS))
(v[VI]: LI,running,oo,oo) OCs}

=> {(gstat: nFin) (clock: T,true)
(lane[LI]: (VI’ ; VS ; VI))
(v[VI]: LI,approaching,T,oo) OCs} .

where B is Maude variable of Boolean values, LI, VI
& VI’ are Maude variables of natural numbers, VS is a

162

Maude variable of queues of natural numbers & ∞, and
; is the constructor of queues, where an underscore _ is
a place holder where an argument is put. _;_ is associative,
meaning that (q1 ; q2) ; q3 = q1 ; (q2 ; q3), and a single
element (a natural number or ∞) is treated as the singleton
queue that only consists of the element.

Three rules are used to specify a set of transitions that
change a vehicle status from approaching to stopped. The
first rule check1 deals with the case in which the vehicle
is the top of the queue concerned, where the vehicle will be
lead on the lane concerned, the second rule check2 deals
with the case in which there exists a vehicle in front of
the vehicle on the lane concerned such that the preceding
vehicle status is stopped, where the vehicle will be non-lead
on the lane, and the third rule check3 deals with the case
in which there exists a vehicle in front of the vehicle on
the lane concerned such that the preceding vehicle status is
crossing, where the vehicle will be lead on the lane. The
three rules are as follows:

rl [check1] :
{(gstat: nFin) (lane[LI]: (VI ; VS))
(v[VI]: LI,approaching,T,oo) OCs}

=> {(gstat: nFin) (lane[LI]: (VI ; VS))
(v[VI]: LI,stopped,T,T) OCs} .

rl [check2] : {(gstat: nFin)
(lane[LI]: (VS’ ; VI’ ; VI ; VS))
(v[VI’]: LI,stopped,T,T’)
(v[VI]: LI,approaching,T’’,oo) OCs}

=> {(gstat: nFin)
(lane[LI]: (VS’ ; VI’ ; VI ; VS))
(v[VI’]: LI,stopped,T,T’)
(v[VI]: LI,stopped,T’’,T’) OCs} .

rl [check3] : {(gstat: nFin)
(lane[LI]: (VS’ ; VI’ ; VI ; VS))
(v[VI’]: LI,crossing,T,T’)
(v[VI]: LI,approaching,T’’,oo) OCs}

=> {(gstat: nFin)
(lane[LI]: (VS’ ; VI’ ; VI ; VS))
(v[VI’]: LI,crossing,T,T’)
(v[VI]: LI,stopped,T’’,T’’) OCs} .

where T’ & T’’ are Maude variables of natural numbers
and VS’ is a Maude variable of queues. The reason why
v[vid] observable components, where vid is a vehicle
ID, do not have any values that correspond to lead in
informationx is that it is possible to use queues, etc. to
manage which vehicles are lead or not.

Two rules are used to specify a set of transitions that
change a lead vehicle status from stopped to crossing. One
rule deals with the case in which the ID of the lane on which
the lead vehicle is located is even and the other deals with
the case in which it is odd. The first rule enter1 is as
follows:

crl [enter1] :
{(gstat: nFin) (lane[LI]: (VI ; VS))
(v[VI]: LI,stopped,T,T) OCs}

=> {(gstat: nFin) (lane[LI]: (VI ; VS))
(v[VI]: LI,crossing,T,T) OCs’}

if isEven(LI) /\
LI1 := (LI + 2) rem 8 /\
(lane[LI1]: (VI1 ; VS1))
(v[VI1]: LI1,VSt1,T11,T12) OCs1 := OCs /\
VSt1 = stopped /\ T < T12 /\
LI2 := (LI + 5) rem 8 /\
(lane[LI2]: (VI2 ; VS2))
(v[VI2]: LI2,VSt2,T21,T22) OCs2 := OCs /\
VSt2 = stopped /\ T < T22 /\
LI3 := (LI + 6) rem 8 /\
(lane[LI3]: (VI3 ; VS3))
(v[VI3]: LI3,VSt3,T31,T32) OCs3 := OCs /\
VSt3 = stopped /\ T < T32 /\
LI4 := (LI + 7) rem 8 /\
(lane[LI4]: (VI4 ; VS4))
(v[VI4]: LI4,VSt4,T41,T42) OCs4 := OCs /\
VSt4 = stopped /\ T < T42 /\
OCs’ := letCross(VS,OCs) .

where LIi for i =1, . . . ,4 is a Maude variable of natural
numbers, VIi & Tj for i =1, . . . ,4 & j =11,12, . . . ,41,42
are Maude variables of natural numbers & ∞, VSi for
i =1, . . . ,4 is a Maude variable of queues, VSti for
i =1, . . . ,4 is a Maude variable of vehicle statuses, and
OCsi & OCs’ for i =1, . . . ,4 are Maude variables of
observable component soups. isEven(LI) holds if LI is
even. For the front-most vehicle (which may be a dummy
one whose ID is oo) of each of the four conflict lanes of lane
LI, the rules checks if it is not crossing the intersection and
its arrival time is greater than the arrival time T of the vehicle
VI concerned. If the conditions are fulfilled, the status of
the vehicle VI concerned becomes crossing from stopped
and the statuses of all vehicles that follow VI and whose
statuses are stopped also become crossing, which is done
by letCross(VS,OCs). The second rule enter2 can
be described likewise.

Two rules are used to specify a set of transitions that
change a vehicle status to crossed from crossing. The first
rule deals with the case in which the vehicle concerned is
one and only one vehicle in the queue that corresponds to
the lane concerned, and the second rule deals with the case
in which the queue that corresponds to the lane concerned
contain two or more vehicles. The two rules are as follows:

rl [leave1] :
{(gstat: nFin) (lane[LI]: VI)
(v[VI]: LI,crossing,T,T’) OCs}

=> {(gstat: nFin) (lane[LI]: oo)
(v[VI]: LI,crossed,T,T’) OCs} .

rl [leave2] :
{(gstat: nFin) (lane[LI]: (VI ; VI’ ; VS))
(v[VI]: LI,crossing,T,T’) OCs}

=> {(gstat: nFin) (lane[LI]: (VI’ ; VS))
(v[VI]: LI,crossed,T,T’) OCs} .

When a vehicle status changes to closed from crossing,
it is deleted from the queue that corresponds to the lane
concerned.

163

V. MODEL CHECKING

The paper [1] in which the LJPL protocol is proposed
takes into account three desired properties the protocol
should enjoy:
• Safety (version 2) No vehicles in conflict lanes are in

CS at the same time.
• Deadlock-freedom If a vehicle is trying to pass the

intersection (CS), then some vehicle, not necessarily
the same one, finally pass the intersection.

• Starvation-freedom If a vehicle is trying to pass the
intersection (CS), then the vehicle must finally pass the
intersection in finite time.

The Safety (version 2) property can be checked by the
following search command:

search [1] in IMUTEX : init =>*
{(v[VI]: LI,crossing,T,T’)
(v[VI’]: LI’,crossing,T2,T2’) OCs}

such that areConflict(LI,LI’) .

where IMUTEX is the specification of the protocol and
areConflict(LI,LI’) holds if and only if the lanes
LI and LI’ are conflict. The search commands tries to find
a state from the initial state init such that two vehicles are
crossing the intersection on two conflict lanes LI and LI’.
It does not find any such states, meaning that the protocol
enjoys the Safety (version 2) property for the case as shown
in Fig. 2.

The Deadlock-freedom property can be checked by the
following search command:

search [1] in IMUTEX : init =>! {OCs} .

The search commands tries to find a state from the initial
state init such that no transition can be conducted. It
finds such a state that contains the following observable
components:

(lane[0]: 0 ; 1) (lane[5]: 3 ; 4)
(v[0]: 0,stopped,0,0) (v[1]: 0,stopped,0,0)
(v[3]: 5,stopped,0,0) (v[4]: 5,stopped,0,0)

Vehicle 0 is the lead one on lane0, while vehicle 3 is the
lead one on lane5. The both lead vehicles’ arrival times
are 0. Therefore, either one is not permitted to cross the
intersection.

The counterexample of the Deadlock-freedom property
implies that it does not suffice to use a global clock,
which may create a symmetry. To break the symmetry,
lane IDs could be used. When there are multiple lead
vehicles on conflict lanes such that their arrival times are
exactly the same, higher priorities are given to those on
lanes whose IDs are less. That is, a logical clock such that
times are total order is used. In the specification, the two
rules enter1 and enter2 should be revised such that
T < T1i for i = 1, . . . , 4 used in the conditions is replaced
with (T < T1i or (T == T1i and LI < LIi)).
The protocol in which a logical clock such that times are

total order is used enjoys both the Safety (version 2) and
Deadlock-freedom properties for for the case as shown in
Fig. 2. Let the protocol refer to the one in which a logical
clock such that times are total order is used.

To model check that the protocol enjoys the Starvation-
freedom freedom, it is necessary to define PLJPL and LLJPL.
PLJPL consists of one atomic proposition fin. LLJPL is
defined as follows:

eq {(gstat: fin) OCs} |= fin = true .
eq {OCs} |= PROP = false [owise] .

where PROP is a Maude variable of atomic propositions. The
two equations say that for all states s ∈ SLJPL LLJPL(s) =
{fin} if and only if s contains (gstat: fin). The
Starvation-freedom property is then defined as follows:

eq halt = <> fin .

where <> is the LTL eventually connective ♦. We model
check if the protocol enjoys the Starvation-freedom property
by reducing modelCheck(init,halt). No counterex-
ample is found. Thus, the protocol enjoys the property for
the case as shown in Fig. 2.

VI. CONCLUSION

We have reported on a case study in which the LJPL
protocol is formally specified in Maude and model checked
with Maude model checking facilities. We found that a func-
tion used in the protocol should be revised while formally
specifying it and a logical clock such that times are total
order should be used to avoid deadlock states during model
checking experiments.

We have encountered the state explosion problem when
we tried to model check that the protocol enjoys some
property for the case as shown in Fig. 1. One piece of our
future work is to remedy the situation, say, by using the
divide & conquer approach to (leads-to) model checking [6].

REFERENCES

[1] J. Lim, Y. Jeong, D. Park, and H. Lee, “An efficient distributed
mutual exclusion algorithm for intersection traffic control,” The
Journal of Supercomputing, vol. 74, pp. 1090–1107, 2018.

[2] Clavel, M., et al., All About Maude, ser. Lecture Notes in
Computer Science. Springer, 2007, vol. 4350.

[3] P. C. Ölveczky and J. Meseguer, “Specification and verification
of distributed embedded systems: A traffic intersection product
family,” in RTRTS 2010, 2010, pp. 137–157.

[4] M. Asplund, A. Manzoor, M. Bouroche, S. Clarke, and
V. Cahill, “A formal approach to autonomous vehicle coor-
dination,” in FM 2012, 2012, pp. 52–67.

[5] M. L. Sichitiu and M. Kihl, “Inter-vehicle communication
systems: A survey,” IEEE Commun. Surveys Tuts., vol. 10, no.
1-4, pp. 88–105, 2008.

[6] Y. Phyo and K. Ogata, “Formal specification and model check-
ing of the Walter-Welch-Vaidya mutual exclusion protocol for
ad hoc mobile networks,” in APSEC 2018, 2018.

164

Improving the Applicability of the Ranked Nodes Method to build Expert-Driven
Bayesian Networks

João Nunes∗1, Luiz Silva†1, Mirko Perkusich‡1, Kyller Gorgonio§1, Hyggo Almeida¶1, and Angelo
Perkusich‖1

1Embedded and Pervasive Computing Laboratory, Federal University of Campina Grande, Campina
Grande, Brazil

DOI reference number: 10.18293/SEKE2019-190

Abstract

One challenge in constructing a Bayesian network (BN)
is defining the node probability tables (NPTs), which can
be learned from data or elicited from domain experts. In
practice, for large-scale BN it is common not to have
enough data for learning and elicitation from experts is
unfeasible. Previous work proposed a solution to this
problem: the Ranked Nodes Method (RNM). However, this
solution needs to be applied by a RNM expert who, through
the elicitation of expert judgement, identifies the necessary
parameters for the RNM algorithm to generate the NPTs.
Hence, this paper presents a novel approach to define NPT
using the RNM with no ranked nodes-specific knowledge.
The solution is named Simulated Bayesian Network Expert
(SBNE). It consists of eliciting a subset of the NPT from the
domain experts which is used as input to an algorithm that
estimates the optimal parameters for the RNM to generate
the NPTs. To validate our solution, we conducted an
experiment with multiple domain experts and compared the
results with other methods. Our solution outperformed
the other methods (producing NPTs at least 12% more
accurate) and is, therefore, a promising approach to apply
RNM without relying on RNM experts.

Bayesian networks; expert systems; knowledge
acquisition; ranked nodes.

∗joao.bezerra@embedded.ufcg.edu.br
†luiz.silva@embedded.ufcg.edu.br
‡mirko.perkusich@embedded.ufcg.edu.br
§kyller@embedded.ufcg.edu.br
¶hyggo@embedded.ufcg.edu.br
‖perkusic@embedded.ufcg.edu.br

1 Introduction

Bayesian Network (BN) is a mathematical model that
graphically and numerically represents the probabilistic
relationships between random variables through Bayes
theorem. Recently, given the evolution of the computational
capacity, which enabled the calculation of complex BNs,
it has become a popular technique to assist on decision-
making [7] and it has been applied in several areas such as
large-scale engineering projects [12], software engineering
[16, 14], and sports management [4].

The challenges for the construction of BNs can be
divided into two sub-problems: (i) construct the directed
acyclic graph (DAG) and (ii) define the NPTs. In this
research, we focus on (ii). In cases where there is historical
data with enough information about the domain to be
modelled it is possible to automate the process of NPT
definition through batch learning [10].

Unfortunately, in practice, in most cases, there is not
enough data [7] to apply batch learning. In such cases,
it is necessary to manually define the NPTs through the
elicitation of domain experts knowledge. However, given
that the complexity of building NPTs grows exponentially,
depending on the number of parents and states, the manual
definition of the NPT becomes unfeasible.

To reduce the complexity of manually defining a NPT
through the elicitation of knowledge from domain experts,
Fenton et al. [7] proposed the Ranked Nodes Method
(RNM). This method is limited to nodes (i.e., random
variables) with an ordinal scale (e.g., “Good”, “Medium”,
“Bad”), which are called ranked nodes.

In ranked nodes, the ordinal scale is mapped into a scale
monotonically ordered in the interval [0, 1]. The solution
is based on a Normal distribution truncated between [0, 1]

165

(i.e., TNormal) to represent the NPTs. Hence, the NPT of
a child node is a TNormal calculated as the mixture of the
TNormals of its parent nodes. There are four expressions to
model the mixture’s mean (µ): weighted mean (WMEAN),
weighted minimum (WMIN), weighted maximum (WMAX)
and the mixture of the classic minimum and maximum
functions (MIXMINMAX).

Hence, to properly use the RNM it is necessary to
understand the mixture process to select the appropriate
parameters: the weighted expression; a set of weights of the
parent nodes; and the variance (σ). However, even when
RNM experts are available, the application of the RNM
method still presents challenges.

The means to identify a suitable expression to mix the
TNormals of the parent nodes based on mode assessments
of the domain experts is straightforward, as described in
Laitila and Virtanen [11]. Conversely, the discovery of
the weights and variance parameters are far more complex.
Such tasks are usually performed by the RNM experts using
a trial and error strategy. This strategy comes down to a
cycle of generating, verifying and adjusting the parameters
to regenerate the NPTs, which is repeated until a satisfying
result is discovered [7, 11].

In this paper, we present a novel approach to improve
the applicability of RNM. Our main goal is to encapsulate
its complexity, allowing for its use by domain experts with
no prior knowledge about ranked nodes. We use “what
if” analysis (i.e., truth tables) to elicit knowledge from
experts using visual aids. Given the information collected,
we use the expert system proposed in Silva et al. [5] to
obtain the weighted expression to mixture the TNormals
and an algorithm named “Simulated Expert” to estimate the
optimal variance and set of weights of the parent nodes.

We evaluated our solution with an experiment in which
multiple domain experts applied our approach to RNM
and two other methods to quantify a BN model related to
the evaluation of cohesion of agile software development
teams. The NPTs generated with the three methods were
compared in terms of accuracy using manually defined
NPTs as benchmark. The results showed that our solution
is promising as it has achieved greater accuracy compared
to the other methods.

2 Background

BNs are probabilistic graph models used to represent
knowledge about uncertain domains. A BN, B, is a
directed acyclic graph that represents a joint probability
distribution over a set of random variables V [9]. The
network is defined by the pair B = {G,Θ}. G is the
directed acyclic graph in which the nodes X1, . . . , Xn

represent random variables and the arcs represent the direct
dependencies between these variables. Θ represents the set

Table 1. Example of a truth table.
Parent A Parent B Parent C Child D
Very low Very high Very low Low
Very high Very low Very low Low
Very low Very low Very high Low
Very low Very high Very high High
Very high Very low Very high Low
Very high Very high Very low Medium

of probability functions. This set contains the parameter
θxi|πi

= PB(xi|πi) for each xi in Xi conditioned by πi,
the set of parents of Xi in G. Equation 1 presents the joint
distribution defined by B over V .

PB(X1, . . . , Xn) =
n∏
i=1

PB(xi|πi) =
n∏
i=1

θXi|πi (1)

We present an example of a BN in Fig. 1, in which
ellipses represent the nodes and arrows represent the arcs.
The probability functions are usually represented by NPTs.
Even though the arcs represent the causal connection’s
direction between the variables, information can propagate
in any direction [13].

Figure 1. A Bayesian network example.

According to Fenton et al. [7], to define the NPT, the
RNM user should define the resulting TNormal parameters
constructing “truth tables” using example scenarios, which
they define as “what if” analysis. An example is shown
in Table 1. By analysing it, we can conclude that defining
the parameters is not straightforward and there is a need to
understand the TNormal mixture process to apply the RNM.

In Perkusich et al. [15], a simplified approach to use
the RNM whenever there is a need to collect data from
multiple experts was presented. Instead of using “what
if” analysis, it asks the experts to order the relationships
between the child and parents nodes given their relative
magnitude. The collected data is analysed statistically and
used to define the weights for the function of µ, having the
function type defined to WMEAN and a fixed variance of
5.0E−4. Therefore, although it encapsulates the complexity
of the RNM approach, it has limited modelling capabilities
and, as discussed in Perkusich et al. [16], it might produce
incorrect NPTs.

166

In da Silva et al. [5], an approach based on production
rules was proposed to encapsulate the complexity of
calibrating the NPTs. Given a set of input values, the
developed expert system automatically calibrates the NPTs.
In this work, the modelling capabilities of the approach
presented in Fenton et al. [7] is combined with ranked nodes
specific knowledge encapsulation of the approach presented
in Perkusich et al. [16]. However, the proposed approach
also fixed the variance in 5.0E−4, which is a limiting factor.

3 Solution

SBNE is an approach to elicit expert knowledge and
apply the RNM method without relying on the assistance
of RNM experts. SBNE stands for Simulated Bayesian
Network Expert. This approach can be divided into three
steps: (i) direct or indirect probability assessment from
domain experts; (ii) use of production rules1 to define
the weighted expression; and (iii) use of the “Simulated
Expert” algorithm to estimate the input parameters required
to apply the RNM method. In (i) domain experts use a GUI
(still a prototype) that allows them to evaluate probability
distributions directly (i.e., using numbers), or indirectly
(i.e., using a visual tool).

3.1 Knowledge Elicitation Process

Figure 2. Component Prototype (A).

The prototype used in the probability elicitation
process is here decomposed into two separate figures (for
presentation purposes only). Hence, for each combination
of extreme cases of the parent nodes (i.e., each row
in the truth table) domain experts provides the expected
probability distribution using an interactive bar chart (see
Fig. 2) or sliders horizontally arranged (see Fig. 3). During

1Files available at https://github.com/SEKE2019/SBNE

Figure 3. Component Prototype (B).

the elicitation process the domain experts directly interacts
with the vertical bars so that by raising or lowering one
of the bars the others automatically adjust itself. Strictly
speaking, the natural order, which would be to inform the
probability distributions with numbers and update the bar
chart, is subverted so that users can interact and evaluate
probability distributions by reasoning in terms of proportion
rather than numerical terms, if they so wish. The sliders
shown in Fig. 3 behave the same way.

A commonly employed strategy by domain experts is
to first set up the bar relative to the state that they have
greater confidence in estimating, and adjust the other states
accordingly. To apply this strategy, the users can lock
or unlock states by clicking over it, as shown with an
arrow in Fig. 2, so that changes in other states do not
modify the locked states. In short, the domain experts are
able to provide the input data to the “Simulated Expert”,
reasoning in terms of proportion, in which case they ignore
the numerical information of the prototype, or reasoning
directly in numerical terms, in which they use the elements
presented in Fig. 3.

That been established, let us consider a simple case in
which we have a child node C with two parent nodes, A
and B, all having three states each (e.g., “low”, “medium”
and “high”). To generate the child node’s NPT, the domain
expert needs to assess four probability distributions as
shown in Table 2. The Table 2 is basically a truth table
composed by all the combinations of extreme states of the
parent nodes.

In this case, each row in Table 2 is filled with data
from the interaction of the domain experts with the
components presented in Fig. 2 and 3. In other words,
the domain experts inform four probability distributions,
which constitutes a subset of the child node’s NPT. This
subset is them used as input for the “Simulated Expert”
to estimate the optimal parameters for the RNM algorithm.
The weighted expression is defined using production rules
as proposed in [5].

167

Table 2. Truth table for a node with two
parents.

Rows
Parents Child

A B
C

Low Medium High
1 Low Low 1 0 0
2 Low High 0 0.3 0.7
3 High Low 0 0.3 0.7
4 High High 0 0 1

3.2 Simulated Expert

The Simulated Expert is an algorithm that receives as
input the target probability distributions and a weighted
expression to estimate the most suitable parameters (i.e.,
variance and set of weights of the parents) for the RNM
algorithm to generate the NPTs.

The algorithm can be divided into three steps: (i)
search for the most likely range of the optimal variance;
(ii) identify the combination of weights of the parent
nodes; and (iii) estimate the optimal variance parameter, as
detailed below.

Step (i):

1. generate a variance vector V in range 5.0E−4 to 0.2
with step 5.0E−4;

2. set the weight of all parent nodes to 5;

3. define a “resolution” constant δ = 10 in which the
desired accuracy is inversely proportional to its value;

4. calculate the step s = |V |
δ to perform the search for the

most probable interval of the optimal variance;

5. traverse V and at each s, define the variance of the
child node using the current variance (e.g., shaded
boxes in Fig. 4), calculate the NPT and its relative
score. Do that until there is no room for improvement
(e.g., row 5 in Fig. 4) or until it reaches the end of V ;

6. when the score starts decreasing return to the previous
used variance index and calculate a = index − |V |δ
and b = index + |V |

δ , the most likely interval where
the optimal variance must be (e.g., row 7 in Fig. 4).

Step (ii):

1. set the variance of the child node using the median
variance in v ∈ V (i.e., v = V [a : b]), the interval at
which the optimal variance is more likely to be (e.g.,

Table 3. Truth table approximation from the
Simulated Expert.

Rows
Parents Child

A B
C

Low Medium High
1 Low Low 0.9965 0.0035 0
2 Low High 0 0.2995 0.7005
3 High Low 0 0.2995 0.7005
4 High High 0 0.0035 0.9965

Result obtained with the Simulated Expert for the child node C using the
weighted expression WMAX with the following parameters: σ2 = 0.062;
weight 4 for all parent nodes; BS = 3.94E−06.

output of (i) illustrated in Fig. 4 row 7 in which it
would be the variance located in index 5);

2. runs all combinations of weights of the parent nodes
and stores the optimal set of weights.

Step (iii):

1. using the optimal set of weights obtained in previous
step, traverse the subset v (e.g., row 7 in Fig. 4)
performing the same actions as in item 5 from step (i).

Figure 4. Illustration of the execution of the
algorithm from step (i).

For each execution of the RNM algorithm, a score of the
estimated probabilities relative to the target probabilities is
computed using the Brier Score, but any other similarity
measure can be used (e.g., euclidean distance, Kullback-
Leibler divergence).

168

Team Cohesion

Collaboration Self-management

Team OrientationCoordination

Adaptability

ExpertiseShared Leadership

Figure 5. BN used in the experiment.

4 Empirical Validation

An experiment was conducted with undergraduate
students that work as junior software developers at the
Embedded Lab – a software development lab located at the
Federal University of Campina Grande, Brazil. The purpose
of the experiment was to validate the proposed approach.

In the experiment, 10 developers quantified a BN
(adapted from the model proposed in Freire et al. [8])
using the proposed approach and two others methods:
the Weighted Sum Algorithm (WSA) and a variation of
the WSA, here named WSAAHP, that employs indirect
probability elicitation by means of pairwise comparisons
between states in which the domain experts compare the
likelihood of states using a verbal and numerical scale.

Each domain expert also manually defined NPTs that
served as benchmark for comparing the methods. A
Randomised Complete Block Design (RCBD) was adopted
in the experiment. The methods were compared in terms
of accuracy. The accuracy is defined here as how well
the NPTs generated represent the mode of probability
distributions in the benchmark NPTs.

We focused on the following research question and null
hypothesis:

RQ1: Does the use of the SBNE approach to the RNM
method maintain, improve or degrades expert-driven
BNs accuracy?

H0: The proposed approach to RNM is less accurate
than the other methods.

The BN used in the experiment is presented in Fig. 5.
The domain experts built 40 NPTs. Nevertheless, only the
three parent nodes NPT was considered in the analysis (i.e.,
the one associated with the child node self-management),
since it is the most complex. All the NPTs are available in
an online repository2.

2https://github.com/SEKE2019/SBNE

Table 4. Tukey simultaneous tests for
differences of means

Difference of
Method Levels

Difference
of Means

SE of
Difference

Simultaneous
95% CI T-Value Adjusted

P-Value
WSA-RNM -0.1267 0.0414 (-0.2323; -0.0211) -3.06 0.018
WSAAHP-RNM -0.1602 0.0414 (-0.2658; -0.0546) -3.87 0.003
WSAAHP-WSA -0.0335 0.0414 (-0.1391;0.0721) -0.81 0.702

Individual confidence level = 98%.

An analyse of variance (ANOVA) was performed, which
indicated that there is statistically significant difference (p-
value = 0.003) between the accuracy of the methods with a
significance level of 0.05. Tukeys HSD post hoc test was
performed to determine which methods are in fact different
in regards to accuracy level.

The Table 4 summaries the Tukey simultaneous test for
differences of means. As can be seen in the Table 4, the
confidence interval for the difference between the means
of WSA-RNM and WSAAHP-RNM do not include zero,
which indicates that the difference is statistically significant
between these methods. The results show that RNM is 13%
and 16% (i.e., rounded values) more accurate than WSA
and WSAAHP, respectively. Therefore, H0 was rejected.

5 Threats to Validity

Despite the results obtained with the proposed approach,
the comparison with different methods poses as a threat
to internal validity. Nevertheless, the method WSA can
be considered as a good benchmark because it has been
mathematically and empirically validated in the literature
[6, 2]. Moreover, the external validity may be limited,
considering that the participants of the experiment were
undergraduate students who work as software developers
and that the experiment is bound to a specific context.

6 Conclusions

Despite recent popularity, the construction of BNs is still
challenging. One of the challenges refers to defining the
NPTs for large-scale BN. It is possible to automate this
process using batch learning when there is a database with
enough information. In practice, this is not common. The
other option is to elicit data from experts, which becomes
unfeasible for large scale BN. Fenton et al. [7] presented
a solution based on ranked nodes. However, to apply this
solution a BN expert is usually necessary.

In this paper, we complement the work of Fenton et al.
[7] and Silva et al. [5] by presenting a novel approach to
apply the RNM without relying on BN experts. The solution
is named Simulated Bayesian Network Expert (SBNE) and
it consists of eliciting a subset of the NPT from the domain

169

experts, which is used as input to estimate the optimal
parameters (without relying on RNM experts) for the RNM
to generate the NPTs.

Nonetheless, this approach can be used by RNM experts,
reducing their effort to identify the optimal parameter
for the RNM algorithm. We compared the proposed
approach to the RNM with two other methods and the RNM
outperformed them, reaching a mean accuracy of 75.78%
against 63.12% of WSA and 59.77% of WSAAHP. These
results are promising and validate our approach, which
makes RNM accessible to a wider range of users.

Notwithstanding, it is not our goal to state which method
is the best. For such a purpose, more experiments would
be needed to investigate the matter. That said, it is our
belief that future works in this area should concentrate on
examining the proposed approach against BNs derived from
RNM experts and comparing multiple methods using well
known BN models from the literature such as ALARM [3]
and Hailfinder [1].

References

[1] B. Abramson, J. Brown, W. Edwards, A. Murphy, and
R. L. Winkler. Hailfinder: A bayesian system for
forecasting severe weather. International Journal of
Forecasting, 12(1):57–71, 1996.

[2] S. Baker and E. Mendes. Evaluating the weighted
sum algorithm for estimating conditional probabilities
in bayesian networks. In SEKE, volume 2010, pages
319–324, 2010.

[3] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and
G. F. Cooper. The alarm monitoring system: A
case study with two probabilistic inference techniques
for belief networks. In AIME 89, pages 247–256.
Springer, 1989.

[4] A. C. Constantinou, N. E. Fenton, and M. Neil.
Profiting from an inefficient association football
gambling market: Prediction, risk and uncertainty
using bayesian networks. Knowledge-Based Systems,
50:60 – 86, 2013.

[5] R. M. da Silva, M. Perkusich, R. M. Saraiva,
A. S. Freire, H. O. Almeida, and A. Perkusich.
Improving the applicability of bayesian networks
through production rules. In SEKE, pages 8–13, 2016.

[6] B. Das. Generating conditional probabilities for
bayesian networks: Easing the knowledge acquisition
problem. arXiv preprint cs/0411034, 2004.

[7] N. E. Fenton, M. Neil, and J. G. Caballero. Using
ranked nodes to model qualitative judgments in

bayesian networks. IEEE Trans. on Knowl. and Data
Eng., 19(10):1420–1432, Oct. 2007.

[8] A. Freire, M. Perkusich, R. Saraiva, H. Almeida, and
A. Perkusich. A bayesian networks-based approach
to assess and improve the teamwork quality of
agile teams. Information and Software Technology,
100:119–132, 2018.

[9] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian
network classifiers. Machine Learning, 29(2-3):131–
163, 1997.

[10] D. Heckerman. Learning in graphical models. chapter
A Tutorial on Learning with Bayesian Networks,
pages 301–354. MIT Press, Cambridge, MA, USA,
1999.

[11] P. Laitila and K. Virtanen. Improving construction
of conditional probability tables for ranked nodes in
bayesian networks. IEEE Transactions on Knowledge
and Data Engineering, 28(7):1691–1705, 2016.

[12] E. Lee, Y. Park, and J. G. Shin. Large engineering
project risk management using a bayesian belief
network. Expert Syst. Appl., 36(3):5880–5887, Apr.
2009.

[13] J. Pearl and S. Russell. Bayesian networks. Handbook
of brain theory and neural networks, 1995.

[14] M. Perkusich, K. Gorgonio, H. Almeida, and
A. Perkusich. Assisting the continuous improvement
of scrum projects using metrics and bayesian
networks. Journal of Software: Evolution and
Process, 2016. Article in Press.

[15] M. Perkusich, A. Perkusich, and H. O. de Almeida.
Using survey and weighted functions to generate
node probability tables for bayesian networks. In
2013 BRICS Congress on Computational Intelligence
and 11th Brazilian Congress on Computational
Intelligence, pages 183–188. IEEE, 2013.

[16] M. Perkusich, G. Soares, H. Almeida, and
A. Perkusich. A procedure to detect problems
of processes in software development projects using
bayesian networks. Expert Systems with Applications,
42(1):437 – 450, 2015.

170

A systematic process to define expert-driven software metrics thresholds

Renata Saraiva 1, Mirko Perkusich1, Hyggo Almeida1, and Angelo Perkusich1

1Embedded and Pervasive Computing Laboratory, Federal University of Campina Grande, Campina
Grande, Brazil

DOI reference number: 10.18293/SEKE2019-217

Abstract

Software metrics are usually used for quantification,
not giving the necessary support for decision making. To
increase their usefulness, it is necessary to give them
meaning through the definition of significant thresholds.
Despite its importance, the state of the art on threshold
derivation is mostly based on data-driven approaches. This
paper presents a systematic approach to define thresholds
for metrics in the absence of data and based on eliciting
knowledge from experts. The proposed approach is based
on identifying context factors that influence the thresh-
olds for a given metric and is supported by fuzzy logic
concepts to model the crisp value (i.e., collected data)
into a linguistic variable (i.e., interpreted information). We
present context factors elicited from three experts for the
metrics code coverage, static code analysis warnings count
and defect count. Further, we present cases on how to
implement the proposed approach. As a result, we conclude
that the approach is promising.

Keywords—Software metrics; Software thresholds; Fuzzy
logic.

I. Introduction

Despite their potential advantages, software metrics are
usually used only for quantification purposes, not giving
adequate support for decision-making [1]. For this purpose,
it is necessary to give meaning (i.e., semantics) to the
metrics through the definition of reference values (i.e.,
thresholds). Thresholds are values used to set ranges of
desirable and undesirable states and indicate anomalies.
The absence of thresholds for many software metrics is
one of the main reasons for them to not be effectively
used in the industry [4].

There are several solutions to calculate software met-
rics thresholds proposed in the literature [1], [18], [17],
[8], [4], [23], [15], [13], [14], [5]. We summarize their
characteristics and limitations in Section II. As far as our
knowledge, all the proposed solutions are data-driven and
focus on source code metrics. For instance, recently, two
empirical studies were published comparing the existing
data-driven thresholds models to predict faults on open
source software [2] and fault proneness [3]. Therefore,
if an organization needs to define thresholds for popular
management metrics such as team velocity, build status and
lead time [9], the literature is scarce in guiding them on
how to define representative thresholds for their context.
For this purpose, in practice, organizations use expert
knowledge to define thresholds using ad hoc processes. For
instance, for the metric code coverage, many development
groups require 85% coverage to achieve quality targets as
the status quo [20]. On the other hand, there are several
factors that might influence coverage target for a given
project, such as product complexity, project criticality, and
cost of evolution.

To complement the current state of the art on software
metrics threshold derivation, we present a systematic ap-
proach to define thresholds for metrics in the absence of
data and based on eliciting knowledge from experts. The
goal is to support managers when making decisions re-
garding the interpretation (i.e., semantics) of the collected
metrics by developing models that mimics the thought
process of humans when making decisions regarding the
thresholds.

The proposed approach is based on identifying context
factors that influence the thresholds for a given metric and
is supported by fuzzy logic concepts to model the crisp
value (i.e., collected data) into a linguistic variable (i.e.,
interpreted information). For instance, consider that the
metric code coverage is used to decide if enough tests
have been executed and, given that the defect count is

171

low enough, the product can be delivered to the customer.
The crisp value of code coverage lies in [0, 100]. So, for
instance, we could map the value 85 to the linguistic
variable OK, which means that, given this metric, the
product should be released. Conversely, we could map the
value 50, meaning that the product should not be released.

The research question that we address in this paper is:
How can we define thresholds for software metrics in

the absence of data and when the organization context
cannot be reduced to an experimental setup?

Our contributions include: (1) a systematic approach
for deriving software metrics thresholds in the absence
of data; (2) an empirical cyclic process to continuously
refine thresholds; and (3) context factors that influence
the definition of popular metrics such as code coverage,
static code analysis warnings count and defect count. Our
systematic approach is demonstrated through the definition
of thresholds for popular software metrics.

The remaining of the paper is organized as follows: in
Section II, we present works related to deriving thresholds
and discuss them in light of our approach, the proposed
process; in Section III, we present the proposed approach;
and in Section IV, we present our final remarks and future
work.

II. Related work

The effective use of software metrics is hampered by
the lack of significant thresholds [1]. In the literature,
few metrics have defined thresholds. Furthermore, many
researchers have proposed different approaches to define
them [1], [4], [5], [13], [15], [17], [18], [23].

Alves et al. [1] present a method that determines
threshold empirically from measurement data (i.e., bench-
marking). The method is based on statistical properties of
the metric such as scale and distribution. To evaluate their
approach, they collected data from 100 object-oriented
software systems to calculate thresholds, which were suc-
cessfully used to assist on software analysis, benchmarking
and certification. The main risk of such a solution is to use
thresholds to assist decision-making that were calculated
for a different context.

In the works of Oliveira et al. [15], [13], the con-
cept of relative thresholds is proposed as well as a tool
for extracting these thresholds. Their approach handles
the heavy-tailored distribution of source code metrics by
complementing absolute thresholds with a percentage of
software code entities that must follow it. The technique is
validated with an industrial case study. As Alves et al. [1],
its limitation is that the calculated threshold and percentage
might be dependent on the context.

Ferreira et al. [4] used the EasyFit tool to define the
probability distribution with the best fit for the distribution

for a given metric. Therefore, if the defined probabil-
ity distribution had a representative mean value, it was
used as the reference value. Otherwise, the distribution is
quantified as bad, good or moderate. By analyzing data
of forty open source projects, they defined the thresholds
for six metrics: LCOM (Lack of Cohesion of Methods),
DIT (Depth in Tree), COF (Coupling Factor), afferent
couplings, number of public methods, and number of
public fields.

In Foucault et al. [5], a solution based on statistical
methods was presented. This approach is based on (i)
double sampling [19] to randomly selects projects sam-
ples, and (ii) bootstrap to estimate the thresholds based
on quartiles. Despite the potential of this approach, the
validation process was limited to a test to identify the best
configuration for the approach itself since, according to the
authors, the two statistical methods are widely used.

In Shatnawi [17], a solution based on logarithmic
transformation was presented. In this approach, initially,
the data is transformed using the natural log, leaving
the symmetric data thus closer to a normal distribution.
Afterward, a temporary reference value (T ′) is collected
using the mean (M) and standard deviation (SD) so that
T ′ = M + SD or T ′ = M − SD. Finally, the T ′ is
converted to the original distribution by using the exponent
function of T ′, generating the final reference value.

All the presented studies are data-driven and most of
them focus on source code metrics. The motivation of
our work is to define a systematic process that guides
engineers in defining metrics thresholds in the absence of
data. In this context, Marinescu [10] presents a guideline
to define semantical filtering to support the analysis of
source code metrics in the context of detecting design flaws
based on the derivation of thresholds. They define two
types of thresholds-related filters: marginal and interval.
For a marginal filter, it is necessary to define the threshold
value and direction, which specifies whether the threshold
value is an upper or lower bound. The thresholds are
described as design rules or heuristics (e.g., a class should
not be coupled with more than 6 other classes). Interval
filters are defined as an interval such as “between 20 and
30”. Even though Marinescu [10] describes the use of
thresholds as a key component on the proposed solution,
he does not present a systematic approach to define it. As
shown in Section III, we use the classification of thresholds
presented in Marinescu [10] and complement their work
by proposing a systematic approach to define them.

III. Threshold definition strategy

In this section, we present the proposed approach with
running examples. The examples are a result of a pi-
lot study executed at a Brazilian software development

172

company in which we collected data from 3 project
managers, all of them with over 5 years of experience
managing projects with support of software metrics. The
most important decision they had was defining if a version
of the product had enough quality to be released. The
three main metrics they used for this purpose were code
coverage, static code analysis warnings count and defect
count. Code coverage was used to indicate if enough tests
were performed, which gave them confidence that few
defects would be detected only in operation. Static code
analysis warnings count was used as a measure of the
internal quality of the product. The defect count, which
was only representative if code coverage was high enough,
gave a snapshot of the current quality of the product. As a
status quo on the company, all projects had a lower bound
threshold of 80% for code coverage, 10 for static code
analysis warnings count, and 5 for defect count.

The main goal of the proposed approach is to provide
software engineers with a systematic mechanism to enable
them to work with software metrics in a more abstract
level through the definition of thresholds in the absence of
historical data. Since the goal of using metrics is to support
decision-making, this is closer to the real intention in using
metrics. An assumption of the proposed approach is that
the metrics are valid for their intended purposes [12].

The proposed expert-driven threshold definition strategy
is cyclic and composed of three main steps, namely: (i)
thresholds characterization, (ii) thresholds modeling, and
(iii) thresholds evaluation. An overview of the approach is
shown in Figure 1. Our approach can be used to elicit
data from a single or multiple experts. There are two
main roles: threshold designer and domain experts. The
threshold designer is responsible for leading the planning
and execution of the threshold definition process by the
elicitation of knowledge from the domain experts. The
domain experts are responsible for actively participating
in the process of defining the thresholds models (steps i
and ii) and evaluating the models (steps iii). The domain
experts might include the project manager, development
lead, test lead, product manager or quality assurance man-
ager.

In what follows, we present details regarding each of
the steps of the proposed approach.

A. Step i: thresholds characterization

On the first (i) step, the goal is to characterize the
thresholds through the identification of the relevant con-
text factors and the type of the threshold, as defined in
Marinescu [10]. First, it is necessary to define the decision
scale to be used.

Definition 1 (Metric semantics scale) A metrics se-
mantic scale is the scale to be used to represent the

Define threshold
type

Identify context
factors

Select membership
function shape

Refine membership
function

Conduct
measurement and

make decision
Accept?

Start

Thresholds evaluation

Thresholds characterization

Thresholds modeling

Yes

No

End

Fig. 1. Proposed approach overview.

semantics of a given metric.
The possible types of scale are Boolean and ordinal. For

instance, one may use a Boolean scale for code coverage
with the values: OK and NOT OK. Another possibility is
to use an ordinal scale: Bad, Moderate and Good.

Afterwards, the type of threshold must be defined:
marginal or interval. If a marginal threshold is se-
lected, there are two possible types: HigherThan(Θ) and
LowerThan(Θ), where Θ is the reference value. If an
interval threshold is selected, by definition is of the type
Between(α,β), which is equivalent to HigherThan(α) ∧
LowerThan(β), where α is the lower bound and β is the
upper bound.

Next, the context factors must be identified. Context
factors are attributes from key entities of the process that
might influence the threshold. There are two types of
context factors: diminishing factors and enhancing factors.
The diminishing factors influence the thresholds values to
be lower, and the enhancing factors influence the thresh-
olds values to be higher. For instance, for code coverage
metric, we elicited the following factors from the experts:
product complexity and project criticality as enhancing
factors, while team experience and impact on evolution
cost as diminishing factors. For static analysis warnings
count and defect count, project criticality is the enhancing
factor. Finally, the factors are ranked in order of relative
magnitude of their influence on the thresholds’ values.

It is important to notice that the context factors are fac-
tors that influence the semantics of the metrics and not the
value itself. For instance, one might reason that the factor
“volatile requirements” influences the threshold of “defect

173

count”, because the more volatile are the requirements,
less time will be available for testing and, consequently,
lower will be the “defect count” in the testing phase (not
necessarily, the “defect leakage”). On the other hand, even
though this might be true, the reference value for the given
metric should not be lower, which discards this factor.

In the case that multiple domain experts are involved
in the process, the threshold designer must execute the
described tasks with each one individually to avoid bias.
Afterwards, with all the domain experts together, he
presents the identified possibilities of threshold types and
context factors and executes a meeting like the Planning
Poker [7], in which each expert holds two cards: Agree and
Disagree. The threshold designer mediates the meeting by
enabling a structured discussion regarding a consensus of
the threshold types and context factors to be considered
in the models. As in a Planning Poker meeting, candidate
solutions must be individually voted by experts, by turning
their card simultaneously, until a consensus is reached by
all the experts.

B. Step ii: thresholds modeling

After defining the type of threshold and rank the context
factors, the experts will have a better understanding regard-
ing the semantics of the given metrics. Since our approach
is based on concepts of fuzzy logic, the thresholds are
modeled as a linguistic variable, which is “a variable whose
values are words or sentences in a natural or artificial
language” [22]. For this purpose, we map the metric
semantic scales defined in step i as the term set to be used
for the linguistic variable. So, for instance, we could have
the linguistic variable code coverage (c) composed of the
terms {OK, Not OK}, in the case of a Boolean scale.

The main goal of this step is to fuzzify the crisp values
of a metric into fuzzy linguistic terms. For this purpose, it
is necessary to define the membership functions. There are
several types of membership functions that can be used.
In Figure 2, we show six popular types of functions.

A membership function must be defined for each term
in the given linguistic variable. So, for a metric with a
Boolean scale, two membership functions must be defined.

The main challenge is to define the parameters for
the membership functions. For this purpose, given the
type of function and the magnitude of the impact of the
context factors identified in step i, the threshold designer
might show the experts possible shapes for the membership
functions to guide them. For instance, if the threshold is
marginal, probably the experts could choose a z-shape,
sigmoid, or s-shape as a reference. If the threshold is
interval, the experts could choose triangular, trapezoidal or
Gaussian. For instance, for the code coverage, we could
use the Gaussian shape.

Fig. 2. Six types of fuzzy membership func-
tions: (A) triangular, (B) z-shape, (C) trape-
zoidal, (D) s-shape, (E) sigmoid and (F) Gaus-
sian, [6].

TABLE I. “What if” scenarios for Code coverage
with a verbal scale

Code coverage crisp value Not OK OK
10 Certain Impossible
20 Certain Impossible
30 Certain Impossible
40 Probable Improbable
50 Expected Uncertain
60 Fifty-fifty Fifty-fifty
70 Uncertain Expected
80 Improbable Probable
90 Uncertain Expected

100 Probable Improbable

Afterwards, the experts should use their experience
from past projects to define “what-if” scenarios to guide
them in configuring the functions, in which for a set of
values, they would indicate the probability of it being
mapped to each of the possible terms. For this purpose,
instead of directly defining the probabilities, they could
use a verbal scale such as the one presented in Renooij
and Witteman [16]. For instance, for code coverage, the
scenarios shown in Table I could be used:

Afterwards, the verbal scale is converted to a numer-
ical scale following the rules presented in Renooij and
Witteman [16]. As a result, we have the values presented
in TableII.

Given this, an algorithm can be used to fit the data
elicited from the experts for each linguistic term into
the appropriate distribution. For instance, in Figure 3, we
present a fit for the membership function for the term Not
OK using the Akima Cubic Spline. Finally, the expert can
analyze visually the resulting distribution and judge if the
reflects his intuition (i.e., face validity). Otherwise, they
must reflect on the inconsistencies and the step should
restart.

174

TABLE II. “What if” scenarios for Code coverage
with a numerical scale

Code coverage crisp value Not OK OK
10 100 0
20 100 0
30 100 0
40 85 15
50 75 25
60 50 50
70 25 75
80 15 85
90 25 75

100 85 15

Fig. 3. Curve fit for Code Coverage’s linguistic
term Not OK.

As a rule of thumb, it is preferable to set thresholds
that are more conservative, since it is better to get more
false positive results, rather than missing an important issue
due to a very strict threshold value. The threshold can be
refined during the empirical cycle which is executed on
step iii.

As in step ii, this step should be, initially, executed
individually with each expert. Afterwards, consensus must
be achieved between all the experts in a Planning Poker-
style meeting.

C. Step iii: thresholds evaluation

At this point, the thresholds models are defined, but as
in other expert-driven processes [11], [21] it is necessary to
have an empirical cycle in which decisions based on the
thresholds are analyzed to evaluate the models. For this
purpose, the threshold designer should schedule meetings
according to the project’s context. For agile projects with
short-term releases, a meeting could be held every iteration
or two. During the meeting, along with the threshold
designers, the domain experts that participated on steps
i and ii should participate to discuss the results of using
the models.

Assuming that the metrics are valid for their intended
purposes, if the model’s results are not consistent with the
reality, there are three possible outcomes: (1) exception
case, (2) scope limitation, and (3) model needs refinement.
For the first outcome, it is possible that, for instance,

the developed model indicates with 90% that the product
should be released, but the release is a failure. This might
occur due to a rare case for the given organization, which
might be the case of an unexpected success of the product
causing overload on the server. In this case, the experts
could decide that the model is reliable, and the bad decision
was caused by the uncertainty inherent in the process.

For the second possible outcome, a bad decision of
releasing a product might have been caused by a failure
of requirements elicitation such as missing an important
non-functional requirement (e.g., number of requests per
second). For this case, the experts can assume that the
decisions based on the model assume that the product’s
requirements are complete and that this case is out of the
scope of the model.

For the third case, the experts might decide that the
model needs refinement, because they failed to, for in-
stance, consider an important context factor or a better
suited membership function. Independent of the outcome,
the execution of step iii should be considered a mandatory
activity in the measurement program.

IV. Conclusions

In this paper, we presented a systematic process to de-
fine thresholds for metrics in the absence of data and based
on eliciting knowledge from experts. The proposed ap-
proach is based on identifying context factors that influence
the thresholds for a given metric and is supported by fuzzy
logic concepts to model the crisp value (i.e., collected data)
into a linguistic variable (i.e., interpreted information). It
is cyclic and composed of three main steps, namely: (i)
thresholds characterization, (ii) thresholds modeling, and
(iii) thresholds evaluation.

Our contributions are threefold: (1) a systematic ap-
proach for deriving software metrics thresholds in the
absence of data; (2) an empirical cyclic process to con-
tinuously refine thresholds; and (3) context factors that
influence the definition of popular metrics such as code
coverage, static code analysis warnings count and defect
count.

For further research, we will expand the proposed
approach to handle the case of having multiple metrics
used for a single decision. Furthermore, we will execute a
case study to empirically evaluate the proposed approach
in terms of practical utility.

References

[1] T. L. Alves, C. Ypma, and J. Visser. Deriving metric thresholds
from benchmark data. In 2010 IEEE International Conference on
Software Maintenance, pages 1–10. IEEE, sep 2010.

175

[2] O. F. Arar and K. Ayan. Deriving thresholds of software metrics
to predict faults on open source software. Expert Syst. Appl.,
61(C):106–121, Nov. 2016.

[3] A. Boucher and M. Badri. Software metrics thresholds calculation
techniques to predict fault-proneness: An empirical comparison.
Information and Software Technology, 96:38–67, 2018.

[4] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and
H. C. Almeida. Identifying thresholds for object-oriented software
metrics. Journal of Systems and Software, 85(2):244–257, feb 2012.

[5] M. Foucault, M. Palyart, J.-R. Falleri, and X. Blanc. Computing
contextual metric thresholds. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing - SAC ’14, pages 1120–
1125, New York, New York, USA, mar 2014. ACM Press.

[6] M. U. Guide. Matlab cd-rom, mathworks, 2007.
[7] N. C. Haugen. An empirical study of using planning poker for user

story estimation. In AGILE 2006 (AGILE’06), pages 9–pp. IEEE,
2006.

[8] S. Herbold, J. Grabowski, and S. Waack. Calculation and optimiza-
tion of thresholds for sets of software metrics. Empirical Software
Engineering, 16(6):812–841, 2011.

[9] E. Kupiainen, M. V. Mäntylä, and J. Itkonen. Using metrics in
agile and lean software development–a systematic literature review
of industrial studies. Information and Software Technology, 62:143–
163, 2015.

[10] R. Marinescu. Detection strategies: Metrics-based rules for de-
tecting design flaws. In 20th IEEE International Conference on
Software Maintenance, 2004. Proceedings., pages 350–359. IEEE,
2004.

[11] E. Mendes. Expert-based knowledge engineering of bayesian
networks. In Practitioner’s Knowledge Representation, pages 73–
105. Springer, 2014.

[12] A. Meneely, B. Smith, and L. Williams. Validating software metrics:
A spectrum of philosophies. ACM Trans. Softw. Eng. Methodol.,
21(4):24:1–24:28, Feb. 2013.

[13] P. Oliveira, F. P. Lima, M. T. Valente, and A. Serebrenik. Rttool:
A tool for extracting relative thresholds for source code metrics. In
2014 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 629–632. IEEE, 2014.

[14] P. Oliveira, M. T. Valente, A. Bergel, and A. Serebrenik. Validating
metric thresholds with developers: An early result. In Software
Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on, pages 546–550. IEEE, 2015.

[15] P. Oliveira, M. T. Valente, and F. P. Lima. Extracting relative
thresholds for source code metrics. In 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE), pages 254–263. IEEE,
feb 2014.

[16] S. Renooij and C. Witteman. Talking probabilities: communicating
probabilistic information with words and numbers. International
Journal of Approximate Reasoning, 22(3):169 – 194, 1999.

[17] R. Shatnawi. Deriving metrics thresholds using log transformation.
Journal of Software: Evolution and Process, 27(2):95–113, feb
2015.

[18] R. Shatnawi, W. Li, J. Swain, and T. Newman. Finding software
metrics threshold values using ROC curves. Journal of Software
Maintenance and Evolution: Research and Practice, 22(1):1–16,
jan 2010.

[19] S. K. Thompson. Simple random sampling. Sampling, Third
Edition, pages 9–37, 2012.

[20] T. Williams, M. Mercer, J. Mucha, and R. Kapur. Code coverage,
what does it mean in terms of quality? In Annual Reliability and
Maintainability Symposium. 2001 Proceedings. International Sym-
posium on Product Quality and Integrity (Cat. No. 01CH37179),
pages 420–424. IEEE, 2001.

[21] B. Yet, Z. Perkins, N. Fenton, N. Tai, and W. Marsh. Not just data:
A method for improving prediction with knowledge. Journal of
Biomedical Informatics, 48:28 – 37, 2014.

[22] L. A. Zadeh. The concept of a linguistic variable and its application
to approximate reasoning—i. Information sciences, 8(3):199–249,
1975.

[23] F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E. Hassan. How
Does Context Affect the Distribution of Software Maintainability
Metrics? In 2013 IEEE International Conference on Software
Maintenance, pages 350–359. IEEE, sep 2013.

176

Multi-source fault detection and diagnosis based on

multi-level Knowledge Graph and Bayesian theory

reasoning
Tao Sun

School of Computer Science and Technology
Qilu University of Technology (Shandong Academy of

Sciences)
Jinan, China

suntao0906@163.com

Qi Wang
School of Computer Science and Technology

Qilu University of Technology (Shandong Academy of
Sciences)

Jinan, China
yining1104@sina.com

Abstract—In complex industrial processes, complex

associations are often involved. This complex relationship

makes traditional fault detection and diagnosis methods

difficult to achieve satisfactory results in multi-source fault

detection and diagnosis. Therefore, this paper proposes a new

multi-source fault detection and diagnosis framework. The

method can successfully detect the state of the system, and at the

same time, can locate the fault source simply and quickly. This

method firstly constructs the multi-level knowledge graph in the

complex industrial process, and then use the discriminant

coefficient R to detect whether the system has failed. If the

system fails into the fault diagnosis stage, the probability of the

fault is derived based on Bayesian theory. This article describes

the framework in detail. The TE process is taken as an example

to prove the effectiveness of the method.

Keywords—complex industrial process, knowledge graph,

bayesian theory, fault detection and diagnosis

I. INTRODUCTION
With the development of computer technology and the

promotion of concepts such as Industry 4.0, modern industrial
processes tend to be more automated, integrated, complex and
intelligent. In the actual process monitoring, due to the large
scale of industrial processes and complex business logic, there
is a complex relationship between process variables in the
production process. At the same time, with the increasing
complexity of the process, the influencing factors are
gradually increasing, and multiple faults occur frequently in
complex industrial systems. However, the traditional fault
diagnosis technology is mostly carried out under the condition
of single fault type and simple influencing factors, and its
accuracy is greatly reduced in the face of complex industrial
processes. Many factors make the fault diagnosis of complex
industrial system more and more difficult.

How to construct and mine the relationship in complex
industrial systems and use these associations to improve the
accuracy of fault detection and diagnosis is a key issue that
needs to be studied at present. The Knowledge Graph (KG) [1]
can describe the various entities and concepts that exist in the
real world and the relationships between these entities and
concepts. Based on the concept map of knowledge graph,
mining the associations in complex industrial systems and
displaying them in the form of graphs can more intuitively
present this intricate relationship. At the same time, it can
describe the abstract concepts of different levels and
granularities, and integrate the larger resources in complex
industrial systems. The fault source is located by inferring the
constructed knowledge graph. Therefore, this paper proposes
a new fault detection and diagnosis framework for many

problems in complex industrial systems, which combines
knowledge graph and bayesian inference, and conducts
experiments on TE data sets to verify its effectiveness.

II. RELATED WORK
 Once an accident occurs in a complex industrial process,
it may cause serious adverse effects on production safety,
efficiency or product quality. At present, the widely used
methods in fault detection and diagnosis (FDD) of complex
industrial processes include: analytical mathematical model-
based method, knowledge-based method, data-driven method,
etc.

 The analytical model-based approach [2-4] has great
limitations in application due to the need to establish accurate
mathematical models. Knowledge-based methods are mainly
divided into two types: causal graph method [5-7] and fault
tree method [8]. Zhang K et al. [5] proposed a kernel-based
conditional independence test for conditional independence
testing in Bayesian network learning and causal discovery.
Experimental results show that it is superior to other methods.
Caceres et al. [8] proposed to establish the fault tree according
to the structural block diagram of the system. However, the
defect of knowledge-based approach is that it relies too much
on production experience and process knowledge. The data-
driven FDD method [9-10] achieves fault detection and
diagnosis of the system by analyzing and processing a large
number of process data including system normal and fault
information. However, the diagnostic accuracy of data-driven
methods often depends heavily on the completeness and
representativeness of the fault samples.

Both knowledge-based and data-driven approaches have
their own shortcomings. Therefore, this paper proposes a
method for fault detection and diagnosis combining
knowledge-based methods with data-driven methods.
Knowledge graph [1] is an emerging research field in recent
years. It can express more information than traditional
knowledge-based methods. This method is mainly used in
natural language processing, medical[11], financial and other
fields. However, the application of this method in complex
industrial fields is rare. Knowledge graph is a graph model in
essence, and fault diagnosis based on knowledge graph can be
solved by graph model theory. However, Bayesian network
(BN) is a typical probability graph model, which, considering
the network structure and node attribute information, has a
solid theoretical basis of probability theory and is widely used.
It is suitable for expressing and analyzing uncertain
knowledge and can make effective inference to uncertain
knowledge. Therefore, this paper uses the combination of
knowledge graph and Bayesian theory to detect and diagnose
faults in complex industrial systems.

DOI reference number: 10.18293/SEKE2019-064
This work was supported in part by Shandong Natural Resources Fund

(NO.02053522), Shandong Province Graduate Education Innovation
Program (NO.24170404), and Qilu University of Technology Teaching and
Research Project (NO.041201034109). 177

III. FAULT DETECTION AND DIAGNOSIS METHOD BASED
ON MULTI-LEVEL KNOWLEDGE GRAPH

In complex industrial systems, there are many levels of
factors that affect the state of production. For example,
production level, process level, energy saving and emission
reduction level, and raw material level. Therefore, the
framework proposed in this paper analyzes complex
industrial systems from multiple levels and constructs a
multi-level knowledge graph, and then makes inferential
diagnosis and fault diagnosis based on this knowledge graph.
The flowchart of the framework is shown in Figure 1.

Fig. 1. Schematic diagram of fault detection and diagnosis model based on
multi-level knowledge graph

A. Building an offline multi-level knowledge graph

The flow of constructing the knowledge graph in Part A of
Figure 1 is shown in Figure 2.

Fig. 2. Schematic diagram of constructing a knowledge graph

There are many differences between the knowledge graph
construction of complex industrial systems and the
construction of general knowledge graph. Data sources in
complex industrial systems come not only from the Internet,
but also from all levels affecting production. If the knowledge
graph is not comprehensive enough, the time for fault
detection and diagnosis will become longer and the accuracy
will decrease. First, collect data from multiple levels in a
complex industrial system, and then extract the knowledge
from the original data. Because the relationship between
complex industrial system entities is particularly complex, this
paper focuses on the relationship extraction in knowledge
extraction. In this paper, Pearson correlation coefficient
method is used to find the correlation between entities (the
relationship between moderate correlation and high
correlation is adopted [12]), and at the same time, prior
knowledge is combined to extract the relationship. The
extracted knowledge elements are then represented for further

processing. Then there is data fusion, the purpose of which is
to fuse the knowledge acquired by different data sources to
construct the association between the data. Knowledge graph
are constructed by merging knowledge through entity
alignment (judging whether two entities match) and quality
assessment (inconsistency verification: identifying potential
contradictions through rules). Figure 3 is a schematic diagram
of the knowledge graph at four levels.

Fig. 3. Schematic diagram of multi-level knowledge graph

B. Mining deep-level associations in multi-level knowledge

graphs

The method of mining deep-level associations in multi-
level knowledge graphs in Part B of Figure 1 is as follows:
According to the existing relationship in the multi-level
knowledge graph, find the variable correlation coefficient of
each variable in the knowledge graph as the weight coefficient
of the variable, and select a critical path according to the size
of the weight coefficient. The variables in this path must
appear in the knowledge graph of each level at the same time,
so that they can represent the deep relationship of the multi-
level knowledge graph. Through the deep relationship in the
knowledge graph, it is possible to quickly and conveniently
detect whether the system has failed without considering the
complex relationship in the entire knowledge graph.

C. Fault detection method based on multi-level knowledge

graph

The part C fault detection method in Figure 1 is as follows:
The knowledge graph is mainly composed of several triples,
that is, pairs of variable correlation coefficients. After the
system fails, the correlation coefficient of the variables in the
original knowledge graph will inevitably change, that is, the
entity changes, and the relationship (weight) between the
entities changes. Therefore, this paper uses the changes in
these two aspects of the knowledge graph structure to define
the discriminant coefficient R rule. The discriminant
coefficient R rule is defined as follows:

Suppose that T is used to represent the variable in the deep
associated path in the knowledge graph under normal
conditions, T=[T1, T2, T3...], Ni represents the set of the i-th
variable entity pair in T, n represents the number of pairs of
entities in Ni. Wi represents the relationship weight of the i-th
pair of entities in N. Similarly, T', N'i and W'i are used to
represent the variables under test, and m is the number of
entity pairs in N'i. The calculation rules for the discriminant
coefficient R are as follows:

Let the number of the variable entity pairs in the normal
state T and the variable entity pairs in the state T' to be
detected be the same as t, and the set of different entity pairs
in the T state and T' is Tk, and the pair of different entities in
the T' state and T is T'k. When Tk, T'k have different entity
pairs, Tk, T'k are automatically incremented by one. When Tk,
T'k have different entity pairs, W'i is automatically
incremented by 1. When Tk, T'k have the same entity pair, and
W's relationship weight is inconsistent with the corresponding

178

relationship weight in W'i, W' is automatically incremented by
one. The mathematical model of the discriminant coefficient
R is:

 𝑅 =
∑ 𝑇𝑘+∑ 𝑇′𝑘+𝑡

𝑛
+ 𝑊′ =

|𝑚−𝑡|+|𝑛−𝑡|+𝑡

𝑛
+ 𝑊′ =

𝑚+𝑛−𝑡

𝑛
+ 𝑊′

 ()

On the basis of an acceptable fault tolerance rate ε, if R-1
ε is satisfied, it indicates a system failure, otherwise it

indicates a normal state.

D. Fault Diagnosis Method Based On Multi-Level

Knowledge Graph

The D part fault diagnosis method in Figure 1 is as follows:
1) According to the determined fault variables, the

moderately and highly correlated variable pairs of correlation
coefficients are selected in the knowledge graph relationship
pairs of each level to construct a multi-level knowledge graph
fault model.

2) According to the fault symptoms of the system, find all
possible candidate failure causes. For each candidate failure
reason, the posterior probability value under the known fault
symptom condition is calculated based on Bayesian theory.

3) Set a certain threshold, and consider the cause of the
failure exceeding the threshold as the most likely cause of the
failure.
The posterior probability calculation method is as follows:

1) Calculate the first-order cut set expression for each

fault symptom Ei.

 𝐸𝑖 = 𝑒𝑡,𝑖𝑟𝑡 ∪ 𝑒𝑗,𝑖𝐸𝑖 ()

 𝐸𝑗 = 𝑒𝑘,𝑗𝑟𝑘 ()

Where, 𝐸𝑖 and 𝐸𝑗 are fault symptoms, 𝑟𝑡 and 𝑟𝑘 are candidate
fault causes, and 𝑒𝑗,𝑖 is the edge from 𝐸𝑗 to 𝐸𝑖. 𝑒𝑡,𝑖 is the edge
from candidate failure cause 𝑟𝑡 to failure symptom 𝐸𝑖.

2) Calculate the final cut set expression for each fault

symptom Ei：

 𝐸𝑖 = 𝑒𝑡,𝑖𝑟𝑡 ∪ 𝑒𝑗,𝑖𝑒𝑘,𝑗𝑟𝑘 ()

The first-order cut set expression is expanded according to
the relevant edge direction logic. This process can eliminate
all the variable nodes in the fault model and obtain the final
cut set expression consisting only of the cause node and the
relevant edge.

3) Calculate the posterior probability value P(ri|E) of the

fault cause ri： Logging the fault symptoms according to (5)
for all fault symptoms, and inserting the corresponding fault
cause occurrence probability value and the associated edge
probability value to obtain the posterior probability value
P(ri|E) of the final detected fault cause ri.

 P(𝑟𝑖|E) =
𝑃(𝑟𝑖,𝐸1,…𝐸𝑛)

𝑃(𝐸1,…𝐸𝑛)
=

𝑃(𝑟𝑖∩𝐸𝑖…𝐸𝑛)

𝑃(𝐸1∩…𝐸𝑛)
 ()

Where, E = (E = E1, ... En) is the set of fault symptoms, n is
the number of abnormal variables, and ri is the cause of the
fault.

IV. EXPERIMENT

A. Data Sets

The data set used in this paper is the data of TE process, a
simulation system of chemical process. For a detailed
description of the process, refer to the relevant literature[13].
The 22 process measurement variables in the TE model are
represented by V1, V2...V22 and the 20 failure types are r41,
r42...r60.

B. Building a multi-level knowledge graph of the TE

process

Limited by the TE process simulation data, this paper
constructs the TE process knowledge graph from two levels,
as shown in Figure 4. The solid line represents the
technological process level, and the dotted line represents the
data level of the production process.

Fig. 4. Schematic diagram of the multi-level knowledge graph of the TE
process

C. Mining deep-level associations in multi-level knowledge

graph of TE processes

First, the weighting coefficients of each successive
measured variable are analyzed according to the constructed
multi-level knowledge graph, The weights corresponding to
the measured variables { V2, V7, V10, V11, V13, V16, V18,
V19, V20} are {1, 6, 2, 3, 4, 5, 7, 2, 4}.

According to the TE process and the principle of large
weight coefficient, the deep correlation path of the multi-level
knowledge graph can be obtained as follows: V2, V7, V13,
V16, V18, V20. Analysis of the four variables of the TE
process feed shows that the V2 variable is highly correlated
with other variables. This determines that V2 is the starting
variable of the deep associated path. This path represents the
deep interrelationship of the equipment (feed-reactor-
separator-compressor-stripper).

D. TE process fault detection method based on multi-level

knowledge graph

In order to prove the validity of the method, this
experiment selected single source fault (fault 7), multi-source
fault: fault (5, 7) and fault (2, 6, 13).

According to the fault detection method proposed above,
the discrimination coefficient R in the four production states
is calculated. It is judged whether the TE chemical system is
in a fault state according to the change of the discrimination
coefficient R. The parameters R in the four production states
are shown in Figure 5. It can be seen from Figure 5 that the
discriminant coefficient R completely separates the data of the
normal state and the fault state, and accurately detects the
system fault.

179

Fig. 5. Schematic diagram of the comparison between the normal state and
the fault state discrimination coefficient R

E. TE process fault diagnosis method based on multi-level

knowledge graph

 In this experiment, fault 5 and fault 7 were selected as the
multi-source fault data set for experiment. The specific
diagnostic steps are as follows:

1) Building a knowledge graph failure model in the

current state as shown in Figure 6.

Fig. 6. Schematic diagram of multi-level knowledge graph failure model

2) Calculate the posterior probability value of each

candidate failure cause.
 According to (2)-(5), the diagnosis results are shown in
Table 1. It can be seen from the table that the posterior
probability of r45 and r47 is significantly larger than r43, r44, r48,
r50. Therefore, the cause node r45 (condenser cooling water
feed temperature) and r47 (flow rate 4 C pressure loss) are the
cause of the failure, and the diagnosis conclusion is consistent
with the original assumption.

TABLE I. DIAGNOSTIC RESULTS OF THE CAUSE NODE

 Candidate failure cause
Percentage of

posterior probability

r43:D temperature in flow 2 14.11%
r44： Reactor cooling water feed temperature 7.29%

r45： condenser cooling water feed temperature 65.47%
r47：C pressure loss in flow 4 50.32%

r48：Changes in A, B, and C components in Flow 4 10.51%
r50：C material temperature in flow 4 25.87%

TABLE II. DIAGNOSTIC TIME COMPARISON

 Diagnosis method Diagnostic time

PCA_KNN 0.446
PCA_SVM 0.413

PNN 0.375
KG_ Bayesian network 0.306

Table 2 compares the diagnostic time of the four methods
of PCA_KNN, PCA_SVM, PNN, KG_ Bayesian network. It
can be seen that the method used in this paper takes less time
than the traditional fault detection and diagnosis methods.

V. CONCLUSION
 Based on the strong correlation between knowledge
graphs and comprehensive consideration of various factors,
this paper constructs a multi-level knowledge graph in
complex industrial processes. This way of building knowledge
graphs maximizes the consideration of influencing factors in
complex industrial systems. By mining the correlation law
between variables, the discriminant coefficient method is used
to detect the state of the system. The method has achieved
good results in the TE process and can accurately identify the
system state. The multi-level knowledge graph fault diagnosis
method based on Bayesian theory provides a new idea for fault
diagnosis of complex industrial systems. This method has
achieved good results in reasoning the multi-source failure of
complex industrial systems. At the same time, this method can
diagnose the fault source easily and quickly. At present, this
method is only applicable to the processing of existing fault
cause data, and the next step will be to study the fault self-
learning function.

REFERENCES
[1] Huang Z , Chung W , Ong T H , et al. [ACM Press the second

ACM/IEEE-CS joint conference - Portland, Oregon, USA (2002.07.14-
2002.07.18)] Proceedings of the second ACM/IEEE-CS joint
conference on Digital libraries, - JCDL \"02 - A graph-based
recommender system for digital library[J]. 2002:65

[2] Kinnaert, Michel. Fault diagnosis based on analytical models for linear
and nonlinear systems - a tutorial[J]. IFAC Proceedings Volumes, 2003,
36(5):37-50.

[3] Liao Z , Wen F , Guo W , et al. An analytic model and optimization
technique based methods for fault diagnosis in power systems[C]//
International Conference on Electric Utility Deregulation &
Restructuring & Power Technologies. IEEE, 2008.

[4] Cui Y , Shi J , Wang Z . An analytical model of electronic fault
diagnosis on extension of the dependency theory[J]. Reliability
Engineering & System Safety, 2015, 133:192-202.

[5] Zhang K, Peters J, Janzing D, et al. Kernel-based conditional
independence test and application in causal discovery[J]. arXiv preprint
arXiv:1202.3775, 2012

[6] Iri M , Aoki K , O"Shima E , et al. An algorithm for diagnosis of system
failures in the chemical process[J]. Computers & Chemical
Engineering, 1979, 3(1-4):489-493

[7] Yang F , Sirish L S , Xiao D . Signed Directed Graph modeling of
industrial processes and their validation by data-based methods[C]//
Control & Fault-tolerant Systems. IEEE, 2010

[8] Caceres S , Henley E J . Process Failure Analysis by Block Diagrams
and Fault Trees[J]. Industrial & Engineering Chemistry Research, 1976,
15(2):128-134

[9] Zhang J , Zhu Y , Shi W , et al. An Improved Machine Learning Scheme
for Data-Driven Fault Diagnosis of Power Grid Equipment[C]// IEEE
International Conference on High Performance Computing &
Communications. IEEE, 2015

[10] Wang D , Man Z . Special issue: Data-driven fault diagnosis of
industrial systems[J]. Information Sciences, 2014, 259:231-233

[11] Fang Y, Wang H, Wang L, et al. Diagnosis of COPD Based on a
Knowledge Graph and Integrated Model[J]. IEEE Access, 2019, 7:
46004-46013

[12] Kim Y, Kim T H, Ergün T. The instability of the Pearson correlation
coefficient in the presence of coincidental outliers[J]. Finance Research
Letters, 2015, 13: 243-257

[13] Chiang L H, Russell E L, Braatz R D. Fault detection and diagnosis in
industrial systems[J]. 2001.

180

Formal Specification and Model Checking of A* Algorithm

Kazuhiro Ogata
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Email: ogata@jaist.ac.jp

Abstract—A* algorithm is formally specified in Maude and
model checked with the Maude LTL model checker. We take
into account a graph such that it is a DAG, a goal node is
reachable from a start node and each edge is given a non-
negative weight. If h is admissible, namely that h(n) never
overestimates the cost to the goal from n for all nodes n,
then A* finds a shortest path. The condition, however, can be
relaxed. Our model checking experiments make us conjecture
that if there exists a shortest path such that for each node n
in the path h(n) plus the cost to n from the start node is less
than the cost of any non-shortest path to the goal from the
start, A* finds a shortest path.

Keywords-A* algorithm; Dijkstra algorithm; LTL; Maude;
Model checking

I. INTRODUCTION

A* algorithm [1] is a generalized version of Dijkstra
(shortest path finding) algorithm [2]. It uses an estimation
of the distance between the goal node and each of the
edge nodes to select the next node to be tackled. Dijkstra
algorithm treats the estimation as 0.

A* is formally specified in Maude [3], a rewriting logic-
based specification/programming language equipped with
many facilities, among which are model checking ones (a
reachability analyzer and an LTL model checker). We model
check with the LTL model checker that A* terminates and
finds a shortest path. Our model checking experiments say
that A* always halts and if the estimation h is admissible,
namely that h(n) never overestimates the cost to the goal
from n for all nodes n, then A* finds a shortest path. The
condition, however, can be relaxed. Our model checking
experiments make us conjecture that if there exists a shortest
path such that for each node n in the path h(n) plus the cost
to n from the start node is less than the cost of any non-
shortest path to the goal from the start, A* finds a shortest
path.

The contribution of the work described in the present
paper is to demonstrate how A* is formally specified in
Maude and model checked with the Maude LTL model
checker and to find a relaxed sufficient condition, through
model checking experiments, that A* finds a shortest path.

This work was partially supported by JSPS KAKENHI Grant Number
JP26240008 & JP19H04082.

DOI reference number: 10.18293/SEKE2019-022

Saberi, Groote and Keshishzadeh [4] have formally spec-
ified in the mCRL2 language a simple path planning al-
gorithm that makes multiple robots reach a destination
on a discretized planar surface, described properties in µ-
calculus and conducted model checking experiments that the
algorithm enjoys the properties. The desired properties they
have taken into account are deadlock-freeness, collision-
freeness and reachability. Their motivation to conduct the
research is to demonstrate how useful model checking is to
verify that the collective behavior of multiple robots satisfy
some desired properties. Maragos, Kleftouris and Ziogou [5]
have formally modeled a path finding planning in Colored
Petri Nets (CP-Nets). Given a discretized planar space where
there is one robot located in one position, there are some
obstacles located in some positions and there is a goal
position, the planning is to find a path along which the
robot reaches the goal. Their CP-Nets model is executable
with the Design/CPN tool. Their main motivation to conduct
the research is to demonstrate how powerful CP-Nets are for
simulating such a planning. Alphan, Smith, Belta and Rus [6]
have proposed a method that automatically plans optimal
paths for a group of robots that satisfy LTL properties. They
formally modeled as a timed automaton a system in which
multiple robots asynchronously move to some vertexes from
the current vertexes on a graph if there are direct edges from
the latter to the former. They use a bi-simulation relation
between a timed automaton that is inherently infinite and a
finite-state transition system so that they can use their earlier
algorithm dedicated to a single-robot system.

The rest of the paper is organized as follows: § II Prelim-
inaries, § III A* Algorithm, § IV Formal Specification, §V
Model Checking, and §VI Conclusion.

II. PRELIMINARIES

A Kripke structure K is 〈S, I, T, P, L〉, where S is a set
of states, I ⊆ S is the set of initial states, T ⊆ S × S
is a total binary relation over S, P is a set of atomic
propositions and L is a labeling function whose type is
S → 2P . Each element (s, s′) ∈ T is called a state transition
from s to s′ and T may be called the state transitions
(with respect to K). For a state s ∈ S, L(s) is the set
of atomic propositions that hold in s. A path π is an infinite
sequence s0, . . . , si, si+1, . . . of states such that si ∈ S and

181

(si, si+1) ∈ T for each i. Let πi be si, si+1, . . . and π(i) be
si. Let P be the set of all paths. π is called a computation
if π(0) ∈ I . Let C be the set of all computations.

The syntax of a formula ϕ in LTL for K is ϕ ::=
> | p | ¬ϕ | ϕ ∧ ϕ | © ϕ | ϕ U ϕ, where p ∈ P . Let F
be the set of all formulas in LTL for K. An arbitrary path
π ∈ P of K and an arbitrary LTL formula ϕ ∈ F of K,
K,π |= ϕ is inductively defined as K,π |= >, K,π |= p iff
p ∈ L(π(0)), K,π |= ¬ϕ1 iff K,π 6|= ϕ1, K,π |= ϕ1∧ϕ2 iff
K,π |= ϕ1 and K,π |= ϕ2, K,π |= ©ϕ1 iff K,π1 |= ϕ1,
and K,π |= ϕ1 U ϕ2 iff there exists a natural number i
such that K,πi |= ϕ2 and for all natural numbers j < i,
K,πj |= ϕ1, where ϕ1 and ϕ2 are LTL formulas. Then,
K |= ϕ iff K,π |= ϕ for each computation π ∈ C of K. The
temporal connectives© and U are called the next connective
and the until connective, respectively. The other logical
and temporal connectives are defined as usual as follows:
⊥ , ¬>, ϕ1 ∨ϕ2 , ¬(¬ϕ1 ∧¬ϕ2), ϕ1 ⇒ ϕ2 , ¬ϕ1 ∨ϕ2,
♦ϕ , > U ϕ, and �ϕ , ¬(♦¬ϕ). The temporal
connectives ♦ and � are called the eventually connective
and the always connective, respectively.

There are multiple possible ways to express states. We
express a state as a braced associative-commutative (AC)
collection of name-value pairs. AC collections are called
soups, and name-value pairs are called observable compo-
nents. That is, a state is expressed as a braced soup of
observable components. The juxtaposition operator is used
as the constructor of soups. Let oc1, oc2, oc3 be observ-
able components, and then oc1 oc2 oc3 is the soup of
those three observable components. A state is expressed
as {oc1 oc2 oc3}. There are multiple possible ways to
specify state transitions. We specify them as rewrite rules.
Concretely, we use Maude [3], a programming/specification
language based on rewriting logic. Maude makes it possible
to specify complex systems flexibly and is also equipped
with model checking facilities (a reachability analyzer and
an LTL model checker). A conditional rewrite rule (or just
a rule) is in the form crl [lb] : l => r if . . ./\ ci /\
. . . , where lb is the label given to the rule and ci is part
of the condition, which may be an equation lci = rci. The
negation of lci = rci could be written as (lci =/= rci) =
true, where = true could be omitted. If the condition
. . ./\ ci /\ . . . holds under some substitution σ, σ(l) can
be replaced with σ(r).

The search command tries to find a state reachable from
t such that the state matches p and satisfies c:

search [1] in M : t =>* p such that c .

where M is a specification of the S and T parts of K. t
typically represents an initial state of K.

Let init be the only initial state of K and ϕ be an LTL
formula. Then, the Maude LTL model checker checks that
K satisfies ϕ by reducing modelCheck(init,ϕ).

Figure 1. A DAG (1)

III. A* ALGORITHM

Let us consider the DAG shown in Fig. 1 in which node
n0 is the start node and node n3 is the goal node. Let us
use the estimation h(n) for each node n defined as follows:
h(n1) = 2, h(n3) = 0 and h(n) = 1 for any other node
n. Let w(n, n′) be the weight of the edge from node n to
node n′. For example, w(n2,n1) = 2. For each node n,
two pieces p(n) and d(n) of information are maintained,
where p(n) is the shortest path found so far to node n
from the start node at any given moment and d(n) is its
distance. One more piece oq of information is maintained,
which is an ordered queue of node & natural number pairs,
where such pairs are stored in increasing order based on
their second elements. When a pair 〈n, d〉 of node n and
natural number d is enqueued into oq that contains some
other pairs whose second elements are d, 〈n, d〉 is stored
following all those pairs. When 〈n, d〉 is enqueued into oq
that contains 〈n, d′〉, if d′ < d, then 〈n, d〉 is stored at the
designated place in oq and 〈n, d′〉 is deleted and otherwise
〈n, d〉 is not stored in oq. For example, let oq consist of
〈n0, 1〉, 〈n1, 1〉, 〈n3, 2〉 and 〈n2, 3〉 in this order, denoted
〈n0, 1〉 | 〈n1, 1〉 | 〈n3, 2〉 | 〈n2, 3〉, and if 〈n3, 1〉 is put into
oq, oq is 〈n0, 1〉 | 〈n1, 1〉 | 〈n3, 1〉 | 〈n2, 3〉. We use empq to
represent the empty queue and suppose that empq is an
identity of the queue constructor |, namely that q | empq = q
and empq | q = q for all queues q. We also suppose that a
single element e is treated as a singleton queue that only
consists of e. For example, 〈n3, 1〉 is treated as the singleton
ordered queue that only consists of 〈n3, 1〉. Node n of each
〈n, d〉 in oq at any moment is called an edge node at that
moment in this paper.

Initially, p(n0) = n0 (which is the path that only consists
of n0), p(n) = ε (the empty path) for any other node n,
d(n0) = 0, d(n) =∞ for any other node n and oq = 〈n0, 1〉
(which is the ordered queue that only consists of 〈n0, 1〉,
where d(n0) + h(n0) = 1).

While oq is not empty, the following is repeated. Let
〈n, d〉 be the top element of oq. If node n is the goal node,
p(n) is the path to be found from the start node to the goal
node. Otherwise, for each direct successor node n′ of node
n, if d(n)+w(n, n′) < d(n′), d(n′) is set to d(n)+w(n, n′),
p(n′) is set to the path obtained by adding n′ to p(n) at the
end and〈n′,d(n) + w(n, n′) + h(n′)〉 is enqueued into oq.
The top element is deleted from oq.

At some moment,

182

• p(n0) = n0 & d(n0) = 0
• p(n1) = (n0→ n1) & d(n1) = 4
• p(n2) = (n0→ n2) & d(n2) = 1
• p(n3) = (n0→ n3) & d(n3) = 6
• p(n) = ε & d(n) =∞ for any other node n
• oq = 〈n2, 2〉 | 〈n1, 6〉 | 〈n3, 6〉

〈n2, 2〉 is the top element of oq. n1 and n5 are the direct suc-
cessor nodes of n2. Since d(n2)+w(n2,n1) = 3, d(n1) = 4
and 3 < 4, d(n1) is set to 3, p(n1) is set to (n0→ n2→ n1)
and 〈n1, 5〉, where d(n2) + w(n2,n1) + h(n1) = 5, is
enqueued into oq. Since d(n2)+w(n2,n5) = 2, d(n5) =∞
and 2 <∞, d(n5) is set to 2, p(n5) is set to (n0→ n2→
n5) and 〈n5, 3〉, where d(n2) + w(n2,n5) + h(b5) = 3, is
enqueued into oq. The top element is deleted from oq. At
this moment,
• p(n0) = n0 & d(n0) = 0
• p(n1) = (n0→ n2→ n1) & d(n1) = 3
• p(n2) = (n0→ n2) & d(n2) = 1
• p(n3) = (n0→ n3) & d(n3) = 6
• p(n4) = ε & d(n4) =∞
• p(n5) = (n0→ n2→ n5) & d(n5) = 2
• oq = 〈n5, 3〉 | 〈n1, 5〉 | 〈n3, 6〉

〈n5, 3〉 is the top element of oq. n1 and n3 are the direct suc-
cessor nodes of n5. Since d(n5)+w(n5,n1) = 3, d(n1) = 3
and 3 6< 3, nothing changes. Since d(n5) + w(n5,n3) = 5,
d(n6) = 6 and 5 < 6, d(n3) is set to 5, p(n5) is
set to (n0 → n2 → n5 → n3) and 〈n3, 5〉, where
d(n5) + w(n5,n3) + h(n3) = 5, is enqueued into oq. The
top element is deleted from oq. At this moment,
• p(n0) = n0 & d(n0) = 0
• p(n1) = (n0→ n2→ n1) & d(n1) = 3
• p(n2) = (n0→ n2) & d(n2) = 1
• p(n3) = (n0→ n2→ n5→ n3) & d(n3) = 5
• p(n4) = ε & d(n4) =∞
• p(n5) = (n0→ n2→ n5) & d(n5) = 2
• oq = 〈n1, 5〉 | 〈n3, 5〉

〈n1, 5〉 is the top element of oq. n4 is the direct successor
node of n1. Since d(n1) + w(n1,n4) = 4, d(n4) =∞ and
4 <∞, d(n4) is set to 4, p(n4) is set to (n0→ n2→ n1→
n4) and 〈n4, 5〉, where d(n1) + w(n1,n4) + h(n4) = 5, is
enqueued into oq. The top element is deleted from oq. At
this moment,
• p(n0) = n0 & d(n0) = 0
• p(n1) = (n0→ n2→ n1) & d(n1) = 3
• p(n2) = (n0→ n2) & d(n2) = 1
• p(n3) = (n0→ n2→ n5→ n3) & d(n3) = 5
• p(n4) = (n0→ n2→ n1→ n4) & d(n4) = 4
• p(n5) = (n0→ n2→ n5) & d(n5) = 2
• oq = 〈n3, 5〉 | 〈n4, 5〉

〈n3, 5〉 is the top element of oq. Since n3 is the goal node,
we have found the path n0 → n2 → n5 → n3 whose
distance (or cost) is 5. The path is one of the three shortest
paths from n0 to n3 in DAG (1) shown in Fig. 1.

In this paper, we take into account a graph such that it is
a DAG, a goal node is reachable from a start node and each
edge is given a non-negative weight.

IV. FORMAL SPECIFICATION

Let KA∗ be the Kripke structure formalizing A* that
tackles a DAG in which there are N nodes.

The four kinds of observable components are used:
• (node[ni]: d,ps1,ps2,p) – ni is a node ID, d is

a natural number or ∞ that is the distance of the path
found so far from a start node to the node ni, ps1 & ps2
are soups of the direct successor node IDs of the node
ni that have not yet been tackled & that have already
been tackled and p is the path found so far from a start
node to the node ni; if d is ∞, no path from a start
node to the node ni has yet been found;

• (oq: q) – q is an ordered queue of node ID & natural
number pairs;

• (path:npp) – npp is a pair of a natural number and
a path; when a path from a start node to a goal node is
found, the pair of the distance of the path and the path
is stored in it;

• (gstat: gs) – gs is either nFin or Fin; a path from
a start node to a goal node has been found if gs is Fin.

Each state in SA∗ is expressed as {obs}, where obs is a
soup of those observable components such that there is one
gstat observable component, there is one path observ-
able component, there is one oq observable component and
there are N node observable components.
IA∗ consists of one state. When DAG (1) shown in Fig. 1

is tackled, the initial state is expressed as follows:

{(gstat: nFin)
(oq: (< n0,0 >)) (path: (< 0,nil >))
(node[n0]: 0,(< n1,4 > < n2,1 > < n3,6 >),

empty,n0)
(node[n1]: oo,(< n4,1 >),empty,nil)
(node[n2]: oo,(< n1,2 > < n5,1 >),empty,nil)
(node[n3]: oo,empty,empty,nil)
(node[n4]: oo,(< n3,1 >),empty,nil)
(node[n5]: oo,(< n1,1 > < n3,3 >),empty,nil)}

where < n0,0 > in the oq observable component rep-
resents the singleton ordered queue that only consists of
< n0,0 >, nil is the empty path, empty is the empty
soup, < n1,4 > < n2,1 > < n3,6 > is the soup that
consists of < n1,4 >, < n2,1 > and < n3,6 >, and
oo is ∞.
TA∗ is specified as six rewrite rules. Let OCs be a Maude

variable of observable component soups, NI & NI’ be
Maude variables of node IDs, D, W, D’’ & D’’’ be Maude
variables of natural numbers, D’ be a Maude variable of
natural numbers or ∞, Q be a Maude variable of ordered
queues, NNPs1, NNPs2, NNPs1’ & NNPs2’ be Maude
variables of node ID & natural number pair soups, and L,
L’ & L’’ be Maude variables of paths.

183

The first one is as follows:

rl [A*-stutter] : {(gstat: fin) OCs}
=> {(gstat: fin) OCs} .

We need to use rule stutter to make TA∗ total.
The second one is as follows:

crl [A*-goal] :
{(gstat: nFin) (oq: (< NI,D’’’ > | Q))
(path: (< D’’,L’’ >))
(node[NI]: D,NNPs1,NNPs2,L) OCs}

=>
{(gstat: fin) (oq: (< NI,D’’’ > | Q))
(path: (< D,L >))
(node[NI]: D,NNPs1,NNPs2,L) OCs}

if goal?(NI) .

goal?(NI) holds if NI is the goal node ID. When the
first element NI of the top element < NI,D’’’ > of the
ordered queue stored in the oq observable component is
the goal node ID, then the path L has been found and
< D,L >, where D is its cost, is stored in the path
observable component.

The third one is as follows:

crl [A*-srch1] :
{(gstat: nFin) (oq: (< NI,D’’ > | Q))
(node[NI]: D,< NI’,W > NNPs1,NNPs2,L)
(node[NI’]: D’,NNPs1’,NNPs2’,L’) OCs}

=>
{(gstat: nFin)
(oq: enq(< NI,D’’ > | Q,

< NI’,(D + W + h(NI’)) >))
(node[NI]: D,NNPs1,< NI’,W > NNPs2,L)
(node[NI’]: D + W,NNPs1’,NNPs2’,L -> NI’)
OCs}

if D + W < D’ /\ NNPs1 =/= empty .

Rule srch1 says that if the gstate observable compo-
nent is nFin (meaning that the path has not been found),
NI is the node ID found in the top element pair of the
ordered queue stored in the oq observable component, NI’
is a direct successor node ID such that it has not been
tackled and the weight of the edge between NI and NI’
is W, D + W is less than D’ and NNPs1 is not empty, then
< NI’,(D + W + h(NI’)) > is put into the ordered
queue stored in the oq observable component, < NI’,W >
is moved to the second soup from the first soup in the
node[NI] observable component (meaning that NI’ has
been tackled), the path to NI’ from the start node is updated
as L -> NI’ obtained by adding NI’ to L at the end and
the distance of the path is updated as D + W.

The fourth one is as follows:

crl [A*-srch2] :
{(gstat: nFin) (oq: (< NI,D’’ > | Q))
(node[NI]: D,< NI’,W > NNPs1,NNPs2,L)
(node[NI’]: D’,NNPs1’,NNPs2’,L’) OCs}

=>
{(gstat: nFin)
(oq: enq(Q,< NI’,(D + W + h(NI’)) >))

(node[NI]: D,NNPs1,< NI’,W > NNPs2,L)
(node[NI’]: D + W,NNPs1’,NNPs2’,L -> NI’)
OCs}

if D + W < D’ /\ NNPs1 = empty .

The only difference between the situations dealt with by
rule srch1 and rule srch2 is whether NNPs1 is empty.
If NNPs1 is empty, the top element pair < NI,D’’ > is
deleted from the ordered queue stored in the oq observable
component.

The fifth one is as follows:

crl [A*-srch3] :
{(gstat: nFin) (oq: (< NI,D’’ > | Q))
(node[NI]: D,< NI’,W > NNPs1,NNPs2,L)
(node[NI’]: D’,NNPs1’,NNPs2’,L’) OCs}

=>
{(gstat: nFin) (oq: (< NI,D’’ > | Q))

(node[NI]: D,NNPs1,< NI’,W > NNPs2,L)
(node[NI’]: D’,NNPs1’,NNPs2’,L’) OCs}

if not (D + W < D’) /\ NNPs1 =/= empty .

The only difference between the situations dealt with by
rule srch1 and rule srch3 is whether D + W < D’
holds. If D + W < D’ does not, nothing changes except
that < NI’,W > is moved to the second soup from the
first soup in the node[NI] observable component.

The sixth one A*-srch4 deals with the case in which
D + W < D’ does not hold and NNPs1 is empty. If so,
< NI’,W > is moved to the second soup from the first
soup in the node[NI] observable component and the top
element pair < NI,D’’ > is deleted from the ordered
queue stored in the oq observable component.

V. MODEL CHECKING

Let us consider a straightforward algorithm to find all
paths from a start node to a goal node for a given graph.
The algorithm is formalized as part of Kall because we do
not need to use Pall and Lall.

The two kinds of observable components are used:
• (node[ni]:nstat,n,ps1,ps2,ps) – ni is a node

ID, nstat is a node status (which is one of notYet,
visited and done), n is the number of the in-
coming edges that have not been tackled, ps1 & ps2
are soups of the direct successor node IDs of the node
ni that have not yet been tackled & that have already
been tackled and ps is a soup of (d, p)-pairs, where p is
a path from a start node to this node that has been found
so far and d is the distance; if nstat is notYet, the
node has not been tackled, if it is visited, the node
has been visited (partially tackled) and if it is done,
the node has been fully tackled;

• (gstat2: gs) – gs is either nFin or Fin; all paths
from a start node to a goal node have been found if gs
is Fin.

Iall consists of one state. When DAG (1) shown in Fig. 1
is tackled, the initial state is expressed as follows:

184

{(gstat2: nFin)
(node[n0]: done,0,(< n1,4 > < n2,1 > < n3,6 >),

empty,< 0,n0 >)
(node[n1]: notYet,3,(< n4,1 >),empty,empty)
(node[n2]: notYet,1,(< n1,2 > < n5,1 >),empty,

empty)
(node[n3]: notYet,3,empty,empty,empty)
(node[n4]: notYet,1,(< n3,1 >),empty,empty)
(node[n5]: notYet,1,(< n1,1 > < n3,3 >),empty,

empty)}

Tall is specified as five rewrite rules. In addition to the
Maude variables above-mentioned, let NLs & NLs’ be
Maude variables of soups of (natural number,path)-pairs, N’
is a Maude variable of natural numbers and NS’ is a Maude
variable of node statuses. The first rule All-stutter is
essentially the same as the one of TA∗. The second one is
as follows:

crl [All-done] : {(gstat2: nFin)
(node[NI]: done,0,NNPs1,NNPs2,NLs) OCs}
=> {(gstat2: fin)
(node[NI]: done,0,NNPs1,NNPs2,NLs) OCs}
if goal?(NI) .

The rule says that if all paths to the goal node from the start
node have been found, the value of the gstat2 observable
component is set to fin.

The last three rules are as follows:

rl [All-srch1] :
{(gstat2: nFin)
(node[NI]: visited,0,NNPs1,NNPs2,NLs) OCs}
=>
{(gstat2: nFin)
(node[NI]: done,0,NNPs1,NNPs2,NLs) OCs} .

rl [All-srch2] :
{(gstat2: nFin)
(node[NI]: done,0,< NI’,W > NNPs1,NNPs2,NLs)
(node[NI’]: notYet,s(N’),NNPs1’,NNPs2’,NLs’) OCs}
=>
{(gstat2: nFin)
(node[NI]: done,0,NNPs1,< NI’,W > NNPs2,NLs)
(node[NI’]: visited,N’,NNPs1’,NNPs2’,

add(NLs,NI’,W)) OCs} .

crl [All-srch3] :
{(gstat2: nFin)
(node[NI]: done,0,< NI’,W > NNPs1,NNPs2,NLs)
(node[NI’]: NS’,s(N’),NNPs1’,NNPs2’,NLs’) OCs}
=>
{(gstat2: nFin)
(node[NI]: done,0,NNPs1,< NI’,W > NNPs2,NLs)
(node[NI’]: NS’,N’,NNPs1’,NNPs2’,

NLs’ add(NLs,NI’,W)) OCs}
if NS’ =/= notYet .

where s of s(N’) is the successor function of natural
numbers.

If the first and second values of the node[NI] observ-
able component are visited and 0, the node NI has
been fully tackled. If that is the case, the rule All-srch1
changes the first value into done.

If the node NI has been fully tackled and has a direct
successor NI’ that has not been treated and the first value
of the node[NI’] observable value is notYet, the first

and second values of the node[NI’] observable value are
changed into visited and the number N’ obtained by
decrementing the original value s(N’); moreover, NI’ and
W (which is the weight of the edge from NI to NI’) are
added to each path in the soup NLs of the node[NI’]
observable value. This is done by the rule All-srch2.

The rule All-srch3 does almost the same thing as
the rule All-srch2. The difference is that the rule
All-srch3 deals with the case where the first value of
the node[NI’] observable value is not notYet, while the
rule All-srch2 deals with the case where it is notYet.

The search command, where ALLPF is the specification
of the straightforward algorithm and init is the initial state
for ALLPF and the DAG shown in Fig 1,

search [1] in ALLPF : init
=>* {(node[n3]: done,0,empty,NNPs2,NLs) OCs} .

finds all paths to the node n3 from the node n0, which are
assigned to NLs:

NLs --> < 5,n0 -> n2 -> n5 -> n3 >
< 5,n0 -> n2 -> n1 -> n4 -> n3 >
< 5,n0 -> n2 -> n5 -> n1 -> n4 -> n3 >
< 6,n0 -> n3 > < 6,n0 -> n1 -> n4 -> n3 >

among which there are three shortest paths:

< 5,n0 -> n2 -> n5 -> n3 >
< 5,n0 -> n2 -> n1 -> n4 -> n3 >
< 5,n0 -> n2 -> n5 -> n1 -> n4 -> n3 >

Let sPaths refer to the soup of the three shortest paths.
The extraction of shortest paths from all paths to a goal node
from a start node is done by a program written in Maude.

To model check that KA∗ satisfies some desired prop-
erties, we define (or specify) PA∗ and LA∗. PA∗ has two
atomic propositions: fin and isSPath. LA∗ is specified
as follows:

eq {(gstat: fin) OCs} |= fin = true .
eq {(path: (< D,L >)) OCs} |= isSPath
= (< D,L > \in sPaths) .

eq {OCs} |= PROP = false [owise] .

The three equations say that fin holds a state s iff
s contains (gstat: fin) and isSPath holds for a
state s iff s contains (path: (< D,L >) and sPaths
contains < D,L > as an element. Let two LTL formu-
las halt and correct be defined as <> fin and
[](fin -> <> isSPath), where <> is ♦ , [] is �
and -> is ⇒.

Let h be as follows: h(n1) = 2, h(n3) = 0 and h(n) = 1
for any other node n, and init be the initial state for the
specification ASTAR of KA∗ and the DAG shown in Fig 1.
We model check that KA∗ satisfies halt and correct as
follows:

red modelCheck(init,halt) .
red modelCheck(init,correct) .

185

Figure 2. A DAG (2)

No counterexample is found for both model checking ex-
periments. Because h is admissible, namely that it never
overestimates the actual cost to the goal n3 from any node,
KA∗ satisfies correct.

Let us use another h: h(n1) = 3, h(n5) = 4, h(n3) = 0
and h(n) = 1 for any other node n. This h is not admissible
because the actual cost to the goal n3 from the node n1 is
2 and the actual cost to the goal n3 from the node n5 is
3. The first model checking experiment does not find any
counterexamples, while the second one does. This is because
h is not admissible. For this case, KA∗ finds n0 -> n3,
which is not the shortest one.

Let us use yet another h: h(n1) = 3, h(n3) = 0
and h(n) = 1 for any other node n. This h is not
admissible either because the actual cost to the goal n3
from the node n1 is 2. The two model checking experi-
ments, however, do not find any counterexamples, meaning
that KA∗ still satisfies correct. In this case, KA∗ finds
n0 -> n2 -> n5 -> n3. This is because for each node
n in the path, h(n) never overestimates the cost to the goal
n3. This case may make us conjecture that if there exists
a shortest path such that for each node n in the path h(n)
never overestimates the cost to the goal from n, then A*
finds a shortest path.

Let us consider the DAG shown in Fig. 2. Let us suppose
that h is defined as follows: h(n) = 0 for all nodes n,
namely that A* is equivalent to the Dijkstra algorithm. The
two model checking experiments do not find any counterex-
amples.

Let us suppose that h is defined as follows: h(n) = 10
for all nodes n. This h is not admissible. Moreover, there
exists no shortest path such that for each node n in the path
h(n) never overestimates the cost to the goal from n. The
two model checking experiments, however, do not find any
counterexamples. Thus, the sufficient condition that A* finds
a shortest path can be relaxed.

A relaxed sufficient condition would be that there exists
a shortest path such that for each node n in the path h(n)
plus the cost to n from the start node is less than the cost
of any non-shortest path to the goal from the start. Let us
suppose that h(n2) = 5, h(n4) = 0, h(n5) = 3, h(n6) = 4,
h(n4) = 0, h(n8) = 2, h(n10) = 0 and h(n) = 10 for

any other node n. This h is not admissible but does satisfy
the relaxed sufficient condition. The two model checking
experiments do not find any counterexamples. Let us modify
h a bit as follows: h(n8) = 2 and for any other node n
h(n) is the same as the last version. This modified h does
not satisfy the relaxed sufficient condition. The first model
checking experiment does not find any counterexamples,
while the second one finds a counterexample, where A* finds
n0 -> n4 -> n10 that is not a shortest path. The two
cases support that the relaxed sufficient condition is likely
to make seance.

VI. CONCLUSION

We have reported on a case study in which A* algorithm
is formally specified in Maude and model checked with the
Maude LTL model checker. Two properties have been taken
into account: the termination property and the correctness
property. The former says whether A* halts, while the latter
says whether A* finds a shortest path. If the estimation h
is admissible, our model checking experiments say that A*
satisfies both properties. Our model checking experiments
have also suggested that the condition can be relaxed. We
have then conjectured that if there exists a shortest path such
that for each node n in the path h(n) plus the cost to n from
the start node is less than the cost of any non-shortest path
to the goal from the start, A* finds a shortest path.

Among future directions are as follows. Many path finding
algorithms have been proposed. One piece of our future
work is to formally specify such algorithms in Maude and
model check them with the Maude LTL model checker,
coming up with a framework in which such algorithms can
be systematically analyzed. Another piece of our future work
is to apply Maude and the Maude LTL model checker to
path planning for multiple robots or vehicles, which could
contribute to a near future autonomous vehicle world.

REFERENCES

[1] P. E. Hart, et al., “A formal basis for the heuristic determination
of minimum cost paths,” IEEE Tans. Syst. Sci. Cybern., vol. 4,
pp. 100–107, 1968.

[2] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[3] M. Clavel, et al., All About Maude, ser. Lecture Notes in
Computer Science. Springer, 2007, vol. 4350.

[4] A. K. Saberi, et al., “Analysis of path planning algorithms: a
formal verification-based approach,” in ECAL 2013, 2013, pp.
232–239.

[5] N. Maragos, et al., “A formal and executable model for path
finding,” in SEEFM 2003, 2003, pp. 129–139.

[6] A. Ulusoy, et al., “Optimality and robustness in multi-robot
path planning with temporal logic constraints,” I. J. Robotics
Res., vol. 32, pp. 889–911, 2013.

186

PAT approach to Architecture Behavioural
Verification

Nacha Chondamrongkul∗, Jing Sun†, Ian Warren‡
Department of Computer Science

The University of Auckland
Auckland, New Zealand

∗ncho604@aucklanduni.ac.nz
† jing.sun@auckland.ac.nz
‡ i.warren@auckland.ac.nz

Abstract—Software architecture design plays a vital role in
software development, as it gives an overview of how the software
system should be constructed and executed at runtime. The
verification of software architecture design is hence important
but it is an error-prone task that heavily relies on knowledge
and experience of the software architect, especially for a large
software system that its behaviour is complex. Automated verifi-
cation can be a solution to this problem, however, the specification
language must be expressive enough to describe the behaviour
of different design entities. This paper presents an enhancement
of an architecture description language supported by PAT. The
enhancement aims to improve the expressiveness of the language,
in order to support the automated behaviour verification of
software architecture design. With this enhancement, different
behaviour of specific component and connector can be thoroughly
checked and traced. The implementation of this enhancement
is presented to demonstrate how the standard model checking
engine such as PAT can be extended to support an architecture
description language. We evaluated our approach with a case
study and the result is presented.

Index Terms—Software Architecture, Architecture Description
Language, Model Checking, Linear Temporal Logic

I. INTRODUCTION

Software architecture design gives an overview of how the
software system is implemented and works. If the software
architecture design is made incorrectly, it can cause the project
to fail or delay due to design re-correction, therefore the verifi-
cation is a significant task. However, the software architecture
designs are usually represented by informal notations, such
as graphical diagram and text. The design interpretation can
hence be inconsistent and the verification process is an error-
prone and time consuming task, even to those with extensive
experience and knowledge. If the software architecture design
can be formally defined, the verification task can be automated.
Therefore, applying the formal methods to the software archi-
tecture design would be a useful approach to this problem.

Many architecture description languages (ADL) have been
proposed to formally define the software architecture design
model such as [1], [2], [3], and [4]. With the formal model
in ADL, different properties can be defined and automatically

DOI reference number:10.18293/SEKE2019-041

verified with the model checker. Allen and Garlan [1] proposed
Wright, an ADL that allows connections in software architec-
ture design to be formally defined in communicating sequential
process (CSP). The formal format of design model allows
to check the architectural compatibility among connections.
However, the behavioural property definition and verification
had not been completely addressed so there are number of
works that aim to fulfil this. Darwin [5] was proposed to allow
behavioural properties to be defined in the linear temporal
logic (LTL) and use LTSA [2] as a model checker to verify
them. Defining and verifying behaviours in the evolving soft-
ware system is a challenge. Oquendo [3] presented π-Method
with an ADL based on π-calculus. The ADL for π-Method
helps to formally define evolvable software system in both
structural and behavioural view. In addition, the refinement
model can be defined to check and preserve the behavioural
properties.

Some works have applied process algebra to formalize
specific behaviour in the software system because of its
expressiveness in describing system behaviour. Aldini et al. [6]
presented a guideline that includes a principle of formalizing
system behaviour into process algebra. The manual formal-
ization from the design model to ADL has been an obstacle
to making it widely used by the software engineers, due to
the fact that the majority of them do not have background
knowledge in the formal methods and the verification output
from model checker can be difficult to understand. Therefore,
the degree of formality needs to be balanced with the practi-
cality. Some approaches, such as Bose et al. [7], Baresi et al.
[8] and CHARMY [4], hence provide a feature that translates
the input model in graphical notation into formal language
that can be automatically checked. While, some approaches,
such as Arcade [9], aim to make the verification output from
the model checker more readable. The graphical abstraction
may promote the practicality and understandability of using
formal ADL, but the ambiguity might occur from the lack of
complete semantic mapping between the graphical input and
the model checking input. In addition, most of the existing
approaches use standard model checking engines that is not
designed with the architecture design concept. For example,
Wright uses FDR as a model checker, while Darwin and

187

1.Connectors specification

2.Component specification

3.System Configuration

4.Assertions

Deadlock Freeness

LTL Properties

Attachment

Execution

Fig. 1. Overall Approach

CHARMY uses LSTA and SPIN [10] respectively. As a result,
the constructed state model is usually not optimized in term
of understandability and scalability [11].

This work aims to enhance the expressiveness of Wright#
[12], an architecture description language that is supported by
PAT [13]. Wright# is an extension of Wright with the support
of architecture styles reusing. This enhancement provides an
expressive way to describe the execution of software system
through system, component and connector specification. The
overall approach can be found in Figure 1, which shows the
specification that consists of four major parts. The connector
can be specified according to the architecture styles. The
component specification includes components involved in the
system under design. In system configuration, the connector
instances are created and attached to the component before
we define how the system is executed through the process
that initiates different components. The assertion is where
the number of properties are defined for checking specific
behaviour in the system. Deadlock freeness, a standard PAT
feature, can also be used to verify the software architecture
design. As the original Wright# produces a vague event labels
that are difficult to trace. Therefore, the event labelling is
optimized to clearly represent specific events in the connectors
and components. As a result, the LTL properties can be defined
to check the specific behaviours of design entities and the
verification output is easier to trace back. The PAT extension
module is developed as a graphical interface tool to support
Wright# and its enhancement. In addition, we demonstrate
the expressiveness of the design specification and property
definition with a software architecture design of e-commerce
software system.

The remainder of this paper is organized as follows. Section
2 explains the formalization of behaviour specification in the
software architecture design. Section 3 presents the implemen-
tation of tool and how we develop a module in PAT framework
to support Wright#. We demonstrate our approach with an e-
commerce case study in Section 4. Section 5 concludes this
paper and addresses the directions of future work.

II. FORMALIZATION OF ARCHITECTURAL DESIGN

In this section, we present the formalization of behaviour
specification of software architecture design in Wright#.
Wright# notation aims to define software architecture design

in component and connector view. CSP, a process algebra
notation, is used to formally describe the interactive behaviours
of component and connector. We extend the PAT tool to
support this ADL and transform it into native CSP that forms
Labelled Transition System (LTS). With LTS, the desired
behaviours of software system can be automatically checked
through LTL, as well as the deadlock situation.

A. Formal Modelling
Wright# is an ADL that is inspired by Wright with four ba-

sic design entities namely the component, connector, port and
role. The component represents a computational unit, while
the connector represents linkage between the components. The
connector can includes one or more roles representing how the
communication works. The component contains a number of
ports that can be attached to one or more roles defined by
different connectors.

There are three parts of design model to be described
in ADL namely connector definition, component definition
and system configuration. Each definition of connector is
corresponding to different type of communication according to
the architecture style. The component are defined to represent
actual component and port within the software system under
design. The system configuration defines how component and
connector are attached, as well as the execution process. These
definition contains defined processes that are based on CSP.
Table I shows the syntax of process expression that can be
used to describe the processes within the software architecture
design.

TABLE I
PROCESS EXPRESSION SYNTAX

e→ P Event prefixing
ch!p→ P Channel output
ch?p→ P Channel input
P ‖ Q Parallel process
P ||| Q Interleaving process
P < ? > Q Coupling process
Stop deadlock stop
Skip terminate successfully

An event represents an abstract observation of a software
system. It may refer to certain system state at a given time.
Event prefixing hence represent a circumstance when an event
e occurs then process P is executed next. Channel output and
input are used to send and receive data from its executing
environment respectively. Let ch be a channel and p is data
to be sent or received; P is a process to be executed next. A
pair of processes can be defined as parallel, interleaving and
coupling. The coupling operator does not exist in native CSP
or CSP# but it is added to the syntax to represent coupling
process between components. Let P and Q be a process and
P < ? > Q. When the process P is triggered, it contains a
sequence of event that an event sequentially calls the process
Q to execute and return back to where it is called on process P.
In order to define coupling, process P must contain an event
process, which is when the coupling process Q is called to
execute.

188

1) Connector Definition: The connectors are firstly defined
to manifest how roles interact together. The processes for role
are defined with the sequence of events. The channel is used
to represent communication between different roles, which
results in transition between events. Below is a sample code
that conveys the communication for the client-server structure.
The channel req is used to make a request from the client to
the server and channel res is used to return response message
from the server to the client.

connector CSConnector{
role client(j) = request→ req!j→ res?j

→ process→ client(j);
role server() = req?j→ invoke

→ process→ res!j→ server(); }

The connector for publisher-subscriber styles can be defined
as shown below, where a channel pub is used to broadcast data
from the publisher to the subscriber.

connector PSConnector{
role publisher(j) = process→ pub!j→ Skip;
role subscriber() = pub?j→ process→ subscriber(); }

2) Component Definition: The component definition con-
tains a set of port definition. Each port has a process defined as
the sequence of event that the port performs internally within
the component. The script below shows two sample component
namely SPClient and SPServer. The SPClient component has
a test port defined and the SPServer has run port defined.

component SPClient {
port test() = precheck→ output→ test(); }

component SPServer {
port run() = invoke→ execution→ run(); }

3) System Configuration: The system configuration con-
tains details of how components interact among each other
and can be defined as follow. Firstly, the instance of connector
needs to be created with the declare statement based on
a defined connector. Secondly, the ports of connector are
attached to one of more roles of connector instances using
attach statement. If more than one roles are attached, a process
expression composed of multiple role and process operator
can be defined. Lastly, the execute statement declares how the
system are executed with a process expression.

system SampleCS {
declare cslink = CSConnector;
attach SPClient.test() = cslink.client();
attach SPServer.run() = cslink.server();
execute SPServer.run() ‖ SPClient.test(); }

Careful readers may notice an event process defined at the
role processes. This event triggers an execution of a process
defined on the attached port. According to the sample system
configuration shown above, the LTS is illustrated in Figure 2,
which the events of port is shown in italic.

The process event also serves as the point of execution
when the coupling process is defined. The coupling process
may occur in many situation. For example, the multi-tier
architecture that a tier can accept a request and consequently
make a request to the upper tier. Another example is in
Service-oriented architecture when a service is invoked and

0

1

request

7

8

res?j

10

precheck

output

9

process

SPClient.test()

2

3

req?j

4

process

6

execution

res!j

5

invoke

req!j

SPServer.run()

Fig. 2. LTS for the sample clien-server system

2

3

req?j

16

process

18

execution

res!j

17

invoke

req!j

SPServer.run() DBServer.run()

4

5

request

11

12

res?j

14

precheck

13

process

6

7

req?j

8

process

10

execution

res!j

9

invoke

req!j

res!j

15

res?j

Fig. 3. LTS for the sample coupling process

calls another service. Below is a sample of attached coupling
role processes. The run port of SPServer is attached to a
coupling of two roles from different client-server connectors
namely cslink and dlnk, which calls the component SPServer
and DBServer respectively where DBServer is a component.
In this case, the role processes are nested within one another
as LTS shown in Figure 3. This coupling feature eases the
complexity of defining the coupling process in native CSP.

attach SPServer.run() = cslink.server() < ∗ > dlnk.client();
attach DBServer.run() = dlnk.server();

B. Behaviour Verification

After the software architecture design model is defined with
ADL, different assertions representing the query about system
behaviours can be defined. PAT supports a number of different
assertion checking including linear temporal properties and
deadlock freeness.

189

1) Deadlock Freeness: Deadlock is a situation when the
software system can not progress further towards completion;
so that the entire system halts and waits indefinitely. A well
known scenario is when components wait for the mutual
exclusive resource. In the software system, deadlock occurs
when components call each other as circle, so the port that
initializes the process loops back to itself. More concrete
examples will be provided in the case study section. With the
sample model explained in the previous section, a deadlock
can be checked against a defined system using the deadlockfree
statement as shown below.

assert SampleSystem deadlockfree;

2) Linear Temporal Properties: A full set of linear temporal
logic is supported by PAT. Therefore, operators such as �
(always), ♦ (eventually), X (next), R (release) and U (until) can
be included in the linear temporal logic defined for checking
properties. Let F be a LTL formula, the assertion syntax for
defining LTL properties is as follows.

assert SampleSystem |= F;

In order to support expressiveness of defining system be-
haviour, the property can be implicitly defined to check the
behaviour of a specific component or connector.

Let Comp be any component, Prt is port of that component
and Evt is one of the event defined in the port process. F is a
LTL formula to check the behaviour of the component:

F = [Comp.Prt.Evt] | � F | ♦ F | X F | U F | R F
Let Comp be any component, Conn be a connector, Rle be

an attached role and Evt be one of the event defined in the
role process. F is a LTL formula to check the behaviour of
connector:

F = [Comp.Conn.Rle.Evt] | � F | ♦ F | X F | U F | R F
For example, �♦SPServer.run.execution expresses a prop-

erty to check if the execution event always eventually occurs
at the SPServer component. ♦DBServer.dblink.client.request
expresses a property to check if the request event at attached
client role of DBServer component eventually occurs.

III. TOOL IMPLEMENTATION

To support editing architecture design model in ADL and
automated behaviour verification, the PAT ADL module is
developed by extending PAT framework. This module includes
parser that helps to parse the ADL code into objects represent-
ing different entities of software architecture design model.
The parser in the original PAT tool was developed using
ANTLR version 3, where different parts of parsing code in C#
are merged inside the grammar file. This style of development
is difficult to make any extension and maintenance. Therefore,
we adopt ANTLR version 4.0, where the source code of
language parsing can be separated from the grammar file.
The complete source code of PAT ADL can be found at
https://bit.ly/2Vc855I.

The overall process performed by ADL module can be
illustrated in Figure 4. The editor tool allows users to edit
ADL file according to the syntax explained in the previous

CSP

ADL

Assertion LTS

ADL

Parser

PAT

Editor

2. Create ADL objects

3. Transform to

CSP objects

Specification

1.Edit ADL file

4. Execute

assertion5. show result

Fig. 4. Overall Process of the ADL module

section. When the user makes a verification, the source code
in ADL is processed by the PAT ADL in the background
and return the result back to the user interface on the editor
tool. We developed a grammar file based on the CSP# and
used ANTLR to automatically generate a parser program. The
parser program helps to read a source code in ADL and the
visitor program is developed to convert different ADL state-
ments into objects representing entities such as component,
connector, system configuration, port, role, attachment and
assertion. With Specification module, ADL objects are later
automatically transformed into PAT native objects representing
the CSP processes. The ADL to CSP transformation can be
briefly explained as follows.

• One process is defined corresponding to each attached
role of a defined port.

• One process is defined to represent a defined port, which
calls the attached role process according to the expression
defined in the attach statement.

• One process is created for a defined system and call port
processes according to expression defined in the execute
statement.

For example, the sample client-server model explained
in the previous section can be transformed into native
CSP as shown below. Two channels namely cslink req and
cslink res are defined for requesting and responding mes-
sage. SPClient cslink client process is defined for the client
role of cslink, and SPClient test process is defined for the
test port. Two processes namely SPServer cslink server and
SPServer run are defined in the same way for server. The
SampleSystem process is defined to represent the main system
process. The LTS sub-module helps to model LTS according
to CSP and encapsulate the transition model. The transition
model allows Assertion sub-module to traverse according to
the depth-first search and breadth-first search algorithm, in
order to make a verification. The verification result is displayed
on the verification window of the editor tool.

190

channel cslink res 1;
channel cslink req 1;
SPClient cslink client(j) = (
SPClient cslink client request
→ cslink req!j→ cslink res?j
→ (SPClient cslink client result
→ (SPClient cslink client process
→ (SPClient test precheck
→ (SPClient test output→ SPClient cslink client(j))))));
SPClient test() = SPClient cslink client();
SPServer cslink server() = cslink req?j
→ (SPServer cslink server invoke
→ (SPServer cslink server process
→ (SPServer run invoke
→ (SPServer run execution
→ (SPServer cslink server return
→ cslink res!j→ SPServer cslink server())))));
SPServer run() = SPServer cslink server();
SampleSystem() = (SPServer run() ‖ SPClient test());

IV. CASE STUDY

We select a part of real-world e-commerce software system
to demonstrate and evaluate the practicality of our approach.
The software architecture design of this system is shown (as
UML component diagram) in Figure 5. The software system
allows user to browse catalogue of the products, order and
make a purchase on-line through the web store or mobile store.
When the users make a purchase, the order manager compo-
nent keeps the record of order and fetch the product from
the inventory though the inventory control component. The
inventory control automatically locates the ordering product
from the warehouse and send details to the shipping control
component. The shipping control allows packaging officer to
prepare shipping package and log the shipping package for
courier.

Order

Manager

Web

Store

Inventory

Control

Shipping

Control

Mobile

Store

Customer

Notifier
Product

 Catalogue

Web

Admin

order order

proc

issue

receive

ship

access

Fig. 5. Component diagram for E-commmerce system

In this case study, we use the client-server and publisher-
subscriber connectors as defined in the previous section. The
model in ADL is partly shown below. The complete model
can be found at https://bit.ly/2EwJGCg. The ports are defined
according to the component diagram shown in Figure 5 along
with the port processes that simulate what the components

perform. Some port may omit the process details such as
ProductCatelogue and OrderManager component. The system
configuration of this system declares 4 client-server connector
and 1 publisher-subscriber connector. The number of attach-
ments are defined to link components together. The numbers
passing in as a parameter for role processes represent the sig-
nature of data passing between the component and connector.
The proc port of OrderManager is attached to two roles as
a coupling process: purchasing.server() and issuing.client().
This is because the order can only be processed successfully
when the inventory finished fetching the product, otherwise
the order is rejected. The purchasing.server() represents the
internal process for processing order within the OrderManager
component, while the issuing.client() requests to the service
on InventoryControl component to fetch the product. The
issue port of InventoryControl component is attached to two
roles as a parallel process. The issuing.server() represents
the internal execution of InventoryControl component, while
shipping.client() represents a request to manage the shipping
details of the ShippingControl component. The execute state-
ment defines all port processes to be executed in parallel.
The execution can be modified to focus on checking some
particular scenarios in response to the functionality of the
software system, such as when the product is ordered and
when the product catalogue is updated.

component WebStore {
port browse() = render → output → browse();
port order() = commit → email → order();
port receive() = acknowledge → display → receive(); }

component MobileStore {
port browse() = render → output → browse();
port order() = commit → email → order(); }

component WebAdmin {
port manage() = result → manage(); }

component CustomerNotifier {
port alert() = promo → send → alert(); }

component InventoryControl {
port issue() = locate → fetch → issue(); }

component ShippingControl {
port ship() = inform → log → ship(); }

...
system Shopping {

declare purchasing, issuing = CSConnector;
declare shipping, cataccessing = CSConnector;
declare newswire = PSConnector;
attach WebStore.order() = purchasing.client(99);
attach MobileStore.order() = purchasing.client(98);
attach WebStore.receive() = newswire.subscriber();
attach CustomerNotifier.alert() = newswire.publisher(77);
attach WebStore.browse() = cataccessing.client(99);
attach WebAdmin.manage() = cataccessing.client(98);
attach ProductCatelogue.access() = cataccessing.server();
attach OrderManager.proc() = purchasing.server()

< ∗ > issuing.client();
attach InventoryControl.issue() = issuing.server()

‖ shipping.client(88);
attach ShippingControl.ship() = shipping.server();
execute WebStore.order() ‖ MobileStore.order()
‖ WebStore.browse() ‖ WebAdmin.manage()
‖ ProductCatelogue.access() ‖ OrderManager.proc()
‖ InventoryControl.issue() ‖ ShippingControl.ship();

191

Three assertions are defined as shown below. The first
assertion helps to check if the software system design can
leads to a deadlock. If the deadlock is found, the verification
shows an invalid result with a counterexample, which gives a
sequence of events leading how deadlock can occur.

assert Shopping deadlockfree;
assert Shopping |= ♦WebStore.purchasing.client.process;
assert Shopping |= �(OrderManager.purchasing.server.process

→ ♦WebStore.order.email);

With the system configuration above, the deadlock does not
occur so it outputs a valid result. However, we can demonstrate
when deadlock occurs by changing the attachment of the
ShippingControl.ship() port to the shipping.server() < ∗ >
issuing.client(). This makes the components call each other in
a loop. The verification result can be seen in Figure 6. The
event labels identify both component, connector, role and port
that are involved in the deadlock. The second assertion makes
use of the behaviour checking on the connector. It checks if
the process event of client role is eventually triggered at the
attached purchasing connector on the WebStore component.
The third assertion combines the behaviour checking on both
the component and connector, as it checks if every time the
order is processed, the email will always be sent out to the
customer. The results of these two LTL properties are valid.
The verification statistic of these three assertions including
number of states, number of transitions, total time usage and
estimated memory usage can be found in Table II. As can
be seen from the table, the number of visited states, memory
usage and total time are relatively low.

Fig. 6. Deadlock Result from PAT

TABLE II
VERIFICATION STATISTIC

Assertion State# Transition# Time (sec) Memory
Deadlock 25 24 0.0059828 8664 KB

LTL 1 16 24 0.0105143 8696 KB
LTL 2 159 278 0.0137552 42280 KB

V. CONCLUSION

We present an enhancement to Wright# ADL that supports
the formal behaviour modelling in software architecture de-
sign. The language allows users to expressively define and
verify the behaviour of components and connectors. The
implementation of a PAT extension module to support Wright#
and our enhancement is presented, in order to demonstrate
how the standard model checker can be extended to support
an ADL. We evaluate our approach with an e-commerce

software system. Our approach can be used to clearly define
the behaviour of different components and connectors in the
design, as well as the interaction among them. The properties
can be defined in LTL assertions to represent the desired
system behaviour in response to the system functionalities.
The deadlock analysis, a standard feature in PAT can be used.
The event labels in a counterexample is informative enough to
identify involved design entities that cause invalid behaviour.
We found that the state space are relatively low but more
evaluation need to be taken to prove the scalability.

For the future work, we plan to integrate this approach
with other techniques such as ontology reasoning [14], in
order to fulfil the semantics of the architecture design in the
verification process. As the ontology representation is rich of
semantic constrains that can help to verify and maintain the
structure consistency in the design model before its behaviour
is checked. More case studies in the real world could be used
to evaluate the practicality and scalability of our approach. As
the behaviours can be formally defined, it could be interesting
to use it to detect the design smells or anti-pattern based on
the system behaviours.

REFERENCES

[1] R. Allen and D. Garlan, “A formal basis for architectural connection,”
ACM Trans. Softw. Eng. Methodol., vol. 6, no. 3, pp. 213–249, Jul. 1997.

[2] J. Magee and J. Kramer, Concurrency: State Models & Java Programs.
New York, NY, USA: John Wiley & Sons, Inc., 1999.

[3] F. Oquendo, “π-method: A model-driven formal method for architecture-
centric software engineering,” ACM Sigsoft Software Engineering Notes,
vol. 31, pp. 1–13, 05 2006.

[4] P. Pelliccione, P. Inverardi, and H. Muccini, “Charmy: A framework for
designing and verifying architectural specifications,” IEEE Transactions
on Software Engineering, vol. 35, pp. 325–346, 2009.

[5] J. Magree, “Behavioral analysis of software architectures using ltsa,”
in Proceedings of the 1999 International Conference on Software
Engineering (IEEE Cat. No.99CB37002), May 1999, pp. 634–637.

[6] A. Aldini, M. Bernardo, and F. Corradini, A Process Algebraic Approach
to Software Architecture Design. Springer Publishing Company,
Incorporated, 2014.

[7] P. Bose, “Automated translation of uml models of architectures for
verification and simulation using spin,” in Proceedings of the 14th IEEE
International Conference on Automated Software Engineering, ser. ASE
’99. Washington, DC, USA: IEEE Computer Society, 1999, pp. 102–.

[8] L. Baresi, C. Ghezzi, and L. Zanolin, Modeling and Validation of
Publish/Subscribe Architectures. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 273–291.

[9] K. S. Barber, T. Graser, and J. Holt, “Providing early feedback in the
development cycle through automated application of model checking
to software architectures,” in Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE 2001), Nov 2001,
pp. 341–345.

[10] G. Holzmann, Spin Model Checker, the: Primer and Reference Manual,
1st ed. Addison-Wesley Professional, 2003.

[11] P. Zhang, H. Muccini, and B. Li, “A classification and comparison of
model checking software architecture techniques,” Journal of Systems
and Software, vol. 83, no. 5, pp. 723 – 744, 2010.

[12] J. Zhang, Y. Liu, J. Sun, J. S. Dong, and J. Sun, “Model checking soft-
ware architecture design,” in 2012 IEEE 14th International Symposium
on High-Assurance Systems Engineering, Oct 2012, pp. 193–200.

[13] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “Pat: Towards flexible verification
under fairness,” ser. Lecture Notes in Computer Science, vol. 5643.
Springer, 2009, pp. 709–714.

[14] N. Chondamrongkul, J. Sun, and I. Warren, “Ontology-based soft-
ware architectural pattern recognition and reasoning,” in 30th Interna-
tional Conference on Software Engineering and Knowledge Engineering
(SEKE), June 2018, pp. 25–34.

192

Leveraging Rigorous Software Specification Towards
Systematic Detection of SDN Control Conflicts

Xin Sun and Lan Lin
Ball State University, Muncie, Indiana 47306, USA

{xsun6, llin4}@bsu.edu

Abstract—This paper leverages a well-established, rigorous
method for software specification to approach a unique problem
introduced by the emerging software-defined networking (SDN)
paradigm, i.e., the potential control conflict arising from running
multiple SDN apps in the same network. As individual SDN
apps have different optimization objectives and each assumes full
control of the network, their interaction is often unpredictable
and can destabilize the network as a result. We propose a
theoretical modeling framework for systematically detecting such
conflicts, which is deeply rooted in automaton theory and soft-
ware engineering. The key novelty and strength of our approach
is its ability to model and reason about the interaction of multiple
SDN apps precisely (with the capability of identifying when
and how conflicts may occur), proactively (prior to running the
apps), and without the knowledge of the apps’ implementation
details. To the extent of our knowledge our work is the first
to adapt rigorous software specification to the constructive,
formal modeling of SDN apps running on a network topology,
and through a formal treatment not only straightforwardly
detects and locates such conflicts but also examines and analyzes
important network properties (e.g., safe operational regions) of
interest to network managers.

I. INTRODUCTION

This paper reports an application of rigorous software
specification to the emerging software-defined networking
(SDN) paradigm, to approach a unique problem introduced
by “SDN apps” (also called network functions), which are
software applications running on top of the SDN controller
platform, offering a variety of functionalities such as load-
balancing, power-saving, quality of service, access control,
WAN optimization, network virtualization, to name a few (a
comprehensive survey is presented in [1]).

Because (i) the apps are created by different developers (vir-
tually anyone can develop and release them; marketplace exists
today for selling and buying SDN apps, e.g., Hewlett-Packard
App Store [2]), (ii) each app typically manages/optimizes
a single aspect of the network (e.g., performance, security,
resiliency, energy usage, etc.), and has a single optimization
objective, and (iii) each app assumes full control of the whole
network, they may seek to change the underlying network in
conflicting ways. The interaction of their conflicting outputs
can be unpredictable and, as a result, destabilize the network
(a case study of such conflict is presented in Sec. III).

In our preliminary work [3] a fine-grained approach was
proposed that models the SDN apps and their interactions
using deterministic finite state automata. However, derivation
of the automata was completely manual, and the conflicts were
manually identified afterwards based on human insight. The
modeling process was tedious with much trial and error, and
we were not able to prove the correctness of either the derived
automata or the located conflicts.

This paper presents an advanced approach that significantly
extends our previous work, with the following contributions:

1) We adapted a well-established, rigorous method for
software specification (i.e., sequence-based specification
[4, 5, 6, 7]) to systematically derive a formal (automa-
ton) model for each SDN app that runs on a network
topology (Sec. IV). The adapted method is inherently
rigorous, systematic, and constructive, and does not
require knowledge of the implementation details of the
apps; as such, we believe the method is very practical.

2) We developed a theoretical framework for analyzing
the interaction of multiple SDN apps running in par-
allel (Sec. V). With our new theory, important network
properties of interest to network managers, such as the
safe operational region (i.e., network states under which
multiple SDN apps can run free of conflict), can for the
first time be formally defined and precisely analyzed.
We demonstrated how potential control conflicts can be
straightforwardly and systematically detected (Sec. VI).

II. RELATED WORK

The problem of control conflicts caused by running multiple
independently-developed SDN apps, and the resulting destabi-
lization of the network, has recently started to receive attention
from the research community. Corybantic [8] and Athens [9]
take a coarse-grained approach that resolves potential conflicts
at run-time (i.e., when the network is in operation). They
let individual SDN apps generate “proposals” for network
configuration changes, and then require each app to evaluate
all proposals, based on some predefined policy or voting mech-
anism. While this approach can successfully resolve conflicts,
it does so with significant costs: (i) it requires all SDN apps
to implement the additional functionality of generating and
evaluating proposals; (ii) it only selects a single proposal at a
time, which can leave out potentially better solutions that com-
bine multiple conflict-free proposals, leading to sub-optimal
network configurations; (iii) it cannot identify the root cause
of the conflicts. Bairley and Xie [10] take a similar approach
(it thus suffers from similar drawbacks), except that it seeks
to combine multiple proposals to form a globally optimal
configuration using an evolutionary approach. In contrast, our
approach does not have any of those drawbacks.

Prior works [11, 12] concern individual-flow-level forward-
ing behavior and can detect policy violations (such as black
holes and loops) at that level; however, none of them can detect
the network state oscillation caused by conflicts of running
multiple SDN apps, since state oscillation is not a violation of
flow policy (it is a higher-level issue).

DOI reference number: 10.18293/SEKE2019-014 193

A B

F

E

w

v

Fig. 1. The Network Topology Used in the Case Study

III. CONTROL CONFLICTS AND NETWORK STATE
OSCILLATION: A CASE STUDY

A software-defined network typically has a three-tier ar-
chitecture [13]. The bottom layer, also called the data plane,
consists of “dumb” switches and other hardware boxes that
primarily focus on packet streaming. The middle layer, also
called the controller or the network operating system, is a
software platform that directly manages the hardware boxes
and offers an abstraction of the network resources via a set
of application programming interfaces (APIs). The APIs in
turn enable the development of network functions, also called
“SDN apps”, which form the top layer.

An SDN app generally seeks to optimize some aspect of
a network, by modifying the network state. The state of a
network includes multiple variables, such as traffic load, rout-
ing paths, power state of devices, up/down state of links, etc.
[14] SDN apps control the network state by issuing commands
to the controller via the northbound API; the controller then
compiles each command down to a set of new configurations
to be installed on the data plane.

We observed that, when multiple SDN apps are trying to
control the network state, conflicts may occur. For the purpose
of demonstrating both the problem and our solution in a
tangible and unambiguous manner, we now present a concrete
case study involving two popular types of SDN apps that have
been extensively researched (e.g., [15, 16, 17]): a power-saving
app and a load-balancing app, running on a toy network as
depicted by Fig. 1. End hosts attach to Routers A and B.
Between them there are two routing paths: one goes through
Router E and the other F . The traffic load on each link (w
or v) is modeled as a step function that has three states: high
(H), low (L), and zero (Z). Assume all devices and links have
the same capacity. The two apps work in the following way:
Power-saving app: it seeks to aggregate traffic to one of the
two paths (without loss of generality, assuming it’s always the
top path), and then turn off Router E to reduce energy use. To
realize this objective, it checks the utilization rates of Links w
and v every M seconds, and whenever the utilization rates of
both links are low or zero for two consecutive cycles, it issues
a command to the controller to turn off E and route all future
packets to the top path.
Load-balancing app: it seeks to spread traffic across all
possible paths, to minimize the load of any link. It checks
the utilization rates of w and v every M seconds. Whenever
one is high and the other is low or zero for three consecutive
cycles, it issues a command to the controller to route a larger
fraction of new flows entering the network in the next M
seconds through the less congested path. It stops issuing such
commands once the utilization rates of both links become high,
or both become low or zero (i.e., the load is balanced).

Intuitively, when the two apps run on the same network,
control conflict might occur, as one seeks to aggregate traffic
to a subset of paths, while the other seeks to spread traffic
evenly on all paths. However, the simple intuition is unable
to tell precisely when and how control conflict may arise, and
the consequences of the conflicts. The problem can get much
more complicated, as the conflict may be caused by more than
two apps, and the network may oscillate among more than two
states.

IV. MODELING INDIVIDUAL SDN APPS

This section first presents a formal model for individual
SDN apps, and then describes our approach for deriving the
model. The two SDN apps described in Sec. III are used as
running examples to illustrate the modeling process.

A. An Automaton-Based Model

Our model of an SDN app running on a network topology
follows the conventional definition of a Moore machine.

Definition 1 (Moore Machine): A Moore machine is a 6-
tuple (Q,Σ,Γ, δ, ν, q0), where Q is a finite set of states, Σ is
an input alphabet, Γ is an output alphabet, δ : Q×Σ→ Q is
the transition function, ν : Q→ Γ is the output function, and
q0 ∈ Q is the starting state.

Specifically for the SDN apps, they can be modeled as
a subset of Moore machines, of which the output alphabet
includes the two special responses: 0 (the null response) and
ω (the illegal response). Additionally, the model only needs
to include states that are reachable from the initial state; non-
reachable states can be safely ignored as they will never be
realized. To model reachable states, we need to extend the
transition function of a Moore machine to input sequences, as
follows: δ̂ : Q×Σ∗ → Q is defined by (1) δ̂(q, λ) = q, where λ
is the empty input sequence; and (2) δ̂(q, wa) = δ(δ̂(q, w), a)
for all q ∈ Q, w ∈ Σ∗, a ∈ Σ.

Definition 2 (Network Function Moore Machine): A network
function Moore machine is a Moore machine (Q,Σ,Γ, δ, ν, q0)
satisfying (1) {0, ω} ⊂ Γ, and (2) for any q ∈ Q there exists
w ∈ Σ∗ such that δ̂(q0, w) = q.

Here Q represents the set of software states of the SDN
app (note that these are different from the network states); Σ
represents inputs to the SDN app, which includes the network
states such as link load and topology; Γ represents outputs
from the SDN app, which are commands to the SDN controller
that seek to change the network state; 0 and ω are special
outputs representing the null output, and the illegal output (for
an input sequence not possible to occur – this is defined for
completeness purposes). The second condition ensures that any
state in Q must be reachable from the initial state q0.

B. A Rigorous Approach for Deriving the Automaton

Our approach for deriving the Moore machine of a given
SDN app is rigorous (based on the automaton theory), system-
atic (we offer a systematic process to follow), and constructive
(the state machine will be discovered at the end of the process).
It is based on a well-established rigorous method for software
specification, i.e., sequence-based specification [7, 6, 5, 4].
The input to our approach is an informal description of how the
SDN app is supposed to work on the given network topology

194

(this description is termed “functional requirements” in the
field of software engineering). The output is a Moore machine
representing the working mechanism of the SDN app. The
approach has three key steps: identification of stimuli and
responses, sequence enumeration, and automaton construction.

1) Step 1: Identification of stimuli and responses:
We first identify a list of stimuli (i.e., inputs) and
responses (i.e., outputs) of the SDN app running on
the given network topology. The power-saving app and
the load-balancing app share a common set of inputs:
{HwHv, HwLv, HwZv, LwHv, LwLv, LwZv, ZwHv, ZwLv,
ZwZv}, where H , L, and Z indicate link utilization is high,
low, or zero, respectively, and the subscript indicates which
link (i.e., w or v). Each input contains information about the
utilization rates of both links. Outputs of the power-saving
app are {OnE, OffE, 0}, where OnE/OffE represents turning
on/off the switch E (a request to turn on/off E, rather than
a successful command or operation, as such request may
be overridden [3]), respectively, and 0 represents the null
response, i.e., no output issued by the SDN app that potentially
changes the network’s state. Outputs for the load-balancing
app are {FtoE, EtoF, 0}, where FtoE/EtoF represents
moving flows from F /E to E/F , respectively.

2) Step 2: Sequence enumeration: We start with an
informal description of the requirements for each SDN app
running on the given topology, and tag (number) them to
facilitate tracing decisions we have made (in the specification
process) to the tagged requirements or derived requirements
(as a by-product the process also leads to the discovery of
derived requirements that were not originally stated, and the
resolution/correction of inconsistent/incorrect requirements).
Requirements for the power-saving app and for the load-
balancing app are listed in Tables I and II, respectively.
Original requirements were retrieved from descriptions of the
functions in [3]. Tags that begin with D indicate new require-
ments we derived in the specification process (following the
same assumptions as implied by [3]).

Next we perform the key step of sequence-based specifica-
tion, called sequence enumeration, to discover/construct every
detail of the state machine. We enumerate all finite sequences
of stimuli (inputs) in length-lexicographical order (i.e., first by
length, and within the same length lexicographically), and for
each enumerated sequence make two decisions:

- Response mapping. We map the sequence of inputs to a
response (output) of the network function. The response
is the output the network function produces in response to
the very last input in the sequence, given the input history.
For instance, the sequence LwLv.LwLv (we concatenate
inputs with dots) is mapped to the response OffE by
the power-saving function by Requirement 2 (Table I).
We introduce two special responses in theory: the null
response, denoted by 0, for the lack of an externally
observable output (there might have been an internal
state update), and the illegal response, denoted by ω,
for an operationally unrealizable sequence of inputs (the
sequence cannot occur in practice). A sequence is illegal
if it is mapped to ω; otherwise, it is legal.

- Equivalence declaration. We determine if the sequence
is Moore equivalent to (and hence can be reduced to) a

TABLE I
REQUIREMENTS FOR THE POWER-SAVING FUNCTION

Tag Requirement
1 Assume each link exhibits a utilization rate that can vary over

time. This rate can be sampled on each cycle and is either high
(H), low (L), or zero (Z).

2 Suppose a power-saving machine tries to power down E when
the link utilization of both links v and w is low or zero for two
consecutive cycles. Any new flows are then routed to F .

3 The machine waits for two consecutive cycles when link w is
experiencing heavy load before restoring power to E.

4 The machine is designed such that the attempt to turn E off
may have failed or been overridden. Thus it is treated more as
a request than a command.

D1 Assume there is an attempt to turn on E at system
start/initialization.

D2 Assume that turning on E is also treated as a request than a
command.

D3 The latest two cycles’ link utilization for both v and w is
necessary to determine if a command needs to be issued to turn
on/off E.

D4 Except for at system initialization, an attempt to restore power
to E has to follow a recent power off attempt for which no other
restore attempt has been made, and only a zero link rate of v and
two consecutive high link rates of w have been observed since
that power off attempt.

D5 After a recent power off attempt that appears unsuccessful (by
a non-zero link utilization of v), another two consecutive cycles
of both links v and w being low or zero need to be observed to
power off E again.

D6 After a recent power off attempt, if v has been observed of zero
utilization it suggests the latest power off attempt might have
been successful, but is subject to future observations.

TABLE II
REQUIREMENTS FOR THE LOAD-BALANCING FUNCTION

Tag Requirement
D1 Assume load is balanced at system start/initialization.
D2 Continued balanced load does not change the (load) balanced

state the function is in.
D3 The load-balancing function needs to observe three consecutive

cycles of the same imbalanced load patterns before functioning.
D4 If load is observed re-balanced from an imbalanced state, the

load-balancing function returns to the (load) balanced state.
D5 If heavy load switches between the two links v and w, the load-

balancing function transitions to the corresponding imbalanced
state (based on which link has heavy load).

D6 After observing three consecutive cycles of the same imbalanced
load patterns (i.e., high w and low/zero v, or high v and low/zero
w), the load-balancing function directs load from the heavy link
to the light link.

D7 Load-balancing operations are issued based on the most recent
three consecutive cycles’ loads only, irrespective of whether the
same operation has been recently issued.

previously enumerated sequence. Two sequences u and v
are Moore equivalent if and only if for any input sequence
w, uw and vw always map to the same response by the
network function. This implies u and v are mapped to
the same response as well (as w could be the empty
sequence). For instance, LwLv.LwZv can be reduced to
the prior sequence LwLv.LwLv by Requirement 2 for the
power-saving function. Two equivalent sequences arrive
at the same state of the underlying Moore automaton
starting from the initial state. We chose to model it using
a Moore machine to be consistent with the transducer
model in [3], whereas in software specification Mealy
equivalence and a Mealy machine are used as they lead

195

to a shorter enumeration table. One could easily transform
between Moore and Mealy machines. When reducing a
sequence to a prior sequence, we follow the reduction
chain and get to the sequence that is itself unreduced.
For instance, HwZv is reduced to HwHv and not HwLv
as HwLv is further reduced to HwHv (for the power-
saving function). A sequence is reduced if it is Moore
equivalent to a prior sequence in length-lexicographical
order; otherwise, it is unreduced.

One starts with the empty sequence λ. To get all the
sequences of Length n + 1 (integer n ≥ 0) one extends all
the sequences of Length n by every stimulus, and considers
the extensions in lexicographical order. This inherently com-
binatorial process can be controlled by two observations:

- If Sequence u is reduced to a prior sequence v, there is
no need to extend u, as the behaviors of the extensions
are defined by the same extensions of v.

- If Sequence u is illegal, there is no need to extend u, as
all of the extensions must also be illegal (i.e., physically
unrealizable).

Therefore, only legal and unreduced (also called extensible)
sequences of Length n get extended by every stimulus for
consideration at Length n+ 1. The process continues until all
the sequences of a certain length are either illegal or reduced
to prior sequences. The enumeration becomes complete. This
terminating enumeration length is discovered in enumeration,
and varies from application to application.

Excerpt of an enumeration for the power-saving function is
shown in Table III. We show the enumeration until Length 3
due to lack of space (the enumeration terminates at Length
4). Columns of the table are for enumerated sequences, their
mapped responses, possible reductions to prior sequences
under Moore equivalence, and traces to requirements. We
similarly performed the enumeration for the load-balancing
function, but omitted it here due to lack of space.

3) Step 3: Construction of the automaton: We observe
that the completed enumeration from the previous step en-
codes a Moore machine as follows. First we retrieve all the
unreduced sequences; each represents a state, whose associated
output is the mapped response of the unreduced sequence (that
can be read off from the table). Table IV shows the mapping
from unreduced sequences in the power-saving enumeration
to Moore states of the power-saving automaton. The mapping
table for the load-balancing function is omitted here due to
lack of space.

With this observation we are now ready to construct the
automaton. For doing so, we simply map each row in the
enumeration table (except the empty sequence) to a transition
in the Moore machine as follows: if the prefix sequence u
concatenated with the current stimulus a is reduced to the
sequence w (here we treat any unreduced sequence as being
reduced to itself; an equivalence relation must be reflexive),
then a transition triggered by the input a goes from the state
represented by u to the state represented by w. For instance,
HwHv.HwHv being reduced to HwHv in the power-saving
enumeration implies a transition from State r0 to State r0 on
Input HwHv for the power-saving automaton.

The state machines for both apps constructed in this step are
shown in Fig. 2 and Fig. 3. Their equivalent formal definitions

TABLE III
EXCERPT OF AN ENUMERATION FOR THE POWER-SAVING FUNCTION

UNTIL LENGTH 3

Sequence Response Equivalence Trace
λ OnE D1, D2
HwHv 0 D3
HwLv 0 HwHv D3
HwZv 0 HwHv D3
LwHv 0 HwHv D3
LwLv 0 D3
LwZv 0 LwLv D3
ZwHv 0 HwHv D3
ZwLv 0 LwLv D3
ZwZv 0 LwLv D3
HwHv .HwHv 0 HwHv D3
HwHv .HwLv 0 HwHv D3
HwHv .HwZv 0 HwHv D3
HwHv .LwHv 0 HwHv D3
HwHv .LwLv 0 LwLv D3
HwHv .LwZv 0 LwLv D3
HwHv .ZwHv 0 HwHv D3
HwHv .ZwLv 0 LwLv D3
HwHv .ZwZv 0 LwLv D3
LwLv .HwHv 0 HwHv D3
LwLv .HwLv 0 HwHv D3
LwLv .HwZv 0 HwHv D3
LwLv .LwHv 0 HwHv D3
LwLv .LwLv OffE 2
LwLv .LwZv OffE LwLv .LwLv 2
LwLv .ZwHv 0 HwHv D3
LwLv .ZwLv OffE LwLv .LwLv 2
LwLv .ZwZv OffE LwLv .LwLv 2
LwLv .LwLv .HwHv 0 HwHv 4
LwLv .LwLv .HwLv 0 HwHv 4
LwLv .LwLv .HwZv 0 3, D6
LwLv .LwLv .LwHv 0 HwHv 4
LwLv .LwLv .LwLv 0 LwLv 4, D5
LwLv .LwLv .LwZv 0 D6
LwLv .LwLv .ZwHv 0 HwHv 4
LwLv .LwLv .ZwLv 0 LwLv 4, D5
LwLv .LwLv .ZwZv 0 LwLv .LwLv .LwZv D6

TABLE IV
THE MAPPING FROM UNREDUCED SEQUENCES TO MOORE STATES FOR

THE POWER-SAVING FUNCTION

Unreduced Sequence State Output
λ r5 OnE
HwHv r0 0
LwLv r1 0
LwLv .LwLv r2 OffE
LwLv .LwLv .HwZv r4 0
LwLv .LwLv .LwZv r3 0

are omitted for lack of space.

V. MODELING JOINT EFFECT OF MULTIPLE SDN APPS

One benefit of using automata to model SDN apps is that,
when two SDN apps run in parallel on the same network
topology, their behavior can be modeled by the standard
automaton product, which can be straightforwardly computed
by applying the following definition:1

Definition 3 (Product of Network Function Moore Ma-
chines): Given two network function Moore machines M1 =
(Q1,Σ1,Γ1, δ1, ν1, q1,0) and M2 = (Q2,Σ2,Γ2, δ2, ν2, q2,0),
the product of M1 and M2, denoted by M1 ×M2, is defined

1This operation can be easily extended to more than two SDN apps and
performed in a successive way.

196

r5/OnE

r0/0

HwHv,

HwLv,

HwZv,

LwHv,

ZwHv

r1/0

LwLv,

LwZv,

ZwLv,

ZwZv

HwHv,

HwLv,

HwZv,

LwHv,

ZwHv

r2/OffE

LwLv,

LwZv,

ZwLv,

ZwZv

HwHv,

HwLv,

LwHv,

ZwHv

LwLv,

ZwLv

r3/0

LwZv,

ZwZv

r4/0

HwZv

HwHv,

HwLv,

LwHv,

ZwHv

LwLv,

ZwLv

LwZv,

ZwZv

HwZv

HwHv,

HwLv,

LwHv,

ZwHv

LwLv,

ZwLv

LwZv,

ZwZv

HwZv

HwHv,

HwLv,

HwZv,

LwHv,

ZwHv

LwLv,

LwZv,

ZwLv,

ZwZv

Fig. 2. The Power-Saving Moore Machine

q0/0

HwHv,
LwLv,
LwZv,
ZwLv,
ZwZv

q1/0

LwHv,
ZwHv

q6/0

HwLv,
HwZv

HwHv,
LwLv,
LwZv,
ZwLv,
ZwZv

q2/0

LwHv,
ZwHv

HwLv,
HwZv

HwHv,
LwLv,
LwZv,
ZwLv,
ZwZv

q3/EtoF

LwHv,
ZwHv

HwLv,
HwZv

HwHv,
LwLv,
LwZv,
ZwLv,
ZwZv

LwHv,
ZwHv

HwLv,
HwZv

q4/FtoE

HwHv,
LwLv,
LwZv,
ZwLv,
ZwZv

LwHv,
ZwHv

HwLv,
HwZv

q5/0

HwHv,
LwLv,
LwZv,
ZwLv,
ZwZv

LwHv,
ZwHv

HwLv,
HwZv

HwHv,
LwLv,
LwZv,
ZwLv,
ZwZv

LwHv,
ZwHv

HwLv,
HwZv

Fig. 3. The Load-Balancing Moore Machine

by M1×M2 = (Q1×Q2,Σ1×Σ2,Γ1×Γ2, δ, ν, (q1,0, q2,0)),
where δ and ν are defined by:
δ((p, q), (a, b)) = (δ1(p, a), δ2(q, b)),
ν((p, q)) = (ν1(p), ν2(q)).
We extend the null response and the illegal response to the

product of two network function Moore machines by assuming
0 = (0, 0) and ω = (r1, r2) where either r1 = ω or r2 = ω.
An input (a, b) ∈ Σ1×Σ2 is legal if it is physically realizable;
otherwise, it is illegal.

Note that we also extend the concept of being legal/illegal
to inputs of a product automaton.

Example 4: The product of the power-saving Moore ma-
chine M1 and the load-balancing Moore machine M2 is
defined by M = M1 × M2 = (Q1 × Q2,Σ × Σ,Γ1 ×
Γ2, δ, ν, (r5, q0)), where δ and ν are defined by:
δ((p, q), (a, b)) = (δ1(p, a), δ2(q, b)),
ν((p, q)) = (ν1(p), ν2(q)).
Observe that {(a, a) : a ∈ Σ} is the set of all legal inputs

of M .
One interesting observation on the constructed product

Moore machine is that not all its states may be reachable from
the initial state. Intuitively, for a state (pj , qj) in the product
Moore machine M = M1×M2 to be reachable from another

state (pi, qi), there must exist paths of the same length from
pi to pj in M1 and from qi to qj in M2.

Definition 5 (Reachable States): Given the product M =
(Q,Σ,Γ, δ, ν, q0) of two network function Moore machines
and a set of legal inputs I ⊆ Σ, the set RS of reachable states
of M is defined by RS = {q : q ∈ Q,∃w ∈ I∗. δ̂(q0, w) = q}.

This definition enabled us to develop a simple algorithm to
automatically identify all reachable states in a product Moore
machine, which we omitted here due to space constraint.

Definition 6 (Joint Network Function Moore Machine):
Given the product M = M1 × M2 = (Q,Σ,Γ, δ, ν, q0) of
two network function Moore machines M1 and M2, and a set
of legal inputs I ⊆ Σ, let RS be the set of reachable states of
M , δ′ be δ restricted to RS× I , and ν′ be ν restricted to RS:
δ′(q, a) = δ(q, a), ν′(q) = ν(q). Let Γ′ = range(ν′)∪{0, ω},
where range(ν′) denotes the range of ν′. The joint network
function Moore machine M ′ of M1 and M2 can be defined
by M ′ = (RS, I,Γ′, δ′, ν′, q0).

Clearly a joint network function Moore machine satisfies
the definition for a network function Moore machine.

Example 7: The joint network function Moore machine
M of the power-saving and the load-balancing automata is
omitted due to space. Only 13 out of the 42 states of Q1×Q2

are reachable, and included in the joint automaton.

VI. PROPERTY ANALYSIS AND CONFLICT DETECTION

We present analysis of the joint network function Moore
machine, which enables detection of control conflicts as well
as answers the many questions regarding the network’s behav-
ior. Our analysis focuses on three critical and closely related
concepts: stable states of a Moore machine, safe operational
region of a network, and conflict freeness of SDN apps.

A. Stable States of a Moore Machine
Intuitively, an SDN app enters a stable state, if it no

longer attempts to modify the network state (i.e., the network
has reached a desirable state from the app’s perspective).
This intuition can be formally defined using the automaton
model. To do so, we extend the output function of a Moore
machine to pairs of states and input sequences as follows.
ν̂ : Q × Σ∗ → Γ∗ is defined by (1) ν̂(q, λ) = ν(q), and (2)
ν̂(q, wa) = ν̂(q, w)ν(δ̂(q, wa)) for all q ∈ Q, w ∈ Σ∗, a ∈ Σ.

We can now formally define the stable states of a network
function Moore machine as follows:

Definition 8 (Stable State): Let q ∈ Q be a state of the
network function Moore machine M = (Q,Σ,Γ, δ, ν, q0). q is
a stable state of M iff the following hold for all a ∈ Σ:
(1) δ(q′, a) = q implies ν̂(q, an) = 0n+1 for all integer n ≥

0, and
(2) q = q0 implies ν(q0) = 0.

Informally, two conditions need to be satisfied for a state
to be a stable state: (1) on any input by which there is
an incoming arc to this state, if a sequence of such input
continues it will never land on any state that produces a non-
null response, which could potentially change this input (i.e.,
a network state); and (2) the starting state must have the null
output to be a stable state.

It is easy to see that this definition enforces any stable state
be associated with the null response, as shown by the following
theorem (proof is omitted due to lack of space).

197

s1/ν(s1) s2/ν(s2)
x2x1 x3

sn/ν(sn)
xn

x1 = x x1Rν(s1)x2 x2Rν(s2)x3 xn-1Rν(sn-1)xn

s1 = q0 s2 = δ(s1, x2) sn = δ(sn-1, xn)

Fig. 4. An Example Sequence of Inputs and States for Analyzing the Safe
Operational Region

Theorem 9: Let q be a stable state of the network function
Moore machine M = (Q,Σ,Γ, δ, ν, q0). ν(q) = 0.

Example 10: Applying Definition 8, it can be straightfor-
wardly discovered that the constructed power-saving automa-
ton M1 has two stable states r0 and r3; the constructed load-
balancing automaton M2 has one stable state q0; and the joint
automaton M (Example 7) has two stable states (r0, q0) and
(r3, q0). We omit the proofs due to space constraint.

B. Safe Operational Region of a Network

Intuitively, a network becomes “stabilized” when none of
the SDN apps running on top of it attempts to change its
state; that is, all the SDN apps have entered a stable state as
defined by Definition 8. Thus we consider a network state to
be “safe”, if it can eventually (i.e., after a finite number of
state changes) lead to a stabilized network, which guarantees
no state oscillation. We term the set of all such safe states of
a network to be the safe operational region of the network.

Note that a network’s state is already encapsulated in the
stimuli (i.e., inputs) of a network function Moore machine.
Hence we are able to formally define the concept of safe
operational region of a network, as follows:

Definition 11 (Safe Operational Region): Given a network
function Moore machine M = (Q,Σ,Γ, δ, ν, q0), a set of
binary relations Rr over Σ for each r ∈ Γ − {ω} such
that (1) R0 : Σ → Σ is the identify function; and (2)
(r 6= 0, aRrb) implies either δ(p, a) = q, ν(q) = r for
some p, q ∈ Q or ν(q0) = r, and x ∈ Σ, x is in the safe
operational region iff the alternating sequence of inputs and
states x1, s1, x2, s2, · · · , xn, sn, in which x = x1, q0 = s1,
xi−1Rν(si−1)xi, si = δ(si−1, xi) for all i ≥ 2, ν(si) 6= ω
for all i ≥ 1, ends with some stable state sn of M . The safe
operational region of the network is the set of all such x’s.

The set of binary relations Rr over I define how each output
of an SDN app modifies the status of the network (notice
that the null response does not modify the network status,
as indicated by the identity function). Informally, a network
state, as encapsulated in the input x, is in the safe operational
region if and only if a stable state of the Moore machine will
always be reached when starting from the initial state of the
Moore machine with the input x. At that point the network
state will no longer be changed by the running SDN app(s).
Fig. 4 illustrates an example sequence of inputs and states that
need to be examined from the initial state q0 with a specific
input (say x).

Example 12 (Safe Operational Region of Example Network):
Applying Definition 11 on the joint automaton as defined in
Example 7, it can be computed that the safe operational region
of the example network (Fig. 1) includes HwHv , LwZv , and
ZwZv . We omit the algorithm here due to lack of space.

C. Conflict Freeness of SDN Apps
An SDN network is free of conflict, if starting from any

state it can eventually become stabilized; that is, every possible
network state is in its safe operational region. We have the
following formal definition:

Definition 13 (Conflict-Free SDN apps): Two or more SDN
apps are conflict-free if and only if their joint network function
Moore machine has the set of inputs identical to the safe
operational region of the network.

Note that Definition 13 not only enables direct detection
of potential conflict, but also precisely specifies under what
network condition such conflict will arise.

Example 14 (Conflict in the Example Network): Applying
Definition 13, we immediately see that the two SDN apps
running on the example network are not conflict-free: this is
because a subset of inputs to the joint network function Moore
machine including HwLv , HwZv , LwHv , LwLv , ZwHv , and
ZwLv , is left out of the safe operational region.

VII. CONCLUSION AND FUTURE WORK

We presented a theoretical framework, based on rigorous
software specification, for detecting conflicts caused by run-
ning multiple SDN apps in parallel. Our future work includes
experimental validation and further investigation on the scal-
ability and applicability of the framework.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation (NSF) under Grant CNS-1660569. Any
opinions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of NSF.

REFERENCES
[1] D. Kreutz et al. “Software-Defined Networking: A Comprehensive Survey”. In:

Proc. of the IEEE 103.1 (2015), pp. 14–76.
[2] Airheads Community SDN App Store. https://community.arubanetworks.com/

t5/SDN-Apps/ct-p/SDN-Apps.
[3] D. Volpano, X. Sun, and G. Xie. “Towards Systematic Detection and Resolution

of Network Control Conflicts”. In: Proc. of ACM HotSDN. Chicago, IL, 2014.
[4] S. Prowell and J. Poore. “Sequence-based software specification of deterministic

systems”. In: Software: Practice and Experience 28.3 (1998), pp. 329–344.
[5] S. Prowell et al. Cleanroom Software Engineering: Technology and Process.

Reading, MA: Addison-Wesley, 1999.
[6] S. Prowell and J. Poore. “Foundations of sequence-based software specifica-

tion”. In: IEEE Transactions on Software Engineering 29.5 (2003), pp. 417–429.
[7] L. Lin, S. Prowell, and J. Poore. “An axiom system for sequence-based

specification”. In: Theoretical Computer Science 411.2 (2010), pp. 360–376.
[8] J. Mogul et al. “Corybantic: Towards the Modular Composition of SDN Control

Programs”. In: Proc. of ACM HotNets. 2013.
[9] A. AuYoung et al. “Democratic Resolution of Resource Conflicts Between SDN

Control Programs”. In: Proc. of ACM CoNext. Sydney, Australia, 2014.
[10] A. Bairley and G. Xie. “Orchestrating network control functions via compre-

hensive trade-off exploration”. In: Proc. of IEEE NFV-SDN. Palo Alto, CA,
2016.

[11] A. Khurshid et al. “VeriFlow: Verifying Network-Wide Invariants in Real Time”.
In: Proc. of USENIX NSDI. 2013.

[12] P. Kazemian et al. “Real Time Network Policy Checking Using Header Space
Analysis”. In: Proc. of USENIX NSDI. 2013.

[13] Software-Defined Networking: The New Norm for Networks. https : / / www.
opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-
sdn-newnorm.pdf.

[14] P. Sun et al. “A Network-state Management Service”. In: Proc. of ACM
SIGCOMM. Chicago, IL, 2014.

[15] M. Al-Fares et al. “Hedera: Dynamic Flow Scheduling for Data Center
Networks”. In: Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation. San Jose, California, 2010.

[16] S. Jain et al. “B4: Experience with a Globally-deployed Software Defined
WAN”. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIG-
COMM. Hong Kong, China, 2013.

[17] B. Heller et al. “ElasticTree: Saving Energy in Data Center Networks.” In:
Proceedings of USENIX NSDI. 2010.

198

The Influence of God Class and Long Method in the Occurrence of Bugs in Two
Open Source Software Projects: An Exploratory Study

Aloisio Sampaio Cairo H Glauco de Figueiredo Carneiro H

Antônio Maria Pereira de Resende J Fernando Brito e Abreu I

H Universidade Salvador (UNIFACS), Brazil J Universidade Federal de Lavras (UFLA), Brazil
I Instituto Universitário de Lisboa (ISCTE-IUL), Portugal

Abstract

Context: Code smells are associated with poor design and
programming style that often degrades code quality and
hampers code comprehensibility and maintainability.
Goal: In this paper, we investigated to which extent classes
affected by the God Class and Long Method code smells
were more susceptible to the occurrence of software bugs.
Method: We conducted an exploratory study targeting two
well known open source software projects, Apache Tomcat
and Eclipse JDT Core Component. We applied corre-
lation analysis in order to evaluate to which extent Long
Method and God Class were related to the occurrence of
bugs.
Results: We have found a significant correlation of Long
Method and Commits and, on the other hand, a poor cor-
relation of God Class and Commits in the two analyzed
projects. Therefore, we expected that the higher the num-
ber of occurrences of Long Method, the higher the chances
of more commits in a class that contains this method, which
could result in the increase of occurrence of bugs.
Conclusion: Based on the results, we confirmed what other
studies pointed out, regarding classes affected by Long
Method being more bug-prone than others. In practice, we
found evidence, from analyzed data, that the occurrence of
Long Method implies more effort in maintenance tasks.

1 Introduction
Throughout releases, a software project usually includes

new functionalities and fixes bugs that were found and con-
sidered relevant in previous releases. Since maintenance
costs are the highest share in the development lifecycle [1],
special attention should be dedicated to avoid bugs.

Martin Fowler, in his book on software refactoring [2],
claimed that code smells can negatively impact software
quality, namely on its understandability and reliability. For
more than a decade after that, several authors have claimed

that the empirical evidence of such impact was still scarce
[3, 4, 5] and, as such, Fowler’s claim could not be consid-
ered as fully confirmed. Among the 22 code smells pre-
sented in Fowler’s book, we selected God Class and Long
Method to provide further evidence of their influence on
software bugs occurrence. The former refers to classes that
centralize the intelligence of the system, realizing too much
work, when compared with the remainder classes, while the
latter refers to methods with many statements and/or com-
plex control flow structures [6].

To reach our stated research objective, we analyzed
two projects, Apache Tomcat and Eclipse JDT Core
Component. Tomcat is a "pure Java" HTTP web server
environment in which Java code can run. JDT (Java
Development Tools) Core Component is the Java in-
frastructure of Eclipse’s Java IDE. We have chosen these
two projects because they: (i) are open source; (ii) have a
prominent popularity in the Java community; (iii) have been
studied in the literature by several authors [7, 8, 9]; (iv) are
related in the scope of this study.

Regarding the last reason, we found the relationship in
their bug repository: 51 closed bugs from Apache Tomcat
are related to the Eclipse project. These bugs were re-
ported in classes affected by God Class or containing meth-
ods affected by Long Method in the following releases
analyzed in this study: 9_0_9 of (Apache Tomcat) and
Y20180725-2200 (Eclipse JDT Core). Moreover, we
have also noticed that 36 bugs out of those 51 were reported
in classes simultaneously affected by both code smells in
those releases. Hence, we considered that the influence
of the aforementioned code smells in the selected software
projects deserved further analysis.

The remainder of this paper is laid out as follows. Sec-
tion 2 overviews previous related research work. The ex-
perimental design of our study is presented in Section 3 and
Section 4 discusses its results. Finally, in Section 5, we
present concluding remarks and future work.

DOI reference number: 10.18293/SEKE2019-084
199

http://tomcat.apache.org/
https://www.eclipse.org/jdt/core/
https://www.eclipse.org/jdt/core/

2 Related Work
Lehman’s second law of software evolution [10] argues

that as a project grows, software complexity increases as
well. Constantly changing code is the context in which
code smells find favorable conditions to arise. Studies have
reported that code smells usually affect a software entity,
such as class or method, after a change executed to fix a bug
[11]. To tackle this problem, several approaches have been
proposed to support the identification of code smells, as de-
scribed in secondary studies such as the ones conducted by
Rasool and Arshad [12] and Fernandes et al. [13].

According to [14], code smells are indicators of poor
source code quality and hamper its maintenance and reuse.
The influence of the God Class and Long Method code
smells on software bugs occurrence has been studied by
several authors. Li and colleagues [15] reported the influ-
ence of Shotgun Surgery, God Class, and God Method code
smells on bugs based on the analysis of post-release system
evolution. They confirmed that some smells were positively
associated with the class error probability in three error-
severity levels (High, Medium, and Low), usually applied
to classify issues. In [16], the authors unveiled the relation-
ship among Shotgun Surgery, God Class and God Methods
code smells and the occurrence of bugs in three Eclipse
releases (3.0, 2.1 and 2.0). Olbrich and colleagues [17] pre-
sented evidence that instances of God Class and Brain Class
suffered more frequent changes and contained more defects
than classes not affected by those smells.

Later, Nascimento and SantAnna [18] analyzed five soft-
ware projects (Apache Ant, Apache Jmeter, Apache
Lenya, Apache Tomcat and Apache Xerces) to con-
clude that classes affected by the code smells Data Class,
Data Clumps, Feature Envy, God Class, Message Chain,
Schizophrenic Class and Tradition Breaker had a higher
likelihood to introduce bugs than other classes from the
same project. They further reported God Class as the
smell with the greatest number of related bugs in the an-
alyzed projects with a percentage of 20%, followed by Fea-
ture Envy with a percentage close to 15%, Schizophrenic
Class with 9% and Message Chains with 7%. In addition,
Palomba and colleagues [8] claimed that classes with code
smells tend to be more change- and fault-prone than other
classes and that this is even more noticeable when the same
class is affected by multiple smells.

A recent systematic literature review conducted by Cairo
and colleagues [19] claims that there is evidence in the liter-
ature showing that software entities, such as classes affected
by code smells, tend to be more prone to change and failure
than other classes.

3 The Experimental Design
This section describes the characteristics and steps ap-

plied in this exploratory study. We adopted the Goal-

Question-Metric (GQM) approach [20], as described in Ta-
ble 1, to derive the following Research Question (RQ):
To which extent God Class and Long Method code
smells influence the occurrence of bugs in Apache
Tomcat and Eclipse’s JDT Core Component projects?

Table 1: Research goal based on the GQM approach

Analyze
the God Class and Long Method
code smells

for the purpose of evaluating their influence
with respect to the occurrence of bugs
from the viewpoint of maintainers and developers

in the context of
Apache Tomcat and Eclipse’s
JDT Core Component
open source software projects

To reduce the collection time and the frequent errors that
arise during code smells manual detection [21], we used the
PMD static code analyzer. We performed the six steps
represented in Figure 1 that will be further detailed in the
following paragraphs, using a common template (data input,
step description, performing the step, data output).

Figure 1: Proposed approach to analyze the influence of code
smells on bugs occurrence in a software project

3.1 Step 1 - Obtain source code

Data input: URL of selected software projects repository.
Step description: We cloned the sources of each selected
software project using Git Bash, a Windows application
which provides a Git command line shell.
Performing the step: We executed the git clone command.
Data output: Local repository containing the source code
of selected software projects.

200

https://pmd.github.io/

3.2 Step 2 - Get commits and coresponding files

Data input: GitHub features that allow the collection of
data related to commits performed in a software project.
Step description: We executed the command lines 1 and 2
presented below using Git Bash. Besides commits, we also
collected the files involved in each commit.
Performing the step: Execute the commands as follows:
(1) git log –pretty=format:"%H %h %an %ad %s" –
grep="bug" > log-commit.txt (stores the names of all files
involved in each commit in the named file)
(2) git show hash-numbers –pretty=format: "%H" –stat >
log-arquivos.txt (stores all commit hashes in the named file)

3.3 Step 3 - Search for fixed bugs

Data input: Bugzilla features that allow the collection of
data related to bugs of a specific software project.
Step description: Identify all bugs marked as closed for all
analyzed software projects.
Performing the step: We collected all closed bugs for
Apache Tomcat until August 8th (2018) and for Eclipse
until September 9th (2018). We used the Bugzilla’s REST
API to obtain data from the projects’ repositories.
Data output: Files containing information related to bugs in
JSON format from the analyzed software projects.

3.4 Step 4 - Organize data

Data input: Data about commits and bugs for each project.
Step description: We tabulated raw data to prepare them for
statistical analysis.
Performing the step: All data was inserted in a database
and we applied queries to get it organized in table format.
After that, we exported them to a spreadsheet for apply-
ing statistical analysis. An automatic routine was imple-
mented to capture the ID from Bugzilla repositories. Only
Java files were considered and all others (e.g. configura-
tion files) were deleted, since only the former were relevant
for code smells detection. We also did not consider com-
mits in files not related to code smells. Some long absolute
paths to Java classes were incomplete, such as, for instance
in ".../apache/catalina/connector/CoyoteAdapter.java". In
those cases, we searched manually for the file and com-
pleted the correct absolute path string, being careful in cases
of multiple files with the same name, located in different
packages.
Data output: Commit data, file involved in each commit,
and bugs of each project.

3.5 Step 5 - Identify classes affected by code smells

Data input: Source code of projects cloned in step 1.
Step description: We used the PMD tool to collect informa-
tion about code smells.
Performing the step: The PMD tool was applied in each
project to detect God Class and Long Method occurrences.
Data output: A table containing all software project classes

affected by God Class and Long Method, and the number of
occurrences of each code smell, for each class.

3.6 Step 6 - Evidence of code smells influence on bugs

Data input: Each line of tabulated data contains software
project name, version, absolute path of Java class, class
name, occurrences of Long Method, occurrences of God
Class and total amount of commits involving both projects.
Step description: We performed statistical analysis on avail-
able data to check the intensity of correlations among code
smells and bugs.
Performing the step: Since the data was not normally dis-
tributed, we used the Spearman non-parametric correlation
coefficient to check the correlation among the occurrences
of each code smell and the amount of commits. We grouped
the commits in ranges to check the correlation. Data out-
put: Intensity of correlation among code smells occurrences
and amount of bugs, represented by commits.

4 The Study Results
4.1 Distribution adherence testing

All data used in this analysis is available in a public
Github repository1. The total number of classes analyzed
with at least one commit are 1049 and all those classes have
at least one code smell. The first step of a statistical cor-
relation analysis is to verify whether the data is normally
distributed. This verification allows the selection of the
most suitable statistical technique to be applied. We used
the EasyFit tool2 to perform the aforementioned verifica-
tion. The results pointed out that the occurrences of Long
Method and God Class have Poisson Distribution and the
amount of commits has Geometric distribution. Since none
of them has a normal distribution, that required the appli-
cation of a non-parametric correlation coefficient such as
Spearman’s.

4.2 Correlation analysis by commit ranges

The main research question stated in Section 3 aimed at
devising to which extent God Class and Long Method code
smells influence (or have impact in) the occurrence of bugs
in two open source projects. In this study we only consid-
ered bugs that were fixed and took as surrogate of those bugs
the number of file (class) commits they cause. Therefore,
the research question originated two sub-questions, one per
each code smell, where we want to check if there is a statis-
tical significant association among the variables that allow
us to not discard that the aforementioned impact exists. In
other words, the sub-questions are:
a) Is there a correlation between the occurrences of Long
Method in a class and the amount of commits in that class?

1https://github.com/SEKE2019CodeSmell/SEKE2019EvidenceCodeSmells
2http://www.mathwave.com/

201

b) Is there a correlation between the occurrences of God
Class in a class and the amount of commits in that class?

To answer those questions, while eliminating some ran-
dom deviations that might have occurred in collected data,
we grouped the analyzed classes by consecutive ranges of
3 commits. Therefore, the first range contains classes with
commits within the [0, 3[range, the second in the [3, 6[
range, and so forth, as represented in the first two columns
in Tables 2 and 3 for the Apache Tomcat and Eclipse JDT
Core Component, respectively. For instance, the values of
130 and 279 on the first line of column II of the same tables
represent the total number of classes with 0, 1 or 2 com-
mits (range defined in column I) in the two analyzed soft-
ware projects. We have also normalized the amount of class
commits, occurrences of Long Method and God Class, by
calculating their average value per class. The column labels
of Tables 2 and 3 are as follows:
(I) Commit range (>= and <, respectively)
(II) Class total
(III) Commits Sum
(IV) Long Method Total (occurrences)
(V) God Class Total (occurrences)
(VI) Code Smells Total (occurrences)
(VII) Average Commits Per Class
(VIII) Long Method Average (occurrences) Per Class
(IX) God Class Average (occurrences) Per Class

The highlighted lines in Tables 2 and 3 represent the data
that we considered as relevant. The classes with commits
above the 57-60 range were clear outliers and were ignored
in the following study. To confirm this claim, we gener-
ated dispersion charts (Figures 2 and 3) to visually check
the distribution of data in the ranges. The Long Method
chart provides some evidence of correlation, because the
points are around the tendency line and increasing, meaning
a positive correlation. Furthermore, it is possible to obtain
a curve with even better fit (as measured by the R squared
coefficient of determination), what suggests that the effect
of this code smell on commits may be non-linear. As for
the God Class the chart does not provide evidence of corre-
lation. After determining the valid data, without irrelevant
lines and outliers, we calculated the Spearman correlations.
The results are presented in Table 4.

To interpret the values of the coefficients in Table 4,
we used the ordinal intensity scale presented in Table 5
(from [22]). Therefore, based on the obtained values of the
Spearman correlation coefficient in Table 4, we can state
that there is a very high positive correlation between Long
Method Average and Commit Average. Consequently, that
result allow us to raise the hypothesis that the number of
commits in a class may be impacted by the occurrences of
the Long Method code smell. The same cannot be claimed
for the God Class code smell, since only a moderate posi-
tive correlation was observed. For the Eclipse project, we

Table 2: Classes grouped by commit ranges (APACHE TOMCAT)

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)
0 3 130 105 47 109 156 0,81 0,36 0,84
3 6 71 282 27 64 91 3,97 0,38 0,90
6 9 47 330 16 42 58 7,02 0,34 0,89
9 12 23 237 7 24 31 10,30 0,30 1,04
12 15 22 283 14 22 36 12,86 0,64 1,00
15 18 14 226 11 14 25 16,14 0,79 1,00
18 21 12 229 6 11 17 19,08 0,50 0,92
21 24 8 177 9 9 18 22,13 1,13 1,13
24 27 7 171 9 7 16 24,43 1,29 1,00
27 30 1 27 1 1 2 27,00 1,00 1,00
30 33 4 122 3 4 7 30,50 0,75 1,00
33 36 1 35 4 1 5 35,00 4,00 1,00
36 39 2 74 4 2 6 37,00 2,00 1,00
39 42 1 39 3 1 4 39,00 3,00 1,00
42 45 1 42 4 1 5 42,00 4,00 1,00
45 48 1 46 3 1 4 46,00 3,00 1,00
48 51 0 0 0 0 0 0,00 0,00 0,00
51 54 1 51 8 1 9 51,00 8,00 1,00
54 57 0 0 0 0 0 0,00 0,00 0,00
57 60 0 0 0 0 0 0,00 0,00 0,00
60 63 0 0 0 0 0 0,00 0,00 0,00
63 66 0 0 0 0 0 0,00 0,00 0,00
66 69 0 0 0 0 0 0,00 0,00 0,00
69 72 0 0 0 0 0 0,00 0,00 0,00
72 75 0 0 0 0 0 0,00 0,00 0,00
75 78 1 75 6 1 7 75,00 6,00 1,00
78 81 0 0 0 0 0 0,00 0,00 0,00
...
90 93 0 0 0 0 0 0,00 0,00 0,00

have a high positive correlation for Long Method Average
and Commit Average, and for God Class Average and Com-
mit Average. Those correlations in the Eclipse project are
lower than in the Tomcat project, even though both projects
presented a significant correlation. When we consider both
projects together, the results keep in-between, as expected.

4.3 Answering the research questions

As discussed in section 4.2, our main research question
was split in two, each regarding the association between the
occurrences of one code smell and the corresponding com-
mits. Considering the observed high correlation, we can-
not refute the hypothesis that the number of occurrences of
Long Method may have a positive impact on the amount of
commits. As for the God Class code smell, due to the ob-
served moderate to low positive correlation, we have to say
it the other way round: we cannot sustain the hypothesis
that the number of occurrences of Long Method may have
an impact on the amount of commits.

4.4 Threats to Validity

We are aware of the limitations of correlational analyses
such as the used in this study. For this reason, we dubbed
this paper as an exploratory study. The evidence raised ba-
sically allows to stand or discard hypotheses that must be
tested, preferably with controlled experiments. The conclu-

202

Table 3: Classes grouped by commit ranges (ECLIPSE JDT
CORE)

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)
0 3 279 227 199 109 308 0,81 0,71 0,39
3 6 142 541 115 64 179 3,81 0,81 0,45
6 9 80 548 81 42 123 6,85 1,01 0,53
9 12 56 554 93 24 117 9,89 1,66 0,43
12 15 41 521 91 22 113 12,71 2,22 0,54
15 18 23 367 60 14 74 15,96 2,61 0,61
18 21 17 325 43 11 54 19,12 2,53 0,65
21 24 12 260 21 9 30 21,67 1,75 0,75
24 27 14 344 84 7 91 24,57 6,00 0,50
27 30 15 418 100 1 101 27,87 6,67 0,07
30 33 4 124 14 4 18 31,00 3,50 1,00
33 36 2 66 2 1 3 33,00 1,00 0,50
36 39 1 37 1 2 3 37,00 1,00 2,00
39 42 3 120 7 1 8 40,00 2,33 0,33
42 45 0 0 0 1 1 0,00 0,00 0,00
45 48 4 184 13 1 14 46,00 3,25 0,25
48 51 0 0 0 0 0 0,00 0,00 0,00
51 54 1 52 6 1 7 52,00 6,00 1,00
54 57 0 0 0 0 0 0,00 0,00 0,00
57 60 1 57 3 0 3 57,00 3,00 0,00
60 63 0 0 0 0 0 0,00 0,00 0,00
63 66 0 0 0 0 0 0,00 0,00 0,00
66 69 0 0 0 0 0 0,00 0,00 0,00
69 72 0 0 0 0 0 0,00 0,00 0,00
72 75 0 0 0 0 0 0,00 0,00 0,00
75 78 0 0 0 0 0 1 1 0,00
78 81 1 79 11 0 11 79,00 11,00 0,00
81 84 0 0 0 0 0 0,00 0,00 0,00
84 87 0 0 0 0 0 0,00 0,00 0,00
87 90 1 89 0 0 0 89 0,00 0,00
90 93 0 0 0 0 0 0,00 0,00 0,00

sion validity is related to the ability to draw significant cor-
rect conclusions. For this reason, we applied the distribu-
tion adherence testing and the correlation analysis by com-
mit ranges based on dispersion chats to support the analysis.
We discussed the internal validity in terms of threats to the
design of the study. For this reason, we managed to care-
fully plan the study and the variables to consider in the anal-
ysis as described in the six steps presented in Section 3. The
use of the PMD tool for collecting code smells can be also
a potential threat, since several authors have pointed out the
inherent subjectivity in the code smells definition [23] can
lead to unmatched detection, when using different tools. We
expect to mitigate this last problem through our ongoing
research work on the Crowdsmelling approach [24]. The
external validity represents the possibility of generalizing
the findings of this study. We identified external validity
threats in our results, since the analysis was restricted to
data from two open source software project systems, imple-
mented in one programming language and focusing on two
code smells from the catalogue published in [2]. However,
the fact that these two open source software projects have
an active community is an evidence of the representative-

Figure 2: Dispersion Chart between Average Commits and Long
Method Average occurrences (both projects)

Figure 3: Dispersion Chart between Average Commits and God
Class Average occurrences (both projects)

ness of these projects to support the conclusions drawn is
this study for the analyzed code smells implemented in the
Java language.

5 Conclusions
In this paper, we conducted an exploratory study upon

two open source projects (Apache Tomcat and Eclipse
JDT Core Component), in order to check if the occurrences
of the Long Method and God Class code smells were as-
sociated to software defects (bugs). The PMD tool was ap-
plied to gather those code smells from all classes of those
projects where code fixes occurred. The REST API of the
Bugzilla tool was used to identify which were the files af-
fected by code fixes (i.e. those where commits occurred dur-
ing code fixing), by collecting data related to all closed bugs
of those projects. We applied the Spearman correlation co-
efficient to evaluate the association between average values
(per class) of a) occurrences of Long Method and observed
commits; b) occurrences of God Classes and observed com-
mits; and c) occurrences of both code smells and observed
commits. We obtained a strong correlation of Long Method
and Commits and revealead a poor correlation of God Class

203

Table 4: Spearman correlations (code smells vs commit ranges)

Project
Long Method

average vs
Commit average

God Class
average vs

Commit average
Tomcat 93% 52%
Eclipse 72% 30%
Both 85% 33%

Table 5: Interpreting the Correlation Coefficient [22]

Correlation Interpretation of correlation
90% to 100% Very high positive (negative)
70% to 90% High positive (negative)
50% to 70% Moderate positive (negative)
30% to 50% Low positive (negative)
0% to 30% Negligible correlation

and Commits, regarding both projects analyzed. Therefore,
the higher is the number of Long Method, the higher is ex-
pected to be the number of commits in a class, although
the effect is probably non-linear. In practice, we got strong
evidence in those datasets that the occurrence of the Long
Method may make the maintenance process harder, so we
should avoid it through refactoring operations.

References
[1] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT

professional, vol. 2, no. 3, pp. 17–23, 2000.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: improving the design of existing code. Addison-
Wesley Professional, 1999.

[3] S. M. Olbrich, D. S. Cruzes, and D. I. K. SjÃÿberg, “Are all code
smells harmful? a study of god classes and brain classes in the evo-
lution of three open source systems,” in 2010 IEEE International
Conference on Software Maintenance, Sep. 2010, pp. 1–10.

[4] A. Yamashita and L. Moonen, “To what extent can maintenance
problems be predicted by code smell detection?–an empirical study,”
Information and Software Technology, vol. 55, no. 12, pp. 2223–
2242, 2013.

[5] D. I. K. SjÃÿberg, A. Yamashita, B. C. D. Anda, A. Mockus, and
T. DybÃě, “Quantifying the effect of code smells on maintenance
effort,” IEEE Transactions on Software Engineering, vol. 39, no. 8,
pp. 1144–1156, Aug 2013.

[6] M. Lanza and R. Marinescu, Object-oriented metrics in practice:
using software metrics to characterize, evaluate, and improve the
design of object-oriented systems. Springer Science & Business
Media, 2007.

[7] H. Aman, “An empirical analysis on fault-proneness of well-
commented modules,” in Empirical Software Engineering in Practice
(IWESEP), 2012 Fourth International Workshop on. IEEE, 2012,
pp. 3–9.

[8] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintainabil-
ity of code smells: a large scale empirical investigation,” Empirical

Software Engineering, pp. 1–34, 2017.

[9] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol, “An em-
pirical study of code smells in javascript projects,” in Software
Analysis, Evolution and Reengineering (SANER), 2017 IEEE 24th
International Conference on. IEEE, 2017, pp. 294–305.

[10] M. M. Lehman, “Laws of software evolution revisited,” in European
Workshop on Software Process Technology. Springer, 1996, pp.
108–124.

[11] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, and D. Poshyvanyk, “When and why your code starts to
smell bad,” in Proceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE Press, 2015, pp. 403–414.

[12] G. Rasool and Z. Arshad, “A review of code smell mining tech-
niques,” Journal of Software: Evolution and Process, vol. 27, no. 11,
pp. 867–895, 2015.

[13] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A
review-based comparative study of bad smell detection tools,” in
Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineering. ACM, 2016, p. 18.

[14] M. Mika, J. Vanhanen, C. Lassenius et al., “A taxonomy and an initial
empirical study of bad smells in code,” in null. IEEE, 2003, p. 381.

[15] W. Li and R. Shatnawi, “An empirical study of the bad smells and
class error probability in the post-release object-oriented system evo-
lution,” Journal of systems and software, vol. 80, no. 7, pp. 1120–
1128, 2007.

[16] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory
study of the impact of code smells on software change-proneness,”
in Reverse Engineering, 2009. WCRE’09. 16th Working Conference
on. IEEE, 2009, pp. 75–84.

[17] S. M. Olbrich, D. S. Cruzes, and D. I. Sjøberg, “Are all code smells
harmful? a study of god classes and brain classes in the evolution of
three open source systems,” in Software Maintenance (ICSM), 2010
IEEE International Conference on. IEEE, 2010, pp. 1–10.

[18] R. Nascimento and C. Sant’Anna, “Investigating the relationship be-
tween bad smells and bugs in software systems,” in Proceedings
of the 11th Brazilian Symposium on Software Components,
Architectures, and Reuse. ACM, 2017, p. 4.

[19] A. Cairo, G. Carneiro, and M. Monteiro, “The impact of code smells
on software bugs: A systematic literature review,” Information,
vol. 9, no. 11, p. 273, 2018.

[20] V. Basili, G. Caldiera, and H. ROMBACH, “Goal question metric
approach paradigm,” pp. 528–532, 1994.

[21] N. Moha, Y.-G. Gueheneuc, A.-F. Duchien et al., “Decor: A method
for the specification and detection of code and design smells,” IEEE
Transactions on Software Engineering (TSE), vol. 36, no. 1, pp. 20–
36, 2010.

[22] D. E. Hinkel, W. Wiersma, and S. G. Jurs, Applied statistics for the
behavioral sciences, 5th ed. Hougthon Mifflin Company, 2003.

[23] S. Bryton, F. Brito e Abreu, and M. Monteiro, “Reducing subjectivity
in code smells detection: Experimenting with the long method,” in
2010 Seventh International Conference on the Quality of Information
and Communications Technology. IEEE, 2010, pp. 337–342.

[24] J. P. dos Reis, F. Brito e Abreu, and G. Carneiro, “Code smells de-
tection 2.0: Crowdsmelling and visualization,” in 2017 12th Iberian
Conference on Information Systems and Technologies (CISTI).
IEEE, 2017, pp. 1–4.

204

Feature Evaluation for
Automatic Bug Report Summarization

Akalanka Galappaththi
Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Canada

a.galappaththi@uleth.ca

John Anvik
Department of Mathematics and Computer Science

University of Lethbridge
Lethbridge, Canada
john.anvik@uleth.ca

Abstract—Bug reports can be lengthy due to long descriptions
and long conversation threads. Automatic summarization of the
text in a bug report can reduce the time spent by software project
members on understanding the content of a bug report. Our work
further examines Rastkar et al.’s use of a logistic regression
model to determine which sentences from the text of a bug
report should be extracted for creating a summary. Using their
publicly available bug report corpus, which contains manually
annotated bug reports, we examined two aspects regarding the
features used by the model. First, we examined how much of a
reduction occurs in the precision and recall if some of the more
complex features are not used. Second, we examined how the
use of different feature combinations affects the precision and
recall of the models. We found that the absence of some of the
complex features resulted in a modest decrease in precision and
recall, and confirmed that some features, such as sentence length,
were the most significant features for bug report summarization.

Index Terms—Bug reports, text summarization, software en-
gineering, natural language processing

I. INTRODUCTION

Bug reports1 are useful software project artifacts that
contain information about problems occurring in the past,
discussion of possible or implemented solutions, and who
contributed to these solutions. Bug reports contain a vari-
ety of textual information including a title, description, and
comments [1]. The number of sentences in a bug report can
vary widely, with some bug reports containing relatively few
sentences (around 20) and some having over 50 sentences.

Bug report triage is an important software maintenance task
where a project member examines each bug report and makes
decisions about how the report will be handled [1]. Examples
of bug report triage decisions include determining the quality,
priority or severity of the report, assignment to a developer,
validation of the report, and identification of duplicate reports.
As software projects receive many bug reports each day [2],
to effectively triage a new bug report, the person performing
triage, called a triager, needs to understand the content of the
new bug report, as well as previous bug reports. If a bug report

1We use the general term ’bug report’ to refer to any software project
artifact which is used for tracking project work such as feature requests,
change requests, and tasks descriptions.

DOI reference number: 10.18293/SEKE2019-219

is long (i.e. a long description and/or many comments), the
triager needs to spend a significant amount of time reading and
understanding the content. Presenting a summarized version
of a bug report has been proposed to reduce the time taken
by triagers in examining new or existing bug reports and has
been shown to reduce the time for understanding the content
without necessarily reducing the meaning of the original bug
report [3], [4]. By reading the summarized version, a triager
could more quickly triage a bug report, such as determining
whether it is a duplicate of an existing bug report or whether it
needs to be fixed. Bug report summarization can also benefit
developers, as they could quickly get an overview of how a
particular or related problem was handled in the past.

As the content of a bug report is primarily free-form text,
natural language processing techniques, specifically those for
text summarization, are used [3], [5]. There are two types
of text summarization techniques: abstractive and extractive.
Abstractive summarization requires understanding the content
of the document and paraphrasing the content in such a
way that the meaning is preserved. Extractive summarization
selects sentences from the document that reflect the overall
meaning of the document [6]. Text summarization uses both
statistical and linguistic techniques to find the meaning and
importance of a text.

Rastkar et al. [3] presented an extractive approach to bug
report summarization that appears to work well. Their ap-
proach selects sentences to be extracted from the bug report
based on a variety of features and a linear regression model.
However, some of the features used in their approach are non-
standard (e.g. clue word score), and extracting those features
is complex. In this work, we investigate whether reasonable
extractive summaries of bug reports can be created without
the use of the complex features, and how the different features
contribute to the creation of a reasonable extractive summary.

We begin by presenting an overview of previous bug report
summarization work. We then present an overview of the data
set and the extractive bug report summarization technique used
in our investigation. Next, we describe how the summarizer
was evaluated and the results of our investigation. We conclude
the paper with a discussion of our findings.

205

II. RELATED WORK

We present in this section an overview of previous work
related to bug report summarization.

Murray and Carenini [7] proposed an approach for extract-
ing four types of features to summarize email and meeting
conversation data. The extracted features were related to the
length and the structure of the sentences, the lexical weights
based on the conditional probabilities of each word’s appear-
ance, and the participants of the conversation.

Rastkar et al. [3], [8] observed that comments in bug reports
were similar to the conversation structure found in emails
and meeting transcripts. Therefore they used the same feature
extraction techniques as Murray to train a logistic regression
model to classify sentences as being included in an extractive
summary or not. They created an annotated bug report corpus
for their investigation2.

Lotufo, Malik, and Czarnecki [4] conducted a study of
automatic, unsupervised bug report summarization that took
a different approach than Rastkar et al.. Instead of using
gold standard summaries, their study considered the similarity
between a sentence and the bug report title, the similarity
between two sentences, and the use of a heuristic to measure
the agreement of two sentences. These characteristics were
used to compare the quality of generated summaries. This
approach led to a more generalized approach to evaluating
bug report summaries.

Mani et al. [5] also proposed an unsupervised approach
to text summarization. Instead of using the gold standard
summaries, they used well known general purpose textual
summarizers to create bug report summaries. However, they
found that these summarizers only worked well when there
was no noise present in the bug reports. To reduce the
noise, they used heuristics to categorize text as being either a
question, an investigative sentence or a code snippet.

III. BUG REPORT SUMMARIZATION

As previously stated, the goal of our study is to investigate
the use of different features for extractive summarization of
bug reports as presented by Rastkar et al. [3]. They categorized
the 24 features into four sets: sentence length, lexical features,
structural features and features related to the participants of
the conversation in the bug report. As Rastkar et al. found
that the F-score statistics of the structural and participant-
related features have low variability, we focused our study
on the length and lexical features. We also chose to remove
the complex features of clue-word-score and those related
to sentence entropy to investigate how extractive summaries
selected without the use of these features compare to manually
created summaries. In short, we investigated the use of two
sentence length features, six conditional probability scores and
four cosine similarity scores. The details for these features are
explained in the following two sections.

2https://www.cs.ubc.ca/cs-research/software-
practiceslab/projects/summarizing-software-aftifacts verified 09/12/2018

A. Data Source

We used the bug report corpus created by Rastkar et al. [3]
in our investigation. The bug report corpus consists of thirty-
six (36) bug reports extracted from four open source software
projects: Mozilla3, KDE4, Eclipse5 and Gnome6. Each bug
report in the corpus has a title which indicates from which
software project it comes. Each bug report’s comments are
given in a format such as that of two or more people taking
turns when having a conversation. Therefore, each comment
is considered a turn and each turn has the participant’s name,
the time when the conversation started, and the text of the
individual sentences from the entire comment. Each bug report
has two or more people participating in the conversation. Bug
reports are stored in an XML format, each identified by a
unique number.

The corpus also contains annotations made by three different
annotators for each comment indicating whether the sentence
should be included in an extractive summary. Following the
procedure given by Rastkar et al. [3], we created gold standard
summaries (GSS) for each bug report by including a sentence
in the extractive summary if at least two annotators indicated
it should be included in the bug report summary.

B. Extracted Features

1) Sentence Length: The two sentence length features ex-
tracted from each bug report comment are SLEN and SLEN2.
SLEN is the length of a sentence normalized by the length of
the longest sentence in all of the comments in the bug report.
SLEN2 is the length of a sentence normalized by the length
of the longest sentence in the specific bug report comment.

2) Lexical: In our investigation, ten lexical features were
extracted from each sentence in a bug report comment. These
lexical features are based on two different conditional prob-
abilities known as Sprob (for sentence probability) and Tprob

(for turn probability).
Equation 1 defines Sprob. Given a term t by a person making

a comment, Sprob is calculated by finding the maximum
probability of that term’s appearance in sentences from all
of the comments S. For example, assume there are three
commenters for a bug report: A, B and C. If A used the word
w1 seven times, B used w1 twice and C used w1 once, then
the maximum probability of w1 is 0.7, and all instances of w1

in the bug report receive 0.7 as their Sprob weight.

Sprob(t) = P (S|t) (1)

Equation 2 defines Tprob. Given a term t by a person making
a comment, Tprob is calculated by finding the maximum
probability of that term’s appearance in a comment T. For
example, if a bug report has five comments and the word
w2 appears eight times in one comment, twice in another
comment, and in no other comments, then Tprob(w2) is 0.8.

3bugzilla.mozilla.org, verified 09/12/2018
4bugs.kde.org, verified 09/12/2018
5bugs.eclipse.org/bugs, verified 09/12/2018
6bugzilla.gnome.org, verified 96/12/2018

206

Tprob(t) = P (T |t) (2)

Using each conditional probability weight we calculated
three sentence level conditional probability features for the
sum of weights, maximum weight and mean of weights. For
Sprob the features calculated were named as SMS, MXS and
MNS for sum, max and mean respectively. Similarly, for Tprob

the names were SMT, MXT and MNT.
We calculated four cosine similarity scores for each sentence

using Sprob and Tprob as the word encoding. COS1 and COS2
represent the sentence wise cosine similarity using Sprob and
Tprob respectively. CENT1 and CENT2 represent the similarity
of a sentence to the entire conversation using Sprob and Tprob

respectively.

C. Bug Report Summary Creation

A logistic regression model was used to train a recom-
mender which classifies each sentence from the bug report
comments as appearing or not appearing in the extractive sum-
mary. The Python sklearn package was used to implement
the sentence classifier. Various logistic regression models were
trained to test the effect of the individual feature types and the
combined effect of the length and lexical features regarding
the performance of the classifier.

Following the procedure outlined by Rastkar et al., a bug
report summary was created by selecting the sentences with
the highest probability of being included in the extractive
summary according to the classifier until the word count of the
constructed summary reached 25% of the original bug report’s
word count.

IV. EVALUATION

To compare our model with Rastkar et al. [3] we trained a
logistic regression model using our twelve selected features.
We also investigated the effect of using only one of the
two feature categories and different feature combinations. To
investigate the effect of different feature combinations, we
paired similar features into six groups (length, sum, max,
mean, cos, cent) and created logistic regression models with
combinations of the different groups. For example, choosing
one group at a time creates six models (i.e.

(
6
1

)
) and choosing

two groups at a time creates fifteen models (i.e.
(
6
2

)
). We

created a total of sixty-two (62) models by choosing all
combinations of the six groups (i.e.

(
6
1

)
to

(
6
5

)
).

We used the metrics of precision, recall and F-score to
evaluate the different models.

Precision measures how many of sentences in the extractive
summary were correct. It was calculated as the total number
of sentences correctly classified as being in the extractive
summary divided by the total number of sentences in the
extractive summary.

Precision =
of sentences correctly selected

total # sentences in the summary
(3)

Recall measures how close the generated summary is to
the GSS summary. It was calculated as the total number
of sentences correctly classified as being in the extractive
summary divided by the total number of sentences which
appeared in the GSS summary.

Recall =
of sentences correctly selected

total # sentences in GSS summary
(4)

The F-score value is the harmonic mean of precision and
recall.

F − score =
2× precision× recall

precision+ recall
(5)

As we used a leave-one-out cross-validation approach to
evaluate each model, we received thirty-six (36) data points
for the precision and recall of each model. We applied a post-
hock pairwise statistical test7 to determine if there was any
statistically significant variation between the models.

V. RESULTS

In this section, we present a comparison of our extractive
summarization approach with Rastkar et al.’s, the results of
our investigation of using only sentence or lexical features,
and the results of our investigation of combinations of our
selected features.

A. Comparison to the Previous Approach

When we compare the results of our logistic regression
model with a 25% threshold with that of Rastkar et al.’s, we
found that our model has an average precision and recall that
is less than theirs (Table I). However, this decrease is to be
expected, given that fewer features are used in our model.

Our comparison with Rastkar et al.’s approach prompted us
to further examine the contribution to extractive summarization
of the individual features and their combinations.

TABLE I
COMPARISON OF OUR RESULTS WITH RASTKAR’S RESULTS

Our model Rastkar’s model
Precision 44% 57%

Recall 24% 35%
F-Score 29% 40%

B. Feature Categories

We examined the use of only sentence length features and
only lexical features for creating an extractive bug report
summarizer.

It was found that when using only the sentence length
features (SLEN and SLEN2), the classifier had an average
precision of 60% and the recall was found to be very low at
18%.

Using only the lexical features (SMS, MXS, MNS, SMT,
MXT, MNT, COS1, COS2, CENT1, CENT2), we found that

7Statistical analysis was conducted using R 3.5.1.

207

the recall improved to 22%, but the precision declined to
42%. The model which combined both the length and lexical
features had a precision of 44% and a recall of 24%. As shown
in Table II, the F-score was found to improve from 27% to
30% after adding the lexical features.

TABLE II
AVERAGE PRECISION, RECALL AND F-SCORE VALUE OF LEAVE-ONE-OUT

CROSS VALIDATION FOR CLASSIFIERS WITH 25%.

Feature set Precision Recall F-Score
Length 60% 18% 27%
Lexical 42% 22% 27%
All 44% 24% 29%

C. Feature Combinations

To understand the combined contribution of the features
and to discover if there was a difference in the performance
if we chose different combinations of features, we created
sixty-two (62) different models by choosing different group
combinations.

When testing for significance in the differences between
combinations of features, only the sentence length features
in

(
6
1

)
were found to be significant. The p-values for these

comparisons are shown in Table III.

TABLE III
SIGNIFICANCE OF DIFFERENCE IN THE PRECISION FOR

(6
1

)
.

Feature combinations p-value
SLEN-SLEN2 vs. CENT1-CENT2 0.0062577
SLEN-SLEN2 vs. COS1-COS2 0.0004581
SLEN-SLEN2 vs. MNS-MNT 0.0013389

VI. DISCUSSION AND CONCLUSION

In our study, we focused on two types of features: sentence
length and lexical features. According to Rastkar et al. [3]
SLEN was one of the most important features when training
an extractive bug report summarizer because of its high
variability. Two lexical features SSM and TSM and the sen-
tence length feature SLEN2 were also considered important.
However, they also felt that all 24 features contributed to the
overall performance of their model regardless of some of the
features having less variability. Our results seem to corroborate
this belief with our statistical analysis for different feature
combinations, finding no statistically significant difference in
performance when adding or removing features.

In training the logistic regression model with the sentence
length and lexical features, we found that lengthy sentences
often contained useful information needed to create a good
summary. This is consistent with the literature which states
that the sentence length is used to eliminate short sentences
from the summary that do not contain useful information,
such as author names or code extractions [9]–[11]. However,
we also found that only using the length of the sentence
was not enough to capture all of the useful sentences, as

selecting longer sentences resulted in quickly reaching the
word percentage threshold. Our results for the use of lexical
features also show that the recall is higher when the length
is not considered, as the classifier selects more of the shorter
sentences thereby increasing the recall.

Finally, as we are taking a supervised learning approach to
summary creation, the results are sensitive to the summaries
found in the GSS. When comparing the word count of the
summaries in the GSS for each bug report, we found that some
summaries had a word count of more than 50% of the original
bug report’s word count. As we used a word count threshold of
25% of the original bug report’s word count for the summaries,
our model is unlikely to choose all the sentences found in the
GSS summary for some of these summaries and this results
in a low recall for the trained models.

We plan to further explore the use of the more complex
features that have high variability and were not included in this
study, namely clue-word score and those related to sentence
entropy.

REFERENCES

[1] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans. Softw.
Eng. Methodol., vol. 20, pp. 10:1–10:35, Aug. 2011.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” in
Proceedings of the 28th International Conference on Software Engineer-
ing, ICSE ’06, (New York, NY, USA), pp. 361–370, ACM, 2006.

[3] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization of
bug reports,” IEEE Trans. Softw. Eng., vol. 40, pp. 366–380, Apr. 2014.

[4] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the ‘hurried’ bug
report reading process to summarize bug reports,” Empirical Softw.
Engg., vol. 20, pp. 516–548, Apr. 2015.

[5] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum: Approach
for unsupervised bug report summarization,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, FSE ’12, (New York, NY, USA), pp. 11:1–11:11, ACM,
2012.

[6] A. Nenkova and K. McKeown, A Survey of Text Summarization Tech-
niques, pp. 43–76. Boston, MA: Springer US, 2012.

[7] G. Murray and G. Carenini, “Summarizing spoken and written conver-
sations,” in Proceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’08, (Stroudsburg, PA, USA),
pp. 773–782, Association for Computational Linguistics, 2008.

[8] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software
artifacts: A case study of bug reports,” in Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE ’10, (New York, NY, USA), pp. 505–514, ACM, 2010.

[9] A. Kiani-B, M. . Akbarzadeh-T., and M. H. Moeinzadeh, “Intelligent
extractive text summarization using fuzzy inference systems,” in 2006
IEEE International Conference on Engineering of Intelligent Systems,
pp. 1–4, April 2006.

[10] F. Kiyoumarsi, “Evaluation of automatic text summarizations based on
human summaries,” vol. 192, pp. 3–91, 2015. The Proceedings of 2nd
Global Conference on Conference on Linguistics and Foreign Language
Teaching.

[11] W. Wang, Z. Li, J. Wang, and Z. Zheng, “How far we can go with
extractive text summarization? heuristic methods to obtain near upper
bounds,” Expert Systems with Applications, vol. 90, pp. 439–463, 2017.

208

Generating Integration Tests Automatically Using
Frequent Patterns of Method Execution Sequences

Mark Grechanik
University of Illinois at Chicago

Email: drmark@uic.edu

Gurudev Devanla
University of Illinois at Chicago

Email: gdev2@uic.edu

Abstract—Integration testing is vitally important for ensuring
software quality, since many serious software defects are not
isolated in single components. Unfortunately, creating integration
tests is often a manual and laborious effort. A fundamental
problem of software testing is how to automatically create
effective integration tests with oracles that find bugs efficiently.

We created a novel approach forAutomatically SyntheSizing
Integration Software Tests (ASSIST)that automatically obtains
models that describe frequently interacting components in soft-
ware applications, thus reducing the number of synthesized
integration tests and increasing their bug-finding power. In
ASSIST, static and dynamic analyses are used along with carving
runtime states to obtain test input data as well as oracles for the
synthesized integration tests. We experimented with three Java
applications and show that integration tests that are synthesized
using ASSIST have comparable bug finding power with manually
created integration tests.

Index Terms—software testing, pattern mining, execution trace

I. I NTRODUCTION

Many companies have adopted agile development [20], in
particular continuous delivery where software is tested and
released frequently, at the end of each delivery iteration. In
continuous delivery, it is important to test integrated software
components at the end of each short-term (i.e., ten day)
iteration [21, pages 55-82]. In fact, integration testing has
emerged as a major testing approach for agile and distributed
software development [25], since the majority of serious
software defects are no longer isolated in single components
and many catastrophic problems occur in interactions among
different components [23].

In integration testing, integrated software modules or com-
ponents are evaluated as a whole to determine if they behave
correctly [2, page 6] [4, page 21]. For object-oriented soft-
ware, integration tests invoke methods that belong to different
classes, which exchange data as a result of these invocations
[11]. Acceptance testingis a kind of integration testing where
many components of the application are integrated to imple-
ment some requirements [4]. At an extreme,big bang testing
is an example of the coarsest granularity of the acceptance
testing, where the entire application is assembled and tested
in one step [33], however, its usefulness is limited, since a
single debugging task is impractical [37, Section 7.2].

DOI reference number: 10.18293/SEKE2019-001

Executing acceptance and big-bang tests takes significant
resources and time, since they require comprehensive and
laborious installation and configuration of theapplication
under test (AUT)on a testbed, and each run of these tests may
take tens of minutes or hours, depending on the functionality
of the AUT. Naturally, acceptance and big-bang tests are run
on testbeds during major software releases, however, it is
impractical to do so during and at the end of the short-term
agile iterations. Clearly, finer granularity integration tests are
required that are coarser thanunit tests, where implementations
of methods that belong to the same class are tested individually
[4], [26]). Combining two or more methods that belong to
different classes is an example of an integration test of a finer
granularity that are needed for agile iterations [27]. Given
that developers routinely make small incremental changes to
applications to fix bugs and modify their functionalities, finer
granularity tests are needed to verify that the AUT behaves as
desired during and at the end of the agile iterations.

The larger the project, the more important integration testing
is to find bugs efficiently in integrated components of an ap-
plication [37]. Unfortunately, it is expensive, since the average
cost per finding and fixing a defect is currently the highest for
integration and acceptance testing [23]. This cost increases
approximately by anywhere from five and up to twenty times
if a defect is missed during integration testing and found at
a later stage [15]. Creating effective integration tests requires
significant time and effort, since it is not feasible to test all
combinations of components in a software application, and
the number of these combinations is enormous for nontrivial
applications [5], [17]. Despite these difficulties, the demand
for integration tests is high, since they are reported to have
a higher defect removal efficiency when compared with other
forms of testing (e.g., unit) [5], [23].

Our key idea is to use a stable release of the AUT to
synthesize integration tests with oracles that will be used
to test the subsequent releases of this AUT as part of agile
iterative development. Creating integration tests be ASSISTed
with automatically obtained models that describe frequently
interacting components, and thus are viewed as strong candi-
dates for containing integration bugs. ASSIST combines in a
novel way static dataflow and dynamic analyses with pattern
mining to guide the synthesis of integration tests. Our tool
and experimental results are publicly available at https://www.
dropbox.com/s/k1mfuzfw6r7138a/assist-release.tar.gz?dl=0.

209

II. T HE PROBLEM

Making integration testing cheaper and more effective is
very important and is equally very difficult. Constructing finely
granular integration tests is a laborious effort that requires
time and resources, which is difficult to justify especially
in continuous delivery where software is released in short-
term iterations. Combining different components blindly in
integration tests reduces their effectiveness, since the total
number of integration tests is exponential in the number of
components in a software application and many components
do not interact with one another. A fundamental problem
of software testing is how to automatically create effective
integration tests that have a high bug-finding power.

A main objective for software integration tests is to be
effective in finding bugs. An equally important objective is to
find bugs in a shorter time period without using significant
amount of resources, i.e., software integration tests should
also be efficient. A system that generates millions of random
integration tests is unlikely to be effective and efficient, since
running these tests will consume significant resources and time
without any guarantees that integration bugs will be found.
Thus, our main goal is to minimize the number of synthesized
integration tests and their execution time and to increase their
effectiveness of finding bugs at the same time.

III. O UR SOLUTION

The architecture and the workflow of ASSIST are shown
in Figure 1. The input to ASSIST(1) is the Application
Test Suite (ATS)that consists of the AUT, unit and acceptance
tests and input test data for these tests. The AUT(2) is run
using acceptance tests with the Profiler that collects Execution
Traces that are(3) analyzed by the Frequent Pattern Miner
that outputs(4) frequent patterns of method calls. The Model
Learner (5) learns the model that correlates properties of
test input data with frequently mined method calls and it
produces(6) the Model that is used to prioritize the synthesis
of integration tests, i.e., to produce more effective integration
tests efficiently. An important contribution of ASSIST is that
stakeholders concentrate on creating and improving unit and
acceptance tests as they do it now, and effective integration
tests will be synthesized automatically using models that are
learned using these acceptance and unit tests.

To execute synthesized integration tests, input test data is
required, i.e., all variables and fields of the objects should be
initialized that are used in the methods of these integration
tests. Moreover, since the first method of an integration test is
theNth method that is executed as part of some acceptance test,
this method uses the values of different objects and their fields,
which constitute thestate of the AUT. Our idea is to generate
test input data by carving the AUT state [39] before executing
theNth method in the acceptance test for the given integration
test. In fact, since the sequence of methods in an integration
test can be executed as part of two or more acceptance tests,
the carved states for these acceptance tests will serve as the set
of the input data for the same integration test. A rudimentary

state carving method is to traverse the heap starting from the
objects that are created in the main method.

The Model is used(7) as the input to the Execution State
Carver that reruns the AUT with specific acceptance tests in
order to carve(8) AUT States for the frequent patterns of
method calls. Independently from this step,(9) unit tests
from the ATS are inputted to the Unit Test Analyzer that uses
static analyses to obtain(10) complex Oracle Expressions
that include variables and AUT classes that are eventually used
in assertstatements in these unit tests. Next,(11) specific
Oracle Expressions are selected for carved AUT States and
then these selected Oracle Expressions are projected(12)
onto the carved AUT States using the State Projector to
obtain (13) the values of the oracles. As we discussed, unit
tests can contain complex expressions and control flows, and
its assertion statements contain variables whose values are
computed as results of executing these unit tests. To determine
what objects and their fields from the AUT are used in these
assertions, unit tests are analyzed using a combination of
backward slicing [38] and symbolic execution to obtain all
expressions that contribute to computing the values of oracle
expressions in assert statements. Then, these expressions are
re-evaluated given the carved states and new values for the
oracles for these expressions are obtained. These obtained
oracles, the source code of the AUT and the Model(14) are
used by the Integration State Synthesizer that(15) outputs
integration tests. This concludes the description of the ASSIST
architecture.

IV. EXPERIMENTAL EVALUATION

In this section, we pose research questions (RQs), describe
subject applications, explain our methodology and variables,
and discuss threats to validity.

A. Research Questions

As part of evaluation, we will answer the following research
questions (RQs) to assess how ASSIST meets the objectives
of effectiveness and efficiency.

RQ1: How effective are synthesized integrations tests in
finding bugs? The rationale for this research question
is to determine whether ASSIST synthesizes inte-
gration tests that can locate more integration bugs
in software when compared with certain baseline
approaches, e.g., manually created integration tests
and FUSION, an approach that composes integration
tests from unit tests [29].

RQ2: How efficient is ASSIST in synthesizing integration
tests that can help find bugs without a significant
use of computing resources? The rationale for this
research question is to determine if ASSIST produces
fewer integration tests and their total execution time
is not prohibitive, while measuring their effectiveness
of finding bugs at the same time. Our goal is to
show that ASSIST can synthesize a much smaller
and manageable number of integration tests that have
good bug-finding power.

210

Fig. 1. The architecture and workflow of ASSIST.

TABLE I
CHARACTERISTICS OF SUBJECT APPLICATIONS.

AUT Size, Acc Unit Integration
KLOC Tests Tests Tests

ASSIST FUSION
NANOXML 7 36 92 48 75
SCRIBE 3.7 29 39 36 28
SHTUTXML 1.3 5 40 6 6

TABLE II
MAXIMUM VALUES OF ELAPSED EXECUTION TIME AND MEMORY

CONSUMPTION FORASSIST.

AUT
Instrum PatternMining Synthesis

State
Test Mem Test Mem Test Mem

SCR 16s 55K 0.01s 2.3KB 18s 70K 0.2GB
NAN 17s 55K 0.04s 2.4KB 7s 60K 1.5GB
SHT 10s 57K 0.18s 2.4KB 7s 52K 0.95GB

B. Subject Applications And Their Test Suites

The subject applications for evaluating ASSIST are open-
source Java applications that are widely used. Their charac-
teristics are given in Table I. SCRIBE is one of the subject
applications that serves as a OAuth module for Java appli-
cations. This application has close to 50 contributors and 22
releases. NanoXML is a Java-based non-validating parser. The
third subject application is ShtutXML, an XML to text mapper.
All subject applications have test suites that contain mixtures
of unit and acceptance tests. In addition, we used several
graduate students from UIC with prior software development
experience to study these applications and create additional
unit and acceptance tests.

C. Methodology And Variables

To address RQ1 and RQ2 we evaluate ASSIST using the
following two dependent variables: the number of synthesized
integration tests and their bug-finding power. The number of
synthesized integration tests is a function of the threshold value
for mining frequent method sequences. The smaller the value

is the more sequences can be mined, which is exponential
in the limit. The larger the threshold value is, the fewer more
frequent method sequences can be mined, however, the mining
process may take a very long time. Unfortunately, frequent
pattern mining algorithms are computationally intensive, and
increasing the threshold value closer to one may take weeks or
months even using powerful computers. Thus, as part of our
experimentation we show the sizes of mined method sequences
that we obtain for different threshold values and how they
affect sizes of synthesized integration test suites.

We measure the bug-finding power of test suites using
mutation testing, which is recognized as one of the strongest
approaches for evaluating the effectiveness of test suites [14],
[18]. The code of theapplication under test (AUT), P, is
modified by applyingmutation operatorsto the AUT’s code
to create a buggy but syntactically correct version of the AUT,
P′, i.e., amutant. Running the test suite forP on P′ should fail
some tests, i.e., the mutant is killed. Otherwise, the test suite
is deemed not adequate to find bugs and it should be enhanced
with new tests that can kill mutants that were not killed with
the previous version of the test suite. A key measurement
of the power of determining the adequacy of test suites is
mutant killing ratio, i.e., the ratio of the number of mutants
killed by a test suite to the total number of generated non-
equivalent mutants. That is, our goal is to apply a mutation
testing approach to the subject applications that generates
mutants for determining the adequacy of integration test suites
synthesized by ASSIST and the mutant killing ratio should be
approximately the same when comparing to test suites that are
manually created or generated using a competitive approach.

In our evaluation we compare the tests produced by our
approach with FUSION [29], a state of the art tool for
generating integration tests by combining unit tests using an
object-relational model that it re-engineers from the source
code of the application. The independent variables in our
evaluation included the two mutation testing tools, jMINT [16]
and JavaLanche [30], the set of subject applications, and the
threshold values used in the pattern mining tool called BIDE

211

TABLE III
WE DESCRIBE SELECTED PARAMETERS FOR MINED FREQUENT

SEQUENCES FOR SYNTHESIZING INTEGRATION TESTS USINGASSIST.

AUT Unq
Mth

Max
Len
Seq

BIDE
Inpt

Thresh BIDE
output

Seq
Used In
ASSIST

SCRIBE 81 60 134 0.01 129 87
NANOXML 101 602 121 0.05 180 42
SHTUTXML 28 48 298 0.002 27 15

to extract frequent method sequences from execution traces
that are obtained from the subject applications. The number
of integration tests that ASSIST synthesizes is also guided by
the number of tests that contain oracles that come with the
subject applications.

For frequent pattern mining, we use an closed sequence
frequent pattern mining tool called BIDE [34]. This tool
implements a very efficient algorithm for determining closed
frequent sequences. We note that ASSIST is not tied to these
specific tools. Any frequent pattern mining tool that identifies
closed frequent sequences can be used in place of this tool.

D. Threats to Validity

One threat to external validity is the nature of applications
that we used to evaluate ASSIST – they are small and
may not be good representatives of the overall population
of applications. We plan to conduct more experiments with
many more applications to generalize these results. Subject
applications were chosen based on the availability of large
and diverse tests suites that we used as acceptance tests and to
extract test oracles. In addition, we are also constrained by the
limitations of FUSION, since it does not produce oracles. The
counter argument to this threat to validity is that the subject
applications are popular and have many tests and they may
be viewed as good representative of the applications that are
built in industry.

Another threat to validity is that we do not address the
problem of storing transient state components, such as pointers
to external resources (e.g., sockets and files). Since we show
that our approach works for non-transient data structures, we
hope to address the challenges with transient states as the next
logical step in our future work. This technical challenge does
not pose a threat to the core of ASSIST.

Finally, a threat to validity is that we evaluate the mutants
against the integration tests generated by only one tool,
namely, FUSION. Ideally, we need more tools on generating
integration mutants that contain meaningful oracles, unfortu-
nately, little research is done in this area that resulted in tools
that can be used in our evaluation. The very purpose of our
research is to address this limitation.

V. RESULTS

In this section, we report the results of the experiments and
state how they address our RQs. We carried out experiments
using Mac OSX 10.8, 64-bit CPU 2.4 GHz Intel Core i7, 8GB
of RAM, 256KB L2 Cache(per core) and 6MB L3 Cache.

Performance-related measurements are shown in Table II.
Clearly, the biggest space-related expense is the the carved
state that requires approximately 1.5GB for NanoXML. Instru-
menting the applications and synthesizing data takes less than
20 seconds, which is a reasonable expense. We can conclude
that with respect to time and memory consumption, ASSIST
is a practical approach that can be used for reasonably sized
software applications to generate integration tests.

We evaluate the results of our approach and compare its
effectiveness compared to manually generated tests and the
tests generated by FUSION. Results of our experiments are
shown in Table IV. For the AUT SCRIBE the strong mutant
killing ratio is the same that is achieved with manually created
tests. This result shows that it is possible to achieve the same
result with ASSIST as it is achieved with manually created
tests. Even though the ratio for SHTUTXML is smaller with
ASSIST-based integration tests when compared to manually
created tests, we view it as an impressive result, since ASSIST
is fully automatic.

The application NANOXML is a source of concern, since its
mutant killing ratio is very low with ASSIST-based integration
tests. Our investigation revealed the following. When we
run the acceptance tests, that are 101 unique methods in
NANOXML that are invoked and are written in execution
traces. Of these, there are 27 unique methods that are mined as
frequent sequential patterns. Unfortunately, there are unit tests
only for five methods. For the remaining methods there are no
assertions in any of the manually created tests. Moreover, those
methods that are used in unit tests and are part of the mined
frequent sequences are loosely integrated with other methods
in these sequences, so that the tightness of integration is very
poor. ASSIST is based on the assumption, that unit tests and
acceptance tests are adequate to produce integration tests that
can be used as the software evolves. This also exposes the
characteristics of the test suite and the lack of adequate tests
for methods that were identified in the set of frequently used
methods. As a result, ASSIST could not synthesize enough
effective integration tests.

The case with NANOXML highlights the results of conse-
quences of deficiencies that result in poorly built tests rather
than limitations of ASSIST. Indeed, if acceptance and unit tests
are abundant and if they are constructed properly, ASSIST
automates a difficult and laborious tasks of creating effective
integration tests. Moreover, for SCRIBE, ASSIST achieve
the same mutant killing ratio with fewer synthesized tests,
i.e., 36 when compared with 100 manually created tests. For
SHTUTXML, the mutant killing ratio is achieved with only
six synthesized tests.

We also see that using weak mutation ASSIST produces
a weak mutation killing ratio that is equal to the manually
created tests for two applications, SCRIBE and NANOXML.
In addition, our approach performs equally well compared to
FUSION for both these applications. In both these cases, our
approach also provides mutant killing ratios that is at least
50% of mutant killing ratio of manually created tests.

The results of evaluating ASSIST with the mutation tool

212

TABLE IV
EVALUATING THE EFFECTIVENESS OFASSISTBY COMPARING IT WITH FUSION. MUTANTS ARE GENERATED USING JMINT.

AUT Name Type oftests TestsCreated MutantsGenerated Mutants Triggered MutantsKilled Trigger Ratio Killed Ratio

SCRIBE
DEFAULT 100 115 15 6 13.04 5.21
ASSIST 36 115 15 6 13.04 5.21
FUSION 28 115 15 - 13.04

NANOXML
DEFAULT 116 104 95 34 91.34 32.69
ASSIST 48 104 5 2 4.80 1.92
FUSION 75 104 40 - 38.46

SHTUTXML
DEFAULT 43 12 7 7 58.3 58.3
ASSIST 6 12 2 2 16.66 16.66
FUSION 6 12 2 - 16.66

TABLE V
EVALUATING THE EFFECTIVENESS OFASSISTBY COMPARING IT WITH FUSION. MUTANTS ARE GENERATED USINGJAVALANCHE .

Description of theStep
SCRIBE NANOXML SHTUTXML

FUSION ASSIST FUSION ASSIST FUSION ASSIST
Total mutations 356 2634 1442 7330 193 719

Covered Mutations in ScanStep 105 29.49% 2111 80.14% 731 50.69% 6957 94.91% 0 0 403 56.05%
CoveredMutations 100 28.09% 100 3.80% 99 6.87% 99 1.35% 0 0 100 13.91%

Not CoveredMutations 256 71.91% 2534 96.20% 1343 93.13% 7231 98.65% 193 0 619 86.09%
Killed Mutants 36 10.11% 80 3.04% 47 3.26% 66 0.90% 0 0 49 6.82%

Surviving Mutants 320 89.89% 2554 96.96% 1395 96.74% 7264 99.10% 193 0 670 93.18%
MutationsScore 10.11% 3.04% 3.26% 0.90% 0.0% 6.82%

Mutation Score for coveredmutants 36.00% 80% 47.47% 66.67% 0 49%

called Javalanche are shown in Table V. ASSIST-based syn-
thesized integration tests are richer than ones created by FU-
SION, resulting in more mutants generated by Javalanche for
ASSIST. As a result, ASSIST-based tests cover more mutated
statements when compared to ones generates by FUSION.
ASSIST-based tests kill many more mutants when compared
with FUSION-generated tests. The mutation score for covered
mutants is much higher for all applications for ASSIST. Based
on this evidence we can conclude thatwe positively answer
RQ1, i.e., synthesized integrations tests are effective in
finding bugs.

To address RQ2, we will need to evaluate the results of
our approach in terms of performance of the frequent mining
algorithm which is dependent on the initial sequences gener-
ated during the execution of acceptance tests and the number
of tests ASSIST generates. Table III provides information on
the number of unique methods for each subject application,
maximal sequence of method calls that was traced during
execution of acceptance tests. The last three columns state
the threshold values that were used to identify the frequent
sequences, and the actual number of sequences that were used
by ASSIST. For each of the subject applications, we note that
it did not take more than a couple of seconds to identify these
frequent sequences. The other result we need to evaluate to
address RQ2 would be the number of integration tests ASSIST
produces. Table I provides details on the number of tests we
produce. It can be observed that the number of tests generated
by ASSIST is close to the number of tests that were created
manually or by FUSION. Ihis shows that even though there
is a potential of execution trace producing a large number
of sequences, using a combination frequent mining and static
analysis techniques ASSIST is able to produce tests that can

be executed as efficiently as manually produced tests and the
tests produced by FUSION. Based on this evidence we can
conclude thatwe positively answer RQ2, i.e., ASSIST is
efficient in synthesizing integration tests that can help find
bugs without a significant use of computing resources.

VI. RELATED WORK

Related work on automatic generation of integration tests
has many branches. Different model-based approaches exist
for generating integration tests using different types of formal
models [9], [19], [28] and using modeling approaches for
creating integration tests for distributed applications [6], [35].
Some approaches learn models and class dependencies for
integration testing from application code and behavior [3]
or from previous versions of the same application [7], [8].
Opposite to these approaches, ASSIST does not require models
for generating integration tests, since models may be outdated,
incomplete, or they may not exist at all. In addition, it is not
clear how oracles are defined for these approaches. ASSIST is
different from these approaches and complementary to them
in that ASSIST synthesizes integration tests using models of
method invocations. Unlike ASSIST, these approaches do not
have explicit mechanisms to control the number of generated
tests while increasing their effectiveness, and it is a question
how efficiently it is achieved.

Class Integration and Test Order (CITO)approaches de-
termine orders in which classes are composed in integration
tests using graph-based and search-based solutions [1], [10],
[12], [13], [22], [36]. However, the determination of a cost
function, which is able to generate the best solutions, is not
always a trivial task. In contrast, ASSIST does not require
cost functions, and it extracts oracles from tests, while CITO

213

does not address the oracle problem. Unlike ASSIST, CITO
approaches do not reflect the frequency of executions of
integrated components, and therefore it is not clear how it can
increase the effectiveness of the composed integration tests.

Approaches that compose integration tests from unit tests
and some software modules [24], [29], [31], [32] address
a different angle of the problem than ASSIST – the latter
concentrate on producing effective integration tests efficiently,
while it is unclear how the former approach addresses a
problem of reducing the large number of combinations of unit
tests into integration tests.

VII. C ONCLUSION

We created a novel approach forAutomatically SyntheSizing
Integration Software Tests (ASSIST)that automatically obtains
models that describe frequently interacting components in
software applications, thus reducing the number of synthesized
integration tests and increasing their bug-finding power. In
ASSIST, static and dynamic analyses are used along with
carving runtime states to obtain test input data as well as
oracles for the synthesized integration tests. We experimented
with three Java applications and show that integration tests that
are synthesized using ASSIST have comparable bug finding
power with manually created integration tests.

REFERENCES

[1] A. Abdurazik and J. Offutt. Coupling-based class integration and test
order. AST ’06, pages 50–56, New York, NY, USA, 2006. ACM.

[2] P. Ammann and J. Offutt.Introduction to Software Testing. Cambridge
University Press, New York, NY, USA, 2008.

[3] L. Badri, M. Badri, and V. S. Ble. A method level based approach for
oo integration testing: An experimental study. SNPD-SAWN ’05, pages
102–109, Washington, DC, USA, 2005. IEEE Computer Society.

[4] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New
York, 2nd edition, 1990.

[5] A. Bertolino, P. Inverardi, H. Muccini, and A. Rosetti. An approach
to integration testing based on architectural descriptions. ICECCS ’97,
pages 77–, Washington, DC, USA, 1997. IEEE Computer Society.

[6] A. Bertolino and A. Polini. Soa test governance: Enabling service
integration testing across organization and technology borders. ICSTW
’09, pages 277–286, Washington, DC, USA, 2009. IEEE Computer
Society.

[7] L. Borner and B. Paech. Using dependency information to select the
test focus in the integration testing process. TAIC-PART ’09, pages
135–143, Washington, DC, USA, 2009. IEEE Computer Society.

[8] L. Borner and B. Paech. Using dependency information to select the
test focus in the integration testing process. TAIC-PART ’09, pages
135–143, Washington, DC, USA, 2009. IEEE Computer Society.

[9] L. Briand, Y. Labiche, and Y. Liu. Combining uml sequence and state
machine diagrams for data-flow based integration testing. ECMFA’12,
pages 74–89, Berlin, Heidelberg, 2012. Springer-Verlag.

[10] L. C. Briand, Y. Labiche, and Y. Wang. An investigation of graph-
based class integration test order strategies.IEEE Trans. Softw. Eng.,
29(7):594–607, July 2003.

[11] P. J. Clarke.A taxonomy of classes to support integration testing and
the mapping of implementation-based testing techniques to classes. PhD
thesis, Clemson, SC, USA, 2003. AAI3098273.

[12] R. Da Veiga Cabral, A. Pozo, and S. R. Vergilio. A pareto ant
colony algorithm applied to the class integration and test order problem.
ICTSS’10, pages 16–29, Berlin, Heidelberg, 2010. Springer-Verlag.

[13] R. Delamare and N. A. Kraft. A genetic algorithm for computing class
integration test orders for aspect-oriented systems. ICST ’12, pages
804–813, Washington, DC, USA, 2012. IEEE Computer Society.

[14] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer.Computer, 11(4):34–41,
Apr. 1978.

[15] Gartner. It key metrics data 2008: Key ap-
plications measures: Current year: Defect rates.
http://www.gartner.com/DisplayDocument?ref=g search&id=557525,
Dec. 2007.

[16] M. Grechanik and G. Devanla. Mutation integration testing. In2016
IEEE International Conference on Software Quality, Reliability and
Security, QRS 2016, Vienna, Austria, August 1-3, 2016, pages 353–364,
2016.

[17] M. Greiler, A. v. Deursen, and M.-A. Storey. Test confessions: a study
of testing practices for plug-in systems. ICSE 2012, pages 244–254,
Piscataway, NJ, USA, 2012. IEEE Press.

[18] R. G. Hamlet. Testing programs with the aid of a compiler.IEEE Trans.
Softw. Eng., 3(4):279–290, July 1977.

[19] J. Hartmann, C. Imoberdorf, and M. Meisinger. Uml-based integration
testing. ISSTA ’00, pages 60–70, New York, NY, USA, 2000. ACM.

[20] J. Highsmith and A. Cockburn. Agile software development: The
business of innovation.IEEE Computer, 34(9):120–122, 2001.

[21] J. Humble and D. Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 1st edition, 2010.

[22] Z. Jin and A. J. Offutt. Coupling-based integration testing. ICECCS
’96, pages 10–, Washington, DC, USA, 1996. IEEE Computer Society.

[23] C. Jones and O. Bonsignour.The Economics of Software Quality.
Addison-Wesley Professional, Aug. 2011.

[24] M. Jorde, S. Elbaum, and M. B. Dwyer. Increasing test granularity by
aggregating unit tests. ASE ’08, pages 9–18, Washington, DC, USA,
2008. IEEE Computer Society.

[25] M. Luke. How early integration testing enables agile devel-
opment. http://www.ibm.com/developerworks/rational/library/early-
integration-testing-enables-agile-development, June 2012.

[26] A. P. Mathur. Foundations of Software Testing. Addison-Wesley
Professional, 1st edition, 2008.

[27] A. J. Offutt. Unit testing versus integration testing. pages 1108–1109,
Washington, DC, USA, 1991. IEEE Computer Society.

[28] S. Ogata and S. Matsuura. A method of automatic integration test case
generation from uml-based scenario.WSEAS Trans. Info. Sci. and App.,
7(4):598–607, Apr. 2010.

[29] M. Pezz̀e, K. Rubinov, and J. Wuttke. Generating effective integration
test cases from unit ones. InProc. of 6th IEEE ICST, 2013.

[30] D. Schuler and A. Zeller. Javalanche: efficient mutation testing for java.
ESEC/FSE ’09, pages 297–298, New York, NY, USA, 2009. ACM.

[31] S.-H. Shin, S.-K. Park, K.-H. Choi, and K.-H. Jung. Normalized adaptive
random test for integration tests. COMPSACW ’10, pages 335–340,
Washington, DC, USA, 2010. IEEE Computer Society.

[32] Y. Shin, Y. Choi, and W. J. Lee. Integration testing through reusing
representative unit test cases for high-confidence medical software.
Comput. Biol. Med., 43(5):434–443, June 2013.

[33] J. A. Solheim and J. H. Rowland. An empirical study of testing and
integration strategies using artificial software systems.IEEE Trans.
Softw. Eng., 19(10):941–949, Oct. 1993.

[34] J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences.
ICDE ’04, pages 79–, Washington, DC, USA, 2004. IEEE Computer
Society.

[35] S. Wang, Y. Ji, W. Dong, and S. Yang. A new formal test method
for networked software integration testing. ICCSA’10, pages 463–474,
Berlin, Heidelberg, 2010. Springer-Verlag.

[36] Z. Wang, B. Li, L. Wang, and Q. Li. An effective approach for automatic
generation of class integration test order. COMPSAC ’11, pages 680–
681, Washington, DC, USA, 2011. IEEE Computer Society.

[37] A. H. Watson and T. J. McCabe. Structured testing: A
testing methodology using the cyclomatic complexity metric.
NIST Special Publication 500-235, NIST: National Institute
of Standards and Technology, Gaithersburg, MD, 1996. See
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/title.htm.

[38] M. Weiser. Program slicing. ICSE ’81, pages 439–449, Piscataway, NJ,
USA, 1981. IEEE Press.

[39] G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient checkpointing of java
software using context-sensitive capture and replay. ESEC-FSE ’07,
pages 85–94, New York, NY, USA, 2007. ACM.

214

CrashAwareDev: Supporting Software Development
based on Crash Report Mining and Analysis

Leandro Beserra*†, Roberta Coelho†
*Informatics Superintendence

†Department of Informatics and Applied Mathematics
Federal University of Rio Grande do Norte

Natal, Brazil
ldbeserra@info.ufrn.br, roberta@dimap.ufrn.br

Abstract— Exception handling mechanisms are a com-
mon feature of mainstream programming languages to
deal with exceptional conditions. If on the one hand
they allow the programmer to prepare the code to deal
with exceptional conditions, on the other hand they can
become a source of bugs that threatens the application
robustness – studies have shown that uncaught exceptions
are the main cause of application crashes. To keep track
of crashes and enable an easier fault localization, several
applications, nowadays, use crash reporting tools. In
this work, we propose a tool named CrashAwareDev,
integrated with the Eclipse IDE, which mines the in-
formation available in crash reporting tools to support
programmers in their day-to-day activities. The proposed
tool alerts developers about the classes related to recent
crashes and warns about source code characteristics (bug
patterns) that can be related to future crashes (similar
to the ones that have happened). Doing so the tool aims
at bringing the development environment closer to crash
reporting tools, that are usually only used for bug fixing
or for extracting robustness metrics. A case study was
conducted and showed that the tool can support software
development by displaying bug pattern alerts directly in
the source code, signaling the classes involved in recent
faults, and speeding up the crash’s fault localization
within the development environment itself.

Index Terms— Exception handling, crash report,
Eclipse plug-in, uncaught exceptions

I. INTRODUCTION

Exception handling mechanisms [1] are a com-
mon feature of modern programming languages.
Exception handling structures are used to deal with
unexpected events that occur during the execution

DOI reference number: 10.18293/SEKE2019-002

of a program [2], allowing exceptions to be th-
rown, captured, and handled at different points
in the system. However, the exception handling
code designed to make a system more robust often
works the other way around and become a burden
programmers has to cope with, leading to bugs
such as the uncaught exceptions. The uncaught
exceptions are the main cause of crashes in Java
software systems [3]. A crash is an abnormal
behavior of a system that leads to the interruption
of its execution.

After a crash occurs, systems typically store
information related to the crash on crash report
systems. Such information usually contains the un-
caught exception that caused the crash and its stack
trace. The exception stack trace is a representation
of the method call stack and contains information
about classes and methods by which an exception
was propagated. Since the exception stack trace
is a source of information widely used by pro-
grammers while debugging they are often added on
crash reports [4]. Moreover, these reports may con-
tain other information such as the operating system
used at the time of the crash, the user login, the
browser/system version, the user’s IP address, and
other request parameters. In addition to facilitating
the fault localization, the information available on
crash report tools can assist in prioritizing bug
corrections (depending on the number of users
affected, for example) or understanding the impact
of system crashes [5]. The utility of crash report
systems may go beyond recording crash data and
supporting debugging. Some studies have shown

215

that such information can be used for various
purposes such as fault classification [6][7] and fault
localization [8][9][10]. None of the existing works,
however, extract data from crash reports to support
programmers during system coding.

In this paper, we propose a way to mine infor-
mation stored in crash reports and provide useful
information to the programmer within his/her pro-
gramming environment. We present a tool called
CrashAwareDev, an Eclipse1 IDE plug-in, which
supports the developer in coding time by (i) aler-
ting him/her about the classes related to recent
crashes; (ii) warning about source code characte-
ristics (bug patterns) that can be related to future
crashes (similar to the ones that have happened);
and (iii) providing direct access to crash reports
within the IDE. A case study was conducted on an
industrial web-based software system comprising
of 1300 KLOC of Java source code. Along the
evaluation period, a group of 5 developers used
the tool on a daily basis (during 4 days). Overall
the tool presented 95 warnings (i.e., 17 class alerts
and 78 bug pattern warnings).

II. BACKGROUND

The Java programming language provides an
exception handling mechanism to support error
handling [12]. When an error occurs during exe-
cution of code in a try block, the error is caught
and handled by an exception handler in one of the
subsequent catch blocks associated with it. If no
catch block can handle the error, the method is ter-
minated abnormally and the Java virtual machine
(JVM) searches backward through the call stack to
find an exception handler that can handle the error
[15].

In Java, exceptions are represented according
to a class hierarchy, on which every exception is
an instance of the Throwable class, and can be
of three kinds: the checked exceptions (extends
Exception), the runtime exceptions (extends Run-
timeException) and errors (extends Error) [12].

Checked exceptions represent conditions that,
although exceptional, can reasonably be expected
to occur, and if they do occur must be dealt
with in some way. Unchecked runtime exceptions

1https://www.eclipse.org/

represent conditions that, generally speaking, re-
flect errors in your program’s logic and cannot
be reasonably recovered from at run time [13].
By convention, instances of Error represent un-
recoverable conditions which usually result from
failures detected by the Java Virtual Machine due
to resource limitations, such as OutOfMemoryEr-
ror. Normally these cannot be handled inside the
application [13].

III. ANALYZING CRASH REPORTS

A. Methodology
Before implementing the CrashAwareDev tool,

we conducted a study whose goal was to identify
the characteristics of most frequent crashes of an
industrial Web-based system, and based on such
characteristics, check wether or not existing static
analysis tools could alert about them. Figure 1
illustrates the main steps taken in this study. The
target system used in this study was an industrial
Web-based system, named SIPAC, comprising of
1300 KLOC of Java source code ans designed
to automate business processes for universities
focusing on different and complementary aspects,
such as administration, planning and management
– SIPAC is used in approximatelly 55 Brazilian
universities.

Fig. 1. Methodology overview.

Step 1: Analysis of Crash Reports. We analy-
zed the most frequent exceptions that caused
crashes over a period of one month.

Step 2: Code Inspection and Identification of
Bug Patterns. We manually inspected the code
related to the most frequent kinds system crashes
to identify common characteristics among them.

216

Step 3: Analysis of Existing Static Analysis
Tools. We analyzed whether or not existing static
analysis tools could be able to detect and therefore
prevent such causes of crashes identified on the
previous step.

Step 4: Survey. Finally, we conducted a study
on which we surveyed a group of developers
(working on the target system) to evaluate how
they used.

B. Crash Analysis

In order to investigate the main causes of crashes
reported for the target system, we analyzed the
crash reports of one month (June 2018). In this
period (2018-06-01 to 2018-06-30), approximately
1933617 accesses were made to the system, from
this set 680 accesses were faulty (0.0035% of the
accesses) - on which the user faced one or more
crashes. We observed that approximately 1966
crashes were recorded in the period, affecting 347
distinct users.

We extracted the types of most frequent un-
caught exceptions (leading to crashes). The top 5
types of uncaught exceptions raised shown in Table
I. We can observe that approximately 63.9% (1241
errors of 1966) of the crashes of the analyzed
period was caused by five types of exceptions.

Root Cause Ocurr. % Analyzed
NullPointerException 749 38,09 10
LazyInitializationException 171 8,69 2
JspException 166 8,44 21
IllegalArgumentException 102 5,18 1
PSQLException 53 2,69 5
Total 1241 63,9 39

TABLE I

THE TOP 5 TYPES OF UNCAUGHT EXCEPTIONS RAISED IN

JUNE/2018.

We then manually inspected the source code
related to a subset of such crashes (we randomly
selected a subset of each of the top 5 uncaught
exceptions – as shown in the last column of Table
I). The purpose of this analysis was to identify
common characteristics related to the causes of the
most frequent uncaught exceptions.

Overall we inspected the source code related
to 39 crashes. We could observe common charac-
teristics among some of them, which led to the

definition of four specific bug patterns listed in
Table II.

Tag Description Ocurr.
BP01 Unchecked database query return 3
BP02 Unchecked classes methods parameters 2
BP03 Unchecked request parameters 2
BP04 Controllers do not implement get/set

methods
4

TABLE II

BUG PATTERNS DETECTED DURING ANALYSIS.

Each bug pattern found in this study is described
as follows:

• BP01: When querying any data in a database,
it is recommended to check if the value is
not null, to prevent a possible null pointer
exception.

• BP02: Static methods of utility classes should
check if their arguments are not null.

• BP03: Like BP01, objects retrieved from the
HTTP session must be checked.

• BP04: Private attributes of view controllers
must most often have the get and set methods
implemented. Otherwise, a JspException may
be thrown while rendering the Web page.

C. Analysis of Existing Static Analysis Tools

We then investigated whether some of the exis-
ting static analysis tools could alert about some of
the 39 crash causes identified during the manual
inspection. We used SonarLint2 and SpotBugs3,
both in its Eclipse’s plug-in version and observed
that none of the 39 defects were detected by the
tools.

D. Survey

We applied a survey the developers working on
the target system to investigate how they use the
crash report information during development. The
survey was sent to 25 developers, and we obtained
14 responses, from which: 5 respondents mentio-
ned that never used the crash report; 8 respondents
mentioned that only used for debugging purposes;
and only one mentioned that used the crash report
on a daily basis for monitoring of errors. Moreover,

2https://www.sonarlint.org/
3https://spotbugs.github.io

217

7 respondents mentioned that they had difficulties
in using the features of the crash report system
used.

IV. THE CRASHAWAREDEV TOOL

Based on the steps described previously we
implemented a tool – called CrashAwareDev.
CrashAwareDev’s main purpose is to present in-
formation mined from crash reports and identified
bug patterns on the developer’s IDE, at coding
time. One of the motivations of this research was
the perception that, in the context of target system
development (SIPAC), crash report information is
basically used for debugging failures and was not
used to alert the developer of potential crash causes
or classes frequently related to crashes. Figure 2
represents an overview of the main features of
CrashAwareDev and described next.

Fig. 2. CrashAwareDev’s Components diagram.

Warning about Classes related to Recent
Crashes. The tool alerts whether the class being
changed was associated with at least one recent
system crash (i.g., the period considered is confi-
gurable). We have adopted the following heuristic:
if the class appears in the exception stack trace
of one crash, then it will be associated with the
crash, as this means that the exception at some
point was propagated within a method of this class.
However, this is not to say that the defect is located
in that class, but can information help to identify
the fault’s origin. The tool generates warnings that
are displayed in source code during development
as illustrated in Figure 3.

Find Bug-Patterns Ocurrences. On the study
described previously, we identified source code

Fig. 3. Warning about classes related to recent crashes.

characteristics (bug patterns) that lead to crashes in
SIPAC. Hence, at each compilation, the tool stati-
cally analyzes of the changed artifacts looking for
bug patterns (described in Table II) and warnings
that are displayed directly in IDE as illustrated in
Figure 4.

Fig. 4. Bug-Pattern Violation Alert.

Enable Queries on Crash Reports. This fea-
ture aims to bring the programmer closer to the
crash report during coding. The goal is to enable
the developer to query for recent system crashes,
filtering them by class name. Summarized crash
information is displayed in an Eclipse view with
a link to display the complete information directly
in the crash reporter (in an external browser).

Present Most Frequent Crash Causes. This
feature basically displays the most common types
of uncaught exceptions that have occurred in a

218

given period of time (e.g., one month). The data
displayed are similar to those shown in Table I.

V. EVALUATION

To evaluate CrashAwareDev tool we performed
a case study on which a group of developers
used the tool for a given period of time and
quantitative and qualitative data regarding the tool
usage was collected. We invited SIPAC developers
to participate in the study and a group of 5 de-
velopers volunteered to participate. They received
brief training on the features of CrashAwareDev,
and used the tool for 4 consecutive days, for
approximately 8 hours daily. Table III presents the
metrics collected in this study.

Metric Count
M1: Number of classes changed 105
M2: Number of classes with some alert 61
M3: Number of alerts per bug pattern 78

BP01 - Check values when querying in a database 47
BP02 - Check auxiliary methods arguments 15
BP03 - Check values carried by request 16
BP04 - Implement private attributes’ get/set N/A

M4: Class alerts associated with a crash 17

TABLE III

METRICS COLLECTED DURING EVALUATION

During the execution period, we collected in the
logs that 105 different classes were changed (M1).
In 61 of these, some problem was detected by the
tool and at least one warning was shown to the
developer (M2). A total of 78 bug pattern alerts
were displayed. They were distributed among the
patterns listed in Table III (M3).

The BP04 pattern was removed during the exe-
cution of the study because the participants repor-
ted that most warnings would be false positives,
as not every private method of controllers should
necessarily be referenced in JSP pages. Therefore,
we disabled the checking of this pattern during the
study. As described earlier, the Class Checker fea-
ture analyzes whether the changed class is present
in some recent crash stack trace. We collected 17
warnings on this check (M4).

Moreover, we also counted how many times
each CrashAwareDev feature was used during the
study (Q5). The Query Crashes from Crash Re-
porter function was used four times by the partici-
pants. We observed that this query was performed

after an alert was displayed in the class (during
the Class Checker execution) and the developer
was interested in checking the crashes in which
the class was involved. Of these four queries, in
two times the participant used the link to see
the complete information of the crash. The Query
Top Root Causes feature was not used during this
study. This information did not prove useful to
programmers during the study, but we believe that
it is of greater interest to leader developers (who
did not participate in the study).

We also questioned participants about the use-
fulness of the tool. All of them mentioned that the
tool warnings were useful. One of the participants
also mentioned that more bug-checking rules could
have been implemented as they could indeed help
in preventing crashes in the long run. Two other
developers also suggested that in some cases the
tool might also support the fault localization in the
production environment in a future version.

VI. RELATED WORK

Information mining on crash reporters
and/or stack traces. Some studies were carried
out with the objective of extracting data from
crash reports and using them for various purposes.
Among them are those who used the data to find
bug hazards in exception handling code [14], to
classify the types of failures [6][7] and to facilitate
their location [8][9][10]. In this article, we use
a grouping of crashes per type of exception. We
sought to identify error patterns associated with
these types through manual analysis of crashes.
Our research did not propose any mechanism
for locating defects, but we tried to approach
the programmer’s development environment to the
crash reporter, which may help at coding time the
identification of classes associated to recent faults.

Bug Detection Tools. Several static analysis
tools have been proposed to detect bug patterns
in the source code from predefined rules. These
patterns are categorized into various types such
as correctness, code smells, vulnerability, security,
performance, etc. PMD [17] is an open-source
application and is based on bug patterns to find
errors in the Java source code. It allows new
patterns to be written in Java or XPath. Another
tool proposed was the FindBugs [18] which also

219

examines the source code and bytecode of Java
programs. In this paper a subset of the FindBugs
rules was described and compared to the PMD
with respect to the number of alerts generated,
showing that the number of FindBugs alerts is
lower in all experiments done. In 2016 FindBugs
was discontinued and succeeded by SpotBugs,
which we use in this work. Another existing static
analysis tool is SonarQube [19] which presented
a proposal for analysis along with continuous
integration systems. We used in this work your
Eclipse version, called SonarLint. CrashAwareDev
has a static analysis feature, as well as the tools
mentioned. However, we seek to define rules based
on real crashes, in order to reduce the known false
positives in the existing tools.

VII. CONCLUDING REMARKS

In this work, we presented a way to use data
from crash reports to support programmers during
software development. To promote this support,
we have developed a plug-in tool for the Eclipse
IDE, CrashAwareDev. Before proposing the tool,
we performed a detailed study of crashes stored
in a real crash reporter in order to identify the
main causes of crashes. A set of common causes
of crashes were defined as bug patterns which
could be identified in the static analysis performed
by CrashAwareDev. Moreover, the tool also alerts
the developer about classes frequently involved in
crashes and enabled them to access information of
crash reports within the IDE. A case study in a
real development context was performed and the
results revealed that the tool could indeed alert the
developers about several application-specific bug
patterns.

Acknowledgments. This research has been sup-
ported by CAPES-BRAZIL.

REFERENCES

[1] Goodenough J. B. Exception handling: Issues and a proposed
notation.Commun.ACM, ACM, New York, NY, USA, v. 18,
n. 12, p. 683–696, dez. 1975. ISSN 0001-0782.

[2] Sawadpong P.; Allen E. B. Software defect prediction using
exception handling call graphs: A case study. In:2016 IEEE
17th International Symposium on High Assurance Systems
Engineering (HASE). [S.l.: s.n.], 2016. p. 55–62. ISSN 1530-
2059.

[3] Jo J.-W. et al. An uncaught exception analysis for java. Journal
of Systems and Software, v. 72, n. 1, p. 59 – 69, 2004. ISSN
0164-1212.

[4] Schroter A. et al. Do stack traces help developers fix bugs?
In:2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010). [S.l.: s.n.], 2010. p.118–121. ISSN
2160-1852.

[5] An L.; Khomh F. Challenges and issues of mining crash
reports. In:2015 IEEE 1st International Workshop on Software
Analytics (SWAN). [S.l.: s.n.], 2015. p. 5–8.

[6] Kim S.; Zimmermann T.; Nagappan N. Crash graphs: An
aggregated view of multiple crashes to improve crash triage.
In:Proceedings of the 2011 IEEE/IFIP 41st International Con-
ference on Dependable Systems&Networks. Washington, DC,
USA: IEEE Computer Society, 2011. (DSN ’11), p. 486–493.
ISBN 978-1-4244-9232-9.

[7] Dhaliwal T.; Khomh F.; Zou Y. Classifying field crash
reports for fixing bugs: A case study of mozilla firefox.
In:Proceedings of the 2011 27th IEEE International Confe-
rence on Software Maintenance. Washington, DC, USA: IEEE
Computer Society, 2011. (ICSM ’11), p. 333–342. ISBN 978-
1-4577-0663-9

[8] Sinha S. et al. Fault localization and repair for java runtime
exceptions. In:Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis. New York,NY,
USA: ACM, 2009. (ISSTA ’09), p. 153–164. ISBN 978-1-
60558-338-9.

[9] Wang S.; Khomh F.; Zou Y. Improving bug localization using
correlations in crashreports. In:2013 10th Working Confe-
rence on Mining Software Repositories (MSR). [S.l.:s.n.],
2013. p. 247–256. ISSN 2160-1852.

[10] Wu R. et al. Crashlocator: Locating crashing faults based
on crash stacks. In:Proceedings of the 2014 International
Symposium on Software Testing and Analysis. New York,
NY,USA: ACM, 2014. (ISSTA 2014), p. 204–214. ISBN 978-
1-4503-2645-2.

[11] Cabral B., Marques P. (2007) Exception Handling: A Field
Study in Java and .NET. In: Ernst E. (eds) ECOOP 2007 –
Object-Oriented Programming. ECOOP 2007. Lecture Notes
in Computer Science, vol 4609. Springer, Berlin, Heidelberg

[12] Gosling J, Joy B, Steele G. The Java Language Specification
(The Java Series). Addison-Wesley: Reading, MA, 1997.

[13] Arnold K., Gosling J., Holmes D., The Java Program-
ming Language, Fourth Edition, Addison-Wesley Professio-
nal, 2005.

[14] Coelho R. et al. Unveiling exception handling bug ha-
zards in android based on github and google code issues.
In:Proceedings of the 12th Working Conference on Mining
Software Repositories. Piscataway, NJ, USA: IEEE Press,
2015. (MSR ’15), p. 134–145.

[15] Lee, S. , Yang, B. and Moon, S. (2004), Efficient Java
exception handling in just-in-time compilation. Softw: Pract.
Exper., 34: 1463-1480. doi:10.1002/spe.622

[16] Basili V. R.; Caldiera G.; Rombach D. The goal question
metric approach. Encyclopedia of Software Engineering, v. 1,
01 1994.

[17] PMD: An extensible cross-language static code analyzer.
2018. https://pmd.github.io/ [June 2018].

[18] Hovemeyer D.; Pugh W. Finding bugs is easy. SIGPLAN Not.,
ACM, NewYork, NY, USA, v. 39, n. 12, p. 92–106, dez. 2004.
ISSN 0362-1340.

[19] Sonarsource. SonarLint. 2019. https://www.sonarlint.org/ [Ja-
nuary 2019].

220

Dynamic and Interoperable Control of IoT Devices and Applications based on
Calvin Framework

Fernanda Famá, Cleuves Cajé de Carvalho, Danilo F. S. Santos, Angelo Perkusich, Kyller Gorgônio

Embedded Lab, Federal University of Campina Grande, Campina Grande, Brazil
{cleuves.carvalho, fernanda.fama, danilo.santos, perkusic, kyller}@embedded.ufcg.edu.br

Abstract

The development of tools and smart devices has grown
exponentially over the past few years, most due to the ap-
pearance of the Internet of Things (IoT). The large num-
ber of different connected devices highlighted challenges
such as interoperability, scalability and reliability. In this
scenario, for the development of new services and applica-
tions, it is necessary to use software platforms that ease the
deployment and validation based on those challenges. With
this, arises the need for middlewares, platforms that provide
an environment for the development of such applications. In
this way, in order to provide a simple, lightweight and dy-
namic approach, this article presents a study and develop-
ment of an architecture that allows the communication, con-
trol and monitoring of IoT devices using an intuitive manner
through an actor model. This is possible through the inte-
gration of the Calvin framework, the MQTT protocol and
the OCF data model, providing an interoperable, reliable,
dynamic and remote communication. A smart home envi-
ronment was used for validation showing the relevance of
the proposal.

Actor model; dynamic control; interoperability; IoT;
MQTT; OCF; smart home

1 Introduction

Internet of Things (IoT) is described as a network infras-
tructure with interoperable communication standards and
protocols where physical or virtual “things” share informa-
tion in real time [22]. Aiming to make the Internet more
comprehensive and immersive, IoT enables access to a wide
range of devices. Those devices are used to build applica-
tions in many domains, including industrial and home au-
tomation, intelligent cities and healthcare [24].

DOI reference number:10.18293/SEKE2019-177

Due to the increasing interest in IoT application, a wide
variety of devices and objects that aims to provide utilities
and services through the Internet are under development.
This variety of devices and services creates new challenges,
which demands the use of different architecture models in
terms of Software Engineering.

The main challenges to achieve the maximum poten-
tial of IoT are interoperability, mobility, scalability, perfor-
mance, security and privacy. Because of the heterogeneity
of devices and platforms, interoperability is a major obsta-
cle to be overcome. Standardization of protocols and pat-
tern interpretations are important to make all devices acces-
sible and interoperable. Therefore, data exchange between
a large number of devices must be managed so that sensitive
data is not compromised [1, 10].

Middlewares are used to allow the usage of heteroge-
neous components and to abstract implementation details of
network protocols and communication resources. A mid-
dleware works as a communication link between devices
and applications for IoT. It should provide interoperability,
device discovery and management, security, privacy, and
also high-volume data management [2, 15].

In this paper, we propose a new IoT System architec-
ture model, based on an actor-based middleware, that is
interoperable, dynamically controllable and manageable.
This new system is built on top of Calvin [21] middle-
ware, MQTT communication protocol, and oneIoTa models
based on the OpenConnectivity Foundation (OCF)1 specifi-
cations. While Calvin was used for the development, de-
ployment and execution of an IoT smart home application,
MQTT and oneIoTa provided interoperability and standard-
ization between different devices. As a validation scenario,
we built a smart-home application, which, based on the user
behaviour, demands ways to dynamic control remote de-
vices in a interoperable way.

The paper is structured as follows. Section 2 discusses
the related work. Section 3 introduces the tools used for

1http://www.openconnectivity.org

221

the IoT application. Specifically, the Calvin framework that
supported the entire implementation, the MQTT protocol
and the OCF “consortium” are described. Section 4 details
the proposed architecture and the dynamically controlled
smart home application. The implementation and validation
of the proposed system are presented in Section 4. Finally,
conclusions and future works are presented in Section 5.

2. Related Work

Several studies were executed to design, implement and
control IoT systems. Konduru et al [11] presents a study
that identifies challenges and solutions considering interop-
erability of devices. Tools such as Google Weaver, IoTivity,
AllJoyn and Apple Home Kit are analysed. Google Weaver
and the Apple Home Kit are focused on solving interop-
erability only for pre-defined devices. While AllJoyn is a
framework that together with IoTvity are part of the Open
Connectivy Foundation (OCF).

Belsa et al [3] also address the interoperability problem,
but with a different approach. IoT platforms are integrated
through a flow-based model. The proposed architecture is
based on the Node-RED2 middleware. However, unlike
Calvin, that uses a distributed hash table (DHTs), it does
not support the development of applications with distributed
systems. [20], also uses Node-RED to design, deploy and
control devices remotely in a smart laboratory.

Finally, [12] implements a Healthcare resource model
using OCF and IoTivity platform. In this work, two OCF
standards are used, the OIC Healthcare Resource and the
OIC Healthcare Device. Some of these resource are blood
glucose, body metrics, heart rate and oxygen saturation sen-
sors. In which, each resource has a schema and RAML.

3 Basic Concepts

In this section we present the main technologies used in
this work.

3.1 Calvin

Calvin is an open source framework aiming to ease the
development of IoT applications in distributed systems. It
is based on a data flow programming methodology through
an actor model [14, 16]. The paradigm of data flow pro-
gramming is present as an actor model. An actor is a soft-
ware component that models functions, devices, services or
some type of computing in the form of an object. In Calvin,
tokens are used to establish communication between actors.
These tokens are created when the input actors captures and
processes data. Data is them transformed into resources,
which in this environment are considered tokens, that will
be consumed by other actors [18].

2Node-RED: https://nodered.org/

The framework has several standard actors and sensors
responsible for input/output of data, media and network ac-
cess (including HTTP, TCP and MQTT), among others [21].
New actors can be implemented in Python and the dataflow
between them is expressed using a declarative language
called CalvinScript [19]. Because of the ease of develop-
ing actors, Calvin simplifies the implementation of several
new services based on this type of model.

To develop an application in Calvin it is necessary to fol-
low a cycle consisting of four phases: describe, connect,
deploy and manage. Firstly, the developer will describe
how a task is executed by each actor. Secondly, it is nec-
essary to make the connections between them. This can be
done using the Calvin GUI. This tool lists the available ac-
tors and allows to connect them through their inputs and
outputs. When performing this, the CalvinScript is auto-
matically generated. Figure 1 shows a detail of Calvin’s
graphical interface. After creating connections, the applica-
tion is already ready to deploy. Finally, during the manage-
ment phase, modifications can be made in the application
and Calvin executes the deployment [14, 16].

Figure 1. Calvin GUI.

In Calvin’s architecture there is a layer called runtime
where actors are executed. It has two sub-layers, platform
dependent and platform independent. The first allows com-
munication between several runtimes through the most var-
ied communication protocols, such as WiFi and Bluetooth.
The second, allows the execution of several actors at one
runtime only. Calvin GUI works on that layer.

3.2 MQTT

Message Queue Telemetry Transport (MQTT) is an ap-
plication layer protocol that centralizes the sending and re-
ceiving of data from applications using a wireless sensor
network, enabling the communication between devices with
limited power source. This architecture is based on a Pub-
lisher/Subscriber system. Publishers are responsible for
sending data collected through sensors, while subscribers
consumes the data that was collected [9].

A Broker is used to coordinate the sending and receiving
of data in order to ensure that the communication will be
reliably. The Broker receives the data collected and clas-
sifies the data as topics. The data is then sent to devices
interested in a specific topic. The broker also ensures that
the data will be received only by the subscribers who will
consume them. To provide safety and quality of data com-

222

munication, MQTT uses encryption and login to guarantee
a minimum level of quality of service (QoS) [13].

The MQTT also allows the creation of a development en-
vironment for IoT applications. This is due to its high inte-
gration capability with several IoT development platforms,
as it enables the development of services using various
programming languages, such as Python, Java, JavaScript,
PHP, Ruby and C. Also, MQTT allows extending these ser-
vices to mobile platform such iOS and Android [6].

3.3 OCF and oneIoTa

Open Connectivity Foundation3 (OCF), is an IoT con-
sortium that aims the specifications, open source and cer-
tifications needed for the development of an IoT environ-
ment with interoperability between devices that acts as OCF
Clients and Servers [4, 17]. The exchange of information
between devices uses the JSON format, following the spec-
ifications for identifying them and their connected resource,
which makes it easier to validate the data structure [5]. To
describe OCF services the specifications of the resources
are made using a descriptive language of RESTful APIs, the
RAML. To ease the implementation of the OCF data model,
the consortium has developed the open tool oneIoTa4 that
has several examples of type RAML, Swagger and JSON
Schema models. Users can also create their own templates
that, if approved, are stored in a GitHub repository.

4 Proposed Solution

As stated before, we are motivated by the following as-
pects: interoperability; remote access and dynamic config-
urations. Interoperability is a critical problem in IoT. Ap-
plication developers should consider providing services to
all clients regardless of the hardware platform specifications
they use. Integration with different communication devices
is necessary so that new functions can be added to the ap-
plication without compromising existing functions or even
losing them [1].

Devices and appliances must also allow remote access in
order to be monitored and controlled through a computer or
a smartphone [23]. In security applications remote access
is indispensable because it allows the user to monitor their
home when they are traveling for example.

Finally, IoT applications must allow dynamic configura-
tion. Most of IoT applications developed today were cre-
ated to perform pre-defined tasks, for that reason they are
static systems limited to certain actions. Dynamic config-
uration makes the system more elastic and comprehensive
because the user can configure the applications to handle
devices and sensors that will be added later. In addition,

3OCF: https://openconnectivity.org/
4oneIoTa: https://oneiota.org/

new monitoring and control applications can be created and
modified at the users discretion.

To achieve the above goals and to facilitate the imple-
mentation of the system, we are looking for an IoT mid-
dleware that provides the best possible solution. The exist-
ing IoT architectures are divided into three types of classes:
service-based; cloud-based; and actor-based. Service-based
architectures and actors provide interoperability, they sup-
port a specific programming model or device abstraction.
However, the service-based model provides limited func-
tionality for the user when it comes to integrating with other
applications or even interpreting data. The cloud-based
model provides interoperability through specific standards,
which is not desired, and the middleware can stop if the
cloud provider terminates the service [15]. For these rea-
sons, the actor-based model is the best solution for the smart
home system we propose.

An actor-based architecture provides a better way of
dealing with large-scale IoT devices, since middleware can
be deployed across all layers of the architecture, so devices
can perform actions where it is more adequate. Therefore,
an actor-based middleware, such as Calvin and Node-RED,
is a good choice in applications involving a large number
of “things”. In addition to having features such as interop-
erability, security, and privacy, where users can choose the
form and location where the data will be stored [15].

The proposed architecture involves a variety of devices
and technologies. The first part consists of sensors, for
example temperature sensors, present in wireless nodes.
These nodes are connected to a gateway unit which, in turn,
is responsible for sending the sensor data, through mes-
sages, to the MQTT Broker. The gateway must then be
equipped with the Calvin framework with a Publish appli-
cation that sends the messages with a specific topic for the
sensor identification. Calvin Constrained is a good choice
in this case due to the limitation of some devices.

In Figure 2 a representation of the logical diagram of
the proposed system can be seen. This diagram provides
a view of the connection and communication between the
architecture elements. Each component behaves as follows:

1. The Middleware receives the data sent by the sensors
with its information, and modifies that data and trans-
forms it into a JSON object. This object is a sequence
of key/value pairs. A key must be a string, and the
value must be a JSON base type;

2. The Gateway is a MQTT client that connects to the
cloud server through a TCP/IP connection. Once con-
nected the gateway can publish the data of sensors and
devices for the broker to distribute to the controller and
also subscribe to the data published by the broker to the
devices. The broker acts as an intermediary between
the gateway and the controller.

3. The Controller application subscribes to the sensors

223

Figure 2. Architecture of the proposed sys-
tem.

and devices data coming from the Gateway through
the cloud, performs the control action and publishes
the new data to the device;

4. The user has direct access to the cloud server through
the platform on the Internet, and can manage the Bro-
ker data;

5. The user can access the application controller directly
from the local machine or via remote access.

In order to exchange MQTT messages, a Broker, which
is implemented on a cloud platform, is required. There are
several free and paid cloud platforms available with sup-
port for gateways, services, and application protocols such
as REST, COAP, XMPP, and MQTT [1]. Eclipse Mosquitto
was chosen for the application because it is a Broker that
provides a lightweight server implementation of the MQTT
protocol and, moreover, it is open source (EPL/EDL li-
censed) [7, 8].

Finally, the control module provides the system-wide
management through dynamic configuration. The applica-
tion is implemented in Calvin GUI, which is a web-based
GUI for Calvin application development. To access the GUI
platform the user must have the Calvin runtime running on
a local machine or on a machine on the same network. The
dynamic configuration of this application is done in a sim-
ple way, given the ease in changing the actors and their data
flows in the GUI platform. Therefore, you can at any time
interrupt the application’s data flow and modify it according
to your needs.

4.1 Validation

A smart home application was implemented using the
proposed architecture to validate the proposed solution.
Figure 3 provides a visual illustration of the technologies
and how they connect with each other. The application con-
sists of a system that collects sensor data and transmits it to

the controller. This data is used to monitor and to control
the actuator device dynamically and remotely. The use case
consists of performing the temperature control of environ-
ments by means of an air conditioning device and sensor
nodes.

Figure 3. Smart home system overview.

A test environment consisting of four (4) Linux based
Virtual Machines running Calvin the framework. Two of
these machines were used to simulate an environment of a
residence with their devices, i.e. the air conditioners. The
other two machines were used to simulate the temperature
sensors distributed in the environments. In Figure 4 the
sequence of messages of two different simulated environ-
ments, living room and room, can be observed.

Figure 4. Sequence of messages between en-
tities.

To validate the interoperable feature, it was used the
oneIoTa specification for OCF devices5. Table 1 details
the specifications of air conditioner devices. As can be ob-
served in Figure 4, the payload of the devices are in ac-
cordance with the recommendations of the OCF, but as a

5OCF Device Specification: https://openconnectivity.
org/specs/OCF_Device_Specification_v2.0.0.pdf

224

differentiation between the requirements of the sensor and
the air conditioner, the air conditioner was modified to fa-
cilitate the understanding of reader. These specifications, as
mentioned in 3.3, enables interoperability between devices.
OCF defines the resource model that provides consistency
among the devices in the home. This model uses the system
of resources and devices, whose features exchanged are of
various types, in the case of air conditioner has the type bi-
nary and the temperature. Each resource type defines a set
of properties that are defined using the JSON format.

Table 1. OCF Device Resources.

Device Name
Required
Resource
name

Required Resource
Type RAML/JSON example

Air Conditioner Binary Switch oic.r.switch.binary
{ ”rt”: [”oic.r.switch.binary”],
”id”: ”unique example id”,
”value”: false }

Temperature oic.r.temperature

{”rt”: [”oic.r.temperature”],
”id”: ”unique example id”,
”temperature”: 20.0,
”units”: ”C”,
”range”: [0.0,100.0]}

To fulfill the remote access feature, Calvin GUI was used
to perform updates remotely. The framework allows the
control to be remotely carried out on the machine where
Calvin is installed or on another machine on same network.
In addition, the inclusion of a virtual machine in the cloud,
used as a broker running the MQTT server, allows the user
to subscribe to a topic of interest. The data published in
this topic is sent to those who requested it. In Figure 4 it is
possible to identify 3 different topics that the user can sign
in. Figure 5 shows more clearly how the message exchange
occurred in the application.

Figure 5. Subscriber topics in JSON format.

The user must initiate the process so that the controller
requests the room temperature to the broker. The broker ac-
quires this data from the sensor temperature and sends this
value to the controller. The same occurs with the air con-
ditioner. The control will determine whether the air condi-

tioner stays on/off or modifies its state according to the data
available and the user specification.

To achieve dynamic configuration, the user must be able
to add new devices, modify the control model, and its pa-
rameters. Figure 6 shows a small part of the control imple-
mented. Figure 6(a) shows a specific setpoint for the con-
trol of the switch of the air conditioner. In Figure 6(b) this
setpoint was removed from the control and replaced in the
Figure 6(c) (setpoint2). This sequence was executed in run-
time, where the controller device was kept running during
the changing of setpoints. Also, by the use of a standardized
data model (oneIoTa), all remote clients were able to keep
receiving updates without any interruption.

5. Conclusions and future work

This article presented an architecture that integrates sev-
eral technologies, such as IoT protocols and frameworks,
to provide a scalable and dynamic environment for the de-
velopment of services to remotely control and monitoring
devices such as, sensors and actuators. The whole archi-
tecture was developed following a model based on actors,
which enabled a dynamic manipulation of components for
IoT applications. As also, using a widely-used protocol,
it was possible to establish the communication in a practi-
cal and intuitive way through a MQTT broker integrating
with cloud services. A JSON based data model (oneIoTa)
was used to ensure interoperability between devices. The
approach has been successfully developed, as can be veri-
fied in its validation procedure. This infrastructure can be
adapted to other environments, such as industrial, hospital
or business, according to each user’s need. In the future,
we should include several other devices, providing a means
of remote monitoring of these devices and their location in
application domains.

References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aled-
hari, and M. Ayyash. Internet of things: A sur-
vey on enabling technologies, protocols, and appli-
cations. IEEE Communications Surveys & Tutorials,
17(4):2347–2376, 2015.

[2] S. Bandyopadhyay, M. Sengupta, S. Maiti, and
S. Dutta. Role of middleware for internet of things:
A study. International Journal of Computer Science
and Engineering Survey, 2(3):94–105, 2011.

[3] A. Belsa, D. Sarabia-Jacome, C. E. Palau, and M. Es-
teve. Flow-based programming interoperability solu-
tion for iot platform applications. In 2018 IEEE In-
ternational Conference on Cloud Engineering (IC2E),
pages 304–309. IEEE, 2018.

[4] S. Cavalieri, M. G. Salafia, and M. S. Scroppo. Real-

225

(a) Initial temperature (b) Removed the block (c) Insert other block

Figure 6. Dynamic Control of Air Conditioner temperature.

ising interoperability between opc ua and ocf. IEEE
Access, 6:69342–69357, 2018.

[5] S. Cavalieri and M. S. Scroppo. A proposal to make
ocf and opc ua interoperable. In Proceedings of ICIT,
volume 2018, 2018.

[6] M. Collina, G. E. Corazza, and A. Vanelli-Coralli. In-
troducing the qest broker: Scaling the iot by bridging
mqtt and rest. In Personal indoor and mobile radio
communications (pimrc), 2012 ieee 23rd international
symposium on, pages 36–41. IEEE, 2012.

[7] I. Eclipse Foundation. Eclipse Mosquitto: An open
source MQTT broker, 2018 (accessed August 23,
2018). https://mosquitto.org/".

[8] I. Eclipse Foundation. Eclipse Mosquitto,
2018 (accessed July 3, 2018). "http:
//projects.eclipse.org/projects/
technology.mosquitto".

[9] U. Hunkeler, H. L. Truong, and A. Stanford-Clark.
Mqtt-sa publish/subscribe protocol for wireless sen-
sor networks. In Communication systems software
and middleware and workshops, 2008. comsware
2008. 3rd international conference on, pages 791–
798. IEEE, 2008.

[10] R. Khan, S. U. Khan, R. Zaheer, and S. Khan. Future
internet: the internet of things architecture, possible
applications and key challenges. In Frontiers of In-
formation Technology (FIT), 2012 10th International
Conference on, pages 257–260. IEEE, 2012.

[11] V. R. Konduru and M. R. Bharamagoudra. Challenges
and solutions of interoperability on iot: How far have
we come in resolving the iot interoperability issues.
In 2017 International Conference On Smart Technolo-
gies For Smart Nation (SmartTechCon), pages 572–
576. IEEE, 2017.

[12] J.-C. Lee, J.-H. Jeon, and S.-H. Kim. Design and im-
plementation of healthcare resource model on iotivity
platform. In 2016 International Conference on Infor-
mation and Communication Technology Convergence
(ICTC), pages 887–891. IEEE, 2016.

[13] S. Lee, H. Kim, D.-k. Hong, and H. Ju. Correla-

tion analysis of mqtt loss and delay according to qos
level. In Information Networking (ICOIN), 2013 Inter-
national Conference on, pages 714–717. IEEE, 2013.

[14] A. Najafi Nassab. Mobile devices in the distributed iot
platform calvin. 2017.

[15] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and
Q. Z. Sheng. Iot middleware: A survey on issues and
enabling technologies. IEEE Internet of Things Jour-
nal, 4(1):1–20, 2017.

[16] T. Nilsson. Authorization aspects of the distributed
dataflow-oriented iot framework calvin. 2016.

[17] S. Park. Ocf: A new open iot consortium. In
Advanced Information Networking and Applications
Workshops (WAINA), 2017 31st International Confer-
ence on, pages 356–359. IEEE, 2017.

[18] P. Persson and O. Angelsmark. Calvin–merging cloud
and iot. Procedia Computer Science, 52:210–217,
2015.

[19] P. Persson and O. Angelsmark. Kappa: serverless
iot deployment. In Proceedings of the 2nd Interna-
tional Workshop on Serverless Computing, pages 16–
21. ACM, 2017.

[20] M. Poongothai, P. M. Subramanian, and A. Rajeswari.
Design and implementation of iot based smart labo-
ratory. In 2018 5th International Conference on In-
dustrial Engineering and Applications (ICIEA), pages
169–173. IEEE, 2018.

[21] E. Research. calvin-base. https:
//www.github.com/EricssonResearch/
calvin-base, 2018.

[22] S.-H. Yang. Internet of things. In Wireless Sensor
Networks, pages 247–261. Springer, 2014.

[23] M. Yun and B. Yuxin. Research on the architecture
and key technology of internet of things (iot) applied
on smart grid. In Advances in Energy Engineering
(ICAEE), 2010 International Conference on, pages
69–72. IEEE, 2010.

[24] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and
M. Zorzi. Internet of things for smart cities. IEEE
Internet of Things journal, 1(1):22–32, 2014.

226

Reverse Engineering Behavioural Models of IoT Devices

Sébastien Salva
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
email: sebastien.salva@uca.fr

Elliott Blot
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
email: elliott.blot@uca.fr

Abstract—This paper addresses the problem of recovering
behavioural models from IoT devices in order to help engineers
understand how they are functioning and audit them. We
present a model learning approach called ASSESS, which
takes as inputs execution traces collected from IoT devices and
generates models called systems of Labelled Transition Systems
(LTSs). ASSESS generates as many LTSs as components inte-
grated and identified into a device. The approach is specialised
to IoT devices as it takes into account two architectures often
used to integrate components with this kind of system (cyclic
functioning, loosely-coupled or decoupled architectures). We
experimented the approach on two IoT devices and an IoT
gateway to evaluate the model conciseness and the approach
efficiency.

Keywords-Reverse engineering; IoT; Model learning; Passive
learning.

I. INTRODUCTION

Internet connected devices, and especially Internet of
Things (IoT), belong to the digital transformation trends
proposed by industrial experts or advisory firms for several
years. The IoT, which which we consider as a network of
smart embedded devices connected to the Internet, is in-
deed a broad-based concept, transforming several uses from
consumer devices to large-scale manufacturing. However,
many customers and companies prefer staying away from
the IoT hype because of the issues related to privacy and
more generally to security. It is indeed manifest that IoT
devices have to be audited before using them, in particular
in the industry or in healthcare. Many companies chose to
outsource the IoT development for saving costs, hence the
IoT audit is rather done after the development. It is often
carried out from the source code or from devices seen as
black boxes. A common solution to help audit such devices
is to apply a reverse engineering process, which is usually
done by hands. From a black-box, this process is required
to understand how devices are functioning. Besides, it helps
document the behaviours of IoT devices or IoT networks,
and may serve to detect bugs or security issues.

In the literature, some papers dealing with the reverse
engineering of IoT devices have been published recently
[1], [2]. These approaches recover critical information or
detect privacy issues from source codes, firmwares or chips.

DOI reference number: 10.18293/SEKE2019-012

This paper proposes another approach called ASSESS (Anal-
ySiS, Extraction, Separation, Synchronisation) to recover
behavioural models from IoT devices. Our approach, which
is based on the model learning concept, takes execution
traces collected from IoT devices and generates models
called systems of LTSs (Labelled Transition System). Model
learning approaches [3], [4], [5], [6], [7], [8] have proven
to be valuable for retro-engineering models that can be ex-
ploited in several software engineering steps. Our approach
advances the state of the art in these two points.

• It is specialised to IoT devices in the sense that their
general functioning is considered while the model
generation. We define an IoT device as an embedded
device integrating several components and running in
a cyclic way [9]. Several works focused on the com-
ponent architectures of embedded devices, i.e. on how
to compose them efficiently. It is often advised to use
a loosely-coupled architecture [10], where components
remain autonomous and allow middleware software to
manage internal communication between them. With
this kind of architecture, components are synchronised
together. However, we also observed that IoT devices
may also have a decoupled architecture, where the
components operate independently. We consider both
architectures for the model generation.

• Most of the model learning algorithms build one big
model for a given system. Such models may quickly be-
come uninterpretable. We focused on this problem and
laid the first stone of the approach in [11]. Our approach
builds as many LTSs as components detected in logs
collected from an IoT device. From these messages,
our approach is able to build traces and infer systems
of LTSs. Two strategies, which refer to the previous
IoT device architectures, are proposed to synchronise
LTSs together to form a complete model. The present
approach target specific system, IoT devices, and relax
some assumption with the modification of algorithms.

We have implemented a prototype tool to experiment
our algorithms and appraise their benefits. We provide a
preliminary evaluation in the paper made on two IoT de-
vices. Besides, this experimentation also shows that ASSESS
may be applied on an IoT gateway to recover a model

227

expressing the behaviours of an IoT network, i.e. of the
devices communicating with this gateway.

The paper is organized as follows: we recall some def-
initions about the LTS model in Section II. Our approach
is presented in Section III. The next section shows some
results of our experimentation. Section V summarises our
contributions and draws some perspectives for future work.

II. THE LTS MODEL

We express the behaviours of components with Labelled
Transition Systems (LTS) as defined in [12]. This model is
defined in terms of states and transitions labelled by actions,
taken from a general action set L, which expresses what
happens. τ is a special symbol encoding an internal (silent)
action; it is common to denote the set L ∪ τ by Lτ .

Definition 1 (LTS) A Labelled Transition System (LTS) is
a 4-tuple 〈Q, q0,Σ,→〉 where:
• Q is a finite set of states; q0 is the initial state;
• Σ ∪ {τ} ⊆ Lτ is the finite set of actions, with τ the

internal (unobservable) action;
• →⊆ Q × Σ ∪ {τ} × Q is a finite set of transitions. A

transition (q, a, q′) is also denoted q a−→ q′.

We use the generalised transition relation → to represent
LTS paths: q a1...an−−−−→ q′ =def ∃q0 . . . qn, q = q0

a1−→
q1 . . . qn−1

an−−→ qn = q′. We also use the following
notations on action sequences. The concatenation of two
action sequences seq1, seq2 ∈ L∗τ is denoted seq1.seq2. ε
denotes the empty sequence. A trace is a finite sequence of
observable actions in L∗.

To better match the functioning of IoT devices, we assume
that an action has the form a(α) with a a label and α an
assignment of parameters in P , with P the set of parameter
assignments. For example, switch(id := 115, cmd := on)
is made up of the label ”switch” followed by the assignment
(id := 115, cmd := on) of two parameters.

The use of LTSs allows to exploit the definitions related
to the LTS composition. The integration of two components
C1 and C2, modelled with LTSs, is often defined by two
operations in the literature. The first one is the parallel com-
position of C1 and C2 denoted C1 ‖ C2, which synchronises
their shared actions, also called synchronisation actions (the
rest must happen independently). This composition is often
followed by the hiding of the communications between C1

and C2 to express that only the communications with the
environment are observable. This operation is defined by
the relation hide S in C1 ‖ C2 with S a set of actions. We
refer to [13] for the definitions of theses two LTS operators.

This principle of LTS composition leads to a model called
system of LTSs, which describes a component-based system:

Definition 2 (System of LTSs) A system of LTSs SC is the
couple 〈S,C〉 with C = {C1, . . . , Cn} a non empty set of
LTSs, and S a set of synchronisation actions.

III. THE ASSESS APPROACH

This section presents our model learning approach, which
aims at inferring system of LTSs from messages given
by an IoT device. The later is seen as a black box and
integrates components by means of a loosely coupled or a
decoupled architecture. We assume that the components pro-
duce messages or logs which include component identifiers,
i.e. parameter assignments allowing to identify components.
However we consider that the component calls are hidden.
This is usually the case with IoT devices integrating several
sensors. Furthermore, the messages have to include times-
tamps for ordering them. A logical clock mecanism may be
required to add timestamps in logs.

The list of messages is initially translated into a set of
execution traces with our tool TFormat1. This one starts
by filtering and formatting raw messages into actions by
means of regular expressions. Then, the tool analyses the
timestamps of every pair of successive actions and computes
means of time intervals. It searches for gaps between actions
(distinctive longer durations), which are usually observed
when an execution trace ends and another one begins. The
time gap detection is used for the trace extraction. We denote
the trace set Traces(SUL) and assume that a trace has the
form a1(α1)...ak(αk).

The model generation is performed by three steps called
“Trace Extraction”, “LTS Generation”, and “LTS Synchroni-
sation”. The last step proposes two LTS generation strategies
called “LTS Loose-coupling” and “LTS Decoupling”. These
steps are illustrated with the example of Figure 1. In the
first step, the traces of Traces(SUL) are analysed to detect
component calls by covering the component identifiers found
in actions. The example of Figure 1 lists 3 traces that capture
the behaviours of two components (id:=1, id:=3), which call
other components. The component calls are here detected
whenever a new identifier is found (id:=2, id:=3). In a trace,
the action sequences having different identifiers are extracted
and replaced by synchronisation actions of the form call(id)
and return(id) to express component calls, with id an
identifier referring to a component. Next, the resulting traces
are partitioned to gather the traces having the same identifier.
We obtain 3 trace sets in our example of Figure 1.

The step “LTS Generation” transforms each previous trace
set into a LTS. In this step, we take into account the general
functioning of the IoT devices, which are usually designed
to perform actions in a cyclic way. The traces are hence
transformed into cyclic LTS paths, the later being joined on
an initial state. Once every trace set is transformed into a
LTS, we obtain a first system of LTSs SC = 〈S,C〉 with C
the set of LTSs and S the set of synchronisation actions.

The last step transforms this system of LTSs to produce
more general models with respect to the nature of the IoT
devices. As stated earlier, we consider that these devices

1https://github.com/sasa27/TFormat

228

Figure 1: The ASSESS approach overview

may integrate loosely-coupled or decoupled components.
The strategy “LTS Loose-coupling” builds a system of LTSs
SC1 such that SC1 allows repetitive calls of components,
which are synchronised together. This is materialised by
replacing the sequences q1

call(id) return(id)−−−−−−−−−−−−→ q2 with loops.
Then, we apply the kTail algorithm [3]. kTail is a well-
known approach that merges the (equivalent) states having
the same k-future, i.e. the same event sequences having the
maximum length k. We obtain three LTSs in Figure 1(right-
top side) expressing components that call each other.

The strategy “LTS Decoupling” produces another system
of LTSs SC2 from SC to express the behaviours of inde-
pendent components. The synchronised actions are removed
from the LTSs of SC. Then, the kTail algorithm is applied.
We obtain three LTSs expressing autonomous components.
Now, we detail these steps below.

A. Step 1: Trace Extraction

This step covers the traces of Traces(SUL) and the
identifiers included in actions to detect implicit component
calls and to gather the traces related to each component in
separate trace sets. The following definition formalises the
notion of component identification:

Definition 3 (Component identification) Let a1(α1) be
an action of L. The component identifier of a1(α1) is given
by the mapping ID : L → P , which gives the parameter
assignment α′ found in α1 that identifies the component
producing the action a1(α1).
The component identifier of a sequence a1(α1)a2(α2)
. . . ak(αk) is given by the mapping IDs : L∗ → P .
IDs(a1(α1)a2(α2) . . . ak(αk)) =def{
α′ iff ∀ai /∈ {call, return} : ID(ai(αi)) = α′(1 ≤ i < k)
{} otherwise.

For simplicity, we denote the mapping IDs by ID in the
remainder of the paper.

Algorithm 1: Component Trace Detection
input : Traces(SUL)
output: STraces

1 Traces := {};
2 foreach t = a1(α1)a2(α2) . . . ak(αk) ∈ Traces(SUL) do
3 id := ID(a1(α1)); T := {};
4 T :=Extract(t, T, id);
5 Traces := Traces ∪ T ;

6 STraces:=GroupById(Traces);
7 return STraces;

The Trace Extraction step is implemented with Algorithm
1, and its two procedures Extract and GroupById. The
algorithm covers every trace t of Traces(SUL), extracts
the identifier id of the first running component found in
the first action of t and calls the procedure Extract. The
latter takes t, id and a set T used to store new traces.
Extract potentially splits t into several traces, each having
one non empty component identifier. Then, the procedure
GroupById partitions all the traces given by Extract and
returns the set STraces = {C1, C2, . . . , Cn} such that the
traces of a set Ci exhibit the behaviour of one component
only. The procedure Extract(t = a1(α1)a2(α2) . . . ak(αk),
T, id) is given in Algorithm 2. It covers the component
identifiers in the actions of t to detect component calls.While
covering the actions of t, if an identifier n different from
newid (first identifier of the current trace) is found (line
6), we assume that a new component has been called by
the current one. In this case, the procedure searches for
the sequence ai+1(αi+1)...aj−1(αj−1) composed of actions
having identifiers different from newid. This sequence
is extracted and replaced by the synchronisation actions

229

Algorithm 2: Procedure Extract
1 Procedure Extract(t = a1(α1)a2(α2) . . . ak(αk), T, id): T is
2 newid := Identifier(a1(α1));
3 t′ := a1(α1); ak+1(αk+1) = ε; i := 1;
4 while i < k do
5 n := ID(ai+1(αi+1));
6 if n == newid then
7 t′ := t′.ai+1(αi+1);
8 j := i+ 1;

9 else
10 find smallest j > i such that ID(aj(αj)) == newid

or j := k + 1;
11 t′ := t′.call(n)return(n).aj(αj);
12 if (j − i) > 2 then
13 Extract(ai+1(αi+1) . . . aj−1(αj−1), T, id);

14 else
15 tn := call(n).ai+1(αi+1).return(n);
16 if ∃t2 ∈ T : ID(t2) == n then
17 tn := t2.tn; T := T \ {t2};

18 T := T ∪ {tn};

19 i := j;

20 if newid 6= id then
21 t′ := call(newid).t′.return(newid);

22 if ∃t2 ∈ T : ID(t2) == newid then
23 t′ := t2.t

′; T := T \ {t2};

24 T := T ∪ {t′};
25 return T ;

call(n).return(n), which model the call of a component
Cn. If the extracted sequence has more than one action, the
procedure Extract is recursively called (line 13). Otherwise,
it builds a trace tn composed of the action ai+1(αi+1)
surrounded by synchronisation actions. If there exists a trace
t2 in T having the identifier n, tn is concatenated to t2. tn
is added to the trace set T . Once the trace t is covered,
we obtain a new trace t′ including synchronisation actions.
The procedure Extract eventually checks whether t′ has
to be completed to express that this trace was produced
by a component called by another one: if the identifier of
t′ is different from the identifier id given as input (line
20) then the trace t′ is surrounded with call(idnew) and
return(idnew). Finally, if there exists a trace t2 in T having
the component identifier idnew, then t′ is concatenated to
t2. The final trace t′ is added to T .

The procedure GroupById(Traces) : STraces, parti-
tions the trace set Traces in such a way that every subset
holds traces sharing the same non empty component iden-
tifier. We partition Trace by defining the trace equivalence
relation ∼id and by extracting the equivalences classes of
Trace for ∼id. Let ∼id on L∗ be given by ∀seq1, seq2 ∈ L∗,
seq1 ∼id seq2 iff ID(seq1) = ID(seq2). The procedure
GroupById returns the partition STraces = Trace/ ∼id.

B. Step 2: LTS Generation

At this stage, STraces gathers n subsets with n the
number of component identifiers found in the traces of
Traces(SUL). These subsets of traces are now transformed
into LTSs. Intuitively, given T1 in STraces, a trace of T1 is

lifted to the level of a LTS cyclic path. The LTS is obtained
after joining the paths by means of a disjoint union on the
state q0:

Definition 4 (LTS inference) Let T1 ∈ STraces be a
trace set. The LTS C1 expressing the behaviours found in
T1 is the tuple 〈Q, q0,Σ,→〉 where q0 is the initial state,
and Q,Σ,→ are defined by the following rule:

t=a1(α1)...ak(αk),id=ID(t)

q0
a1(α1)−−−−→qid1...qidk−1

ak(αk)−−−−→q0

Once the LTS generation is completed, we obtain a first
system of LTSs SC = 〈S,C〉 with C the set of LTSs derived
from STraces and S the set of synchronized actions.

C. Step 3: LTS Synchronization

Algorithm 3: LTS Synchronisation Strategies
1 Procedure Loose-coupling(SC = 〈S, {C1, C2, . . . , Cn}〉) : SC1 is
2 foreach Ci = 〈Q, q0,Σ,→〉 ∈ C do

3 foreach q1
call(σ)return(σ)−−−−−−−−−−−−→ q2 do

4 merge q1 and q2;

5 C′i := kTail(k = 2, Ci);

6 return 〈S, {C′1, C
′
2, . . . , C

′
n}〉

7 Procedure Decoupling(SC = 〈S, {C1, C2, . . . , Cn}〉) : SC2 is
8 foreach Ci = 〈Q, q0,Σ,→〉 ∈ C do
9 Ci := hide S in Ci;

10 Ci := τ -reduce Ci;
11 C′i := kTail(k = 2, Ci);

12 return 〈S, {C′1, C
′
2, . . . , C

′
n}〉

This last step proposes two strategies to synchronise the
LTSs of SC with regard to the architecture considered to
integrate components together. Both strategies are imple-
mented in Algorithm 3 with two procedures.

The strategy “LTS Loose-coupling” builds a new system
of LTSs SC1 from SC and keeps the transitions carrying
synchronised actions. This strategy allows repetitive calls of
components but also makes these calls optional by replacing
the transition sequences of the form q

call(σ)return(σ)−−−−−−−−−−−→ q′ by
loops (lines 3,4).

The strategy “LTS Decoupling” gives another system of
LTSs SC2 from SC by firstly hiding the synchronisation
actions. The operator hide S in Ci transforms the transitions
of Ci by replacing the actions of S with the non observable
action τ . We then reduce Ci by removing the transition la-
belled by τ . Several algorithms are proposed in the literature
to perform this LTS reduction with respect to a given LTS
equivalence relation. However, as the LTSs generated by
Step 2 have a simple structure (only one outgoing transition
per state), we propose a lightweight LTS reduction operation
denoted τ -reduction:

Definition 5 (τ -reduction) Let C1 = 〈Q1, q01,Σ,→1 be
a LTS. τ -reduction C1 =def 〈Q2, q02,Σ,→2) where
Q2, q02,→2 are the minimal sets satisfying the following
inference rules:

230

q1
a(α)−−−→q2

q1
a(α)−−−→2q2

q1
a(α)−−−→q2

τ...τ−−−→q3

q1
a(α)−−−→2(q2q3)

q1
τ...τ−−−→q2

a(α)−−−→q3

(q1q2)
a(α)

−−−→2q2

kTail is finally applied on the LTSs achieved by both
strategies. We use k = 2 as recommended in [6].

Both systems of LTSs SC1 and SC2 offer different points
of view. With SC1, the component calls are explicitly given,
which offers the possibility of extracting a dependency graph
of components showing how the components are hierar-
chically organised. With the system of LTSs SC2, as the
transitions carrying synchronised actions are removed, the
parallel composition of the LTSs expresses the behaviours
of asynchronous and autonomous components, which hence
produce actions independently of the others. As it is illus-
trated in Figure 1, the second strategy returns more compact
and general models.

IV. PRELIMINARY EVALUATION

We have implemented our approach in a tool, with which
we began a first evaluation to answer to these two questions:
• RQ1: can ASSESS extract more concise and readable

models than the ones generated by kTail?
• RQ2: how long does ASSESS take to generate models?

Setup: we applied ASSESS on two IoT devices and one
IoT gateway. The first device (exp.1) is a smart thermostat
controlling heat-pumps via infra-red, composed of 4 compo-
nents (a Web server, two sensors, and a component that man-
ages the heating mode). The second device (exp.2) is a Wifi
IP camera that integrates 5 components. The IoT gateway
(exp.3) was interconnected to 8 autonomous devices, which
we consider as components for the experimentation. We
collected HTTP messages from these systems and formatted
them with our tool TFormat. The results and the tool are
available here2.

A. Question RQ1

Procedure: we collected traces for every setup and ran
ASSESS with its two strategies. We also ran kTail on the
same trace sets for comparison purposes. Then, we measured
the sizes of the generated models. These are given in Table I.
Furthermore, with large trace sets, model learning might
return spaghetti-like models, containing an uninterpretable
mess of transitions. We compared the generated models
to deduce whether ASSESS can significantly help reduce
this spaghetti model problem by inferring one model per
component.

Exp. kTail Loosely-coupled Loosely-coupled Decoupledwithout call and return
#states #trans #states #trans #states #trans #states #trans

exp.1 52 90 116 208 61 118 31 54
exp.2 92 186 172 346 80 193 36 76
exp.3 349 419 426 552 362 439 310 339

Table I: Size of the LTSs obtained with kTail and ASSESS.

2https://github.com/Elblot/ASSESS

devices

command cameras

cameras

devices devices

command

devicesdevices

cameras

command

commanddevices

command

command

devices

devices

command

command

command

command

command

command

command

devices

devices devicesdevicesdevices devicesdevicesdevices devices devicesdevices

devices

command

command

cameras

cameras

cameras

camerascameras

cameras

cameras cameras

cameras

cameras

cameras command

command

command

devices

commandcommand

commandcommand

commandcommand

command

command commandcommandcommand

command

command

command

devicesdevices devices devices devices

devices

devices

devices

command

command

command

commandcommand

command

devices

devices

command

command

devicesdevices

command

command

devices

devices

devices

command

command

command

command

command

devicesdevices

devices

cameras

command

devices

devicesdevices

devices

devices

command

command

command

cameras

cameras

command

camerascameras

command

command command

command

command

command

cameras camerascameras

commandcommand

camerascameras cameras cameras

camerascameras

command

command

command

command

command

command

camerascameras cameras

command

command

command

command

cameras

commandcommandcommand commandcommand

command

commandcommand commandcommand

command

command

command

command

camerascameras

command

cameras

command

camerascameras

command

command

camerascameras

command

command

command

command

devices

devicesdevices devices

devices

devices

devicesdevices devicesdevices

devices

Figure 2: Overview of the models generated with kTail
(exp.3)

Figure 3: Overview of the models generated with ASSESS
(exp.3)

Results: Table I shows that we obtain larger transition
sets with the ”LTS Loose-coupling” strategy. In average, the
state number is increased by 77.33% in comparison to the
results of kTail. This is due to the addition of transitions
labelled by synchronisation actions, which show how com-
ponents interact with one another. If we do not take into
account these transitions, we obtain models whose sizes are
close to the sizes of the models generated by kTail. With the
”LTS Decoupling” strategy, we always obtain more concise
models. The state number is reduced on average by 37.33%
with this strategy. The state reduction is a consequence of the
segmentation of the traces by our algorithm. We infer one
LTS for each component, which is easier to reduce with kTail
than one big model. Afterwards, we compared the models
generated by kTail and ASSESS and manifestly concluded
on these experimentations that the systems of LTSs are
significantly more interpretable. Figure 2 shows an overview
of the “spaghetti”-like model generated by kTail for exp.3.
This model (even zoomed) is difficult to understand. Figure 3
illustrates the system of LTSs generated by ASSESS (second
strategy). We believe that the later is more readable since
every component is represented by its own model whose
transition set is smaller. Besides, a system of LTSs sounds
more adaptable to the user needs. For instance, an undesired
component may be concealed to help focus on the others.

231

B. Question RQ2

Procedure: to investigate RQ2, we measured the execu-
tion times of ASSESS with several trace sets containing 10
to 35000 traces of around 150 events collected from exp.3.
Experimentations were done on a computer with 1 Intel(R)
CPU i5-6500 @ 3.2GHz and 16GB RAM. Figure 4 draws
two curves showing the execution times measured with both
strategies.

Figure 4: Executions times of ASSESS

Results: Figure 4 shows that ASSESS requires less
than 60 seconds to build models with the largest trace set.
The tendency curves also confirm that the time complexity
of both strategies is linear. Regarding the memory space
complexity, we also observed a linear curve; we reached a
memory limit between 25000 and 30000 traces (more than
3.5 millions of events) with the Loose-coupling strategy, and
between 35000 and 40000 traces (more than 5 millions of
events) with the Decoupled strategy. We hence believe that
our tool can be used with systems producing a huge amount
of messages.

V. CONCLUSION

The increase in IoT technologys popularity holds many
benefits, but it is also accompanied by many concerns related
to the IoT device reliability and security. Learning models
from these devices may serve to audit them. However recov-
ering models usable for inspection is still challenging. So far,
most of the learning algorithms build big models and do not
take into consideration the IoT device architectures. In this
paper, we have presented ASSESS, a model learning method
dedicated to IoT devices that recovers systems of LTSs. The
method constructs execution traces from messages or logs,
and generates LTSs that capture the behaviours of all the
components of an IoT device and their synchronisations.
Two strategies are proposed to adapt the model generation
with regard to the loosely-coupled or decoupled architecture
usually used to design embedded devices.

Our future work includes further evaluating ASSESS on
other kinds of IoT devices, improving its effectiveness by
devising parallel algorithms, and proposing other strategies
to better match the available IoT architectures and frame-
works.

REFERENCES

[1] M. Tellez, S. El-Tawab, and M. H. Heydari, “Iot security
attacks using reverse engineering methods on wsn applica-
tions,” in 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT), Dec 2016, pp. 182–187.

[2] O. Shwartz, Y. Mathov, M. Bohadana, Y. Elovici, and Y. Oren,
“Opening pandora’s box: Effective techniques for reverse en-
gineering iot devices,” in Smart Card Research and Advanced
Applications, T. Eisenbarth and Y. Teglia, Eds. Cham:
Springer International Publishing, 2018, pp. 1–21.

[3] A. Biermann and J. Feldman, “On the synthesis of finite-state
machines from samples of their behavior,” Computers, IEEE
Transactions on, vol. C-21, no. 6, pp. 592–597, June 1972.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dy-
namically discovering likely program invariants to support
program evolution,” in Proceedings of the 21st International
Conference on Software Engineering, ser. ICSE ’99. New
York, NY, USA: ACM, 1999, pp. 213–224.

[5] K. Meinke and M. Sindhu, “Incremental learning-based test-
ing for reactive systems,” in Tests and Proofs, ser. Lecture
Notes in Computer Science, M. Gogolla and B. Wolff, Eds.
Springer Berlin Heidelberg, 2011, vol. 6706, pp. 134–151.

[6] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic gener-
ation of software behavioral models,” in Proceedings of the
30th International Conference on Software Engineering, ser.
ICSE’08. New York, NY, USA: ACM, 2008, pp. 501–510.

[7] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart,
I. Beschastnikh, and Y. Brun, “Behavioral resource-aware
model inference,” in Proceedings of the 29th ACM/IEEE In-
ternational Conference on Automated Software Engineering,
ser. ASE ’14. New York, NY, USA: ACM, 2014, pp. 19–30.

[8] F. Pastore, D. Micucci, and L. Mariani, “Timed k-tail: Au-
tomatic inference of timed automata,” in 2017 IEEE Inter-
national Conference on Software Testing, Verification and
Validation (ICST), March 2017, pp. 401–411.

[9] L. Gomes and J. Fernandes, Behavioral Modeling for Embed-
ded Systems and Technologies: Applications for Design and
Implementation, Jan 2009.

[10] D. S. Stewart, “Designing software components for real-time
applications,” in Proceedings of Embedded System Confer-
ence, september 2000.

[11] S. Salva, E. Blot, and P. Laurençot, “Combining model
learning and data analysis to generate models of component-
based systems,” in Testing Software and Systems - 30th IFIP
WG 6.1 International Conference, ICTSS 2018, Cádiz, Spain,
October 1-3, 2018, Proceedings, 2018, pp. 142–148.

[12] J. Tretmans, Model Based Testing with Labelled Transition
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 1–38. [Online]. Available: https://doi.org/10.1007/
978-3-540-78917-8 1

[13] M. van der Bijl, A. Rensink, and J. Tretmans, “Compositional
testing with ioco,” in Formal Approaches to Software Testing,
A. Petrenko and A. Ulrich, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 86–100.

232

A Resource Management Architecture For Exposing
Devices as a Service in the Internet of Things

Carlos Eduardo Pantoja
CEFET/RJ

Universidade Federal Fluminense
pantoja@cefet-rj.br

Heder Dorneles Soares and
José Viterbo and Tielle Alexandre

Universidade Federal Fluminense
hdorneles,viterbo@ic.uff.br, tiellesa@id.uff.br

Arthur Casals and
Amal El-Fallah Seghrouchni

Sorbonne Universités UPMC, LIP6
Universidade de São Paulo (USP)

amal.elfallah@lip6.fr, arthur.casals@usp.br

Abstract—This work proposes an architecture for sharing
devices’ resources in the Internet of Things providing real sensor
data for its users. The main idea is based on the fact that users
such as developers and researchers do not always have access
to the necessary hardware and resource sharing should impact
these persons activities. Taking advantage of the Sensors as a
Service model, we propose an architecture where several sensors
and actuators can be coupled to environments and they also are
represented virtually in a web system becoming available to be
consumed by users and platforms. The architecture is composed
of three layers and a model representing devices, the cloud, and
clients, and how they interact with each other. A study case for
testing the whole approach is also presented.

Index Terms—Internet of Things, Embedded Systems, Ubiqui-
tous Computing

I. INTRODUCTION

The number of computing devices used in daily tasks,
the internet coverage as well as how to handle data, are
increasingly being used to improve people’s lives and together
with the Internet of Things (IoT), they are the key to the
development of a wide range of applications [1]. These large
number of components open up relevant issues, such as sharing
data in heterogeneous environments once sensors deployment
often employs high costs. Then, mechanisms for resource
sharing should play a major role in this scenario.

These applications gather data from several sensors and the
number of devices can make the project unfeasible. There
is an emerging cloud computing model named Sensors-as-
a-Service, where users can make public their own sensors’
data to be consumed by other clients [2]. However, it is
difficult to integrate and deploy such systems due to the
heterogeneity of devices and communication technologies [3],
[4]. Considering this, middleware for IoT play an important
role in these systems since they can deal with the heterogeneity
of hardware, data distribution, and communication protocols.

So, the objective of this paper is to propose an architecture
for the management of resources and to expose them as
a service in an IoT network. This Resource Management
Architecture (RMA) is divided into three layers of abstractions
where devices are responsible for keeping the real resources
independently from the core of RMA, which deals with the
virtualization, registering and updating of data from devices.

DOI reference number: 10.18293/SEKE2019-187

Then, clients can consume this data as a service using exposed
web services that access the virtualization layer. The aim of
RMA is to provide an integrated solution to be used in any
domain since its general architecture is not bounded to any
application provided and to work as a repository of devices
where researchers can make their data consumable to other
persons who might be interested in them.

The RMA is built over instances of a robust middleware for
IoT in its layers, which treats the connectivity and scalability
of devices [5]. Besides, we also propose a structure for the
development of devices able to self-configuration in the RMA.
Finally, the RMA can be accessed by web services or other
web solutions. The rest of this paper is structured as follows: in
section II, we present the related works; section III presents our
proposed architecture and their components; in section IV, it
is described the implementation of RMA; section V the RMA
is evaluated based on software engineering methods. Finally,
conclusions are discussed in section VI.

II. RELATED WORKS

During the last years, several approaches try to deal with
shareable resources in different domains. For example, the
research in Ambient Intelligent has been searching for techno-
logical strategies to improve the people life quality and solve
problems caused by population growth in urban areas. A lot of
papers explore technologies for improving citizen services and
how to add value to public administration in Smart Cities [6].
In these cases, there are data coming from people, social
networks, household, organizations (public and privates), and
so on. Devices are often used in such approaches however,
issues as interoperability, communicability, and how to turn
data public and consumable are not in their scope. In this
paper, we present an architecture that can be used to provide a
layer of consumable devices that can be applied in any domain
and deal with those issues.

When considering systems that use sensors as a service,
there is an interoperable system [7] that offers a web service
description language interface designed for users to access
sensors. However, its main focus is on low-power wireless
sensor nodes and energy profile. The SOCRADES middle-
ware [8] is a solution for business integration that offers a
web service-oriented architecture that integrates different types
of intelligent objects. It uses an enterprise business solution

233

system to provide the ability of users to construct services
based on physical objects using the Web of Things [9] and
using REST applications [10]. These approaches tie the design
of the device to the web system restraining new devices to be
added at runtime. In our proposed approach, devices have their
own mechanism for dealing with the core system at runtime.

III. THE RESOURCE MANAGEMENT ARCHITECTURE

In this section, we present the Research Management Ar-
chitecture (RMA), an architecture responsible for the virtu-
alization of devices that act as IoT objects, exposing their
sensors and actuators to be accessed and consumed by who
might be interested in their functionalities. These resources’
data are maintained at runtime in a model that can be publicly
visualized and subscribed for several purposes. Exposing de-
vices as a service that can be virtually consumed brings some
advantages since users do not need to have their own devices,
reducing eventual costs in creating new ones. In this way,
users can provide a shareable resource component that can
be exploited for several purposes. The proposed architecture
(Figure 1) is composed of three different layers:

1) Device: in this layer, the devices have an embedded
system enhanced with a processing cycle where (i) it
connects and registers in the Cloud layer at the very first
time; (ii) it gathers data from all its sensors to be sent to
the cloud layer and; (iii) it receives from the Cloud layer
actions that must be executed by the device’s actuators.

2) Cloud: it is capable of maintaining updated information
from devices hosted in environments and running over an
IoT middleware. The Resource Management Component
(RMC) manages (i) the registering process of devices; (ii)
the sensors’ data updating process, and; (iii) the actions
that must be executed by devices. Besides, it also capable
of exposing RESTful web services for several purposes.

3) Client: it is responsible for the visualization of devices
and environments. In this paper, it is represented as
a web solution. It implements a publish and subscribe
mechanism for allowing developers and researchers in
obtaining data from real sensors without possessing them
and it offers an infrastructure for those who want to
provide sensors as a service.

In the RMA, a device is an IoT object equipped with a
micro-controller (hardware) where sensors and actuators are
plugged in. The devices host an embedded system capable of
connecting and registering to the Cloud layer for providing
current data to be consumed by users. The embedded system
dynamically registers itself in the RMC by sending all its func-
tionalities (available resources, data and action commands)
and the environment it is situated. Once connected, the device
receives a confirmation and it starts to send data gathered from
its sensors directly to the RMC, which keeps the most recent
value available to be consumed or visualized in a web panel
in the Visualization layer. Besides, the embedded system deals
with the action commands coming from the RMC that need
to be executed by the device’s actuators.

Fig. 1. The Resource Management Architecture’s (RMA) components.

The RMC is the main component in the RMA and it
maintains information about devices and environments to be
consumed as a service by other layers. It has a mechanism
for registering devices in given environments, storing their
information in the Virtualized Components Database (VCDB).
The VCDB keeps updated the data coming from devices by
considering only the new values that have changed since
the last data message was received. In addition, this layer
exposes web services for providing different services such as
visualization layers for mobile applications or allowing new
technologies to interact and access the VCDB. Web services
use a RESTful architecture for system interoperability and it
uses Json files for exchanging information (data, requisitions,
and execution commands) between the Cloud and Client
layers.

The actions that need to be executed by devices are managed
by the RMC. Any user that desire to perform an action in any
available actuator must send an action command by accessing
one of the provided services. The RMC redirects the action
directly to the specific device. The technical information about
hardware and actuators is transparent to the end user, that just
need to know the available commands of the device he or she
wants to interact. While one device is being used, the RMC
blocks the specific actuator or the entire device for avoiding
conflicts in the lower layer. The respective resource is unlocked
after the execution or after a timeout boundary.

The RMC is a server-side solution running an IoT mid-
dleware instance where the devices must connect to. The
middleware provides the connectivity and communicability
necessary for devices to interact with the RMC layer and it

234

should guarantee the scalability of the system. These issues
are not the focus of this work, however more technical details
about the chosen middleware are provided later in Section IV.

For facilitating the environments managing, this layer pro-
vides a web page where all the environments can be accessed
at real-time and users can create their own public or private
environments. This web system shows all the public environ-
ments allowing users to select and see their available informa-
tion and subscribe to have access to a specific and personalized
group of information. In this work, an environment is defined
by a logical representation of a physical space where several
devices can co-exist sharing information in an IoT network.

IV. IMPLEMENTING THE RMA’S LAYERS

In this section, it is presented the implementation of the
Device, Cloud and Client layers considering technological
components and how these layers communicate with each
other. For both Device and Cloud layers, we employ the
ContextNet middleware [5], which is an IoT middleware for
context reasoning and data sharing in a large scale envi-
ronment. It is a context-providing service for stationary and
mobile networks, which already addresses data communication
issues such as fault tolerance, load balancing, node disconnect
support (handover), and security. It uses the OMG DDS [11]
protocol for handling messages between clients.

The Device layer uses a low coupled serial interface [12]
for communicating with the micro-controllers that hosts the
sensors and actuators. This interface isolates the high-level
programming from the low-level using serial commands for
activating users’ pre-defined functions, which controls actua-
tors or gathers data from sensors. The Client layer employs
a web system capable of managing environments, showing
their available resources, and it has a publish and subscribe
mechanism for users interested in specific resources. All layers
consider a model where these resources are part of devices
situated in pre-existing environments in the architecture. For
instance, the environments have to be manually registered by
the user to facilitate their management and for security issues.
This model is represented as a class diagram (Figure 2) shared
between the three layers. The classes that can be found in our
solution are described as follows:
• Action: the action that is executed at the low-level hardware

in a device. Every command sent by the the Client and
Cloud layers becomes an action in the Device layer.

• Command: it is the representation of commands available
to be executed if the resource is an actuator. Sensors do
not have commands because they are data providers.

• Cycle: it is the functioning cycle of the embedded system
hosted in devices. It is responsible for synchronizing the
device activities of sending data and executing actions.

• Device: it is the device representation used in the Client,
Cloud and Device layers. It keeps the identification, name
and description of a device and it is composed resources.

• Embedded Client: it is the ContextNet client instance
responsible for receiving messages from the Cloud layer
and other clients, and sending the data from sensors to

the Cloud layer. It also maps the components of the
configuration file into its respective components.

• Environment: the virtual representation of environments in
all layers. Each environment is composed of devices.

• Main: the main class that starts a device.
• Resource: it represents both sensors and actuators in all lay-

ers. The resources keep information about the serial port
where the resource is connected, the available commands
to be executed, and the availability of the resource.

• Resource Management: it is the main class of the cloud
layer and it is a server instance of the ContextNet. It
keeps a list of environments mapped and the devices
registered for each one. It is responsible for the process
of registering and updating devices and resources. It also
exposes the web servers and the interfaces to the database.

• Serial Communication: the serial interface between the
micro-controller and the system hosted at devices.

A. The Device Layer

The Device layer comprises devices running an embedded
system with enough processing power interfacing sensors and
actuators. There is a physical and logical architecture for
clients where the first one uses hardware technologies and
it is composed of a tiny mobile board with Bluetooth and
WiFi connections (e.g. Raspberry Pi) connected to one or more
micro-controllers using serial communication for accessing
sensors and actuators. The logical architecture of the Device
layer comprises both micro-controllers’ programming and the
embedded system. They are able of gathering the raw data
from the sensors and then send it to the embedded system.
After that, the embedded system sends the data to the Cloud
layer or receive commands to be executed by actuators.

The micro-controller is programmed in a loop for verifying
if there are messages coming from other layers. So, it accesses
all the sensors and mounts a string to be sent by serial com-
munication to the embedded system. Otherwise, the execution
action is verified and if exists an equivalent programmed, an
action is executed in the respective actuator.

Algorithm 1 Device’s Processing Cycle
1: procedure CYCLE(configurationF ile)
2: mountDevice(configurationF ile)
3: intervalT ime← getIntervalT ime()
4: loop
5: if isRegistered() then
6: getheredData← dataFromSensors()
7: sendToCloud(gatheredData)
8: wait(intervalT ime)
9: actions[]← getReceivedActions()

10: executeNextActions(actions[])
11: else
12: registerDevice()

The embedded system controls the microcontroller and it
uses a ContextNet client able to communicate with the Cloud
layer. For this, there is a cycle (Algorithm 1) for synchronizing

235

Fig. 2. The class diagram of the overall architecture comprising the Client, Cloud and Device layers.

the reception of data coming from sensors to be sent to the
Cloud layer and the actions that need to be sent and executed
in the micro-controller because both cannot execute at the
same time for avoiding undesired conflicts. So, the actions
received from the Cloud layer are put in a queue of actions to
be executed one step after the data from sensors are collected
through serial ports. It is also capable of performing a self-
configuration and registration at the Cloud layer when it starts
running and there is a cloud server available. For this, the
device keeps an XML file describing all the available re-
sources, commands, and the server configuration information.
Once the file is correctly filled, the system performs everything
automatically. The following information must be provided:

(i) Server: the gateway of the server and the port must be
provided in order to connect to the Cloud layer where the
server instance of the ContextNet is installed. Besides, the
time interval of sending data to the server must be set.

(ii) Environment: for instance, it is necessary to inform in
which environment the device is inserted into. For this,
the identification number of the environment must be
declared in the configuration file. The environment’s iden-
tification is generated when users register an environment
in the web system.

(iii) Resources: all the resources available must be mapped
in the configuration file. All the resources have the serial
port where it is connected, its name, and a non-mandatory
description. If the resource is an actuator, it also has the
available execution commands.

The embedded system architecture is composed by the
Cycle class, which instantiates an instance of ContextNet
client (represented by the EmbeddedClient class) capable of
exchanging message with other clients and the cloud server.
Besides, the EmbeddedClient is responsible for the serial
interface and it deals with a queue of actions received from the
Cloud layer that has to be executed. The SerialCommunication
and Action are the classes responsible for these behaviors.

B. The Cloud Layer

The cloud layer is a server instance of the ContextNet
running a core system responsible for the virtualization of
environments, devices and available resources. The devices
register at the cloud informing their resources and environment
where they are situated. This process starts when the core
receives the file containing all the information of the device.
Then, the system extracts the necessary information from the
file and it registers the device at the system in the informed
environment. Afterward, it sends back a message to the device
authorizing the beginning of sending data from sensors.

Once the devices start sending data, the core system reg-
isters the new values and updates the old ones in VCDB
(Figure 1). For every device, there are resources that can be
sensors or actuators. In the case of sensors, if it is the first
time that a new value of a resource is received, the system
inserts this new value at the VCDB. Otherwise, if the value
has changed since the last data reception, this new value is
updated in VCBD. In the case of actuators, there is no data to
be stored but it is kept the information about the availability
of the resource. For example, the system informs if a certain
actuator is being used or it is free for executing commands.

The core system deals with commands requisitions coming
from the Client layer (a web system or by exposed web
services) to be sent and executed at devices. The Client layer
does not need to know technical details of hardware or even
in which device the command will be executed. The com-
mands are specific for a resource and the core system avoids
duplicated resources and commands. Besides, it also redirects
a received command to the respective device registered at the
system by sending a message using ContextNet.

In the Cloud layer, there is also a locking process for
avoiding conflicts in executing actions when two or more
clients try to execute commands in the same actuator. For this,
every time that a client needs to use a specific actuator, the
core system locks this resource until the client informs that

236

is no longer using it, the action was performed, or a timeout
boundary is reached. During this process, the locked resource
is unavailable for all clients. It is important to remark that
sensors are not part of the locking process because the nature
of sensors is to provide data to be consumed. If the data is
considered confidential, the environment can be set as private.

As stated before, web services can be exposed for extending
the functionalities of the RMA in the Cloud layer. For creating
RESTful web services it is used as an embedded servlet
container and web server named Jetty. The available web
services are a requisition service for agents applications for
using resources with contextual planning; an execution service
for activating or deactivating the actuators based on available
commands; and a web service for providing data access to
mobile applications.

The Cloud layer’s model is composed of the ResourceM-
anagement class where the ContextNet server is instantiated.
Besides, it hosts a list of Environments with their Devices,
Resources, and Commands classes.

C. The Client Layer

The idea behind the Client layer is to provide a layer capable
of showing environments’ resources in any kind of platform
such as web pages, web services or mobile applications.
Besides, it is responsible for providing some basic mechanisms
that are not available in previous layers such as environments
creation and, publish and subscriber mechanisms for example.
The Client layer is represented as a web page for showing
all the resources of environments and some basic functions
for interacting with the resources. The user is able of creating
environments to virtually host his devices and to expose them
to be consumed by other users. Besides, the actuators have
commands that users can activate by interacting with the Client
layer’s web system. The technologies employed are relational
databases, Java web pages and Ajax.

Besides that, users can choose to follow some of the
resources without the need to access the environments every
time that he needs to get those values. The publish and
subscriber mechanism allows users to access values always
that a change is perceived by the core system in the Cloud
layer. It allows the user to set basic rules such as defining
a desired value to be announced when reached. All existing
modules can co-exist without interfering in each other since
all functions are managed by the Cloud layer. They all have to
connect to the Cloud layer’s database or use an exposed web
service to access information.

V. EVALUATION

In this section, it is presented an initial case study evaluation
in the assisted environment domain using the proposed RMA
using a software engineering based approach. Case studies are
employed because they are suitable for evaluation of software
engineering methods involving development, operation, and its
maintenance and artifacts [13].

The scenario will be held in a hypothetical Smart City
where the government has access to a hospital where the

RMA is implanted. Some rooms in the hospital building have
devices for controlling the temperature and luminosity (as
sensors), and light lamps of the room (as actuators), and other
devices for measuring some of the patients’ information such
as heartbeat frequency. Therefore, every room in the hospital
endowed with devices is considered an environment in the
RMA and its devices’ resources are exposed as a service for
the board of directors, government and everyone interested in
them. It is important to remark that, even in this hypothetical
scenario, there is no real personal contact of patients available.

Based on this, two devices were prepared for a room, named
Room 403. Both devices use a Raspberry Pi Zero connected
to an Arduino board. The first device is connected to a tem-
perature and a luminosity sensor for the basic sensing of the
room. The second one is a device with a light lamp connected
to the Arduino working as an actuator and informing if the
lamps are on or off. Besides, virtual devices were simulated
in order to stress the RMC functioning. For this, the serial
interface between the embedded system and the hardware were
disabled, and several resources were simulated for each virtual
device, which sends random data to the Cloud layer. So, one
device for monitoring the heartbeat frequency of a patient and
devices identical to the real ones above were simulated in
each room. In general, 20 environments were prepared where
the environment Room 403 has two real devices and one
simulated, and the other 19 have three simulated resources.

The case study approach is divided into four steps: case
study design, preparation for data collecting, the data collect-
ing and data analysis. The following Table I shows the details
and aim of the descriptive case study.

TABLE I
THE CASE STUDY DESIGN

Design Description

Objective A descriptive analysis of the behavior of the RMA
functioning.

Case The asynchronous process of transferring informa-
tion from devices to the Cloud layer to be consumed
by clients using web solutions.

Questions Is the device connects correctly to the Cloud layer?
Is the communication process between all layers
works? Is the Client layer showing the correct data?

Method Qualitative data analysis using negative case analysis
and observation method.

Some tests were conducted trying to deny the research
questions above. The preparation for the data collecting con-
sisted in store both dynamic registration at the RMC and
the answer that devices receive before starting sending data
from sensors. Afterward, it is verified if these data arrives
at all layers properly by analyzing the transferring process
between hardware and device, device and cloud, and cloud
and client. A string of data that comes out from the hardware
is collected and compared if the data read arrived correctly at
the embedded system. Between Devices and the Cloud layer,
all devices should keep sending data to be stored at the VCDB
in the RMC. Finally, between Cloud and Clients, these same

237

data should be read by clients when data update occurs.
The data collecting and analysis were performed in an

arithmetic progression from 1 to 20 devices. Firstly, the server
instance was running properly to verify the effectiveness of
RMA and then it was disabled. Once there is no server instance
available, they should not send data. Then, the data should be
properly stored and read by Cloud and Client layers. Table II
shows the resumed results from tests.

TABLE II
DATA COLLECTION AND ANALYSIS

Test Description Hit (%)

Hardware Data is correctly transferred to
the embedded system.

100

Connection with
Server

Device registered at RMC and
registered message received.

100

Connection without
Server

Device registered at RMC and
registered message received.

0

Data Updated and
Stored

Data correctly stored at
VCDB.

100

Data Read Data correctly read by clients. 100

The communication between hardware and the embedded
system is done using a serial interface, which guarantees no
losses in the data transferring. None errors were observed in
this process. As expected, when the server instance is disabled,
it is observed that devices try to connect to the Cloud layer but
there is no response from the server and no data is sent from
any device. Otherwise, the device is registered and receives a
confirmation to start sending data to the Cloud. All devices
work properly considering an available server instance.

The most recent information available coming from devices
is updated in the VCDB. Considering that the VCDB is
implemented as a relational database, there are no big deals
in this process not even in the visualization of the devices
by the Client layer. This case study focused on observing the
communication and the correctness of data flowing through
the architecture. More experiments focusing on performance
and a proper formalization were left for future efforts.

VI. CONCLUSION

In this work, it was presented a low-coupled three-layer
architecture for exposing devices as a service to be consumed
by clients. The devices are able of connecting to an IoT server,
registering their resources (sensors and actuators) in a core
system, which turns all the public data available that can be
accessed by clients using web services and a web platform. A
case study was proposed and evaluated integrating the Device,
Cloud and Client layers for monitoring an environment.

RMA architecture employs different technologies in its
layers. Devices are autonomous and uncoupled from the
Cloud layer because they are built using hardware platforms
enhanced with wi-fi connections and it uses a serial interface
for communicating with micro-controllers. These technologies
provide the necessary autonomy, heterogeneity of hardware
employed, and communicability to the Cloud layer. The Con-
textNet middleware provides client and server instances and it

is used in the architecture because of the middleware guaran-
tees connectivity, communicability, reliability, and scalability,
in addition to using an industrial market standard protocol.

The Client layer offers web solutions for managing environ-
ments and for the visualization of their respective resources.
Besides, it is possible to subscribe specifically to resources
that one might be interested in. Moreover, the RMA aims to
provide an architecture for exposing devices as a service to be
consumed by persons that do not have access to these kinds
of resources either for the cost or complexity of creating from
scratch an architecture for that purpose.

Nowadays, the designer of the device should program how
data is mounted and captured by the micro-controller and sent
to the embedded system. As future works, it is important
to create an automatized plug-and-play way of configuring
the device in low-level. Besides, as micro-controllers are
connected to the serial port of the tiny computer of the device,
a similar process for the identification of serial ports by the
embedded system is also interesting. The environment has to
be set manually at the device’s configuration file for security
and control reasons, nevertheless, it is possible to identify and
register autonomously the environment based on access points.

REFERENCES

[1] E. Santos, P. H. V. Penna, I. M. Coelho, H. D. Soares, L. S. Ochi, and
L. Simonetti, “Logistics sla optimization service for transportation in
smart cities,” in 2018 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8, July 2018.

[2] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a Service Model for Smart Cities Supported by Internet of Things,”
Transactions on Emerging Telecommunications Technologies, vol. 25,
no. 3, pp. 294–307, 2014.

[3] M. Weiser, “Some computer science issues in ubiquitous computing,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 3, pp. 12–, July 1999.

[4] C. Pantoja, H. Soares, J. Viterbo, and A. Seghrouchni, “An architec-
ture for the development of ambient intelligence systems managed by
embedded agents,” in The 30th International Conference on Software
Engineering & Knowledge Engineering, (San Franscisco), 2018.

[5] M. Endler and F. S. e Silva, “Past, present and future of the contextnet
iomt middleware,” Open Journal of Internet Of Things (OJIOT), vol. 4,
no. 1, pp. 7–23, 2018.

[6] P. Neirotti, A. De Marco, A. C. Cagliano, G. Mangano, and F. Scorrano,
“Current trends in smart city initiatives: Some stylised facts,” Cities,
vol. 38, pp. 25–36, 2014.

[7] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web ser-
vices: design and implementation of interoperable and evolvable sensor
networks,” in Proceedings of the 6th ACM conference on Embedded
network sensor systems, pp. 253–266, ACM, 2008.

[8] L. M. S. De Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos,
and D. Savio, “Socrades: A web service based shop floor integration
infrastructure,” in The internet of things, pp. 50–67, Springer, 2008.

[9] D. Guinard and V. Trifa, “Towards the web of things: Web mashups for
embedded devices,” in Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web, in proceedings of International
World Wide Web Conferences, Madrid, Spain, vol. 15, 2009.

[10] B. Ostermaier, F. Schlup, and K. Römer, “Webplug: A framework for the
web of things,” in 2010 8th IEEE International Conference on Pervasive
Computing and Communications Workshops, pp. 690–695, March 2010.

[11] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in Distributed Computing Systems Workshops, 2003. Pro-
ceedings. 23rd International Conference on, pp. 200–206, IEEE, 2003.

[12] N. M. Lazarin and C. E. Pantoja, “A robotic-agent platform for em-
bedding software agents using raspberry pi and arduino boards,” 9th
Software Agents, Environments and Applications School, 2015.

[13] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

238

SPRO: SECURITY PROCESS FRAMEWORK

Henrique Michel Persch, Lisandra M. Fontoura
Departamento de Computação Aplicada (DCOM)

Universidade Federal de Santa Maria (UFSM)
Santa Maria, Brasil

{hpersch, lisandra}@gmail.com

Adriano Brum Fontoura
Instituto Federal Farroupilha

Santa Maria, RS, Brasil
fontoura.ab@gmail.com

Abstract— Secure software implies that the process used in its

development includes activities to insert, monitor and ensure

security from the early stages of the software process. This article

proposes the Security Process Framework that aims to facilitate

the task of creating secure processes through the reuse of process

components developed from security patterns. The components

are recovered and prioritized from a repository through

multicriteria techniques that consider security requirements and

characteristics related to the project context. Software process

lines are used to organize the selected components and to

assemble the secure software process. Furthermore, a tool called

SPro System was developed to support the use of the framework.

Case studies were used to verify the applicability of the proposal,

which showed that the framework and SPro System) facilitated

the tailoring and decreased the time spent in the definition of

security processes.

Keywords - security patterns, security process, software process

lines, process tailoring

I. INTRODUCTION
Nowadays, software are becoming increasingly complex,

requiring high levels of security to prevent the occurrence of
failures and data loss. Several authors propose that
methodologies and processes for software development should
be concerned with the security from the early stages of projects
life cycle [8][9].

Nevertheless, to create software processes aimed at a secure
software development is a long process, time consuming and
that requires many resources. In addition, the processes must be
suited to the needs of each project, which requires defining
activities and security practices appropriate to the context and
that includes the security requirements defined for the project
[3][4][18]. This task is not trivial and it requires experts in
security and in software processes, which are not always
available in the team.

In the literature, numerous security standards and models
are presented which describe best practices and security
requirements, such as: ISO/IEC 27001 [1], ISO/IEC 27002 [2]
and ISO/IEC 21827 [10]. However, these standards, as any
other standard, do not detail the processes that need to be
followed to implement security in its projects.

To facilitate the task of setting secure software processes,
this paper proposes a framework consisting of: (1) a repository
of process components defined from the security patterns; (2)
techniques for prioritization and selection of these components
from context information; (3) process lines that organize

process components contributing to their reuse and (4) a tool to
support the use of the framework.

The components stored in the repository were defined from
security patterns catalogs [15], security standards [1], [10] and
scientific literature. Security patterns provide solutions already
established to recurring security problems and serve as a
reference for organizations that seek to meet security
requirements [15]. Process components facilitate the
development of new processes through the reuse of predefined
components and enable the assessment and improvement of
these through the use in different software projects. The
components are associated with security requirements through
rules and are prioritized from multicriteria techniques that
consider the context of the project. The prioritized components
are arranged using software process lines.

This article is organized as follows: in Section 2, related
studies are discussed; in Section 3, concepts relevant to the
understanding of the study are introduced; in Section 4, the
proposed framework is described showing how the components
of the processes and the prioritization methods were defined; in
Section 5, the support tool is explained; and in Section 6, a case
study is presented. Finally, in Section 7, the final
considerations of the study are described.

II. RELATED WORK
In [11], a methodology for adapting software processes is

presented, based on security requirements recommended by the
security practices of the ISO/IEC 21827. The processes are
compiled from components of the Rational Unified Process
(RUP), Extreme Programming (XP) and on security patterns
proposed in the literature. This study was developed in the
same research group and the main differences is that it does not
consider the context of the project, the use of prioritization
techniques and software process lines.

Mellado, Medina and Piattini [6] propose to incorporate
security requirements from the early stages of development
using software product lines. Thus, the authors seek to facilitate
the compliance with security standards and to manage potential
variabilities that may happen among security requirements. The
authors propose the use of security standards (ISO/IEC 27001 e
ISO/IEC 15408) to manage security requirements. The focus of
the work is on the product and our work focuses on the process.

In [7], the authors propose an extension of the Scrum
software development framework with features focused on
creating secure software.

Hamid and Weber [14] propose a model-driven engineering
(MDE) methodological approach associated with a pattern-DOI reference number: 10.18293/SEKE2019-015

239

based approach to support the development of secure software
systems.

However, this study differs from the others due to the
development of a secure processes tailoring framework using
process components associated with the process area from
ISO/IEC 21827. The process components are prioritized from
multi-criteria decision techniques that consider context
information. In addition, software process lines are used which
organize the recovered components to form the process and a
support tool is provided.

III. BACKGROUND
Security standards and models have key goals and practices

so that organizations can define the expected level of security
in their processes. In the literature, various standards of
information security are described, among which we can
highlight: ISO/IEC 27001, ISO/IEC 15408 and ISO/IEC
27002. ISO/IEC 27001 [1] describes a process for information
security management in an organization that structures
activities through a continuous improvement cycle. On the
other hand, ISO/IEC 15408 provides a common set of
requirements for security functions in products and systems
and for assurance of measures applied to them during a security
assessment [12]. The model SSE-CMM - Systems Security
Engineering Capability Maturity Model, published as ISO/IEC
21827: 2008 [10], describes a set of process areas (PAs) that
are required in a security engineering process. ISO/IEC 21827
proposes 22 process areas (PAs) that are organized into two
groups: Security Base Practices and Project and Organizational
Base Practices [10]. For each PA, it is presented a list of BPs
(Base Practices) that assist in meeting the goals of the process
areas (PA).

Security standards and models describe ways that are
intended to assist in the development of security processes,
providing practices to be implemented or guidelines to be
followed by organizations. In this study, we chose to use the
ISO/IEC 21827 [10] because this model defines a set of best
practices that guide the organization in the implementation of
effective security processes. In addition, this model is widely
known and widespread.

Nevertheless, the ISO/IEC 21827, as well as other
standards, does not detail the activities to be implemented by
organizations. Therefore, it was decided to seek solutions in the
literature used by other organizations that have been successful.
Many of these solutions in the security area are documented as
security patterns [15]. Even though many security patterns and
techniques to use them are being proposed, it is complex to
adapt and integrate them in every stage of the software
development or in specific contexts.

In this study, the patterns are described as process
components and associated with a specific use context.
However, describe components and store them in a repository
does not guarantee the proper selection and integration of these
components to create a consistent software process. To solve
this issue, the process components are selected through multi-
criteria techniques and organized using software process lines
(SPrL). SPrL are intended to represent the dynamic aspect of

the processes and a metamodel is used to describe the structural
aspect of the components.

Software process lines emerged from software product lines
and are aimed at the development of consistent processes,
enabling the reuse of previously defined components. SPrL is a
form of tailoring of processes that has the following objectives:
i) increase the quality and adequacy of the processes; ii)
representation of variabilities and similarities among processes
to maximize reuse; and iii) reduce the risks of an inadequate
tailoring of process [16].

The multi-criteria techniques help the decision making from
the analysis of preferred criteria necessary for understanding
the reality of the analyzed problem and the choice of the
alternative that will allow the best decision to be made. These
are examples of multi-criteria methods: AHP (Analytic
Hierarchy Process) [19], TODIM (an acronym in Portuguese
for Iterative and Multi-criteria Decision Making) [13], and
TOPSIS (Technique for Order of Preference by Similarity to
Ideal Solution) [5].

The theoretical foundation of the AHP is based on the
decomposition and synthesis of the relations among the criteria
until a prioritization of their indicators is reached, approaching
a better response of single measurement of performance [19].
The TODIM is based on the Prospect Theory [13]. On the other
hand, the TOPSIS is based on the calculation of the Euclidean
distance between the most beneficial alternative and the costlier
alternatives [5].

In our study, the prioritization methods are used to select
the most appropriate process components for the project in
question, using criteria that define the context. Several authors
propose that the context should be considered for definition of
software processes, such as: Boehm and Turner [4], Cockburn
[3] and Kruchten [18]. In this study, we chose to use the
context described by the Octopus Model, as proposed by
Kruchten [18], which uses the following contextual factors:
size, stable architecture, business model, team distribution, rate
of change, system age, criticality and governance.

IV. SECURITY PROCESS FRAMEWORK
This section describes the Security Process Framework

through detailing the process components repository and
metamodel, the rules of components association to security
requirements and the techniques used for the prioritization of
the components.

A. Repository of Security Processes

The process components were defined from classes
described in the metamodel (Figure 1), elaborated according to
Software and Systems Process Engineering Metamodel
Specification (SPEM) [17].

A process component is an aggregation of tasks that are
performed by roles which have artifacts as input and output
and are associated with a discipline. Furthermore, project
processes are composed of process components and are
associated with projects that use the process.

240

Figure 1. Security Process Metamodel

Process components and projects are associated with
information of the situational context. Process components are
associated with security patterns from which they were
defined. Security patterns [15] are associated with process
areas that they meet, extracted from the ISO/IEC 21827 [10].

To illustrate how the classes described in the metamodel are
used to define the components, Figure 2 shows the process
component Asset Valuation, described from the pattern of the
same name [15]. This pattern aims at helping the organization
to determine the overall importance of the assets under its
control and ownership.

B. Security Components Association to PAs

The defined process components are associated with the
goals of the 11 PAs - security base practices, found in the
standard ISO/IEC 21827 [10]. For example, the component
Asset Valuation (Figure 2) was associated with the process area
PA 03 - Security Risks Assessment.

After the analysis of several catalogs of security patterns,
each security pattern was described as a process component
and associated with one or more process areas that it covers.
These components were placed in a repository and are
available for use in the development of processes that aim to
meet security requirements. Thenceforth, it was possible to
build a repository of software process components based on the
ISO/IEC 21827 [10], with 50 process components, which have
about 70 artifacts and 60 tasks.

C. Determination of the Prioritization Methods

The multi-criteria methods are used to select process
components that have a context of use similar to the project
context. These contexts are described using the attributes
proposed by the Octopus Model.

Figure 2. Details of the process component Asset Valuation

In Figure 3, the process area PA08 - Assess Security Risk

is shown associated with four components of different
processes that aim at satisfying it. The contexts of the
component and of the project are assessed and compared
according to the calculations proposed by each prioritization
method to assist in choosing the best components.

V. SPRO SYSTEM
In this section, a tool that supports the use of the framework

for tailoring of processes, using software process lines, called
SPro System is described. Process components defined from
RUP and XP were inserted into the repository. Process lines
have been defined to organize the components and
architectures to represent the variants.

The processes tailoring are performed through four stages,
which are: i) definition of the project context; ii) selection of
the tailoring requirements and of the processes architecture; iii)
prioritization of activities; and iv) creation of the tailored
process. To illustrate the stages, the implementation of an
example of use is described.

The situational context of the project is defined in order to
select the most appropriate process components for the project.
This example refers to a new development in a well-known
domain that involves only loss of money and it is being
developed by a local team of 25 people, the values were
defined as follows: size = medium, change of rate = less than
10, type of architecture = new, age of the system = new
development, business model = commercial, criticality = loss
of money, distribution of the team = local and governance =
simple rules.

241

Figure 3. Selection of the Process Patterns

In the second stage, the process engineer selects the
tailoring criteria and the architecture. For the tailoring criteria,
the PAs 03, 05, 07 08, 10 were selected as showed in Figure 4
(A). In the tool, different tailoring criteria can be used, such as
risks, quality, however, this article is limited to describe on
tailoring criteria based on the ISO/IEC 21827.

For each selected tailoring criterion, the SPro System
searches in the repository the process components that were
previously associated with the tailoring criteria through rules,
that is, the components that aim at meeting the tailoring
criterion. For these components, the similarity between the
context of the project and of the component is calculated. The
similarity values generated by the application of multi-criteria
techniques help process engineers' decision-making, however,
the selection is their responsibility. The multi-criteria
techniques are an important source of information because they
are based on different methodologies of analysis, prioritizing
the most relevant activities for the development in particular.
Figure 4 (B) shows the results of the prioritization of the
components. From the defined process architecture and the
recovered process components, prioritized and selected, the
specific process for the project was created (Figure 4 C).

VI. VALIDATION USING CASE STUDY
For the validation, a case study was carried out, which was

applied to a class of the Master’s course in Computer Science
from the Federal University of Santa Maria in the discipline of
Software Process Improvement. The following materials were
used for the experiment:

• A set of 11 cards with the name of the PAs proposed
by the ISO/IEC 21827, which are the tailoring criteria
to be selected;

• A set of 45 cards representing the process components,
elaborated from the security patterns, contextualized

according to the attributes proposed by the Octopus
Model;

• Description of two scenarios of development of a
software;

• Description with examples of associations of PAs with
process components elaborated from the literature;

• Sheet of paper to be filled in by the group with the PAs
and the process components selected for the project
described in the scenario.

Initially, the students were divided into 2 groups with 4
members each. Each group received the support material
described above. The group's objective was to develop a
software development process from the scenario. To this end,
they needed to identify which PAs should be selected in the
described project and, then, select the appropriate process
components to the PAs and to the context of the project. In the
first stage, the experiment was performed without SPro System
and in the second stage the SPro System was used. In each
stage, a different scenario was used.

A. Observed Results

The most striking factor was the decrease in time to
elaborate the process. The time spent in the first stage was
about 1 hour and 15 minutes. In the second stage, the average
time was 25 minutes, thus the SPro System helped the team to
reduce the time by approximately 60%.

Regarding the context of the project, the two groups
correctly extracted the characteristics of each project from the
provided scenario. According to the analysis performed in the
process architectures developed in the first stage, it was
possible to verify that group 1 was able to determine the exact
process areas that encompassed the scenario. In contrast, group
2 included two extra process areas, which were not required by
the scenario.

242

Figure 4. SPro System

Regarding the process components selected for each
tailoring criterion, it was possible to verify that group 1
selected 10 activities for 5 tailoring criteria. Thus, it was
verified that this group correctly compared the contexts of the
activities and the project, besides an analysis of the description
of the activity. Group 2 has determined 19 activities for 5
tailoring criteria, however, it was found that this group ignored
the context and the activity characteristics, giving greater
attention to the description of the activity. In this stage, both
groups were able to determine the activities and the tailoring
criteria considered as essential in the presented scenarios.

In the second stage, the activity was developed according to
the first step, however using the SPro System and with another
scenario. It is possible to state that the groups obtained more
satisfactory and significant results when using the tool because
they selected the activities and the tailoring criteria considered
as essential in each presented scenarios

B. Assessment Questionnaire

To complement the analysis, a questionnaire was applied so
that the students could assess the framework and the SPro
System. The questionnaire responses are showed in the Figure
5.

All participants agreed that the use of the tool facilitated the
processes tailoring aiming at meeting the security requirements
(Q.4). Furthermore, they fully agreed on the importance of
maintaining a repository with adapted process components to
facilitate new adaptations (Q.8). Regarding the ease of
understanding and the translation of the security patterns for
the activities so that they can be added to a software process,
there was a partial agreement (Q.2).

Only one participant partially disagreed that the provided
patterns were sufficient to meet the tailoring criteria (Q3),
wherein four answers partially agreed and the other 3 totally
agreed. In this sense, it can be highlighted that the groups
considered that the use of security patterns may be a viable
solution to solve the security problems in the project, however,
it may not be the only solution that should be applied.

The participants recognized that the pre-defined process
components associated with the tailoring criteria facilitated the
development of the process lines (Q.5). All participants agreed
that the SPro System tool assists in the processes tailoring
considering security requirements (Q.6).

Nonetheless, when asked if the tool expresses the stages
required to define processes, there were different responses,
wherein four participants fully agreed, three partially agreed
and one neither agreed nor disagreed (Q.7). From these
responses, there was the need to improve the stages to be used
in the tool for the processes tailoring. In addition to this
improvement, in the descriptive responses, suggestions
regarding the SPro System were given.

Moreover, in the space for comments, the participants
reported the difficulty in detecting security patterns and
activities that meet the tailoring criteria.

Regarding the prioritization methods, it was possible to
verify that the groups thoroughly analyzed the numbers
obtained and brought in the calculations made by the AHP,
TODIM and TOPSIS methods. According to the participants,
the methods were an excellent source of information and
guided the groups in the decision-making regarding which
process components they should select.

243

Figure 5. Responses of the applied questionnaires

From the development of this case study, it was possible to

evaluate the use of the SPro System tool and to apply the
concepts presented in the elaborated framework.

VII. FINAL CONSIDERATIONS
This paper presented a framework proposal that aims at

selecting process components that can be used for the tailoring
of security processes. The process components were
developed and derived from security patterns and were proven
efficient in the development and tailoring using software
process lines. Furthermore, with the use of multi-criteria
techniques, the framework assists the process engineer to
choose the most relevant components for the development
process, considering the contexts of project and of the
components. With the support of the SPro System tool, the use
of the proposed framework was demonstrated.

The validation showed that the framework and the SPro
System facilitated the process tailoring and decreased the time
spent in the definition of security processes. In addition, the
students, even without security expertise, were able to select
activities appropriate to the scenario, properly creating the
process according to the problem they received.

As future studies, we suggest the semi-automatic selection
of process components and the expansion of the repository
comprising other security standards.

VIII. REFERENCES
[1] —. 2013. ISO/IEC 27001:2013 - Information technology

- Security techniques - Information security management
systems - Requirements. 2013.

[2] —. 2013. ISO/IEC 27002:2013. Information technology
-- Security techniques -- Code of practice for information
security controls. 2013.

[3] A. Cockburn. 2004. Crystal Clear: A Human-Powered
Methodology for Small Teams. Addison-Wesley,
Boston, 2004.

[4] B. Boehm, R. Turner. 2009. Balancing Agility and
Discipline. Pearson Education, Inc, Boston, 2009.

[5] C. L. Hwang, K. Yoon. Multiple attribute decision
making; methods and applications, In: Proc. Lecture

Series in Economics and Mathematical Systems, Berlin,
Germany, Springer-Verlag, 1981.

[6] D. Mellado, E. Fernandez-Medina, M. Piattini. Security
Requirements Variability for Software Product Lines. In:
Third International Conference on Availability,
Reliability and Security, 2008.

[7] C. Pohl, H. Hof. Secure Scrum: Development of Secure
Software with Scrum. International Conference on
Emerging Security Information, Systems and
Technologies (SECURWARE) 2015, Venice, Italy,
2015.

[8] E. Amoroso, "Recent Progress in Software Security," in
IEEE Software, vol. 35, no. 2, pp. 11-13, March/April
2018.

[9] S. HUSSAIN, G. RASOOL, M. ATEF, A. K. SHAHID.
A Review of Approaches to Model Security into
Software Systems, 2013. Journal of Basic and Applied
Scientific Research, ISSN 2090-4304. Lahore, Pakistan.

[10] ISO/IEC 21827. Associação Brasileira de Normas
Técnicas. NBR ISO/IEC 21827:2008 Information
technology. Security techniques. Systems Security
Engineering. Capability Maturity Model (SSE-CMM).
Switerzland, 2008.

[11] R. Wagner, L. M. Fontoura, A. B. Fontoura. Using
Security Patterns to Tailor Software Process. In: Proc.
International Conference on Software Engineering and
Knowledge Engineering (SEKE), 2011. pp. 672-677.

[12] ISO/IEC15408. ISO/IEC15408 - Information technology
— Security techniques — Evaluation criteria for IT
security. 2005.

[13] L. F. Gomes, M. P. Monica, L. A. D. Rangel. An
application of the TODIM method to the multicriteria
rental evaluation of residential properties. European
Journal of Operational Research, 193, 204–211, 2009

[14] B. Hamid, D. Weber. Engineering secure systems:
models, patterns and empirical validation. Computer &
Security. 77, 315–348 (2018).

[15] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson,
F. Buschmann, P. Sommerlad. Security Patterns -
Integrating Security and Systems Engineering. John
Wiley & Sons, 2013.

[16] O. Jaufman, J. Münch. Acquisition of a project-specific
process. Springer, Berlin, Heidelberg, 2005. pp. 328-342.

[17] OMG. 2008. Software & Systems Process Engineering
Meta-Model Specification, Version 2.0. Software
Engineering Institute, Carnegie, Pittsburgh, 2008.

[18] P. Kruchten. Contextualizing Agile Software
Development. Vancouver, BC, Canada Proc. European
System, Software & Service Process Improvement &
Innovation (EuroSPI) 2010, 2010.

[19] T. L. Saaty, Theory and Applications of the Analytic
Network Process: Decision Making with Benefits,
Opportunities, Costs, and Risks. RWS Publications,
Pittsburgh, 2005.

244

Detecting Security Vulnerabilities using
Clone Detection and Community Knowledge

Fabien Patrick Viertel1, Wasja Brunotte1, Daniel Strüber2, Kurt Schneider1
1 Software Engineering Group, Leibniz University Hannover, Hannover, Germany

2 Software Engineering Division, Chalmers | University of Gothenburg, Gothenburg, Sweden
{fabien.viertel, wasja.brunotte, kurt.schneider}@inf.uni-hannover.de, danstru@chalmers.se

Abstract— Faced with the severe financial and reputation

implications associated with data breaches, enterprises now

recognize security as a top concern for software analysis

tools. While software engineers are typically not equipped

with the required expertise to identify vulnerabilities in

code, community knowledge in the form of publicly

available vulnerability databases could come to their rescue.

For example, the Common Vulnerabilities and Exposures

Database (CVE) contains data about already reported

weaknesses. However, the support with available examples

in these databases is scarce. CVE entries usually do not

contain example code for a vulnerability, its exploit or

patch. They just link to reports or repositories that provide

this information. Manually searching these sources for

relevant information is time-consuming and error-prone.

In this paper, we propose a vulnerability detection

approach based on community knowledge and clone

detection. The key idea is to harness available example

source code of software weaknesses, from a large-scale

vulnerability database, which are matched to code

fragments using clone detection. We leverage a clone

detection technique from the literature, which we adapted

to make it applicable to vulnerability databases. In an

evaluation based on 20 reports and affected projects, our

approach showed good precision and recall.

Security; Code Clones; Information Systems

I. INTRODUCTION
In today's interconnected world, security is one of the most

important challenges for companies and institutions [16].
Vulnerabilities in a software system allow hackers to intrude and
maliciously alter its behavior. The impact can range from minor,
such as bypassing the copyright of a movie, to major, such as the
malicious intrusion into a control system of a nuclear reactor [4].
An example for the latter case is the Stuxnet worm, which used
a weakness in a vendor driver library to infect 100.000 systems
worldwide and inflict physical damage. Consequently,
organizations begin assigning a higher priority to security as a
quality attribute in software development.

A key challenge is to check the complete source code for

DOI reference number: 10.18293/SEKE2019-183

vulnerabilities to avoid the associated exploits. Since software
developers are not equipped with the required security expertise,
ideally, security experts should review the whole source code of
a project. However, in the face of realistic projects that often
include hundreds of thousands of lines of code, a manual check
of the project by security experts is infeasible. To the rescue may
come available community knowledge from vulnerability
databases, such as the Common Vulnerabilities and Exposures
(CVE) [18]. The CVE provides detailed knowledge about a large
number of reported security flaws, including their impact.
Developers may want to leverage this knowledge by detecting
instances of the flaws in their projects. Unfortunately, the
associated manual process is time-consuming and error-prone:
Developers have to use a search engine in order to find relevant
entries based on the names of the used libraries. Then they must
manually scan the source code to uncover problematic uses of
the affected libraries. Even worse, support with available
examples in these databases is scarce. CVE entries usually do
not contain an example exploit or patch, but just a link to a report
or to a repository that provides additional information on proof
of concepts, patches, and exploits.

In this paper, we address the following research question:
How can we harness available community knowledge to
facilitate the detection of security vulnerabilities in software
code? We present an approach that uses code clone detection to
detect instances of known vulnerabilities in source code. Clone
detection aims to locate exact or similar code snippets, called
clones, in or between software systems [21].

Our approach, illustrated in Fig.1, involves on a security
code repository that contains security-relevant code snippets.
Each snippet instantiates a known vulnerability.

Figure 1. Approach Overview

The security code repository is created in a semi-automated
process using automated searches over the CVE database and a
large-scale code repository such as GitHub [6], and manual

245

refinement by developers. We detect duplicates of entries by
using clone detection. To this end we have adopted an existing
technique called SourcererCC [19], which fulfills two main
prerequisites of our approach: It is efficient, as it scales to huge
code bases with 100K LoC, and language-independent, as it
supports arbitrary programming languages.

Our contributions are as follows:

 A vulnerability detection technique that uses and
adapts an existing clone detection technique in
order to detect security vulnerabilities, based on
the given security code repository (Sec. III).

 A process for creating a security code repository
with code snippets that instantiate known
vulnerabilities, together with an initial version of
such a repository (Sec. IV).

 An evaluation, in which our approach was able to
detect the considered vulnerabilities with high
precision and recall (Sec. V).

Clone detection has been used during vulnerability detection
before. However, previous approaches were mostly limited to a
particular programming language and suffered from scalability
issues. We discuss related work in Sec. VI.

II. BACKGROUND
We recall a common taxonomy of code clones and its

implications for security.

Clone types. The common taxonomy of code clones [9]
distinguishes four clone types, based on the degree of similarity:
Type-1 clones are code fragments that are accurate copies of
each other, excluding whitespaces, blank lines, and comments.
Type-2 clones are structurally identical code fragments that may
differ in the names of variables, literals and functions. Type-3 or
near-miss clones are syntactically similar code fragments that,
opposed to Type-1 and Type-2 clones, may include changes like
added or removed statements. Type-4 clones are code fragments
with a different syntax, but similar semantics. The example in
Fig. 2 shows a code fragment CF0 together with each clone type.

Security considerations. The clone types have different
implications for security vulnerabilities. A vulnerability in a
code fragment most likely also affects Type-1 clones of that
fragment, since in most programming languages white spaces,
blank lines and comments do not change the behavior. Neither
does the change of variable names in Type-2 clones. However,
the change of literal and method names can have an impact: a
vulnerability may only occur when a specific method is called or
when specific literals are used. Type-3 are particularly
challenging for our approach, since an added line may render an
insecure fragment secure, and vice versa. For example, consider
the infamous buffer overflow weakness, where the problem is
that the buffer size is not checked before writing or reading of it.
A range check before accessing the buffer would fix this error,
but the resulting code fragment is still a Type 3 clone. Type-4
clones regard the semantics of code snippets. The security
impact of these clones depends on the chosen semantic
representation. The typical means for checking semantic
equivalence (such as pre- and post-conditions) are orthogonal to

contained security vulnerabilities. Therefore, we do not consider
Type 4 clones in our approach.

Figure 2. Clone-Types 1 to Type 4

III. VULNERABILITY DETECTION
Our vulnerability detection approach involves four steps:

Pre-Processing, Code Processing, Clone Detection and Results.
The Pre- and Code Processing consists of the substeps Parsing
& Tokenizing and Indexing. Only the Pre-Processing also
contains the step of the CVE Data linking to enrich the code
snippets with meta-information out of the CVE.

The input for the Pre-Processing step are the vulnerable code
snippets of the security code repository including their assigned
CVE metadata. During parsing, we identify contained methods
and constructors of each source file. Within the tokenization, we
create for each found method and constructor a separate token
file containing the occurred tokens. Furthermore, for each of
these files a file with bookkeeping information, in particular the
CVE id to later query concrete CVE details, will be created.
They also consist of links to code fragments which represent an
example patch and their exploit to give developers a better
understanding of the weaknesses for patching them afterward.
The resulting tokens will be indexed and are the outcome for the
preprocessing as well as the bookkeeping CVE information. It
has to be applied once each time if the content of the code
repository changes.

The Code Processing takes place every time if the source
code has been changed. Thereby, the same Parse & Tokenizing
and indexing like in the pre-processing will be applied but
without adding CVE data to the bookkeeping information. The
output of this step are the indexed tokens of source code files.

During the clone detection phase for each code fragment of
the security repository and for each method as well as
constructor inside of source files will be analyzed whether there
are code clones. In detail, the tokens of methods and constructors
will be compared. If a match is found, then the checked source
code is a code clone of an insecure code fragment, which implies
that it potentially also contains a security flaw. These code
clones will be interleaved with the CVE data out of the
bookkeeping information, which are the results of the
vulnerability detection. Thus, should help developers to receive

246

more knowledge to patch insecure source code fragments. The
described approach is visualized in Fig. 3. Later in this chapter,
the clone detection will be described in detail.

The effectiveness of this approach relies among others on the
data of the reference repository. Therefore, it is inevitable to
ensure the adaption and enrichment of knowledge by developers
or a repository maintainer. They are able to add new vulnerable,
patch and exploit code and modify already stored data.

A big problem for the code clone detection is the time
complexity to compute the pairwise similarity for each code
fragment combination. Execution time majorly scales with the
size of the input precisely of the number of lines of code (LOC)
that are processed and searched. For code clone detectors it is
prohibited as a time complexity of scalability - O(n²). If the
granularity of the code clone detector is method based, the
similarity comparisons increase quadratically with the number
of methods. For the SourcererCC various heuristics for reducing
the number of similarity computations are described by Sajnani
et al. [19]. In comparison of their approach to other state-of-the-
art code clone detectors like CCFinderX [8], Deckard [29],
iClones [30] and NiCad [31] they reach almost the same time
complexity of inputs less than one million LOC. For all bigger
input sizes, the SourcererCC has the best execution time.
Furthermore, the SourcererCC is the only clone detector of the
competing tools that scale to large input sizes of 100 million
LOC and is able to consider type 1 to 3 clones.

Figure 3. Vulnerability Detection Process

SourcererCC. As a basis for clone detection, we have
adopted a state-of-the-art code clone detector named
SourcererCC [19]. The detector supports Type 1 to 3 clones and
scales to large-scale project repositories while providing high
precision and recall. To quantitatively infer if two code snippets
are clones a similarity function is applied which returns the non-
negative degree of similarity between two code snippets. The
higher the value of similarity, the bigger is the likeness between
them. This function includes a threshold value ϑ that identifies
the lower-bound of the similarity value from which two code
fragments count as code clones. In other words, it is a percentage
value that represents how many tokens at least should be shared
by two code fragments to be identified as code clones. This
similarity value is the output of the clone detection process. In
the following, the similarity measurement is described formally:

Given two projects Px and Py, f as similarity-function and ϑ
as threshold, the aim is to find all code block pairs Px,B and Py,B
such that f(|Px,B|, |Py,B|) ≥ [ϑ * max(| Px,B|, |Py,B|)].

Adaptation of SourcererCC. We performed two main
adaptations of SourcererCC for our approach:

First of all, we adapted the format of the token files to our
needs and implemented a suitable tokenizer; thus its resulting

token files will be interleaved with related information out of the
CVE Database. Secondly, we adopted the code clone detector
itself to consider only inter-project clones, as discussed later in
this section. The main reason for this is that we plan to find
clones between an external code repository and a project and not
within a single project, like the clone detection is often used for.

Tokenizer. SourcererCC comes with a tokenizer for Java, C
and C#. However, for our approach, we needed a method to
interleave tokens with CVE meta-information such that clone
detection results could provide further security information.
Therefore, a custom token format was designed that combines
the token information with the additional bookkeeping details,
including the CVE id and the metadata of vulnerabilities. This
information allows us to trace back from code fragments to the
underlying weakness.

To apply the tokenizer a parsing of the source files is needed,
such that the tokenizer gets software artifacts of source files like
method names and constructors. For exemplary apply and
evaluate our approach, we focus on java source code such a java
parser is used for parsing code. For each method or constructor,
a new list of tokens is created. Whitespaces, operators and
comments are ignored. During this procedure, the tokenizer
loads the needed metadata out of the security repository. The
output of our tokenizer are two files, one including the tokens of
a code fragment and the other with the described bookkeeping
information enriched with security knowledge.

For further illustration, we present an example method
before the preprocessing was applied in Fig. 4.

Figure 4. Example: Java Input Source Code for Tokenizer

Figure 5 presents the output of the tokenization of Fig.4.

Figure 5. Created tokens of Fig. 4

To complete the tokenization, we count the number of
appearances of each token and add them to the output. Hence, a
token-file consist of every occurred method name, variable name
and its datatypes as well as return values that are named and
counted. Regarded to the design constraint for the Java and C#
languages, all executable code must be contained inside of
method bodies. Therefore, the granularity level for the
implemented tokenizer is set to method-based tokenization. This
means that only method respective constructors will be
processed inside of a class. Imports and class names will be
ignored. For other languages like C and C++ it is necessary to

247

adapt the tokenizer to a class-based tokenization through the
absence of this design constraint.

Inter-project clones. Clones can be either intra- or inter-
project clones, meaning that the instances of a clone may come
either from the same project or from different ones. In our
approach, we are only interested in inter-project clones, since we
aim to find matches between a given project source code and our
security code repository. More formally, let A be the set of
source files from the input project and B the set of snippets from
the security code repository. Furthermore, let (a0, …, an) and (b0,
…, bn) with n,m∈ℕ code fragments, for which ai∈A and bj∈
B with i,j∈ℕ. We are interested in pairs of code fragments (ai,
bj) being code clones.

SourcererCC finds both intra- and inter-project clones, and
by default it does not provide a configuration option to
deactivate the detection of intra-project clones. Therefore, the
Pre-Processing phase was added and the inputs for the clone
detection was adapted to ignore intra-project clones. Figure 3
presents the modified behavior of the clone detector.

IV. SECURITY CODE REPOSITORY
In our approach, a prerequisite for vulnerability detection is

a reference code repository called security code repository. This
repository contains source code snippets that instantiate already
reported weaknesses. Each snippet consists of example code for
a vulnerability, its exploit and a patch. We now describe the
procedure for creating a security code repository, which we used
to test and evaluate our technique. Our process relies on a large-
scale repository in which such snippets can be found. To this
end, we used GitHub, a suitable repository that is freely
accessible to the public. Our process, shown in Fig. 6, contains
the four steps Extract, Search& Filter, Export, and Proof.

Extract. To find security-related code snippets on Github,
adequate terms for the search are needed. We extract them from
the CVE database. A possible way to identify a concrete
vulnerability is its unique CVE identifier [18]. Therefore, we
extract these CVE-ids for the search to find security issues.

Search and Filter. For searching vulnerabilities on Github,
the pre-extracted CVE-ids will be used. If a file or a commit
within a project matches these identifiers, they will be
considered for further processing. To adjust the results of the
search to specific programming languages, we defined a file type
filter. For example, to restrict the search to Java files, the file
endings will be checked for the tag .java. Not every content of
the found files is security-related. Therefore, a manual prove is
necessary to ensure that resulted files contain only security-
related code. This procedure is described later in this section.

Figure 6. Repository Creation for Reference Code Fragments

Classification. Furthermore, we defined terms to distinguish
between the three classes of security-related files;
vulnerabilities, exploits and patches. For this classification, we
use a simple check whether terms are substrings of texts inside
of commits or project descriptions. Examples terms for the class
patches are fix, solve, update, patch for vulnerabilities the term
vulnerability and for exploits, the substrings are proof of concept
(POC) and exploit. We retrieved these terms by the manual
unsystematic analyze of founds of the CVE id search received
from GitHub. The founds will be automatically classified by
these terms into the three mentioned classes.

Export. The classified founds are stored into a code
repository with a SQLite database inside of its root. For all
matches its related and stored meta-information inside of the
CVE will be extracted into the SQLite database. This meta-
information are for example the concrete CVE description, the
CVE-id and a scoring which represents their characteristics,
impact and severity. The vulnerability scoring is based on the
Common Vulnerability Scoring System (CVSS) [28].

Proof. As post-processing the repository content has to be
manually reviewed to exclude file parts that do not contribute to
a vulnerability. If a file with a vulnerability in it is found, often
only a part of the file represents a vulnerable code snippet. A
security expert has to delete the unaffected methods in these files
such that only the critical code remains.

For the creation of a code repository, 20 different
weaknesses out of the CVE database were selected. Our
previous explained semi-automated tool-based approach found
source code examples of exploits, vulnerabilities and its patches
assigned to CVE-ids. Thus, security-related code fragments are
extracted out of Github. We have reviewed a subset of 102
reported security flaws to check their suitability for representing
a vulnerability code snippet that is usable for the approach
described within this work. For example, not eligible
vulnerabilities can be patched by only importing a newer library
version or loading them dynamically by a string literal.
Furthermore, code fragments for which weaknesses are spread
over multiple methods were partially also ignored. The reason
for this is that in the most cases code changes were too small to
match the three different types of code clones meaningfully.
Table 1 shows the selected vulnerabilities with their associated
CVE, their scoring and the affected product, as it is stored into
the CVE Database. The created security code clone repository
including the SQLite database is uploaded to Github [24].

V. EVALUATION
We evaluated the suitability of the described approach to

address our initial research question: How can we harness
available knowledge to facilitate the detection of security
vulnerabilities in software code? To this end, we consider the
following evaluation research questions:

RQ1: How many of the vulnerabilities inside of the CVE
are attributed to source code?

Not for every vulnerability the reason is a weakness in source
code. This question should identify how valuable the focus on
source code vulnerabilities is and how many of them could be

248

TABLE I. CODE REPOSITORY WITH SECURITY-RELATED CONTENT

found through using the knowledge of source code of entries
stored inside of the CVE by applying the described approach.

RQ2: How accurate is our approach at detecting previously
reported vulnerabilities?

We want to check whether it is possible to identify source
code reasoned weaknesses through a subset of the reported
vulnerabilities stored inside of publicly accessible databases like
the CVE.

RQ3: How well does our approach distinguish between
vulnerable and patched code fragments?

Sometimes only the change of a few lines of code is
necessary to remove a security flaw inside of a code snippet. We
investigate on which granularity we can distinguish between
patched and insecure code fragments through clone detection.

A. RQ1: How many of the vulnerabilities inside of the CVE

are attributed to source code?

First, we investigate how feasible it is to use the information
of known and documented vulnerabilities reported in databases
like the CVE. For this proof, we check the ratio of entries that
could be retrieved through errors within source code to them
which do have other origins. The more weaknesses based on
source code, the better is the concentration on detecting security
flaws within code artefacts. Through this survey the capability
of using the content of the publicly accessible database CVE to
recognize security issues invoked through source code will be
validated. To apply this investigation, the non-code content of
the CVE was manually screened. We recognized that in August
2018 only for 62 % of the 103745 CVE entries, a Common
Weakness Enumeration (CWE) identifier is assigned.

The CWE compresses different types of weaknesses, which
are all identified through a unique CWE-id and categorize
different manifestations of vulnerabilities. An example of these
types is CWE-306: Missing Authentication for Critical
Function. All to this type associated CVE entries are

vulnerabilities because of the absence of authentication for
critical functions. Therefore, CWE-ids are a well-suited attribute
found with our approach. A problem is that there is no identifier
for a type that implies all security issues appear within source
code. For every set CWE type, it was systematically proved
whether it is possible to retrieve out of its description the origin
they belong to; induced by source code or others like
configurations. A further problem is the absence of assigned
CWE-ids for 38 % of the entries of the CVE. The besides
without any type information were investigated with the use of
their description. Manual checks show that it is possible to find
CVEs based on source code via checking their descriptions for
the occurrence of substrings. The used substrings were divided
into five groups: File Name Endings, Attack Strategies,
Configurations, Rejects and Unclassified.

The group File Name Endings contains substrings that
represents the data types of programming language source files.
The hypothesis is that if a concrete file is addressed within the
description of a CVE than their occurrence is provable within
source code. Examples of file endings are .java, .cpp, etc.

As attack strategy count for example Cross-Site Scripting
(XSS), Buffer Overflow etc. The idea is to check for the names of
attack strategies that maliciously uses a vulnerability occurred in
source code like the buffer overflow example, which could be
prevented to buffer length checks.

Configuration related vulnerabilities are identified through
the occurrence of terms like config, cfg etc. We assume that for
CVE descriptions that mention at least one of these terms, their
belonging weakness is not detectable via source code analysis.

Rejects are the vulnerabilities that are still remain in the CVE
database but were rejected after review. They are marked with
the term Rejected. This are entries, which could be duplicates or
not representing a vulnerability at all.

The left CVE entries that not belong to one of the mentioned
groups were assigned to the group Unclassified CVE entries.
They will be not considered to answer this research question.
The partition of the CVE is summarized in a pie chart in Fig. 5.

Figure 7. Classification of CVE Database Content

To conclude the results, it is shown that 69 % of the public
available vulnerabilities are induced to source code issues. This
is composed through the 31% of entries with CWEs that
describes security flaws detectable within source code artefacts,
the 28 % with a description containing file endings of source
code files and the 20 % of CVEs that contain in their description
terms of attack strategies uses security flaws within source code.
To respond RQ1.1, it is a well-suited strategy to focus on source
code for identifying known and reported weaknesses.

249

B. RQ2: How accurate is our approach at detecting

previously reported vulnerabilities?

Experimental Setup

As vulnerability selection for our evaluation, we use the code
repository described into Sec. IV. To ensure that not only Type-
1 clones are detected but also Type-2 and Type-3 clones we
modified each vulnerable code fragment to match the
corresponding clone types. For example, all variable names were
renamed for Type-2 clones. To obtain Type-3 clones, we
removed or added some void statements to Type-1 and Type-2
clones. Our evaluation based on metrics of the information
retrieval like Recall, Precision and F1-measure as described by
Manning et al. [15]. We measured the recall based on the chosen
vulnerabilities considering the three different types of clones. In
this case, we know exactly the number of weaknesses so that the
recall can be measured precisely. The precision was measured
by a manual validation of the found and highlighted security
code clones. To combine precision and recall, we used F1-
measure.

The underlying clone detector uses a similarity function
inside its clone detection process. This function can be
configured by the threshold value ϑ. Three different ϑ values
were used for the evaluation in combination with the three
different types of clones. That means that for every clone type
exists three iterations with different thresholds. Beforehand we
examined distinct thresholds by hand. On the one hand, lowering
the threshold could harm precision. On the other hand, a too high
threshold could harm recall. Therefore 3.0, 5.5 and 8.0 were
selected as values for ϑ.

Results and Discussion

Each iteration passes every vulnerability with the given
configuration values. The Security Code Clone Detector has
flagged all Type-1 clones for the three different ϑ values. That
means that precision, recall, and F1 are 100 % for Type-1 clones.
The detection rate of Type-2 clones revealed that only eight
security flaws out of 20 were detected with a ϑ of 8.0. The reason
is that through the high ϑ value two code fragments must be too
similar to be recognized as code clones. Due to this the higher
the value of ϑ is the bigger the number of similar tokens inside
of two code snippets have to be. Thus lead to the low recall for
Types-3 clones cause the clones are too different to be code
clones of each other.

In contrast, the precision always is 100 %. This could be
attributed to the fact that we only focus on finding the three
different types of security code clones. The set of data only
consist of the given vulnerabilities and not of any secure code
fragments. Table 2 summarizes the clone detection results for
the security flaws and patches.

TABLE II. EVALUATION RESULTS

In the result table TP stands for true positives, R means
recall, P means precision and F1 stands for F1-measure. The high
recall values for all code clone types and ϑ modifications show
that we are able to recognize known and reported weaknesses
via our approach. The results for the recall are interleaved with
the size of the ϑ threshold. For small ϑ values every vulnerability
inside of the reference repository is detected, but this leads to a
lower precision. Therefore, the answer for RQ2 is that the
vulnerability detection for the described approach performs very
well with a leak of precision for Type-3 clones.

C. RQ3: How well does our approach distinguish between

vulnerable and patched code fragments?

Experimental Setup

In the next step, we have focused on checking precision.
Thereto the patched code fragments for the given vulnerabilities
were used to examine which security flaws will be detected as
vulnerable code clones falsely. In this case, we did not modify
the patched code fragments to match each of the three different
types of clones but used the code fixes directly as input for the
detection process. Patched code fragments distinguish to their
vulnerable complement with some changes that removes the
weak parts of that fragment. These changes differ in complexity.
Some have an extent of multiple lines but other distinguish only
by a single line to their vulnerable counterparts. The ϑ
configuration setup for every iteration was the same we
mentioned in RQ2.

Result and Discussion

As described in Sec. III, Type-3 clones are hard to detect.
The low precision values summarized in Tab. II can be ascribed
to the few code modifications inside the patches. Fundamentally,
the patches represent Type-3 clones. If a patch has enough code
modifications regarding its vulnerability, we can identify it as
secure code correctly. If the code changes are too small, it may
be flagged as weakness falsely. Relating to RQ3, it is possible to
distinguish between vulnerable and patched code fragments as
far as enough code modifications are present. On the one hand,
the capability to detect code clones of Type-3 increases the
amount of secure code, which is falsely identified as insecure.
This reduces the precision of the described approach. On the
other hand, through code clones of Type-3, the possibility exists
to find more code clones of vulnerable code fragments, which
increases the recall. Hence our goal is a high recall during
detection. Therefore, we accept the false positives within the
patch detection.

D. Threats to Validity

For the validity check of our evaluation, we consider the
types of threats to validity for empirical software engineering
research defined by Wohlin et. al. [26].

Conclusion: Maybe the selection criteria for building the test
set influence the results in terms of recall, precision, and F1-
measure. To be more precise, it is possible that the size of
selected code fragments influence the capability to distinguish
between patched and weak code fragments. We have not
considered the size of needed patches to close security flaws.

250

Internal: The used Java Runtime Environment version and
the library version of used source code are not considered. Some
code fragments are only insecure with specific Java versions or
library versions and are secure within other versions. This could
result in false positives for the classification of source code
fragments as vulnerable that are secure with the used versions.
Furthermore, it is imaginable that there are other code clone
detection approaches, which tackles the problem of vulnerability
detection inside of code fragments better than the chosen one.

Construct: The configuration and the ϑ adjustment of the
code clone detection approach affect the effectiveness of the
described procedure. Furthermore, the workflow and the
granularity level of the tokenizer influences the results of the
code clone detection approach.

VI. RELATED WORK
Vulnerability detection using clone detection. The clone

detector ReDeBug [7] is language agnostic and uses a syntax-
based pattern matching approach. It can detect some Type-3
clones but cannot detect Type-2 clones respectively clones with
slight code modifications. Furthermore one of the design goals
was a low false positive rate which harms recall. VulPecker [12]
is a system for automatically detecting if a piece of software
contains a vulnerability. It consists of a learning phase and a
selection algorithm to identify vulnerabilities. This approach can
detect Type-1, Type-2 and some Type-3 clones [13] in C/C++
code. CLORIFI [11] combines static and dynamic analysis to
detect code clone vulnerabilities. It identifies the security code
clones of known vulnerabilities with an n-token algorithm. With
the help of concolic testing, CLORIFI tries to reduce false
positives by verifying the security flaws. Our work is mostly
complementary to the presented ones, as we focus on
establishing a right balance between precision and recall, and use
a state-of-the-art back-end clone detector that allows us to
address scalability and language-independence simultaneously.

Static analysis for security. Our approach can be
considered as a static analysis technique that can uncover
vulnerabilities without executing the application at hand. Such
techniques have been used successfully to uncover
vulnerabilities, in some cases better than dynamic techniques
such as penetration testing [20]. Most previous techniques are
geared to detect specific vulnerabilities based on hard-coded
solutions, such as SQL injections [14] and buffer overflows [27].
Fischer et al. [5] have used static analysis to study how severely
Android apps are affected by vulnerabilities resulting from
copying code snippets from StackOverflow examples. In our
previous work [25] we present a tool-based approach that scans
imported Java dependencies for known vulnerabilities. It checks
the CVE if an entry for the corresponding library exists.
Furthermore, we present an approach [3] for maintaining a
knowledge base of security knowledge that is used to keep co-
evolve the system design after changes in the availability
knowledge (e.g., an encryption algorithm previously deemed as
secure is broken). However, this work was focused on the design
model level rather than on code-level vulnerabilities.

Code clone detection. Different code clone detection
approaches with distinct capabilities exist. In their survey,
Sheneamer et al. [21] distinguish the following main classes of

approaches. Text-based techniques (e.g. [1]) compares the
similarity of code fragments based on terms of textual content.
While focusing mostly on Type-1 clones without preprocessing,
they are language-independent and easy to implement. Lexical
techniques (e.g. [8,19]) divide the input code into a sequence of
tokens that are converted into token sequence lines, which are
then matched to another. Such techniques can detect various
code clone types with higher recall and precision than text
passing techniques. Syntactic techniques are either metric-based
or tree-based. Tree-based (e.g., [2]) and graph-based techniques
(e.g., [22]) parse the code into abstract syntax trees and find
cloned code parts using tree-matching algorithms. Metric-based
ones (e.g. [17]) compare source code snippet based on metric
vectors created for each code snippet. This technique is able to
detect Type-1 and Type-2 clones with high time complexity. It
reduces the complexity of text-based approaches. Semantic
techniques (e.g., [10]) detect two fragments of code that perform
the same computation but have differently structured code,
which was already named as Type-4 clone.

VII. CONCLUSION
The use of a single vulnerable code snippet can make a whole

system insecure [23]. We introduce an approach to prove code
fragments of reported vulnerabilities automatically. We detect
insecure parts of source code via code clone detection by using
code fragments that contain known vulnerabilities. As a result, a
developer can be supported in the writing of secure code right
from the beginning. With the aid of a database, it is possible to
show information about reported security flaws. This
information can be used to understand a weakness and, if
necessary, provide a patch. The results of the evaluation show
that detecting insecure code fragments work very well. We show
that there are difficulties in distinguishing between patched and
vulnerable source code fragments that are too similar to each
other. The capability to detect small differences between them
depends on the configuration and the distinction of line
circumference from the vulnerable and patched fragments. Our
work provides an Eclipse plug-in for supporting Java software
developers [24]. Furthermore, we investigated the feasibility to
distinguish between patched and vulnerable code snippets for
our approach. We analyzed the CVE database content to
underpin leveraging knowledge of reported vulnerabilities for
the detection of security flaws within the source code.

Our future research is striving to compare artificial
intelligence approaches in the form of neural networks with the
static code clone detection approach described in this work. To
solve the problem of our internal validity, we want to enhance
the described approach such that the JRE Version of software
projects and the recognition of library versions will be
considered. Furthermore, a user study about the perception and
effectiveness of helping developers and security experts to
classify source code fragments is planned. The capability of the
code clone detectors in the described approach relies on the data
included in the reference code repository. Therefore, we expect
to investigate further techniques to enhance the security-related
source code within the code repository via leveraging
community knowledge. Furthermore, we plan to improve the
semi-automatically classification into exploit, vulnerable and
patch code fragments.

251

VIII. ACKNOWLEDGMENT
This work was supported by the German Research Foundation
(DFG) under SecVolution (2016 – 2019).

REFERENCES
[1] Baker, B.S.: On finding duplication and near-duplication in large software
systems. In: Reverse Engineering, 1995., Proceedings of 2ndWorking
Conference on. pp. 86{95. IEEE (1995)
[2] Baxter, I.D., Yahin, A., Moura, L., Sant'Anna, M., Bier, L.: Clone
detection using abstract syntax trees. In: Software Maintenance, 1998.
Proceedings., International Conference on. pp. 368{377. IEEE (1998)
[3] Bürger, J., Strüber, D., Gärtner, S., Ruhroth, T., Jürjens, J., Schneider, K.:
A framework for semi-automated co-evolution of security knowledge and
system models. In: Journal of Systems and Software 139, pp. 142{160 (2019)
[4] Devanbu, P.T., Stubblebine, S.: Software engineering for security. In:
Finkelstein, A. (ed.) Proceedings of the Conference on The Future of Software
Engineering. pp. 227{239. ACM, New York, NY (2000)
[5] Fischer, F., Böttinger, K., Xiao, H., Stransky, C., Acar, Y., Backes, M.,
Fahl, S.: Stack overow considered harmful? the impact of copy&paste on
android application security. In: Security and Privacy (SP), 2017 IEEE
Symposium on. pp. 121{136. IEEE (2017)
[6] Inc., E.: Github (2008), https://github.com/
[7]. Jang, J., Agrawal, A., Brumley, D.: Redebug: finding unpatched code
clones in entire os distributions. In: Security and Privacy (SP), 2012 IEEE
Symposium on. pp. 48{62. IEEE (2012)
[8] Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: a multilinguistic token-
based code clone detection system for large scale source code. IEEE
Transactions on Software Engineering 28(7), 654{670 (2002)
[9] Koschke, R.: Survey of research on software clones. In: Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2007)
[10] Krinke, J.: Identifying similar code with program dependence graphs. In:
Reverse Engineering, 2001. Proceedings. EighthWorking Conference on. pp.
301{309. IEEE (2001)
[11] Li, H., Kwon, H., Kwon, J., Lee, H.: Clorifi: software vulnerability
discovery usingcode clone verification. Concurrency and Computation:
Practice and Experience 28(6), 1900{1917 (2016)
[12] Li, Z., Zou, D., Xu, S., Jin, H., Qi, H., Hu, J.: Vulpecker: an automated
vulnerability detection system based on code similarity analysis. In:
Proceedings of the 32nd Annual Conference on Computer Security
Applications. pp. 201{213. ACM (2016)
[13] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H.,Wang, S., Deng, Z., Zhong, Y.:
Vuldeepecker: A deep learning-based system for vulnerability detection
(2018)
[14] Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java
applications with static analysis. In: USENIX Security Symposium. vol. 14,
pp. 18{18 (2005)
[15] Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information
Retrieval. Cambridge University Press, Cambridge, United Kingdom (2009)
[16] Mayer, C.P.: Security and privacy challenges in the internet of things:
158 kb / electronic communications of the easst, volume 17: Kommunikation
in verteilten Systemen 2009 (2009)

[17] Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic
detection of function clones in a software system using metrics. In: icsm. vol.
96, p. 244 (1996)
[18] Mitre: Common vulnerability and exposures (1999), https://cve.mitre.org/
[19] Sajnani, H., Saini, V., Svajlenko, J., Roy, C.K., Lopes, C.V.:
SourcererCC: Scaling Code Clone Detection to Big-Code. In: 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE).
pp. 1157{1168 (May 2016)
[20] Scandariato, R., Walden, J., Joosen, W.: Static analysis versus
penetration testing: A controlled experiment. In: Software Reliability
Engineering (ISSRE), 2013 IEEE 24th International Symposium on. pp.
451{460. IEEE (2013)
[21] Sheneamer, A., Kalita, J.: A Survey of Software Clone Detection
Techniques. International Journal of Computer Applications 137(10), 1{21
(2016)
[22] Strüber, D., Acreţoaie, V., Plöger, J.: Model clone detection for rule-
based model transformation languages. Software & Systems Modeling 18(2),
pp. 995{1016 (2019)
[23] US-Cert: United states computer emergency readiness team (2003),
https://goo.gl/ZCuCc8
[24] Viertel, F.P., Brunotte, W., Strüber, D., Schneider, K.: Security Code
Repository and Code Clone Detection Eclipse Plug-In (2018),
https://github.com/dev-se/sccd
[25] Viertel, F.P., Kortum, F., Wagner, L., Schneider, K.: Are third-party
libraries secure? a software library checker for java. In: The 13th International
Conference on Risks and Security of Internet and Systems, CRISIS (2018)
[26] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén,
A.: Experimentation in software engineering. Springer Science & Business
Media (2012)
[27] Zitser, M., Lippmann, R., Leek, T.: Testing static analysis tools using
exploitable buffer overflows from open source code. In: ACM SIGSOFT
Software Engineering Notes. vol. 29, pp. 97{106. ACM (2004)
[28] NIST: Common Vulnerability Scoring System (2005),
https://nvd.nist.gov/vuln-metrics/cvss
[29] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
Deckard: Scalable and accurate tree-based detection of
code clones. In Software Engineering, 2007. ICSE
2007. 29th International Conference on, pages 96{105,
May 2007.
[30] N. Gode and R. Koschke. Incremental clone detection.
In Software Maintenance and Reengineering, 2009.
CSMR '09. 13th European Conference on, pages
219{228, March 2009.
[31] J. R. Cordy and C. K. Roy. The nicad clone detector.
In Proceedings of the 2011 IEEE 19th International
Conference on Program Comprehension, ICPC '11,
pages 219{220, Washington, DC, USA, 2011. IEEE
Computer Society.

252

DOI reference number: 10.18293/SEKE2019-204

Case-Based Cybersecurity Incident Resolution

Marcelo Colome, Raul Ceretta Nunes, and Luis Alvaro de Lima Silva

Graduate Program in Computer Science - PPGCC

Applied Computing Department, Federal University of Santa Maria

Av. Roraima, Campus UFSM, Camobi, Santa Maria, RS, Brazil

{marcelocolome, ceretta, luisalvaro}@inf.ufsm.br

Abstract - Intelligent computing techniques have a paramount

importance to the treatment of cybersecurity incidents. In such

Artificial Intelligence (AI) context, while most of the algorithms

explored in the cybersecurity domain aim to present solutions to

intrusion detection problems, these algorithms seldom approach

the correction procedures that are explored in the resolution of

cybersecurity incident problems that already took place. In

practice, knowledge regarding cybersecurity resolution data and

procedures is being under-used in the development of intelligent

cybersecurity systems, sometimes even lost and not used at all. In

this context, this work proposes to integrate Case-Based

Reasoning techniques and IODEF standard in order to retain

concrete problem-solving experiences of cybersecurity incident

resolution to be reused in the resolution of new incidents.

Experimental results so far obtained with a Case-based

Cybersecurity Incident Resolution System (CbCSecIRS)

implemented show that information security knowledge can be

retained in a reusable memory, so improving the resolution of

new cybersecurity problems.

Keywords— Cybersecurity incidents; case-base reasoning;

information security.

I. INTRODUCTION

Information security issues have a critical impact on busi-
ness mainly because the treatment of security incidents is
highly expensive and time consuming to organizations. Ac-
cording to the ISO/IEC 27035 [1], processes of information
security management should be grounded on approaches to the
capture, structuring, and dissemination of security knowledge
in each part of the organization. Fundamentally, security
knowledge is expressed as various kinds of lessons learned
constructed and refined over the time by cybersecurity experts
about how to identify and treat cybersecurity incidents. As
investigated here, this knowledge must be retained and reused
systematically so that cybersecurity problems could be effec-
tively approached. When such knowledge-based solutions are
reused, for instance, the cost of reapplying them (instead of
reconstructing them from scratch) each time a cybersecurity
incident occurs can be reduced significantly. In crisis situa-
tions due to the occurrence of cybersecurity incidents, the
collection and representation of incident resolution (CSecIR)
procedures is fundamental to organizations since they can be
revisited by security analysts as to promptly and comprehen-
sively approach the treatment of cybersecurity issues.

The use of central systems in the collection, correlation,
and analysis of data related to security incidents is a common
practice in many countries, where Computer Emergency Re-
sponse Teams (CERT) commonly detect and report thousands

of cybersecurity incidents a year. Each time an incident is
reported by the CERT, it should be analyzed and solved by the
Computer Security Incident Response Team (CSIRT) which is
in charge of managing the computer network where the inci-
dent took place. To help the sharing of security information
exchanged between CSIRTs or other operational security
teams, the Internet Engineering Task Force (IETF) has pro-
posed the Incident Object Description Exchange Format
(IODEF) [2], which is a format directed to the broad represen-
tation of computer security information. Moreover, an IODEF
extension aiming to facilitate the representation and exchange
of enriched cybersecurity information was also proposed [3,
4]. Despite these efforts, it is still challenging to reuse security
solutions [5, 6], especially those derived from concrete experi-
ences of cybersecurity incident problem-solving.

In Artificial Intelligence (AI), while machine learning al-
gorithms explored in the cybersecurity domain are aimed at
presenting reliable intrusion detection solutions, these algo-
rithms seldom approach the representation and reasoning with
cybersecurity incident resolution procedural knowledge. In
practice, such cybersecurity knowledge is being under-used in
the development of intelligent cybersecurity systems, decreas-
ing the effectiveness of Cybersecurity Incident Resolution
Systems (CSecIRS). With the help of the Case-Based Reason-
ing (CBR) techniques [7], this paper approaches the collection
and representation of this knowledge in the form of cases.
Importantly, such cybersecurity incident resolution cases can
be shared and reused as part of fundamental case-based
knowledge management tasks [8, 9]. In this context, this paper
shows how to build Case-based Cybersecurity Incident Reso-
lution Systems (CbCSecIRS) based on information security
attributes detailed according to the IODEF standard, including
its cybersecurity extension. Instead of acting as a single cyber-
security solution, the overall idea of following the IODEF
pattern is to permit to integrate the CbCSecIRS representation
and reasoning capabilities from both intrusion detection sys-
tems and cybersecurity incident resolution systems.

The paper is structured as follows: Section II describes
how cybersecurity incidents are approached and Section III
presents related works where CBR techniques are explored in
the cybersecurity domain. While Section IV presents our
CbCSecIRS proposal, Section V describes experiments and
results so far developed in our project. Finally, conclusions are
presented in Section VI.

253

II. THE RESOLUTION AND REPRESENTATION OF

CYBERSECURITY INCIDENTS

Knowledge regarding the resolution of cybersecurity inci-
dents is a crucial asset to organizations. To be competitive,
large amount of resources are being invested by security com-
panies in order to not lose their valuable cybersecurity incident
resolution experiences. By maintaining such lessons learned in
a reusable memory, security analysts have the means of avoid-
ing the costly reconstruction of “new” security solutions each
time a cybersecurity incident problem occurs. Although large
amount of data about incidents is being collected and explored
by security companies via different AI approaches, the
ISO/IEC 27035 standard [1] states that the processes of cyber-
security incident treatment can be organized in different activi-
ties: i) Plan and prepare: aim to develop incident treatment
plans, check-lists of tasks to be executed when such cyberse-
curity threads occur, and communication plans aiming to rec-
ord information about how entities involved should be prepare
to communicate in the occurrence of security calamities; ii)
Detect and report: as recommended in [10], multiples forms of
reporting the cybersecurity incidents should be explored. In
addition to the manual reporting, cybersecurity incidents can
be reported automatically by security services or other entities
as CERTs; iii) Evaluate and decide: the concrete occurrence of
the cybersecurity incident should be evaluated, as well as the
magnitude and consequences of such incident. Once this eval-
uation is developed, the origin of the cybersecurity incident
can be traced properly; iv) Respond: involves the incident
treatment actions that are properly planned in advance. Based
on such treatment plans, recommended problem-solving steps
aimed to deal with the cybersecurity incidents are executed. It
means that appropriate resolution actions should be taken as to
recover from the cybersecurity incident, in addition to incident
documentation and communication to stakeholders; v) Record:
the recording of the lessons learned should start as soon as the
cybersecurity incident is closed. In doing so, this recording
aims to assess whether the solution designed by the CSIRT
was successful. An important task here is to document the
cybersecurity incident, including not only its categorization
but also its procedures of treatment.

In this paper, the techniques proposed are concerned with
the outputs of the detect and report activities, retrieving past
cybersecurity incident solutions that are relevant to the devel-
opment of evaluate and decide activities. Then, cybersecurity
incident resolution plans retrieved are used in respond activi-
ties, permitting to construct new plans to be explored in the
record activities. So, a typical problem in such cybersecurity
incident resolution scenario is the maintenance of lessons
learned. We highlight such lessons are not only captured by
the recording of factual information of cybersecurity incidents.
In practice, alternative machine learning techniques can be
successfully explored in the learning of how to automatically
detect cybersecurity threads from such factual data. What we
highlight in this work is that these lessons are also formed by
the treatment procedures used by security analysts in the reso-
lution of cybersecurity incident problems. So, this concrete
experience-based knowledge ought to be collected and stored
so that it can be shared among different security systems, in

addition of being queried and reused as to better solve new
cybersecurity incidents.

In the processes of cybersecurity incident treatment, the
IODEF standard defines a data format directed to the repre-
sentation and exchanging of information about cybersecurity
incidents [3, 4]. The IODEF data model includes data about
hosts, networks and services; attack methodologies and foren-
sic pieces of evidence; incident impact; and approach to doc-
ument the cybersecurity investigation and treatment workflow.
This standard also provides a framework to share the incident
information that is usually exchanged by CSIRTs as to facili-
tate the machine-processing of such information. In essence,
the IODEF data format is organized in set of data classes,
derived from a basic class Document that contains one or more
Incident class. Each aggregated Incident class describes in its
derived classes commonly exchanged information when re-
porting or sharing derived analysis from security incidents.
The cybersecurity incident IODEF extension [3, 4] increased
Incident class representation capabilities. Despite the large
number of resources provided by the IODEF, as it was devel-
oped to be adaptable to the different organizational needs, the
classes that are required to represent a cybersecurity problem
are of particular importance as this paper shows how a
CbCSecIRS can explore them in the representation of concrete
experiences of cybersecurity resolution problems (details in
the section IV).

III. CASE-BASED REASONING IN THE CYBERSECURITY DOMAIN

In AI, Case-Based Reasoning [7] relies on a lazy-learning
approach to machine learning which focuses the resolution of
new problems by reusing solutions recorded in past problem-
solving experiences represented as “cases”. Given a new prob-
lem to be solved as a query in such CBR systems, the key
problem-solving steps are 1) the retrieval of similar cases from
a case base, 2) the reuse of solutions recorded in the most
similar cases retrieved, 3) the revision of such retrieved solu-
tions as to deal with possible differences between past and
new case situations and 4) the retention of new case-based
problem-solving experiences in the case base as a way of
learning how to solve new problems. Relevant works with
CBR in cybersecurity research context follow.

In [11], a CBR system explores the organization of attack
cases, where a hierarchical structure containing attributes from
possible attack situations is used in the representation of such
problem cases. To detail the solutions of such cases, the textu-
al description of countermeasures and the user satisfaction
degree for solution proposals are used. Although this work
presents a relevant solution for this cybersecurity knowledge
management problem, it only approach a limited set of re-
sponse types to incidents.

With the use of CBR, [12] details a RFM (Recency, Fre-
quency, Monetary) technique aimed at reducing false alerts.
Considering how recent the security event occurred, its fre-
quency and attributes values, this approach relies on the statis-
tical analysis of log files to detect anomalies. Then CBR is
applied on the identification of attack patterns that are similar
to past ones. This work is also focused on the incident detec-
tion and determination of security event responses, where such
responses are expressed as commands to computer security

254

services. However, this work does not explore the collection
and representation of response plans to the treatment of cyber-
security incidents.

In [13], ontologies are integrated to CBR techniques in or-
der to construct a decision-making and response system to the
treatment of cybersecurity incidents. In particular, the ontolo-
gy model is used in the standardized representation of such
incidents, resulting on a hierarchical organization of attack
types. While this work does not follow cybersecurity represen-
tation standards, the collection of automated attack infor-
mation and manual attack information are the inputs of the
resulting CBR system.

In [14], a CBR system to support the construction of cy-
bersecurity incident responses is described. Using information
from past attack cases, this system classifies new attacks to
better maintain a secure network. While each attack is repre-
sented by a sequence of events, each response is represented
by a partially ordered set of resolution actions. These attacks
are compared with past attack cases stored in a case base,
allowing the reuse of response plans recorded as a solution to
the new attack situation. Although this work considers the
determination of responses to cybersecurity incidents, it is
mostly focused on the incident detection through CBR.

From such works, it is possible to state that the exploration
of CBR techniques in the cybersecurity domain is limited and
the benefits due to the integration of such AI technique with
cybersecurity data standards are still open to investigation.
Relying on the proposal of a CbCSecIRS proposal, this paper
aims to further approach this gap.

IV. A CASE-BASED REASONING MODEL FOR CYBERSECURITY

INCIDENT RECORDING AND RESOLUTION

The recording and reasoning with expert knowledge re-
garding to the resolution of cybersecurity incidents is crucial
to the effective treatment of new incident problems. In our
Case-based Cybersecurity Incident Resolution System
(CbCSecIRS) this knowledge is approached as concrete expe-
riences of problem-solving modeled as cases. Once such cases
stored in a case base are available for similarity-based compu-
tations, detailed experience-based answers to the resolution of
cybersecurity incidents can be better reused by security ana-
lysts. In practice, concrete cybersecurity incidents are recorded
in a shared memory, allowing security teams to maintain reus-
able security treatment knowledge.

To allow cybersecurity incident cases (represented as prob-
lem-solution pairs) to be reused, the first modeling task is to
represent the problem (incident) according to the IODEF
standard. In this way, such incident representation is in con-
formity with other security proposals directed to the improve-
ment of the operational capabilities of CSIRT teams [3, 4].
Once the incident representation complies with IODEF stand-
ard, the CbCSecIRS can communicate with other security
systems to allow the acquisition/exchange of cybersecurity
incident cases (i.e. problem part of such cases). In addition,
security logs received along with incident descriptions can
also be examined by security analysts as part of the case ac-
quisition and representation tasks.

The case-based process of cybersecurity incident treatment
starts when incidents represented in IODEF are captured by
the security analysts. Using the CbCSecIRS, concrete occur-
rences of new cybersecurity incidents are taken as queries.
Once retrieved cases (similar to the current incident situation)
are available for examination, the incident treatment plans
recorded in the cases retrieved can be re-executed. When such
proposed solutions prove to be effective in the resolution of
the current problem, such new experience of problem-solving
can be recorded in the case base as part of a continuous im-
provement of the case knowledge which is maintained by the
system. If there isn’t a good solution and a new resolution is
planned and executed, it also can be recorded in the case base.
Such recordings allow the CbCSecIRS to dynamically learn
new cases as to augment its capabilities of solving cybersecu-
rity incidents.

A. The Case Base Modeling

In the modeling of a case, an incident (problem) is repre-
sented by a set of attributes and values along with the incident
resolution (treatment plan) expressed by a set of actions. Each
incident presents particular behaviors and requires particular
attributes to be recognized. Thus, a cybersecurity incident in
the CbCSecIRS is modeled by incident type, where types
considered in our project are listed in Table I.

TABLE I. INCIDENT TYPES MODELED IN THE CASE BASE

Type Description

Bot An organization asset starts to be part of a malware
infected computer network. The computers of this
network are controlled by hackers (botmasters)

DoS Deny of service attack. An inundation attack against
a target (host or service) to turn it unavailable. This
cybersecurity incident can be centralized or distrib-
uted (DDoS)

Proxy A proxy server is infected in order to make anony-
mous the hackers that are using it. So, such anony-
mous hackers use the proxy server to make other
attacks

MaliciousURL It is a computer storing malicious files which are
accessible by a URL

Copyright A host shares or received protected material by
copyright

Spam Unsolicited message sent from a host to other users

Scan A host scans other host ports in order to find vul-
nerabilities that may allow an attack

LoginAttempt Login attempts by brute force in a service account.
The overall aim is to obtain an un-authorized access
on the system

Phishing It is an attempt of deceive a legal user using a fake
web page with is similar to a correct one

Defacement Content modification of legal web site without
authorization

The attribute selection by incident type derived from the
incident characterization detailed in [11-14]. After the identifi-
cation of such set of attributes from literature, its consistency
was checked against the cybersecurity incident reported by the

255

Brazilian academic network CSIRT. While there are attributes
that are common to different types of cybersecurity incidents,
others are specific to one type. As a result, eight common
attributes and twelve specific attributes were detected and
selected to model the incidents in a case. Despite our selection,
we highlight the expert can include others when necessary.

To represent the incident case, the modeled cybersecurity
incidents were mapped to IODEF format. Figure 1 illustrates
how the standard IODEF classes were adapted to support our
case model. The Incident class derives from IODEF-
Document class. It is mandatory in IODEF format. The
IODEF-Document class contains the attributes version and

lang that according to RFC4646 [15] must ever be filled. The

Incident class expresses a standardized description of com-
monly shared incident attributes. It specifies the time the inci-
dent is reported (DetectTime) along with a textual descrip-

tion of the incident (Description). The purpose attribute is

mandatory and it is used to express the reason by which the
IODEF document was created (traceback, mitigation, report-
ing, other). The Flow, System, Node, Address, and Operat-
ingSystem classes describe environment features involved in
the cybersecurity incident. The Method class describes the
method used in the attack and its derived Reference class
makes reference to vulnerabilities, alerts from IDSs, data
about malwares, and other information from the IODEF cyber-
security extension format. The Service and Application classes
describe details about attributes related to resources involved
in the incident. Finally, AdditionalData class is included to
extend the IODEF model, representing different attributes like
Logs, HashFromMalware, Agent, Title, Size, IpCC, IpOrigin,
TtConnections, ProxyType.

Fig. 1. The IODEF representation used by incident resolution cases.

B. Resolution of Cybersecurity Incidents

The cybersecurity incident experiences of problem-solving
retrieved from the case base ought to be the most similar cases
to the current problem. As implemented in the CbCSecIRS,
this similarity is indicated by a numerical value between 0 and
1, where 1 is the highest similarity between two cases. The
similarity computation is developed by comparing n pairs of ai
and bi attributes represented in the case structure. Once such
local similarities (similarities between attributes) are comput-
ed, a global similarity (similarities between cases) is meas-
ured. To compute this global similarity, an aggregation func-
tions make use of weight values associated to each attribute

used in the similarity computation. As described in the Equa-
tion (1), these weight value Wi represent the relative im-
portance of the i attributes in the solution of the problem.
Based on this similarity assessment, the resulting similarity
computation indicates how similar the cases a and b are.

𝑠𝑖𝑚(𝑎, 𝑏) = ∑ 𝑊𝑖 × 𝑠𝑖𝑚𝑖(𝑎𝑖 , 𝑏𝑖)

𝑛

𝑖=1

 (1)

To compute the distance between two cases, the Euclidean
distance function is used. The solution of a cybersecurity inci-
dent problem involves the characterization of a problem situa-
tion and the consequent selection and execution of a set of
actions/procedures directed to the correction (mitigation) of
the problem. In this work, these actions are recorded in body
of cases as simplified plan-like structures of incident treat-
ment. Figure 2 illustrates a plan constructed by security ana-
lysts from the security division of a commercial data center to
approach a Bot incident type. In practice, this plan details a
cybersecurity resolution script that is followed by these ana-
lysts when they need to treat a cybersecurity incident situation.

Fig. 2. Response plan used in the treatment of a Bot incident.

Fig. 3. Incident cases represented according to a cybersecurity incident

resolution action library.

256

To standardize the description of cybersecurity incident
resolution plans, a set of actions was represented in a library.
So, resolution actions are reused from this repository in the
specification of treatment plans for different kinds of cyberse-
curity incidents. For instance, Figure 3 presents three different
cases in which their respective treatment plans were detailed
according to plan step indices defined in the library (labeled
according to such indices). In practice, the library reflects the
steps used in the treatment of the cybersecurity incidents
stored in the case base of the CbCSecIRS.

In our project, the CbCSecIRS implemented the K-Nearest
Neighbours algorithm, where a (weighted) Euclidian distance
function was used in the computation of case similarities, and
the consequent retrieval of cases from the case base as to pro-
vide cybersecurity treatment answers to incident situations
detailed as queries.

V. EXPERIMENTS AND RESULTS

Experiments were developed as part of the evaluation of
the CbCSecIRS approach proposed in this work. The goal was
twofold: first, to assess the reuse of past experiences of cyber-
security incident problem-solving in the resolution of new
problems in this cybersecurity domain and, second, to assess
the accuracy of the CbCSecIRS implemented. To approach
these goals, a set of 259 cybersecurity incidents used in the
experiments were collected from the security division of a
commercial data center.

To approach the first experimental goal, new cybersecurity
incident situations were collected and used in the tests: the
cybersecurity incidents number 2102389 and 2261674 (these
are solved cybersecurity incident problems by different partic-
ipants of the security team of the company, although they were
not known during the system development). Each one of these
new case problems was expressed as a query in the CbCSe-
cIRS, allowing one to retrieve the most similar cases to them
from the case base. In many senses, the aim was to examine if
the cybersecurity resolution procedures recorded in the re-
trieved cases could be reused on the treatment of the current
problem. In doing so, the retrieved cases for each executed
query were presented to a security expert from the commercial
data center organization. Whenever possible, this expert of-
fered positive feedback when the resolution plan retrieved
could be properly reused on the treatment of the current prob-
lem situation. An example of such research in action case
study is presented in Figure 4.

Fig. 4. Incidents number 2102389, 1483711 and 1510754.

In Figure 4, the 2102389 incident was used as a query in
the CbCSecIRS, allowing one to retrieve the 1483711 and
1510754 incidents from the case base. All these incidents were
characterized as Bot types. These retrieved cases have treat-
ment plans that were considered similar to the plan recorded in
the query case. So, the CbCSecIRS was successful on the
resolution of this 2102389 test case, showing that the proposed
technique was able to maintain the cybersecurity incident
resolution knowledge to this kind of problem.

Another example is presented in Figure 5. To the 2261674
incident used as query, the 1022675 and 1620589 cases were
retrieved from the CbCSecIRS case base. Both retrieved cases
were of the Copyright type detailing the illegal sharing of
movies in the BitTorrent platform. In relation to the treatment
plan represented in the retrieved cases, only the 1022675 case
contained a highly similar treatment plan in relation to the plan
recorded in the query case. Although a solution to the 2261674
query situation could be obtained with the reuse of the plan
recorded in the most similar case retrieved, the 1620589 case
recorded a new kind of treatment in relation to the other cases
considered. Figure 5 presents these cybersecurity incident
treatment plans side-by-side, allowing one to observe that the
2261674 incident contained more detailed resolution steps
than the more general resolution ones represented in 1620589
case. It means that the retrieved solution could not be fully
reused in the solution of the test case situation. That was be-
cause it was necessary to develop more particular resolution
actions in the treatment of the current problem situation. All in
all, as part of traditional knowledge acquisition and representa-
tion tasks, improvements in the ways cybersecurity resolution
procedures are represented in cases still have to be applied in
the CbCSecIRS proposal.

Fig. 5. Incident resolution plans for cases 2261674 and 1620589.

In addition to such research in action case study experi-
ments, tests aiming to evaluate the CbCSecIRS accuracy were
developed as part of the second experimental goal. To do so,
the cases in the case base were randomly divided in p parti-
tions of equal size, where p = 10. Then, a K-Fold Cross Vali-
dation technique was used in the evaluation of the system
accuracy. In different test runs, for instance, the cases belong-
ing to one of these partitions were used as query cases, while
the remaining cases were maintained in the case base so that
they could be retrieved as solutions for such a query. In case
the retrieved cases and the query cases contained similar cy-
bersecurity incident resolution plans, the answer generated by
the system was considered correct. Otherwise, the system
offered an incorrect answer to the current problem situation. In

257

a first run, tests were developed using a similarity function in
which a weight = 1.0 was attached to all case attributes being
used in the similarity computations, indicating that such attrib-
utes have the same importance in such computations. In a
second run, the weight values for such case attributes were
adjusted according to the opinion of a cybersecurity domain
expert from the commercial data center organization.

Table II shows the accuracy results obtained when the K-
Fold Cross Validation technique was executed. Although con-
sidering different similarity thresholds in the retrieval algo-
rithm used by the CbCSecIRS (95% and 60% minimal similar-
ities), these accuracy results were positive (i.e. as good as to
accuracy results presented by other works in this application
domain [11-14]) when adjusted weight values were used and
when all weight values were equal to 1.0 in the similarity
function used by this system.

TABLE II. THE ACCURACY OF THE CBCSECIRS

 1-NN 2-NN 3-NN 4-NN 5-NN

Similarity threshold = 60%,

weights w = 1

87.50 84.38 88.89 83.33 80.00

Similarity threshold = 95%,
weights values determined

by a domain expert

93.33 90.00 95.24 91.67 90.00

VI. CONCLUDING REMARKS

Organizations spent a lot of time and money on the treat-
ment of cybersecurity incidents due to the fact that it is still
challenging to maintain their concrete experiences of cyberse-
curity problem-solving. To approach this problem, this work
describes the knowledge acquisition and representation activi-
ties that cybersecurity system developers can explore when
building CbCSecIRS. In doing so, the cybersecurity incident
case model used by these CbCSecIRSs is based on attributes
detailed in the IODEF standard. Instead of acting as an isolate
cybersecurity solution, the overall idea of following the
IODEF standard is to permit to integrate the reasoning capabil-
ities from both intrusion detection systems and cybersecurity
incident resolution systems.

As discussed in this work, the CbCSecIRS offers the capa-
bility of retrieving cybersecurity incident data and incident
resolution procedures represented in cases. Such cybersecurity
knowledge is are organized and specified explicitly in the case
structure, allowing to be reused by security analysts in differ-
ent cybersecurity problems. In particular, cybersecurity
knowledge regarding incident resolution actions now recorded
in cases amount to a concrete explanation about how to better
approach those kinds of problems. This explanation capability
is crucial when cybersecurity emergency circumstances occur
(i.e. after an attack happened, even in face of protection barri-
ers). That is because security analysts are required to promptly
and effectively explain their actions in such crisis situations as
to mitigate the damage that a cybersecurity event very often
causes in the computer infrastructure of an organization.

The CbCSecIRS proposal detailed in this work can have a
dual application since it can be explored in both the cybersecu-
rity incident detection and the cybersecurity incident resolu-
tion. In practice, cybersecurity incident cases do express inci-
dent resolution knowledge which can complement the func-

tionalities required to automatically detect and prevent those
incidents as explored by other AI techniques in the cybersecu-
rity domain. Although the experiments presented here can be
expanded in different ways, the results show a positive scenar-
io in which our CbCSecIRS proposal is relevant for cybersecu-
rity analysts because it accurately relies on similarity-based
computations to connect incident detection data with incident
resolution procedures which can now be maintained in the
structure of reusable cases.

REFERENCES

[1] ISO/IEC, "ISO/IEC 27035:2016, Information technology - security
techniques - information security incident management," Int.

Organization for Standardization, 2016.

[2] R. Danyliw, "RFC 7970: The Incident Object Description Exchange
Format Version 2," Internet Engineering Task Force (IETF), 2016.

[3] T. Takahashi, K. Landfield, and Y. Kadobayashi, "RFC 7203: An

Incident Object Description Exchange Format (IODEF) Extension for

Structured Cybersecurity Information," Internet Engineering Task Force

(IETF), 2014.
[4] T. Takahashi, and D. Miyamoto, “Structured cybersecurity information

exchange for streamlining incident response operations,” in NOMS 2016

- 2016 IEEE/IFIP Network Operations and Management Symposium,
Istanbul, Turkey, 2016, pp. 949-954.

[5] H. Gascon, B. Grobauer, T. Schreck, L. Rist, D. Arp, and K. Rieck,

“Mining attributed graphs for threat intelligence,” in Seventh ACM on
Conf. on Data and Application Security and Privacy (CODASPY '17),

Scottsdale, Arizona, 2017, pp. 15-22.

[6] M. B. Line, I. A. Tøndel, and M. G. Jaatun, “Current practices and
challenges in industrial control organizations regarding information

security incident management – Does size matter? Information security

incident management in large and small industrial control
organizations,” Int. Journal of Critical Infrastructure Protection, vol. 12,

pp. 12-26, 2016.

[7] R. L. d. Mantaras, D. McSherry, D. Bridge, D. Leake, B. Smyth, S.
Craw, B. Faltings, M. L. Maher, M. T. Cox, K. Forbus, M. Keane, A.

Aamodt, and I. Watson, “Retrieval, reuse, revision and retention in case-

based reasoning,” The Knowledge Engineering Review, vol. 20, no. 3,
pp. 215-240, 2005.

[8] K. D. Althoff, and R. O. Weber, “Knowledge management in case-based

reasoning,” The Knowledge Engineering Review, vol. 20, no. 3, pp. 305–
310, 2005.

[9] K. Dalkir, and J. Liebowitz, Knowledge Management in Theory and

Practice: The MIT Press, 2011.
[10] S. Metzger, W. Hommel, and H. Reiser, “Integrated security incident

management – concepts and real-world experiences,” in Sixth Int. Conf.

on IT Security Incident Management and IT Forensics, Stuttgart,
Germany, 2011, pp. 107-121.

[11] F. Jiang, T. Gu, L. Chang, and Z. Xu, “Case Retrieval for Network

Security Emergency Response Based on Description Logic,” in 8th Int.
Conf. on Intelligent Information Processing (IIP), Hangzhou, China,

2014, pp. 284-293.

[12] H. K. Kim, K. H. Im, and S. C. Park, “DSS for computer security
incident response applying CBR and collaborative response,” Expert

Systems with Applications, vol. 37, no. 1, pp. 852-870, 2010.

[13] L. Ping, Y. Haifeng, and M. Guoqing, “An incident response decision
support system based on CBR and ontology,” in Int. Conf. on Computer

Application and System Modeling (ICCASM 2010), Shanxi, Taiyuan,

2010, pp. 337-340.
[14] G. Capuzzi, L. Spalazzi, and F. Pagliarecci, “IRSS: Incident Response

Support System,” in Int. Symposium on Collaborative Technologies and

Systems (CTS 2006), Las Vegas, NV, USA, 2006, pp. 81-88.
[15] A. Phillips, and M. Davis, "RFC 4646: Tags for Identifying Languages,"

Network Working Group, 2006.

258

Verifying Static Aspects of UML models
using Prolog

Feng Sheng Huibiao Zhu* Zongyuan Yang Jiaqi Yin Gang Lu*

School of Computer Science and Software Engineering
East China Normal University, Shanghai, China

Abstract—The Unified Modeling Language (UML) provides
a number of diagrams to describe the modeling system from
different perspectives, which contain overlapping information
about the systems. However, it does not provide any means
of meticulously checking consistencies among the overlapping
elements. In this study, we propose an approach for consis-
tency checking of UML class diagrams and object diagrams
using Prolog. First we formalize the model elements based on
metamodel and convert the models into Prolog facts. Then we
define some consistency rules that are encoded into Prolog. The
Prolog’s reasoning engine automatically checks the consistencies
of models. In addition, we provide interfaces to query models
for properties, elements and submodels. The design errors can
be effectively avoided and the correctness of code-generalization
can be guaranteed according to our approach.

Index Terms—Class Diagram, Object Diagram, Consistency
Checking, Prolog

I. INTRODUCTION

The Unified Modeling Language [1] has been developed as
a standard object-oriented modeling notation in Model Driven
Engineering (MDE) and is widely used in industry. It provides
numbers of diagrams to model different aspects of the systems,
such as the static views (class diagrams, object diagrams) and
dynamic views (sequence diagrams, statecharts). In addition, it
offers a variety of tools that cover all the features of the system
modeling for a more complete description of the models.
However, the syntax and semantics of the UML are semi-
formally defined in terms of a metamodel combing natural
language descriptions, UML notations and Object Constraint
Language (OCL), which is not sufficient to express the seman-
tics of the UML models precisely. Moreover, UML uses the
different models to characterize the same system from different
perspectives. Change in one diagram may ultimately affect
the other diagrams, and result the inconsistencies between
different diagrams.

UML models can be represented in the form of a theory
in mathematical logic, such as the description logic [2], data
refinement [3] and category theory [4]. By transforming UML
models into mathematical logic, the problem of inconsistencies
can be regarded as the problem of contradictions in the logic
theory. A system is consistent if it does not contain any contra-
dictions. Inconsistencies in UML models reveals design errors
in software development. Moreover, the inconsistencies will

*Corresponding authors: hbzhu@sei.ecnu.edu.cn (H. Zhu).
glu@cs.ecnu.edu.cn (G. Lu).

not be propagated to the codes if we perform the consistency
checking at design phase.

Various approaches [6] [13] [15] [16] have been proposed to
check the consistency in UML. Typically, approaches devoted
to the verification of UML models convert the models into
formal semantic domains. Besides, different types of consis-
tency rules are defined on the basis of these conversions. The
models’ consistencies are verified according to the possibil-
ity that the models satisfy these consistency rules. Straeten
et al. [2] developed an extension of UML metamodel and
presented a classification of inconsistency problems using
description logic. They expressed the detection and resolution
of consistency conflicts by means of rules. Egea and Rusu
[11] demonstrated the structural and semantic conformance
between models and metamodels by transforming the models
into Maude. Besides, the satisfiability modulo theories (SMT)
is often used to support the consistency verification of UML
models. Soeken et al. [8] presented an automatic approach
that checks the verification for the UML dynamic models. The
underlying verification problem is encoded as an instance of
the satisfiability problem and subsequently solved using a SAT
Modulo Theory solver. However, the SMT solvers typically
only support decidable theories and are not sufficient for
consistency checking. Storrle [12] proposed a representation
of models based on Prolog. He provided query interfaces to
identify elements, properties and submodels. Khai et al. [10]
proposed an approach for consistency checking of class and
sequence diagrams based on Prolog. Cabot et al. [21] presented
an automatic method for the verification of UML class dia-
grams extended with OCL constraints. They transformed the
UML/OCL model into a Constraint Satisfaction Problem. The
correctness properties such as weak and strong satisfiability
or absence of constraint redundancies are checked. Khan and
Porres [7] proposed an approach to automatically validate the
consistency of UML models using logic reasoners for the Web
Ontology Language OWL 2. They translated the models into
OWL 2 and presented a tool supporting UML modeling tools
to perform the translation from the models into the OWL 2.

In this paper, we propose an approach for the fully au-
tomatic, expressive verification of UML class diagrams and
object diagrams using Prolog. First we formalize the model
elements based on metamodel and convert the models into
Prolog facts. Then we summarize several different types of
consistency problems and encode into Prolog rules. Finally the

DOI reference number: 10.18293/SEKE2019-175 259

reasoning engines such as SWI-Prolog, are used to check the
inconsistencies through analyzing the models and feedback the
error information if any inconsistency error occurs. According
to our approach, the design errors can be effectively avoided
in design phase and the correctness of code-generalization can
be guaranteed.

This paper is structured as follows. In Section II, we
introduce the background about model consistency and our
approach. Section III presents the formalization and con-
version from UML models to Prolog. Section IV describes
the different types of consistency. We have implemented a
prototype tool which automatically translates the UML models
into Prolog codes in Section V. Section VI shows some
experiments to indicate the performance of our approach.
Section VII concludes the paper and discusses the further
work.

II. BACKGROUND

A. Consistency checking of UML models

In the past few years, the consistency problems in UML
have become a hot issue. The term model consistency [18] is
defined as “the overlapping elements in different models of
the same system satisfy certain properties”. There are many
studies that classify the consistency of models. One of the most
widely accepted classifications is the Engels’ classification [6],
which classifies the model consistency into four categories:
(1) Vertical consistency occurs when an abstract model is
refined into a more concrete model. It is desirable that the
concrete model should be consistent with the abstract one. The
refinements of models cause the vertical consistency problems.
(2) Horizontal consistency arises in case where different mod-
els describe the same system from different aspects containing
overlapping elements. The overlapping elements should satisfy
some elementary properties to ensure the consistency between
the different models.
(3) Syntactical consistency ensures that a model conforms to
the abstract syntax. The abstract syntax of models is usually
defined by the metamodel. In other word, we consider that
the models are syntactically consistent if the models are
the instances of classes and associated by the instances of
associations in the metamodel.
(4) Semantic consistency occurs when the developers expect
to get more accurate models through additional constraints
on models. The semantics of UML is usually specified in
natural languages and OCL. It is hard to check the semantic
consistency in UML especially for static diagrams since the
OCL is not precisely defined in UML.

In this paper, we mainly consider three kinds of consistency
issues: horizontal, syntactical and semantic consistency. The
vertical consistency involving the refinements of the models
is out of the scope of this paper.

B. Overview of the approach

We propose a general framework to check the consistency
for a subset of UML static diagrams including class diagrams
and object diagrams. The basic route of our approach is shown

as Fig. 1. First the designer provides a target model, created by
UML CASE tools, and transforms the models into XMI files.
Then the concepts of the models are automatically converted
to the facts in Prolog database. Next the consistency rules with
the facts are imported into the SWI-Prolog. The SWI-Prolog
analyzes and queries the elements to verify the consistency
of the target model and feedback the error information if any
inconsistency occurs.

Fig. 1. An Outline of Our Approach

III. FROM UML MODELS TO PROLOG

A. From Class Diagrams to Prolog

The metamodel is a language that contains certain metadata
describing the concepts and relations for providing a modeling
language. The Meta Object Facility (MOF) standard defines
the Essential MOF (EMOF), a subset of MOF that is used to
define the metamodels. In this study, we formally define the
syntax of the models according to the EMOF metamodel.

Definition 1: The syntax of the class diagrams is a structure

M = {class, attribute, operation, association,
rolename,multiplicity,≺}.

where
• class is a set of classes.
• attribute is a set of signatures for functions mapping a

class c to an associated attribute value.
• operation is a set of signatures for user-defined operations

of a class c.
• association is a set of associations.
• rolename is a set of roles.
• multiplicity is a set of multiplicities of associations.
• ≺ is a partial order on classes reflecting the generalization

hierarchy of classes.
The class diagrams are denoted as a series of Prolog facts.
Each model element in M is described as a set of facts
with the same clause and different parameters. Every element
of class diagrams is assigned an identifier that identifies the
actual objects that are to be instances of the various classes
in the metamodel. In the following, each model elements is
considered in details.

260

The most important part of the class diagrams is the classes.
A class is a collection of objects that have the same attributes,
operations, relationships, and semantics. The class/3 clause
in Prolog is used to denote the class, including an identifier, a
class name and a boolean type indicating whether it is abstract.

class(classid, classname, isAbstract).

Note that the abstractions of the objects are classes, and the
instantiations of the class are objects. The classes can be
considered as the types of objects according to the Model
Driven Architecture (MDA).

The classes define a group of objects’ states and behaviors.
More specifically, the attributes and associations of classes
define the objects’ states and relationships respectively, and
the operations describe the behaviors of objects. The attributes
are the values describing the object’s properties, including
a name and a type that specifies the domain of values.
The attribute/4 clause describes the attributes of class
diagrams in Prolog.

attribute(attrid, attrname, attrtype, classid).

where attrid is an identifier of attribute, attrname is
an attribute name, attrtype is the type of attribute, and
classid is an identifier of class to which this attribute
belongs.

The operations are parts of a class declaration in models.
They describe the behavioral properties of classes, represented
by the operation/4 clause in Prolog.

operation(opid, opname, [parameters], classid).

where opid is an identifier of the operation, opname is a
name of the operation, [parameters] is a list of parame-
ters’ id, and classid is an identifier of class to which this
operation belongs.

The parameter/3 clause in Prolog denotes the parame-
ters in operations.

parameter(pid, pname, ptype).

where the pid and pname denote the identifier and name of
the parameter respectively, and ptype denotes the type of the
parameter, including the primitive types and class types.

The associations describe the structural relationships be-
tween the classes. In general, a class can have more than
one associations, and an association can connect two or more
classes. In this study, only binary associations are considered,
the n-ary associations can be obtained by extending parameters
in the association/4 clause, where the assoctype can
be directional, nondirectional, aggregate or compositive.

association(associd, classAid, classBid, assoctype).

In an association, the class can appear more than once
playing different roles. The role names are usually useful in
the navigations of models. The rolename/4 clause assigns
a unique role name to each class that participates in the binary
association. The order of names in role names should coincide

with the order of classes in the corresponding associations. If
the role names are omitted in a class diagram, we define the
role names by changing the first letter of the name of target
class to lower case.

rolename(roleid, nameA, nameB, associd).

Associations may also have multiplicities which specify
the possible numbers of links for associated classes. The
multiplicity describes the number of allowable objects of a
range class to link with the objects of a domain class. The
multiplicity/5 clause has a minimum and maximum
number of instances of the target classes, defined by the
lowval and upval attributes. Unbounded ranges can be mod-
elled using the value n for the upper attribute in Prolog.

multiplicity(multid, classid, lowval, upval, associd).

A generalization indicates that one of the two related class
(subclass) is considered to be a specialized form of the other
(superclass). The superclass is a generalization of the subclass.
Generalization relationships form a hierarchy over the set of
classes. A generalization hierarchy ≺ is a partial order on the
set of classes, shown as the generalization/3 clause.

generalization(genid, subid, superid).

We define a recursive function parents to get all superclasses
of a given class as follows.

parents :

{
class→ P(class)
c 7→ {c′ | c′ ∈ class ∧ c ≺ c′}

(1)

The parents/2 clause indicates the parent classes can
be directly or indirectly derived through the generaliza-
tion relationships. We can query the parent classes using
all_parents/2 where findall get all parent classes
from the parents and put them into the variable IDS.

parents(Superid, Subid) :-

generalization(_, Subid, Superid).

parents(Superid, Subid) :-

generalization(_, Subid, X),

parents(Superid, X).

all_parents(Subid, IDS) :-

findall(Y, parents(Y, Subid), IDS).

B. From Object Diagrams to Prolog

The object diagrams show a complete or partial view of the
structure of a modelled system at a specific time. The object
diagrams is composed of the snapshots of running systems. An
instance of a class is called an object, whereas an instance of
an association is called a link that is a connection between two
or more objects of classes at corresponding positions in the
association. The object diagram focuses on the set of objects
and attribute values, and the links between these objects at a
particular time.

Definition 2: An object diagram for a model M is a
structure

σ(M) = {object, link, attrval}.

261

where
• object is a set of objects.
• link is a set of links connecting objects.
• attrval is a set of functions assigning attribute values to

each object.
The representation of the object diagrams in Prolog is

similar to the representation of class diagrams.

object(objid, objname, classid).

link(linkid, objAid, objBid, associd).

attrval(attrvalid, attrid, value, objid).

The finite sets of object/3 clauses contain all objects and
the finite sets of link/4 clauses contain links connecting
objects. The attrval/4 clauses assign attribute values to
each object. The classid in object/3 should be related
to the classid in class/3, the same as associd and
attrid.

Definition 3: The domain of a class is defined as a set of
object identifiers that are the instances of the class.

domain(c) =
⋃
{objects(c′) | c′ ∈ class ∧ c′ ≺ c}. (2)

where the function objects gets all the objects of a given class.
The domain of a class is defined using recursive predicate
in Prolog. The all_objects_ids/2 returns the list of
objects’ identifiers for a given class identifier.

objects_ids(Classid, Objid) :-

object(Objid, _, Classid).

objects_ids(Classid, Objid) :-

generalization(_, Z, Classid),

objects_ids(Z, Objid).

all_objects_ids(Classid, IDS) :-

findall(Y, objects_ids(Classid, Y), IDS).

IV. CONSISTENCY CHECKING RULES

A. Syntactical Consistency

A metamodel defines the abstract syntax of the models.
The models are syntactically consistent if they conform to
the metamodel. More specifically, the elements of the model
should be the instances of the classes in the associated
metamodel, and the links of two elements are the instances of
associations related by the associated classes in the metamodel.
The MDA is described in four-layer architecture, each layer
model can be regarded as instances of the upper layer model.
The representation of UML concepts in this study is based on
the EMOF metamodel. The models defined in our approach
satisfy the syntactical consistency since they are the instances
of the metamodel.

B. Semantic Consistency

A metamodel may also define a set of validity constraints on
the metamodel using OCL, called semantic consistency [19].
For instance, a class should not define two attributes having
same names. These OCL constraints are defined between the
metamodels and models in order to describe more detailed

models. In a sense, any OCL expressions can be converted
to the Prolog rules having the same semantics. The models
are semantically consistent if the models conform to the rules.
First the OCL representation is presented, and then we give
the Prolog code for these constraints. Only several common
constraints are presented because of the limited space.
Name Unique. The names of classes and associations should
be unique and the names of attributes are unique in one class.

context Class inv:
self.attribute -> forall(a1, a2 : attribute|
a1 <> a2 implies a1.name <> a2.name).

Acyclic Generalization. There are no direct or indirect cycles
in the generalization relationship.

context Class inv :
self.allParents -> excludes(self).

The list_reps/2 shows the repetitions in the list. The list
of names is the first parameter and the result of repetition
elements is the second parameter. The circular generalization
error occurs if any class is in the list of its parents classes.
The inheritSelf returns true if the parameter class X has
cycles in the generalization relationship.

list_reps([],[]).

list_reps([X|Xs],Ds1) :-

x_reps_others_fromlist(X,Ds,Os,Xs),

list_reps(Os,Ds0),

append(Ds,Ds0,Ds1).

x_reps_others_fromlist(_X,[],[],[]).
x_reps_others_fromlist(X,[X|Ds],Os,[X|Ys]) :-

x_reps_others_fromlist(X,Ds,Os,Ys).

x_reps_others_fromlist(X,Ds,[Y|Os],[Y|Ys]) :-

dif(Y,X),

x_reps_others_fromlist(X,Ds,Os,Ys).

canGoTo(X, N, Nodes) :-

member(X2, [X|Nodes]),

generalization(_, X2,X1),

\+ member(X1, Nodes),

canGoTo(X, N, [X1|Nodes]).

canGoTo(_, N, N).

canGoTo(X, Nodes) :-

canGoTo(X, Nodes, []).

inheritSelf(X) :-

canGoTo(X, Nodes), member(X, Nodes), !.

We also offer query interfaces to query properties in SWI-
Prolog. For example, the variable List indicates the set of
the classes’ name and the variable R represents the repetition
elements if there are any repeating elements in the models.

?- bagof(Y,Xˆclass(X,Y,_),List), list_reps(List,R).

C. Horizontal Consistency

The problems of horizontal consistency is caused by the
overlapping elements of different diagrams. There are some
overlapping elements between the class diagrams and object
diagrams. For instance, a class should exist in the class
diagram if the objects of the class exist in the object diagram.

262

When the inconsistency occurs, we can quickly locate the
wrong place based on the feedback information.
Class Existence. The related classes of objects in the object
diagrams should exist in the class diagrams since the objects
are the instances of the classes.

∀o ∈ object, ∃c ∈ class, o.classid = c.classid.

Association Existence. There are links between objects in
object diagrams and the associations referred to these links
between corresponding classes exist in class diagrams.

∀l ∈ link, ∃o1, o2 ∈ object, ∃a ∈ association,
l.objAid = o1.objid ∧ l.objBid = o2.objid ∧
o1.classid = a.classAid ∧ o2.classid = a.classBid ∧
a.associd = l.associd.

Generalization Satisfaction. If class c1 is a sub class of class
c2, the domain of c1 is a subset of the domain of c2. The set
of objects connected to its subclasses should also be disjoint.

∀c1, c2 ∈ class, c1 ≺ c2 ⇒ domain(c1) ⊆ domain(c2).

∀c ∈ class, domain(c) =
⋃

ci∈sub(c)

domain(ci).

∀c ∈ class,
⋂

ci∈sub(c)

domain(ci) = ∅.

where function sub(c) gets all the subclasses of class c. Note
that the domain of an abstract class is comprised of the domain
of the subclasses since there are no instances of an abstract
class.
Multiplicity Satisfaction. The number of the instances of
an association must satisfy the multiplicity. A set of links
should satisfy the multiplicity specifications defined for an
association. A minimum and maximum number of instances
of target classes must be satisfied using the lower and upper
functions.
∀as ∈ association, lower(multiplicity(as)) ≤

card{l′ ∈ link(as)} ≤ upper(multiplicity(as)).
Part of the representation of the horizontal consistency rules
in Prolog is listed as follows:

object_rule(Objid, Classid) :-

object(Objid, _, Classid),

class(Classid, _, _),
write("Object: "), write(Objid), nl,

write("Class: "), write(Classid).

assoc_exist(Msgid, Sndobjid, Recobjid,

ClassA, ClassB):-

link(Msgid, Sndobjid, Recobjid),

object(Sndobjid, _, ClassA),

object(Recobjid, _, ClassB),

association(_, ClassA, ClassB);

association(_, ClassB, ClassA).

gen_rule(Superid, Subid) :-

generalization(_, Superid, Subid),

all_objects_ids(Subid, IDS), write(IDS), nl,

all_objects_ids(Superid, IDS2), write(IDS2), nl,

subset(IDS, IDS2).

V. REASONING

We provide an automated tool to transform the models into
Prolog. The original models are described in XMI format, gen-
erated directly from the UML CASE tools such as StarUML
and Astah. Then the models in XMI format are transformed
into the Prolog facts automatically. The algorithm of automatic
transformation is shown as follows. The code is also available
online in [22].

Algorithm 1 Transformation From class diagrams To Prolog
Require: The models represent in XMI format.
Ensure: The Prolog Facts of the model.

1: for each packagedElement ∈ uml:model do
2: exact(Class.name).
3: exact(Association.name).
4: end for
5: for each ownedAttribute ∈ uml:Class do
6: if hasAttribute(’association’) then
7: exact(association detail).
8: exact(multiplicity).
9: else

10: exact(attribute).
11: end if
12: end for
13: for each association ∈ association list do
14: exact(rolename).
15: end for
16: for each ownedOperation ∈ uml:Class do
17: exact(operation).
18: end for
19: for each generalization ∈ uml:model do
20: exact(generalization).
21: end for
22: return The Prolog facts of the model.

After the model conversion to Prolog facts, the consistency
rules along with the converted models are import into SWI-
Prolog. The SWI-Prolog checks whether the Prolog-based
models satisfy the consistency rules. The models are consistent
if the models satisfy all consistency rules. If there are any
models that cannot satisfy rules, the SWI-Prolog gives the
error messages. Besides, the query interfaces, similar to OCL,
are provided to query the relevant information in the models.

VI. PERFORMANCE EVALUATION

In order to determine the performance of the translation
and reasoning tools, we conducted an experiments using UML
class diagrams and object diagrams with invariants consisting
of 10 - 437 model elements. We use a desktop computer
with an Intel(R) Core(TM) i5-7400 CPU processor running
at 3.00GHz with 16GB of RAM. The results are shown in
Table I.

The performance tests are conducted for both consistent
and mutated models. The mutated models contain the ran-
domly introduced inconsistencies such as the same names of
models, the direct and indirect cycles in generalizations and

263

TABLE I
TIME TAKEN BY THE TRANSITION TOOL AND REASONING ENGINES TO

PROCESS UML MODELS

Classes 4 7 16 19 32
Model Element 10 52 107 257 431

Translation time (ms) 9.3 39.1 66.7 140.2 321.3
Valid (ms) 150.2 206.9 359.0 561.3 993.5

Mutated (ms) 165.3 248.1 415.3 613.2 1023.1

the multiplicity inconsistencies between the class diagrams
and object diagrams. For each test, we measure the time
required to translate a model from UML to Prolog and the time
required by the SWI-Prolog reasoner to analyze the models.
The experimental results show that our approach can find
all the inconsistencies mentioned in this paper and the time
complexity of Prolog reasoning the consistencies is linear.

VII. CONCLUSION AND FURTHER WORK

In this paper, we present a Prolog-based consistency check-
ing for UML class diagrams and object diagrams. We have
implemented an automatic transformation from the models
in XMI format to the Prolog facts. Then the SWI-Prolog
is used to check whether the facts satisfy the consistency
rules. The models are consistent if all consistency rules are
satisfied. The reasoning engine will give error information if
any inconsistency occurs. Besides, we provide query inter-
faces, similar with the OCL, to query the relevant information.
Our work provides a novel approach to automatically detect
the consistency of models and promise the errors will not
propagate to the implementation stage.

This study only gives a brief formalization of class diagrams
and object diagrams. However, these diagrams are not enough
to describe the whole system in real world. We expect to
construct a complete UML framework that covers the static
structure and dynamic behavior of the systems. Besides, the
types of consistency checking in this study are far from
enough. More consistency checking rules should be covered
to have a confidence for systems.

VIII. ACKNOWLEDGEMENT

This work was partly supported by National Natural Science
Foundation of China (Grant No. 61872145) and Shanghai

Collaborative Innovation Center of Trustworthy Software for
Internet of Things (No.ZF1213).

REFERENCES

[1] G. Booch, The Unified Modeling Language User Guide, Pearson Edu-
cation India, 2005.

[2] R. Van Der Straeten, J. Simmonds, and T. Mens, Detecting Inconsisten-
cies between UML Models Using Description Logic, Description Logic,
vol. 81, 2003.

[3] J. Woodcock and J. Davies, Using Z: specification, refinement, and
proof, Prentice Hall Englewood Cliffs, vol. 39, 1996.

[4] C. Snook and M. Butler, UML-B: Formal modeling and design aided
by UML, ACM Transactions on Software Engineering and Methodol-
ogy(TOSEM), vol. 15(1), pp. 92–122, 2006.

[5] R. S. Bashir, S.P. Lee, S.U.R Khan, V. Chang, and S. Farid, UML models
consistency management: Guidelines for software quality manager,
International Journal of Information Management, vol. 36(6), pp. 883–
899, 2016.

[6] G. Engels, J.M. Küster, R. Heckel, and L. Groenewegen, A methodology
for specifying and analyzing consistency of object-oriented behavioral
models, ACM SIGSOFT software engineering notes, vol. 26(5), pp. 186–
195, 2001.

[7] A. H. Khan and I. Porres, Consistency of UML class, object and stat-
echart diagrams using ontology reasoners, Journal of Visual Languages
& Computing, vol. 26, pp. 42–65, 2015.

[8] M. Soeken, R. Wille, and R. Drechsler, Verifying dynamic aspects of
UML models, Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1–6, 2011.

[9] J. Chimiak Opoka, M. Felderer, and C. Lenz and C. Lange, Querying
UML models using OCL and Prolog: A performance study, IEEE
International Conference on Software Testing Verification and Validation
Workshop, pp. 81–88, 2008.

[10] Z. Khai, A. Nadeem, and G. Lee, A Prolog Based Approach to Con-
sistency Checking of UML Class and Sequence Diagrams, International
Conference on Advanced Software Engineering and Its Applications,
pp. 85–96, 2011.

[11] M. Egea and V. Rusu, Formal executable semantics for conformance in
the MDE framework, Innovations in Systems and Software Engineering,
vol. 6(1-2), pp. 73–81, 2010.

[12] H. Störrle, A Prolog-based Approach to Representing and Querying
Software Engineering Models, VLL, vol. 274, pp. 71–83, 2007.

[13] P. Krishnan, Consistency checks for UML, 7th Asia-Pacific Proceedings
on Software Engineering, pp. 162–169, 2000.

[14] A. Tsiolakis, Consistency analysis of UML class and sequence diagrams
based on attributed typed graphs and their transformation, ETAPS 2000
workshop on graph transformation systems, 2000

[15] L. C. Briand, Y. Labiche, L. Osullivan, and M.M. Sowka, Automated
impact analysis of UML models, Journal of Systems and Software, vol.
79(3), pp. 339–352, 2006.

[16] D. Torre, Y. Labiche, and M. Genero, UML consistency rules: a
systematic mapping study, 18th International Conference on Evaluation
and Assessment in Software Engineering, pp. 6, 2014.

[17] D. Torre, Verifying the consistency of UML models, 2016 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops, pp.
53–54, 2016.

[18] G. Spanoudakis and A. Zisman, Inconsistency management in software
engineering: Survey and open research issues, Handbook of software
engineering and knowledge engineering, vol. 1, pp. 329–380, 2001.

[19] X. Thirioux, B. Combemale, X. Crégut, and P. Garoche, A framework
to formalise the MDE foundations, International Workshop on Towers
of Models, pp. 14–30, 2007.

[20] A. Endres and H.D. Rombach, A handbook of software and systems
engineering: Empirical observations, laws, and theories, Pearson Educa-
tion, 2003.

[21] J. Cabot, R. Clarisó, and D. Riera, On the verification of UML/OCL
class diagrams using constraint programming, Journal of Systems and
Software, vol. 93, pp. 1–23, 2014.

[22] F. Sheng, Transformation from UML to Prolog.
“https://github.com/shengfeng/xmi2pl”, 2018

264

Modeling and Verifying TESAC Using CSP
Dongzhen Sun1, Huibiao Zhu*1, Yuan Fei*2, Lili Xiao1, Gang Lu1, Jiaqi Yin1

1Shanghai Key Laboratory of Trustworthy Computing,
School of Computer Science and Software Engineering

East China Normal University, Shanghai, China
2School of Information, Mechanical and Electrical Engineering,

Shanghai Normal University, Shanghai, China

Abstract—Cloud computing is an emerging computing
paradigm in IT industries. The wide adoption of cloud computing
is raising concerns about management of data in the cloud.
Access control and security are two critical issues of cloud
computing. Time efficient secure access control (TESAC) model
is a new data access control scheme which can minimise many
significant problems. This scheme has better performance than
other existing models in a cloud computing environment. TESAC
is attracting more and more attentions from industries. Hence,
the reliability of TESAC becomes extremely important. In this
paper, we apply Communication Sequential Processes (CSP) to
model TESAC, as well as their security properties. We mainly
focus on its data access mechanism part and formalize it in detail.
Moreover, using the model checker Process Analysis Toolkit
(PAT), we have verified that the TESAC model cannot assure
the security of data with malicious users. For the purpose of
solving this problem we introduce a new method similar to digital
signature. Our study can improve the security and robustness of
the TESAC model.

Index Terms—TESAC; Cloud computing; CSP; Access con-
trol;Modeling; Verification;

I. INTRODUCTION

Cloud computing is considered to be an important driver of world-
wide IT industries [1]. With the development of cloud computing
technology, many data access models (ACMs) have been proposed
by researchers [2]–[4]. Time efficient secure access control (TESAC)
[5] model is a new data access control scheme which uses asymmetric
encryption to guarantee data security. This scheme is more efficient
than other existing solutions after an evaluation in terms of both
theoretical and experimental results.

The main types of access control models can be roughly divided
into three categories [6]: Mandatory Access Control (MAC), Discre-
tionary Access Control (DAC), Role Based Access Control (RBAC).
In order to achieve the goal of the network as a high-performance
computer, cloud service providers specify suitable access control
policies for users to access data and other resources. For limiting user
access rights in different situations, Ferraiolo et al. [2] put forward
the role-based access control (RBAC), where cloud service provider
determines the user access to the system by means of the job role. Gao
et al. [3] came up with novel data access control (NDAC) to ensure se-
cured and confidential data communication between users and cloud
servers. For the express purpose of providing a superior decision-
making ability, Danwei et al. [4] presented usage control-based access
(UCON) model which can easily implement the security strategy of
DAC, MAC and RBAC. It is a scheme that combines all the merits
of the traditional access control models. These models attach great
importance to security issues, but they adopt only informal methods
to analyze and there is few work on the formalization of these

Corresponding authors: hbzhu@sei.ecnu.edu.cn (H. Zhu),
yuanfei@shnu.edu.cn (Y. Fei).

models. Due to the superb characteristics of TESAC, the industry
will definitely draw a great amount of interests in this scheme.
So it is extremely important to verify and analyze it by formal
methods. we use classical process algebra language Communicating
Sequential Processes (CSP) [7], [8] to model TESAC, and in terms
of a model checking tool Process Analysis Toolkit (PAT) [9] to verify
some vital properties. The verification results demonstrate and show
that the security problem really exists in this scheme. Through the
formalization, we want to provide a deeper understanding of TESAC
as well as its security properties, and we hope that other researchers
can realize the security problems that may presence in their system
from our verification results.

This paper is organized as follows: Section II presents an overview
of TESAC, as well as introduction to CSP. Section III is devoted to
the modelling of TESAC. The results that we use PAT to verify the
original model are presented in Section IV, and give the improvement
for better performance. Finally, conclusions and future directions are
given in Section V.

II. BACKGROUND
In this section, we will give a briefly introduce of TESAC,

especially its data access control scheme in cloud computing. After
that, we also give a brief introduce of process algebra CSP.

A. TESAC
TESAC is a new data access control scheme based on the users’

profiles. It is different from traditional access control models imple-
menting a cloud environment. It can resolve many problems, such
as high overhead of the system, high searching time for providing
the public key of the data owner, high data accessing time, etc. The
scheme consists of three entities:
• Cloud service provider: It possesses a number of servers hav-

ing sufficient storage space and power to provide infrastructure
and cloud services for both users and data owners.

• Data owner: It sends its encrypted data or file to the cloud
database and managed by servers. Data owner can be any user.

• User: It must be registered at the cloud server for accessing a
data or file.

The specific meaning of some notations of keys are listed in Table
I. The process of encryption and decryption is given in Steps 1-8.
When the user wants to get data from server, the following sequence
of actions occurs:

1) First, the user sends a data access request to the server.
2) When the server receivs the request, it encrypts PUOWN by

using its own PRSP and PUUSR, and then, provides it to the
users.

3) The user obtains PUOWN through two layers of decryption.
Then the user sends a request to the data owner for obtaining
the secret key and the certificate. The user encrypts the request
message with PRUSR and PUOWN, and then, sends it to the
data owner.

DOI reference number: 10.18293/SEKE2019-122 265

4) The data owner uses PROWN and PUUSR to decrypt the
package to get the users message. The data owner needs to
verify the legality of the user to the server.

5) The server sends a feedback message to the data owner.
6) If it is a positive feedback, the data owner uses PROWN and

PUUSR to encrypt its secret and certificate. Finally, the data
owner sends this package to the user.

7) The user uses PRUSR and PUOWN to decrypt the message.
After the user acquires the secret and the certificate, it uses
PRUSR and PUSP to encrypt the certificate. The user then
sends it to the server.

8) The server decrypts the message. If the user’s presented
certificate is matched with the corresponding certificate of the
requested data. The server provides the data to the user. Finally,
the user uses PRUSR, PUSP and secret to decrypt the message
to get the desired data.

TABLE I
NOTATION AND DESCRIPTION

PUOWN public key of the data owner
PROWN private key of the data owner
PUUSR public key of the user
PRUSR private key of the user
PUSP public key of the server
PRSP private key of the server

B. A brief overview of CSP
In this subsection we give a brief overview of CSP (Communi-

cation Sequential Processes). It is a process algebra proposed by
Hoare in 1978. As one of the most mature formal methods, it is
tailored for describing the interaction between concurrency systems
by mathematical theories. Because of its well-known expressive
ability, CSP has been widely used in many fields [10]–[12].

CSP processes are constituted by primitive processes and actions.
We use the following syntax to define the processes in this paper,
whereby P and Q represent processes, the alphabets α(P) and α(Q)
mean the set of actions that the processes P and Q can take
respectively, and a and b denote the atomic actions and c stands
for the name of a channel. The syntax of CSP is given as below.

P,Q ::= Skip | Stop | a→ P | c!v → P | c?x→ P | P ;Q

| P ‖ Q | P�Q | P C b B Q | b ∗Q | P [[a← b]]

1) Skip indicates a basic process that terminates successfully.
2) Stop represents that a process can’t do anything any more.
3) a → P denotes a process first engages in action a, then acts

due to the specification of process P .
4) c!v → P describes a process sends a value v through channel

c, then behaves according to the specification of P .
5) c?x→ P represents a process receives a value and assigns it

to the variable x, then the behavior is like process P .
6) P ;Q indicates only when process P has terminated can

process Q start to perform.
7) P ‖ Q means process P and process Q perform in parallel.

And they must synchronize facing the same events.
8) P�Q stands for external choice. A process behaves following

the specification of process P or Q. However, the choice
depends on the environment.

9) b ∗Q expresses circulation. If the value of variable b is true, a
process behaves like process Q circularly. Otherwise, it ends
the circulation.

10) P C b B Q shows conditional choice. If the condition b is
true, a process acts likes P , otherwise, like Q.

11) P [[a← d]] indicates event a is replaced by d in process P .

III. MODELING TESAC

A. Sets, Messages and Channels
In order to formalize the protocol more conveniently, we give

the fundamental information about sets, messages and channels.
We define seven sets in our model. Entity set represents entities
including servers, users and data owners. Req set denotes request and
confirming messages. ACK set means feedback messages. Content
set contains the content to be encrypted. PUKey set contains all the
public key of entities, PRKey set contains all the private key of
entities, Sec set contains the key that the data owner uses to encrypt
the data.

Two core elements of modeling are internal processing proce-
dures of entities and message packets transmitted between entities.
Based on the sets defined above, we abstract them into different
messages. We use the form E(k,d) to indicate that k is utilized to
encrypt the message d. Each message includes a tag from the set
{msgreq,msgkey1,msgdata1,msgack,msgkey2,msgdata2,
msgackin}.

The messages that are transmitted among entities as follows:

MSGreq = {msgreq.a.b.req,msgreq.a.b.cof |
a, b ∈ Entity, req, cof ∈ Req}

MSGkey1 = {msgkey1.a.b.E(K1, E(K
−1
2 , d))|a, b ∈ Entity,

K1 ∈ PUKey,K
−1
2 ∈ PRKey, d ∈ Content}

MSGdata1 = {msgdata1.a.b.E(K1, E(K
−1
2 , E(K, d)))|

a, b ∈ Entity,K1 ∈ PUKey,K
−1
2 ∈ PRKey,

K ∈ Sec, d ∈ Content}
MSGack = {msgack.a.b.x|a, b ∈ Entity, x ∈ Ack}

MSGkey2 = {msgkey2.E(K1, (K
−1
2 , d)).K

−1
1 .K2|d ∈ Content,

K1, K2 ∈ PUKey,K
−1
1 , K

−1
2 ∈ PRKey}

MSGdata2 = {msgdata2.E(K1, E(K
−1
2 , E(K, d))).K

−1
1 .K2.K|

K1, K2 ∈ PUKey,K1, K2 ∈ PUKey,

K
−1
1 , K

−1
2 ∈ PRKey,K ∈ Sec, d ∈ Content}

MSGackin = {msgcont.y|y ∈ Content}
MSGout = MSGreq ∪MSGkey1 ∪MSGdata1 ∪MSGack

MSGin = MSGkey2 ∪MSGdata2 ∪MSGackin

MSG = MSGout ∪MSGin

MSGreq represents the set of request messages. MSGkey1 stands
for the set of two-layer encryption messages. MSGdata1 indicates
the set of messages whose real data encrypted by public and private
keys. MSGack denotes feedback messages. MSGkey2 stands for
the set of three-layer encryption messages. MSGdata2 indicates mes-
sages sent to the process specially for internal processing. MSGackin

represents messages that return data to entities by internal process.
MSGout represents the set of messages transmitted between entities,
MSGin denotes internal processing messages of entities.

Then, we give the definitions of channels to model the communi-
cations between processes:
• channels between users, data owners and servers, denoted by
COM PATH: ComUS, ComUD, ComDS.

• channels of intruders who intercept users, data owners and
servers, represented by INTRUDER PATH: FakeU, FakeS,
FakeD.

• channels of processing messages, depicted by
PROCESS PATH: GetU, GetD, GetS.

The declarations of the channels are as follows:

Channel COM PATH, INTRUDER PATH : MSGout

Channel PROCESS PATH : MSGin

266

B. Overall Modeling
As mentioned above, the whole scheme contains three important

entities, including User, DataOwner and Server. We formalize
the whole system as below.

System =df System0[|INTRUDERPATH|]Intruder
System0 =df User||DataOwner||Server

User =df User1[|PROCESSPATH|]ProcessU

DataOwner =df DataOwner1[|PROCESSPATH|]ProcessD

Server =df Server1[|PROCESSPATH|]ProcessU

User, DataOwner and Server, as their names demonstrate, repre-
sent the user, the data owner and the server. ProcessU, ProcessD and
ProcessS denote the internal processing procedure of the user, the
data owner and the server. Considering the existence of intruders, we
also build process Intruder to simulate the behavior of intruders
who eavesdrop and modifies messages. Interprocess communication
between processes are illustrated in Fig.2.

C. User Modeling
We first formalize process User0 to describe the behavior of a

user process without intruders.

User0 =df

ComUS!msgreq.U.S.reqdata→
ComUS?msgkey1.S.U.E(PUUSR,E(PRSP, PUOWN))→
GetU !msgkey2.E(PUUSR,E(PRSP, PUOWN)).

PRUSR.PUSP → GetU?msgackin.PUOWN →
ComUD!msgkey1.U.D.E(PUOWN,E(PRUSR, reqsc))→
ComUD?msgkey1.D.U.E(PUUSR,E(PROWN, (s, c)))→
GetU !msgkey2.E(PUUSR,E(PROWN, (s, c))).

PRUSR.PUOWN → GetU?msgackin.s.c→
ComUS!msgkey1.U.S.E(PUSP,E(PRUSR, c))→
ComUS?msgdata1.S.U.E(PUUSR,E(PRSP,E(s, data)))→
GetU !msgdata2.

E(PUUSR,E(PRSP,E(s, data))).PRUSR.PUSP.s→
GetU?msgackin.data→ User0;

Fig. 1. Interprocess communication between processes in model

where, req data represents the data request sent from the user
to the server. req sc represents the request of the secret and the
certificate that the user sends to the data owner. s represents the
secret and c represents the certificate. The six actions on channel
ComUS and ComUD correspond to Steps 1-8 of User in Fig.1

in order. After receiving the encrypted messages, entity User0 sends
them to internal processing part ProcessU by way of channel GetU ,
as well as accepts the decrypted messages.

Then the existence of intruder actions needs to take into consid-
eration. For example, we must allow the instances of data request to
be faked, the instances of responses of PUOWN to be intercepted,
etc. We do this via renaming.

User1 =df User0[[ComUS?{|ComUS|} ← ComUS?{|ComUS|},
ComUS?|ComUS| ← FakeU?|ComUS|,
ComUS!|ComUS| ← ComUS!|ComUS|,
ComUS!|ComUS| ← FakeS!|ComUS|,
ComUD?|ComUD| ← ComUD?|ComUD|,
ComUD?|ComUD| ← FakeU?|ComUD|,
ComUD!|ComUD| ← ComUD!|ComUD|,
ComUD!|ComUD| ← FakeD!|ComUD|]]

{|c|} denotes the set of all communications over channel c.
Whenever User0 does an action on channel ComUS or ComUD,
User1 will does a corresponding action on channels with prefix Com
or channels with prefix Fake. Here, channels with prefix Com only
include ComUS and ComUD and channels with prefix Fake only
include FakeU and FakeS.

We can define CSP processes representing the data owner and
server similarly.

D. ProcessU Modeling
In order to simulate the internal process of the user, we use

ProcessU to deal with decrypting message. We must consider the
possibility of intruder actions.

ProcessU =df

GetU?msgkey2.E(PUUSR,E(PRSP, PUOWN)).

PRUSR.PUSP → GetU !msgackin.PUOWN → ProcessU
C(((PUSP == PRSP)||(PUI == PRI))
∧(PUUSR == PRUSR))B
(GetU !msgackin.NO → ProcessU)

�GetUmsgkey2.E(PUUSR,E(PROWN, (s, c))).

PRUSR.PUOWN → GetU !msgackin.PUOWN → ProcessU
C(((PUOWN == PROWN)||(PUI == PRI))
∧(PUUSR == PRUSR))B
(GetU !msgackin.NO → ProcessU)

�GetU?msgdata2.E(PUUSR,E(PRSP,E(sec, data))).

PRUSR.PUSP.s→ GetU !msgackin.PUOWN → ProcessU
C(((PUSP == PRSP)||(PUI == PRI))
∧(PUUSRmatchPRUSR) ∧ (sec == s))B
(GetU !msgackin.NO → ProcessU)

We use PUI to represent the public key of the intruder, PRI
represents the private key of the intruder. ProcessU receives the
encrypted message with decryption keys by channel GetU . Then
it judges whether the decryption key can decrypt the message
successfully. If the key does not match, ProcessU returns a negative
message to User0. Else, it sends the decrypted content to User0. The
internal process ProcessD of the data owner and ProcessS of the
server can be defined similarly.

E. Intruder Modeling
Finally, we give the formalization of the intruder. We also regard

the intruder as a process that can perform any attack as a real
world intruder can be. It can intercept or fake messages in the

267

communication on channel ComUS,ComUD and ComDS. We
define the set of facts that an intruder might learn as follows:

Fact =df

{U, S,D} ∪ {PUOWN,PUUSR, PUSP}
∪ {E(k, content)|k ∈ {Sec, PUKey, PRKey},
content ∈ Content, (s, c)} ∪MSGout ∪ {PUI, PRI}

Intruder can derive new facts from the ser of Facts it has learned.
We use the symbol F 7→ f to indicate that the fact f can be derived
from the set F of facts. The definition is given as follows:

{K−1
1 , E(K1, E(K

−1
2 , d)} 7→ E(K

−1
2 , d), {K2, E(K2, d)} 7→ d

{K2, d} 7→ E(K
−1
2 , d), {K1, E(K

−1
2 , d)} 7→ E(K1, E(K

−1
2 , d)

F 7→ f ∧ F ⊆ F
′ ⇒ F

′ 7→ f

The first two rules represent encryption and the third and the fourth
represent decryption. The final rule means if the intruder can derive
the fact f from a set of facts F , then f can also be derived from a
larger set F ′.

We give a definition of Info function in which the intruders can
learn by seeing the intercepted messages, shown as follows:

Info(msgreq.a.b.req) =df {a, b, req}
Info(msgreq.a.b.cof) =df {a, b, cof}

Info(msgkey1.a.b.E(K1, (K
−1
2 , d))) =df {a, b, E(K1, (K

−1
2 , d))}

Info(msgdata1.a.b.E(K1, E(K
−1
2 , E(k, d)))) =df

{a, b, E(K1, E(K
−1
2 , E(k, d)))}

Info(msgack1.a.b.x) =df {a, b, x}

where a, b ∈ Entity, req, cof ∈ Req, K1 ∈ PUKey, K−1
2 ∈

PRKey, d ∈ content, k ∈ Sec, x ∈ Ack.
We define a channel deduce to be used for deducing new facts.

The definition is given as follows:

Channel deduce: Fact.P(Fact)

All the messages transmitted between entities can be overheard
by the intruder. It can deduce a new fact from ones it has already
known.

It can also fake some messages if he knows all the sub-messages.
The formalization of Intruder0 is defined as below:

Intruder0(F =df

��m ∈MSGoutFakeU?m→
FakeS!m{user fake success = true} →
Intruder0(F ∪ Info(m))

��m ∈MSGoutFakeS?m→
FakeU !m{server fake success = true} →
Intruder0(F ∪ Info(m))

��m ∈MSGoutFakeU?m→
FakeD!muser fake success = true→
Intruder0(F ∪ Info(m))

��m ∈MSGoutFakeD?m→ FakeU !m→
Intruder0(F ∪ Info(m))

��m ∈MSGoutFakeD?m→ FakeS!m→
Intruder0(F ∪ Info(m))

��m ∈MSGoutFakeS?m→
FakeD!mserver fake success = true→
Intruder0(F ∪ Info(m))

��f ∈ Fact, f /∈ F, F 7→ fdeduce.f.F →
Intruder0(F ∪ f)

When Intruder 0 receives some messages, if it is not encrypted
by another entity with its public key, Intruder 0 can replace some
content in the message and send it to the original receiving entity; If
the message is encrypted with the entitys public key, Intruder 0
can not know or replace the content of the message. Because it
does not know the private key that matches the public key. However,
Intruder 0 has its own public key and private key, allowing it to
fake messages to send to the entities. We give the definition of IK
to represent the initial knowledge of the intruder:

Intruder =df Intruder0(IK)
IK =df {U, S,D, PUI, PRI}

IV. VERIFICATION AND IMPROVEMENT
In this section, we will verify the four properties (deadlock

freedom, user faking, server faking and protocol completeness) by
virtue of the model checker PAT. According to the verification results,
we improve the original model for a better safety performance.

A. Security Specification
We allow intruders to perform a series of intrusive actions and give

some facts that intruders can learn. Under these conditions, whether
the intruders can attack the system successfully by intercepting and
faking. If the intruder can get PUOWN or data from the server, then
it can be concluded that the system was successfully attacked by the
intruder. This is in the ideal situation, but the protocol is running in
an open environment, then PUOWN is public as a public key. Once
an intruder knows the data owner’s public key, it is critical that the
system can detect and prevent the disclosure of the message. Thus
we will verify our systems against the following specification:

SPECu =df CHAOS −
(∑

−{FakeU}
)

SPECd =df CHAOS −
(∑

−{FakeD}
)

SPECs =df CHAOS −
(∑

−{FakeS}
)

If the system with intruders refines these specifications, then it would
indeed be secure.

B. Properties Verification
We describe some security properties as well as their assertion

descriptions in PAT code and give the verification result.We do not
give a description of the intruder disguised as the data owner, because
the disguise as a data owner has no realistic meaning. Because the
data owner can be any user and intruders will not use this protocol
to get its own data. We use System to represent the original model.
Property 1: Deadlock Freedom

The model should not run into a deadlock state. In PAT, there is
a primitive to describe this situation:

#assert System deadlockfree;

Property 2: User Faking

This property represents that the intruder has successfully pretend-
ed to be a legal user without being realized by the system. We define
a boolean variable user fake success for verification in PAT.

#define User Fake Success

user fake success == true;

#assert System reaches User Fake Success;

Property 3: Server Faking
Similarly, this property represents that the intruder has successfully

268

pretended to be the server without being realized by other entities.
We define a boolean variable server fake success for verification
in PAT.

#define Server Fake Success

server fake success == true;

#assert System reaches Server Fake Success;

Property 4: Protocol Completeness

Because PUOWN is a public key, if the intruder already acquires
the PUOWN , then the protocol cannot be fully executed. The server
receives three different requests when it executes a complete protocol.
We use a constant n to record whether the server has accepted three
requests. We define a boolean variable protocol completeness for
verification in PAT.

#define Protocol Completeness

protocol completeness == true;

#assert System reaches Protocol Completeness;

The verification results are shown in Fig.2. Deadlock freedom is
valid which means that the System model does not run into a
deadlock state. The User Fake Success property is valid and
PAT provides a trace which leads to a state where this property
is satisfied. Intruder can implement an event req sc on channel
FakeD to be a legal user without being realized. Similarly, the
Server Fake Success property is valid shows that intruder can
successfully pretend to be a legal server without being realized. The
third property Protocol Completeness is not valid. It represents
that intruder can obtain data without executing the complete protocol.
Property 2, 3 and 4 verified the insecurity of TESAC.

Fig. 2. Verification Result of the model

C. Attack and Improvement
As the verification result shows above, although this scheme

adopts asymmetric encryption and the server uses the certificate to
authenticate the user, the system is still not reliable. The server

only requests users to obtain the data decryption key and certificate
from the data owner for decrypting the data at the time of first
data accessing. When users initiate a data access request for the
subsequent time, the server directly grants the data. So once the
intruder successfully obtains data for the first time, there will be
no security in the system. An example trace of the intruder acquires
data successfully, which is presented as below:

ComUS!msgreq.U.S.req data→
FakeU?msgkey1.S.I.E(PUI,E(PRSP, PUOWN))→
FakeD!msgkey1.IU.D.E(PUOWN,E(PRI, req sc))→
ComDS?msgreq.D.S.cof → FakeD!msgreq.IS.D.ack →
FakeU?msgkey1.D.U.E(PUI,E(PROWN, (s, c)))

First of all, the user sends a data request to the server by channel
ComUS. The intruder intercepts the message sent by the server to
the user through channel FakeU . Then the intruder pretends to be a
user to request the secret and the certificate from the data owner. Data
owner validates the users authenticity from the server, this message
is intercepted by the intruder and returns a positive feedback message
to the data owner. Finally, the data owner provides the certificate and
secret key to the intruder.

That is to say, once an intruder obtains a legitimate identity using
the above path, the intruder can obtain data before deleting it from the
servers user list, which will undoubtedly cause disaster. Next we will
make changes to the protocol and not to reduce its time efficiency.

The request information sent by the user for PUOWN cannot
confirm the origins, as well as the confirm feedback information sent
by the server to data owner. In order to change this situation, we will
improve the protocol. When the user requests to obtain PUOWN , it
needs to sign with his own private key, in this way the server can use
the digital signature to authenticate the user. Similarly, the confirm
message sent by data owner to server and the feedback message of
server returnd to data owner are all signed with their own private key.
The specific updating of the model are as follows:

MSGreq = {msgreq.a.b.E(K1, E(K
−1
2 , req data)),

msgreq.a.b.E(K1, E(K
−1
2 , cof))|a, b ∈ Entity,

K1 ∈ PUKey,K
−1
2 ∈ PRKey, req, cof ∈ Content}

MSGack = {msgack1.a.b.E(K1, E(K
−1
2 , x))|

a, b ∈ Entity, x ∈ Ack,K1 ∈ PUKey,K
−1
2 ∈ PRKey}

The message changed in the new model corresponds to actions 1, 4
and 5 in Fig. 1. These messages are all related to the server. So we
give the updated server process which can be formalized as follow:

SERV ER0 =df Initialization{n = 0} →
ComUS?msgreq.U.S.E(PUSP,E(PRUSR, req data))→
GetS!msgkey2.E(PUSP,E(PRUSR, req data))

.PRSP.PUUSR→ Gets?msgackin.req data→
ComUS!msgkey1.S.U.E(PUUSR,E(PRSP, PUOWN)){n = 1} →
ComDS?msgreq.D.S.E(PUSP,E(PROWN, cof))→
GetS!msgkey2.E(PUSP,E(PROWN, cof))

.PRSP.PWOWN → Gets?msgcont.cof →
ComDS!msgack.S.D.E(PUOWN,E(PRSP, ack)){n = 2} →
ComUS?msgkey1.U.S.E(PUSP,E(PRUSR, c))→
GetS!msgkey2.E(PUSP,E(PRUSR, c)).PRSP.PUUSR→
GetS?msgackin.c→
ComUS!msgdata1.S.U.E(PUUSR,E(PRSP,E(s, data))){n = 3} →
SERV ER0;

We define a variable n to record the number of messages sent
by the server. First, SERV ER 0 initializes the variable n. It will
be assigned a value of 1 when the server sends PUOWN to the

269

user by channel ComUS. SERV ER 0 communicates with its
internal process PROCESSS through channel GetS. The server
will return a feedback message to the confirmation message sent by
the data owner. If this action completes successfully, the value of
n becomes 2. The server provides the data to the user if the user’s
presented certificate is matched with the corresponding certificate of
the requested data. Meanwhile, the value of n is modified to 3.

Then we update ProcessS to be PROCSSS correspondingly.

PROCESSS =df

GetS?msgkey2.E(PUSP,E(PRUSR, req data)).

PRSP.PUUSR→ GetS!msgackin.req data→ PROCESSS
C((PUSP == PRSP) ∧ (PUUSR == PRUSR))B
(GetU !msgackin.NO → PROCESSS)

�GetS!msgkey2.E(PUSP,E(PROWN, cof)).PRSP.PUOWN → GetS!msgackin.cof.Y ES → PROCESSS
C((PUSP == PRSP) ∧ (PUOWN == PROWN)∧
(n == 1))B (GetS!msgackin.cof.NO →
PROCESSS))

�GetS?msgkey2E(PUSP,E(PRUSR, c)).PRSP.PUUSR→ GetS!msgackin.c→ PROCESSS
C((PUSP == PRSP) ∧ (PUUSR == PRUSR))B
(GetS!msgackin.cof.NO →
PROCESSS))

PROCSSS receives the message sent by SERV ER 0 through the
channel GetS. It should be noted that if the message is a confirmation
message, PROCSSS will judge whether the value of n is 1. This
is to confirm that the user is getting PUOWN from the server instead
of others.

D. Overall Modeling
We formalize the new system as below.

SY STEM = SY STEM1[|INTRUDERPATH|]INTRUDER,

SY STEM1 =df USER||DATAOWNER||SERV ER,

USER =df USER1[|PROCESSPATH|]PROCESSU,

DATAOWNER =df

DATAOWNER1[|PROCESSPATH|]PROCESSD,

SERV ER =df

SERV ER1[|PROCESSPATH|]PROCESSS.

The verification results are given as below:
The verification results show that User Fake Success and

Server Fake Success properties are invalid, which means that sys-
tem realized that the intruder were performing actions of invading
and immediately stopped the process. The Protocol Completeness
property is valid, which means that after we improve the protocol.
It can be guaranteed that the protocol is executed completely once
when the user requests data.

E. CONCLUSION AND FUTURE WORK
In this paper, we have formalized the TESAC using classical

process algebra language CSP. Then, we have fed the model into
the model checker PAT and verified the security of the model
by asserting four properties (deadlock freedom, user faking, server
faking, protocol completeness). The verification results show that user
faking property and server faking property are valid. It means intruder
can successfully pretend to be a legal user or server without being
realized. Protocol completeness property is not valid. It demonstrates
that TESAC cannot guarantee users to follow all the steps for data
accessing when the intruder attacks. This means that TESAC is not
secure in a cloud computing environment. In order to solve these
problems, we have made improvements to TESAC by introducing a
method similar to digital signature. We have verified the improved

Fig. 3. Verification Result of the improved model

model with respect to the four properties, and the new verification
results indicate that the improved model can prevent intruders from
invading the system. The security and robustness of TESAC would
be improved through our efforts.

ACKNOWLEDGMENT

This work was partly supported by National Natural Science Foun-
dation of China (Grant No. 61872145) and Shanghai Collaborative
Innovation Center of Trustworthy Software for Internet of Things
(No.ZF1213).

REFERENCES

[1] M. ARMBRUST, “Above the clouds : A berkeley view of cloud
computing,” Science, vol. 53, pp. 07–013, 2009.

[2] D. F. Ferraiolo and D. R. Kuhn, “Role-based access controls,” CoRR,
vol. abs/0903.2171, 2009.

[3] X. W. Gao, Z. M. Jiang, and R. Jiang, “A novel data access scheme
in cloud computing,” vol. 756. Trans Tech Publications, 10 2013, pp.
2649–2654.

[4] D. Chen, X. Huang, and X. Ren, “Access control of cloud service
based on UCON,” in Cloud Computing, First International Conference,
CloudCom 2009, Beijing, China, December 1-4, 2009. Proceedings,
2009, pp. 559–564.

[5] S. Namasudra and P. Roy, “Time saving protocol for data accessing in
cloud computing,” IET Communications, vol. 11, no. 10, pp. 1558–1565,
2017.

[6] Z. Mahmood, “Continued rise of the cloud,” 2014.
[7] C. A. R. Hoare, Communicating Sequential Processes. Prentice-Hall,

1985.
[8] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, “A theory of

communicating sequential processes,” J. ACM, vol. 31, no. 3, pp. 560–
599, 1984.

[9] PAT, “Pat: Process analysis toolkit.” [Online]. Available:
https://doi.org/10.1145/828.833

[10] A. W. Roscoe, Understanding Concurrent Systems, ser. Texts in Com-
puter Science. Springer, 2010.

[11] G. Lowe and A. W. Roscoe, “Using CSP to detect errors in the TMN
protocol,” IEEE Trans. Software Eng., vol. 23, no. 10, pp. 659–669,
1997.

[12] Y. Fei and H. Zhu, “Modeling and verifying NDN access control using
CSP,” 2018, pp. 143–159.

270

PRISM Code Generation for Verification of
Mediator Models

Weidi Sun and Meng Sun
LMAM & DI, School of Mathematical Sciences, Peking University, Beijing, China

{weidisun, sunm}@pku.edu.cn

Abstract—Component-Based Software Engineering (CBSE)
has played an important role in software industry for several
decades. The Mediator language is proposed to formally model
complex hierarchical component-based systems, which provides a
proper automata-based formalism for specifying both high-level
system layouts and low-level behavior units. In this paper, we
develop a framework for translating Mediator models into the
model checker PRISM, and build such a “translator” which can
generate PRISM codes from Mediator models automatically and
cooperates with PRISM to verify properties of Mediator models.
Keywords: Mediator, PRISM, Code generation, Model checking,
Verification

I. INTRODUCTION

Component-based software engineering has played an im-
portant role in software industry for several decades. Im-
plementation details inside components are encapsulated and
different components are composed together to construct
value-added systems through interfaces. Mediator [10] is a
hierarchical modeling language that provides proper formalism
for both high-level system layouts and low-level automata-
based behavior units of component-based software systems,
together with a full-featured type system and powerful co-
ordination mechanisms. However, having powerful modeling
languages does not mean correctness of the system models.
In practice, errors can still be introduced by the modeling
activities. Therefore, we need to investigate the formal analysis
and verification techniques for Mediator to guarantee the
correctness and reliability of Mediator models.

Model checking [5] is a widely adopted technique for
verification of both hardware and software systems. PRISM [9]
is a probabilistic model checker that provides a specification
language based on the Reactive Modules formalism [1] and
a powerful tool support for model checking properties spec-
ified in different temporal logics such as LTL, CSL, PCTL,
PCTL∗, etc. [14]. It has been successfully applied in many
areas, including network protocols [7], security protocols [8],
coordination languages [4], and so on.

In this paper, we present a framework for translating Me-
diator models into PRISM such that we can make analysis
and verification of Mediator model behavior by using the
probabilistic model checker PRISM. This is a further extension
to our previous work on the Mediator language [10] and its
Arduino C code generation [11].

DOI reference number: 10.18293/SEKE2019-069.

The following of this paper is organized as follows: Af-
ter this general introduction, we briefly review some main
concepts of the Mediator modeling language in Section II.
In Section III, we show how different elements in Mediator
can be translated into PRISM. Finally, Section IV concludes
the paper and discusses some future work.

II. A MEDIATOR PRIMER

In this section, we briefly review the primary concepts in
the Mediator language which concentrates on both high-level
system layouts and low-level automata-based behavior units.
More details about the language and its semantics can be found
in [10], [12].

The syntax tree of a Mediator program is defined as follows:

program ::= (typedef | function | automaton | system)∗

Typedefs. Mediator provides various data types that are
widely used in different formal modeling languages and pro-
gramming languages. Basic types such as Integer, Bounded
Integer, Boolean and Enumeration can be easily used to define
new data types in Mediator.

Functions. Functions can be either common functions which
have both interfaces describing inputs and return types of
the functions, and function bodies specifying the behavior of
functions, or native functions that have no function bodies but
only interfaces. More discussions about functions can be found
in [10].

Automata. Automata and system are the core modeling ele-
ments in Mediator. They are also called entities or components
in a Mediator program. The syntax of automata is shown as
follows.

automaton ::= automaton template? identifier (port∗) {
(variables {varDecl∗})?
transitions {transition∗}}

port ::= identifier : (in | out) type
transition ::= guardedStmt | group {guardedStmt∗}

guardedStmt ::= term −> (stmt | {stmt∗})
stmt ::= assignStmt | iteStmt | sync identifier+

assignStmt ::= term := term
iteStmt ::= if (term) stmt+ (else stmt+)?

varDecl ::= identifier : type (init term?)

An automaton consists of four parts: templates, interfaces,
local variables and transitions, which are interpreted as fol-
lows:

271

1) Templates. Templates include a set of parameter decla-
rations. A parameter can be either a type or a value.

2) Interfaces. Interfaces consist of directed ports and de-
scribe how automata interact with their contexts. Ports
can be regarded as structures with three fields: value,
reqRead, and reqWrite, which correspondingly denote
the values of ports, the status of reading requests and
the status of writing requests.

3) Local Variables. Each automaton contains a set of local
variables.

4) Transitions. The behavior of an automaton is defined by
guarded transitions. Each transition consists of a boolean
term guard and a sequence of statements. Transitions
encapsulated in a group are not ruled by priority in
Mediator. In other words, when the guards of two
transitions are both satisfied we cannot decide which
transition occurs. However the stmts in a guardedStmt
are ruled by priority, they will occur according to the
order in the sequence of statements.

The following three types of statements are supported by
our translation framework:

1) Assignment statement, including an expression and an
assignment target, that evaluates the expression and
assigns the result to its target if possible,

2) Ite (if-then-else) statement that acts as a conditional
choice statement in other programming languages,

3) Synchronizing statement, labeled with sync, that are the
flags requiring synchronized communication with other
entities.

Systems. A system organizes its sub-entities which can be
automata or systems. The syntax of system is as follows:

system ::= system template? identifier (port∗) {
(internals identifier+)?

(components { componentDecl∗ }?)
connections { connectionDecl∗ }}

componentDecl ::= identifier+ : systemType
connectionDecl ::= systemType params (portName+)

Besides the templates and the interface, a system contains
the following parts:

1) Components. Entities can be placed and instantiated in
systems as components. Each component is considered
as a unique instance and executed in parallel with other
components and connections.

2) Connections. Connections are used to connect the ports
of the system itself, the ports of components and the
internal nodes. Inspired by the coordination language
Reo [6], [3], [2], complex connection behavior can also
be determined by other entities.

3) Internals. Sometimes we need to combine multiple con-
nections to perform more complex coordination behav-
ior. Internal nodes declared in internals segments are
untyped identifiers which are capable to weld two ports
with consistent data-flow direction.

III. FROM MEDIATOR TO PRISM

In this section we introduce our framework for translation
from Mediator to PRISM. The aim of this work is to make
analysis of Mediator model behavior by using the probabilistic
model checker PRISM.

A Mediator entity will be translated into a module in
PRISM. First of all, we consider the “Flat” algorithm which
was proposed in [10] and can be used to flatten a hierarchical
system into a canonical automaton. The syntax of canonical
automata is as follows:

automaton ::= automaton identifier () {
(variables { varDecl∗ })
transitions { transition }}

transition ::= group {guardedStmt∗}
guardedStmt ::= term −> (stmt | {stmt∗})

stmt ::= assignStmt | iteStmt
assignStmt ::= term := term

iteStmt ::= if (term) stmt+(else stmt +)?

varDecl ::= identifier : type (init term)?

Such a flattening of Mediator system model has been proven
to be valid, and the syntax of the resulting canonical automaton
is similar to the corresponding PRISM model defined by a
module as follows:

model ::= module identifier

declaration+;
(transition;)∗

endmodule

Both the variables declarations and guarded statements for
the transitions in an automaton can be easily mapped to the
corresponding PRISM model as well.

In our framework, we have six components that work
together to generate PRISM code from Mediator models: entity
generator, typedef generator, term generator, virtual term
generator, transition generator and automaton generator. We
will show details about these generators, especially the last
two, in this section.

A. Generators for Entity, Typedef, Term and Virtual Term

The entity generator is designed for calling the algorithm
for flattening and fed the returning canonical automaton to the
automaton generator. The canonical automaton has no param-
eters and ports which indicates that it does not communicate
with the environment.

With the help of typedef, we can give an alias to an existing
definition to simplify the expression in Mediator. Although
we cannot use the typedef and alias in PRISM, the absence
of similar syntax can be overcomed by using the original
definitions directly. The typedef generator returns a map which
maps aliases to original definitions and helps us find the
original definition when meeting an alias.

There are some slight differences between terms in Mediator
and PRISM. For example, in Mediator we use “==” to denote
the equality operator, while in PRISM “=” is used instead.

272

Term generator and virtual term generator are designed for
dealing with such subtle distinctions and the only difference
between them is that the latter, as the name suggested, is for
virtual terms. More details of these two generators can be
found in [13].

B. Transition Generator

The transition generator is designed for generating tran-
sitions. There are two main differences between Mediator
transitions and PRISM transitions:

• In Mediator, the stmts in a guardedStmt are ruled by
priority. However, in PRISM we do not have priority
because of its assignment method. For example, if we
have a = 0, b = 0 and then make the assignment a,b:
‘‘a = 1, b = a’’. In Mediator the result is a=1, b=1,
because we first assign the value 1 to a and then assign
the value of a, which has been changed to 1, to b.
In PRISM the result is a=1, b=0 which is completely
different. Because the assignment statement is ‘‘(a’ =
1) & (b’ = a) ’’. We assign a’,b’ at the same time
and then assign values of a’,b’ to a,b.

• The ite statements can be nested in Mediator, but this is
not permitted in PRISM.

Transition generator cannot work while ignoring these two
problems. To solve the first problem we take the transition
apart and execute the transitions sequentially. Though the
execution of transitions in PRISM does not have priority, we
can create the priority by adding a “pedometer” to guards.
A new variable tranmark is provided, which is a counter
to record the number of executed stmts. For every transition
with at least two stmts, we separate it into several transitions.
In each new transition, the new stmt contains one original
transition’s stmt and an assignment statement: “tranmark i
= tranmark i + 1”, the new guard consists of the original
transition’s guard and a condition: “tranmark i=n”. Fig. 1
shows such an example of transition separation.

Fig. 1. Separation of transitions

In Fig. 1, we give every new transition a tranmark i and
initialize it to 0. When we want to execute a transition, the first
new transition’s guard "a = 0 & tranmark i = 0" must
be satisfied. If it is satisfied we can execute stmt1 and add 1

to tranmark i. After that, the second new transition’s guard
will be satisfied, and stmt2 will be executed. These steps will
be repeated until "tranmark i = n". Following these steps
we can execute every statement once and only once in order
and the priority will be guaranteed.

However only separating the transitions is not enough for
our framework. When we finish executing stmt1 (for example
stmt1 is"a’ = a + 1"), the value of variable a may change,
and the next new transition’s guard "a = 0" may not be
satisfied. Here we need a new concept virtual variable to
replace "a" in calculation. For example, "a’ = a + 1" in the
transitions will be substituted with "v a’ = v a + 1" so
that the original variables in guards will not change. Once all
the executions of the original transition are finished, we assign
the value of the virtual variables to the original variables. An
example of such virtual variables for transition separation is
shown in Fig. 2.

Fig. 2. Virtual variables for transition separation

The nesting problem for ite statements is entangled with the
priority problem and thus more complicated. In other words,
in the recursive generation, the nested iteStmt being treated as
a new transition (regard the condition of iteStmt as a guard)
shares all the troubles of the transition, the priority problem
is no exception. We introduce a new variable: layer to denote
the number of the current iteStmt’s nesting layers.

The new transition’s guard generated from the nested iteStmt
will be the combination of the old guard and the iteStmt’s
condition. Furthermore, we will give every iteStmt a new
tranmark as well, for example:

Once a new transition for iteStmt is created, the generating
process will enter a new layer, and the value of layer will be
increased by 1. A set of new virtual variables corresponding
to the virtual variables in the previous layer is also needed
so that the change of variable values does not affect the

273

satisfiability of the new guard which contains the iteStmt’s
condition. The generating process will exit the current layer
when the execution of the iteStmt is completed, and the value
of layer will be decrease by 1. We also introduce a variable
maxlayer to record the largest layer that appeared. Combining
with the above solution the example is shown in Fig. 3.

Fig. 3. Example of layer solution

The transition generator is designed as a recursive function
TGF , which is invoked when we generate a transition and
terminates when the generation process finishes. If we meet
an iteStmt on the sidelines of a TGF execution, a new TGF
will be invoked inside the old one.

To put it in a nutshell, the transition generator treats each
statement as an atomic operation , i.e., an operation which
cannot be interrupted and executes them in order.

C. Automaton Generator

The Automaton Generator’s goals are two-fold: adding
the global declarations and combining different parts of the
generated PRISM model.

Most types in global declarations which are supported by
the PRISM language are easy to define. For these types,
the only work we need to do is changing some grammar
formats in Mediator’s definitions. However, it does not work
for EnumType and ListType. The solving of EnumType and
ListType are similar, for EnumType, we define IntType
variables for every identifier in it and initialize them to 0,1,2...
in order. For ListType, we define IntType variables which is
named as “ListNamei” for every element in the list. It needs
to be pointed out that the list we defined is a fixed-length list
and all the elements in it are initialized to 0. Besides, before
defining such variables we need to change the user-defined
types to base types, and the changing approach is mentioned
in the typedefGenerator.

Then we have the model type, the model name, the global
declarations and the transitions which can be generated by
transition Generator; the final step is to combine these parts
to build the PRISM model. After finishing all these works, the
automaton Generator returns the result module in PRISM.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a code generator that converts
Mediator models to PRISM models. Mediator provides a
component-based modeling language in which components
and systems can be defined in a hierarchical way. With the
help of this code generator, the Mediator models for complex
systems can be transformed into PRISM automatically such
that properties of the Mediator models can be verified by using
the PRISM model checker.

In the future we plan to extend the Mediator language and
investigate more quantitative aspects of system models such
as reliability, security, etc., in Mediator. Providing support for
more hardware platforms and programming languages is in
our scope for future work as well.

ACKNOWLEDGEMENTS

The work is partially supported by NSFC under grant no.
61772038, 61532019, 61202069 and 61272160, and the
Guangdong Science and Technology Department (Grant no.
2018B010107004).

REFERENCES

[1] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal
Methods in System Design, 15(1):7–48, 1999.

[2] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical structures in computer science, 14:329–366,
2004.

[3] Farhad Arbab, Christel Baier, Frank de Boer, and Jan Rutten. Models
and temporal logical specifications for timed component connectors.
Software & Systems Modeling, 6:59–82, 2007.

[4] Farhad Arbab, Sun Meng, Young-Joo Moon, Marta Z. Kwiatkowska,
and Hongyang Qu. Reo2mc: a tool chain for performance analysis of
coordination models. In Proceedings of ESEC/FSE’09, pages 287–288.
ACM, 2009.

[5] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

[6] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling
component connectors in reo by constraint automata. Science of
computer programming, 61:75–113, 2006.

[7] Marie Duflot, Laurent Fribourg, Thomas Hérault, Richard Lassaigne,
Frédéric Magniette, Stéphane Messika, Sylvain Peyronnet, and Claudine
Picaronny. Probabilistic model checking of the CSMA/CD protocol
using PRISM and APMC. ENTCS, 128(6):195–214, 2005.

[8] Salekul Islam and Mohammad Abu Zaid. Probabilistic analysis and
verification of the ASW protocol using PRISM. International Journal
of Network Security, 7(3):388–396, 2008.

[9] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of Probabilistic Real-Time Systems. In Proceedings of CAV
2011, volume 6806 of LNCS, pages 585–591. Springer, 2011.

[10] Yi Li and Meng Sun. Component-based modeling in mediator. In
Proceedings of FACS 2017, volume 10487 of LNCS, pages 1–19.
Springer, 2017.

[11] Yi Li and Meng Sun. Generating Arduino C Codes from Mediator. In
It’s All About Coordination, volume 10865 of LNCS, pages 174–188.
Springer, 2018.

[12] Mediator github repository. https://github.com/mediator-team.
[13] Mediator to PRISM translator. https://github.com/Weidi-Sun/mediator-

master.
[14] PRISM. http://www.prismmodelchecker.org.

274

 An evolutionary model for dynamic and adaptative

service composition in distributed environment

Jiawei Lu, Huan Zhou, Jun Xu, Gang Xiao
School of Computer Science and Technology

Zhejiang University of Technology, Hangzhou, China
Email: {viivan, zhouhuan, xujun, xg}@zjut.edu.cn

Haibo Pan
Whzhen avenue Technology Co., Ltd

Hangzhou, China
Email: 345383630@qq.com

Abstract—Service composition is an important mean for
integrating the individual Web services to create new value-
added systems that satisfy complex requirements. Therefore,
how to effectively analyze different types of services and find out
the matching similarity between services to efficiently substitute
failed services in a distributed and dynamic environment
becomes crucial to service composition. In this paper, we
propose a novel approach based on a data cell evolution model
(DCEM) to support the dynamic adaptation of service
compositions. The model combines data service information and
biological cell behavior analysis to encapsulate data services into
data cells. In order to reach optimum adaptations, we analyzed
the static and dynamic structure of data cells based on bigraph
theory to guarantee the consistency of service evolution. To
evaluate the proposed approach, a series of simulation
experiments and comparisons are conducted to demonstrate the
effectiveness of service composition.

Keywords- Service Composition; Data Service; Bigraph; Data
Cell; Service Evolution.

I. INTRODUCTION

Data as a Service (DaaS) is a new cloud computing service
model that provides consumers on demand with data through
different protocols on the Internet in a timely and low cost
manner. However, as the function of a single Web service is
simple and limited, it is difficult to meet the various
requirements in a complex network environment. How to
effectively model evolution of service composition and
analyze its service behavior has become an issue that existing
research must deal with.

Due to Web service with multi-source, heterogeneous,
autonomous and dynamic characteristics, the evolution of
service composition is different from traditional software
evolution and faces more serious challenges. Many scholars
have researched in this field through formal methods [1],
semantic [2] or combinatorial models [3]. However, the above
studies mainly focus on abstract behaviors and semantic
analysis of services in specific field, without considering the
dynamic contexts. Consequently, they easily lead to
performance degradation and composition failure when the
environment changes.

Biological cell is a precise structural, functional, and
evolutionary unit, which structure can change dynamically
with the environment during growth, differentiation and

physiological process. Comparing the dynamic behavior of
service composition with biological cell, they have similarities
in some aspects. It is possible to combine data service with
biological cell to analyze the evolution of service composition
[4,5].

In this paper, we encapsulate data services into data cells
and analyze the dynamic behavior at the cell level. The data
cell, like biological cell has a strong hierarchical structure.
Thus, a formal method is needed to effectively explain the
static and dynamic information of data cells and reflect the
important characteristics such as functions and location
interconnectivity of services. Bigraph [6] is a graphical
formalization theory tool. It has more extensive applications
in formal modeling and consistent evolutionary analysis [7].

In order to reason about the evolution of service
composition better, we propose a data cell evolution model
(DCEM) to increase the flexibility of service in Web system.
The main contributions of this paper can be summarized as
follows:

 We use bigraph theory to encapsulate data services
into data cells, and construct evolution model for data
cell to describe different information of service such
as service name, service quality, service context, and
so on.

 Because the composition processes may be canceled,
or services may be moved or withdrawn, it is
necessary to recombine it to provide a more powerful
service, so that the service dynamic behavior based on
bigraphical reactive system is analyzed. Meanwhile,
we propose a self-healing algorithm which is used to
dynamically adjust available service to substitute the
failed ones.

II. DATA CELL MODELING BASED ON BIGRAPH THEORY

A. The Bigraph Theory

Bigraph is proposed by Milner and other scholars in 2001
to emphasize the location and connection of computing
(physical or virtual) [6]. Bigraph is a 2-tuple B = <BP, BL>.
BP is the place graph and BL is the link graph. The place graph
is used to represent the location of nodes, which are nested
with each other in bigraph. The link graph ignores the nested
relationship and only indicates the connection between nodes.
Fig. 1 shows a bigraphical structure.

DOI reference number: 10.18293/SEKE2019-120

275

Fig. 1. Elements of bigraph

B. Data Cell Modeling

Based on the bigraph theory, we constructed DCEM that
maps the structures and message interaction of services to
bigraphs, so as to formalize the services and their
compositions by process calculus. DCEM mainly consists of
two layers: data cell and data cell cluster. The form is defined
as follows:

Definition 1 (Data Cell). A bigraph definition of data cell is
a 5-tuple DC=<S, E, Ctrl, CP, CL>: <m, X>→ <n, Y>, where:

 S is a limited set of services in a data cell, ∀s∈S is
called a data service;

 E is a set of finite edges, ∀e∈ E is called a
connecting edge;

 Ctrl: S→C is a mapping relation between services
and service controls;

 CP is the place graph to represent the location of
services and CL is the link graph to represents service
dependencies;

 The inner interface <m, X> indicates that the
bigraph has m sites and a set of inner names X. The
outer interface <n, Y> indicates that the bigraph has
n regions and a set of outer names Y.

Definition 2 (Service Control). A service control is a 5-tuple
C=<CN, CT, P, CL, U>, where:

 CN is a control name of service. CT is used to
specify the type of this service, whether atomic or
composite;

 P is a limited set of ports, which describes the inputs
and outputs of service, ∀p∈P is called a service
port;

 CL=<DL, CN> is the dependency status of current
service, including DL which is the dependent level
with CN from other service;

 U is a probability value which represent the service
reliability.

Definition 3 (Bigraphical Reactive System). A bigraphical
reactive system for data cell is a 3-tuple BS=<BC, R, BC′>:
BC→BC′, where:

 BC is the reactants and BC′ is the products, which
are corresponding to data cells with the bigraphical
structures;

 R is a set of reaction rules and specifies the reaction
process from BC to BC′.

As examples depicted in Fig. 2, the bigraph definition of
data cell aims to represent the structural relationship and data
characteristics in services. The core element correspondence
between data cell and bigraphical structure is also shown in
Table I.

TABLE I. DATA CELL STRUCTURE DEFINITION

Element in data cell Element in bigraph The example

DC Root 0, 1…

m Site 1 , 2 …

S Node s1, s2, s3…

CL Edge e0, e1, e2

C Node control C1, C2, C3…

pC Node Ports

0 1

y

x

s1:C1

s2:C2

s3:C31
1

e1

Fig. 2. Bigraph form of data cells

In practice, in order to meet the increasingly complicated
requirements of users, it is necessary to select appropriate
services from the network and combine them according to
certain business rules to construct a scalable, loosely coupled
combination. The data cell cluster is based on four kinds of
structures (sequence, conditional, parallel, and loop) in
service composition and combines a plurality of data cells
with bigraph operations. The relevant forms of data cell
cluster proposed in this paper are as follows:
Definition 4 (Data Cell Cluster). A bigraph definition of data
cell cluster is a 3-tuple DCC=<DCS, CS, LinkS>, where:

 DCS is a limited set of data cells;
 CS is a limited set of composite structures in data

cells;
 LinkS is a limited set of link ports in the cluster,

∀Link∈LinkS is called a connection between two
ports.

The term language [13] is the basis for the formal
specification and verification of dynamic evolution in
bigraph. Fig. 3 shows the structure of DCC based on different
workflows. Taking the parallel structure (Case 3) as an
example, the cluster has three data cells DC0, DC1, and DC2.
The place graph indicates the positional relationship of
services and other information (e.g., the number and
distributivity of the cells). The link graph shows the
dependency relationship of the services.

To adapt the dynamic environments to complex
requirements, the data interaction between cells is constantly
changing, forming new cell clusters or modifying the original
cell cluster structure. Ensuring the structural integrity of data
cells during this interactive process, while increasing the
effectiveness of service composition, requires serious
consideration. A checking technique for verifying the data
flow of the process model and re-adjusting the model

276

according to the feedback has been proposed [14]. However,
this process model has a large detection granularity and may
easily detect distortion. We present the bigraph matching
algorithm (Algorithm 1) to evolve data cells according to a
bigraphical reactive system (see definition 3). During
matching, the constraints of R in the bigraph are dynamically
determined by the context and requirements. A reaction rule
in R specifies the reaction process, and can take any number
of parameters. Finally, a new bigraph is generated when the
data cells match successfully.

The algorithm contains two phases and takes into account
time, QoS, and service context information constraints. In the
first phase, we take an initial bigraph BC and a set of reaction
rules R. For each reaction rule r in R, the method isMatch(BC,r)
is called to determine whether the elements in the bigraph can
be matched. In the second phase, if r is matched and the
constraint is satisfied, the matching part in the bigraph will be
replaced by products in r. isMatch(BC,r) is a recursive method
that is iteratively executed until the last node in the bigraph
has been checked.

Algorithm1 BigraphMatch

Input: bigraph BC(an initial bigraph), a set of reaction rules R
Output: a new bigraph BC′

1: if R == Null then
2: return BC
3: else
4: for each reaction rule r in R do
5: flag = isMatch(BC, r)
6: if(flag == TRUE&&timeConstraints == true) then

// If the match is successful and satisfies the time constraint, the
reaction proceeded

7: BC′ = BC′∪{BC|the matching part in BC with reaction in r}
8: end if
9: end for

10: return BC′
11: end if
Procedure isMatch(BC, r)
Input: bigraph BC, term r in R
Output: a flag to indicate whether the match is found

1: for each service s in BC do
2: if(r contains s) then
3: if(s.C.CN != r.C.CN || s.C.CT != r.C.CT || s.C.P != r.C.P) then

// Service control matching
4: continue
5: else
6: for each port p in C do // Service port matching
7: if(s.p.pI != r.p.pI || s.p.pN != r.p.pN || s.p.pT != r.p.pT ||

s.p.pC != r.p.pC) then
8: continue
9: else

10: return True
11: end if
12: end for
13: end if
14: else
15: continue
16: end if
17: end for
18: return False

III. EVOLUTIONARY ANALYSIS OF SERVICE DYNAMIC

BEHAVIOR
In actual use, service composition may face situations such

as service failure and service composition disorder. These
cause data cell variation, thus losing the original functional
properties and structural stability.

Fig. 3. The basic structures of data cell cluster

In our work, DCEM periodically tests the service
availability through a data cell self-healing algorithm
(Algorithm 2), allowing the structural variation of the cells to
be fixed. This enables the service composition to restore the
expected functions, and ultimately achieves the effect of self-
repair to improve the service adaptability. The basic process
of Algorithm 2 is as follows:

Algorithm2 Data Cell Self-Healing

Input: bigraph BC(an initial bigraph)
Output: a new bigraph BC′

1: for each service s in BC do
2: flag = isInvalid(s) //indicate whether the services is invalid
3: if (flag == true) then
4: a broken bigraph BC* = BigraphReplace(BC, s)
 //Choose the most reliable service MDCC
5: MDCC = Max(CR(DCC))
6: generate new reaction rules R = createR(s, MDCC)
 // use algorithm 1 to ensure the structural integrity of DC
7: BC′ = BigraphMatch(BC*, R)
8: end if
9: end for

─ Call method isInvalid(s) at a specified time interval to
check whether the service in data cell is fail.

─ If the service fails then use Algorithm 3 to adjust the
bigraphical structure, such as delete nodes and control
belong to the failed service. Otherwise adjust the time
interval to continue testing.

─ Select the most reliable service from the similar service
clustering to replace the fail one. There are many
clustering algorithms; we mainly use the tag clustering
algorithm in reference [15] and execute the aggregation
process to construct the similar service clustering. Then
the chosen service is considered as a reaction in rules R.

─ Based on the previous steps and the bigraphical reactive
system, generate the appropriate reaction rules R, and call
Algorithm 1 to verify the rationality of reaction. Finally, a
new bigraph is generated with a new reliable composition.

When service is detected as failed, Algorithm 3 needs to
find out the failed service in the data cell. For given
bigraphical information and a failed service s, we traverse
each node in bigraph. If there is a surjection relationship

277

between the node and s, the corresponding structure is deleted
and a broken bigraph is given. The specific algorithm is
described as follows:

Algorithm3 BigraphReplace

Input: bigraph BC(an initial bigraph), s(a failed service)
Output: a broken bigraph BC*

1: for each service s′ in BC do
 //Indicate whether the service is match
2: flag = node_conMatch(s′, s)
3: if (flag == true) then
 //Delete structures belong to s′
4: BC* = deleteBigraph(BC, s′)
5: if (s′.C.CL.DL != single) then
 // Delete dependency belong to s′
6: BC* = deleteDependent(BC*, s′)
7: end if
8: end if
9: end for

IV. CASE STUDIES AND VERIFICATION

To illustrate the effectiveness of DCEM in service
composition, we introduce a composite service that supports
online book shopping at Orange Country Bookstore (OCB)
[16] (depicted in Fig. 4).

Fig. 4. Composite service for online book shopping

The business process in OCB includes (1) Look for books,
including Search Book, Show Book Info, Show Related Titles,
which are all part of the Barnes & Noble Books composite
service. (2) Add books to shopping cart in a loop, e.g., Barnes
& Noble Shopping Cart. (3) Authentication and payment at
checkout, such as Google Authentication or Payment
Calculator. (4) Email and invoice service, such as invalid
Card, UPS Shipping Web, and E-mail Invoice.

The service composition created by this instance may
change the contextual events during the actual operation,
resulting in service failure. In addition, the system
requirements state that the service composition must maintain
a main workflow after the evolutionary adjustment (for
example, always ensuring that books are first searched and
then added to the cart).

Here, we fully consider the evolution possibility of each
service by analyzing its context. First, we construct the data
cells based on the different business processes, as listed in

Table II, and then further evolve the data cells into cell
clusters according to functional attributes and requirements.
Table III lists the data cell clusters related to the main
workflow of the shopping cart, searching for books, and
payment in the OCB website.

When Barnes & Noble Books is unavailable, causing the
functionality of s4 to go missing (see Fig. 5), the system
detects the failed service and traverses the data cell cluster
according to Algorithm 3 to alter the structure. It then finds
the substitute service Amazon Books (DCCAB) from the
similar service clustering via Algorithm 2 to repair the
structure.

TABLE II. DATA CELL MODELING

TABLE III. DATA CELL CLUSTER MODELING

Data Services Data Cell Clusters Term Language

Barnes & Noble
Books Shopping Cart

Amazon Books

Credit Card Payment

shopping

/e1./e2./e3./e4./e5. (s4e2e4e5

(s1e1e2|s2e1e3|s3e2e4)||s5e5)

/e1./e2.(s10e1|s11e1e2||s12e2y)

/e1./e2.(s7e1e2z||s8e1|s9e2)

DCCBNBSC

0

S1

1
S5

e4

e5

0 S10 1

S11

S12

e1

e2

y

DCCAB

0

S7

1
S8

S9

e2

e1

DCCCCPS

z

S4 S2

S3

e1 e2

e3

1

0

S4

S5

1

S6

2 3

S8

S9S7

e5

e6 e7

e8

e9

S1

S2

S3

e1

e2

e3

e4

Fig. 5. Data cell cluster on OCB when Barnes & Noble Books has failed

0

S4

S10

S11

S12

0

S4

0

S10

S11

S12

0 1

1

y

1

y

S5

1

S6

2 3

S8

S9S7

S5

1

S6

2 3

S8

S9S7

2

e5

e6
e7

e8

e9

e11

e12

e13

e5

e6
e7

e8

e9

EO5

DCCGE DCCAB DCCGS

e11

e12

Fig. 6. Self-healing process in data cell cluster with Amazon Books

278

Finally, as shown in Fig. 6, DCCAB is absorbed by the data
cell cluster, retaining an unchanged workflow order such as a
looping structure with Book Searching, Book Description,
Related Titles, and Shopping Cart. s10, s11, and s12 are added
in the site of s4. After that, the output port of s12 is connected
to the input port of s4 by e13. Tables IV summarize the term
language operational sets as EO1 to formalize this process of
evolution.

TABLE IV. TERM LANGUAGE OPERATIONAL SET FROM EO1

DC EO1

DCC
GE

ELrule: /�. → /���.
Site: -0 → ������

|���������
|���������

x/y: �/� → Φ
∏ DC� ��(�)

�
��� : (�����(-�)|-�|�/�||������

||������
|��������

||����
|����

)

→(�������
(������

|���������
|���������

)|-�||

������
|-�||������

|��������
||����

|����
)

DCC
AB

ELrule: /�. → /���.
U||V: ������

|���������
||������� → �������

(������
|���������

|���������
)

These actions express how to reorganize elements in the
composition model to re-select suitable data cells from the
same cluster when the Barnes & Noble Books composite
service fails. The failed units are replaced by Amazon Books
and Related Titles (according to the business process from
Fig. 4).

The self-healing process in Fig. 6 is formalized by the
following term language:
/��./��./��./��./��./�. (�����(-�)|-�|�/�||������

||������
|��������

||����
|����

)

→ /���./���./���./��./��./��./��./
��. (�������

(������
|���������

|���������
)|-�||������

|-�||������
|��������

||����
|����

)

V. EXPERIMENT ANALYSIS

To illustrate the effectiveness of the algorithm described in
this paper, we conducted a series of experiments in different
settings. The PC configuration was as follows: Intel Core i5-
8250U CPU (1.6 GHz), Windows 8 and 6 GB RAM. We used
all 12 of the atomic services discussed in Section 4. We then
extracted their parameters and used them as a seed to
randomly generate an extended dataset with 500-2000 ser-
vices. Each service contained basic information such as the
service name, input, output, and success probability. The
experiments compared three kinds of algorithm: (1) The
algorithm (DPSRM) based on the Dynamic Software Product
Line approach [17]; (2) The algorithm (IASRM) based on the
process ontology and multiple recovery [18]; (3) The data cell
self-healing algorithm (DCSRM) proposed in this paper. In
addition, we randomly set the effective service that failed as
a variant v during the composition, which automatically
triggers the service substitution. To ensure unbiased
statistical results, all algorithms were executed independently
20 times.

Fig. 7a presents the results obtained using only DCSRM.
The service number varies from 100 to 500 and the number
of variants increases gradually from 1 to 8. We found that
when the number of variants is small, an increase in the
service number produces a steady increase in the reliability.
However, as the number of variants increases, the reliability
becomes relatively low, especially when the number of
services is small. This is because there are fewer similar

services in the small service set, resulting in no suitable
service being found when the number of variants grows. Fig.
7b shows results for v = 9 and the service number varying
from 100 to 2000. Initially, IASRM gives the highest
reliability, but this obviously decreases as the number of
services increases. Furthermore, DCSRM always
outperforms DPSRM.

(a) (b)
Fig. 7. Comparison of reliability with different variants and services

From Fig. 8, we can see that the response time grows with
the number of services and variants. Moreover, no matter
how v is allocated, DCSRM performs much better and faster
than IASRM and DPSRM. Thus, the experimental results
illustrate that our algorithm significantly improves reliability
and reduces the time cost of service composition.

Fig. 8. Comparison of response time with different variants and services

VI. RELATED WORK

A. Bigraphs and their application

Bigraphs were proposed by Milner and other scholars in
2001 to emphasize the location and connection of computing
units (physical or virtual) [6], and has now become the tool of
choice for many service-adaptive and software-reconfigurable
systems because of its complete formal theory and dynamic
mobility. For example, Lian et al. [7] simulated modeling
using a bigraphical reactive system to analyze the mobile
cloud. Calder et al. [8] proposed a model based on checking
predicates from user-initiated and network events by
extension to a bigraphical reactive system

B. Evolution of service composition

Ensuring the rationality of business process structures after
evolution is an important problem in the composition of
services. If the evolution operation is not implemented
properly, it may cause problems such as a logical deadlock or
component service unreachability [20]. This section analyzes
the evolution of service composition in terms of the rationality
of service evolution operations and the current solutions for
failure recovery.

1) Rationality of service evolution operations

1 2 3 4 5 6 7 8
0

20

40

60

80

100

R
e

lia
b
ili

ty
 (

%
)

number of v

 Services 100
 Services 300
 Services 500

0 200 400 600 800 1000 1200 1400 1600 1800 2000
40

50

60

70

80

90

100

R
e

lia
b

ili
ty

 (
%

)

number of services

 DPSRM
 IASRM
 DCSRM

0 200 400 600 800 1000 1200 1400 1600 1800 2000

500

1000

1500

2000

2500

3000

3500

R
e

sp
o

n
se

 T
im

e
 (

m
s)

number of service(v=1)

 DPSRM
 IASRM
 DCSRM

0 200 400 600 800 1000 1200 1400 1600 1800 2000

500

1000

1500

2000

2500

3000

3500

R
e

sp
o

n
se

 T
im

e
 (

m
s)

number of service(v=3)

 DPSRM
 IASRM
 DCSRM

279

The rationality of the service composition process and the
correctness of the data flow are usually guaranteed by defining
the evolution criterion in the operation process, thereby
avoiding complex verification processes after evolution. To
ensure the rationality of the service composition process, Zeng
et al. [9] proposed a set of basic evolutionary operations for
adjusting the service workflow structure based on workflow
network modeling, which guarantees the rationality of the
internal process logic during the business process. Urbieta et
al. [3] propose an adaptive service composition framework
that supports the dynamic reasoning of user requests and
service behaviors in the smart city. Khanfir et al. [2] propose
a framework for automatic generation and publishing of
service descriptions by using OWL-S semantic annotations,
the purpose of it is to analyze the process modeling and the
choreography of service composite. In service behavior
analysis, the research is mainly used by formal methods such
as Petri net, process algebra, and π calculus, etc.

2) Current solutions to failure recovery

Self-adaptation is the ability of a system to adapt to changes
in its environment to maintain the original functionality, and
is used in different problem domains. Many recent studies
have focused on enabling adaptation for BPEL processes. For
instance, the monitoring mechanism embedded in the BPEL
engine can be used to capture fault messages [10], allowing
existing processes to be directly deployed without any
modifications. Some scholars perform fault monitoring and
recovery through transaction attributes of object states. Ettazi
et al. [11] fulfilled user requirements in mobile environments
by focusing on transactional aspects of context-aware services.
In addition, there has been some research based on security
monitoring and self-healing systems [12,19]. Asim [12]
presented a framework that automates the monitoring of
business processes and reports the compliance violations at
runtime.

VII. CONCLUSION

Service composition is an important technology for
integrating information to create new value in systems that
satisfy complex requirements. In this paper we propose a
novel approach for service composition with data cell
modeling, which is inspired by biological cell and guided by
the bigraph theory. This enables users to efficiently analyze
the services in a dynamic distributed environment.

However, the preliminary data cells and clusters from
model still need to be manually configured by analyzing and
extracting the important characteristics from services. So, for
future work, some tools may be applied to extract service
features automatically. Another problem for future research
is that more constraints from specific customer requirements,
including service rating, service price and so on, need be
considered to optimize the model in different scenes.

ACKNOWLEDGMENT

This work is supported by the Science and Technology
Key Research Planning Project of Zhejiang Province, China
(NO.2018C01064), and Zhejiang Natural Science Foundation,
China (No. LY19F020034).

REFERENCES

[1] J. Cheng, C. Liu, M. Zhou, Q. Zeng, and A. Ylä-Jääski, “Automatic
composition of semantic web services based on fuzzy predicate petri
nets,” IEEE Transactions on Automation Science and Engineering,
12(2), pp. 680-689. 2015.

[2] E. Khanfir, R B. Djemaa and I. Amous, “Automatic Adaptable
Intentional Service Generating and Publishing Framework using
OWL-S Annotation,” International Journal of Web Services Research
(IJWSR), 15(1), pp. 1-26. 2018.

[3] A. Urbieta, A. González-Beltrán, S. B. Mokhtar, M. A. Hossain, and L.
Capra, “Adaptive and context-aware service composition for IoT-based
smart cities,” Future Generation Computer Systems, 76, pp. 262-274.
2017.

[4] Z. Xiong, W. Luo, L. Chen, and L. M. Ni, “Data vitalization: a new
paradigm for large-scale dataset analysis,” In 2010 IEEE 16th
International Conference on Parallel and Distributed Systems. IEEE.
2010, pp. 251-258.

[5] W. Zhou, L. Liu, C. Pu, et al, “An Experimental Study of a
Biosequence Big Data Analysis Service,” 2017 IEEE International
Conference on Web Services (ICWS). IEEE, 2017, pp. 237-244.

[6] R. Milner, “Bigraphical reactive systems,” International Conference on
Concurrency Theory. Springer, Berlin, Heidelberg, 2001, pp. 16-35.

[7] L. Yu, W T. Tsai, X. Wei, et al. “Modeling and analysis of mobile cloud
computing based on bigraph theory,” 2014 2nd IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering.
IEEE, 2014, pp. 67-76.

[8] M. Calder, A. Koliousis, M. Sevegnani and J. Sventek, “Real-time
verification of wireless home networks using bigraphs with sharing,”
Science of Computer Programming, 80, pp. 288-310. 2014.

[9] J. Zeng, HL. Sun, XD. Liu, T. Deng and JP. Huai, “Dynamic evolution
mechanism for trustworthy software based on service composition,”
Journal of Software, 21(2), pp. 261−276. 2010.

[10] H. Huang, X. Chen and Z. Wang, “Failure recovery in distributed
model composition with intelligent assistance,” Information Systems
Frontiers, 17(3), pp. 673-689. 2015.

[11] W. Ettazi, H. Hafiddi, M. Nassar, and S. Ebersold, “Micats:
Middleware for context-aware transactional services,” In International
Conference on Enterprise Information Systems, Springer. 2015, pp.
496-512.

[12] M. Asim, A. Yautsiukhin, A.D. Brucker, et al, “Security policy
monitoring of BPMN‐ based service compositions,” Journal of
Software: Evolution and Process, , 30(9), e1944. 2018.

[13] R. Milner, “Axioms for bigraphical structure,” Mathematical
Structures in Computer Science, 15(6), pp. 1005-1032. 2005.

[14] N. Trčka, WMP. Van der Aalst and N, “Sidorova Data-flow anti-
patterns: Discovering data-flow errors in workflows,” International
Conference on Advanced Information Systems Engineering. Springer,
Berlin, Heidelberg, 2009, pp. 425-439.

[15] X. Liu, Y. Ma and G. Huang et al, “Data-driven composition for
service-oriented situational web applications,” IEEE Transactions on
Services Computing, 8(1), pp. 2-16. 2015.

[16] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz,
“Dynamic adaptation of service compositions with variability models,”
Journal of Systems and Software, 91, pp. 24-47. 2014.

[17] M. Bashari, E. Bagheri, W. Du, “Self-healing in service mashups
through feature adaptation,” Proceedings of the 21st International
Systems and Software Product Line Conference, ACM.2017, pp. 94-
103.

[18] H. Huang, X. Chen, Z.Wang, “Failure recovery in distributed model
composition with intelligent assistance,” Information Systems
Frontiers, 17(3), pp.673-689. 2015.

[19] S. Subramanian, P. Thiran, N C. Narendra, et al. “On the enhancement
of bpel engines for self-healing composite web services,” International
Symposium on Applications and the Internet. IEEE, 2008, pp. 33-39.

[20] S. Rinderle, M. Reichert and P. Dadam, “Correctness criteria for
dynamic changes in workflow systems––a survey,” Data & Knowledge
Engineering, 50(1), pp. 9-34. 2004,

280

Learning - based Adaptation Framework for Elastic
Software Systems

Yingcheng Sun
Case Western Reserve University

Cleveland, OH, USA
yxs489@case.edu

Xiaoshu Cai
Case Western Reserve University

Cleveland, OH, USA
xxc239@case.edu

Kenneth Loparo
Case Western Reserve University

Cleveland, OH, USA
kal4@case.edu

Abstract—Adaptation is a concern for elastic software systems.
Conventional methods like Brownout try to deactivate optional
computation per request after decoupling the software into
different components, to lower the workload when peaks occur.
However, resource-intensive components are not always easy to
isolate, and some software systems are even not separable. In this
paper, we propose a new paradigm that provides each core and
mandatory component a corresponding alternative component,
with similar function but lower resource consumption, and use
reinforcement learning in a feedback loop control for the self-
adaptation process. We modified the widely used benchmark RU-
BiS to make it weakly coupled and add alternative components.
Experiments show that our framework dramatically improves
both the efficiency and effectiveness of self-adaptation.

Index Terms—adaptive software, reinforcement learning, pro-
gramming paradigm

I. INTRODUCTION

Elasticity is the degree to which a system is able to adapt
to workload changes by provisioning and de-provisioning
resources in an autonomic manner. Self-adaptation is the most
obvious characteristic of elastic software systems that enables
systems to continuously adapt themselves to uncertainty in the
environment. One of the challenges in such kind of systems
concerns how to make adaptation to themselves at runtime
dynamically in response to possible and even unexpected
changes from the environment and/or user goals [1].

Different approaches have been proposed for the design of
self-adaptive software, a prominent one being architecture-
based adaptation [2]. For example, a paradigm called brownout
[3] successfully controls the load balance by separating soft-
ware components into mandatory and optional parts and
adaptively activating or deactivating optional parts to manage
resource usage in software systems. However, subordinate
and resource-intensive components are not always easy to
be isolated, and some software systems are even not sep-
arable, like single-function mobile apps with only few but
highly correlated modules. We thus propose a new adapta-
tion framework that separates software into three different
types of components: mandatory, optional and alternative. The
mandatory parts must be kept running all the time, such as the
critical services in the system, including data-relevant services.
The optional parts, on the other hand, need not be active
all the time and can be deactivated temporarily to ensure

DOI reference number: 10.18293/SEKE2019-009

system performance in the case of flash crowds. Compared to
brownout programming paradigm [2] with only mandatory and
optional components, we introduce a new type of component
for the system design: alternative. Each mandatory component
has its corresponding “alternative” one providing the same
services but use less computation resources. Some “insepa-
rable” software systems may not have “optional” parts, but
definitely can build mandatory and corresponding alternative
components.

After building self-adaptive software architecture, we also
need to design a feedback loop control mechanism to fulfill
the self-adaptation process. Control theory was used to adap-
tively determine when to activate/deactivate optional features
in the applications through the feedback from software and
environment, but applying control theory to adapt the software
behavior is a complex problem [4], due to the difficulty of
accurately modeling software, to the types of requirements and
their tradeoffs [5] and to the need of instrumenting software
to obtain sensor measurements and actuators [6]. Techniques
from statistical machine learning have shown to be effective
for feedback control in autonomic computing systems [7],
and learning from system running environment can lead to
improvements in accurately tuning parameters that avoids
slow controller reactions to significant arrival rate changes [8]
Therefore, in this paper, we propose a reinforcement learning
based framework to cope with non-stationary environment and
changeable user goals at runtime by learning controlling rules
to find appropriate thresholds. We also designed the algorithm
to compute the priority of component in an application,
and modified the benchmark RUBiS to make it separable.
Experiments show that our framework dramatically improves
both the efficiency and effectiveness of self-adaptation.

II. RELATED WORK

To enhance the adaptation of software system, the first step
is to build the elastic software architecture with low-coupling
characteristic, and then design a feedback loop control mecha-
nism to fulfill the self-adaptation process. As discussed before,
it is more efficient using machine learning than control theory
as the control mechanism, so we only introduce existing works
on feedback loop control through machine learning to support
the online planning process of self-adaptive systems.

281

To make an application elastic, the designer needs to build a
software architecture that can decompose the act of serving a
request into different parts of the application, each dealing with
a different part of the response. Some functions of a software
application might be skipped when necessary. Rainbow [9] is
a framework using reusable infrastructure to support runtime
self-adaptation of software systems. Brownout [3] is a self-
adaptive paradigm that enables or disables optional parts in the
system to handle unpredictable workloads. In existing articles,
the optional parts are identified as contents, components, and
containers. Optional web contents on servers are to be showed
selectively to users to save resource usage [10]. Components-
based applications deactivate optional components to manage
resource utilization [11]. In containerized clouds, each service
is implemented as a container, and the optional containers can
be activated/deactivated based on system status [12]. Optional
parts might temporarily be deactivated so that the essential
functions of the system are ensured and applications avoid
saturation.

Several automatic policies based on machine learning and
admission control were introduced. Desmeurs et al. [8] pre-
sented an event-driven brownout technique to investigate the
tradeoffs between utilization and response time for web ap-
plications. Dupont et al. [13] proposed an automatic approach
to manage cloud elasticity in both infrastructure and software.
The proposed method takes advantage of the dynamic selection
of different strategies. Moreno et al. [14] presented a proactive
approach for latency aware scheduling under uncertainty to
accelerate decision time, and applied a formal model to solve
the nondeterministic choices of adaptation tactics. Li et al
[15] [16] designed a multi-agents model to improve the self-
adaptation of meta search systems.

Some existing works have the related idea with us to use
Reinforcement learning (RL) to support the online planning
process of self-adaptive systems. Amoui et al [17] use rein-
forcement learning to support action selection in the planning
process and clarify why, how, and when reinforcement learning
can be beneficial for an autonomic software system. Ho et al
[18] present a model-based reinforcement learning approach
that maintains a model to utilize the engineering knowledge
and continuously optimizes system behavior through model-
based reinforcement learning. Tianqi et al [1] combines re-
inforcement learning with case-based reasoning to overcome
the limitations of rule-based adaptation in which decisions are
only made based on static rules

The limitations of the past work are (i) the priority of
software component is not discussed, and (ii) no strategy to
deal with the inseparable components or applications. In next
sections, we will discuss our proposed solutions.

III. LEARNING - BASED ADAPTATION
FRAMEWORK

In this section, we first assign priority to each software
component, and then propose a reinforcement learning based
framework that supports self-adaptive activation/ deactivation
of software components to avoid saturations.

A. Component Priority Assignment

Since some components of a system will be deactivated
when unexpected peaks come, we want to know: which com-
ponent should be deactivated first, i.e. how to determine the
priority order of components that are deactivated? Two metrics
are used to calculate the component priority: computational
complexity and usage frequency. Computational complexity
refers is the amount of resources required for running a com-
ponent. The more complex a component, the more computing
resources it needs. Usage frequency is the number of times that
a component is invoked in the software system during a time
interval. The algorithm of selecting the optional component is
to choose the node with lower frequency but higher complexity
first, because such kind of component needs more computing
resources while it is less used by users. The more frequently
a component being used, the more important and valuable it
is. For component i, we have:

p = δ.c/f

where p is the popularity of component i, δ is the control
factor used for scaling component i’s priority, c refers to the
computational complexity and f is the usage frequency.

B. Reinforcement Learning based Adaptation Framework

Conventional elastic software architectures usually separate
software components into two parts: mandatory and optional,
but not all software applications can be easily decoupled,
so sometimes no components can be isolated. Another issue
is what if a software still cannot adapt to the environment
change after adjusting the running state of optional parts?
For example, what if the workload of server is still high
after deactivating the optional components? To deal with the
above issues, we propose a new design paradigm that prepares
alternative substitute for each of the mandatory components
with similar functions but less complexity. Figure 1 illustrates
the structure and working process of the proposed framework.

When the user traffic is low, the mandatory software compo-
nents and the optional components are activated (if any), and
the alternative parts are deactivated (Figure 1a). All functions
are available and the complete service of the software is
offered. When the traffic increases, the workload of server
rises and the response time gets longer. In this case, optional
components are deactivated in the order of priority. The user
experience might be degraded, but the whole software will
still work well instead of saturation. Figure 1b shows that all
optimal components are deactivated.

If the workload of server is still high after deactivating
optimal components, we need to switch the service running
on mandatory components to alternative components (Figure
1c). The alternative code provides similar but “lighter” services
than mandatory content such as a website with static picture
instead of dynamic animation. Sometimes applications may
not contain components that can be grouped as “optional”,
like mobile apps with few functions, so alternative substitutes
are necessary.

282

Mandatory Component

ControllerSensor

Optional Component Alternative Component

Actuator

Running Environment

Software Application

rt+1 st+1

rt

st

at

Reinforcement Learning Agent

(a) Mandatory and optional components are activated

Mandatory Component Optional Component Alternative Component

Running Environment

Software Application

ControllerSensor Actuator

rt+1 st+1

rt

st

at

Reinforcement Learning Agent

(b) Mandatory components are activated but optional compo-
nents are deactivated

Mandatory Component Optional Component Alternative Component

Running Environment

Software Application

ControllerSensor Actuator

rt+1 st+1

rt

st

at

Reinforcement Learning Agent

(c) Alternative components are activated

Fig. 1. The proposed reinforcement learning framework with three types of
components: Mandatory, Optional and Alternative. The auto scaling process
as the user traffic changes is depicted from subfigure (a) to (c)

To lower the maintenance effort, the whole feedback loop
needs to be automatically managed. This would enable soft-
ware applications to rapidly and robustly respond to environ-
mental changes, and being self-adaptive. We use reinforcement
learning to automatically acquire the optimal strategies as
policies that controllers produce for different situations. In
the reinforcement learning context, an agent takes action at
when the system is in state st and leaves the system to evolve
to the next state st+1 and observes the reinforcement signal
rt+1. Decision making in elastic systems can be represented as
an interaction between software controllers and environment
through sensors and actuators, and the feedback reward is
evaluated in the form of utility functions. An elastic system
may stay in the same state, but should take different actions
in different situations and workload intensity.

We study the adaptive management of resources task in
which a Reinforcement Learning Agent (RLA) interacts with
environment by sequentially choosing which software com-
ponent to be activated or deactivated, so as to maximize

its cumulative reward. We model this problem as a Markov
Decision Process (MDP), which includes a sequence of states,
actions and rewards. More formally, MDP consists of a tuple
of five elements (S, A, P, R, γ) as follows:
• State space S: A state st ∈ S is defined as the metric

function that quantifies the degree of auto-scaling vari-
ables, such as workload, response time, throughout and
etc. The items in st are sorted in chronological order. The
elasticity policy is defined in terms of rules based on the
metric function: ”IF workload is high AND response time
is long THEN take action at”.

• Action space A: Each component has a running proba-
bility controlling how often it is executed, and the sum
of running probability between a mandatory component
and its corresponding alternative part should be 1. The
action at ∈ A of RLA is to change the probability of a
component being activated. The action at is among three
possible candidates:

at ∈ A = {−θ, 0, θ}

• Reward R: After the RLA taking action at at state st,
i.e., changing the running probability of a component,
the utility of software system changes and provides feed-
back, and the RLA receives immediate reward r(st, at)
according to the system’s feedback. In this paper, we use
the response time as the metric of system utility and have:
.

rt = λ(resp(t)− resp(t− 1))

where resp(t) is the response time of the system at time t,
and λ is a constant number scaling the reward value. If a
controlling action leads to a decreased response time, the
reward will increase, meaning the action is appropriate.
Otherwise, if the reward is close to zero, it implies that
the action is not appropriate.

• Transition probability P: Transition probability
p(st+1|st, at) defines the probability of state transition
from st to st+1 when RLA takes action at. We assume
that the MDP satisfies:

p(st+1|st, at, ..., s1, a1) = p(st+1|st, at)

• Discount factor γ : γ ∈ [0, 1] defines the discount factor
when we measure the present value of future reward.
In particular, when γ = 0, RLA only considers the
immediate reward. In other words, when γ = 1, all future
rewards can be counted fully into that of the current
action.

The upper part of each graph in Figure 1 illustrates the
agent-software interactions in MDP. With the notations and
definitions above, the problem of adaptive management of
resources can be formally defined as follows: Given the histor-
ical MDP, i.e., (S,A, P,R, γ), the goal is to find a controlling
policy π : S → A, which can maximize the cumulative reward
for the software system. A widely-used reinforcement learning
method is Q-learning that directly approximates the optimal
quality function of a policy π:

283

Q∗(s, a) = maxQπ(s, a)

and then derives the optimal policy from Q∗ by selecting the
highest valued action in each state:

π∗ = argmaxa∈AQ
∗(s, a)

To approximate the optimal Q-function, Q-learning repeats
the following two steps: 1) choose action a at s using policy
derived from the current Q-function; and 2) take action a, and
then update Q-function with the observed reward using the
following formula:

Q(st, at)← Q(st, at)+α[rt+1+γmaxaQ(st+1, a)−Q(st, at)]

where a is the learning rate, and γ is the discount factor that
determines the present value of future rewards.

IV. EXPERIMENT

A. Experiment Setting

We verify our framework based on a widely used benchmark
e-commerce web application RUBiS, with the dataset “Oopsla
paper dump” from RUBiS official website1. The evaluation
setup includes a ThinkPad laptop with Intel Core i5 2.50 GHz
processor and 10 GB RAM. This web application is deployed
on the laptop, while the visiting traffic is generated by a load
test tool named JMeter. JMeter allows to dynamically selecting
the number of users and maintains a number of client threads
equal to the number of users.

RUBiS benchmark implements three functions of an auction
site: selling, browsing and bidding. There are two roles in this
benchmark: server for an auction and client that can be a seller,
buyer or visitor. To calculate the priority of each component,
we assume that one file (.class, .html or. xml) represents one
unit of complexity, which means if a component includes three
files of .class, its complexity is three. Though it is not very
accurate to compute the running time using this method, it
has little effect to our project since the complexity of each
file is close to the other. Therefore, we can view each file as
a unit with the same resource requirement. We use “session
mechanism” to identify users who are visiting the website and
simulate the workload with the number of visits because it is
not easy to get the actual workload of the server. When the user
traffic changes, controllers can switch the running components
dynamically.

We select “Recommendation for You” as the optional com-
ponent according to the sorting result of priority value. In order
to make a more obvious comparison, we add website effects
to the page “AboutMe” to construct the mandatory component
and its original plain webpage without any effects is regarded
as the alternative part. The website effects are implemented
by CSS and JavaScript. We also add a new alternative compo-
nent “ViewItem light” that introduces product items in words
compared to the original indivisible “ViewItem” module that

1https://rubis.ow2.org/

TABLE I
SELECTED COMPONENTS FOR EXPERIMENTS

Component Type Function Description

Mandatory
AboutMe AboutMe with web effects

ViewItem Introduction of products in
pictures

Alternative
AboutMe light AboutMe without web effects

ViewItem light Introduction of products in
words

Optional Recommendation Recommendation for You

presents items in pictures. All the components used in our
experiment are listed in Table 1.

For JMeter, three parameters need to be set before running
the sampler: number of threads, ramp-up period and the
number of times to execute the test. The ramp-up time tells
JMeter how long to take to run full number of threads chosen.
For example, if 10 threads are used, and the ramp-up period is
100 seconds, then JMeter will take 100 seconds to get all 10
threads up and running. Listeners added to the thread group
are: “aggregate report”, “view results tree” and “view results
in table”. “Aggregate report” shows results of measurements
by calling the same page lots of times as if many users are
calling that page. “Result tree” outputs the report in whether
requests are responded successfully or not. In “result table”,
“sample time” means the time every request uses and “latency”
indicates the time interval between request and response from
the server.

B. Evaluation

To verify the effectiveness of our proposed framework,
two experiments are done in this section: running RUBiS in
non-adaptive configuration and self-adaptive configuration. We
first need to find the maximum capacity of our platform to
acquire the configuration parameters for the “traffic peak”. By
gradually increasing the number of threads in the sampler, we
obtain the lower limit of the peak condition: “launch 4000
threads in 4 seconds”. Figure 2 shows the result.

(a) Aggregate report with errors and high average time

(b) View of results with failed request

Fig. 2. Peak evaluation

Figure 2a shows that the total number of successful samples
is only 1407 because the web server cannot process all requests

284

given only a limited time. The maximum response time set to
4s is because a study made by Amazon shows that 25% users
will leave when the responding time is over 4s. The error rate
is 89.98%. Errors are reflected by warning status in Figure 2b.

Next, we make comparison experiments between non-
adaptive and self-adaptive patterns on the module ”About Me”.
It askes to register first before accessing the page, so we
package username and password information as a request and
send it to the server. To make it close to the real scenario,
we simulate different users to visit the web page instead of
one user visit multiple times. The method is to put 100 users’
information extracted from database into a “.dat” file with
“nickname” and “password” as the parameters and package it
as a request (See Figure 3).

Fig. 3. Multi-users parameter. “Name” means the name list of variables
used in the project. ”Nickname” is the first (No. 0) column in test.dat and
”password” is the second (No. 1) column in test.dat.

Non-adaptive Experiment: we observe the response time
and error rate on three different running modes while the
visits increase without adaptation mechanisms: 1) Mandatory
+ Optional components (“AboutMe” and “Recommendation”)
2) Mandatory component only (“AboutMe”) 3) Alternative
component only (”AboutMe light”). To evaluate the three
modes, we set up samplers with the number of threads ranging
from 250 to 3500 and launch in 4 seconds each time, and
calculate the average response time and error rate for each
sample. Figure 4 shows the performance of RUBiS with the
three modes.

(a) Average response time (b) Percentage of error

Fig. 4. Performance of RUBiS with three different modes.

Figure 4a shows that average response time increases with
the number of visit users increases. It basically takes the
longest time for a web server to support the functions in mode
1, because the “Recommendation” module involves frequent
interactions with database. The performance improves a little
after deactivating the “Recommendation” module in mode 2,
and it improves obviously after switching the mode 2 to mode
3. In addition, Figure 4b shows that although some fluctuations
appear in the graph, the trend is still very clear that the error

rate tends to be flat when it is approaching to saturation after
switching Mandatory component into an Alternative one.

Self-Adaptive Experiment: to make the system self-
adaptive, we first need to model the change of running
environment. In this paper, we model the change of server
workload. Since it is not easy to detect the real workload, we
thus choose the response time as the metric, and the longer
response time means the higher workload. However, we notice
that the response time of failed requests are sometimes even
shorter than successful ones in JMeter, which will interfere the
whole process and make the result inaccurate. Figure 5 shows
an example.

Fig. 5. Sample time of failed requests are shorter than successful ones

Due to the above property of JMeter, we evaluate the self-
adaptive experiment by launching a limited number of threads
to make sure there are no failed requests and the response time
is in linear growth. We set the maximum number of threads to
500 and ramp-up period to 5 seconds, and we make sure there
are no errors with the number of requests less than 500. We set
the control factor δ to 1 for each component and set two elas-
ticity policies for state space: “IF response time is over 3000
ms THEN take action deactivate Optional components.” and
”IF response time is over 6000 ms THEN take action switch
Mandatory components to Alternative parts.” The whole self-
adaptive process is controlled by the Reinforcement Learning
Agent (RLA). Figure 6 shows the experiment results.

0

2000

4000

6000

8000

10000

12000

14000

1

2
4

4
7

7
0

9
3

1
1
6

1
3
9

1
6
2

1
8
5

2
0
8

2
3
1

2
5
4

2
7
7

3
0
0

3
2
3

3
4
6

3
6
9

3
9
2

4
1
5

4
3
8

4
6
1

4
8
4

(a) Average response time

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1

1
8

3
5

5
2

6
9

8
6

1
0
3

1
2
0

1
3
7

1
5
4

1
7
1

1
8
8

2
0
5

2
2
2

2
3
9

2
5
6

2
7
3

2
9
0

3
0
7

3
2
4

3
4
1

3
5
8

3
7
5

3
9
2

4
0
9

4
2
6

4
4
3

4
6
0

4
7
7

4
9
4

(b) Cumulative response time

Fig. 6. Performance of running RUBiS with self-adaptive control in Manda-
tory, Optional and Alternative Components

When the number of visiting users is close to 150, the
response time comes to 3000 ms that is our first threshold
of ”high workload”. RLA captures the high workload through
its sensor and take the action of deactivating the Optional
components. However, we find that there is no obvious im-
provement in performance as shown in Figure 6. When the
number of users is close to 200, the response time comes to
6000 ms that reaches our second threshold, so RLA takes the
action of switching Mandatory components to their Alternative
parts. We can see that the cumulative response time decreases

285

dramatically compared to the system without self-adaptation
mechanism from Figure 6b.

Next, we verify the effectiveness of our framework to deal
with the problem of ”what if a software application cannot be
easily decoupled?” When all the modules are highly correlated
in a software application and cannot be easily isolated, the
Brownout mechanism does not work anymore. As discussed
before, we propose the method of switching the whole com-
plex module or component into a simpler one, instead of
isolating optional parts. As an example, we choose the function
”ViewItem” with all its components related and cannot be
decoupled. We set the maximum number of threads to 700 and
ramp-up period to 5 seconds. We set an elasticity policy for
the state space: “IF response time is over 35 ms THEN take
action switch Mandatory components to Alternative parts”.
Figure 7 shows the experiment results.

(a) Average response time (b) Cumulative response time

Fig. 7. Performance of running RUBiS with self-adaptive control in Manda-
tory and Alternative Components.

When the number of visiting users is close to 300, the
response time comes to 38 MS that reaches our threshold,
and then the action of switching the ”ViewItem” component
to its Alternative part ”ViewItem light” is taken. In Figure
7a, the response time is very high at the beginning because
of the initialization of the module. After the modules switch,
the response time of the system in self-adaptation mode is
less than that without self-adaptation mechanism on average.
From the cumulative response time shown in Figure 7b, we
can see that it is very close for two curves at first, but the
self-adaptive one outperforms the original one as the number
of users increase.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a framework to support self-
adaptation decision making. This framework separates soft-
ware into three different types of components: mandatory,
optional and alternative, and use reinforcement learning to
design the ”controller” aiming at coping with non-stationary
environment and changeable user goals at runtime. It will
be interesting to integrate our framework with containers to
improve scheduling performance in the future.

ACKNOWLEDGMENT

This work was supported by the Ohio Department of Higher
Education, the Ohio Federal Research Network and the Wright
State Applied Research Corporation under award WSARC-16-
00530 (C4ISR: Human-Centered Big Data).

REFERENCES

[1] T. Zhao, W. Zhang, H. Zhao, and Z. Jin, “A reinforcement learning-
based framework for the generation and evolution of adaptation rules,” in
2017 IEEE International Conference on Autonomic Computing (ICAC).
IEEE, 2017, pp. 103–112.

[2] D. Weyns, S. Malek, and J. Andersson, “Forms: Unifying reference
model for formal specification of distributed self-adaptive systems,”
ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol. 7,
no. 1, p. 8, 2012.

[3] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Brownout: Building more robust cloud applications,” in Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014, pp. 700–711.

[4] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in Pro-
ceedings of the 36th International Conference on Software Engineering.
ACM, 2014, pp. 299–310.

[5] K. Angelopoulos, A. V. Papadopoulos, and J. Mylopoulos, “Adaptive
predictive control for software systems,” in Proceedings of the 1st
international workshop on control theory for software engineering.
ACM, 2015, pp. 17–21.

[6] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, “Control-
theoretical software adaptation: a systematic literature review,” IEEE
Transactions on Software Engineering, vol. 44, no. 8, pp. 784–810, 2018.

[7] M. Maggio, H. Hoffmann, A. V. Papadopoulos, J. Panerati, M. D. San-
tambrogio, A. Agarwal, and A. Leva, “Comparison of decision-making
strategies for self-optimization in autonomic computing systems,” ACM
Transactions on Autonomous and Adaptive Systems (TAAS), vol. 7, no. 4,
p. 36, 2012.

[8] D. Desmeurs, C. Klein, A. V. Papadopoulos, and J. Tordsson, “Event-
driven application brownout: Reconciling high utilization and low tail
response times,” in 2015 International Conference on Cloud and Auto-
nomic Computing. IEEE, 2015, pp. 1–12.

[9] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[10] J. Dürango, M. Dellkrantz, M. Maggio, C. Klein, A. V. Papadopou-
los, F. Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén, “Control-
theoretical load-balancing for cloud applications with brownout,” in 53rd
IEEE Conference on Decision and Control. IEEE, 2014, pp. 5320–
5327.

[11] F. Alvares, G. Delaval, E. Rutten, and L. Seinturier, “Language support
for modular autonomic managers in reconfigurable software compo-
nents,” in 2017 IEEE International Conference on Autonomic Computing
(ICAC). IEEE, 2017, pp. 271–278.

[12] M. Xu, A. V. Dastjerdi, and R. Buyya, “Energy efficient scheduling of
cloud application components with brownout,” IEEE Transactions on
Sustainable Computing, vol. 1, no. 2, pp. 40–53, 2016.

[13] S. Dupont, J. Lejeune, F. Alvares, and T. Ledoux, “Experimental analysis
on autonomic strategies for cloud elasticity,” in 2015 International
Conference on Cloud and Autonomic Computing. IEEE, 2015, pp.
81–92.

[14] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, “Proactive self-
adaptation under uncertainty: a probabilistic model checking approach,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, 2015, pp. 1–12.

[15] Q. Li and Y. Sun, “An agent based intelligent meta search engine,”
in International Conference on Web Information Systems and Mining.
Springer, 2012, pp. 572–579.

[16] Q. Li, Y. Zou, and Y. Sun, “Ontology based user personalization
mechanism in meta search engine,” in International Conference on
Uncertainty Reasoning and Knowledge Engineering. IEEE, 2012, pp.
230–234.

[17] M. Amoui, M. Salehie, S. Mirarab, and L. Tahvildari, “Adaptive ac-
tion selection in autonomic software using reinforcement learning,” in
Fourth International Conference on Autonomic and Autonomous Systems
(ICAS’08). IEEE, 2008, pp. 175–181.

[18] H. N. Ho and E. Lee, “Model-based reinforcement learning approach
for planning in self-adaptive software system,” in Proceedings of the 9th
International Conference on Ubiquitous Information Management and
Communication. ACM, 2015, p. 103.

286

Self-Adaptive software changes analysis method
based on “Detection-Recognition” Mechanism

He Zhang, Qingshan Li*, Lu Wang*, Wen Cheng
 Department of Software Engineering

Xidian University
Xi’an, P. R. China

qshli@mail.xidian.edu.cn

Abstract—Self-Adaptive Systems (SASs) need to analyze software

changes accurately and continuously, that is, recognize events

caused by changes, and adjust structure or behavior. However,

present event recognition methods frequently monitor events,

resulting in waste of system resources. And most of them ignore

the impact of operating environment uncertainty, causing errors

in recognizing the event and directly affecting the reliability of

SASs. Addressing the above problems, this paper proposes an

event recognition method based on "detection-recognition"

mechanism. Firstly, the Naive Bayesian Classification algorithm is

used to detect the state of the system. If the system is judged to be

abnormal, we will combine with rule reasoning and fuzzy

reasoning to recognize events. The system does not have to monitor

the occurrence of events from time to time, avoiding the waste of

system resources. Moreover, the probabilistic reasoning method of

Bayesian Classification and the introduction of fuzzy reasoning

can cope with environmental uncertainty and improve the

accuracy of event recognition. Finally, we exemplify this

mechanism with the Web system, which proves the effectiveness of

the methods.

Keywords-component; Self-Adaptive software; Analyze; Naive

Bayes Classification; Rule reasoning

I. INTRODUCTION

Self-adaptive Systems (SASs) modify their behaviors or
structures in response to their perception of the environment and
the system itself [1]. Adaptation process for SASs generally
includes monitor, analyze, plan and execution [2]. The Analyze
is responsible for judging whether the system needs to be
adjusted by observing the changes information of the Monitor,
and to recognize accurately the events triggered by the changes.

At present, there are few researches on changes analysis.
Some researchers apply ontology to analyze system situation
[3][4]. The accuracy of ontology reasoning is higher, but the
ontology has high demand for developers, and it is difficult to
perform dynamic correction during system running, so we will
not consider the ontology reasoning method. Some researchers
use rule methods to recognize environmental events [5], and
some recognize active database events [6]. The types of events
recognized in the above studies are single or limited. Nowadays,
the operating environment or system structure is highly likely to
change. If the ontology or rules are unchanged, the accuracy of
DOI reference number: 10.18293/SEKE2019-049

event recognition will be low.

There are other methods for recognizing events, including
event listeners [7], a generalized modeling framework of fault
detection and correction processes [8]. Most methods lack
research on system state detection, they usually recognize events
directly. However, software changes do not necessarily trigger
events, for example, fluctuations and surges of system status
data will not affect the normal provisioning of system functions
and system status, so they will not evolve into events as the
system runs. Such frequent monitoring of events will frequently
make use of system resources, resulting in waste of resources.

In addition, if the event is recognized incorrectly, even if the
system performs a series of adjustments, it may not achieve the
expected results, or even make the system crash, which seriously
affects the reliability of the SASs. Nowadays, the dynamic
operating environment of complex software and the complexity
of its structure cause the process of event recognition faces
uncertainties such as environmental complexity and ambiguity
of demand. Most methods focus on recognizing events in a
certain environment, its accuracy cannot be guaranteed in the
dynamic and variable environments. The present ideas of
processing uncertainty mainly include fuzzy logic and
probability theory [9][10]. These methods only consider the
research of design phase, or have specific scenario constraints.

In response to above issues, this paper proposes a
“detection-recognition” mechanism, which first judge the
system state, if it is abnormal, then recognize the event. In the
“detection” stage, we establish the Naive Bayesian
Classification model to judge system status quickly by
analyzing the probability value. In the “recognition” stage, we
combine the rule reasoning and fuzzy reasoning to recognize
the event, which can improve the accuracy of event recognition
and migrate this method to other systems through the addition
and modification of rules.

This paper is organized as follows: section Ⅱ provides the
detail of our event recognition method; section Ⅲ introduces
our experiment and some discussions; conclusion is discussed in
section IV.

287

II. THE EVENT RECOGNITION METHOD
We propose the "detection-recognition" mechanism to

analyze events triggered by the changes. It contains two stages
of abnormal state detection and event recognition.

A. Abnormal State Detection

Abnormal state definition: the system's functional or non-
functional requirements are affected due to system events. To
detect accurately and quickly the abnormal state of the system
running, we apply the Naive Bayesian Classification model to
judge the system status.

First, we convert the numerical data collected in the system
log into character data by conversion threshold. The processed
log is divided into the training set and the test set by the 4-fold
cross-validation method.

Second, the frequency of occurrence of features or categories
in the training set is counted to estimate the probability of
occurrence. We adopt the Laplace transformation method to
avoid the situation where the probability value is 0.

Then, we get the error rate of the model by operating the test
set. If the error rate is higher than the preset tolerance, we will
return to data processing process, and dynamically adjust the
threshold of the converted numerical data. In general, the
tolerance is set to 8%, this value will be verified in Section Ⅲ.

Finally, the model calculates the system state, as in (1).

1

1

((|)) ()
(|)

()

n

i

i
n

i

i

P FeatureValue Category P Category

P Category FeatureValue

P FeatureValue

=

=

=

 ()

As in (1), FeatureValue refers to the eigenvalues that can
characterize the state of the system. Category is divided into
Normal and Abnormal categories in this paper. When
P(Abnormal|FeatureValue) is greater than
P(Normal|FeatureValue), we consider that the current system is
in an abnormal state, and further need to inference the event.

B. Event Recognition

We combine the rule-based reasoning and fuzzy reasoning
to recognize events. The working process is shown in Fig.1. We
first establish the events library. Then, according to the
predefined recognition rule base, the event information that
occurs is reasoned. At the same time, we apply fuzzy reasoning
to supplement rule reasoning, further achieve feedback and
correction of the rule base and ensure the accuracy of event
recognition.

Adaptive
events
library

Monitor
data Rule

matching Rule base

Trigger event list

Rule reasoning

Fuzzy membership
function

 feedback、
correction

Input

Output

Output

Input

Fig.1. Event recognition method working process

1）Event recognition method based on rule reasoning

The process of this method is as follows. First, we define the
corresponding mapping rules for the event. The rules indicate
the relationship between system status and events, as in (2).

rule RuleName

when Judging condition， then Event information (&&

action)
end (2)

We introduce the mapping rules between system states data
and " Unit Fault" as an example, as shown in Fig.2.

rule UnitFault

 when SystemState (heartBeatInterval>threshold&&

responseTime>threshold&&errorRate>threshold

&&nodeState==“normal”)
 then <E0201> && getTime();
end

Fig.2. UnitFault rule example

Among them, the rule conditions are the judgment of the
system status value, and the latter part of the rule is the event ID
and the time that successfully matches the rule.

Then, we recognize events based on the mapping rules. We
match the status information with the conditions of the rules in
the rule base. If the current status information can match
multiple rules, the rules will be placed in the conflict set. Conflict
resolution strategies such as predefined rule priorities or
definition rule groups are used to resolve conflicts between rules
in conflict sets. Once the conflicts are complete, the rules will be
executed in order. Then we will output event information or
perform corresponding actions.

This method belongs to the category of precise matching, so
events that have occurred can be accurately inferred according
to the rules.

2)Event recognition method based on fuzzy reasoning

In this method, we establish fuzzy sets and membership
function for the state eigenvalues of the system. Then, we
establish fuzzy rules. In the rule base, the rules include the form
of the fuzzy set in addition to the above-mentioned form of
passing the threshold. Finally, the matching degree between the
current system state and each rule is calculated by (3). We select
a rule with the largest matching degree, output event or perform
action in the latter part of the rule.

1
()

n

R i i

i

MatchingDegree membership weight
=

=
 ()

RMatchingDegree indicates the matching degree between
the system state and rule A. n indicates the number of system
state eigenvalues.

imembership indicates that the eigenvalues i
belongs to the membership of the fuzzy set of eigenvalues in
rule R, and

iweight indicates the weight corresponding to the i-
th eigenvalues.

288

In summary, the event recognition method based on fuzzy
reasoning mainly supplements and corrects rule reasoning to
improve the accuracy of event recognition.

III. EXPERIMENT

To validate the methods of this paper, we choose BookStore
System as the case to test the ability and accuracy of "detection-
recognition" mechanism.

A. Bookstore system

BookStore is a e-commerce system that uses the B/S
architecture to provide users with functions such as registration
login, product browsing, product payment and so on. Various
types of events such as server corruption, response timeout,
network bandwidth change, etc. may occur during system
running. And the user requirements, computing resources,
system overhead, etc. in the system are easily affected by the
open environment, it is not possible to define recognition rules
for all events during the design phase. Therefore, BookStore can
be used to test the ability of this method to recognize multiple
event types and uncertain event.

B. The experiment for recognizing events

1)Model system status. When detecting the system status, we
use the three characteristic values of response time, page error
rate and load to characterize the system status. The node load
is calculated by (4).

0 4 0 3 0 3nodeLoad . *CPU . * memory . * disk= + + ()

2)Establish event library. We use tuples to represent event and
store it in the event library to facilitate event information
output during subsequent event recognition, as in (5).

Event { E _ Id ,E _ Name,E _Value,E _Time,E _ Effect,

E _ Pr iority,E _ Duration }

=

 ()

E_Id is composed of 4 digits. The first two digits indicate
the event type. "01" refers to the type of node resource
changes."02" refers to the type of unit resource changes such.
"03" refers to the type of changes in the business logic layer.
"04" refers to the type of communication environment changes.
"05" refers to the type of hardware environment changes. The
last two digits indicate specific events under a particular type.

E_Effect can be divided into local and global categories.
The local effect refers to an event that affects only one software
unit, and the global effect refers to an event that affects the
global system. E_Duration indicates the duration of the event
from being recognized to the current time, and it can be used
as a reference to set the sequence of event processing.

3)Experiment Design and result
We continuously collect and store the running data of the

Bookstore, and we set the dataset size as follows: the size of
data set 1 to set 6 is 300, 500, 700, 900, 1100, 1300 data,
respectively. The following tests are performed on a computer
with Inter(R) Core(TM) i5-4570 processors and 8GB RAM.

We use the "detection-recognition" mechanism to detect the
state of the BookStore system over a period of time and to
recognize events, as shown in Table Ⅰ.

TABLEⅠ
THE SYSTEM STATUS AND EVENT DISPLAY OF BOOKSTORE

System

status
Id Name Effect Time Priority

abnormal 0101 User server
overload global

11:28
2018-
10-15

urgent

abnormal 0501
Home

response
timeout

global
12:05
2018-
10-15

urgent

abnormal 0502 Reduce ads local
12:43
2018-
10-15

general

abnormal 0201
Product
display

page lost
local

13:18
2018-
10-15

very
urgent

abnormal 0301 Network
delay global

13:47
2018-
10-15

urgent

We show the main attributes of the event. The priority refers
to the urgency of the event to be processed, which is determined
by the impact of the event on the functional and non-functional
requirements of the system. We set the priority of events that
have a large impact on functional or non-functional
requirements to be very urgent, such as server damage events.
The priority of a more influential event is set to urgent, such as
response timeout. The priority of the less influential event is set
to general, such as the user request to reduce the number of ads.

From Table Ⅰ we can see that the mechanism of this paper
can detect the state of the system and further recognize various
types of events. It shows that the mechanism can effectively
realize the main tasks of the analyze of the adaptive process.

To verify the time efficiency of the mechanism, we test the
time when it processes data sets of different sizes, as shown in
Fig.3. As the data size increases, the operation time of the
mechanism increases, but the overall does not exceed 2500ms,
indicating that the mechanism has higher time efficiency.

To verify the accuracy of the mechanism, we test the error
rate of abnormal state detection under the aforementioned data
sets, as shown in Fig.4. Meanwhile, the Accuracy, Precision and
Recall of the method are verified under the aforementioned data
sets, as shown in Table Ⅱ.

Fig.3. Operation time of the mechanism

0
500

1000
1500
2000
2500

set1 set2 set3 set4 set5 set6

O
pe

ra
tio

n
tim

e(
m

s)

Perception data set

289

Fig.4. Error rate of state detection method

TABLE Ⅱ

ACCURATENESS OF EVENT RECOGNITION METHOD UNDER
DIFFERENT DATA SIZES

Set

number
Accuracy Precision Recall

Set 1 95.33% 99.61% 95.27%

Set 2 96.2% 99.54% 96.24%

Set 3 96.85% 99.67% 96.88%

Set 4 97.33% 99.63% 97.45%

Set 5 97.64% 99.70% 97.75%

Set 6 97.76% 99.67% 97.94%

As shown in Fig.4, as the data size increase, the error rate of
the detection method is declining and gradually gradual. Since
the effect of the Bayesian model depends not only on the amount
of training data, but also on the construction of the classifier and
the characteristics of the data to be classified, there are inevitable
errors in the method for state detection. As shown in Table Ⅱ,
the Accuracy, Precision and Recall of the event recognition
method are higher in the data sets of different scales, indicating
that the method proposed in this paper has a better recognition
effect.

In the state detection, to select the appropriate error rate
tolerance, we set different tolerances when realizing detection
method. Then we recognize events under dataset 6 to obtain the
accuracy of recognition, as shown in Fig.5. The accuracy has a
significant continuous decline when the tolerance is greater than
8%. At 2% to 8%, the decline is lower. If the tolerance is smaller,
the system will constantly adjust and cause system overhead.
Therefore, we take 8% as the tolerance.

We compare the Recall of using only rule reasoning and our
method under the aforementioned data set, as shown in Fig.6.
The Recall of this method is higher than that of rule-based
reasoning. Fuzzy reasoning supplements the rule reasoning
when encountering an unknown situation. This also verifies the
effectiveness of the event recognition method in this paper.

Fig.5. Impact of error rate tolerance on event recognition accuracy

Fig.6. Comparison of event recognition methods

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a "detection-recognition
mechanism, which can effectively avoid the waste of system
resources, and cope with the uncertainty in the environment, so
that the accuracy of event recognition is improved. In the future,
we will further observe the operating characteristics of the
system, and consider the online dynamic correction method of
the rules. And we will expand the type of recognition event to
further enhance the range of recognized events.

ACKNOWLEDGMENT

This work is supported by the Projects (61672401)
supported by the National Natural Science Foundation of
China; Projects (315***10101, 315**0102) supported by the
Pre-Research Project of the “Thirteenth Five-Year-Plan” of
China.

REFERENCES
[1] Lemos R D, Giese H, Müller H A, et al. Software Engineering for Self-

Adaptive Systems: A Second Research Roadmap[J]. Lecture Notes in
Computer Science, 2013, 5525:1-32.

[2] Frank D. Macías-Escrivá,Rodolfo Haber,Raul del Toro,Vicente
Hernandez. Self-adaptive systems: A survey of current approaches,
research challenges and applications[J]. Expert Systems With
Applications,2013,40(18).

[3] Baader F. Ontology-Based Monitoring of Dynamic Systems[J]. 2014.
[4] Paola A D. An Ontology-Based Autonomic System for Ambient

Intelligence Scenarios[M]// Advances onto the Internet of Things.
Springer International Publishing, 2014:1-17.

[5] C. K. Chang, K. Oyama, H. Jaygarl and H. Ming, "On Distributed Run-
Time Software Evolution Driven by Stakeholders of Smart Home
Development (Invited Paper)," 2008 Second International Symposium on
Universal Communication, Osaka, 2008, pp. 59-66.

[6] Jin Y. Management of composite event for active database rule
scheduling[C]// IEEE International Conference on Information Reuse &
Integration. IEEE, 2009:300-304.

[7] J. Lang, M. Jantošovič and I. Polášek, "Re-usability in complex event
pattern monitoring," 2012 IEEE 10th International Symposium on
Applied Machine Intelligence and Informatics (SAMI), Herl'any, 2012,
pp. 265-270.

[8] Okamura H, Dohi T. A Generalized Bivariate Modeling Framework of
Fault Detection and Correction Processes[C]// IEEE, International
Symposium on Software Reliability Engineering. IEEE Computer Society,
2017:35-45.

[9] Yang Q , Jian Lü, Li J , et al. Toward a fuzzy control-based approach to
design of self-adaptive software[M]. 2010.

[10] Xu L , Wang X L , Wang X F . Fast Method of Compound Event
Probability Calculation Based on Binary Tree[C]// Fifth International
Conference on Natural Computation. IEEE Computer Society, 2009.

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%

set1 set2 set3 set4 set5 set6

Er
ro

r r
at

e

Perception data set

75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

2% 4% 6% 8% 10% 12% 14% 16%

A
cc

ur
ac

y

Error rate tolerance

50%

60%

70%

80%

90%

100%

set1 set2 set3 set4 set5 set6

R
ec

al
l

Perceptual data set
Rule reasoning method of this paper

290

morph-GraphQL: GraphQL Servers Generation
from R2RML Mappings (SESE)*

1st Freddy Priyatna
Ontology Engineering Group

Universidad Politecnica de Madrid
Madrid, Spain

fpriyatna@fi.upm.es

2nd David Chaves-Fraga
Ontology Engineering Group

Universidad Politecnica de Madrid
Madrid, Spain

dchaves@fi.upm.es

3rd Ahmad Alobaid
Ontology Engineering Group

Universidad Politecnica de Madrid
Madrid, Spain

aalobaid@fi.upm.es

4th Oscar Corcho
Ontology Engineering Group

Universidad Politecnica de Madrid
Madrid, Spain

ocorcho@fi.upm.es

Abstract—REST has become in the last decade the most
common manner to provide web services, yet it was not originally
designed to handle typical modern applications (e.g., mobile
apps). GraphQL was released publicly in 2015 and since then
has gained momentum as an alternative approach to REST.
However, generating and maintaining GraphQL resolvers is not
easy. First, a domain expert has to analyse a dataset, design
the corresponding GraphQL schema and map the dataset to the
schema. Then, a software engineer (e.g., GraphQL developer)
implements the corresponding GraphQL resolvers in a specific
programming language. In this paper we present an approach
that generates GraphQL resolvers from declarative mappings
specification in the W3C Recommendation R2RML, hence, can
be used both by a domain expert as without the need to
involve software developers to implement the resolvers, and by
software developers as the initial version of the resolvers to be
implemented. Our approach is implemented in morph-GraphQL.

Index Terms—GraphQL, R2RML, OBDA

I. INTRODUCTION

Introduced in 2000, Representational State Transfer (REST)
has become the most common manner to provide web services
in the last few years. Those web services that conform to
the REST principles, known as RESTful web services, use
HTTP/S and its operations to make requests to the underlying
server, such as GET to retrieve objects, POST to add objects,
PUT to modify objects and DELETE to remove objects,
among others.

Over the years, the complexity of modern software concept
has evolved since the inception of REST. For example, typical
mobile applications have to take into account aspects that
receive little attention in traditional applications, such as the
size of data being exchanged/transmitted and the number of
API calls being made. These aspects are relevant to the prob-
lem known as over-fetching and under-fetching. Over-fetching
refers to the situation in which a REST endpoint returns more

DOI reference number: 10.18293/SEKE2019-055

data than what is required by the developer. For example, a
developer may need some information about the name of a user
so she hits the corresponding endpoint (/user). However,
the endpoint may return information that is not needed by the
client, such as birth date and address. The opposite also raises a
problem, which is having the REST endpoint provide less data
than required. Such a case is called under-fetching. It refers to
the situation in which a single REST endpoint does not provide
sufficient information requested by the client. For example, in
order to obtain the names of all friends of a particular user,
typically two endpoints may be needed: the first is the endpoint
that returns the identifiers of all the friends (/friends), and
the second is the one that returns the details of each of the
friends based on the identifier (/user).

In order to ameliorate the aforementioned problems, Face-
book proposed the GraphQL query language [6], initially
being used internally by the company in 2012. GraphQL was
released for public use in 2015 and since then has been
adopted by companies from various sectors such as tech-
nology (GitHub), entertainment (Netflix), finance (PayPal),
travel (KLM), among others. Two main components of a
GraphQL server are schema and resolvers. The GraphQL
schema specifies the type of an object together with the fields
that can be queried. GraphQL resolvers are data extraction
functions implemented in a programming language that are re-
sponsible to translate GraphQL queries into queries supported
by the underlying datasets (e.g. GraphQL to SQL). GraphQL
is supported by multiple GraphQL engines for major pro-
gramming languages (e.g. JavaScript, Python, Java, Golang,
Ruby). In addition to the above mentioned frameworks, query
planning tools have been developed in order to translate
GraphQL queries into other query languages (e.g. dataloader1,
joinmonster2).

1https://github.com/facebook/dataloader
2https://join-monster.readthedocs.io/en/latest/

291

Generating a GraphQL server requires expertise from both
domain experts and software developers. Typically, the follow-
ing tasks need to be done:

1) A domain expert will analyse the underlying datasets,
propose a unified view schema as a GraphQL schema
and how the source datasets would need to be mapped
into the GraphQL schema. Note that there is no standard
mechanism to represent these mappings (e.g. the domain
expert may use a spreadsheet, which is not necessarily
easy to understand by another domain expert).

2) A software developer then implements those mappings
as GraphQL resolvers, a process that takes significant
resources. Given that the complexity of any given source
code grows faster than the size of the source code, gener-
ating GraphQL resolvers is becoming more difficult even
for a standard-sized dataset which typically contains
more than a handful tables and hundreds of properties.
This situation is even worse if the underlying dataset
evolves considering that the corresponding resolvers
have to be updated as well. GraphQL resolvers may
not be easily understood by new developers who were
not involved in the initial version thus bringing the
possibility of introducing errors.

In this paper we propose the use of W3C R2RML [4]
to specify the mapping rules that relate the source datasets
and the GraphQL schema. The use of R2RML mappings is
based on the idea that the use of a standard mapping language
would facilitate better understanding of the mapping from the
underlying data source and the exposed GraphQL schema.
Furthermore, they also allow for better maintainability as
R2RML mappings are declarative and independent from any
programming language. Our main contribution in this paper is,
taking the advantage that R2RML mappings are declarative,
an approach to translate R2RML mappings to JavaScript-based
GraphQL resolvers.

The rest of the paper is structured as follows: in section
II we review R2RML and GraphQL and in section III we
describe our approach on translating R2RML mappings to
GraphQL resolvers. In section IV we present the queries, based
on the example provided in the reference implementation3, that
we use to test our implementations. Finally, related work and
conclusion are presented in sections V and VI.

II. BACKGROUND

In this section we provide some background on two of
the underlying technologies that we will use: GraphQL and
R2RML. We use the example provided in the reference
implementation based on the Star Wars movies to explain the
background concepts. An overview of its schema in a tabular
model and some of the data is shown in Figure 1.

A. GraphQL

GraphQL is a specification that provides a unified view for
accessing heterogeneous datasets using its query language.

3https://github.com/graphql/graphql-js/

Fig. 1. Tables used in the Star Wars example, inspired by the example
provided in the reference implementation

Besides the query language, the specification defines how
a GraphQL server may be implemented for allowing the
developers to deploy their own implementation in different
programming languages. In this section we describe and
provide an example of the main components of a GraphQL
server: schema and resolvers (query root and type).

type Query {
listEpisode(identifier:String, code:

String): [Episode]
...

}

type Episode {
identifier:String
code:String

}

Listing 1. GraphQL Schema for type Episode

A GraphQL schema specifies all the available types and
their properties. For example, in Listing 1 we can see that the
schema for the Episode type together with its two fields:
identifier and code.

A GraphQL resolver describes the relationship between
the defined GraphQL types/fields and the data sources.

292

It implements the methods for accessing the data of
each field in a specific dataset. For example, given
the dataset in Figure 1, a GraphQL resolver may pro-
vide queries for retrieving all instances of the defined
GraphQL types (e.g., listAppear, listEpisode,
listCharacter, listFriends, listHeroes).

Listing 2 shows a possible JavaScript implementation of
the resolver for the Episode type. This part of the code
is responsible for filtering out instances based on the fields
identifier or code.

listEpisode: function({identifier,code}) {
let sql = ‘SELECT

‘ex.com/episode/’ || eid AS c1
, ecode AS c2

FROM episodes
WHERE

c1 = ${identifier} AND c2 = ${code}’
let data = db.all(sql);
let allInstances = [];
return data.then(rows => {

rows.forEach((row) => {
let instance = new Episode(

row[‘c1’], row[‘c2’]
);
allInstances.push(instance);

})
return allInstances;

});
}

Listing 2. GraphQL Resolver for Type Episode

B. R2RML

The W3C R2RML Recommendation (September 2012) al-
lows users to specify rules for transforming relational database
content into an R2RML output dataset, the resulting graph
from applying R2RML mappings. The transformation rules
are defined in an R2RML mapping document that contains
a set of Triples Map (rr:TriplesMap). Triples Maps are
used to generate RDF triples from logical tables. A Triples
Map consists of:

• a Logical Table (rr:LogicalTable) that specifies the
source relational table/view.

• a Subject Map (rr:SubjectMap) that specifies the rule
for generating the subjects of the triples.

• a set of Predicate Object Maps
(rr:PredicateObjectMap) that consists of a pair
of Predicate Map (rr:PredicateMap) and Object
Map (rr:ObjectMap) that specify rules for generating
predicate and object of the triples, respectively. If a join
with another Triples Map is needed, a Reference Object
Map (rr:RefObjectMap) may be specified.

A Term Map (rr:TermMap) is either Subject Map, Pred-
icate Map, and Object Map. Term Maps are used to gen-
erate RDF terms, either as IRIs (rr:IRI), Blank Nodes
(rr:BlankNode), or literals (rr:Literal). The values
of the term maps can be specified using a constant-valued
map (rr:constant), a column-valued map (rr:column),
or a template-valued map (rr:template). Furthermore,

additional information such as datatype (rr:datatype) can
also be attached to Term Maps.

In Listing 3 we show the R2RML mapping for the table
Episode where the subject is defined as a template involving
the eid column and a predicate-object pair involving the
ecode column.

<TMEpisodes>
rr:logicalTable [
rr:table "Episodes";

];
rr:subjectMap [
rr:template "ex.com/episode/{eid}";
rr:class schema:Episode

];
rr:predicateObjectMap [
rr:predicate schema:code;
rr:objectMap [rr:column "ecode"]

];
.

Listing 3. R2RML Mapping for Episode

III. APPROACH

Our approach (Figure 2) generates GraphQL servers from
R2RML mappings. Hence, mappings can be created by a
domain expert in a declarative language, without the need for
programming skills, while benefiting from the wide range of
tools available for GraphQL in order to access data stored in
tabular format (i.e., RDB or CSV). The approach consists of
the following steps: 1) the generation of a SQL query, 2) the
generation of schema and 3) the generation of resolvers, from
each Triples Map defined in the mapping document.

Fig. 2. morph-GraphQL workflow. morph-GraphQL receives R2RML
mappings and generates SQL queries to be used in GraphQL resolvers. Then,
it generates a GraphQL server (schema + resolvers) that can be used by a
GraphQL engine to evaluate queries over the RDB data.

293

Auxiliary Functions. We present here a set of auxiliary
functions that will be used in the functions that generate
resolvers.

• getConstant(TermMap) retrieves the constant c
in the constant-value term map TermMap =
rr:constant "c".

• getColumn(TermMap) retrieves the column col
in the column-value term map TermMap =
rr:column "col".

• templateToSQL(TemplateV alue) converts a
template-value term map into an SQL expression.
For example, given the term map rr:template
"ex.com/episode/{eid}" as the input, this
function may return "ex.com/episode/" || eid
or CONCAT("ex.com/episode/{eid}", eid),
depending on the database system being used.

• transDataType(xsdDataType) that given an XSD
Data Type return the corresponding GraphQL type.
For example, transDataType(“xsd : string”) returns
String.

• join(objs, separator) that joins a collection of
objects objs into a string with the separator separator.
For example, join([1, 2, 3], “AND”) returns "1 AND 2
AND 3".

A. Generating SQL Queries
We present here a set of translation functions that translates

a triples map into the corresponding SQL query to be used in
GraphQL resolvers. This set of functions is adapted from the
work presented in [3], which is used to translate SPARQL
queries into SQL queries without the presence of R2RML
mappings.

• α(TriplesMap) returns a set of logical tables associated
with the triples map TriplesMap, which is the logical
table associated to the triples map TriplesMap and
additionally all the parent tables if TriplesMap contains
Referenced Object Maps.

• β(TermMap) that given a term map TermMap returns
the corresponding SQL expression, that is:

– getConstant(TermMap) if TermMap is a
constant-value map

– getColumn(TermMap) if TermMap is a column-
value map

– templateToSQL() if TermMap is a template-
value map.

• alias(TermMap) generates a unique alias to be used in
the generation of SQL statement

• genPRSQL(TriplesMap) generates a SQL expression
which projects the relevant SQL expresions of a triples
map TriplesMap (i.e., β of Subject Map and all Object
Maps) together with their aliases.

• genCondSQL(TriplesMap) generates a SQL expres-
sion which is evaluted to true if they match the arguments
passed in the resolver functions and additionaly the join
conditions if TriplesMap contains Referenced Object
Maps.

• finally, trans(TM) = "SELECT genPRSQL(TM)
FROM α(TM) WHERE genCondSQL(TM)"
translates a triples map into the corresponding SQL
query.

Example Given Listing 3 as the input, trans generates the
SQL query that can be seen in variable sql in Listing 2.

B. Generating Schema

Algorithm 1 generates a GraphQL schema from a Triple
Map. It simply generates a GraphQL type MappedClass,
where MappedClass is the class specified in the Subject
Map of the Triples Map. The fields of the MappedClass are
identifier and all the mapped predicates in the Predicate
Object Maps of the Triples Map. The datatype of the fields
are the results of function transDataType, which returns the
corresponding GraphQL type from the datatype specified in
the Object Maps of the Triples Map.

Algorithm 1 GenerateSchema(TriplesMap)
SM = TriplesMap.getSubjectMap()
MappedClass = SM.getMappedClass()
POMS = TriplesMap.getPredicateObjectMaps()
Result = "type MappedClass {"
Result += "identifier:String"
for all POM ← POMS do
PM = POM.getPredicateMap()
OM = POM.getObjectMap()
PMConstant = PM.getConstant()
DataType = transDataType(OM.getDataType)
Result += "PMConstant:Datatype"

end for
Result += "}"
return Result

Example Given Listing 3 as the input, Algorithm 1 gen-
erates GraphQL Type Episode that can be seen in Listing
1.

C. Generating Resolvers

Algorithm 2 generates a GraphQL resolver from a
TriplesMap. As for the name of the resolver, we opt for
listMappedClass, that is, a Triples Map whose mapped
class is Episode will generate a resolver listEpisode.
This resolver will use the SQL query generated from section
III-A, execute the SQL query on the underlying database
engine, and then generate the corresponding instances by
calling the constructor of Type MappedClass.

Example Given Listing 3 as the input, Algorithm 2 gener-
ates resolvers that can be seen in Listing 2.

IV. IMPLEMENTATION AND QUERIES

As of the time of writing, we have implemented morph-
GraphQL4, an open source tool to translate R2RML map-
pings into Javascript-based GraphQL resolvers. Currently, it

4https://github.com/oeg-upm/morph-graphql, deployed at http://graphql.
morph.oeg-upm.net

294

Algorithm 2 GenerateQueryRoot(TriplesMap)
SM = TriplesMap.getSubjectMap()
MappedClass = SM.getMappedClass()
POMS = TriplesMap.getPredicateObjectMaps()
PMSConstants = [identifier]
for all POM ← POMS do
PM = POM.getPredicateMap()
PMConstant = PM.getConstant()
PMSConstants.push(PMConstant)

end for
Result = ""
Result += "listMappedClass:
functions(PMSConstants.join(”, ”)) {"
Result += "sql = trans(TriplesMap)"
Result += "rows = db.all(sql)"
Result += "allInstances = []"
for all row ← rows do
args = []
for all POM ← POMS do
PM ← POM.getPredicateMapping()
PMConstant← PM.getConstant()
args.push(row.[alias(PMConstant)])

end for
Result += "instance = new
MappedClass(args)"
Result += "allInstances.push(instance)"
Result += "return allInstances"

end for
Result += "}"
return Result

is able to generate resolvers for accessing tabular datasets,
such as RDB or CSV files. We use the JoinMonster library5

to generate efficient SQL queries when joins are needed.
Due to the recent emergence of GraphQL, and as far as

we are aware of, there has not been any standard benchmark
or test-case proposed for evaluating the conformance and
performance of a GraphQL-compliant framework. In order
to test our approach, we use a set of GraphQL queries
with various degrees of complexity proposed in the example
of the reference implementation. First, we serialize the Star
Wars instance data in a tabular format (Figure 1) and then
generate its corresponding R2RML mapping document. Then
we evaluate the queries in Table I. All the information about
the dataset, mapping and queries and their results is available
online6. Additionally, a GraphQL server that is ready to answer
those queries has been also deployed7.

The initial version of morph-GraphQL presented in this
paper shows that an R2RML mapping document can be used
to generate automatically GraphQL resolvers. Besides, the
implementation of the resolvers is able to cover various levels

5https://join-monster.readthedocs.io
6https://github.com/oeg-upm/morph-graphql/wiki/Example-Star-Wars
7http://starwars.graphql.oeg-upm.net/graphql

TABLE I
STAR WARS QUERIES

No Description Tables Involved

Q1 Query the hero
of every episode heroes, episodes, characters

Q2 Query for the id
and friends of R2-D2 characters, friends

Q3 Query for Luke Skywalker
directly, using his ID characters

Q4 Query for both Luke and Leia characters
Q5 Verify that R2-D2 is a droid characters, types

Q6 Verify that the hero of
episode Empire is a human heroes, characters, types, episodes

of query complexity so that it can be used as a tool for
accessing heterogenous datasets via GraphQL queries.

V. RELATED WORK

Several works are at the intersection of GraphQL and
Ontology-Based Data Access (OBDA) [9]. In OBDA, on-
tologies are used as a global view over heterogeneous lo-
cal datasets and the relationship between them is specified
by mappings. R2RML is an example of declarative OBDA
mappings whose focus is the generation of ontology instances
from relational databases. Other related declarative proposals
are: RML [5] (to deal with CSVs, JSON and XML data
sources), xR2RML [8] (to deal with MongoDB), KR2RML
[12] (to deal with nested data) or RMLC-Iterator (for statistical
CSV files) [2]. Two techniques for answering queries over the
global schema are: data translation and query translation. In
data-translation, a set of mapping rules is used to generate
the instances of the global schema and then those instances
are materialised in a triple store so that queries posed over
the global schema can be evaluated by the triple store. In
query-translation, queries over the global schema are translated
into queries over the local schema, taking into account the
information provided in the mappings, thus eliminating the
need of materialisation.

The GraphQL-LD specification is proposed in [14], where
the authors include a context to GraphQL queries, similar as
it is proposed in JSON-LD [13]. The goal of this work is to
translate GraphQL queries to SPARQL queries for querying
RDF interfaces and provide a more friendly interface for the
developers. Ontop [1] proposed several semantic optimisa-
tion techniques to generate efficient SQL queries resulting
from the translation of SPARQL queries taking into account
R2RML mappings. morph-RDB [10] presented an R2RML-
based SPARQL to SQL query translation based on the ap-
proached proposed by Chebotko et. al [3]. The approach
that we proposed in the paper can be considered as a query
translation technique as it allows the answering of GraphQL
queries over local datasets without materialising them, by
translating R2RML mappings into GraphQL resolvers and
delegate the query evaluation to GraphQL engines. Note,
however, unlike previous approaches that take a query as
their input in their run-time, morph-GraphQL is compile-time,
in sense that the generation of SQL and GraphQL resolvers

295

TABLE II
SUMMARY OF APPROACHES

Proposal Input Output Type
Chebotko et al SPARQL SQL run time

morph-RDB
SPARQL

+
R2RML

SQL run time

ontop
SPARQL

+
R2RML

SQL run time

GraphQL-LD GraphQL SPARQL run time

morph-GraphQL R2RML SQL + GraphQL
(Schema & Resolvers)

compile
time

are only executed once. We summarise the aforementioned
approaches in Table II.

Another relevant work is [7], in which the authors analyse
and formalise the semantics and the complexity of GraphQL.
Their theoretical study can be used for further analysis of
the query language while their technical contributions help
GraphQL developers to implement more robust interfaces for
the web.

VI. CONCLUSION

In this paper we have presented an approach to generate
GraphQL resolvers from R2RML mappings together with its
corresponding implementation, morph-GraphQL. Note that we
do not aim to replace the traditional approach of generating
GraphQL schema/resolvers manually, but we position this
approach as supplementary approach. This is to say, this
approach allows domain experts to use the generated schema
and resolvers as the initial proof of concept that can be used
to query datasets without the need for software engineers to
develop a full-fledged GraphQL server. Software engineers
may also benefit from our approach as they may also use
morph-GraphQL to generate the initial version of a GraphQL
server instead of building it from scratch. In the future, we
plan to support more programming languages (e.g. Java) and
more data formats (e.g. JSON) and integrate morph-GraphQL
with Mappingpedia [11], a repository for R2RML mappings.
We also plan to evaluate our approach comparing the time
taken by a domain expert to generate R2RML mappings and
a software engineer programming a GraphQL resolver.

ACKNOWLEDGMENT

We are thankful to Nandana Mihindukulasooriya, Anastasia
Dimou, Ben de Meester and Pieter Heyvaert, who helped us
in the identifying the main contributions of our approach.
The work presented in this paper is supported by the Spanish
Ministerio de Economı́a, Industria y Competitividad and EU
FEDER funds under the DATOS 4.0: RETOS Y SOLU-
CIONES - UPM Spanish national project (TIN2016-78011-
C4-4-R) and by an FPI grant (BES-2017-082511).

REFERENCES

[1] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman
Kontchakov, Davide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and
Guohui Xiao. Ontop: Answering sparql queries over relational databases.
Semantic Web, 8(3):471–487, 2017.

[2] David Chaves-Fraga, Freddy Priyatna, Idafen Perez-Santana, and Oscar
Corcho. Virtual statistics knowledge graph generation from CSV files. In
Emerging Topics in Semantic Technologies: ISWC 2018 Satellite Events,
volume 36 of Studies on the Semantic Web, pages 235–244. IOS Press,
2018.

[3] Artem Chebotko, Shiyong Lu, and Farshad Fotouhi. Semantics pre-
serving SPARQL-to-SQL translation. Data & Knowledge Engineering,
68(10):973–1000, 2009.

[4] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB
to RDF Mapping Language. https://www.w3.org/TR/r2rml/. Accessed:
2018-12-07.

[5] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh,
Erik Mannens, and Rik Van de Walle. RML: A Generic Language for
Integrated RDF Mappings of Heterogeneous Data. In LDOW, 2014.

[6] Facebook, Inc. GraphQL. https://facebook.github.io/graphql/June2018/,
2018. Accessed: 2018-12-07.

[7] Olaf Hartig and Jorge Pérez. Semantics and complexity of GraphQL.
In Proceedings of the 2018 World Wide Web Conference on World Wide
Web, pages 1155–1164. International World Wide Web Conferences
Steering Committee, 2018.

[8] Franck Michel, Loı̈c Djimenou, Catherine Faron-Zucker, and Johan
Montagnat. Translation of relational and non-relational databases into
RDF with xR2RML. In 11th International Confenrence on Web
Information Systems and Technologies (WEBIST’15), pages 443–454,
2015.

[9] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Gi-
acomo, Maurizio Lenzerini, and Riccardo Rosati. Linking data to
ontologies. In Journal on data semantics X, pages 133–173. Springer,
2008.

[10] Freddy Priyatna, Oscar Corcho, and Juan Sequeda. Formalisation and
experiences of R2RML-based SPARQL to SQL query translation using
morph. In Proceedings of the 23rd international conference on World
wide web, pages 479–490. ACM, 2014.

[11] Freddy Priyatna, Edna Ruckhaus, Nandana Mihindukulasooriya, Óscar
Corcho, and Nelson Saturno. Mappingpedia: A collaborative environ-
ment for R2RML mappings. In European Semantic Web Conference,
pages 114–119. Springer, 2017.

[12] Jason Slepicka, Chengye Yin, Pedro A Szekely, and Craig A Knoblock.
KR2RML: An alternative interpretation of r2rml for heterogenous
sources. In COLD, 2015.

[13] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and
Niklas Lindström. Json-ld 1.0. W3C Recommendation, 16:41, 2014.

[14] Ruben Taelman, Miel Vander Sande, and Ruben Verborgh. GraphQL-
LD: Linked Data Querying with GraphQL. In ISWC2018, the 17th
International Semantic Web Conference, 2018.

296

Semantic Rule Based Program Monitoring
Luke Tudor, Jing Sun

School of Computer Science
University of Auckland, New Zealand
Emails: ltud719@aucklanduni.ac.nz;

jing.sun@auckland.ac.nz

Hai Wang
School of Engineering and Applied Science

Aston University, United Kingdom
Email: h.wang10@@aston.ac.uk

Bingyang Wei
Department of Computer Science

Texas Christian University, United States
Email: b.wei@tcu.edu

Abstract—Program monitoring aims at making sure the func-
tionalities of the software are always correctly performed during
runtime. Semantic Web provides a context enriched framework
for data representation and manipulation. This paper proposed
the use of ontological rules and reasoning engines to monitor
the dynamic behaviours of computer systems in handling of
exceptional circumstances, both positive and negative, that occur
at runtime within the software processes. A prototype framework
was proposed on how to integrate the rule based monitoring
technique together with the targeted system. To validate the
proposed solution, a light control system case study together
with the Unity game engine were used to develop a simulation
environment for the evaluation purpose. Compared to existing
solutions, the approach outlined can provide an effective software
behavioural monitoring outcome.

I. INTRODUCTION

In the past, research has been done into how software
program monitors can be used to verify runtime correctness of
an application by providing means of identifying errors when
they occur. The goal of these monitoring systems is to provide
a way to formally verify the correctness of the system in a way
like automatic software testing, with the stipulation that this
testing is done during the running of the system. Depending on
the purpose of the program monitor, such as a debugging tool
for developers, a logger or a system-wide message monitor,
the exact way that these monitors are implemented changes
with their purpose. These monitors can also provide many
other features including precise error cause locations, methods
to provide alerts about certain errors occurring or ways to
recover from errors, e.g., by reverting a database to a previous
state. However, these systems all have in common a way to
specify what constitutes an error in the program and a way
to provide feedback about that error, typically by logging or
throwing an exception. Despite the potential application of
program monitors in possibly increasing the overall quality
of software, software program monitors are not commercially
widespread and are not a part of typical software development
workflow [1]. Recently, advances in the semantic web and
ontologies have opened new possibilities for formal program
modelling and verification. Additionally, these semantic web
technologies provide powerful means for verifying constraints
and conditions using rules and reasoning engines which could
be useful for monitoring software program behaviour [2].

DOI reference number: 10.18293/SEKE2019-043

Since ontologies are a promising way to model software
program data and thus monitor programs, the goal of this
project is to investigate whether ontologies can be used in this
way, and if they can, how best ontologies may be used for
monitoring program data at runtime. Consequently, evaluation
of how effective ontology-based monitoring is should be done.
Because program monitors provide many different feature sets,
levels of correctness and speed, amongst other factors. To
determine the effectiveness of ontology-based monitoring, the
best way to integrate a reasoning engine to the monitoring
system should be explored, since the reasoning engine will
be performing the runtime verification. Finally, the proposed
system should be easy to use and more useful for develop-
ers, providing a possible alternative to conventional software
testing methods.

From prior research, the monitoring approach used depends
to a large extent on the intended use of the program monitor.
Therefore, care must be taken to ensure that the monitor is fit
for purpose. Since the intention of this project is to provide a
monitor that can allow for error checking at program runtime
at a single application level without developer interaction,
such a system need not determine the origin of error states,
nor does it require the implementation of sophisticated data
recovery techniques. Additionally, although there exists within
more recent research proposals for systems that integrate
hardware into the monitoring of low fault-tolerant applications,
to increase monitoring speed and protect against hardware
faults [3], such a system would not be suitable for this purpose
since the proposed system should be hardware agnostic for
ease of use.

Examining past solutions, not all systems provide guaran-
teed fault detection. The most common cause is not mistakes
in the proposed systems themselves, but in poor coverage
provided by the predominantly control-flow driven monitoring
techniques employed. Note that programs that have stricter
runtime requirements with respect to real-time computing have
more rigorous speed evaluations than those that do not, imply-
ing that for such systems, performance is of a greater concern
than for systems where relatively slow human interaction
comprises the bulk of the total process. Regarding the use
of ontologies for modelling program data, there is evidence
that such activity is possible. Other data formats such as XML
are already used as intermediates for transferring data between
different programs using middleware technology [4]. Since on-

297

tologies are designed as an expansion of such technology, with
more sophisticated and standardised reasoning capabilities, it
stands to reason that the functionality of semantic web and
ontologies is a superset of the functionality of XML [5].

The objectives of this research are to design a system that
can be used by software developers to monitor the runtime
behaviour of programs and demonstrate how such a system
can be used. To accomplish these objectives, the modelling
of program data using ontologies needs to be explored and
demonstrated for use in the ontology monitoring system. Also
related to the modelling of program data is the way that
rules and reasoning engines can be integrated into the system
to provide the constraint checking necessary for this type
of program monitoring to work. Furthermore, the proposed
system should be easy to integrate into monitored programs,
allow for specification of many different types of constraints
on the data and be fast enough so that it could be realistically
used in an actual software system.

This project aimed at achieving a usable, reliable and
useful way to allow for integration of any software program
into a runtime behavioural monitoring system and ways to
verify correctness using many rules and constraints that can
be easily and quickly changed to accommodate fluctuating
requirements. Since this system focusses on providing a tool
for developers and is difficult to evaluate independently of its
use, a case study is proposed to test the monitoring system and
to show how such monitoring can be extended to any generic
program given an ontology structure. It should be noted that
although the goal of this system is to simply provide a means
for checking errors in programs, there exists the potential to
implement some business logic in the defined rules on the
ontology such that when reasoned about. These rules can make
useful changes in the program data based on these functional
requirements. Therefore, in the system demonstration, business
logic inferences to maintain data consistency are demonstrated
as they show off a superset of the potential uses of ontologies
compared to the relatively simplistic logging of error states.

The rest of the paper is organised as follows. Section II
presents the design of the system including software archi-
tecture decisions, technologies used, and the general methods
used to integrate the program monitor with the monitored
program and associated ontology. Section III presents the
implementation of the system, including the construction of
the monitoring system, the use of ontology and reasoners
and an exploration of the case study as an example of a
possible use case of the proposed system. In section IV, an
evaluation of the monitoring system is discussed including the
success of the testing methodology, comparison with previous
program monitors, discussion of proposed system features,
lessons learned and possible improvements. Finally, Section
V concludes the contributions and discusses the future work.

II. SYSTEM DESIGN

The system proposed for integrating program monitoring
into a piece of software is to create an instance of the program
monitor within the monitored program using external APIs,

and then using this monitor instance to update and receive
updates from the ontology. This approach allows for easy
integration with any monitored program by simply importing
the relevant library whilst providing a high degree of control to
the monitored program in deciding what properties are impor-
tant within the monitored program. However, for the program
monitor to work, an ontology and externally defined rules must
be made available to the program monitor. This can be done
within the monitored program by providing the location of
these two files to the program monitor instance at construction
time. Since updates from the program monitor should not be
polled for by the monitored program, an interrupt style listener
paradigm is used so that the monitored program can register
an interest with the values of properties and provide code that
runs when those updates are triggered. An overall data flow
of the monitoring system in show in Figure 1.

Fig. 1. Data flow through monitoring system

This call-back-like approach is known as the listener pattern
and is an easy way to integrate program modules that do
not need to be aware of when the other module runs given
that updates are received eventually. For triggering updates,
controllers are obtained from the program monitor instance to
provide means to change property values from within the mon-
itored program. The final part is the ontology model, which
is updated firstly from the monitored program, then again by
the reasoner if any updates are caused by the rules firing. This
overall approach can be summarised as an implementation of
the model-view-controller pattern (MVC) [9], which is often
used for systems with a high degree of user interaction.

III. IMPLEMENTATION DETAIL

Conceptually, the monitoring system lies between the moni-
tored program and its corresponding ontology; the monitoring
itself works by checking the entire ontology against all the
rules every time the Jena API is called by a property changer
to update the given ontology. The timing of the rules firing is
managed by the Jena framework, however, since Jena is open
source, the rules engine could be made to run at different
times. Since the controller objects in the monitored program
use the call-back principle to specify changes, it is easy to
change value types and access core Jena functionality with
little additional work.

298

These statement changers or monitor controllers require
direct access to the ontology model and must be requested
from the program monitor instance rather than be constructed
directly. At construction time, the full URL of the resource
and property to be updated is supplied by the controller to the
program monitor instance to obtain the resource and property
Jena objects associated with those URLs. However, since the
ontology objects for each entity change values, these property
values must be located each time the object pointed to is
updated. After an update is made to the ontology, all listeners
are notified synchronously of the current value of the property
objects that they are listening for. As with the controllers,
a reference cannot be kept for a listened object, so each
listener supplies URLs for the resource and property to use
to retrieve listened for objects each time an update occurs.
These updates are then passed to the listeners using the call-
back-like method, invoking a change in the monitored program
somewhere. After all listeners are notified, control is passed
back to the monitored program for the next update.

Before the monitoring system should be integrated into the
target system, consideration must be made for the construction
of the ontology and associated rules. The ontology should be
constructed such that all possible conditions that might be
reasonably monitored are represented in an externally logical
form and such that the ontology can provide an accurate rep-
resentation of the important data in the program. This means
that each object in the program that represents something in
the physical world should be represented in the ontology;
more specifically, objects that have value outside of necessary
software development usage within programs, like array lists
or hash tables would only appear in the monitored program. In
other words, an ontology should represent the context schema
of a program. The classes of the ontology should represent the
types of object to be modelled, the entities should represent the
instances of those objects within the program and the ontology
properties should represent the fields or attributes that are of
interest within these entities. From these parts, a complete
model of the ontology of a system can be constructed. For
this project, OWL [5] ontology reasoning was used. Jena
supports OWL DL (Description Logic) specifically, which
allows more powerful reasoning than would be provided by a
less expressive ontology language such as RDF. Notably, when
using the proposed monitoring system, the ontology should be
modified by an external tool such as Protege [10] which is
designed for easy editing and analysis of ontologies.

IV. CASE STUDY AND EVALUATION

A. The Light Control System

To demonstrate the proposed system, a case study is re-
quired that demonstrates how monitored programs can be
integrated with the monitoring system and how effective
the proposed system is at monitoring programs. A building
management system was chosen for the demonstration since
building management systems are typically well-defined, con-
tain many complex rules and constraints and are suitable
for demonstration in an interactive environment such as a

game engine. Additionally, such a simulation could be feasibly
extended to a physical sensor network if the associated simu-
lation is successful at capturing all the necessary functionality
in a similar way. The basis for the chosen building manage-
ment system is provided in [12]. This description provides a
high level of detail about a typical smart building complex
with constraints related to context-aware features such as the
temperature and light intensity controls [13].

Fig. 2. Simplified ontology example.

In this example, there are at least three entities which may
be formalised by an ontology, i.e., the motion detector, the
light and the room which contains both these objects. There-
fore, this interaction can be represented by a SWRL [11] rule
which updates the ‘?light on?’ property to false whenever the
motion detector in the same room has the ‘?motion detected?’
property evaluate to false. Figure 2 shows a simpler version of
this scenario (without the connecting room entity) to illustrate
how rules can be used to infer relationships using a reasoning
engine. Extending this scenario to every room in the building
with a motion detector allows the same rule to be used in each
case.

B. Evaluations

For validating the monitoring system, 10 rules of varying
complexity and approach were constructed to show that when
updates relevant to each rule are received, that rule is fired,
producing some change in the system ontology. Of these
10 rules, each was tested within the simulation environment
and all rules were found to fire when expected and with the
expected results. These rules were constructed such that every
rule possible was paired with a rule that fired under opposite
conditions and produced the opposite result. The motivation
behind this rule construction methodology was to ensure that
in a test environment, that the updates and rule changes were
repeatable. The rules that did not have an opposite satisfied this
condition of repeatability by including the object part of the
triple condition within the rules as a wildcard or free variable,
using this variable input to compute a variable output. This
meant that some rules could contain the same functionality as
two rules in the case of a Boolean literal object, or that rules
which used integers could contain the same functionality as
an infinite number of more specific rules. This behaviour is
of interest since assertions are typically static during runtime,
and different cases of assertions cannot be compressed into
a single assertion. Thus, it seems that rules can sometimes
provide more powerful condition checking than assertions.

299

For the testing environment, rooms were constructed within
a simplistic mock building within the game engine so that
each rule could be tested in isolation and without interference
as many times as desired. This approach is a generalisation
of typical testing techniques, with the main differences being
that rules could be tested systematically by following a defined
path through the different rooms, whilst allowing for rules to
be fired at any time and with any frequency, more closely
mirroring actual human interaction with a system. Although
this style of testing is less automatic than traditional testing
means, errors associated with timing and user experience are
much easier to identify if each test is run eventually. In
addition to the freeform testing provided by the simulation
environment, a JUnit test suite was used early in the project
lifecycle to evaluate the reasoning engine before the simulation
environment had been completed. As with the simulation
environment, all rules were fired when expected and produced
the expected results.

A benefit of using the system is that ontologies can easily be
reused and transferred between multiple formats, this contrasts
with other program monitoring approaches which are more
specific to each monitored program which may require more
redesign work for slightly different applications. Another ben-
efit compared to assertion-based systems is that the code is not
cluttered with annotations that obscure the code intent or need
extensive work to change if the monitored behaviour changes
due to new requirements. This constraint checking work is
delegated to the rules file, which provides a more cohesive
interface for changing checked behaviour. Compared to the
more common control-flow based monitoring, the proposed
system is simpler to understand conceptually and easier to
reason about from a monitoring perspective. This is because
checking the control flow through a conditional or function
often assumes some flow higher up in the control of the
program, which can make it complicated to get a total view
of the system status.

The proposed system can be compared to other program
monitoring approaches based on each system’s relative feature
set. The features of several other program monitors are sum-
marised in this paper. In comparison to systems that require
specialised hardware, such as [3], this approach provides
guaranteed correctness, given that the rules and ontology
are constructed correctly without the hassle of customised
hardware. Software only monitors to insert assertions automat-
ically have been proposed [7], however it and other automatic
assertion generating programs do not guarantee correctness
unlike [3]. Systems that use constraints to monitor program
execution also exist [6], however, these systems can be too
heavyweight for smaller projects and do not provide the
benefits of using ontologies as discussed previously. Assertion
based monitors like [8] can also be used, but the main
disadvantage of assertions to monitor control flow, is that
control flow monitoring can become too complex to easily
modify and rules must be changed from within each software
module monitored. Although the monitoring system described
in this paper solves the previously discussed problems, it is not

without disadvantages, the most notable being the additional
work required to make and maintain the ontology and the
performance of the system.

V. CONCLUSION

Program monitoring aims at ensuring functionalities of the
software system are always correctly performed during run-
time. This paper demonstrates not only that semantic ontology
and its reasoning engines can be integrated with software ap-
plications to allow for rule-based monitoring, but also outlines
a method for doing so. Additionally, the effectiveness of such
a tool was evaluated with respect to how well a reasoning
engine could determine errors in software and how useful the
tool would be for software developers. This project has found
that it is not only possible to create a powerful and flexible
tool to monitor programs using rules and ontologies, but also
the tool can be easily integrated with existing applications.
These contributions were gathered based on implementing
and testing a semi-realistic case study integrated with a game
engine simulation environment to provide real-time feedback
on ontology updates and rule firing. In addition, comparisons
to related work were conducted with useful evaluations. In the
future, a feature that would be greatly increase usability would
be the ability to convert rules from more common languages
such as SWRL into the Jena specific rule format.

REFERENCES

[1] A. Bertolino,Software Testing Research: Achievements, Challenges,
Dreams, Future of Software Engineering (FOSE ’07), Minneapolis, MN,
2007, pp. 85-103.

[2] Kishore, Rajiv, Ramesh, Ram (Eds.), ONTOLOGIES: A Handbook of
Principles, Concepts and Applications in Information Systems, Boston,
MA: Springer US, 2007.

[3] J.R. Azambuja, M. Altieri, J. Becker and F.L. Kastensmidt, HETA: Hybrid
Error-Detection Technique Using Assertions, in IEEE Transactions on
Nuclear Science, vol. 60, no. 4, pp. 2805-2812, Aug. 2013.

[4] Steve Graham, Doug Davis, Simeon Simeonov, Glen Daniels, et al.,
Building web services with Java, Que Publishing, June 28, 2004.

[5] W3C Recommendation 10 February 2004, OWL Web Ontology Language
Overview, 2004.

[6] W.N. Robinson, Implementing Rule-Based Monitors within a Framework
for Continuous Requirements Monitoring, Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, Big Island, HI,
USA, 2005, pp. 188a-188a.

[7] N. Oh, P.P. Shirvani and E.J. McCluskey, Control-flow checking by
software signatures, in IEEE Transactions on Reliability, vol. 51, no. 1,
pp. 111-122, March 2002.

[8] D. Bartetzko, C. Fischer, M. Mller and H. Wehrheim, Jass - Java with
Assertions, Electronic Notes in Theoretical Computer Science, vol. 55,
pp. 103-117, Oct. 2001.

[9] G.E. Krasner and S.T. Pope, A description of the model-view-controller
user interface paradigm in the smalltalk-80 system, Journal of Object
Oriented Programming, vol. 1, pp. 26-49, 1988.

[10] N.F. Noy, M. Sintek, S. Decker, M. Crubezy, R.W. Fergerson and M.A.
Musen, Creating Semantic Web contents with Protege-2000, in IEEE
Intelligent Systems, vol. 16, no. 2, pp. 60-71, March-April 2001.

[11] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and
M. Dean, SWRL: A semantic web rule language combining OWL and
RuleML, W3C Member Submission, vol. 21, pp. 79, 2004.

[12] S. Queins, M. Becker, M. Kronenburg, C. Peper, R. Merz and J. Schfer,
The Light Control Case Study: Problem Description, J.UCS: The Journal
of Universal Computer Science, vol. 6, 2000.

[13] J. Sun, H. H. Wang and H. Gu, Semantic Enabled Sensor Network
Design, in proceedings of 23rd International Conference on Software
Engineering and Knowledge Engineering (SEKE 2011), pages 179-184,
July 7-9, 2011.

300

Context-aware Reactive Systems based on
Runtime Semantic Models

Ester Giallonardo
Dept. of Engineering, University of Sannio

estergiallonardo@gmail.com

Francesco Poggi
Dept. of Computer Science and Engineering, University of Bologna

francesco.poggi5@unibo.it

Davide Rossi
Dept. of Computer Science and Engineering, University of Bologna

daviderossi@unibo.it

Eugenio Zimeo
Dept. of Engineering, University of Sannio

eugenio.zimeo@unisannio.it

Abstract— IoT, smart cities, cyber-physical systems and sen-
sor networks are context-aware, highly dynamic and reactive
systems. Their implementation should take into account the
heterogeneity of their components and make easy the man-
agement of events unplanned at design time. According to
these requirements, in this paper we propose an ontology-based
approach to provide runtime models of the physical entities
characterizing context-aware reactive systems. We extend SSN, a
W3C standard ontology, to support complex reactive behaviors
through the modeling of Logical Sensors and Actuators (LSA
ontology); we also present a software architecture in which a
knowledge base, structured coherently with this semantic model,
is bound to real world entities by grounding (via web services)
semantic elements to physical sensors and actuators. To validate
the approach we discuss a case study related to smart buildings
for cultural heritage preservation.

Index Terms—Context modeling, Context-awareness, Semantic
modeling, Semantic Sensor Networks, Ontologies

I. INTRODUCTION

Internet of Things (IoT), smart cities and cyber-physical
systems propose several scenarios characterized by a high level
of dynamism and heterogeneity. Applications supporting these
scenarios should be context-aware since this property has been
widely acknowledged as an enabler for software adaptation to
dynamic changes [1]. According to [2], context is the state
that a system is able to access to or modify. This state is the
set of variables that are possibly shared with other systems:
they can be read or modified by users, devices or applications
other than the one the state is referred to.

Various recent research works take the idea of using models
as central artifacts to cope with dynamic aspects of ever-
changing software and its environment at runtime. Szvetits et
al. [3] comprehensively survey these approaches for adaptive
context-aware systems highlighting the common idea of estab-
lishing semantic relationships between executed applications
and runtime models.

In this paper, we focus on the design and implementation of
reactive context-aware systems taking into account the hetero-
geneity of the physical devices they consist of and the ability
to infer high-level context properties from directly measurable

DOI reference number: 10.18293/SEKE2019-169

ones. Such systems need both (i) a way to describe the systems
and their environments (i.e. to express architectural and state
information), and (ii) a mechanism to define the application
logic that drives their behaviors.

To meet the first requirement, we exploited the Semantic
Sensor Network (SSN) ontology, a recent W3C recommenda-
tion [4] that has been designed to describe systems composed
of a densely interconnected graph of sensors and actuators
along with observations and actuations they produce. To satisfy
the second requirement, we propose an extension of SSN
called Logical Sensors and Actuators (LSA) ontology, since
SSN does not provide mechanisms helping programmers (or
reasoners) to close the gap between observations and actua-
tions for programming context-aware reactive systems.

The LSA ontology introduces two main concepts: (software)
logical sensors and logical actuators. A logical sensor (resp.
actuator) is a sensor (resp. actuator) that generates observations
(resp. actuations) as result of software procedures executions
that use other observations as inputs. Logical sensors and
actuators are entities that live only in the virtual space (e.g.
knowledge base) and are connected to the external world
through SSN simple sensors and actuators.

The proposed semantic runtime model is supported by a
software architecture centered on a knowledge base which is
bound to real world entities by grounding (mainly via web
services) semantic elements to physical sensors and actuators.
The behavior of the system can be specified by using sensing
or actuating procedures tied to logical devices provided by the
semantic model. These procedures can act upon the knowledge
base by generating new facts or by redefining the structural as-
pects of the model thanks to the declarative approach adopted.

To clarify our approach, the overall architecture and the
proposed ontology, we present a detailed scenario related to a
case study in the domain of smart buildings hosting cultural
heritage. The example has been implemented and tested with a
prototype implementation of the proposed architecture based
on Jena, OWL, and SPARQL, for the knowledge base, and
RESTful services, for the interaction with the physical world,
currently virtualized through an emulator.

The remainder of this paper is organized as follows. Sec-

301

tion II presents the related work from both research and
standardization points of view. Section III introduces the
SSN ontology, identifies its limitations with reference to the
definition of complex and runnable sensors/actuators behaviors
and proposes an extension of SSN. Section IV sketches a
general architecture for context-aware applications. Section V
validates the proposed ontology extension with a prototype
of the infrastructure used to run an application scenario from
eCulture domain. Finally, Section VI concludes the paper and
highlights future work.

II. RELATED WORK

Several papers have tried to propose approaches and tech-
nologies to easily model and handle dynamic context-aware
applications especially for ubiquitous and pervasive comput-
ing. One of the first ontology-based approaches is SOUPA
[5]. It is expressed in OWL and includes modular component
vocabularies to represent intelligent agents, time, space, events,
user profiles, actions, and policies for security and privacy.
However, it does not focus on sensors/actuators and reactive
systems but on smart meeting places. In [6], the authors
discuss the requirements that context modelling and reasoning
should meet, including the modelling of a variety of context
information types and their relationships, of high-level context
abstractions describing real world situations, and of uncer-
tainty of context information, without defining an ontology.

Paper [7] surveys context awareness from an IoT perspec-
tive. IoT researchers are taking into consideration Web tech-
nologies (WoTs) to support context-driven system engineering.
The goal of the WoT is to extend Web services to devices,
allowing a Web client to access devices properties, to request
the execution of actions or to subscribe to events representing
state changes [8]. The related ontology describes how to
model physical or virtual sensors and actuators with the main
objective of easing the binding with devices reachable through
web protocols (REST, CoAP, etc.).

A different objective is pursued by the Semantic Sensor
Network (SSN) ontology [4], an Open Geospatial Consortium
(OGC)/World Wide Web Consortium (W3C) standard. It is
mainly focused on the SOSA (Sensor, Observation, Sample,
Actuator) pattern [9] to model reactive systems. It aims at
supporting the definition of simple reactive behaviors that link
observations, coming from modeled sensors, with the related
reactions, performed by actuators. In order to link observations
to physical or virtual properties, the SOSA pattern is extended
with some system-oriented features. However, SSN does not
directly support complex processing inside the knowledge base
than asserting facts due to external sensing activities.

The Semantic Smart Sensor Network (S3N) ontology [10]
is an effort that tries to specialize SSN for supporting
the modeling of smart sensors. To this end a new class,
s3n:SmartSensor, has been introduced as a specialization
of ssn:System. A smart sensor is composed of embedded
sensors, microcontrollers and communicating systems. The
behavior is expressed by the execution of an algorithm (se-
lected among the existing ones on context basis) by the

microcontroller, which can be thought as a specialization of
the ssn:Actuator, being able to select algorithms from the
current context and to change the state of the whole smart
sensor. Therefore, the main purpose of S3N is to support smart
sensors modeling and not to close the logical gap between
sensors and actuators for fully programming reactive systems.

III. SEMANTIC MODELING OF LOGICAL SENSORS
AND ACTUATORS

Semantic Sensor Network ontology: the SSN ontology
was specifically designed for supporting interoperability be-
tween WoT entities taking into account performance and
composition requirements. Web developers, in fact, have their
concern about semantic approaches that do not assure near
real time data processing. For this reason, its core module
is constituted by the lightweight SOSA ontology that defines
concepts and properties through schema.org annotations. The
SSN main perspective is the system one.

Systems of sensors and/or actuators can be deployed on
platforms for particular purposes. Actuators determine changes
of the state of the world through the execution of procedures
triggered by the observations of properties. SSN does not fix
restrictions on the way to implement procedures, allowing
to describe any information that is provided to a procedure
for its use (ssn:Input), and any information that is reported
from a procedure (ssn:Output). Finally, sensors detect stimuli
that originated observations, i.e. events that assign results to
observable properties. Stimuli can be proxies for observations
of properties related to features of interest. For example,
infrared sensors respond to thermal stimuli detected from
the environment. The thermal stimulus is a proxy for a live
presence in the sensor zone, which represents the observable
property related to a feature of interest.

SSN does not allow the definition of software procedures
that implement machine actionable system behaviors. To over-
come this limitation, we extended SSN introducing software
procedures that we mainly exploit with logical sensors and
actuators, which are active, composable system components
able to generate observations by processing one or more
observations asserted into the knowledge base and to gen-
erate actuations in a similar way, i.e. by running actionable
behaviors tied to software procedures.

Logical Sensors and Actuators ontology: Fig. 1 shows
a Graffoo [11] diagram of the core elements of the Logical
Sensors and Actuators (LSA) ontology2, an extension of the
SOSA core of the SSN ontology that allows to describe logical
sensors and actuators with a specification of their behavior.

Logical sensors and actuators are modeled with the classes
lsa:LogicalSensor and lsa:LogicalActuator, which are sub-
classes of sosa:Sensor and sosa:Actuator, respectively. The
behaviors associated to logical sensors/actuators are repre-
sented by the lsa:SoftwareProcedure class, and the property
ssn:implementedBy is used to connect software procedures
to sensors/actuators and consequently to the logical ones.

2The Logical Sensor and Actuator ontology is available at https://sites.
google.com/site/logicalsensorsactuators

302

Fig. 1. Core classes of the Logical Sensors and Actuators (LSA) ontology.

A sosa:Procedure is defined in SSN as “a workflow,
protocol, plan, algorithm, or computational method specifying
how sensors make observations, or actuators make changes
to the state of the world”. A lsa:SoftwareProcedure is a
specific kind of sosa:Procedure with an actionable behaviour.
Software Procedures may be implemented by Sensors (Actu-
ators) or by Logical Sensors (Actuators). Sensors (Actuators)
exploit software procedures for exposing how clients may
interact with physical Sensors (Actuators). Through Software
Procedures, a System may expose/manage its internal states or
trigger an internal process. A lsa:SoftwareProcedure behavior
is described by executable code (lsa:hasBehavior property).

It is important to note that the LSA ontology does not im-
pose constraints on how such behaviors should be represented.
For example, they can be modeled as OWL-S [12] processes,
BPMN processes described using the BPMN Ontology [13],
etc. Another key point of the LSA ontology is that it allows
to discern between:

• procedures specifications: the algorithm, workflow, pro-
tocol, etc. used by a sensor (actuator) to perform observa-
tions (actuations), along with a declaration of inputs and
outputs. E.g. the algorithm used by a logical sensor that
measures the perceived humidity (output) by aggregating
a temperature and a humidity (input);

• procedures executions: the description of a specific
execution of a procedure made by a sensor (actuator),
which is carried out using a specific set of input values to
produce a specific output. E.g. the perceived temperature
X (output) of a room computed by using temperature Y
and humidity Z as inputs.

In our pattern (which we aim at aligning with the on-
tology proposed in [14]) a procedure execution is mod-
eled with the lsa:SoftwareProcedureExecution class. It
is related (via the lsa:usedProcedure property) to a
lsa:SoftwareProcedure and is perfomed (lsa:madeBy prop-
erty) by lsa:SoftwareProcedureExecutor, a software agent
able to execute (lsa:executes) a lsa:SoftwareProcedure that
specifies the actionable behaviour (e.g. algorithm, workflow,
protocol, etc.) manifested by the execution.

IV. AN ARCHITECTURE FOR SEMANTIC
CONTEXT-AWARE REACTIVE SYSTEMS

We propose a reference architecture to design a framework
able to host and exploit the semantic model described before
for executing context-aware reactive applications. The main

component of this architecture (see Fig. 2) is the Semantic
Engine. It extends a knowledge base with the machinery
needed to interact with sensors and actuators and execute their
software procedures. The knowledge base contains a model
of the physical world it interacts with that is enriched and
modified with the data coming from the sensors, assuring
consistency with the physical elements it represents. This
alignment is usually referred to as causal connection. When a
modification of the model causes the enactment of an actuator
to materialize this modification in the physical world we say
that the model is bi-causally connected [15], a feature that is
supported by our architecture.

To exemplify these concepts just think about a simple
reactive system immersed in an environment composed by a
room with a light bulb, a bulb actuator and a light sensor, all
these elements are represented in a virtualized form within the
system. In a causally connected system the change of the state
of the real-world light bulb (turned on/turned off) is reflected in
the model element that represents the bulb within the system.
In a bi-causally connected system, the modification of the state
of a model element is reflected as a change of state of its
real-world counterpart. Thus, if we set the state of the model
element representing the light bulb to off while the real-world
light bulb is turned on, this triggers an actuator to turn off the
bulb.

The key ingredients to actualize a system of this type
are: one or more models that describe real-world conceptual
classes, a binding mechanism that maps sensor observations
to knowledge base updates, logical causal connections that
propagate updates throughout the knowledge base, and a
binding mechanism that maps updates to actuators activation
for preserving the model alignment with real-world situations.
It is worth noting that causal connections need some kind of
computational support. According to the organization above,
our architecture presents: (i) a semantic model built using
the previously introduced ontologies hosted by a knowledge
base platform (a triple store); (ii) a linking mechanism to
report sensor readings to the system, implemented using web
services exposed by the system, which is responsible of
converting readings into semantic triples to insert into the triple
store; (iii) a programmed logic for generating new facts from
observations; (iv) an actuation mechanism exploiting actuators
Web services, consistently with the WoT approach.

Causal connections are supported by rules that correlate real

303

Environment (real/simulated)

Sensor Actuator

REST
API

REST
API

Logical
actuator

Semantic Engine

REST
Action

Logical
sensor

SPARQL
Action

SPARQL
Action

External APIs

Obs.

External APIs

Actionable BehaviorActionable Behavior

REST
Action

Act.Obs.

Fig. 2. Architecture outline.

world changes observed by sensors with knowledge base up-
dates. We consistently represent these rules in the knowledge
base itself: the activation part is modeled as software proce-
dures associated to semantic sensors and actuators whereas
the triggering logic is implemented by monitoring changes to
the properties that are declared as inputs for these semantic
sensors and actuators.

The engine (see Fig. 2) connects to the physical world by
exposing a service API used to receive observations from
external sensors (that can be real or simulated ones) and
by invoking web service endpoints for activating external
actuators or for invoking external services (on the right) to
increment the capabilities of the software procedures associ-
ated to logical sensors and actuators. Whenever an external
sensor notifies an observation invoking the engine’s API, that
observation is transformed in a semantic format and added to
the knowledge base. If a logical sensor/actuator is interested
in that observation (which means that it is modeled in such
a way that its software procedure uses as one of its inputs
the property reported by the observation) its related software
procedure is executed (by running the actionable items that
define the specific Actionable Behavior), producing new facts
(observations or actuations) that could trigger external ac-
tuators. This approach allows for declarative definitions of
reactive behaviors in a bi-causally connected system. In fact,
both the model of the context and that of the system (in terms
of logical sensors/actuators and their behaviors) is represented
in a semantic format (e.g. by RDF triples). This allows to
change the overall behavior of the system by manipulating
the knowledge base: at runtime new logical sensors can be
defined, the behavior of the existing ones can be modified,
existing sensors/actuators can be deleted. A further advantage
of this architecture is that self-adaptive behaviors can easily be
implemented by simply allowing the software procedure of a
sensor/actuator to work as described in [16], [17]. For example
a software procedure can be activated by the detection of a
failure in an external sensor to compose observations produced
by other sensors in order to collect the expected events related
to a feature of interest.

V. A CASE STUDY

We consider a running example derived from a larger system
for Cultural Heritage preservation [18]. In a museum a new
temporary exhibition is arranged. In a room of this exhibition
a multimedia content has to be played. The organizers of the
exhibition express the desire that the content starts playing
when visitors enter the room, and stops when the room is

empty. Museum rooms have no specific detectors for knowing
the number of people inside them but are equipped with Blue-
tooth beacons (one per room) and Infrared (IR) sensors close
to the doors (used as part of the anti-theft system). Beacons
notify their presence to users’ personal devices equipped with
a specific App turning these devices into location detectors.

We can define a logical sensor for observing the number
of people in a room with two different implementations: one
based on beacons and personal devices and another one based
on IR sensors. If the former is faulty, the declarative approach
eases the selection of another (logical) sensor able to observe
the same property. In the following, we assume the first is
faulty and describe the IR-based logical sensor for clarifying
the overall approach and the LSA ontology.

Multimedia playback control based on a logical presence
sensor:

1. a tourist crosses the door of the museum, and the two
physical infrared sensors on the door sides produce two
observations about the presence of a person in their
detection areas;

2. a logical sensor aggregating such observations produces
another observation updating the number of persons
present in the rooms;

3. if the tourist enters an empty room, an actuator starts to
play a multimedia flow on the room monitor; if the tourist
is the last person that leaves a room before the end of
the playback, an actuator will stop the multimedia flow.
In both cases, the information about the new actuation is
inserted into the triple store.

1. Observations made by physical sensors: Fig. 3 shows
the RDF statements that are added to the triplestore by the
semantic engine when a person crosses a door. Whenever this
occurs, the infrared sensors placed on the two sides of the
door detects the presence of a person and invokes the engine
REST API in sequence (providing their ids and the instants of
time when the observations occurred as request parameters).

Two observations (i.e. gmus:observation/ir1/1 and
gmus:observation/ir2/1) made by sensors gmus:ir1
and gmus:ir2 are produced, which relate to the
same feature of interest (i.e. gmus:door1). Each
observation concerns a distinct observable property
(i.e. the presence in the detection area of each
sensor: gmus:presence/room1/ir1/zoneDoorInside and
gmus:presence/room2/ir2/zoneDoorOutside), and keeps
track of the time in which the observations were performed.

In these examples we make use of punning3, an OWL
metamodeling capability that allows to treat model elements
as classes and individual as the same time. Elements
with this double nature are represented as light blue
squares in the diagram. This has been used in Fig. 3,
for instance, to model the concept of infrared sensor
(gmus:IRSensor), which is at the same time a class
(i.e. a specific subclass of sensors representing infrared
sensors) and an individual (since it is connected with

3See https://www.w3.org/TR/owl2-new-features/#F12: Punning

304

Fig. 3. Observations made by two infrared sensors.

Fig. 4. Observations made by the logical presence sensor. Square brackets are used to specify property cardinality restrictions.

gmus:ThermalStimulus by the ssn:detects property). In
the same way, gmus:PresenceInSensorZoneProperty
is a type of observable property (i.e. subclass of
sosa:ObservableProperty) and an individual (connected
to gmus:ThermalStimulus by the ssn:isProxyFor property).
This approach is also useful to model logical sensors
behaviors, as described in the rest of this section.

2. Observations made by logical sensors: whenever a
modification occurs in the triplestore (e.g. the insertion of a
new observation), the semantic engine checks if one or more
procedures specifying the behaviors of logical components (i.e.
logical sensors and actuators) should be executed. To do so,

the engine checks if the properties related to the new ob-
servations (e.g. gmus:presence/room1/ir1/zoneDoorInside
and gmus:presence/room2/ir2/zoneDoorOutside in the pre-
vious example) are specified as inputs of one or more software
procedures. Since these properties (see Fig. 4) are inputs of
the gmus:entrance/door1/room1 procedure (as specified by
ssn:hasInput), the semantic engine identifies the procedure,
which is tied to the logical sensor gmus:ls1, a specific
instance of gmus:infraredPresenceSensor (the class repre-
senting logical presence sensors) hosted by the triplestore
(gmus:triplestore), and executes it by observing the presence
of people in the specific room (gmus:people/room1).

305

A mechanism is adopted by the semantic engine to re-
trieve behavioral information (e.g. a sequence of activi-
ties to perform) pertaining logical sensors. Since behav-
ioral information is shared by all logical sensors of a
type, the engine identifies the related software procedure
(gmus:DoorRoomEntrance in our case) and retrieves the be-
havioral specification (gmus:doorRoomEntrance/behavior)
by navigating the lsa:hasBehavior property.

Such behavioral specification in this case is composed of
two actions, i.e. two SPARQL CONSTRUCT queries checking
the entrance/exit in/from the room, respectively. Each of these
queries retrieve the new observations made by the two infrared
sensors, and if they have been performed in a short time
interval - e.g. one second - produces:

1) a new software procedure execution
(gmus:entrance/door1/room1/exe/5), connected to the
software procedure (gmus:entrance/door1/room1/) by
the lsa:usedProcedure property, and to the observations
used as input (those made by the two infrared sensors
and those pertaining the number of persons in the
rooms connected by the door4) and the software
procedure executor (gmus:sparqlQueryEngine) by the
ssn:hasInput and lsa:madeBy property, respectively;

2) two observations as output of the procedure execution
represented using the ssn:hasOutput property. For in-
stance, the number of people in the first room has been
updated from zero (in gmus:observation/ls1/1) to one
(in gmus:observation/ls1/2) since a person entered the
room.

3. Actuations made by logical actuators: the newly
added statements (i.e. those about the observations produced
by the logical sensor gmus:ls1 and the relative procedure
executions) trigger another control performed by the semantic
engine to check logical sensors/actuators interested to those
observations. In our example, the logical actuators controlling
the video playback on the monitor in the room is activated,
and the related software procedures is retrieved and executed,
triggering the final actuation (REST invocation) of the physical
device that starts the video playback on the monitor.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a proposal for an extension of
the SSN ontology to support modeling of logical sensors and
actuators, and their behaviors. The extension enables reactive
behaviors of context-aware applications by defining the deci-
sion logic that exploits sensor observations to trigger actions.
The ontology is accompanied by a an architecture that supports
behaviors definition and the interaction with the real devices
in the physical world. A prototype of the architecture has
been implemented by using Jena, SPARQL and RESTful APIs
for the interaction with the external environment, currently
emulated with Freedomotic. We discussed and validated the

4Because of space limitations in the diagram we depicted only the obser-
vations about a room (i.e. we omitted the observations about the number of
people in gmus:room2)

proposed ontology extension and the supporting architecture
with the help of a case study in the domain of smart buildings
for cultural heritage. The ontology extension and the related
architecture represent the first step towards the definition of
a more complex platform for context-awareness able to take
into account failures and adaptation policies.

ACKNOWLEDGMENTS

This paper has been supported by MIUR PRIN 2015
GAUSS Project and MIUR PON VASARI Project.

REFERENCES

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in International symposium on handheld and ubiquitous
computing. Springer, 1999, pp. 304–307.

[2] A. Furno and E. Zimeo, “Context-aware composition of semantic web
services,” Mobile Networks and Applications, vol. 19, no. 2, pp. 235–
248, 2014.

[3] M. Szvetits and U. Zdun, “Systematic literature review of the objectives,
techniques, kinds, and architectures of models at runtime,” Software &
Systems Modeling, vol. 15, no. 1, pp. 31–69, 2016.

[4] A. Haller, K. Janowicz, S. Cox, D. Le Phuoc, K. Taylor, and
M. Lefrançois, “Semantic sensor network ontology,” W3C Recommen-
dation, W3C, 2017.

[5] H. Chen, F. Perich, T. Finin, and A. Joshi, “Soupa: Standard ontology
for ubiquitous and pervasive applications,” in The First Annual Interna-
tional Conference on Mobile and Ubiquitous Systems: Networking and
Services, 2004. MOBIQUITOUS 2004. IEEE, 2004, pp. 258–267.

[6] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-
ganathan, and D. Riboni, “A survey of context modelling and reasoning
techniques,” Pervasive and Mobile Computing, vol. 6, no. 2, pp. 161–
180, 2010.

[7] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE communi-
cations surveys & tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[8] S. Kaebisch and T. Kamiya, “Web of things (wot) thing description,”
First Public Working Draft, W3C, 2017.

[9] K. Janowicz, A. Haller, S. J. Cox, D. Le Phuoc, and M. Lefrançois,
“Sosa: A lightweight ontology for sensors, observations, samples, and
actuators,” Journal of Web Semantics, 2018.

[10] S. Sagar, M. Lefrançois, I. Rebai, M. Khemaja, S. Garlatti, J. Feki, and
L. Médini, “Modeling smart sensors on top of sosa/ssn and wot td with
the semantic smart sensor network (s3n) modular ontology.”

[11] R. Falco, A. Gangemi, S. Peroni, D. Shotton, and F. Vitali, “Modelling
owl ontologies with graffoo,” in European Semantic Web Conference.
Springer, 2014, pp. 320–325.

[12] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne et al., “Owl-s:
Semantic markup for web services,” W3C member submission, vol. 22,
no. 4, 2004.

[13] M. Rospocher, C. Ghidini, and L. Serafini, “An ontology for the business
process modelling notation.” in FOIS, 2014, pp. 133–146.

[14] M. Lefrançois, “Planned etsi saref extensions based on the w3c&ogc
sosa/ssn-compatible seas ontology paaerns,” in Workshop on Semantic
Interoperability and Standardization in the IoT, SIS-IoT, 2017, p. 11p.

[15] M. Hölzl and T. Gabor, “Reasoning and learning for awareness and
adaptation,” in Software Engineering for Collective Autonomic Systems.
Springer, 2015, pp. 249–290.

[16] F. Poggi, D. Rossi, P. Ciancarini, and L. Bompani, “Semantic run-
time models for self-adaptive systems: a case study,” in Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE),
2016 IEEE 25th International Conference on. IEEE, 2016, pp. 50–55.

[17] F. Poggi, D. Rossi, and P. Ciancarini, “Integrating semantic run-time
models for adaptive software systems,” To appear in Journal of Web
Engineering, 2019.

[18] E. Giallonardo, C. Sorrentino, and E. Zimeo, “Querying a complex web-
based kb for cultural heritage preservation,” in Knowledge Engineering
and Applications (ICKEA), 2017 2nd International Conference on.
IEEE, 2017, pp. 183–188.

306

Enhancing Semantic Search of Crowdsourcing IT
Services using Knowledge Graph

Duankang Fu, Zhou Shufan, Beijun Shen*, Yuting Chen
 School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China

{duankangfu, sfzhou, bjshen, chenyt}@sjtu.edu.cn

Abstract—Mining search intents in vertical websites like IT service

crowdsourcing platform relies heavily on domain knowledge.

Meanwhile, it still remains a difficulty of searching services in

crowdsourcing platforms, as these platforms do contain much

insufficient information, for example, users tend to use images

describing IT services for the purpose of advertisements. To solve

these problems, we build and leverage a knowledge graph to

enhance searching of crowdsourcing IT services. The key idea is to

(1) build an IT service knowledge graph from StackOverflow tag

synonym system, Wikipedia, StuQ and data in IT service

crowdsourcing platforms, (2) plug two activities into the basic

search process – term expansion and service re-ranking, (3) use

superordinates, hypernyms, synonyms, descriptions and relations

of entities in the knowledge graph to expand user query and

service information, and (4) apply a learning-to-rank model with

four features to re-rank the search results, enforcing those more

relevant services have the higher-ranking position. We have

conducted several experiments to evaluate our approach. The

results show that our approach achieves an MRR 34.9% higher

and a Recall@15 11% higher than those of a basic search

approach.

Keywords – IT Service Crowdsourcing; Knowledge Graph;

Semantic Search; Learning-to-rank

I. INTRODUCTION
Recently, crowdsourcing has been widely used in many

fields such as image recognition, taxonomy construction and
entity resolution [1-2], etc. Those tasks are simple and
straightforward, and people can deal with them with common
knowledge. However, due to the strong professionalism and
specialization, IT crowdsourcing is more complicated [3]. In a
typical IT crowdsourcing platform, developers provide various
types of IT services, and users search for target services
according to their own requirements. The appropriate matching
between user query and service information is one of the key
values offered by IT crowdsourcing platforms.

Currently, almost all crowdsourcing platforms provide
search function following the basic search process as shown in
Figure 1. The services data are used to create the reverse index,
and the user queries are segmented. And then Elasticsearch
performs text matching between the queries and the reverse
index. This approach adopts pure text matching technology,

which means users have to describe their requirements precisely,
or, it can't identify the latent intents of users. We also find that
developers tend to use images to describe their services for the
purpose of advertisements in most IT crowdsourcing platforms,
and thus there are not enough available textual description for
services. All these lead to low performance of semantic search
in IT crowdsourcing – it is difficult for users to find their target
services.

User

query

Word

segmentation

Reverse

index

creation

Final

search

result

Reverse

index

Elasticsearch

Services info.

Figure 1. Basic Search Approach for Crowdsourced IT Services

As searching for crowdsourced IT services, how to understand
user queries accurately? And how to complete the information
of services? To address these challenges, a domain-specific
knowledge graph, ITServiceKG, is constructed to enhance user
query understanding. ITServiceKG mainly consists of three
parts: IT service categories, IT skills and IT service instances.
We insert two pluggable activities in the basic search process:
term expansion and service re-ranking. After word segmentation,
we use superordinates, hypernyms, synonyms, descriptions and
relations of entities in ITServiceKG to expand user queries and
service information. And then we get the preliminary search
results from Elasticsearch, use learning-to-rank model to re-rank
these results, and make the more relevant service have the
higher-ranking position. We conducted several experiments to
evaluate our approach. The results show that compared with the
basic approach, the MRR (mean reciprocal rank) is increased by
34.871% and the Recall@15 is increased by 10.976% in our
approach.

Our main contributions are summarized as follows:

1) We construct a knowledge graph of IT crowdsourcing
services, which represents a complex network among IT service
categories, IT skills and IT service instances.

2) We utilize ITServiceKG to expand both user queries and
service information, which helps alleviate the problem that the

DOI reference number: 10.18293/SEKE2019-088
*Corresponding author.

307

user queries are not precise and the services lack enough textual
descriptions.

3) We propose a learning-to-rank model to obtain the more
appropriate results. Four ranking features are designed to boost
the ranking position of the more relevant services.

The rest of the paper is organized as follows. In the next
section, we review some related works. The details of our
approach are presented in Section III. We conduct a series of
experiments to evaluate the effectiveness of our approach in
Section IV. Finally, we conclude our work in Section V.

II. RELATED WORK

A. Semantic Search

Semantic search is a broad filed, with many different aspects,
ranging from query understanding, to answer retrieval, and result
representation. In this paper, we focus on query understanding
and answer retrieval. In previous research, people use query
word expansion and retrieval model to obtain relevant results.
They use synonyms as word expansion, extract word stems and
obtain their different tenses [4], or use acronyms [5] and relevant
words [6] to expand queries. The state-of-art retrieval model is
learning-to-rank model applying machine learning methods, like
LambdaRank, DSSM, CDSSM, etc. [7].

B. Knowledge Graph and its Application

There exists a wide range of general-purpose encyclopedic
knowledge graphs, like WikiData, Freebase, DBPedia, and some
domain-specific knowledge bases, such as WordNet,
ConceptNet, etc. general-purpose knowledge graphs are not
suitable for domain search, since these knowledge graphs are too
general and could introduce redundant or unnecessary
information, which leads to irrelevant search results. Some
researchers construct an in-domain knowledge graph by extract
related entities from a general domain knowledge graph [8].
However, this only extract a subset of a general knowledge
graph, not optimized for in-domain specific purposes.

Knowledge graphs have been utilized in text information
retrieval and made certain achievements [9]. Alexander Kotov,
ChengXiang Zhai [10] used path finding and random walk to
find related entities in ConceptNet as an expansion for queries.
It mainly utilized the graph construction but neglected the text
resources of entities. Jeffrey Dalton, Laura Dietz [11] proposed
an Entity Query Feature Expansion (EQFE) model to make some
improvement to the pseudo-relevance feedback model. Chenyan
Xiong [12] proposed an EsdRank model, which treats extracted
external words, terms and entities as objects in a latent space of
queries and documents. Xiangling Zhang, et al. [13] proposed a
concept called common semantic feature, to address the problem
of entity set expansion by using KGs. Chenyan Xiong [14]
proposed a word-entity duet representation model via combing
traditional retrieval model and knowledge graph embedding, to
describe the common features shared by the seed entities. Wen
Zhang, et al. [15] proposed a new knowledge graph embedding
method to learn distributed representations for entities and
relations, which explicitly simulates crossover interactions.
However, seldom researchers focus on the scenarios where
documents lack enough text resources and the domain
knowledge is not fully exploited.

III. OUR APPROACH

A. Approach Overview

To address the challenges of semantic search in IT service
crowdsourcing, we propose a knowledge graph-based approach
as shown in Figure 2. Our approach leverages an IT service
knowledge graph (ITServiceKG) to enhance query and service
understanding, and then seamlessly plugs two additional
activities in the basic search process to provide precise IT service
search: term expansion and service re-ranking.

1) Term expansion: After word segmentation, we apply entity
linking to locate the entities of ITServiceKG in both queries
and service information. Then we expand those using
superordinates, hypernyms, synonyms, descriptions and
relations of these entities in ITServiceKG. Thus our

User
query

Word
segmentation

Superordinates and
hypernyms expansion

Final
search
result

IT Service
Knowledge Graph

Synonyms expansion

Using descriptions of
entities as pseudo query

Using description of entities
to expand service info.

Term Expansion

Service Re-ranking

GBDT

Reverse
index

creation

Elasticsearch

 E
nt

ity
 li

nk
in

g

Services info.

Degree of
literal overlap

Embedding vectors
similarity

Query-service
correlation

Service quality

Preliminary
search result

Expanded
services info.

Expanded
query

Reverse
index

Figure 2. Overview of Our Approach

308

approach boosts query understanding, and alleviates the
problem that service information lacks enough text
resources.

2) Service re-ranking: After the preliminary search results are
returned by the Elasticsearch engine, a learning-to-rank
model is applied to re-rank the results and obtain the top-N
IT services. Our approach designs several novel features,
including degree of literal overlap, embedding vector
similarity, query-service correlation, and service quality.
Thus, it makes the more relevant service have the higher-
ranking position.

Next explains the details of IT service knowledge base, term
expansion and service re-ranking.

B. Building IT Service Knowledge Graph

A domain knowledge graph in IT crowdsourcing should
include the information of IT services and the knowledge in IT
service implementation. Therefore, we design ITServiceKG
from three aspects: IT service categories, IT skills and IT service
instances. In ITServiceKG, each entity (i.e. concept or instance)
has following attributes: name, synonym, cooccurrence, and

description; and relations between entities includes subsumption,
instance-of, and attribute relations. One fragment of
ITServiceKG is shown in Figure 3.

1) IT service categories: IT service categories record the
hierarchical structure of service categories. These data are
provided by the real-world IT crowdsourcing platform–

JointForce1. It holds a three-layer structure. The first layer
contains various types of software services, including those for
software development, software testing, architecture design,
DevOps deployment, logo design, etc. The second layer collects
sub-types of specific IT services. Let "software development" be
an example. Its child services include software services such as
"web development", "App development", "embed system
development", and so on. And the third layer places domain-
oriented IT services.

2) IT skills: IT skills contain the technologies that IT services
adopt, such as programming languages, frameworks and
database. Every skill holds a multi-layer structure. Take
"Database" as an example, it can be divided into "Relational
Database" and "NoSQL Database", and MySQL is an instance
of "Relational Database". IT skills data are collected mainly
from StackOverflow tag synonym system2, Wikipedia3 and
StuQ skill map4. And the cooccurrence data is processed from
search logs.

3) IT service instances: IT service instances are to-be-
crowdsourced IT services in the platform. They are connected to
IT service categories and IT skills. Taking an example in Figure

Database

Relational
Database

NoSQL

Graph
Database

Key-value
Database

Document-
oriented
Database

MySQL

Redis

MongoDB

Neo4j

Service
No.1365

Software
Development

Software
Testing

Education
Web Dev.

Financial
Web Dev.

Web
Developement

E-commerce
Web Dev.

IT Service

Categories

IT Skills

IT Service

Instance

concept

instance

subsumption

instance of

attribute relation

Figure 3. One fragment of IT Service Knowledge Graph

1https://www.jointforce.com
2http://stackoverflow.com/tags/synonyms
3https://www.wikipedia.org
4https://github.com/TeamStuQ/skill-map

309

3, Service No.1365 is an instance of e-commerce website
development, with Redis and MangoDB as databases, Java as
programming language, and Struts and Hibernate as frameworks.

C. Term Expansion

Term expansion is a common technique in information
retrieval (IR), but we reach two conclusions that implies space
for improvement: a) in previous research, the query expansion
resources are from synonyms and cooccurrence words. The
relations of superordinates and hyponyms are neglected; b) most
researchers only pay attention to the query expansion but neglect
the document expansion. In IT service crowdsourcing platforms,
there are not enough textual description for services, which
impedes the performance of semantic search. Therefore, the
expansion of both user queries and service information is
indispensable, and we leverage ITServiceKG to expend them
along the following four channels.

1) Synonym and cooccurrence expansion. The entities in the
ITServiceKG have attributes "synonym" and "cooccurrence",
and we use synonym and cooccurrence terms of the linked entity
to expand the quires.

2) Superordinates and hyponyms expansion. The IT service
categories in ITServiceKG have a hierarchical structure. For
example, in Fig. 3, the entity "Software Framework" has a
hyponym "Back End Framework", the latter has a hyponym
"Hibernate", and "Hibernate" as a relation with Service No.1365.
We expand both for queries and services information with
superordinates and hyponyms of the linked entity in
ITServiceKG. For example, if a user wants to search for IT
services with back-end frameworks, but does not know any
concrete name of it, we can expand this query by adding the
hyponyms of back-end framework: "Struts", "Hibernate", etc.
For another example, Service No.1365 has a relation with entity
"Struts", we can expand the information of Service No.1365 by
adding the superordinate of "Struts" - "Back End Framework".

3) Using the descriptions of entities as pseudo query.
ITServiceKG contains rich textual descriptions about entities.
Given an entity e, we use its name and description as pseudo
query. This makes sense because the query is usually short and
concise, only including two or three keywords usually. So we
use the descriptions of entities as the pseudo query, without
worrying that the expanded query is too long or introduces too
many irrelevant information.

4) Using the description of entities to expand service
information. It makes sense that the extra information of entities
in ITServiceKG can help us understand the meaning of the
service information. It is like a process of looking up words in
the dictionary. When we read an article and find a new word, we
may look up the word in the dictionary. The meaning of the new
word will help us understand the article. The domain knowledge
graph behaves in the similar way. The description of entities can
be helpful for users who do not have the background knowledge
about the entities.

D. Service Re-Ranking

After the term expansion, the expanded query and service
information are obtained. We build the reverse index in the

Elastic search engine, and get the preliminary results. Then, we
apply machine learning techniques to re-rank the list of the
search results and make the more relevant result have the higher-
ranking position. This rank model can be viewed as a supervised
learning problem. The input is the query and all to-be-
crowdsourced IT services, the output is the top-N IT services,
each of which has a relevant score of 0-1.

We adopt Gradient Decision Tree (GBDT) as our learning-
to-rank model. It is a point wise ranking model. We design four
features for this rank model, shown as below:

1) The degree of literal overlap. If the query and the service's
name and description have more common characters, they are
more relevant.

d =
𝑆𝑞 ∩ 𝑆𝑡

|𝑆𝑞 ∪ 𝑆𝑡|
 ,

where 𝑆𝑞 denotes the character set of a query and 𝑆𝑡 denotes the
character set of a service name.

2) Embedding vector similarity. We embed the query and the
service's name and description into vectors by TD-IDF. The
cosine similarity of the vectors between the query and the service
indicates the relevance.

𝑠𝑖𝑚 = cos (𝑣𝑞 , 𝑣𝑡) ,

where 𝑣𝑞 denotes the query vector and 𝑣𝑡 denotes the vector of
the service.

3) Query-service correlation. In IT service crowdsourcing
platform, we record user service clicking events on search results
as <query, service, timestamp> triples in the log. More clicking
times indicates higher relevance.

4) Service quality. User quality evaluation on crowdsourced
services are also recorded in IT service crowdsourcing platform.
People tend to search for services with good quality, so it makes
sense that we give them higher relevance score.

𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑤𝑝 ∙ 𝑝 + 𝑤𝑠 ∙ 𝑠 + 𝑤𝑡 ∙ 𝑡 ,
where t denotes the score of service on-time delivery, and s
denotes the product quality score, t denotes the technical
support score, and w is the corresponding weight.

We transfer the query-service pair to feature vectors and use
them as the input of the GBDT model. Then a point wise
ranking model is learned through model training on historical
data, and re-ranks the current search results.

IV. EXPERIMENTS
We implemented our semantic search approach, and

conducted evaluations to explore the following research
questions:

(RQ1): What is the effectiveness of our approach compared
with the baseline?

(RQ2): How much does each expansion channel contribute
to IT service search?

310

(RQ3): How much does each feature contribute to IT service
re-ranking?

A. Experiment Setup

1) Dataset. Experimental data is offered by JointForce, the
biggest IT crowdsourcing platform in China. There are 8753
services and 18025 search records. Each record in search logs
contains a query (q), top k service list returned by search engine
(𝑆𝑞@𝑘), and service list clicked by user (Iq). We split the dataset
into training (80%) and testing (20%).

2) Evaluation Metrics. We use precision (P@k), recall (R@k)
and MRR (Mean Reciprocal Rank) to measure the performance
of our approach. For query sets Q, these metrics are defined as
follows:

Precision (P@k): It is the percentage of correctly discovered
services in all discovered k services.

P@k =
1

|𝑄|
∑

|𝑆𝑞@𝑘 ∩ 𝐼𝑞|

|𝑆𝑞@𝑘|
𝑞∈𝑄

Recall (R@k): It is the percentage of correctly discovered
services in all correct services.

R@k =
1

|𝑄|
∑

|𝑆𝑞@𝑘 ∩ 𝐼𝑞|

|𝐼𝑞|
𝑞∈𝑄

MRR: The reciprocal rank of a query response is the
multiplicative inverse of the rank of the first correct answer: 1
for first place, 1⁄2 for second place, 1⁄3 for third place and so on.

The MRR is the average of the reciprocal ranks of results for a
sample of the query sets Q:

𝑀𝑅𝑅 =
1

|𝑄|
∑

1

𝑟𝑎𝑛𝑘𝑞
𝑞∈𝑄

 ,

where 𝑟𝑎𝑛𝑘𝑞 refers to the rank position of the first relevant
service for the query q.
B. RQ1. Overall Performance

Basic search approaches with BM25 and TD-IDF are
selected for overall performance comparison. The experimental
result is shown in the Table I. We can observe that the
performance of BM25 is better than TD-IDF, therefore, we
choose BM25 as the reference in the subsequent experiments.
Moreover, we can observe that when applying term expansion,
the recall is enhanced more prominently than the precision. It
makes sense because the term expansion introduces more useful
relevant terms and can find more correct services which cannot
be retrieved before. After further applying ranking model, the
precision is enhanced, because we make the more relevant
services have higher ranking position. The performance of @15

is better than @10, which means @15 is a balanced metric for
both precision and recall.

The experiment demonstrates that our approach (i.e. basic
search with BM25 + term expansion + service re-ranking)
outperforms the baselines. The precision is improved by 3.856%,
he recall is improved by 9.912%, and the MRR is improved by
34.871%. This is because we introduce extra domain knowledge
and retrieve some results that are neglected in the baseline
approaches.

C. RQ2. Expansion Channel Contribution Analysis

During term expansion, our approach adopts four expansion
channels: synonym and cooccurrence expansion (SCQ),
superordinates and hyponyms expansion (SHQ), descriptions of
entities as pseudo query (DQ), and descriptions of entities to
expand service information (DS). In this experiment, we
perform an analysis to evaluate each channel's contribution to
the performance of IT service search.

We choose basic search approach with BM25 as the baseline,
and add each expansion channel one by one. Recall@15 is
chosen as the evaluation metric, because term expansion mainly
enhances the recall.

The impact of each expansion channel on the overall
performance in this experiment is shown in Figure 4. We can
observe that the performance is improved greatly when
introducing "Superordinates and hyponyms expansion" and
"Using description of entities to expand service information".
We take following two examples to illustrate why
superordinates and hyponyms can improve the performance.

The first query example is "ERP web service that uses
Structs and Hibernate". Before term expansion, we find some
related services, all of them relying on exact match. But Struts is
not as popular as Spring now, so the services using Struts are
rare. When we introduce the superordinates of entity "Struts"-

TABLE I. THE OVERALL PERFORMANCE COMPARISON

Methods P@10(%) Δ R@10(%) Δ P@15(%) Δ R@15(%) Δ MRR Δ
TF-IDF 13.096 — 49.563 — 9.856 — 56.396 — 0.542 —
BM25 13.107 +0.084 51.872 +4.659 9.905 +0.497 57.197 +1.420 0.553 +2.030

term expansion 13.053 -0.328 52.369 +5.661 9.996 +1.420 61.263 +8.630 0.695 +28.229
term expansion +
service re-ranking 13.298 +1.542 52.965 +6.864

10.236 +3.856 62.586 +10.976 0.731 +34.871

Figure 4. Expansion Channel Contribution Analysis

0.5

0.55

0.6

0.65

BM25 +SCQ +SHQ +DQ +DS(All)

Recall@15
Term expansion

311

"Back End Framework" and add it to the query, we can find
some services with back-end framework, such as using
SpringMVC and Mybatis.

The second query example is "student management system
that uses NoSQL". Before applying term expansion, we cannot
find services with keyword "NoSQL", because "NoSQL" does
not appear in the name or description of any service, since more
detailed words are used to describe their techniques, such as
"Redis", "MongoDB" rather than the general word "NoSQL".
Therefore, we introduce the hyponyms of the entity "NoSQL",
and then we can find services use Neo4j and MongoDB, which
are both NoSQL databases.

We can also observe that when we use the description of
entities to expand service information, the performance is
improved greatly. The reason is that there are not enough
available textual descriptions for services, and after we use
description of entities to expand them, this problem is alleviated,
and thus the performance becomes better.

D. RQ3. Ranking Feature Contribution Analysis

Our approach adopts four features for the learning-to-
ranking model: degree of literal overlap (DLV), embedding
vectors similarity (EVS), query-service correlation (QSC) and
service quality (SQ). In this experiment, we perform an analysis
to evaluate each feature's contribution to the performance of
ranking model.

 The baseline is the basic approach with term expansion. The
metric is Recall@15. We add the features one by one and the
impact of each feature on the performance is shown in Figure 5.

From Figure 5 we can see that all the features take effect. The
embedding vectors similarity and the query-service correlation
contribute most in the four features. The embedding vectors
similarity mainly represents the similarity between the queries
and the name of services. This implies the name of service plays
an important role in the model. The query-service correlation
implies how correlated a query and a service is in the history of
previous crowdsourcing, so it can give advice to the search in
the present.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a knowledge graph approach to

enhancing semantic search for crowdsourced IT services.
Compared with the traditional search approach, the MRR of our
approach increases 34.871% and the Recall@15 increases

10.976%. The key to success comes from two aspects: (1) an IT
service knowledge graph is built and utilized to expand both user
queries and service information; (2) a learning-to-rank model
with four features is designed to re-rank the preliminary search
results.

As for future work, we will employ neural networks and
learn latent representations of words, entities, and their relations
in the knowledge base. These latent representations can be learnt
in an unsupervised manner to be subsequently leveraged in a
ranking model.

ACKNOWLEDGMENT
This research is supported by 973 Program in China (Grant

No. 2015CB352203), National Nature Science Foundation of
China (Grant No. 61472242 and 61572312), and Shanghai
Municipal Commission of Economy and Informatization (No.
201701052). Thanks JointForce for providing the experimental
data set.

REFERENCES
[1] Y. Sun, A. Singla, D. Fox, and A. Krause. Building hierarchies of

concepts via crowdsourcing. arXiv preprint arXiv:1504.07302 (2015).
[2] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing

entity resolution. Proceedings of the VLDB Endowment 5, 11 (July 2012),
1483-1494.

[3] Runtao Qiao, Shuhan Yan and Beijun Shen, A Reinforcement Learning
Solution to Cold-Start Problem in Software Crowdsourcing
Recommendations. In International Conference on Progress in
Informatics and Computing (PIC) 2018.

[4] Bhogal J, Macfarlane A, Smith P. A review of ontology based query
expansion. Information Processing & Management 43, 4 (July 2007),
866-886.

[5] Wei Xing, Peng F, Dumoulin B. Analyzing web text association to
disambiguate abbreviation in queries. In SIGIR 2008. ACM, 751-752.

[6] Derczynski L, Wang Jun, Gaizauskas R, et al. A Data Driven Approach
to Query Expansion in Question Answering. arXiv preprint
arXiv:1203.5084 (2012).

[7] B Mitra, N Craswell, Neural models for information retrieval. arxiv
preprint arXiv:1705.01509 (2017).

[8] Chenyan Xiong. Explicit Semantic Ranking for Academic Search via
Knowledge Graph Embedding. In WWW 2017. ACM, 1271-1279.

[9] Laura Dietz, Chenyan Xiong, Edgar Meij. The First Workshop on
Knowledge Graphs and Semantics for Text Retrieval and Analysis
(KG4IR). In SIGIR 2017. ACM, 1427-1428.

[10] Alexander Kotov, ChengXiang Zhai. Tapping into knowledge base for
concept feedback leveraging conceptnet to improve search results for
difficult queries. In WSDM 2012. ACM, 403-412.

[11] Jeffrey Dalton, Laura Dietz, James Allan, Entity query feature expansion
using knowledge base links. In SIGIR 2014. ACM, 365-374.

[12] Chenyan Xiong, Jamie Callan. Esdrank: Connecting query and documents
through external semi-structured data. In CIKM 2015. ACM, 951-960.

[13] Xiangling Zhang, Yueguo Chen, Jun Chen , et al. Entity Set Expansion
via Knowledge Graphs. In SIGIR 2017. ACM, 1101-1104.

[14] Chenyan Xiong, Jamie Callan, Tie-Yan Liu. Word-Entity Duet
Representations for Document Ranking. In SIGIR 2017. ACM, 763-772.

[15] Wen Zhang, Bibek Paudel, Wei Zhang, Abraham Bernstein, Huajun Chen,
Interaction Embeddings for Prediction and Explanation in Knowledge
Graphs. In WSDM 2019. ACM, 96-104.

Figure 5. Ranking Feature Contribution Analysis

0.6

0.61

0.62

0.63

Base +DLV +EVS +QSC +SQ(All)

Recall@15
Ranking model

312

An Empirical Study on Research and

Developmental Opportunities in Refactoring

Practices
Shivani Jain

University School of Information, Communication and

Technology, GGS Indraprastha University

Sector 16 C, Dwarka

Delhi, India

shivani.1091@gmail.com

Anju Saha
University School of Information, Communication and

Technology, GGS Indraprastha University

Sector 16 C, Dwarka

Delhi, India

anju_kochhar@yahoo.com

Abstract—Maintaining large complex software is one of the

major challenges faced by today’s software industry. Refactoring

is one way to do so. It is the process of changing internal structure

of project code or software design without altering functionality. It

improves software quality and reduces software entropy. This

paper presents the preliminary results of an explanatory survey

targeted at investigating refactoring practices by IT professionals.

221 participants helped to reveal important facts about refactoring

risks, benefits, limitations of tools, and how a team manages

consistency between different artefacts while practising

refactoring. Findings reveal that refactoring tools are under-used

as they have availability, usability and trust issues. An automated

system is the need of the hour to manage change consistencies,

visualizing code structures, detecting code, and design smells, and

performing refactorings. This study will enable researchers and

developers to understand their role in a better way as prevailing

issues with current state-of-art are exposed and challenges are

reported.

Keywords: Refactoring; code smells; refactoring tools; survey;

empirical study.

I. INTRODUCTION

Code smells are design flaws, though are free of syntax

errors, but can lead to future bugs and errors [1]. They are a

violation of basic design principles and are also known as anti-

patterns [2]. They contribute to financial debts and make

software complex, hard to understand and maintain, and make

changes difficult to embed. Thus, detection of such designs
flaws and their correction is an absolute necessity [3].

Refactoring is one of the techniques to remove these anomalies.

Refactoring is a well-organized practice for the reorganization

of the present body of code, changing its internal structure

without changing its external conduct. It is a sequence of little

functionality preserving transformations. It is done while

adding a feature, fixing a bug, and during code review [4].

Refactoring is mainly done to improve the internal structure
and readability of the software. It increases flexibility,

maintainability and reduces inter-modular couplings [5, 18]. It

DOI reference number: 10.18293/SEKE2019-038

can be done by a specialist or stakeholders like software

designer, developer, tester or maintenance team. It can be done

either manually or with the help of a tool. The scope can be
system-wide or small scale, depending on the aim of applying

refactorings. Refactoring is a time-consuming process that does

not reflect immediate benefits like new features or bug fixes [6].

Incomplete and incorrect refactorings can lead to bugs [7] and

it has been found that a high proportion of refactorings often led

to an increase in the number of errors [8, 17].

The refactoring process [9] consists of following activities:
(1) identify code smells; (2) determine which refactorings are

best suitable for application; (3) make sure that applied

refactoring preserves behaviour; (4) apply refactorings; (5)

calculate the impact of refactorings on software quality features;

(6) maintain uniformity between refactored program code and

other software relics (test data, documents etc.).

Murphy-Hill [10] mentioned four different ways to collect

research data for refactoring. They are:

 Mining the Commit Log – Look for mention of the

word “refactor” in the commit logs of versioned

repositories. Commit logs are updated when a

programmer commits a change to the repository.

 Analyse Code Histories - Analyze an order of versions

of the source code by manual comparison or by

automating the comparison using a software tool.

 Observing Programmers - Observe developers in the

field, working on software development and illustrate

their refactoring behaviour. Such observation can be

direct observation which comes under the category of

a controlled experiment. Another is indirect

observation which can be a survey or a project post-

mortem.

 Logging Refactoring Tools - Some programming

environments automatically record the programmer’s

activity in a log file. Such an environment is

specialized to collect refactoring tool events.

313

mailto:shivani.1091@gmail.com
mailto:anju_kochhar@yahoo.com

In this study, the third method i.e. indirect observation has

been implemented and data has been collected through a survey.

In this study, the following research questions have been

addressed:

RQ1: How do programmers ensure that code has been

refactored correctly and what are the measures taken to manage

consistency between software artefacts?

RQ2: What are the reasons that prompt the refactoring process?

RQ3: What are the common refactoring practices followed by

developers?

RQ4: Which are the most desirable features and barriers in the

adoption of refactoring tools?

RQ5: What are the risks and benefits associated with

refactoring?

To find answers to these burning questions, a survey was

conducted and 221 software engineers participated in the study.

Responses were collected online and analyzed quantitatively.

The results were presented pictorially through graphs.

This study will make the following contributions:

 Study will assist researchers to identify research areas

in the field of refactoring and to focus on issues to be
solved in refactoring process. It will support the

developers to develop the tools keeping in mind the

shortcoming of the available tools. And will help IT

professionals to understand the importance of

refactoring and make it a part of their development

process in various projects.

 Learning limitations of refactoring tools will guide

researchers to focus on grey areas and what are

prominent research areas, for example validation and

verification of applied refactorings, maintaining

change consistency in between artefacts, and
development of better algorithms for detection of code

smells etc. Developers can build easy to understand

tools with better GUI and work on availability issues

as well by creating awareness among development

community.

II. RELATED WORK

G. H. Pinto and F. Kamei [11] did a qualitative and

quantitative study to find out answers to following research

questions: Which are the most desirable features in refactoring

tools? What are the factors that prevent developers to adopt

refactoring tools? Does interest in refactoring tools increase

over the years? To uncover the number of issues regarding these

tools, more than 1,400 messages – 324 questions and 1,115

answers to those questions were analyzed from more than 1,200

users. Major findings of this study are: refactorings tools are in
demand for dynamic languages, databases and multi-language

refactorings. Users reported that a lack of trust and usability

problems in tools still prevails. Interest in refactoring tools over

the years has not increased as expected.

M. Kim, T. Zimmermann and N. Nagappan [12] conducted

a survey at Microsoft, followed by a semi-structured interview

and quantitative analysis of version history data of Windows 7
to reveal refactoring benefits and challenges. Survey finds that

the refactoring definition in practice is not restricted to a

standard definition of behaviour-preserving code alterations and

developers observed that refactoring involves considerable cost

and risks. The quantitative analysis of Windows 7 version

history finds refactoring top 5% of modules led to a reduction

in modular couplings and many complexity measures but

increases the size more than the bottom 95%.

N. Singh and P. Singh [16] performed a comprehensive

sentiments analysis on 3,171 GitHub comments during

refactoring 60 open Java source projects by mining relevant

commit messages. Research Question – “Does a refactoring task

allocated during the implementation of a software feature

following a strict deadline invoke positive or negative

sentiments in the developer?” was answered. Tool

RefTypeExtractor for automatically linking commit messages

to their respective refactoring techniques was developed and

dataset SentiRef, which stores the identified developer’s

sentiments linked to each of 3,171 commit messages was
created. The research concluded that in general software

developers express more negative sentiments than positive

sentiments while performing refactoring tasks which reveals the

substandard state of the refactoring process.

Arcoverde, Roberta, Alessandro Garcia, and Eduardo

Figueiredo [13] presented the results of a survey with the

purpose of understanding the longevity of code smells in

software projects. They concluded that (i) there is a probability

of breaking APIs before refactorings by developers of widely-

scoped reusable code; (ii) developers of standalone applications
consider contract breaking changes easier to apply than

developers of reusable assets; (iii) refactoring tools are more

frequently used by developers that apply Test-Driven

Development; (iv) refactoring tools are commonly used, and (v)

reusable assets and standalone applications have different

refactoring prioritization.

Our study intends to foster such previous investigations by

revealing current challenges faced by developers and how they
maintain consistency between different artefacts. We designed

a questionnaire in order to understand the gap that subsists

between the interpretation of refactoring practices by

developers and researchers. The questionnaire was made

available as an online survey and 221 software engineers filled

it.

III. SURVEY SETTINGS

In order to understand the refactoring practices, a

questionnaire was created and sent to 10 experts (well learned

software engineers in the IT industry with more than 12 years

314

of experience in companies like Amazon, Adobe, Flipkart, TCS,

Walmart etc.) and based on their feedback, the questionnaire

was refined regarding the clarity and objectivity of the

questions. It consisted of 14 multiple choice questions and 6

free-form questions. Few multiple choice questions had an

option where participants could write answers of their choice as

well. A glossary was included at the beginning explaining terms

and acronyms used, for disambiguation. To collect information

online survey was conducted and 221 engineers participated.

Participants belonged to different companies and various
designations. Majorly, they were developers (i.e. 90.5%)

including requirement engineers, software designers, testers,

researchers, full stack developers, and software architects etc.

having a maximum of 20 years of experience, minimum of a

year and an average of 3.2 years. The survey was divided into

four sections and is described in Table 1.

The questions were formulated to identify how often and
when refactorings are performed, what is the main purpose

behind it and how consistency is managed between different

artefacts while performing refactorings. Another section was

focused on the most popular tools and what are the desirable

features and barriers in the adoption of refactoring tools.

Further, investigation on benefits, risks, and challenges

regarding refactoring is explored. After the collection of

responses, data was analyzed and categorized pictorially.

Results that were revealed were both interesting and useful in

understanding the roles and responsibility of researchers and

developers in the field of refactoring. It revealed major

challenges that still prevail and scope in the research area.

IV. RESULTS

The survey was made online and 221 IT professionals

participated. 90.5% of them were developers from different
companies and having experience in various languages like

Java, Python, .NET etc. 23.4% of participants performed

refactoring daily, 34.9% weekly and 21.1% daily. Software

engineers from diverse and virtuous companies like Amazon,

HCL, Infosys, Flipkart, Oracle, TCS, Expedia, Snapdeal, IBM,

Paytm, ISRO, and ICAR etc. contributed to our findings.

Participants had an average experience of 3.2 years with a

maximum of 20 years and working in various nations like India,

USA, Australia, Germany, and China.

The following section organizes the results in terms of the

research questions.

RQ1: How do programmers ensure that code has been

refactored correctly and what are the measures taken to

manage consistency between software artefacts?

Results show that 78% of participants perform some kind of

testing after refactoring code. Most of them prefer simple unit

or functional testing but some of them prefer regression,

integration, smoke, sanity or boundary value testing. Few of

them make their peers to do code review. To maintain

consistency, teams use version control platforms like Git,

communicate to the team through a pre-defined channel or by

adding comments, maintain an excel file of changes. Test code

and documents are changed manually after refactorings. Some

of the remarks are as follows:

 “Version control helps to keep a track of changes

made, which once are completed successfully are

documented.”

 “Rewrite/Update Unit Test, Update Documentation,

Add relevant comments”

 “Code and test cases must go hand in hand. To ensure

this I follow test based approach with unit test cases

written before the code has to be refactored.”

 “We use XML notation for commenting code which

reduces the need for separate documentation to a very

large extent, code coverage tools for maintaining test

cases.”

Some of the good practices followed by engineers after

performing refactorings are doing code reviews, compiling the

code, running test cases, running bug detectors and modifying

test cases according to the refactored code.

RQ2: What are the reasons that prompt the refactoring

process?

Refactoring software is only beneficial when it is done with

a purpose like reducing coupling between modules. Results

revealed some of the reasons that prompt software engineers.

79% and 83% of professionals refactor when code gets hard to

understand and maintain respectively. 50% agreed that slow

performance and wide dependencies between modules are the

main reason behind their refactoring actions. Logical mismatch,
difficulty in debugging and testing, readability, re-usability and

duplicity were also the main causes to initiate refactoring as

depicted in Fig 1.

Figure 1. Reasons that prompt team to refactor code

Majority of the participants agreed that refactoring increases

program flexibility, improves readability, reduces coupling,

improves the internal structure of the code and makes it easier

to add new features. Apart from these, honourable mentions
were to reduce bugs, to increase consistency of an application,

to reduce compiling time, to optimize and improve software

performance, to enhance scalability and robustness of

applications.

315

TABLE I. Summary of Survey Questions

Background

Which best describes your primary work area (developer, tester, manager etc.)? (open answer)

How many years of work experience do you have in the software industry? (open answer)

Name of Current Company and Country (open answer)

Refactoring

Practices

How often do you perform refactoring (Daily, Weekly, Monthly, Yearly, Seldom, Never)? (multiple choice)

Which keywords do you use or have you seen being used to mark refactoring activities in change commit messages? (multiple choice)

How do you ensure that you have refactored program correctly? (open answer)

How do you manage consistency between different software artefacts (e.g. documents, code and test cases) during refactoring? (open

answer)

What is the purpose of your refactorings? (multiple choice with the open answer)

Which of these reasons prompts you to initiate the refactoring process? (multiple choice with the open answer)

Select following options for refactorings [multiple choice: (a) manually and with a tool (b) manually, (c) using automated tools, (d)

know this but don't use it, (e) don't know this refactoring.]

• Rename, Extract Method, Encapsulate Field, Extract Interface, Remove Parameters, ... [From Fowler's catalogue]

How do you strongly agree, agree, neither agree or disagree, disagree, strongly disagree with each of the following statements?

• I perform refactorings with other functional changes.

• Refactorings I want to perform are different from what supported by tools.

• Tools do not support higher level refactorings.

• How do you validate code refactorings?

Few statements are shown in this table for presentation purposes.

Refactoring

Tools

What tools do you use during refactoring? (open answer)

How do you perform most of your refactorings? (multiple choice with the open answer)

What are the barriers to adoption of refactoring tools? (multiple choice with the open answer)

What are the features in refactoring tools you would like to have? (multiple choice with the open answer)

Risks and

Benefits

How do you strongly agree, agree, neither agree or disagree, disagree, strongly disagree with each of the following statements?

• Refactorings advance code readability

• Refactorings introduce subtle errors

• Refactorings disrupt other programmer’s code

• Refactorings advance performance

• Refactorings make it debugging easy.

What are the challenges associated with performing refactorings? (open answer)

Based on your own experience, what are the risks involved in refactoring? (multiple choice with the open answer)

What benefits have you observed from refactoring? (multiple choice with the open answer)

Only some of the questions are mentioned for representation purpose.

RQ3: What are the common refactoring practices followed by

developers?

Great proportion strongly agreed on the following practices:

 Refactorings are carried out in batches and changes in

associated test cases and documents are reflected.

 Refactorings are done with other types of changes which

modifies program behaviour externally. Pure refactorings

are hardly done. This observation is consistent with R.

Johnson’s study [14].

 Refactorings that are done manually differ from what tools

offer.

 Refactorings that are applied are higher level changes

which are not supported by tools. This informs about the

need for tools for higher level refactorings, for example

dealing with generalization refactorings.

 Majority of the refactorings (60.6%) are done manually.

This practice proves the urgent need for good quality,

available and easy to use tools.

 Renaming, Extract Method and Remove Parameters are the

most common refactorings performed manually or with the

help of a tool. The same observation was made by M. Kim

[15].

RQ4: Which are the most desirable features and barriers

in the adoption of refactoring tools?

Participants listed a wide variety of tools that are used to

perform common refactorings. Most commonly used tools
are Jenkins, ReSharper, CodeRush, JS Refactor, Visual

Assist X, TSLint, DPack, JetBrain etc. Refactorings like

renaming and move method are simply done in IDEs like

Eclipse, IntelliJ, Visual Studio etc.

Figure 2. Most desirable features of refactoring tools

316

Most desirable features, developers want in refactoring

tools are code smell detection feature, 74% want code

visualization applicability. 72% of professionals would like

to verify correctness feature after they are done performing

refactorings, estimation of cost and benefits of refactoring

are another requirement that participants mentioned.

Automatically applying refactorings was only suggested by

42%. Fig 2 represents data in graphical form.

65% stated barriers that cease developers in adopting

tools are less or no knowledge about the availability of tools.

Around 29% participants mentioned difficult to

understand/learn tools and unknown or not able to

understand the debugging process is their reason that

prevents them to use refactoring tools. Tools are not

trustworthy and have bad GUI. Fig 3 represents same. Other

mentions were:

 “Company support”

 “Languages like Python and CSS have limited

support for refactoring tools.”

 “They sometimes don't understand that "why I do,

what I do" such as if I declare something in multiple

lines, I mean it to be so, but formatting online size

makes it hard to understand.”

Figure 3. Barriers in the adoption of refactoring tools

RQ5: What are the risks and benefits associated with

refactoring?

Refactoring risks are quantitatively presented through the

graph in Fig 4. Key causes are identifying code smells. It is

one of the major research areas in the field of refactoring.

Many automatic, semi-automatic, and metric-based code

smell detection techniques have and are being developed.

Managing consistency between artefacts is a long and

regressive process. Managing time is challenging as

developers avoid refactoring code before major releases.

Refactorings might introduce bugs or break existing code.

Preserving behaviour, understanding legacy code, and

convincing management team are considerable challenges.
Refactoring though is time-consuming procedure but it

definitely yields promising benefits such as improved

maintainability and readability which was further supported

by more than 80% of the participants in this empirical study.

More than 60% acknowledged improved performance,

reduction in code size as well as duplicate code are perks of

refactoring code. Other advantages are the reduction in

release time and bugs, software becomes easy to test and add

the new features. Fig 5 represents the benefits of refactoring

pictorially through a bar graph.

Figure 4. Risks involved in the refactoring process

Figure 5. Benefits of performing refactorings

V. THREATS TO VALIDITY

Some points to be considered are:

Participants of survey conducted were IT professionals

not refactoring specialists and with the assumption that

people who filled the survey know what “Refactor” means.

Survey made no inquiry about the type of projects (e.g. Web

applications, Embedded systems, Information systems, etc.)

participants had experience in. A number of participants

were low to generalize the results and few of them had the

experience below 5 years. Most of the questions were close-
ended which might lead to biasing.

VI. CONCLUSIONS AND FUTURE WORK

Large scale survey was conducted and a wide range of

IT professionals was engaged. The main purpose of the

survey was to understand the trends followed by developers

and what are the research opportunities in the field of

refactorings and developmental challenges. The study also

answers the questions like what sort of tools should be built

to better or automate the whole process and limitations of

currently available tools. Survey responses were collected

and analyzed to conclude the following results:

The refactoring process needs automated tools to

maintain changes between different artefacts of software.

317

Some companies use version control systems but a system

that updates the design, test cases, documentation

automatically after refactoring is in demand. Software

companies can invest their efforts in this sector.

Refactoring without purpose will not yield any benefits.

Some of the factors that prompt refactorings are - hard to
understand and maintain program code, wide inter-modular

dependencies, difficulty in debugging and testing, readability

issues etc. Software development teams should devote their

time in refactoring process to overcome such issues.

Refactoring increases program flexibility, reduces

coupling, improves the internal structure of the code and

makes it easier to add new features. These points were
supported by the majority of participants. Benefits associated

with the refactoring process are improved maintainability,

performance, modularity and readability, reduction in code

size, duplicate code, release time and bugs, and easy to test.

They are the motivations for teams to invest more time and

effort in the refactoring process.

Common practices in refactoring are that they are carried

out in batches, done with other types of changes that modify
external program behaviour. Majority of the refactorings

(60.6%) are done manually. Renaming, Extract Method, and

Remove Parameters are the most common refactoring

performed manually or with the help of a tool.

The reason that prevents software engineers to adopt

refactoring tools is - less or no knowledge about the

availability of tools, difficult to understand/learn, unknown

or not able to understand debugging process, trust issues, and
bad GUI. So, developers and researchers should investigate

the reasons behind such an inappropriate condition of

refactoring tools and try diminishing them. Tools for many

dynamic languages are still unavailable. Code structure

visualization, code smell detection, cost and effort estimation

tools are coveted. Tools to validate and verify refactorings

need to be developed.

Most desirable features, developers want in refactoring

tools are automatic code smell detection, code visualization

aspect, verifying correctness after refactoring edits,

estimation of cost, efforts and benefits of refactoring,

automatically applying refactorings. This provides research

areas that should be explored by researchers and developers

working in the field of refactoring.

Refactoring challenges faced by professionals are
identifying code smells, managing consistency between

artefacts, time management, excessive couplings between

modules, refactorings might introduce bugs or break existing

code, behaviour preservation, understanding legacy code,

and convincing management team. Researchers can work in

these domains to ease up the refactoring process. Companies

and teams should realize the importance of refactoring code

and refactoring activities needs to be further encouraged to

reduce maintenance time, money, and effort.

For future work, personal interview with professionals

can be conducted on a large scale and further conclusions

can be made by observing refactorings patterns and

behaviour of IT teams in the field.

REFERENCES

[1] V. Maggio and M. Faella, “Improving the Design of Existing code,”

Slides, 2011.

[2] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE

Trans. Softw. Eng., vol. 30, no. 2, pp. 126–139, 2004.

[3] M. Tufano et al., “When and Why Your Code Starts to Smell Bad

(and Whether the Smells Go Away),” IEEE Trans. Softw. Eng., vol.

43, no. 11, pp. 1063–1088, 2017.

[4] M. Fowler, “Refactoring,” p. 13472, 2002.

[5] W. Opdyke, “Refactoring Object-Oriented Frameworks,” PhD

thesis, University of Illinois at Urbana-Champaign, 1992.

[6] W. Opdyke, "Refactoring, reuse & reality," Lucent

Technologies/Bell Labs, 1999.

[7] C. G€org and P. Weißgerber, “Error detection by refactoring
reconstruction,” in Proc. Int. Workshop Mining Software

Repositories, 2005, pp. 1–5.

[8] P. Weißgerber and S. Diehl, “Are refactorings less error-prone than
other changes?,” Proc. ACM Int. Workshop Mining Software

Repositories, 2006, pp. 112–118.

[9] A. V. D. Tom Mens, “Refactoring: Emerging Trends and Open
Problems,” IEEE Int. Conf. Software Maintenance, ICSM, pp. 521–

522, 2003.

[10] E. Murphy-Hill, Danny Dig, Chris Parnin, “Gathering refactoring
data: a comparison of four methods,” Proc. 2nd Work. Refactoring

Tools WRT 08 conjunction with Conf. Object Oriented Program.

Syst. Lang. Appl. OOPSLA 2008, 2008.

[11] G. H. Pinto and F. Kamei, “What programmers say about
refactoring tools?,” Proc. 2013 ACM Work. Work. refactoring tools

- WRT ’13, pp. 33–36, 2013.

[12] M. Kim, T. Zimmermann, and N. Nagappan, “An Empirical Study
of Refactoring Challenges and Benefits at Microsoft,” IEEE Trans.

Softw. Eng., vol. 40, no. 7, pp. 633–649, 2014.

[13] Arcoverde, Roberta, Alessandro Garcia, and Eduardo Figueiredo.
"Understanding the longevity of code smells preliminary results of

an explanatory survey." Proceedings of the 4th Workshop on

Refactoring Tools. ACM, 2011.

[14] R. Johnson, “Beyond behavior preservation,” Microsoft Faculty

Summit 2011, Invited Talk, Jul. 2011.

[15] Kim, Miryung, Thomas Zimmermann, and Nachiappan Nagappan.
"A field study of refactoring challenges and benefits," Proceedings

of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering. ACM, 2012.

[16] Singh, Navdeep, and Paramvir Singh, “How Do Code Refactoring

Activities Impact Software Developers' Sentiments?-An Empirical
Investigation Into GitHub Commits,” 24th Asia-Pacific Software

Engineering Conference, pp. 648-653 IEEE, 2017.

[17] Alshayeb, Mohammad, "Empirical investigation of refactoring

effect on software quality," Information and software

technology 51.9 (2009), 1319-1326.

[18] Szőke, Gábor, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor

Gyimóthy, "Empirical study on refactoring large-scale industrial
systems and its effects on maintainability," Journal of Systems and

Software 129 (2017): 107-126.

318

An Empirical Study on Optimal Solutions Selection
Strategies for Effort-Aware Just-in-Time Software

Defect Prediction

Xingguang Yang∗†, Huiqun Yu∗‡�, Guisheng Fan∗�, Kang Yang∗
∗Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

†Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China
‡Shanghai Engineering Research Center of Smart Energy, Shanghai, China

Abstract—Just-in-time software defect prediction (JIT-SDP)
is an active topic in the filed of software engineering, and
many methods have been proposed to solve this problem. State-
of-the-art method MULTI applies multi-objective optimization
algorithm to the effort-aware JIT-SDP problem, and obtains
good average performance. Although the average performance
of the MULTI method is high, there are many optimal solutions
with poor performance. If an optimal solution is randomly
selected, a poor prediction model may be obtained. In order
to further improve the performance of the MULTI method,
we propose three optimal solutions selection strategies: benefit
priority (BP), cost priority (CP), and a compromise between
cost and benefit (CCB). In order to compare and validate the
effectiveness of the strategies, we conduct a large-scale empirical
study on data sets of six open source projects. The experimental
results show that, compared with the average performance of
MULTI, the optimal solutions selection strategy based on BP has
a significant improvement in ACC and Popt indicators. Therefore,
we recommend using the BP-based optimal solutions selection
strategy to improve the performance of MULTI when using the
MULTI method to solve the effort-aware JIT-SDP problem.

Index Terms—software defect prediction, empirical software
engineering, multi-objective optimization algorithm, just-in-time,
effort-aware

I. INTRODUCTION

Software defect prediction [1] [2] is an active research
topic in the domain of software engineering. As software
scales increase, it becomes very difficult to release a high-
quality software system. In the case of limited software testing
resources, it is critical for the enterprise to find and fix defects
in the software as early as possible.

Software defect prediction is an effective method. By using
defect prediction models, developers can accurately estimate
whether a program module is likely to have defects, thereby
allocating more test resources to modules that are more likely
to have defects, which help to improve the quality of the
software [3].

Traditional software defect predictions have shortcomings
in practical applications [4]. First, because the prediction

Corresponding Authors: Huiqun Yu (yhq@ecust.edu.cn), Guisheng Fan
(gsfan@ecust.edu.cn) DOI reference number: 10.18293/SEKE2019-174

granularity is coarse (i.e., class, file, or package), it is time
consuming to locate risky code regions. Second, a module is
usually completed by many developers, so it is difficult to find
the suitable developer to code checking for the defect-prone
module. Finally, because the defect prediction is made in the
later stages of software development, it is difficult for devel-
opers to come up with thoughts for software development.

Just-in-time software defect prediction (JIT-SDP) can well
overcome the above deficiencies. JIT-SDP is made at change-
level rather than module-level. Once the developer submits
the modified code, the defect prediction will be executed.
Developers can quickly know whether the change is defect-
inducing or not.

Nowadays, many supervised and unsupervised methods
have been proposed to solve the JIT-SDP problem. Yang et al.
[5] compared the performance of supervised learning methods
and unsupervised learning methods in the context of effort-
aware JIT-SDP through a large-scale empirical study. The
experimental results show that some unsupervised learning
methods are even better than supervised learning methods,
which contradicts people’s experience, because supervised
learning methods can learn knowledge from data sets and
should have better performance than unsupervised learning
methods.

Therefore, in order to improve the performance of su-
pervised learning methods, Chen et al. [6] proposed a new
method called MULTI, which formalized the effort-aware JIT-
SDP problem into a multi-objective optimization problem.
The optimal solution set is obtained by using the classical
multi-objective optimization algorithm (MOA) NSGA-II. The
experimental results show that the average performance of the
MULTI method is better than the state-of-the-art supervised
learning methods and unsupervised learning methods. How-
ever, Chen et al. [6] used the median of the performance of
the optimal solution set to represent the average performance
of the MULTI method. In the actual use of the MULTI
method, if an optimal solution is randomly selected, a poor
performance prediction model may be obtained. Therefore, in
order to improve the stability and performance of the MULTI

319

method, we design three optimal solutions selection strategies:
benefit priority (BP), cost priority (CP), and a compromise
between cost and benefit (CCB). Empirical results show that
the optimal solutions selection strategy based on BP can
significantly improve the performance of MULTI. Therefore,
we recommend using the BP strategy to obtain a higher
performance prediction model when using the MULTI method
to solve the effort-aware JIT-SDP problem.

The contributions of this paper are summarized as follows:
• In view of the shortcomings of the MULTI method,

we propose three optimal solutions selection strategies
BP, CP, and CCB, aiming to improve the effort-aware
prediction performance of the MULTI method.

• Through large-scale empirical research, we compare the
performance of three optimal solutions selection strate-
gies and the average performance of MULTI on the data
sets of six open source projects. Experimental results
demonstrate that BP-based optimal solutions selection
strategy can significantly improve the performance of the
MULTI method in ACC and Popt indicators.

The rest of this article is as follows. Section II introduces re-
lated work of software defect prediction. Section III introduces
the principle of MULTI and our proposed optimal solutions
selection strategies. Case study is introduced in section IV.
Experimental results and discussion are presented in section
V. Section VI describes the threats to validity. The conclusion
and future work are presented in section VII.

II. RELATED WORK

A. Just-in-time Software Defect Prediction

Mockus and Weiss [7] firstly applied JIT-SDP to 5ESS
updates by designing a series of change metrics. Experimental
results show that JIT-SDP can be effectively used in many
commercial software projects. Kamei et al. [4] conducted a
large-scale empirical study of 11 projects, including 6 open
source projects and 5 commercial projects, and they shared
data sets of 6 open source projects. Empirical results reveal
that the model based on logistic regression can achieve 68%
accuracy and an average recall rate of 64%.

Subsequently, many methods were proposed to improve the
performance of the JIT-SDP models. Yang et al. [8] proposed
a novel method called TLEL, which leverages decision tree
and ensemble learning. Experimental results indicate that their
method can significantly improve the performance of JIT-SDP.
McIntosh et al. [3] explored the impact of data validity on
the performance of the JIT-SDP models. Empirical results
demonstrate that in order to ensure the performance of the
prediction models, the defect data sets used should be within
the last three months.

B. Effort-aware Defect Prediction

When building a defect prediction model, in addition to con-
sidering the precision, recall, accuracy, etc., it is also necessary
to consider the effort required to code checking for defect-
prone models. Kamei et al. [4] applied effort-aware defect
prediction to JIT-SDT. They proposed a new method EALR,

which can identify 35% buggy changes while 20% effort is
used. Yang et al. [5] compared unsupervised models with
supervised models for effort-aware JIT-SDP. Experimental
results show that some unsupervised models outperform state-
of-the-art supervised models for effort-aware JIT-SDP. Later,
Fu and Menzies [9] repeated the experiment of Yang et al. [5]
and proved that although supervised models are better than
unsupervised models in project-by-project-based verification,
supervised models are not superior to unsupervised models in
general.

III. OPTIMAL SOLUTIONS SELECTION STRATEGIES

In order to improve the prediction performance of super-
vised methods in effort-aware JIT-SDP, Chen et al. [6] pro-
posed a novel method MULTI, which applies multi-objective
optimization algorithms (MOAs) to JIT-SDP. Their experimen-
tal results show that the average performance of MULTI is sig-
nificantly better than the 43 state-of-the-art methods including
31 supervised methods and 12 unsupervised methods.

However, we find that the Pareto optimal set derived from
MULTI has many optimal solutions with poor performance,
which affects the performance of the MULTI method. There-
fore, we propose three optimal solutions selection strategies
designed to improve the performance of the MULTI method.

A. MULTI

Inspired by search based software engineering (SBSE) [10],
Chen et al. [6] first formalized the effort-aware JIT-SDP
problem into a multi-objective optimization problem. SBSE
aims to solve complex problems with large-scale search space
in software engineering by using search technology.

1) The Design of Objectives: MULTI uses logistic re-
gression for defect prediction, which is widely used in
previous studies [4] [11]. Assuming that a change c =<
m1,m2...,mn > has n metrics, the prediction process of the
logistic regression models can be denoted by the formula 1,
where w =< w0, ..., wn > is the coefficient vector of the
logistic regression model. The output value of y(c) represents
the probability that a change c is buggy.

y(c) =
1

1 + e−(w0+w1m1+...+wnmn)
(1)

Since JIT-SDP is a bi-classification problem, we convert the
output value of y(c). The rule is as in formula 2. When the y
value is greater than 0.5, the change c is classified as buggy,
otherwise it is classified as clean.

Y (c) =

{
1 ify(c) > 0.5
0 ify(c) ≤ 0.5

(2)

For the effort-aware JIT-SDP problem, MULTI mainly consid-
ers two optimization objectives based on cost-benefit analysis
[6]. The first objective is designed from the perspective of
benefit and to identify as many buggy changes as possible. For
a set of changes C, the benefit of a model can be calculated
by formula 3, which represents the number of buggy changes
identified by the model.

320

benefit(C) =
∑
ciεC

Y (ci)× buggy(ci) (3)

The return value of the function buggy(ci) indicates whether
the change ci is defect-inducing. When the change is buggy,
the return value is 1 otherwise it returns 0.

The second objective is designed from the cost of the model
and is to minimize the effort used for code checking. Once
a change is predicted to be buggy by the defect prediction
model, the software quality assurance (SQA) team will invest
a lot of effort in code checking and test case design. For a set
of changes C, the cost value can be calculated by formula 4.
Here the function SQA(ci) represents the effort required to
code checking for the change ci. According to the suggestion
of Kamei et al. [4], the value of SQA(ci) can be set to the
lines of code(LOC) modified by the change ci.

cost(C) =
∑
ciεC

Y (ci)× SQA(ci) (4)

2) The Generation of Optimal Solutions: Obviously, the
above two objectives are usually conflicting. If a model
wants to identify more buggy changes, it will lead to more
effort. Conversely, if the model wants to reduce the effort for
code checking, it will miss many buggy changes. MULTI is
designed based on NSGA-II [12], which is one of classical
MOAs. Before introducing the coding scheme of chromo-
somes of MULTI, we give some definitions of MOAs.

• Pareto dominance. Suppose wi and wj are two fea-
sible solutions of the JIT-SDP problem. If and only if
benefit(wi) > benefit(wj) and cost(wi) 6 cost(wj) or
benefit(wi) > benefit(wj) and cost(wi) < cost(wj),
wi is Pareto dominance on wj .

• Pareto optimal solution. For a feasible solution w, w is a
Pareto optimal solution if and only if there is no feasible
solution w∗ which is dominance on w. Pareto optimal set
is composed by all the Pareto optimal solutions.

The process of MULTI can be summarized into the following
four steps.

1) Population initialization. For the effort-aware JIT-SDP
problem, a chromosome can be encoded as a coefficient
vector, denoting the coefficients of a logistic regression
model. During the population initialization process, N
chromosomes are randomly generated, and the values of
the elements of each chromosome are randomly gener-
ated.

2) Evolution. After population initialization, classical evolu-
tionary operations are performed to generate new chromo-
somes. General evolutionary operators include crossover
operator, mutation operator, etc.

3) Selection. Choose the optimal chromosomes from the
parent and offspring populations. The selection operator
of NSGA-II is based on non-dominated sorting algorithm
and the concept of crowding distance [12]. Repeat steps
2 and 3.

4) Termination. Once the evolutionary process satisfies the
termination condition, the iteration process terminates and
returns to the final optimal chromosomes.

B. Optimal Solutions Selection Strategies

MULTI designs two optimization objectives and generates
a set of optimal solutions based on NSGA-II. In previous
studies, Chen et al. [6] use MULTI-B to indicate the best
performance of MULTI, and use MULTI-M to indicate the
average performance of MULTI. Although the average per-
formance of the MULTI method is good in the context of
effort-aware JIT-SDP, randomly selecting an optimal solution
from the optimal solution set may result in poor prediction
performance.

Fig. 1 shows the values of ACC indicator generated from a
run results on six subject systems based on 10 times 10-fold
cross-validation. It can be seen from the Fig. 1 that although
the median of indicator ACC in optimal solution set can
obtain a high performance, there are a large number of poor
performance solutions in the optimal solution set. Therefore,
randomly selecting an optimal solution may result in obtaining
a prediction model with poor performance. Therefore, it is
necessary to design a suitable optimal solutions selection
strategy to improve the stability of MULTI.

BUG COL JDT MOZ PLA POS

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 1. values of ACC indicator for six subject systems

Since MULTI considers two optimization objectives, we
design three optimal solutions selection strategies, as follows:

• Benefit priority (BP). BP strategy returns the optimal
solution with maximum benefits in the optimal solution
set.

• Cost priority (CP). CP strategy returns the optimal solu-
tion with minimal cost in the optimal solution set.

• A compromise between cost and benefit (CCB). CCB
strategy considers cost and benefit simultaneously, and
returns the optimal solution with middle cost or benefits
in the optimal solution set.

To better describe the three strategies, we use the pseudo code
to further describe them, as shown in Algorithm 1.

IV. CASE STUDY

Our case study aims to solve following research question.

321

Algorithm 1: Three optimal solutions selection strategies
Input: training set: D = {(x1, y1), (x2, y2)..., (xn, yn)} ;
Output: optimal solutions:

solution BP, solution CP, solution CCB
1 begin
2 // Generate optimal solution based on MULTI method
3 solutions =MULTI(D)
4 // Sort optimal solutions in ascending order based on

benefit values
5 solutions = order by benefit(solutions)
6 // Return solutions according to three strategies
7 solution BP = solutions[solutions.length− 1]
8 solution CP = solutions[0]
9 solution CCB =

solutions[(solutions.length− 1)/2]
10 end

• Which optimal solutions selection strategy is appropriate
for solving the effort-aware JIT-SDP problem?

The experimental hardware environment is Intel(R) Core(TM)
i7-7700 CPU@ 3.60GHz; RAM 8.00GB. The experimental
code is written in python.

This section introduces data sets, performance indicators,
data analysis method, and experimental design.

A. Data Sets

The experiment considers the data sets of six open source
projects shared by Kamei et al. [4], which have been widely
used in previous studies [5] [6]. These six data sets include
Bugzilla (BUG), Columba (COL), Eclipse JDT (JDT), Eclipse
Platform (PLA), Mozilla (MOZ), and PostgreSQL (POS), and
come from different domains with different scales. The basic
information is shown in the Table I.

In order to better solve the JIT-SDP problem, 14 change
metrics are designed for these data sets, as shown in Table II.
These metrics can be divided into five dimensions: diffusion,
size, purpose, history, and experience. More details can be
found in reference [4].

TABLE I
THE BASIC INFORMATION OF DATA SETS

Project Period #defective
changes #changes %defect

rate

BUG 1998/08/26∼2006/12/16 1696 4620 36.71%
COL 2002/11/25∼2006/07/27 1361 4455 30.55%
JDT 2001/05/02∼2007/12/31 5089 35386 14.38%
MOZ 2000/01/01∼2006/12/17 5149 98275 5.24%
PLA 2001/05/02∼2007/12/31 9452 64250 14.71%
POS 1996/07/09∼2010/05/15 5119 20431 25.06%

B. Performance Indicators

Effort-aware JIT-SDP primarily considers effort for code
inspection of defect-prone changes. According to the sugges-
tion of Kamei et al. [4], the effort used to check changes

TABLE II
THE DESCRIPTION OF METRICS

Dimension Metric Description

Diffusion

NS Number of modified subsystems
ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across each file

Size
LA Lines of code added
LD Lines of code deleted
LT Lines of code in a file before the change

Purpose FIX Whether or not the change is a defect fix

History
NDEV Number of developers that changed the files

AGE Average time interval between the last
and the current change

NUC Number of unique last changes to the files

Experience
EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on a subsystem

can be obtained by calculating their code churn (i.e., the total
number of lines added and deleted by the change). Similar
to previous studies [4] [5] [6], our experiment use ACC and
Popt to evaluate the effort-aware prediction performance for
prediction models. ACC indicates the recall of bug changes
when using 20% of effort. Popt is the normalized version of
effort-aware performance indicator proposed by Mende and
Koschke [13]. Specific information on these two performance
indicators can be found in the literature [4] [5].

C. Data Analysis Method

The experiment uses 10 times 10-fold cross-validation tech-
nique to evaluate the performance of prediction models. 10
times 10-fold cross-validation technique is performed within
the same project. First, the data set of one project is randomly
divided into 10 sets of the same scale, nine of which are used
to train the model and produce the optimal solution set, and
the other one is to test the performance of the optimal solution
set. This step will be repeated 10 times. In our case study, the
optimal solutions selection strategies only select one solution
from optimal solution set. Therefore, 10 times 10-fold cross-
validation can ultimately return 100 solutions for each strategy.

In order to test the degree of performance difference
between different optimal solutions selection strategies, the
experiment uses Wilcoxon signed-rank test and Cliff’s δ to
further analyze the experimental results. Wilcoxon signed-rank
test is a commonly used non-parametric statistical hypothesis
test method. In particular, we use corresponding p-values
to exam whether two optimal solutions selection strategies
have significant difference at the significance level of 0.05.
Meanwhile, we use Cliff’s δ to determine the magnitude
of difference in practical application [14]. Traditionally, the
magnitude of the difference is considered trivial (|δ| < 0.147),
small (0.147 ≤ |δ| < 0.33), moderate (0.33 ≤ |δ| < 0.474),
or large (|δ| ≥ 0.474).

D. Experimental Design

• Data preprocessing. In order to obtain a better prediction
model, according to the suggestion of Kamei et al. [4], we
preprocess the experimental data sets as following steps.

322

1) ND and REXP metrics are excluded since NF and
ND, REXP and EXP are highly correlated. LA and
LD metrics are normalized by dividing by LT metric
since LA and LD are highly correlated. LT and NUC
metrics are also normalized by dividing NF since LT
and NUC have highly correlation with NF.

2) Each metric (except FIX) is executed with logarithmic
transformation, since these metrics are highly skewed.

3) Due to class imbalance in the defect data sets, we
perform random undersampling and keep the number
of clean changes same as the number of buggy changes
by deleting clean changes randomly.

Our optimal solutions selection strategies are based on
the MULTI method, which uses NSGA-II, so some pa-
rameters need to be set.

• Parameter settings.
1) Population size: 200.
2) The range of coefficient vector: [-10000, 10000].
3) The interval of population initialization: [-10, 10].
4) Crossover operation: simulated binary crossover.
5) Mutation operation: polynomial mutation.
6) The number of generations: 800.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Results

The experiment uses ACC and Popt to evaluate the per-
formance of different optimal solutions selection strategies.
The results are shown in the Table III and Table IV. In Table
III and Table IV, the first column indicates the names of
projects. The second column MULTI-M is the median value
of all optimal solutions, representing the average performance
of the MULTI method. The third to fifth columns represent
the performance of the models based on strategies BP, CP,
and CCB, respectively. Since the experiment uses 10 times
10-fold cross validation technology, each strategy will get 100
result values. All the values in the Table III and Table IV
reflect the median of the 100 result values.

As we can see from Table III and Table IV, the performance
of strategy BP is far superior to the performance of MULTI-M
in the ACC and Popt on six data sets. In addition, compared
to MULTI-M, the performance of strategy CP is even worse,
and the performance of strategy CCB is equivalent. Finally,
we use Wilcoxon signed-rank test and Cliff’s δ determine
the significant difference between different optimal solutions
selection strategies and MULTI-M. If and only if p-value is
less than 0.5 and Cliff’s δ is greater than or equal to 0.147,
the performance of our strategy is significantly different from
MULTI-M, otherwise the difference is negligible. We have
bolded the values that have significant differences.

Conclusion. Compared with MULTI-M, the performance of
strategy BP is significantly better than MULTI-M, the average
performance can be increased by 12% on indicator ACC, and
the average performance on indicator Popt can be increased
by 15%. In addition, the performance of strategy CCB is
comparable to MULTI-M, and the performance of strategy

TABLE III
COMPARISON OF THREE STRATEGIES AND MULTI-M USING ACC

project MULTI-M BP CP CCB

BUG 0.633 0.774 0.251 0.636
COL 0.723 0.804 0.344 0.721
JDT 0.658 0.723 0.371 0.653
MOZ 0.577 0.606 0.213 0.579
PLA 0.682 0.746 0.179 0.683
POS 0.612 0.703 0.252 0.613
Average 0.648 0.726 0.268 0.648

TABLE IV
COMPARISON OF THREE STRATEGIES AND MULTI-M USING Popt

project MULTI-M BP CP CCB

BUG 0.771 0.930 0.492 0.773
COL 0.842 0.936 0.547 0.841
JDT 0.764 0.880 0.557 0.767
MOZ 0.731 0.812 0.473 0.731
PLA 0.792 0.887 0.528 0.790
POS 0.747 0.900 0.441 0.749
Average 0.775 0.891 0.506 0.775

CP is worse than MULTI-M. Therefore, we advise to use
BP-based optimal solutions selection strategy to improve the
performance of the MULTI method in the effort-aware JIT-
SDP problem.

B. Discussion

The experimental results show that the performance of
our optimal solutions selection strategies have the following
characteristics.

BP > CCB > CP
In order to explain this phenomenon, we further analyze the

experimental results. Take data sets BUG as an example, the
experiment uses 10 times 10-fold cross validation to perform
model evaluation, so a total of 100 runs will be produced.
The results of one run of the experiment is shown in the Fig.2
and Fig.3. As we can see from Fig.2 and Fig.3, each graph
contains 200 red dots, each representing an optimal solution.
In the Fig.2 and Fig.3, the horizontal axis represents the value
of the benefit, and the vertical axis represents the value of the
performance indicators (i.e., ACC and Popt).

It is obvious that in an optimal solution set, the benefit
values of optimal solutions are positively correlated with
the performance indicators including ACC and Popt. Our
experimental results show that this feature is also present on
five other data sets. Therefore, BP-based optimal solutions
selection strategy can significantly improve the performance
of MULTI.

VI. THREATS TO VALIDITY

External validity. Although the data sets used in the
experiment are widely used in the field of JIT-SDP [6] [5] [4],
we still cannot guarantee that the findings of the experiment
will apply to all other defect data sets. Therefore, more data
sets in different fields have yet to be mined and shared to
verify the generalization of experimental conclusions.

323

0 200 400 600 800 1000 1200 1400
benefit

0.2

0.3

0.4

0.5

0.6

0.7

AC
C

Fig. 2. ACC values in an optimal solution set

0 200 400 600 800 1000 1200 1400
benefit

0.5

0.6

0.7

0.8

0.9

Po
pt

Fig. 3. Popt values in an optimal solution set

Construct validity. Threats to construct validity are mainly
considered whether the evaluation indicators can accurately
reflect effort-aware prediction performance of models. Our
experiment uses ACC and Popt to evaluate effort-aware predic-
tion performance of models, which are widely used in previous
JIT-SDP studies [6] [5] [4].

Internal validity. The threats to internal valitidy are mainly
about the accuracy of experimental code. Previous research
code is mainly written in R language [5] [4], while our
experimental code is written in python. In order to reduce the
errors in the code, we check all the code and use the mature
python libraries.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, in order to improve the performance of the
MULTI method, we propose three optimal solutions selection
strategies BP, CP, and CCB. In order to verify the effectiveness
of the strategies, we conduct a large-scale empirical study on
data sets of six open source projects. Experimental results
show that compared with the average performance of MULTI,

BP-based optimal solutions selection strategy can effectively
improve the performance of MULTI.

In the future, we hope to further expand our work. First,
since the experiment only uses data sets from open source
projects, we will collect data sets from commercial projects
to further verify the generalization of experimental conclu-
sions. Secondly, we only consider the cross-validation scenario
when evaluating the performance of prediction models. In the
future, we will extend the work to cross-project-validation
and timewise-cross-validation scenarios to further verify the
generalization of the experimental conclusions.

ACKNOWLEDGMENT

This work is partially supported by the NSF of China under
grants No.61772200 and 61702334, Shanghai Pujiang Talent
Program under grants No. 17PJ1401900. Shanghai Municipal
Natural Science Foundation under Grants No. 17ZR1406900
and 17ZR1429700. Educational Research Fund of ECUST
under Grant No. ZH1726108. The Collaborative Innovation
Foundation of Shanghai Institute of Technology under Grants
No. XTCX2016-20.

REFERENCES

[1] Z. Li, X. Jing, X. Zhu, Progress on approaches to software defect
prediction, IET Software 12 (3) (2018) 161–175.

[2] X. Chen, Q. Gu, W. Liu, S. Liu, C. Ni, Survey of static software defect
prediction, Journal of Software 27 (1).

[3] S. McIntosh, Y. Kamei, Are fix-inducing changes a moving target?: a
longitudinal case study of just-in-time defect prediction, in: Proceedings
of the 40th International Conference on Software Engineering, ICSE
2018, 2018, p. 560.

[4] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
N. Ubayashi, A large-scale empirical study of just-in-time quality
assurance, IEEE Transactions on Software Engineering 39 (6) (2013)
757–773.

[5] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, H. Leung,
Effort-aware just-in-time defect prediction: simple unsupervised models
could be better than supervised models, in: Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, 2016, pp. 157–168.

[6] X. Chen, Y. Zhao, Q. Wang, Z. Yuan, MULTI: multi-objective effort-
aware just-in-time software defect prediction, Information & Software
Technology 93 (2018) 1–13.

[7] A. Mockus, D. M. Weiss, Predicting risk of software changes, Bell Labs
Technical Journal 5 (2) (2000) 169–180.

[8] X. Yang, D. Lo, X. Xia, J. Sun, TLEL: A two-layer ensemble learning
approach for just-in-time defect prediction, Information & Software
Technology 87 (2017) 206–220.

[9] W. Fu, T. Menzies, Revisiting unsupervised learning for defect predic-
tion, in: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, 2017, pp. 72–83.

[10] M. Harman, S. A. Mansouri, Y. Zhang, Search-based software engi-
neering: Trends, techniques and applications, ACM Computing Surveys
45 (1) (2012) 11:1–11:61.

[11] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, K. Matsumoto, An
empirical comparison of model validation techniques for defect predic-
tion models, IEEE Transactions on Software Engineering 43 (1) (2017)
1–18.

[12] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast and elitist multiob-
jective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary
Computation 6 (2) (2002) 182–197.

[13] T. Mende, R. Koschke, Effort-aware defect prediction models, in: 14th
European Conference on Software Maintenance and Reengineering,
CSMR, 2010, pp. 107–116.

[14] E. Arisholm, L. C. Briand, E. B. Johannessen, A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models, Journal of Systems and Software 83 (1) (2010) 2–17.

324

Empirical Studies Concerning the Maintenance of
BPMN Diagrams: A Systematic Mapping Study

Ursula Campos, Adriana Lopes and Tayana Conte
USES Research Group

Institute of Computing, Federal University of Amazonas
Manaus, AM - Brazil

{usc, adriana, tayana}@icomp.ufam.edu.br

Simone Diniz Junqueira Barbosa
Informatics Department

PUC-Rio
Rio de Janeiro, Brazil
simone@inf.puc-rio.br

Abstract — Business process models help understand the

organizational process and the software that supports it. BPMN

(Business Process Modeling and Notation) is the standard notation

for business process modeling, and it is widely accepted in

industry. BPMN models can elucidate the activities carried out by

a software during its construction and maintenance. However,

during the maintenance of the software that supports an

organizational process, usually only the source code of the

software undergoes modifications, even when inserting new

features. The software design models, including the BPMN models,

often become outdated over time and, in future maintenance, they

will not help understand the business process in which the software

is inserted and which the software aims to support. Such scenario

highlights the importance of supporting the maintenance of BPMN

models. However, what has been experimentally investigated

regarding the maintenance of BPMN models? To answer this

question, we performed a systematic mapping, which showed

experimental studies, factors and technologies that influence the

maintenance of BPMN models. These results present conclusions

about the state of the art and gaps that can be explored in this field

of research.

Keywords - Business Process Model and Notation; BPMN;

Software Maintenance; Model Maintenance; Systematic mapping.

I. INTRODUCTION
Business process modeling is an essential activity for the

success of business process management (BPM) [1]. The BPMN
(Business Process Modeling and Notation) is the standard
notation maintained by OMG [2] for business process modeling
and is widely accepted in industry [3]. Researchers and
practitioners recognize that understanding the business
processes is key to identifying the users’ needs that a software
should support [4]. Martinez et al. [5] emphasize that the focus
on software development from business processes can increase
the software's compliance with the needs of its users. BPMN
models can help in understanding the activities carried out by the
software and better support software maintenance.

Maintenance is one of the most crucial phases of the software
life cycle. It is usually divided into two steps: understanding the
software artifact and modifying the software artifact [6]. In fact,
a software artifact should be well understood before being
modified, because developers need to know what impact
modifications will have on the software and, possibly, on the
underlying business processes. In the maintenance stage, process

models are of great relevance in understanding the software
being developed [7] or modified. Thus, it is important that they
are consistent with the current version of the software, so that it
is understood correctly.

However, during the software maintenance process, usually
only the source code is modified, even when inserting new
features. Over time, development team turnovers mean that new
members may not know the software functionalities, since they
did not participate in its design and development [8]. It is in this
scenario that software models prove to be of great value, because
developers first seek to understand the software functionalities
through the models built during its project. However, the
documentation is almost always outdated and inconsistent [9].
When the models are not maintained together with the software,
the information in these models will be inconsistent with the
current version of the software, which hinders new
professionals’ understanding and activities during software
maintenance.

As we realize the importance of supporting the maintenance
of BPMN models, it is important to know what has been
experimentally investigated on the maintenance of BPMN
models. The goal of this paper is to describe a systematic
mapping of studies related to the maintenance of BPMN models
in order to identify what has been done in the literature to support
and facilitate the maintenance of such models. The systematic
mapping revealed factors and technologies related to the context
of maintenance of BPMN models. With this work we present
conclusions about the state of the art and gaps that can be
explored in this field of research.

The remainder of this paper is organized as follows:
Section 2 presents the related works. Section 3 describes the
methodology applied to conduct the systematic mapping.
Section 4 presents the results of the mapping study. Section 5
discusses the threats to the validity of this work. Finally,
Section 6 presents the conclusions of the systematic mapping.

II. RELATED WORKS
In this section, we present some related works to our work.

Pourmirza et al. [10] present a systematic literature review of
Business Process Management Systems (BPMS) architectures.
BPMS are information systems that interpret business processes
to ensure that the activities specified therein are properly

DOI reference number: 10.18293/SEKE2019-201

325

executed and monitored by an organization. In this work, BPMS
architectures that served as primary studies were compared with
respect to the reference architecture that they are based on, the
level of detail at which they are described, the architectural styles
that they use, the means with which they are evaluated, and the
functionality that they support. The resulting comparison
provides an overview of and insights into the current body of
knowledge on BPMS architectures.

Valença et al. [11] present a systematic mapping study of
business process variability approaches, which is an emergent
field in BPM with many of its proposals inspired by theories
from Software Product Line to handle process variability.
According to the authors, variability in business processes is
necessary for organizations dealing with environmental changes.
The results show that a significant number of approaches is
available, but most of them lack empirical studies.

Although these works deal with BPM, they do not exploit the
research done on the maintenance of BPMN models. Our work
investigates the maintenance of BPMN models in the literature.

III. RESEARCH METHOD
A systematic mapping is a broad review of primary studies

in a specific topic area, aiming to identify what evidence is
available on the topic [12]. We followed the guidelines proposed
by Kitchenham and Charters [12]. The following subsections
detail our systematic mapping protocol.

A. Goal

We had the following goals for the systematic mapping:
- To investigate the maintenance of BPMN models and

whether the models are understandable and modifiable to allow
them to be modified while maintaining the source code.

- To gather experimental evidence on the use of BPMN
models in their maintenance or use during the maintenance of
the software source code.

B. Research Question

This mapping aimed to answer the following research
question: “What has been experimentally investigated
regarding the maintenance of BPMN models?”. In order to
answer this question, we divided the systematic mapping into
specific sub-questions about the maintenance of BPMN models
(see Table I).

TABLE I. RESEARCH SUBQUESTS

Subquestion Description of Ssubquestion

SQ1

What is the state of the art in experimental studies on
maintenance of BPMN models or source code
maintenance when using BPMN models?

SQ2
Which dependent variables are investigated in the
experimental studies?

SQ31
Which of the factors studied influence the software
maintenance capability (source code or model)?

SQ4
What technologies support the maintenance of BPMN
models?

1 We considered as factors the results of the publications selected in the
systematic mapping that influence the maintenance of BPMN models.
2 http://www.scopus.com

C. Search strategy

To construct the search string, we defined the search terms
based on the procedure described by Kitchenham and Charters
[12], who suggested defining the parameters for Population,
Intervention, Comparison, Result, and Context (PICOC). The
population was the specific field of research on BPMN -
Business Process Modeling and Notation; the intervention was
composed of maintenance phases or types; the result was the
types of experimental studies; comparison and context were not
applicable because our goal is to characterize what is done in
relation to the maintenance of BPMN models, so there is no
comparison to determine the context. We have identified the
terms of the research through the publication of Fernandez-Saez
et al. [6], which we used as the basis for this work. They
investigated the maintenance of UML models, so we adapted
this work by bringing it into the context of BPMN models.
Table II shows the terms used in the search string and the groups
of synonyms used in its construction. We used the boolean
operator OR between the alternative terms and synonyms, and
the Boolean operator AND to join the groups.

We used the search string in the Scopus2, Engineering
Village3 and ACM4 digital libraries. We have included the
Scopus and Engineering Village libraries because they are meta
libraries and index publications from several reputable
publishers in Software Engineering, such as ACM, IEEE,
Springer and Elsevier, and they allow defining filters by type of
document, language and area of knowledge. Although the ACM
library is indexed by Scopus, we included this library to ensure
that there were no excluded publications in the Scopus indexing
and because ACM indexes some Springer Link and Science
Direct publications as well.

TABLE II. SEARCH STRING TERMS AND SYNONYMS

Term of

PICOC
Main Term Synonyms

Population BPMN

business process model and notation
OR
business process modeling and
notation

Intervention Maintenance

evolution OR comprehension OR
maintainability OR evolvability OR
understandability OR modularity OR
modification OR understanding OR
reusability OR stability OR
misinterpretation OR analyzability OR
testability OR changeability OR
comprehensibility

Results Empirical survey OR action research OR
experiment OR case study

D. Selection Criteria

The selection process comprised three steps (first filter,
second filter and process of extracting data). In the first filter,
two researchers only read the title and the abstract. They have
selected the publications applying the inclusion and exclusion
criteria (see Table III). The reliability of the inclusion and

3 http://www.engineeringvillage.com
4 http://dl.acm.org

326

exclusion criteria of a publication in the systematic mapping was
assessed by applying Fleiss’ Kappa [13]. Fleiss’ Kappa is a
statistical measure for assessing the reliability of agreement
between a fixed number of raters when classifying items.

TABLE III. INCLUSION AND EXCLUSION CRITERIA

Selection Criteria

IC1 Papers with experimental studies using BPMN model during
the maintenance of the diagram or source code

IC2 Papers with experimental studies with BPMN models
helping in the process of understanding the software

IC3 Papers that evaluate the comprehensibility or maintainability
of BPMN diagrams

Exclusion Criteria

EC1 Papers proposing BPMN extensions;

EC2 Papers that do not report experimental studies;

EC3 Papers that mention BPMN or maintenance only as general
introductory terms in the abstract and nowhere else;

EC4 Papers that are not written in English or Portuguese;

EC5
Papers unavailable for reading or data collection (paid
publications, broken links in the search engine and not made
available by the authors after an attempt to contact);

EC6 Duplicate papers

Initially, we asked two researchers to classify, individually,
a random sample of 20 publications to analyze the degree of
agreement in the selection process through the Fleiss’ Kappa
[13]. The selected sample was the set of the publications
returned by Scopus. The result of the degree of agreement
showed a substantial level of agreement between the two
researchers (Kappa = 0.653).

In the second filter, the researchers fully read the selected
publications, selecting them according to the same criteria used
in the first filter. After completing the selection process, we
started the process of extracting data.

We used an extraction form to standardize the data collected.
According to Fernandez et al. [6], this ensures that the same
criteria will be used, thus facilitating their classification. We
extracted the data according to each subquestion. The complete
protocol and the publications obtained in the second filter are
available in a technical report [14].

IV. RESULTS
Figure 1. depicts the publications selection process carried

out in the conduction of the systematic mapping. The search
string returned 89 publications in Scopus library, 80 in
Engineering Village, and 19 in ACM. After eliminating
duplicates, we had 88 publications in Scopus, 7 in Engineering
Village and 15 in ACM, resulting in 110 publications. During
the first filter, we rejected 81 publications that did not meet the
inclusion criteria. We read the remaining 29 publications in full
and classified them in the second filter. At that stage we selected
18 publications that proceeded to the extraction process.

Figure 1. Article selection process.

The selected papers were published between 2008 and 2018.
There was no criterion to limit the year of publications. Figure
2. shows that most publications are recent, which leads us to
believe that the maintenance of BPMN models is a timely
research issue.

Figure 2. Overview of the publications per year.

The answers we found for each research sub-question are the
following:

1) SQ1: What is the state of the art in experimental studies

on maintenance of BPMN models or source code

maintenance when using BPMN models?

This subsection presents several items related to the state of
the art of experimental studies regarding the maintenance of
BPMN models. We present these items next:

Experimental Study Type: Figure 3. shows the number of
publications with each type of experimental study. Even when
a publication reported more than one controlled experiment,
i.e., replications of the experiment in other institutions or with
other artifacts, Figure 3. only counts it once.

Figure 3. Types of experimental studies reported in the publications.

Experimental studies: When counting the number of
experimental studies reported in the 18 publications, according
to each type of experiment. If one publication reported two

327

controlled experiments, we counted the two experiments. In
total, the 18 publications presented 39 experimental studies: 35
controlled experiments, 2 case studies, and 2 surveys.

Context: We classified the context of the studies as
laboratory, industry or online. Most publications (72.22%)
reported experiments that were conducted in a laboratory within
academic environment. Two publications (11.11%) reported
experiments carried out in industry (in companies that use
BPMN models). Three publications (16.67%) reported
experiments performed online, where a task was made available
online and the participant had a deadline to do it (e.g., a week).
We can see that the amount of experiments performed in
industry is low, which corroborates the result already obtained
in the previous section, about the need to perform experiments
in real environments.

Characterization of the participants: Most publications have
presented experimental studies conducted with undergraduate or
graduate students, which is not necessarily inappropriate, since
student skills are considered similar to the skills of novice
practitioners [15][16]. Some publications have conducted
experiments with more than one participant profile. Among the
39 experiments presented in the publications, 29 were
experiments with only students as subjects, 5 were
experiments with only professionals, 3 were experiments with
students and professionals, 1 experiment with students,
professionals and academic professionals, and 1 experiment in
which the participant was the author of the technique. In the
latter, the author applied the technique proposed by himself, to
reduce the complexity of BPMN models.

Maintenance focus object: Software maintenance tasks
usually require some modification in the source code, and
should be accompanied by modifications in the corresponding
BPMN model. We did not find experimental studies that
reported the use of BPMN models during source code
maintenance. We only found publications where the
maintenance was done only in the BPMN model, consisting
mostly of experimental studies that evaluate the
comprehensibility of BPMN models.

Treatments in experimental studies: Figure 4. shows the
different treatments used in the experimental studies. We
divided the treatments into six categories: (i) complexity of the
model, (ii) model representation, (iii) model characteristics,
(iv) type of model representation, (v) model representation
method, and (vi) characteristics of the model maintainers and
defects in the models.

Figure 4. Types of treatment in experiments, by publication.

We highlight the category complexity of the model with the
highest number of publications. Some publications presented
experiments with more than one type of treatment, thus the
bars add up to 22 publications. The types of treatment of each
publication are more detailed in a technical report [14].

According to the data obtained, we can conclude the
following about the state of the art of research on the
maintenance of BPMN models:

2) SQ2: Which dependent variables are investigated in the

experimental studies?

The dependent variables we investigated in the experimental
studies are represented in Figure 5. We identified four dependent
variables: model understanding, model modifiability, model
complexity, and model completeness (i.e., to what extent the
model represented the functionalities of a specific process). We
can see that the great majority of publications sought to evaluate
the comprehension of BPMN models (17), some publications
evaluated the modifiability (4) and complexity (4) of the models
and only one publication evaluated the completeness of the
BPMN models. Some papers investigated both the
comprehension and the modifiability or complexity of BMPN
models in the same experiment, so the bars add up to 26.

Figure 5. Dependent variables investigated.

3) SQ3: Which of the factors studied influence the

software maintenance capability (source code or model)?

As we have already mentioned, we have not found
experimental studies that dealt with the maintenance of the
source code and BPMN together. This research subquestion will
therefore focus only on the model. Figure 6. shows the factors
that influence, either positively or negatively, the maintenance
of BPMN models, according to the results obtained in the
experiments of the selected publications (publications are called
PB#, such as PB1 for the first publication in the report [14]).

Most of the experimental studies carried out were controlled
experiments, carried out in the laboratory, with the
participation of students.
Various types of treatment were applied such as: the
complexity of the models, the form of representation, the
characteristics of the models, among others.
The focus of the maintenance was always the model itself –
not coupled with source code maintenance.

328

Figure 6. Dependent variables per publication.

It is important to remember that the maintenance activity is
divided into two tasks [6]: artifact understanding and artifact
modification. Considering these two types of maintenance tasks,
the factors identified in the results of the experiments were
related to understanding (see Figure 6.). The experiments that
dealt with modifying the models actually had some kind of
technology to support the modification and were therefore fitted
as a response to SQ4. Factors that did not present significant
results (if the study could not determine whether a factor
influenced or not the understanding of a BPMN model) were
omitted. We classified as positive (+) the factors that facilitate
the understanding of the model and as negative (–) the factors
that undermine the understanding of the model.

4) SQ4: What technologies support the maintenance of

BPMN models?

We divided the technologies that support the maintenance of
models according to the two types of maintenance tasks:
understanding and modification. We then evaluated whether the
proposed technology supported understanding or modifying the
model during maintenance. Figure 7. shows the technologies
identified to support the maintenance of BPMN models.

Figure 7. Technologies that support the maintenance of BPMN models

Technologies aimed at supporting the maintenance of
BPMN models that focused on understanding were as follows:

• Opacity-Driven Graphical Highlights Technique: Jost
and Hericko’s approach [17] makes business process
models less complex without changing the notation. The
technique consists of working on the opacity of the
models, highlighting only the relevant parts of the model
according to the context in which it is used.

• Plural Method: decentralized method for creating
BPMN models, in which the sources of model
construction are also participants in the process. The
method aims to involve process participants in modeling,
since they are well aware of the problem domain.

Technologies to support the maintenance of BPMN models
that focused on understanding and modification were as
follows:
• Complexity measurement metrics: measures that may

be useful in forecasting different aspects of
understanding and modifying business process models in
future model maintenance. The goal is to make models
easier to understand and modify for all stakeholders.
• FuzzQual Framework: approach that evaluates
BPMN models with regard to comprehensibility and
modifiability. A framework/system built in JAVA
evaluates the model based on the complexity metrics
chosen, among several metrics that were evaluated.
Through fuzzy logic, the framework evaluates the model
with classifications of the type: "Moderately difficult to
understand with a degree of certainty of 63%",
"Moderately difficult to modify with a degree of certainty
of 100%". This framework is an implementation of the
complexity metrics to evaluate BPMN models.

V. THREATS TO VALIDITY
Although we conducted this research under a systematic

mapping methodology by defining a research protocol, some

329

threats to validity can be identified: (i) the researchers’ bias
regarding the analysis of the primary studies; (ii) the university’s
limited access to some scientific databases, which can prevent
some publications from being accessed; (iii) the limitation of the
scope of this research to the selected databases. These threats
were minimized by taking some actions. For the first threat, we
reviewed the review protocol and performed the Kohen’s Kappa
statistical test in order to reduce the researchers’ bias.
Additionally, another experienced researcher reviewed the
execution process. For the second threat, we had two
publications that fit that threat. We requested the authors for the
full publication whenever possible and included those that have
been made available. Regarding the third threat, although the
research was conducted in only three databases, they index
publications from a large number of well-known publishers,
journals and conferences.

VI. CONCLUSIONS
This work describes the results of the systematic mapping of

the literature that we carried out to identify what has been
experimentally investigated on the maintenance of BPMN
models. The main conclusions we have reached with the
systematic mapping can be summarized as follows:

• Most studies were carried out in academic environments,
which is explained by the fact that they are the most
accessible environment for researchers. The difficulty to
perform research in real environments, within
industry/companies, is well known. However, there is a
need for further experiments in real environments.

• Most studies performed are controlled experiments. This
demonstrates a need for more case studies to confirm the
results obtained in real environments.

• We have not identified studies that explored the
maintenance of BPMN models together with
maintenance of the software itself. We have also not
identified studies that investigate the impact of updated
or outdated BPMN models during software maintenance.

• The focus of the experimental studies is almost entirely
on the understanding of BPMN models. However,
understanding is only one of the tasks of maintenance,
and it is necessary to focus also on modifying the models
themselves.

• The technologies that we have found focus mostly on the
initial construction of the model and how it will be easily
understood or modified when it is necessary to use it or
modify it. The proposed technologies seek to measure in
advance whether the model created will be easy to
maintain in the future. However, it is also necessary to
create technologies that directly support the maintenance
phase of the model.

The results indicate that there is a lack of maintenance of
BPMN models, especially the maintenance of these models in
conjunction with maintenance of the software source code. In
relation to the technologies proposed, most of the research
identified focuses on understanding the models, which is the
initial task of maintenance, highlighting the need for
technologies that support the modification of BPMN models.

This shows research opportunities to be explored in this field of
research in future work.

ACKNOWLEDGMENTS
We thank all the students who participated in this research.

We also thank the financial support granted by CAPES process
175956/2013, FAPEAM through Edital 009/2017; CNPq
processes 311494/2017-0, 430642/2016-4, 423149/2016-4, and
311316/2018-2.

REFERENCES
[1] O. Turetken, T. Tompen, I. Vanderfeesten, A. Dikici and J. Van Moll,

“The effect of modularity representation and presentation medium on the
understandability of business process models in BPMN”, Lecture Notes
in Computer Science, vol. 9850, Springer, Cham, 2016.

[2] OMG, "Business process model and notation (BPMN)”, v. 2.0, 2011.
[3] Z. Bukhsh, Z. Sinderen, N. Sikkel, and D. Quartel, “Understanding

Modeling Requirements of Unstructured Business Processes”, 2017, pp.
17-27.

[4] Shishkov, B., Xie, Z., Liu, K., and Dietz, J. L. (2002). “Using norm
analysis to derive use cases from business processes”. In Proceedings of
the 5th Workshop On Organizational Semiotics.

[5] A. Martinez, J. Castro, O. Pastor, H. Estrada,“Closing the gap between
organizational modeling and information system modeling”. Workshop
de Engenharia de Requisitos, Piracicaba, São Paulo-SP, 2003, pp. 93-108.

[6] A. Fernández-Sáez, M. Genero, M. R. V. Chaudron, “Empirical studies
concerning the maintenance of UML diagrams and their use in the
maintenance of code: A systematic mapping study”, Information and
Software Technology 55, 2013, pp. 1119-1142.

[7] E. Cruz, R. Machado, M. Santos, “Bridging the Gap between a set of
interrelated Business Process Models and Software Models”, 17th
International Conference on Enterprise Information Systems (ICEIS),
2015, pp.338 – 345.

[8] E. Arisholm, L.C. Briand, S.E.Hove, Y. Labiche, "The Impact of UML
Documentation on Software Maintenance: An Experimental Evaluation",
IEEE Transactions on Software Engineering v. 32, 2006, pp.365-381.

[9] A. Forward, T. Lethbridge, “The relevance of software documentation,
tools and technologies: a Survey”, In Proceedings of the 2002 ACM
symposium on Document engineering, 2002, pp. 26-33.

[10] S. Pourmirza, S. Peters, R. Dijkman, and P. Grefen. A systematic literature
review on the architecture of business process management systems.
Information Systems, 66, 2017, pp.43-58.

[11] G. Valença, Alves, C. Alves, V. and N. Niu, “A systematic mapping study
on business process variability”, International Journal of Computer
Science & Information Technology, 5(1), 2013, p.1

[12] B. Kitchenham and S. Chartes, “Guidelines for performing systematic
literature reviews in software engineering”, EBSE Technical Report –
EBSE 2007, Durham.

[13] J.L. Fleiss, “Statistical Methods for Rates and Proportions”, Second ed.,
John Wiley & Sons, New York, 1981..

[14] U. Campos, A. Lopes, S. de Souza, T. Conte, , “A systematic mapping on
Empirical Studies Concerning the Maintenance of BPMN Diagrams”,
TR-USES-2019-0002, 2019. Available online at:
http://uses.icomp.ufam.edu.br/wp-content/uploads/2019/03/TR-USES-
2019-002.pdf

[15] D. Budgen, A. Burn, P. Brereton, B. Kitchenham, R. Pretorius, “Empirical
evidence about the UML: a systematic literature review”, Software:
Practice and Experience, 2010.

[16] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, M. Khalil, “Lessons
from applying the systematic literature review process within the software
engineering domain”, Journal of Systems and Software 80, 2007, pp. 571–
583.

[17] G. Jošt, M. Heričko and G. Polančič, Softw Syst Model, 2017.
https://doi.org/10.1007/s10270-017-0618-5

330

http://uses.icomp.ufam.edu.br/wp-content/uploads/2019/03/TR-USES-2019-002.pdf
http://uses.icomp.ufam.edu.br/wp-content/uploads/2019/03/TR-USES-2019-002.pdf

Multistep Flow Prediction on Car-Sharing Systems:
A Multi-Graph Convolutional Neural Network with

Attention Mechanism
Yi Luo∗†, Qin Liu∗†‡, Hongming Zhu†‡, Hongfei Fan†‡, Tianyou Song†, Chang Wu Yu§ and Bowen Du¶

†School of Software Engineering, Tongji University
‡Tsingtao Advanced Research Institute, Tongji University

§Department of Computer Science and Information Engineering, Chung Hua University
¶Department of Computer Science, University of Warwick

Email: {1731530, qin.liu, zhu hongming, fanhongfei, 1551177}@tongji.edu.cn, cwyu@chu.edu.tw, B.Du@warwick.ac.uk

Abstract—Multistep flow prediction is an essential task for
the car-sharing systems. An accurate flow prediction model
can help system operators to pre-allocate the cars to meet the
demand of users. However, this task is challenging due to the
complex spatial and temporal relations among stations. Existing
works only considered temporal relations (e.g., using LSTM) or
spatial relations (e.g., using CNN) independently. In this paper,
we propose an attention multi-graph convolutional sequence-
to-sequence model (AMGC-Seq2Seq), which is a novel deep
learning model for multistep flow prediction. The proposed model
uses the encoder-decoder architecture, wherein the encoder part,
spatial and temporal relations are encoded simultaneously. Then
the encoded information is passed to the decoder to generate
multistep outputs. In this work, specific multiple graphs are
constructed to reflect spatial relations from different aspects, and
we model them by using the proposed multi-graph convolution.
Attention mechanism is also used to capture the important
relations from previous information. Experiments on a large-scale
real-world car-sharing dataset demonstrate the effectiveness of
our approach over state-of-the-art methods.

Index Terms—Car-sharing systems, Multistep flow prediction,
Graph convolution network

I. INTRODUCTION

In recent years, car-sharing systems have been introduced to
a number of cities as a means of increasing mobility, reducing
congestion, and pollution [1]. Car-sharing systems involve a
small to medium fleet of cars, which are available at several
stations, to be used by a relatively large group of users. Users
can pick up a car in a station and drop off it at another station,
which is called the one-way system [2]. The key to success of
the car-sharing systems is an accurate flow prediction model,
which plays a vital role in various tasks such as car rebalancing
[3]. Furthermore, instead of predicting only for the next step
(e.g., next day), the multistep flow prediction is more attractive
to the system operators since it offers information on a long-
term trend.

Traditional time series prediction methods like ARIMA
have been widely used for traffic prediction problem [4, 5].
However, these approaches are often applied to a single station

∗These authors contributed equally to this work

separately and ignore the spatial relations with each other. For
example, if a station near a railway station has high flow,
another one close to it may also have high flow. Furthermore,
building a separate prediction model for each station is time-
consuming and impractical if there are hundreds of stations.
Hence, the key challenge for this problem lies in how to
model complex spatial relations and temporal dynamics. To
tackle the above challenges, we propose a novel deep learning
model, named attention multi-graph convolutional sequence-
to-sequence model (AMGC-Seq2Seq), which captures spatial-
temporal relations effectively for station-level flow prediction.

In this work, a new multistep flow prediction model for car-
sharing systems is designed. Multiple graphs among stations
are defined to represent their heterogeneous spatial relations.
Then we employ the proposed multi-graph convolution to
model these spatial correlations. Furthermore, a novel deep
learning framework, named AMGC-Seq2Seq, is proposed to
capture the spatial and temporal relations simultaneously by
incorporating the encoder-decoder architecture with graph
convolution networks. The proposed method is validated on
a large-scale real-world car-sharing dataset from EVCARD.
The dataset contains car orders through EVCARD service in
the city of Shanghai in China over three months, with about
480,000 orders per month on average. We conducted extensive
experiments to compare with state-of-the-art methods and
have demonstrated the superior performance of our proposed
method.

The rest of this paper is organized as follows: Section
II reviews the existing works. Section III first formulates
the multistep flow prediction problem and then describes the
details of the proposed AMGC-Seq2Seq model. Section IV
presents the experiment settings and discusses the obtained
results. Section V concludes this work.

II. RELATED WORK

The problem of car-sharing system flow prediction is similar
to traffic prediction problem, of which the goal is to predict
the traffic-related value (e.g., traffic flow or traffic speed) for
a period of time through historical data. A number of studies

DOI reference number: 10.18293/SEKE2019-051 331

have investigated traffic prediction for decades. In this section,
we discuss the related work on traffic prediction problem.

The early research on traffic prediction focused on the
prediction of the individual station using classical empirical
statistical methods. Among all the traditional methods, the
autoregressive integrated moving average (ARIMA) and its
variants are the most widely used [6]. Based on this time series
model, recent studies also consider adding external context
data, such as weather, wind speed and event information
[7]. Besides, various techniques have been used to model
spatial interactions. Deng et al. [8] apply non-negative matrix
factorization on road networks to capture correlations between
roads. Tong et al. [9] mainly adopt POI data as the spatial
features. However, all of these methods are based on the time
series model and ignore complex spatial-temporal relations.

With the success in deep learning, more and more re-
searchers attempt to use deep learning techniques on traffic
prediction problem. Zhao et al. [10] use the long short-term
memory (LSTM) networks to capture non-linear temporal
relations. Wang et al. [11] propose the DeepSD, which utilizes
multiple data sources and predict the gap between the car-
hailing supply and demand. These methods focus on temporal
features extraction but do not model the spatial-temporal
relations.

To effectively model the complex spatial relations, some
researchers use convolutional neural network (CNN) to capture
adjacent relations among the traffic networks. Yao et al. [12]
propose the DMVST-NET, which models both spatial and
temporal relations by local CNN and LSTM. Since the traffic
networks are naturally non-Euclidean as the data format is
no longer a matrix and CNN becomes less helpful, some
researchers turn to use graph convolutional network (GCN) to
model this non-Euclidean structures. Chai et al. [13] propose
a multi-graph convolutional network to catch heterogeneous
inter-station spatial correlations. However, all of these methods
are proposed for one-step prediction. Specifically, for multistep
prediction, the output from the previous step is taken as
the input to the current step, which usually leads to error
accumulation and poor prediction performance.

Several researchers have recently attempted to investigate
multistep prediction. Cai et al. [14] propose an improved
KNN model to achieve multistep forcasting. They describe
the traffic state of a road segment by a spatial-temporal state
matrix and use the Gaussian weighted Euclidean distance to
measure the similarity. Park et al. [15] propose the AGC-
Seq2Seq for multistep speed prediction, which learns the
spatial-temporal relations simultaneously by integrating LSTM
and GCN. They utilize encoder-decoder to model the multistep
prediction problem. However, they use only one graph to
model the spatial relations, which may not be enough to reflect
the complex spatial relations, and they have not capture the
local temporal relations for the individual station.

Inspired by those research accomplishments and the real-
world problem observations, a potential solution for more
accurate and practical prediction should be an integrated
analysis for both spatial and temporal relations of stations.

III. PROPOSED MODEL

In this section, we first formulate the problem and then
describe how to model the spatial and temporal relations using
the proposed attention multi-graph convolutional sequence-to-
sequence model (AMGC-Seq2Seq).

A. Problem Formulation

In car-sharing systems, there are two types of flows: outflow
and inflow. The outflow of station i is defined as the pick-up
frequency at the time slot t (e.g. one day), which is denoted
by youti,t . The inflow of station i is defined as the drop-off
frequency at the time slot t, which is denoted by yini,t.

Suppose we have N stations, then the outflow of all stations
at time slot t can be denoted as Y out

t = [yout1,t , y
out
2,t , . . . , y

out
N,t],

and inflow of all stations at time slot t can be denoted as
Y in
t = [yin1,t, y

in
2,t, . . . , y

in
N,t].

Suppose the current time slot is t, and we have the historical
data [(Y in

1 , Y out
1), (Y in

2 , Y out
2), . . . , (Y in

t , Y out
t)], the problem

considered in this work is to predict the flow at next T steps
[(Ŷ in

t+1, Ŷ
out
t+1), (Ŷ

in
t+2, Ŷ

out
t+2), . . . , (Ŷ

in
t+T , Ŷ

out
t+T)], aiming to:

min

T∑
k=1

∥∥∥Ŷ in
t+k − Y in

t+k

∥∥∥2
2
,min

T∑
k=1

∥∥∥Ŷ out
t+k − Y out

t+k

∥∥∥2
2

(1)

B. Framework Overview

Figure 1 shows the architecture of our proposed model. Gen-
erally, our model uses the encoder-decoder architecture. In the
encoder, we form a ”hamburger” structure with two LSTMs
and one multi-graph convolution layer(M-GCN) in between to
model the spatial and temporal relations. First, LSTM is used
to model local temporal information for each station. After
that, multi-graph convolution is used to model heterogeneous
spatial realtions among stations. Finally, another LSTM is
used to aggregate spatial-temporal relations together. Then the
encoded information is passed to the decoder and incorporated
with attention mechanism to generate multistep outputs. The
details of each module are described as follows.

C. Encoder

1) Temporal relations modeling: Since the flow pattern for
each station varies a lot, we adopt Long Short-Term Memory
(LSTM) network [16] to model this local temporal relation.
At each time step t, LSTM takes two inputs: memory of the
last time step ht−1 and the related information at current time
step xt. Based on these inputs, LSTM learns to remove or
add new information to the memory, and finally generates
a new memory state ht which accumulates all the previous
information. This process is controlled by three gates: forget
gate, input gate, and the output gate, which can be formulated
as follows:

332

Fig. 1. The architecture of AMGC-Seq2Seq.

fi,t = σ(Wf [hi,t−1, xi,t] + bf) (2)
ii,t = σ(Wi[hi,t−1, xi,t] + bi) (3)

C̃i,t = tanh(WC [hi,t−1, xi,t] + bc) (4)

Ci,t = fi,t ◦ Ci,t−1 + i ◦ C̃i,t (5)
oi,t = σ(Wo[hi,t−1, xi,t] + bo) (6)
hi,t = oi,t ◦ tanh(Ci,t) (7)

Where ◦ denotes the Hadamard product. fi,t, ii,t and oi,t are
the forget gate, the input gate and the output gate respectively.
σ and tanh are the nonlinear activation functions. Wf , Wi

and Wo are all trainable parameters, while bf , bi and bo are
the corresponding bias vectors.

As for the inputs of step t, we concatenate flow yi,t
with external features ei,t (e.g., weather, weekday/weekend)
together:

xi,t = yi,t ⊕ ei,t (8)

It should be noted that all stations share the same weights
of LSTM in the proposed model. The reason is that sharing
LSTM among all stations may encourage the desired model
becomes more general and reduce complexity.

2) Spatial relations modeling: To capture the spatial rela-
tions between stations, we propose a multi-graph convolution
layer. The goal of the multi-graph convolution layer is to learn
a function of features on graphs. Here we define the graphs
which will be used later.

The car-sharing systems can be modeled as a weighted
undirected graph, of which a node represents one station and
an edge represents the relation between two stations. Usually,
the large the weight of an edge is, the strong correlations there
are between two stations. The simplest graph is the distance

graph, where the weight of an edge is defined as the reciprocal
of the distance. In addition to the distance graph, there can
be more graphs used to model the relation of stations. In
this work, we propose and define the following two graphs:
distance graph and POI graph.

Distance Graph: According to our observation, stations in
the same area are likely to have similar flows. Therefore, the
edge in the distance graph between two stations is defined to
be the reciprocal of the distance.

Adis,i,j =

{
di,j
−1, i 6= j

0, i = j
(9)

Where di,j is the distance between station i and j.

POI Graph: Intuitively, stations sharing similar function-
ality may have similar flows. For example, stations in the
commercial area usually have more flows on weekends, and
stations in the office area are expected to have more flows on
weekdays. Point of interest, or POI, is a specific point location
that someone may find useful or interesting(e.g., schools,
shops, post offices are all POIs). Therefore, we can use POIs
around a station to represent its functionality. Accordingly, we
define the edge in a POI graph between two stations as the
cosine similarity of POIs.

Adis,i,j =

{
Pi·Pj

‖Pi‖‖Pj‖ , i 6= j

0, i = j
(10)

Here Pi and Pj are the POI vectors of station i and j
respectively. The dimension of the vector is the category of
POIs, and the value in the vector is the number of the specific
POI category around the station.

Recall that in the temporal modeling, we have the hidden
state hi,t, which contains the temporal information of station
i at t time step. Here we define Ht = [h1t , h

2
t , ..., h

N
t], which

333

represents the temporal information of all stations at the time t.
Then with the above graphs constructed, we propose the multi-
graph convolution to model the spatial relations as defined in
eq.(11).

Gt = σ(
∑
A∈A

A ∗Ht ∗W) (11)

Where A is the set of graphs, H is the feature matrix of all
stations, and W is a trainable matrix which will be updated
during the training. Here σ is a non-linear activation function,
which is ReLU in our model.

Eq.(11) indicates that for each station, we update its feature
by a weighted sum of the features of all the other stations.
The larger the weight of the edge is between two stations, the
more the feature of that station contributes. However, there are
some problems need to be resolved.

First of all, according to the definition of the graph, the
diagonal of the graph matrix contains all zeros. As a result,
if we multiply it with the feature matrix, the vector of itself
contributes nothing, which loses a lot of important information
of itself. We fix this by adding an identity matrix to A.

Another problem is that since we combine multiple graphs
by adding the transformed feature matrices together, the ob-
tained graph matrices may vary a lot. Hence, we normalize A
by dividing each value by the row sum such that all rows sum
to one.

Therefore, we modify the eq.(11) as follows:

Di,j =

N∑

k=1

Ai,k, i = j

0, i 6= j

(12)

Â = D−1A+ I (13)

Gt = σ(
∑
Â∈Â

Â ∗Ht ∗W) (14)

Where D is a diagonal matrix of which the value in the
main diagonal is the row sum of A. Multiplying D−1 with A
makes all rows of A sum to one. Finally, we add it with the
identity matrix I to ensure self-loops in the graph.

Finally, another LSTM is applied to each station to aggre-
gate both temporal and spatial relations for station i. The final
hidden state hi,t is selected as the context vector ci for station
i which stores all the information of the encoding, and then
this vector is passed to the decoder as the initial state to be
decoded as shown below.

ĥi,t = LSTM(ĥi,t−1, gi,t) (15)

ci = ĥi,T ′ (16)

D. Decoder

In the decoder, a separate LSTM is used to decode context
vector ci to obtain the multistep outputs. The LSTM part is the
same as the equations (2)-(7), while the initial state is set as

the context vector which stores all the information of previous
time steps.

hi,0 = ci, (17)

hi,t = LSTM(ĥi,t−1, xi,t) t > 0 (18)

Furthermore, we employ the attention mechanism which is
widely used in most of NLP scenarios [17]. At a high-level,
an attention mechanism enables our neural network to focus
on relevant parts of the inputs more than the irrelevant parts
when performing a prediction task. For example, if the current
time step is Sunday then the information of the Sunday before
a week are considered as much help to predict the current
output. Let t and t

′
denote the time step at decoder and encoder

respectively, and the attention mechanism works as follows:

ut
′

i,t = qTa tanh(Wa[hi,t + ĥi,t′]) (19)

at
′

i,t =
exp(ut

′

i,t)∑T ′

t′=1 exp(ui,t′)
(20)

si,t =
∑T

′

t′=1
at

′

i,tĥi,t′ (21)

Where the weight at
′

i,t measures the importance of the time

step t
′

in t. Here at
′

i,t is derived by comparing the current
hidden state hi,t with the previous spatial-temporal hidden
state ĥi,t′ . The attention vector sit is a weighted sum of hidden
states in each previous time step t

′
.

Finally, we concatenate attention vector si with current
hidden state hi as h

′

i. Then we feed h
′

i to a fully connected
layer and get the final prediction. Noted that in this work, we
predict inflow and outflow simultaneously.

h̃i,t = hi,t ⊕ si,t (22)

[ŷini,t, ŷ
out
i,t] =Wyh̃i,t + by (23)

Since this is a multistep problem, the loss function is defined
as the mean squared error:

loss =
1

T

T∑
t=1

(yini,t − ŷini,t)2 + (youti,t − ŷouti,t)2 (24)

IV. EXPERIMENT

A. Dataset

We use a large-scale car-sharing dataset provided by EV-
CARD, which is one of the biggest hourly rental operators
in China. The dataset contains the orders from 5/1/2017 to
7/31/2017 in Shanghai, and there are about 15,000 orders per
day. The order includes pick-up station, drop-off station, pick-
up time and drop-off time. Weather data is collected from
JUHE1 website. POI data is collected through AMap API2,

1https://www.juhe.cn/docs/api/id/277
2https://lbs.amap.com/

334

which contains 15 primary categories. For each station, we
collected POIs within 1km around it and represented them in
a vector, whose entry is the number of a specific POI category.
We summarize the statistics of the dataset in Table I.

The data from 5/1/2017 to 6/30/2017 are used for training
(61 days), and the data from 7/1/2017 to 7/31/2017 are used
for testing (31 days).

TABLE I
DATASET STATISTICS

Data Source EVCARD
Time from 5/1/17 7/1/17
to 6/30/17 7/31/17
#days 61 31
#stations 1433 1433
#orders 964,531 498,856

Data Source AMap API
POI type number POI type number
food 520,779 shopping 1,065,138
life service 550,200 sports 103,723
medical service 80,934 accommodation 56,490
tourist 11,773 residence 217,018
government 138,298 education 161,613
transportation 248,822 finance service 81,673
enterprises 455,720

B. Experiment settings

In the experiment, we use the past 14-day historical data
to predict the flow in the next 7 days. The number of hidden
layers for LSTM is two with 64 hidden units. The dimension
of graph convolution is set to 64. Adam [18] is selected as
the optimization algorithm, and the initial learning rate is set
to 0.001. Here 10% of the training data were selected as the
validation set for parameter tuning, and early stopping is used.
To speed up convergence, teacher forcing [19] is applied,
which means we feed the actual flow to the decoder at the
training stage. We perform Xavier initialization to initialize
all the trainable parameters. The training process takes about
8 hours on a single TITAN XP GPU.

C. Baseline & Metric

We compare the proposed model (AMGC-Seq2Seq) with
the following methods:
• Historical Average (HA): The historical average model

predicts the flow by using the average value of history.
In our experiment, the prediction is the average from the
same time in previous weeks.

• Autoregressive Integrated Moving Average (ARIMA):
ARIMA is a widely used time series prediction model.
There are three parameters (p, d, q) need to be set for the
model. The degree of differencing is set as d = 1. Here
p and q are determined by grid search on the training set.

• Seq2Seq: Sequence to sequence model has been proved
to be effective for time series prediction problem. Same
as our model, Seq2Seq model is trained on all stations.

• AGC-Seq2Seq [15]: AGC-Seq2Seq is a graph based
seq2seq model to predict traffic speeds. The encoder of

that model is different from ours in two aspects: (1) They
employ only one graph while we combine multi-graphs,
and (2) we have one more LSTM which is used to capture
the local temporal relations for each station.

We use Mean Average Percentage Error (MAPE) and
Rooted Mean Square Error (RMSE) to evaluate the proposed
model, which are defined as follows:

MAPE =
1

NT

N∑
i=1

T∑
j=1

∣∣ŷit+j − yit+j

∣∣
yit+j

(25)

RMSE =

√√√√ 1

NT

N∑
i=1

T∑
j=1

(ŷit+j − yit+j)
2 (26)

D. Performance comparison

Table II shows the performance of the proposed model
compared to all other competing models. AMGC-Seq2Seq
achieves the lowest RMSE (6.15) and the lowest MAPE
(23.66) among all the methods. More specifically, HA and
ARIMA perform poorly, as they rely on only historical data for
prediction. Deep learning methods, including Seq2Seq, AGC-
Seq2Seq, and AMGC-Seq2Seq, which are able to model the
spatial-temporal relations, generally outperform the traditional
methods. Compared with AGC-Seq2Seq, the proposed model
further utilizes multi-graph convolution and one more LSTM
to capture the local temporal relation for the individual station,
which results the lowest RMSE and MAPE.

TABLE II
PERFORMANCE OF DIFFERENT METHODS

Method RMSE MAPE(%)
HA 8.03 30.23
ARIMA 7.54 27.89
Seq2Seq 6.73 25.93
AGC-Seq2Seq 6.48 24.82
AMGC-Seq2Seq 6.15 23.66

E. Effect of multi-graph convolution

Here we study the effect of multi-graph convolution. Table
III shows the results when we only use a single graph (distance
or POI graph) for prediction. According to the results, we
observe that a single graph can be worse than the baseline
method(e.g., the model of POI graph yields a result which is
worse than Seq2Seq model). However, by combining them,
our model beats the AGC-Seq2Seq with the lowest RMSE
and MAPE, which proves the effectiveness of the proposed
multi-graph convolution.

TABLE III
PERFORMANCE OF DIFFERENT GRAPH

Method RMSE MAPE
AGC-Seq2Seq + POI Graph 7.46 30.26
AGC-Seq2Seq + Distance Graph 6.52 25.35
AMGC-Seq2Seq 6.15 23.66

335

F. Effect of attention
Figure 2 shows the prediction of station 1 from 7/6 to 7/26,

where the data from 7/6 to 7/19 are used as the historical
data, and the flow from 7/20 to 7/26 are predicted by our
model. In the attention mechanism, at

′

i,t in eq.(20) measures
the relevance of the historical information in the predicted
state. The corresponding attention heatmap of station 1 is
depicted in Figure 3, where the darker the color is, the more the
relevance there are between two dates. One interesting finding
is that when predicting flows on weekdays, the model tends to
look at the latest history. However, when predicting flows on
weekends (7/22 and 7/23 in this example), the model tends to
look at the information on weekends from the history (7/15,
7/16, 7/8 and 7/9 in this example). These results confirm that
our model can automatically capture the relevant information
to make a more robust prediction.

Fig. 2. Outflow of station 1

Fig. 3. Attention heatmap of station 1

V. CONCLUSION

In this paper, we propose a novel deep learning model
AMGC-Seq2Seq for flow prediction in a car-sharing system.
There are two novelties of the proposed model. The first is
that we utilize multi-graph convolution to model the spa-
tial relations from different aspects. The second is that we
incorporate LSTMs with a graph convolution network in a
”hamburger” structure which capture both spatial and temporal
relations effectively. We evaluated the model on a large-scale
real-world car-sharing dataset from EVCARD. The experiment
results show that the proposed model achieved better results
than state-of-the-art baselines. In future, we plan to investigate
the following aspects: (1) evaluate the proposed model on
other datasets. (2) incorporate more diverse features (e.g., road
network) in a car-sharing system.

ACKNOWLEDGMENT

This research is supported by the National Key R&D
Program of China under Grant (No.2018YFB0505000,

2018YFB0505000) and the Shanghai Committee of
Science and Technology under Grant (No.17511107303,
17511110202). This research is also supported by EVCARD.

REFERENCES

[1] Richard Katzev. Car sharing: A new approach to urban transportation
problems. Analyses of Social Issues and Public Policy, 3(1):65–86, 2003.

[2] Angela Febbraro, Nicola Sacco, and Mahnam Saeednia. One-way
carsharing: solving the relocation problem. Transportation Research
Record: Journal of the Transportation Research Board, (2319):113–120,
2012.

[3] Diana Jorge and Gonçalo Correia. Carsharing systems demand estima-
tion and defined operations: a literature review. European Journal of
Transport and Infrastructure Research, 13(3), 2013.

[4] Billy M Williams and Lester A Hoel. Modeling and forecasting vehicular
traffic flow as a seasonal arima process: Theoretical basis and empirical
results. Journal of transportation engineering, 129(6):664–672, 2003.

[5] Bo Zhou, Dan He, Zhili Sun, and Wee Hock Ng. Network traffic
modeling and prediction with arima/garch. In Proc. of HET-NETs
Conference, pages 1–10, 2005.

[6] Shashank Shekhar and Billy M Williams. Adaptive seasonal time series
models for forecasting short-term traffic flow. Transportation Research
Record, 2024(1):116–125, 2007.

[7] Yexin Li, Yu Zheng, Huichu Zhang, and Lei Chen. Traffic prediction in
a bike-sharing system. In Proceedings of the 23rd SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems,
page 33, 2015.

[8] Dingxiong Deng, Cyrus Shahabi, Ugur Demiryurek, Linhong Zhu, Rose
Yu, and Yan Liu. Latent space model for road networks to predict time-
varying traffic. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1525–
1534, 2016.

[9] Yongxin Tong, Yuqiang Chen, Zimu Zhou, Lei Chen, Jie Wang, Qiang
Yang, Jieping Ye, and Weifeng Lv. The simpler the better: a unified
approach to predicting original taxi demands based on large-scale online
platforms. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1653–1662,
2017.

[10] Zheng Zhao, Weihai Chen, Xingming Wu, Peter CY Chen, and Jingmeng
Liu. Lstm network: a deep learning approach for short-term traffic
forecast. IET Intelligent Transport Systems, 11(2):68–75, 2017.

[11] Dong Wang, Wei Cao, Jian Li, and Jieping Ye. Deepsd: supply-demand
prediction for online car-hailing services using deep neural networks. In
2017 IEEE 33rd International Conference on Data Engineering (ICDE),
pages 243–254, 2017.

[12] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu,
Pinghua Gong, Jieping Ye, and Zhenhui Li. Deep multi-view spatial-
temporal network for taxi demand prediction. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[13] Di Chai, Leye Wang, and Qiang Yang. Bike flow prediction with
multi-graph convolutional networks. In Proceedings of the 26th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 397–400, 2018.

[14] Pinlong Cai, Yunpeng Wang, Guangquan Lu, Peng Chen, Chuan Ding,
and Jianping Sun. A spatiotemporal correlative k-nearest neighbor model
for short-term traffic multistep forecasting. Transportation Research Part
C: Emerging Technologies, 62:21–34, 2016.

[15] Zhengchao Zhang, Meng Li, Xi Lin, Yinhai Wang, and Fang He.
Multistep speed prediction on traffic networks: A graph convolutional
sequence-to-sequence learning approach with attention mechanism.
arXiv preprint arXiv:1810.10237, 2018.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[17] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In Advances in neural information
processing systems, pages 3104–3112, 2014.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[19] Ronald J Williams and David Zipser. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural computation,
1(2):270–280, 1989.

336

Chinese Text Relation Extraction with
Multi-instance Multi-label BLSTM Neural Networks

1st Liubo Ouyang
Department of Software Engineering

Hunan University
ChangSha, China
oylb@hnu.edu.cn

2nd Hui Tang
Department of Software Engineering

Hunan University
Changsha, China

thlthl2525@hnu.edu.cn

3rd Guangyi Xiao
Department of Software Engineering

Hunan University
Changsha, China

gyxiao@hnu.edu.cn

Abstract—Recently, deep learning models have emerged as
powerful tools for relation extraction. However, little work has
been done on relation extraction for the Chinese language. One
major challenge for relation extraction in Chinese texts is that
Chinese sentences have no obvious word segmentation. This
ambiguity increases the possibility of word segmentation errors.
Another challenge is the lack of broad-scale Chinese text datasets.
In this paper, we propose an attention-based multi-instance
multi-label bidirectional long short-term memory network for
distantly supervised Chinese relation extraction. Our model takes
Chinese character embeddings and position embeddings as input
without Chinese word segmentation errors. Then, the attention
mechanism is used to extract richer Chinese character and
sentence features. Finally, we handle the multi-label nature of
relation extraction by using multi-label loss functions in the
neural network classifier. Based on the idea of distant supervision,
we constructed a new dataset for relation extraction in Chinese
texts. Experiments on this dataset show that our method has
achieved relatively high performance, and that the proposed
network architecture is suitable for Chinese relation extraction.
Furthermore, we also ran experiments on a popular English
benchmark dataset, and the results show that our method is
superior to some existing methods.

Index Terms—Chinese relation extraction, distant supervi-
sion, attention, bidirectional long short-trem memory net-
work(BLSTM).

I. INTRODUCTION

Relation extraction is the detection and identification of
semantic relations between natural language text entities [1].
The relation extraction problem can be formally described as
follows. Given a sentence s and two entities, e1 and e2, in s,
predict the relationship type r of e1 and e2 in the sentence
s. The candidate set of r is a predefined relation set R, and
the output is usually a triple (e1, e2, r) [2]. As one of the key
tasks of natural language processing (NLP), relation extraction
has high significance for many applications of NLP, such as
question answering and knowledge graphs [3].

Distant supervision is proposed to automatically generate
labeled training data by aligning knowledge bases and text
for relation extraction [4]. The main idea of distant su-
pervision is that if two entities have a relationship in the
knowledge base, then all sentences containing the two entities
will represent this relationship. Distant supervision solves

DOI reference number:10.18293/SEKE2019-106.

the problem of constructing labeled training data and saves
human resources needed for manually labeling data. However,
since a sentence containing two entities does not necessarily
represent a corresponding relationship, a large amount of noise
data is inevitably introduced. Therefore, distant supervision is
modeled as a multi-instance multi-label classification problem
[5]- [7]. In recent years, deep learning models have been
applied in relation extraction [8]. The most commonly used
models for relation extraction tasks include recursive neural
networks (RecNN) [9], convolutional neural networks (CNN)
[10], recurrent neural networks (RNN) [11]. Moreover, LSTM
network is an improved variant of RNN that has been widely
applied to natural language processing tasks and has achieved
good performance [12]. Adding an attention mechanism to
the model and weighting the data sequence can effectively
improve sequence learning and boost the system performance
[13] [14].

The research on relation extraction for Chinese texts is
relatively less common than that for English ones [15]. This
scarcity can be ascribed to three main difficulties of Chinese
relation extraction. Firstly, there is no obvious separation
between Chinese words; Chinese words are composed of char-
acters whose combinations are highly complex and ambiguous.
Secondly, current Chinese word segmentation systems still
have considerable errors that introduce noise into the relation
extraction task. Finally, there is a lack of a Chinese corpus for
relation extraction.

In this paper, we propose an attention-based multi-instance
multi-label bidirectional long short-term memory network
(ATT+MIML+BLSTM) for distantly supervised Chinese texts
relation extraction. It is sufficient to use raw Chinese sentences
as input. The BLSTM and character-level attention modules
are used to obtain the important semantic information in each
sentence, and then the final sentence vector representation
is obtained through sentence-level attention. Also, the multi-
label loss function is used in the network model to deal
with overlapping relations. In view of the lack of a Chinese
dataset, and based on the distant supervision concept, we used
CN-DBpedia of Fudan Knowledge Factory 1 to obtain the
identified entity pairs, and aligned them in the SogouCS2012

1http://kw.fudan.edu.cn/

337

news text corpus 2 to construct a large Chinese character
relationship dataset. The model proposed in this paper is
evaluated on this constructed dataset as well as on an English
benchmark dataset. The results show that the proposed model
is suitable for relation extraction in Chinese texts and achieves
good performance.

The contributions of this paper are summarized as follows:
• Proposing a deep learning model for distantly supervised

relation extraction in Chinese texts.
• Using Chinese character vectors as model inputs to avoid

introducing Chinese word segmentation noise into the
relation extraction process.

• Making full use of the information of each word in the
sentence and all the sentence information with the same
entity pair, and handling the overlapping relationships of
entity pairs.

• Performing extensive experiments on Chinese and En-
glish benchmark datasets showing the suitability and
good performance of our model for relation extraction
in both languages.

II. RELATE WORK

Over the years, many methods for relation extraction have
been proposed. These methods can be mainly divided into
three categories: supervised, semi-supervised and unsuper-
vised approaches. Supervised approaches treat relation ex-
traction as a classification task and typically exhibit better
performance in comparison to other approaches. However, su-
pervised methods are very time consuming and labor intensive
since they require a lot of labeled data. Distant supervision can
solve this problem through automatic data labeling. However,
distant supervision can cause false labeling problems. Riedel
et al. [5]models distant supervision as a multi-instance single-
label problem and selects for each entity pair. Furthermore,
Hoffmann et al. [6] and Surdeanu et al. [7] noted that there
might be multiple relations between entities and hence they
cast relation extraction as a multi-instance multi-label learning
problem.

Recently, with the emergence of deep learning, many schol-
ars have begun to use deep learning to automatically learn
features. In NLP, deep learning methods are mainly based on
learning the distributed representation of each word, which is
also called a word embedding [16]. Zeng et al. [17] proposed
a convolutional neural network for relational classification.
Furthermore, Zeng et al. [18] combined at least one multi-
instance learning scheme with a neural network model to
extract relationships using distant supervision. Zhou et al.
[19] used a neural attention mechanism combined with a
bidirectional long-term memory network (BLSTM) to obtain
important semantic information in sentences. Lin et al. [14]
showed that the establishment of a sentence-level attention
mechanism for dynamically calculating the weights of multiple
instances can be very effective in distantly supervised data.
Jiang et al. [20] used the maximum pool across sentences

2http://www.sogou.com/labs/

to select features in different sentences, then aggregated the
most important features into the vector representation of each
entity pair. In addition, they addressed relation extraction
as a multi-label problem. Jat et al. [21] combined multiple
complementary models to improve relational extraction, and
introduced a new distantly supervised dataset that eliminated
the test data noise present in all previous benchmark datasets.
Feng et al. [22] applied reinforcement learning to distantly
supervised relationship extraction. Relevant side information
from KB has been utilized for relation extraction [23] [24].

In the study of Chinese texts relation extraction, lexical and
syntactic features are usually used to extract feature vectors,
and the classifier SVM can be used for Chinese texts relation
extraction [25]. The performance of Chinese relation extrac-
tion has been improved by clustering and pattern matching
the feature vectors extracted by dependence relationship and
parts of speech labeled in relational schema [26]. In the works
of [27] and [28], all can reveal that performance of Chinese
relation extraction based on kernel function has obtained
significant improvement. However, The need for amounts of
manually annotated corpora hinders the application of deep
learning methods in Chinese texts relation extraction.

At present, relation extraction research and experiments are
mainly focused on English. This paper focuses on distant
supervision for relation extraction in Chinese texts. Based
on the advantages of previous models, this paper proposes
a multi-instance multi-label BLSTM model equipped with an
attention mechanism. This model can obtain the rich semantic
information of the Chinese sentences and handle overlapping
relations.

III. MODEL

As shown in Fig.1, the proposed ATT+MIML+BLSTM
model consists of three main parts:
• Sentence Representation: Enter raw characters of the

input sentence into the BLSTM model, and use the
character-level attention mechanism to weight the output
of each time step of the BLSTM network. Merge the
character-level features of each time step into a sentence-
level feature vector.

• Entity-pair Representation: Use sentence-level attention
to give different weights to different statements, implicitly
discarding some noise statements.

• Multi-label Classification: Multi-label classification is
performed by using multiple binary classifiers corre-
sponding to a class of relationships.

A. Sentence Representation

Sentence-level features are designed to construct a distribut-
ed representation for each sentence. As shown in Fig.2, we first
convert the Chinese characters in the sentence into real-valued
vectors. The higher features of the sentence are then extracted
by BLSTM. The final character-level attention weights the
output of each time step of the BLSTM The character-level
features of each time step are then merged into a sentence-
level feature vector.

338

Fig. 1. The architecture of ATT+MIML+BLSTM used for distant supervised
relation extraction.

Input Representation Layer. The input for each sentence
consists of two embeddings:

Character Embedding: Chinese words are composed of
characters, the combinations of which are very complicated.
As well, there is no obvious separation between Chinese
words. Chen et al. [29] observed experimentally that character
features are more suitable for Chinese relation extraction tasks
than word features. Based on this observation, we use character
embeddings to avoid introducing word segmentation errors
into the relation extraction process. The model takes as an
input each raw Chinese character in a Chinese sentence s.
Therefore, given a sentence s = {x1, x2, · · · , xm} consisting
of m Chinese characters, we convert each Chinese character
into a real-value vector by looking up the pre-trained embed-
ded matrix V ∈ Rdw×|V | (where dw is the dimension of the
character embedding and |V | is vocabulary size).

Position Embedding: Position embeddings are used to repre-
sent the structural information of sentences, and two different
dimensional position vectors are constructed by the relative
distances between each Chinese character and the two entities
e1 and e2.

We concatenate all the character embeddings and position
embeddings to get a sequence of vectors w ={w1,w2, · · · ,wm}
(where wi ∈ Rd , d = dw +2× dp and dp is the dimension of
the position embedding) and set such a sequence as the model
input.

BLSTM Layer. The LSTM model can effectively alleviate
the long-distance dependence problem of RNN and CNN, and
it has been improved and promoted recently by Graves [30].
In many problems, LSTM has achieved considerable success
and has been widely used.

In LSTM, the forget gate ft determines how much informa-
tion is discarded in the cell state. The gate has three inputs: xt

is the input of the current time step, ht−1 is the output of the
previous LSTM cell, and ct−1 is the memory of the previous
cell.

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf) (1)

Fig. 2. Detailed structure of the sentence representation.

where, Wxf , Whf , Wcf , and bf are weight matrices.
The input gate it determines what information will be

updated and has the same input as the forget gate ft:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (2)

where , Wxi, Whi, Wci, and bi are weight matrices.
Then create a new candidate value vector c̃t that will be

added to the state:

c̃t = tanh(Wxcxt +Whcht−1 +Wccct−1 + bc) (3)

where , Wxc, Whc, Wcc, and bc are weight matrices.
Update current cell status ct:

ct = itc̃t + ftct−1 (4)

Finally, how much information is controlled by output gate
ot should be entered into the next LSTM cell.

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo) (5)

ht = ot tanh(ct) (6)

where , Wxo , Who , Wco, and bo are weight matrices.
As can be seen from Figure 2, the BLSTM layer contains

forward and reverse LSTM networks. The output for the ith

Chinese character from the BLSTM layer is combined by the
forward and reverse outputs by element-wise summation:

hi =
[−→
hi ⊕ hi←−

]
(7)

Character-level Attention Layer. Following the approach
of [20], we use character-level attention to capture important
information in sentences and improve the accuracy of sentence
representation. The vector sequence H = {h1, h2, · · · , hm}
output by the BLSTM layer is weighted to obtain the final
representation of the sentence.

First apply a non-linear activation function on hi:

Ni = tanh(hi) (8)

Then calculate the weight of the Chinese characters in the
sentence:

αi = softmax(WTNi) (9)

339

where, WT is the training parameter.
The vector representation r of the sentence is obtained by

weighting the Ni:

r =

m∑
i=1

αiNi (10)

Finally, a non-linear activation function is applied to r to
get the final representation of the sentence H∗.

H∗ = tanh(r) (11)

B. Entity-pair Representation

Distant supervision produces a lot of noise or mislabeled
data, and direct use of supervised methods to classify rela-
tionships is very ineffective. In order to solve the problem of
mislabeling, this paper proposes the construction of sentence-
level relational attention on multiple instances by using the
selective attention mechanism to weigh sentence vectors and
weaken the weight of noisy instances dynamically [14]. Sup-
pose there is a set S containing n sentences of the same entity
pair, and the set S is represented as having a real-valued vector,
i.e. S = {H∗1 , H∗2 , · · · , H∗n} , where H∗i is the representation
of the sentence obtained in the subsection A.

First, calculate the degree to which a sentence H∗i matches
the corresponding relationship.

Di = H∗i ·A · l (12)

where A is a weighted diagonal matrix and l is the vector rep-
resenting the relationship. Therefore, the size of Di depends
on the size of the mapping of H∗i on l , and sentences that
are more closely related to the entity relationship can achieve
larger values. Then, we can get the weight βi:

βi = softmax(Di) (13)

Then for the sentence set S, it can be calculated as the
weighted sum of all the sentences in the set:

S =
∑
i

βiH
∗
i (14)

C. Multi-label Classification

In this paper, we formalize distant supervision as a multi-
instance multi-label learning problem. In this section, we
will handle the overlapping relationship of entity pairs. The
sentence set vector S obtained in the subsection B, and then
get o through a layer of network:

o =MS + b (15)

where M is the weight matrix of all relational vectors and
b is a bias. Thus o represents the confidence score for each
relation label.

Then, we use multiple binary functions to do multi-label
classification. In particular, we calculate the probability of each
relationship. The relationship label is considered accurate if
the relationship probability exceeds a certain threshold.

pi = sigmoid(oi), i = {1, 2, · · · , k} (16)

where k is the number of relation labels.
We set the binary label vector y to represent the set of true

relationships between pairs of entities, where 1 represents a
relation in the set and 0 otherwise. Finally, we use the cross
entropy of the sigmoid function as the loss function:

loss = −
k∑

i=1

yi log(pi) + (1− yi) log(1− pi) (17)

where yi ∈ {0, 1} is the true value on label i.
We train the model in an end-to-end manner. We use Adam

to optimize the loss function [31]. In the training phase, we
used a dropout mechanism in the BLSTM layer to prevent
overfitting [32]. For the testing phase, our method selects a
relation with a probability of more than 0.5 as a predicted
label.

IV. EXPERIMENTS

A. Experiments on Chinese Character Relationship Dataset

Building Chinese datasets. Using distant supervision, we
can automatically construct a Chinese dataset, which avoids
labor instensive of manually labeling data. The details of these
steps are as follows.

Step 1: Obtain entity pairs with a defined relationship. The
large-scale structured encyclopedia CN-DBpedia, developed
and maintained by the Fudan University Knowledge Facto-
ry Laboratory, is the earliest and the largest open Chinese
knowledge extraction system.We set up a list of seed names,
use the free API provided by the Fudan Knowledge Factory to
obtain the corresponding personal relationships, and then add
the character entities not included in the entity list to the list,
and iterate over and over again.

Step 2: Align the entity pairs with certain relationships with
the Chinese text corpus. The Chinese text corpus uses SogouC-
S from Sogou Lab, which is one of the most comprehensive
Chinese text corpus resources. Pure text is obtained by data
preprocessing through the corpus. The text corpus is aligned
with the entity pairs of the first step to get the statements
containing the entity pairs.

Finally, the dataset contains eight kinds of relationships
(cooperation, friends, couples, parenthood, lovers, faculty-
student, brother and sister, others). We divide the training set
and the test set according to a ratio of 9:1. The training set
contains 220,160 sentences and the test set contains 24,463
sentences.

Experimental settings and evaluation metrics. Chinese
character embeddings are trained on the Chinese Wikipedi-
a corpus by the word2vec tool3.We set the dimension of
character embedding to 100 and the dimension of position
embedding to 5. Position embeddings are randomly initialized
with uniform distribution between [-1,1]. At BLSTM layer,

3https://code.google.com/p/word2vec/

340

Fig. 3. Performance comparison of our method with three baselines for
Chinese dataset.

TABLE I
COMPARISON OF P@N RESULTS BETWEEN OUR MODEL AND OTHER

MODELS.

PCNN BGWA ATT+CNN ATT+MIML+BLSTM
P@100 0.87 0.91 0.95 0.97
P@200 0.845 0.885 0.93 0.955
P@300 0.817 0.85 0.923 0.946
Mean 0.844 0.882 0.934 0.957

the number of LSTM hidden units is set to 230. Meanwhile,
we use a batch of 64 entity pairs, set learning rate to 0.001
and dropout keep probability to 0.5.

Following previous work [14] [18], We compare the per-
formance of each model with the aggregate curves Preci-
sion/Recall(PR) curves and Precision@N(P@N).

We choose the following three deep learning models as
baselines: (1) PCNN: A piecewise max-pooling over CNN
based relation extraction model. (2) ATT+CNN: A CNN
based model with sentence-level attention. (3) BGWA: A
piecewise max-pooling over bidirectional gated recurrent unit
based model with word-level attention. They are all superior to
traditional methods and are also significant works for relation
extraction.

Experimental results.The curves in Fig.3 show that our
model has a relatively high accuracy and recall rate compared
to other models when we perform Chinese relation extraction.
In other words, under the same recall rate, the accuracy of Chi-
nese relation extraction using ATT+MIML+BLSTM is higher
than other models. We observed that the PR curve of the neural
network method (ATT+CNN, BGWA, ATT+MIML+BLSTM)
that introduces the attention mechanism is significantly higher
than the ordinary neural network method PCNN. It can be seen
that the attention mechanism can improve the performance
of the model. In addition, our model is superior to the CNN
model which also adopts sentence-level attention, which shows
that BLSTM combined with word attention can obtain richer
semantic information, and considering multi-label problem can

Fig. 4. Performance comparison of our method with five popular methods
for English benchmark dataset.

TABLE II
STATISTICS OF THE NYT10 DATASET.

Sentences Entity Pairs Relations
Training 522611 281270 53
Testing 172448 96678 53

improve model performance. Table I shows the results using
the P @ N metric. Similar to Figure 4, our approach is superior
to other methods overall. And when N is smaller, our method
accuracy is marginally higher than others.

B. Experiments on the English Benchmark Dataset

In order to evaluate the performance of our model on other
languages, we conducted a comparative experiment on the
English dataset proposed by Riedel in 2010 [5]. The dataset is
generated by the heuristic matching of Freebase and the New
York Times(NYT), and is a popular benchmark dataset. As
shown in Table II, the dataset contains 53 relationships (in-
cluding ”NA”, indicating that there is no relationship between
entity pairs). We used sentences from 2005 to 2006 as training
data and sentences from 2007 as test data.

The parameter settings for the English experiments are like
those of the Chinese ones, except that the input is word
embedding, the word embedding dimension is 50, and the
batch size is 50.

We compare our model with three traditional methods(Mintz
[4], Multir [6] and MIML [7]) and two popular neural-based
methods(ATT+CNN and BGWA). They are major works for
English relation extraction based on distant supervision.

Fig.4 clearly shows that the PR curve of our model (AT-
T+MIML+BLSTM) is above those of the other models, so
our model is not only superior to traditional methods but also
neural-based methods. Since the size of the Chinese dataset
we constructed is smaller than the English benchmark dataset
and the amount of noise data is different, there is a small error
in the experimental results on the two datasets. However, we

341

can still conclude that our model is superior to other models,
especially for Chinese relation extraction.

V. CONCLUSION

In this paper, we propose a multi-instance multi-label neural
network model based on the attention mechanism for Chinese
relation extraction. It can not only obtain the rich semantic
information of the sentence, but also consider the multi-
relationship problem of the entity pair. Experiments on a
Chinese dataset based on distant supervision prove that the
neural network model combining attention mechanism and
multi-label learning can achieve good results, and the proposed
method has better performance than most existing methods on
the benchmark English dataset. In the future, we hope to build
a large-scale and standardized Chinese corpus, and further
study how different loss functions affect the performance of
the model.

REFERENCES

[1] N. Bach and S. Badaskar, “A review of relation extraction,” Literature
review for Language and Statistics II, vol. 2, 2007.

[2] I. Hendrickx, N. K. Su, Z. Kozareva, P. Nakov, M. Pennacchiotti,
L. Romano, and S. Szpakowicz, “Semeval-2010 task 8: multi-way classi-
fication of semantic relations between pairs of nominals,” in Workshop
on Semantic Evaluations: Recent Achievements & Future Directions,
2009.

[3] Q. Zhang, M. Chen, and L. Liu, “A review on entity relation extraction,”
in 2017 Second International Conference on Mechanical, Control and
Computer Engineering (ICMCCE), vol. 00, Dec. 2018, pp. 178–183.
[Online].

[4] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision
for relation extraction without labeled data,” in Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2. Association for Computational
Linguistics, 2009, pp. 1003–1011.

[5] S. Riedel, L. Yao, and A. McCallum, “Modeling relations and their men-
tions without labeled text,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2010, pp.
148–163.

[6] R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, and D. S. Weld,
“Knowledge-based weak supervision for information extraction of
overlapping relations,” in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language
Technologies-Volume 1. Association for Computational Linguistics,
2011, pp. 541–550.

[7] M. Surdeanu, J. Tibshirani, R. Nallapati, and C. D. Manning, “Multi-
instance multi-label learning for relation extraction,” in Proceedings of
the 2012 joint conference on empirical methods in natural language
processing and computational natural language learning. Association
for Computational Linguistics, 2012, pp. 455–465.

[8] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[9] C. Goller and A. Kuchler, “Learning task-dependent distributed rep-
resentations by backpropagation through structure,” Neural Networks,
vol. 1, pp. 347–352, 1996.

[10] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[11] J. L. Elman, “Distributed representations, simple recurrent networks, and
grammatical structure,” Machine learning, vol. 7, no. 2-3, pp. 195–225,
1991.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[14] Y. Lin, S. Shen, Z. Liu, H. Luan, and M. Sun, “Neural relation
extraction with selective attention over instances,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), vol. 1, 2016, pp. 2124–2133.

[15] W. Zirui, M. Fang, and J. Libiao, “Review of chinese entity relation
extraction,” in 2017 3rd IEEE International Conference on Control
Science and Systems Engineering (ICCSSE), Aug 2017, pp. 633–637.

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[17] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, “Relation classification
via convolutional deep neural network,” in Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics:
Technical Papers, 2014, pp. 2335–2344.

[18] D. Zeng, K. Liu, Y. Chen, and J. Zhao, “Distant supervision for relation
extraction via piecewise convolutional neural networks,” in Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing, 2015, pp. 1753–1762.

[19] P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, and B. Xu, “Attention-
based bidirectional long short-term memory networks for relation classi-
fication,” in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), vol. 2, 2016,
pp. 207–212.

[20] X. Jiang, Q. Wang, P. Li, and B. Wang, “Relation extraction with multi-
instance multi-label convolutional neural networks,” in Proceedings of
COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers, 2016, pp. 1471–1480.

[21] S. Jat, S. Khandelwal, and P. Talukdar, “Improving distantly supervised
relation extraction using word and entity based attention,” 2018.

[22] J. Feng, M. Huang, L. Zhao, Y. Yang, and X. Zhu, “Reinforcement
learning for relation classification from noisy data,” CoRR, vol. ab-
s/1808.08013, 2018.

[23] G. Ji, K. Liu, S. He, and J. Zhao, “Distant supervision for relation
extraction with sentence-level attention and entity descriptions,” pp.
3060–3066, 2017.

[24] S. Vashishth, R. Joshi, S. S. Prayaga, C. Bhattacharyya, and P. Talukdar,
“Reside: Improving distantly-supervised neural relation extraction using
side information,” 2018.

[25] W. Che, T. Liu, and S. Li, “Automatic entity relation extraction,” Journal
of Software, vol. 19, no. 2, pp. 2–7, 2005.

[26] L. Yu and K. Zhou, “A dynamic local path planning method for
outdoor robot based on characteristics extraction of laser rangefinder
and extended support vector machine,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 30, no. 02, p. 1659004, 2016.

[27] H. Zhang, S. Hou, and X. Xia, “A novel convolution kernel model
for chinese relation extraction based on semantic feature and instances
partition,” in Computational Intelligence and Design (ISCID), 2012 Fifth
International Symposium on, vol. 1. IEEE, 2012, pp. 411–414.

[28] A. Yang, Y. Du, and Q. Meng, “Extracting personae interactive relation
in chinese microblog based on an improved dependency trigram kernel,”
DEStech Transactions on Engineering and Technology Research, no.
ICMITE2016, 2016.

[29] Y. Chen, D. Zheng, and T. Zhao, “Chinese relation extraction based on
deep belief nets,” Journal of Software, vol. 23, no. 10, pp. 2572–2585,
2012.

[30] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[31] D. Kinga and J. B. Adam, “A method for stochastic optimization,” in
International Conference on Learning Representations (ICLR), vol. 5,
2015.

[32] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

342

A Convolutional Neural Network Pruning Method
Based On Attention Mechanism

XiaoJie Wang, WenBin Yao* and Huiyuan Fu
Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia

Beijing University of Posts and Telecommunications
Beijing, China

{then, yaowenbin, fhy}@bupt.edu.cn

Abstract—Pruning effectively reduces the size of neural
networks, which facilitates deployment of neural networks in
production environment, especially in embedded systems with
limited computing resources. In this paper, we propose a con-
volutional neural network pruning method based on attention
mechanism. We add a attention module to model to generate
scaling factors for channels. The scaling factors are considered as
channels’ importance score, thus filters and convolution kernels
corresponding to channels with lower importance score are
removed. Our method has the ability to learn importance of
channels during training, instead of considering only the direct
impact of parameters like existing methods. Moreover, it does
not depend on any dedicated libraries, so could be combined
with other compression methods for better performance. In
experiments, we prune about 90% parameters in VGGNet with
0.67% accuracy drop and prune about 50% parameters in
ResNet-56 with 1.02% accuracy drop.

Index Terms—convolutional neural network; pruning; atten-
tion mechanism

I. INTRODUCTION

In recent years, with the rapid development of deep learn-
ing, convolutional neural networks have achieved excellent
performance in many fields, such as computer vision, speech
recognition and natural language processing, etc. However,
these extraordinary performances are at the expense of high
computational and storage demands. Thus neural network
compression technique has great significance for deploying a
deep convolutional neural network on embedded devices(like
mobile phone and IOT device) with constrained resource.

Many works have been proposed to compress deep models,
including network quantization [1], [2], matrix decomposition
[3], [4], and knowledge distillation [5], [6]. Pruning is one
of the most effective compression methods, it aims to remove
redundant parameters in neural networks. Which parameters
are redundant depends on importance measurement of pa-
rameters. Early studies measure the importance of parame-
ters by calculating second derivative of parameters to loss
function [7], [8]. In spite of their success, second derivative
has expensive calculation and memory overhead. Thus, most
recently proposed pruning methods are based on direct impact
of parameters, such as parameter magnitude [9] or sparsity of

Correspondence: yaowenbin@bupt.edu.cn
DOI reference number: 10.18293/SEKE2019-147

output [10], which do not take correlation between parameters
and loss function into consideration.

In this paper, we propose a filter-level pruning method
based on attention mechanism. In our method, a attention
module(SEBlock [11]) is added to network to generate scaling
factors for channels, then we consider scaling factors as chan-
nel importance score to guide filter-level pruning. The attention
module adjust scaling factors of channels according to loss
function in backpropagation, which associates the importance
score of parameters with loss function. By removing filters and
convolution kernels corresponding to low importance score
channels, we can effectively reduce size of deep model and
maintain prediction accuracy.

We conduct experiments on CIFAR-10 dataset [12], results
show that our method can remove about 90% parameters in
VGGNet [13], with only 0.67% accuracy drop. Pruning on
ResNet-56 [14] also be conducted to verify the effectiveness
of our method on the network with shortcut connections. More
serious decrease of accuracy appears on ResNet-56 since it is
a compact network, but we still remove half of parameters
with roughly 1% accuracy drop. Moreover, we compare our
method with weight sum [9] and APoZ [10] on CIFAR-100
[12], the result shows that our method has better performance
under the same pruning ratio.

II. RELATED WORK

LeCun et al. [8] proposed that some of the neurons connec-
tions in neural networks could be removed without decreasing
model accuracy. Similar to LeCun’s work, Hassibi et al. [7]
used hessian matrix to get the second derivative of parameters.
However, the spatial complexity of hessian matrix is O(n2)(n
is the number of parameters), which has expensive memory
cost on deep models. In order to avoid problem mentioned
above, recent studies prefer to prune models according to
direct impact of parameters. Han et al. [15] proposed that
the magnitude of the parameters could reflect the importance
of the parameters, they remove parameters below a certain
threshold to get compact model. Deep compression [16]
further compress deep neural networks with pruning, trained
quantization and Huffman Coding. However, pruning neurons
connections produces sparse matrices, which relies on specific
operational libraries and hardware to exploit performance
advantages [17].

343

In order to avoid the limitation of pruning neurons con-
nections, structural pruning method was proposed. Lebedev et
al. [18] explored a structured sparsity learning method(SSL),
which adds the regularization term of parameter group to
loss function so that certain groups of parameters would
shrink to zeros during training, eventually be removed safely.
However, SSL still destroys the network structure and depends
on dedicated libraries.

In recent researches [9], [10], [19], [20], filter-level pruning
become an effective pruning method that completely avoid
using dedicated libraries. Li et al. [9] calculated the sum
of the absolute values(L1 paradigm) of weights in filters as
their importance score. This method has strong limitations
because L1 paradigm of filter does not reflect the feature
extraction ability of filter. Hu et al. [10] observed the sparsity
of the ReLU activation function and assumed that a neuron is
unimportant if most outputs of the neuron with ReLU are zero.
Although Hu’s method considers more further effects of the
filters, it still does not determine the importance of parameters
according to loss function. The methods mentioned above are
based on the direct impact the parameters, which does not
well represent the effect of parameters on neural network’s
loss function. Meanwhile, they are artificially formulated,
which leads to that human intervention is added in training
process which violates the rules of end-to-end training in deep
learning.

III. OUR METHOD

In this section, we would first introduce filter-level pruning,
which determines the granularity of our pruning method. Then,
the attention module used in our method would be described.
Next, average scaling factor formula would be presented.
Finally, we would show overall steps of our method and
pruning strategy adjustment on special model.

A. Filter-level pruning

As shown in Fig. 1, each layer of neural network consists
of several filters, one filter has a set of convolution kernels.
Instead of generating sparse matrices or destroying network
structures, filter-level pruning removes entire filter, which
maintains the regularity of the network. For example, channel2
would disappear when the filter2 marked by dotted lines are
removed. In this case, convolution kernels process channel2
in next layer could be removed as well.

In a convolution layer, if we suppose its original parameter
matrix is expressed as W<I,W,H,C>, where I is the number
of input channels, W is the width of convolution kernels, H
is the height of convolution kernels and C is the number of
filters. We can calculate the number of parameters in this layer
as:

|W<I,W,H,C>| = I ×W ×H × C (1)

If we set the filter pruning ratio of this layer to q, q × C
filters in this layer would be removed, so that the number of
remaining parameters in this layer can be calculated as:

|W<I,W,H,(1−q)C>| = I ×W ×H × (1− q)C (2)

Fig. 1. Filter-level pruning.

If we set the filter pruning ratio of the front layer to p, p× I
convolution kernels in this layer would be removed, so that the
number of remaining parameters in this layer can be calculated
as:

|W<(1−p)I,W,H,(1−q)C>| = (1−p)I×W×H×(1−q)C (3)

Obviously, after pruning all layers, the total parameters of the
convolution layer would be reduced to (1−p)× (1−q) of the
original layer. In other words, q+(1−q)×p of the parameters
would be removed.

B. Attention module

Fig. 2. SEBlock structure, the blue part is SEBlock.

As mentioned in related work, the filter-level pruning meth-
ods lack the consideration of correlation between parameters
and loss functions due to computational complexity. To calcu-
late importance score of filters according to loss function in a
feasible computational complexity, we use attention module

344

Fig. 3. The overall pruning steps of our method.

to generate scaling factors for channels and adjust scaling
factors in backpropagation. In this case, which channel is
enhanced or suppressed can be reflected by the scaling factors.
Then we can rank channels by their scaling factors with
the rule that channels with smaller scaling factors are less
important. Because the one-to-one match between each filter
and each channel, unimportant filters can be selected according
to channel rank.

The attention module(namely SEBlock) used in our method
comes from Squeeze-and-Excitation Networks(SENet) [11],
which is designed for image classification tasks. SEBlock
consists of a global average pooling layer, two fully connected
layer, sigmoid activation function and ReLU activation func-
tion. SEBlock can be added after convolution layer, take the
convolutional layer’s output channels as input data, produce
scaling factor for each channel.

As shown in Fig. 2, SEBlock take a C channels as input,
obtain a vector with C elements after the global average
pooling layer. The number of neurons in first fully connected
layer is C/r, where r is a hyper-parameters for controlling
module parameter number. Between the first and the second
fully connected layer is a ReLU activation function. The
second fully connected layer has C neurons in order to produce
C output value. Finally, the C output values of are projected
between 0-1 by sigmoid activation function to become scaling
factors. The output channels of SEBlock can be obtained by
multiplying each input channel with corresponding scaling
factor.

Although SEBlock was originally designed for improving
the accuracy of image classification, its scaling factor reflects
the network’s choice of feature, which is the embodiment
of the channel importance. Channel-level weights introduce
more scale features to the network and further enhance the
expressive ability of the network. By explicitly describing
the importance of inter-layer channels, model would even-
tually show the phenomenon of restraining or enhancing
some channels. Therefore, our method uses the scaling factor
produced by SEBlock as channel importance score, and prunes
filters in the same layer according to channel rank. Since
parameters in SEBlock are randomly initialized, the model
would seriously lose its prediction accuracy at first. However,
after 1 epoch fine-tuning, the model would quickly return to
its original prediction accuracy level, after several epochs it
would completely recover from adding SEBlock.

C. Average scaling factor

For SEBlock, scaling factors of channels are data-driven,
so we collect a dataset for calculating average scaling factors.
Given a collected subset with N images. We calculate average
of scaling factor IC as follows:

IC =
1

N
Fse(X<n,H,W,C>) (4)

IC is a vector having C elements, each element is average
scaling factor of corresponding channel, X<n,H,W,C> is C
input channels produced by nth image in dataset, W ,H is the
shape of each channel and Fse is the operation of SEBlock.

If the training dataset is not too large, we can directly
use the entire training dataset. However, in order to reduce
the computational complexity on large datasets, a subset of
training dataset is sufficient for calculating average scaling
factor. The amount of samples depends on the total number of
samples in the training dataset. In our experiments, 10%-20%
of the training sample is enough for importance evaluation.

D. Steps of our method

Pruning steps are shown in Fig. 3, the specific steps are as
follows:

1) Adding SEBlock. Given an original model, SEBlock
needs to be added after each convolutional layer. Then,
we would prune model layer by layer with a predefined
pruning rate p, which means p and q in Eq. 3 is equal.

2) Fine-Tuning. After adding SEBlocks or pruning, the
model’s prediction accuracy would decrease. By fine-
tuning(retraining) the model, it would recover from
damage. Meanwhile, SEBlock would scale channels
according to their contribution to the loss function.

3) Selecting Channels. We sort channels in current layer
by importance score, and select p × C channels with
small scaling factors as unimportant ones. In our exper-
iment, we set the pruning rate p of each layer to the
same.

4) Pruning. Aiming to remove low-score channels selected
in step 3, the filters and convolution kernels correspond-
ing to these channels would be removed as section A
describes.

5) Removing SEBlocks After pruning, in order to compare
pruning performance with other pruning methods, we

345

remove all SEBlocks. In fact, the SEBlock has few pa-
rameters(it is mentioned in [10] that SEBlock only leads
to about 10% increase in parameter number), which
means we could keep SEBlock in practical application.

6) Pruning the Next Layer. Go to step 2 until all layers
are pruned.

E. Pruning Strategy Adjustment

The traditional architecture like AlexNet [21] and VGGNet
[22] are often used to verify the effectiveness of pruning
methods. In these models, pruning one layer would not change
the input shape of other layers except the next layer. But
in residual networks like ResNet [14], they have shortcut
connections in residual module. Shortcut connection connects
the first layer and the last layer in residual module, add them
up as the output of residual module. The shortcut connection
requires that the shapes of input and output be the same. If the
last layer of residual module is pruned, we need to remove the
corresponding filters in the first layer without considering their
importance score. So it is difficult to prune the last layer of
a residual module, in our method, we just prune the first few
layers in a residual module, considering that most parameters
of residual modules are in these layers.

IV. EXPERIMENTS

We conduct experiments on CIFAR-10 and CIFAR-100
dataset. The CIFAR-10 dataset consists of 60000 images in
10 classes, with 6000 images per class and resolution of each
image is 32×32. The dataset is divided into a training set with
50000 images and a test set with 10000 images. The CIFAR-
100 dataset consists of 100 classes, each class contains 500
images for training and 100 images for testing.

On CIFAR dataset, we evaluate our method on two con-
volutional neural network: VGGNet [13](a variant of vgg16
on the cifar dataset) and ResNet56. The hyper-parameters
r mentioned in SEBlock is set to 8 in VGGNet and 4 in
ResNet56. For training original model, batch size is set to
128, the learning rate used in first 50 epochs was 0.1, then
reduced to 0.01. In pruning process, learning rate is set to 0.01.
Weight decay was also used to overcome over-fitting with a
coefficient of 0.0001. For calculating average scaling factor,
we randomly pick 500 images in each category on CIFAR-
10 and 50 images in each category on CIFAR-100. Padding,
random cropping and horizontal flipping are applied for data
augmentation.

A. Distribution of scaling factors

In this section, the distribution of scaling factors at each
layer are are visualized. Experiments are conducted on VG-
GNet with attention module. The distribution of scaling factors
are shown in Fig. 4.

The VGGNet contains four stages, distribution of scaling
factors in the same stage are similar, so only scaling factors
of layer 1,3,5,8 are shown. Fig. 4(a) is the result of the layer
1, which belongs to the first stage. Fig. 4(b) is the result of
layer 3, which belongs to the second stage. Fig. 4(c) is the

(a) layer 1 (b) layer 3

(c) layer 5 (d) layer 8

Fig. 4. Distribution of scaling factors.

result of layer 5, which belongs to the third stage. Fig. 4(d)
is the result of layer 8, which belongs to the fourth stage.
The results show that the distribution of scaling factors in
the same layer is quite different, especially the scaling factor
between adjacent channels. This phenomenon is similar to the
lateral inhibition of human visual neurons,which is beneficial
for extracting the shape feature of objects. With the increase
of depth, the distribution range of scaling factor decreases,
which implies that the importance of channels near the end of
neural network are similar.

B. Results on CIFAR-10

On CIFAR-10 dataset, we evaluate our method on VGGNet
and ResNet-56, the results are shown in Table I and Table II.
The M in each table means million.

TABLE I
VGGNET RESULTS ON CIFAR-10 DATASET.

Model Filters pruned Accuracy Params FLOPs
Original VGGNet 0% 92.24% 14.98M 6.27× 108

Pruned
30% 92.18% 7.43M 3.07× 108

50% 91.97% 3.82M 1.57× 108

70% 91.57% 1.42M 0.57× 108

As shown in Table I, we prune 30% filters in VGGNet
network without obvious accuracy drop, even get an increase
in accuracy when we pruned the first few layers. When
we prune 50% filters, we still could maintain the model’s
accuracy with 0.27% accuracy decrease. We conclude that
our method correctly measures the importance of the channel
which help model recover from pruning. When filter pruning
ratio comes to 70%, accuracy decreases more obviously but
still within 1% loss. It is worth noting that, by using filter-
level pruning method, number of input channels and output
channels for each layer would be reduced by 70%, so re-
duced parameters can be calculated as section III.D describes:
0.7 + (1− 0.7)× 0.7 = 91%.

346

TABLE II
RESNET-56 RESULTS ON CIFAR-10 DATASET.

Model Filters pruned Accuracy Params FLOPs
Original ResNet-56 0% 92.84% 0.85M 2.51× 108

Pruned
30% 92.43% 0.58M 1.76× 108

50% 91.82% 0.42M 1.26× 108

70% 90.86% 0.25M 0.76× 108

Table II shows the results on ResNet-56, different from
VGGNet, pruning on ResNet-56 causes a relatively large
decrease of accuracy. We prune ResNet-56 with 3 different
compression rates as well: 30%, 50%, 70% filters in each
layer respectively. Although it cause more serious accuracy
decrease than VGGNet, we still prune more than half of the
parameters with 1.02% accuracy drop.

According to our analysis, this phenomenon is reasonable
because recent network architectures has an improvement
of the utilization of parameters. For example, the shortcut
connections of ResNet actually makes network structure in a
shallow-deep state, which enhance feature fusion and feature
delivery. Thus, the parameter utilization of ResNet is much
higher than traditional models without shortcut connections,
which leads to poor performance on a large percentage of
pruning. This phenomenon reminds us that more attentions
should be paid when pruning the networks with shortcut
connections.

C. Results on CIFAR-100

Our method was compared with Weight Sum [9] and APoZ
[10] on CIFAR-100 by pruning VGGNet.

Fig. 5. Our method, Weight sum and APoZ’s results on VGGNet.

As shown in Fig. 5, nine groups of experiments were con-
ducted on all methods. Filter pruning ratio of each experiment
range from 10% to 90% in step length of 10%. Weight sum
has the fastest decline in model accuracy, the accuracy of
model begins to decrease significantly when pruning ratio is
higher than 10%. It is easy to understand that weight sum

only takes parameter magnitude into consideration, which is
not directly related to the model’s loss function. APoZ has
a better performance, when the pruning rate reaches 50% it
begins to have a significant drop in accuracy. This result is
reasonable since APoZ considers more further information,
channels with more value of zero have less influence on the
following layers. However, when pruning ratio is more than
80%, APoZ performs worse than weight sum.

Our method has the best performance among the three
methods mentioned above. When pruning rate is less than
50%, the model has almost no drop of accuracy, even if the
pruning rate is higher than 50%, the accuracy of the model still
decreases slower than the other two methods. An interesting
result is that when we prune 90% filters in each layer, our
method still retain a certain degree of classification ability,
unlike the other two methods whose ability to classify is
completely lost. The result indicates that our method correlates
the importance of channels with model loss function, which
describes the importance of the channels naturally.

D. Results on Mobile Device

The goal of neural network pruning is to reduce the
computational resource consumption of neural networks, so
as to facilitate deployment on device with limited resources.
Therefore, We deployed neural networks on mobile phones
for verifying the performance improvement of our pruning
method in real scenarios. We tested the performance of the
original VGGNet and the VGGNet after removing 50% filters
on mobile phones, the device information is: 4 GB Memory,
Qualcomm Snapdragon 632 CPU, 2.0GHz basic frequency,
training dataset is CIFAR-10 and the framework is Tensorflow.
The results is shown in Table III.

TABLE III
RESULT ON MEIZU NOTE 6 MOBILE PHONE.

Parameter Original 50% filters pruned
Inference time 1046ms 301ms

FLOPs 6.27× 108 1.57× 108

Model file size 59.9MB 15.3MB
Parameter Number 14.98M 3.82M
Parameter pruned 0% 75%

Accuracy 92.24% 91.97%

Due to the inference time is affected by hardware, we
calculate the average inferences time of classifying a image.
Obviously, the pruned model has a significant reduction in file
size and inference time. It takes more than 1000 milliseconds
for the original model to classify a image, which results in a
significant pause of application. On the contrary, the pruned
model only takes 301 milliseconds to classify a image, which
greatly improves user experience. In addition, the endurance
capability of device also benefits from the reduction of com-
putational resource consumption.

V. CONCLUSION

In this paper, we have described a pruning method based on
attention mechanism. Different from existing pruning method

347

based on direct impact of parameters, we use SEBlock to
automatically learn the importance of channel during train-
ing. As low-score channels and corresponding parameters
are removed, memory and computing cost of model would
be effectively saved. We validated our method on different
datasets, results show that it surpass existing methods under
the same pruning ratio. In addition, our method does not
require any dedicated libraries or hardwares, thus can be
combined with other compression methods.

In future work, we would conduct our method on latest
network and larger dataset to verify the generalization of our
method. We tend to explore pruning method based on global
importance score instead of pruning fixed percentage filters in
each layer.

ACKNOWLEDGMENTS

This work was partly supported the NSFC-Guangdong Joint
Found(U1501254) and China Information Security Special
Fund (NDRC).

REFERENCES

[1] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and
Yixin Chen. Compressing neural networks with the hashing trick. In
International Conference on Machine Learning, pages 2285–2294, 2015.

[2] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In European Conference on Computer Vision, pages
525–542. Springer, 2016.

[3] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[4] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–99, 2015.

[5] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. 2015.

[6] Guorui Zhou, Ying Fan, Runpeng Cui, Weijie Bian, Xiaoqiang Zhu, and
Kun Gai. Rocket launching: A universal and efficient framework for
training well-performing light net. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[7] Babak Hassibi and David G Stork. Second order derivatives for network
pruning: Optimal brain surgeon. In Advances in neural information
processing systems, pages 164–171, 1993.

[8] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage.
In Advances in neural information processing systems, pages 598–605,
1990.

[9] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter
Graf. Pruning filters for efficient convnets. In The International
Conference on Learning Representations. MIT, 2017.

[10] H Hu, R Peng, YW Tai, CK Tang, and N Trimming. A data-driven
neuron pruning approach towards efficient deep architectures. arxiv
preprint. arXiv preprint arXiv:1607.03250, 2016.

[11] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7132–7141. IEEE, 2017.

[12] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. Technical report, Citeseer, 2009.

[13] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images, 2009.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[15] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems, pages 1135–1143, 2015.

[16] Song Han, Huizi Mao, and William J Dally. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding. In The International Conference on Learning
Representations, pages 1—-14. MIT, 2016.

[17] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. Eie: efficient inference engine on
compressed deep neural network. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), pages 243–
254. IEEE, 2016.

[18] Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise
brain damage. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2554–2564, 2016.

[19] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. Learning deep features for discriminative localization. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2921–2929, 2016.

[20] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 618–626, 2017.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[22] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

348

An Integrated Software Vulnerability Discovery
Model based on Artificial Neural Network

Gul Jabeen⇤, Junaid Akram⇤, Luo Ping⇤, Akber Aman Shah†
⇤State Key Laboratory of Information Security, School of Software Engineering, Tsinghua University China.

Email: [jgl14,znd15]@mails.tsinghua.edu.cn
Email: luop@mail.tsinghua.edu.cn

†School of Economics and Management, University of Chinese Academy of Science, Beijing, China.
Email: akberaman@hotmail.com

Abstract—Quantitative approaches for software security are
needed for effective testing, maintenance and risk assessment of
software systems. Vulnerabilities that are present in a software
system after its release represent a great risk. Vulnerability
discovery models (VDMs) have been proposed to model vul-
nerability discovery and have has been fined to vulnerability
data against calendar time. Though, these models have various
shortcomings include changes and development of VDMs for
different dataset due to diverse approaches and assumptions in
their analytical formulation. There is a clear need for an intensive
investigation on these models to enhance predictive accuracy
of existing VDMs and adopt the actual behavior of software
vulnerabilities which were not modeled previously. This study
proposed an integrated model to predict a number of software
vulnerabilities by hybridizing the Multi-Layer Perceptron (MLP)
artifical neural network and Vulnerability Discovery Models.
The proposed model is also widely applicable across various
vulnerability datasets and models due to its input diversity by
providing improved fitting and predictive accuracy. Further, the
experimental results show that this model not only retained the
properties of traditional parametric VDM models as well as
MLP’s good nonlinear mapping ability and useful generalization.

keyword Vulnerability discovery model, Artificial neural
network, Integerated model, Security, Multi-Layer Perceptron
neural network

I. INTRODUCTION

With the development of Internet technology, software vul-
nerabilities have increased rapidly and caused an increasing
number of serious security issues. A critical vulnerability
provides an attacker with the ability to access full control of
a software [1] [2]. Therefore, a quantitative characterization
of the vulnerability discovery rates is necessary to assess the
risks associated with the product.

VDMs are the specialization of software reliability growth
models (SRGM) that focus on security errors. Nonetheless,
most previous studies reveal that these models are based
on SRGMs, which are not empirically enough to deal with
vulnerabilities of software [3] [4]. VDMs intensive evalu-
ating the security profile of software as compared to the
vulnerability predications models because they are focusing
only on vulnerable components of software [5] [6] [7] [8]
[9] [10]. Software vendors and customers are using accurate
VDMs to understand security trends and patch management.
However, current research studies are focusing to develop

further improved VDMs to maximize their predictive accuracy.
First VDM model (thermodynamic model) was proposed by
Anderson, which was based on SRGMs. However, this model
is considered as worst in terms of fitting empirical datasets.

Similarly, various statistical models are used either at-
tempting to capture the underlying processes or applying
the principles used in other fields of science to discover
vulnerabilities. These models are classified into two categories:
time-based and effort-based. Time-based models measure the
total number of vulnerabilities over time while effort-based
models count vulnerabilities based on testing efforts. The
current study focuses on time-based models, which still need
further investigation to enhance fitting and predictive accuracy
of VDMs. Numerous time-based VDMs model are proposed in
previous studies i.e., linear model [11], Rescorla’s exponential
(RE) models [12], Alhazmi and Malaiyas logistic (AML) [3]
and multiversion models [13], Weibull model [14], Younis
folded (YF) model, Kapur’s logistic model [15], Anand and
Bhatt’s hump-shaped model [16], and Anand multi-version
VDM [17], and Sharma’s changing point model [18] to model
the rate at which vulnerabilities discovered.

All of the above models are proposed to obtain better fitting
and predicting models for different vulnerability datasets but
most of them are against of certain vulnerability datasets.
These models try to get a better model under a certain
condition, but it cannot give good results with every vul-
nerability dataset. Nonetheless, these models have numerous
shortcomings as discussed below:

1) VDMs uses different approaches with respect to the
assumptions and parameters. In this regards, VDMs can
predict different vulnerability discovery rates by using
the same dataset.

2) A single software vulnerability discovery model
premised on the constant assumptions and can predict
different discovery rates using the same data.

As the neural network can be applied for a variety of
areas because without an assumption similar to traditional
models, the used model is more universal. In this study, we
proposed an integrated approach to solve the aforementioned
key challenges of traditional software vulnerability discovery
models. The purpose of the study is to provide a flexible

DOI reference number: 10.18293/SEKE2019-168
349

TABLE I: Software Vulnerability Discovery models used in evaluation

Models Name Model function Description
Rescorla Exponential (RE) model [19] V (t) = N ⇤ (1� e�at) Exponential model is proposed to fit real data. The

number of vulnerabilities discovered at time t decays
exponentially with the time.

Alhazmi-malaiya Logistic (AML) Model [3] V (t) = B
B⇤C⇤eABt+1

It is based on the capturing the underlying process of
vulnerability discovery and the rate of vulnerability
depends on two factors.

Weibull model [14] V (t) = �{1� e
�(t

�)↵} It assumes that the vulnerability discovery rate varies
according weibull probability distribution function.

Younis Folded (YF) Model [20] V (t) = �
2 [erf(

t�⌧p
2↵

) + erf(t+⌧p
2↵

)] It shows vulnerability discovery model based on the
folded normal distribution.

method with an accurate representation of data frequencies
regardless of their different vulnerabilities discovery rates. An
integrated model takes the assistance of ANN (MLP), which
serve as a non-linear hybrid system of traditional VDMs. The
classical software vulnerability discovery models are used as
the base models and the MLP technique is used to combine the
results of base models, which helps to eliminate the influence
of external parameters and other anomalies of VDMs, arise
due to the assumptions made by these parametric models. The
proposed model can take the advantage of classical VDMS in
an application domain, as in the linear combination model, and
the generalization ability of a neural network, and can improve
the predictive ability of the software vulnerability assessment
models.

The rest of this paper is organized as follows. In Section
II, the proposed method is defined in detail. Experimentations
and Results analysis are performed in Section III. In section
IV, we discuss and highlights the threats to validity. In Section
V, we have discussed the related work. Finally, we conclude
our work in Section VI.

II. PROPOSED MODEL

The proposed method is elaborated in Fig 1. It is divided
into two phases: Phase-I and Phase-II. Detailed elaboration of
these phases has been presented below:

A. Phase-I

In the proposed integrated model the results of multiple
basic vulnerability prediction models serve as input to the
MLP neural network. Therefore, the appropriate base models
needed to be selected from many of the VDMs. As vulnerabil-
ities identified in software shows three stages of the S-shaped
models [3]. The learning phase is started from the release
of the system until the onset of sustained growth because
of increasing popularity. It is followed by the linear phase
when most of the vulnerabilities are to be discovered. The
saturation phase is eventually considered as the last stage.
Alhazmi and Malaiya defined mathematically the transition
point between different phases for the AML model. Therefore
S-shaped models are more accurate than non-S-shaped models
for vulnerabiltiy discovery process. However, S-shaped models
fitting and predictive capability also depends on the skewness
in target vulnerabilities, therefore they never give good predic-
tive results for every vulnerability dataset. In this regard, we

have used the four most popular VDMs (i.e., models ranging
from an exponential to S-shaped models), which are shown in
Table 1, with detailed equations.

After selecting the based VDM models, combined results of
these models, are used as input to the MLP neural network.
We have used the cumulative number of vulnerabilities as a
dependent variable, and time which is measured by months,
as an independent variable. A set of known cummulative
vulnerability data sequences v1(t), v2(t), v3(t) · · · vn(t) are
used as a input to vulnerability discovery models such as:

V DMi = f(v1(t), v2(t), ···, vn(t), a1, a2, ···, ar), (i = 1, 2, ..n)
(1)

where a1, a2, · · ·, an are parameters, and t denots specific
vulnerability occurence time. We have used it on a monthly
basis. The input vulnerability data sequence is denoted as
v1(t), v2(t), · · ·, vn(t) and the future trend vulnerability dis-
covery rates can be written as: vn+1(t), vn+2(t), vn+3(t) · · ·
vn+l(t). After applying the input data sequences v1(t), v2(t), ··
·, vn(t) in each vulnerability discovery model (V DM i).
Here, i shows the specific number of VDMs. However, n

denoted the total number of vulnerabilities used to estimate
parameters and n+ j shows the future predicted values.

The output of first VDM 1 approximation solution/fitted
data and its future trend or predicted values are determined as
V DM 1(fit) = y

(1)
1 , y

(1)
2 , y

(1)
3y

(1)
n and V DM 1(pre) =

y
(1)
n+1, y

(1)
n+2, y

(1)
n+3....y

(1)
n+l respectively.

Same process is repeated for the i number of VDMs, which
generate the specific outputs regarding the input vulnerabil-
ity data sequences. After applying the input data sequences
v1(t), v2(t), · · ·, vn(t) in i

th vulnerability discovery models,
we determine the output of last VDM approximation solu-
tion/fitted data and its predicted values as
V DM i(fit) = y

(i)
1 , y

(i)
2 , y

(i)
3y

(i)
n

and
V DM i(pre) = y

(i)
n+1, y

(i)
n+2, y

(i)
n+3....y

(i)
n+l respectively.

In the first phase the input variable v1, v2,vn are used to
get the estimated and predictive results of different VDMs.
Assume that the i

th number of VDMs have been used to
estimate the vulnerabilities and y

(i) denotes estimated and
predictive outputs of ith models.

B. Phase-II

In the next stage, the results of vulnerability discovery
models have been combined by using multi-layer perceptron.

350

Fig. 1: Detailed diagram of an Integrated VDM model

The MLP is a deep artificial neural network. It is comprised
of more than one perceptrons. It works the same way as feed-
forward neural network where the back propagation algorithm
is in the form of gradient descent function. Almost all al-
gorithms that are applied for MLP training tried to reduce
the amount of error by using appropriate functions. In this
study, we have used three-layered multilayer perceptron which
is composed of an input layer to receive input data a nd an
output layer that predicts input, and in between those two
layers, an arbitrary number of hidden layers are present that are
the true computational engines of MLP. A nonlinear function
is associated with each node like a sigmoid function, except
for the input nodes. The MLP network learned a specific
target function and adjust weights properly using a general
method of linear optimization (gradient function). For this,
the derivative of the errors function concerning the network
weight is measured. The network weights are changed because
of error decreases. The square Euclidean distance is used to
compute the error between the actual output and the desired
output of a network. The following steps are used, to perform
experimentation:

1) Step-1: The input and output variables are presented
first. The vulnerability discovery models outputs from
phase 1 are used as input variable (V DM 1(fit),
V DM 2(fit), ..., V DM i(fit)) and the actual vulner-
ability data is used as target variable v1(t), v2(t), v3(t) ·
· · vn(t)

2) Step-2: The entire set of vulnerability data is di-
vided into two parts: training and the testing part.
The training dataset is used to train the network for
predicting software vulnerabilities. The fitted data of
VDMs y(i)1 , y

(i)
2 , y

(i)
3y

(i)
n are used to train the network.

For testing the predicted values of different VDMs
y
(i)
n+1, y

(i)
n+2, y

(i)
n+3....y

(i)
n+l are used.

3) Step-3: The next step in this study is to use 10-fold cross
validation method, which divides the data into ten folds.
The nine parts are used for training, and the tenth part
is used for validation. It is the best validation process to
maximize the utilization of vulnerability dataset through

Fig. 2: Models fitting for Window 10

Fig. 3: Models fitting for Internet Explorer

repeated resampling of the same dataset randomly.
4) Step-4: After dividing training data into 10-folds, the

MLP model is applied for training the models.
5) Step-5: In this step, the tested data

y
(i)
n+1, y

(i)
k+2, y

(i)
n+3....y

(i)
n+l of VDMs is applied to get the

target predicted values v1(t), v2(t), v3(t) · · · vn(t). The
target values are considered as more closer

6) Step-6: The statistical efficacy measures are estimated
based on the predicted results for all the selected
datasets.

III. EXPERIMENTATION AND ANALYSIS

The proposed model has been validated on the security
vulnerability data of two software products namely Microsoft

351

TABLE II: Comparison of VDM models used in evaluation

Models
Windows 10

(�2 critical = 83.6753)
Internet Explorer

(�2 critical = 56.9424)
�2 Pvalue DF R2 �2 Pvalue DF R2

RE Model 409.5481 7.467E-52 64 0.9810 428.7739 4.57E-66 41 0.9823
AML Model 1686.6183 0.000E+00 64 0.9739 421.3551 1.33E-64 41 0.9815
Weibull Model 109.5576 3.422E-04 64 0.9938 91.3514 1.06E-05 41 0.9941
Younis Model 245.9183 3.906E-23 64 0.9880 138.7848 1.50E-12 41 0.9913
Proposed Model 34.9911 1.0000 64 0.9990 52.8216 0.102092 41 0.9959

Windows 10 and Internet Explorer obtained CVE details1.
CVE details is a publicaly available CVE security vulnerability
database/information source. Furthermore, a set of models
have been used in order to evaluate which model is performing
best by comparing their overall performance with the proposed
model. We have estimated the parameters of the VDMs using
R [21] tool.

A. Model fitting and goodness of fit analysis

To measure the goodness-of-fit, researchers always use
Pearson’s Chi-square (�2) and calculate the statistical value
of the curve using the following function.

�
2 =

nX

t=1

(Ot � Et)2

Et
(2)

Where Ot and Et are the observed and expected samples
at time t (tth value of the observed sample); Et denotes the
expected cumulative number of vulnerabilities. If the value of
�
2 of VDM for a specific dataset obtains a value less than

the corresponding Chi-critical (�2
critical) value, with the

given significant alpha level (0.05) and degree of freedom, it
is considered that the model is acceptable. The P-value shows
the probability that a statistical value as high as the values
obtained by Equation (2) could have occurred by chance. The
experimentation data is obtained from the analysis of four
VDMs estimated and predicted results. The fitting results of
the four VDMs (RE, AML, Weibull and Younis) for both of
the software datasets, with there fitted entries based on the �

2

test P-values.
For Windows 10, the proposed models fit has remarkable

improvement than other models in Table II, and the fit is
considered very good since the P-value of the �

2 test is higher
than 0.05. Also, the R

2 values are more close to 1 than other
single VDMs. From Fig 2, of the fitted vulnerabilities and the
predicted vulnerabilities for the selected models, shows clearly
that the hybrid approach performing best results than others.
Thus, it is required to combine the output results of different
models than only depend on single model results. It not only
retains the properties of traditional software discovery models
but also combines neural network (MLP) good nonlinear
mapping ability and useful generalization.

For Internet Explorer, the proposed model also shows good
fit than other models, as shown in Table II. The P-value

1www.cvedetails.com

obtained is 0.102092, which is higher than �
2 test P-value

0.05. Also, the R
2 values are more close to 1 than others. Fig

3, shows that the fitted and predicted curve of the proposed
model has better predictive ability among all other models
under consideration.

Thus, it is also concluded that the proposed integrated model
can produce good results with different types of vulnerability
datasets than the single traditional VDMs. It is also clearly
visible in Fig 2 and 3 that the integrated model developed
by combining four models have better fitting and end-point
predictive capability than the models alone.

TABLE III: Average Bias and Average Errors comparison

Windows 10 Internet Explorer
AB AE AB AE

RE 0.2881 0.9990 -1.7984 1.7984
AML -2.7989 0.0000 -1.5529 1.5529
Weibull -0.4353 0.0000 0.3348 0.3348
Younis -0.9040 0.0000 1.5041 1.5041
Proposed 0.0143 0.0000 -0.1472 0.2443

B. Improved predictive capabilities of VDMs

Goodness-of-fit tests often used to assess the applicability
of VDMs. The main use of these models is to predict future
trends based on the previous data, rather than reviewing the
past behavior. Therefore, predictive capability should also be
considered important than just model fitting. The estimated
final values for each time point produced by the four existing
and proposed integrated VDM are compared with the actual
number of vulnerabilities to calculate the predicted errors. The
prediction time span is selected as long term, which is the
main concern of software users to decide whether the select the
software for inclusion in a product with a longer lifetime [22].
Therefore, the last 12 months vulnerability data is predicted
for both software. The two normalized prediction capability
measures [23], average error (AE) and Average bais (AB), as
shown in Equation 3 and 4 respectively, are evaluated.

AE =
1

n

nX

t=1

|⌦t � ⌦

⌦
| (3)

AB =
1

n

nX

t=1

⌦t � ⌦

⌦
(4)

In the above equations, n is a total number of time points
(in months), and ⌦t is the estimated number of total vulnera-

352

Fig. 4: Predicted Errors of different VDMs for Windows 10

Fig. 5: Predicted Errors of different VDMs for Internet Ex-
plorer

bilities at time t, and ⌦ is the actual number of a total number
of vulnerabilities.

The normalized error values (⌦t�⌦
⌦) for windows 10 and

Internet Explorer 11 are plotted in Fig 4 and 5. The values of
AB and AE are given in Table III. AE always give positive
values and AB may give both positive and negative. Fig 4
and 5 shows that the improved models give better predictive
results. As in Table 4, the AB and AE values for both yeilds
good results after applying HPEIAM method on each of the
models. The results yields after applying our technique give
lower AB and AE values than the base models itself.

IV. DISCUSSION AND THREADS TO VALIDITY

In this study, we put forward MLP based integrated vul-
nerability discovery model, and verify the model’s superiority
over other models with experimentation. This integrated model
is comprised of two phases including the first phase, which
reflects the linear combination VDMs, and a second neural
network phase, which serve as non-parametric modeling of
input data sequences. The proposed approach focuses on the
relationship of the performance of VDMs with the specific
vulnerability discovery datasets. The fitting capabilities of four
VDMs along with the chi-square goodness of fit test as well as
R-squared metric indicate that the integrated model fits well,
for both of the datasets. Besides, the future trend predictive
capability can also be estimated using the two main predictive
measuring criterion: AB and AE. The results reveal that the
integrated model’s predictive results also show more accuracy
than the other existing VDMs predictive capability. Therefore,
we conclude that the proposed method can be applied as a

solution for software vulnerability rates estimation problems,
outperform competing VDMs investigated in this study.

As the proposed integrated model makes the results of
multiple basic vulnerability models (base model) as input to
the MLP neural network, the accuracy is in part dependent
on the predictive accuracy of these models. Therefore the
appropriate base models need to be selected from many
software vulnerability models. In this study, only four VDMs
have been selected as base models, however to analyzing
the characteristics of software vulnerability data, and using
the appropriate model selection based on specific criterion is
required to get more accurate results. Another limitation is
the sample data. Our study analyze publicly reported vulner-
abilities without considering unreported data. While this is a
common drawback among vulnerability research, overcomning
this limitation requires direct contact with software vendors.

V. RELATED WORK

Recently, many VDMs have been proposed by researchers,
to model the software vulnerabilities accurately. These models
either attempting to capture the underlying processes or apply-
ing the principles used in other fields of science to discover
vulnerabilities. Each model uses a different approach and with
different assumptions and parameters.

Among them, the exponential model is designed to fit the
real data [12]. In this model, two possible trends were exam-
ined, such as the quadratic model and the exponential model.
The logarithmic model shows the total number of vulnerabil-
ities as logarithmic growth that was first proposed by Poisson
[24] and later it is used by Rahimi [25] adjusting fitting of the
model to the vulnerabilities of a specific application. Alhazmi
and Malaiya proposed a logistic model called AML model in
[26] and analyzed AML in [27]. The predictive capabilities
were evaluated in [28] and [4] by using a different set of
data. Chan et al. proposed a multi-cycle vulnerability discovery
model, which helps to extend the scope of existing models
[29]. Younis et al. [20] inspected the applicability of Folded
VDM and compared it to AML on Win7, OSX 5.0, Apache
2.0 and IE8, and stated that YF was somewhat better than
AML. Joh and Malaiya proposed different S-shaped models
based on the distribution of Weibull, normal, beta and gamma
distribution to evaluate the applicability of the models using
different approaches [30]. Kapur et al. proposed models for the
prediction of software vulnerabilities and determine whether
software reliability growth models can be used to predict
the vulnerability discovery process and show good prediction
results [31]. Recently, Anand and Bhatt [16] proposed a hump-
shaped model to capture the vulnerability exposure pattern due
to the attractiveness of a software product in the market using
weighted criteria based ranking approach. Joh and Malaiya
analyze vulnerability data using the seasonal index and auto-
correlation function approaches, which can be used to improve
the vulnerability discovery models [32]. Sharma and Singh
proposed a new vulnerability discovery model based on the
gamma distribution [33].

353

Each model defined above uses different approach with
different assumptions and parameters. As a result, the VDMs
can predict different vulnerability discovery rates using the
same data and there is no guidance available about which
model should be used in a given situation. This paper attempts
to address these problems by integrating the classical VDMs
and neural networks.

VI. CONCLUSION

In this study, based on the analysis of the neural network
modeling and the linear combination model, we proposed a
neural-network-based integrated model. The proposed model
achieved better fitting and predictive capability and perform
similar or superior as compared to classical and state of art
VDM models. It not only retains the properties of vulnerability
discovery models but also combines the MLP’s good nonlinear
mapping ability and generalization. To our knowledge, this is
the first study which combines the VDMs and neural network
to predict the number of vulnerabilities. Since, the proposed
integrated method utilizes the results of classical software
vulnerability discovery models serve as input to MLP neural
network, so the further study is needed to select appropriate
base models from number of software VDMs. In addition, a
number of further investigations are possible such as replicate
the experiment with advance machine learning techniques and
more vulnerability datasets.

VII. ACKNOWLEDGMENT

This research was supported by Beijing National Research
Center for Information Science and Technology (BNRist), and
National Natural Science Foundation of China under Grant
Nos. 90818021, 9071803.

REFERENCES

[1] C. P. Pfleeger and S. Lawrence, Security in Computing. Prentice-Hall,
1997.

[2] X. Yang, G. Jabeen, P. Luo, X.-L. Zhu, and M.-H. Liu, “A unified
measurement solution of software trustworthiness based on social-to-
software framework,” Journal of Computer Science and Technology,
vol. 33, no. 3, pp. 603–620, 2018.

[3] O. H. Alhazmi and Y. K. Malaiya, “Quantitative Vulnerability Assess-
ment of Systems Software,” Reliability and Maintainability Symposium,

2005. Proceedings. Annual, pp. 615–620, 2005.
[4] ——, “Application of vulnerability discovery models to major operating

systems,” IEEE Transactions on Reliability, vol. 57, no. 1, pp. 14–22,
2008.

[5] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in ACM Conference on computer and

communications security. Citeseer, 2007, pp. 529–540.
[6] V. H. Nguyen and L. M. S. Tran, “Predicting Vulnerable Software Com-

ponents with Dependency Graphs,” Proceedings of the 6th International

Workshop on Security Measurements and Metrics - MetriSec ’10, p. 1,
2010.

[7] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Transactions on

Software Engineering, vol. 40, no. 10, pp. 993–1006, 2014.
[8] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating

complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Transactions on Software Engineering,
vol. 37, no. 6, pp. 772–787, 2011.

[9] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,
“Automatic feature learning for vulnerability prediction,” arXiv preprint

arXiv:1708.02368, 2017.

[10] Y. Shin and L. Williams, “Can traditional fault prediction models be used
for vulnerability prediction?” Empirical Software Engineering, vol. 18,
no. 1, pp. 25–59, 2013.

[11] O. H. Alhazmi and Y. K. Malaiya, “Prediction capabilities of vulner-
ability discovery models,” in RAMS’06. Annual Reliability and Main-

tainability Symposium, 2006. IEEE, 2006, pp. 86–91.
[12] E. Rescorla, “Is finding security holes a good idea?” pp. 14–19, 2005.
[13] J. Kim, Y. K. Malaiya, and I. Ray, “Vulnerability discovery in multi-

version software systems,” in 10th IEEE High Assurance Systems

Engineering Symposium (HASE’07). IEEE, 2007, pp. 141–148.
[14] H. Joh and Y. K. Malaiya, “Modeling Skewness in Vulnerability Discov-

ery,” Quality and Reliability Engineering International, no. September
2013, 2014.

[15] P. Kapur, N. Sachdeva, and S. Khatri, “Vulnerability discovery model-
ing,” in International conference on quality, reliability, infocom technol-

ogy and industrial technology management, 2015, pp. 34–54.
[16] A. Anand and N. Bhatt, “Vulnerability discovery modeling and weighted

criteria based ranking,” Journal of the Indian Society for Probability and

Statistics, vol. 17, no. 1, pp. 1–10, 2016.
[17] A. Anand, S. Das, D. Aggrawal, and Y. Klochkov, “Vulnerability

discovery modelling for software with multi-versions,” in Advances in

Reliability and System Engineering. Springer, 2017, pp. 255–265.
[18] R. Sharma, R. Sibal, and S. Sabharwal, “Change point modelling in

the vulnerability discovery process,” in International Conference on

Advanced Informatics for Computing Research. Springer, 2018, pp.
559–568.

[19] E. Rescorla, “Is finding security holes a good idea?” IEEE Security &

Privacy, vol. 3, no. 1, pp. 14–19, 2005.
[20] A. Younis, H. Joh, and Y. Malaiya, “Modeling learningless vulnerability

discovery using a folded distribution,” in Proc. of SAM, vol. 11.
Citeseer, 2011, pp. 617–623.

[21] R. C. Team, “R development core team. r: A language and environment
for statistical computing. r foundation for statistical computing, vienna,
austria; 2014,” Google Scholar.

[22] F. Massacci and V. H. Nguyen, “An empirical methodology to evaluate
vulnerability discovery models,” IEEE Transactions on Software Engi-

neering, vol. 40, no. 12, pp. 1147–1162, 2014.
[23] Y. K. Malaiya, N. Karunanithi, and P. Verma, “Predictability of software-

reliability models,” IEEE Transactions on Reliability, vol. 41, no. 4, pp.
539–546, 1992.

[24] J. D. Musa and K. Okumoto, “A logarithmic poisson execution time
model for software reliability measurement,” in Proceedings of the 7th

international conference on Software engineering. IEEE Press, 1984,
pp. 230–238.

[25] S. Rahimi, Security vulnerabilities: Discovery, prediction, effect, and

mitigation. Southern Illinois University at Carbondale, 2013.
[26] O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability assessment

of systems software,” in Reliability and Maintainability Symposium,

2005. Proceedings. Annual. IEEE, 2005, pp. 615–620.
[27] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing and

predicting security vulnerabilities in software systems,” Computers &

Security, vol. 26, no. 3, pp. 219–228, 2007.
[28] O. H. Alhazmi and Y. K. Malaiya, “Measuring and enhancing prediction

capabilities of vulnerability discovery models for apache and iis http
servers,” in Software Reliability Engineering, 2006. ISSRE’06. 17th

International Symposium on. IEEE, 2006, pp. 343–352.
[29] K. Chan, D. Feng, P. Su, C. Nie, and X. Zhang, “Multi-cycle vulnerabil-

ity discovery model for prediction,” Journal of Software, vol. 21, no. 9,
pp. 2367–2375, 2010.

[30] H. Joh and Y. K. Malaiya, “Modeling skewness in vulnerability discov-
ery,” Quality and Reliability Engineering International, vol. 30, no. 8,
pp. 1445–1459, 2014.

[31] P. Kapur, V. S. Yadavali, and A. Shrivastava, “A comparative study of
vulnerability discovery modeling and software reliability growth model-
ing,” in Futuristic Trends on Computational Analysis and Knowledge

Management (ABLAZE), 2015 International Conference on. IEEE,
2015, pp. 246–251.

[32] H. C. Joh and Y. K. Malaiya, “Periodicity in software vulnerability dis-
covery, patching and exploitation,” International Journal of Information

Security, vol. 16, no. 6, pp. 673–690, 2017.
[33] R. Sharma and R. Singh, “Vulnerability discovery in open-and closed-

source software: A new paradigm,” in Software Engineering. Springer,
2019, pp. 533–539.

354

Towards Machine Learning for Learnability
of MDD tools *

1st Saad Bin Abid
Model-based Systems Engineering (MbSE)

fortiss GmbH.
Munich, Germany

abid@fortiss.org

2nd Vishal Mahajan
Technical University of Munich

Munich, Germany
vishal.mahajan@tum.de

3rd Levi Lúcio
Model-based Systems Engineering (MbSE)

fortiss GmbH.
Munich, Germany
lucio@fortiss.org

Abstract—Learning how to build software systems using
new tools can be a daunting task to anyone new to the job.
This is especially true of tools that provide a large number
of functionalities and views on the system under development,
such as IDES for Model-Driven Development (MDD). Applying
Machine Learning (ML) techniques can help in this state of
affairs by pointing out to appropriate next actions to rookie
or even intermediate developers. AutoFOCUS3 (AF3) is a
mature MDD tool we are building in-house and for which we
provide regular tutorials to new users. These users come from
both the academia (e.g, students/professors) and the industry
(e.g. managers/software engineers). Nonetheless, AF3 remains
a complex tool and we have found there is a need to speedup
the learning curve of the tool for students that attend our
tutorials – or alternatively and more importantly for others that
simply download the tool and attempt using it without human
supervision. In this paper, we describe a machine learning-based
recommendation system named MAGNET for aiding beginner
and intermediate users of AF3 in learning the tool. We describe
how we have gathered data and trained an ML model to suggest
new commands, how a recommender system was integrated in
the AF3, experiments we have run thus far, and the future
directions of our work.

AF3– MAGNET demo video: https://tinyurl.com/y5skeeks

Index Terms—Model-Driven Development (MDD), AutoFO-
CUS3, Machine Learning, Intelligent Recommendation Systems
(IRS), Eclipse IDE, Domain-Specific Languages () development
interaction data

I. INTRODUCTION

Modern IDES are extremely rich in functionality. Envi-
ronments such as the Eclipse IDE [4] or the whole range
of tools proposed by JETBRAINS [6] are complex, offer an
ever-increasing amount of functionalities and are highly cus-
tomizable. Clearly, over the past decade, IDES have become
increasingly competent at their jobs and help the user in a
smart manner, by offering intelligent auto-completion, con-
textual quick fixes and intentions that help with development
productivity while lowering learning curves.

For the past 15 years, we have been developing at fortiss
the Eclipse-based AF3 tool [14], [28], for building embedded
systems. AF3 is mature and stable and includes articulated
perspectives for the complete lifecycle of the development

DOI 10.18293/SEKE2019-050

of embedded systems: from requirements, to architecture,
deployment, code generation, simulation and verification.

The goal of AF3 is to demonstrate the feasibility, applica-
bility and relevance of MDD tools. It is an open source tool
with a 6-month release period and has served and serves as a
means to demonstrate state-of-the-art MDD technology. It is
also used as a boiler plate to develop proof-of-concept projects
with industrial partners [15], [16], [22], [23].

We have recently started offering a tutorial on AF3 [2] to
the academic community and to partner or interested com-
panies. The tutorial involves creating and deploying control
software onto a real vehicle and implies manipulating different
types of software development perspectives (mostly graphical
but also textual) via the Eclipse IDE. Given the learning the
necessary IDE manipulations requires effort and constant at-
tention and explanations from dedicated human tutors, we have
decided to develop an intelligent and non-invasive automated
tutor that can be invoked at the press of a button.

Because AF3 offers interconnected visual (model-based)
perspectives of the logic of a system under development,
providing automated help in such settings differs from doing
so for code-based IDES. Similar tools to AF3 are MATLAB
SIMULINK [7] or LABVIEW [10]. AF3 also partly falls in the
category of Domain-Specific Language (DSL) workbenches
such as MPS [6], METAEDIT+ [9] or ATOM3 [21] – although
building DSLS in AF3 must be done programmatically and
outside the tool itself, by using EMF facilities.

In this paper we report on our first steps in the usage of ML
to aid beginner students in the discovery and understanding of
the AF3 tool. In particular, we have implemented an Intelligent
Recommendation System (IRS) called MAGNET, that suggests
next steps in the context of an AF3 tutorial. The next steps are
shown to the user as short videos illustrating the completion of
a low-level task, e.g. building states, transitions or simulating
the system.

This article is organised as follows: in section II we present
the main functionality of the tool, as seen from the point of
view of an AF3 developer. Section III details how we have
trained and deployed a recommender system in AF3. We then
go on to discuss some preliminary results in section V and
to place our work regarding the state-of-the-art in section IV.
We conclude with future directions in section VI.

355

https://tinyurl.com/y5skeeks

II. HIGHLIGHTS

The MAGNET tool is at its core an Intelligent Recommen-
dation System. Core to MAGNET are:

• a multiclass classification model trained by using a ma-
chine learning algorithm using anonymized sessions of
previous students of AF3, and

• recommendation videos that illustrate accomplishing cer-
tain tasks in AF3.

The Multiclass classification model in the IRS predicts,
with a very short delay, the state of advancement of the
student in the tutorial. The prediction is based on the previous
interactions of the student with AF3, as well as well as on
the previously learned multiclass classification model. Based
on the predicted state, the user is then presented with relevant
hints that suggest ways of continuing the tutorial – in the
form recommendation videos that demonstrate common low-
level of AF3. The videos themselves independent from the
tutorial and were built by the Human-Centered Engineering
department at fortiss [5] having in mind further reuse for an
enlarged IRS. The recommendation videos illustrate common
modelling tasks such as how to create a component or a
state automaton, how to add transitions or action code to the
transitions of an automaton or how to simulate a given soft-
ware model. The aim is that the new users quickly familiarize
themselves with the common visual manipulations of the tool
while going through the tutorial.

The recommendation videos can be accessed by a user of
AF3 in two ways:

• Via a “Help Me” button on the AF3 toolbar (as illustrated
in figure 1). In this case the IRS proposes three recom-
mendation videos that were top-ranked by the multiclass
classification algorithm. After the press of the button, the
top ranked video starts playing. If desired, the user can
switch to the other two videos in the order in which they
were ranked by the IRS. The time taken by the IRS to
display the video after the press of the “Help Me” is
under 2 seconds.

• Through a global help button. In this case the user does
not neccessarily want the IRS to predict next tasks, but
only to provide a full list of possible help videos with
common functionalities of AF3. This global help can be
accessed via the menu item “Show All Hints” in the AF3
3 tool bar, under the “AI assistance” drop down menu.

We have also implemented the means to activate/deactivate
data acquisition directly through the AF3 interface, keeping
in mind data privacy and that some students may not want to
have their interaction data stored.

III. MACHINE LEARNING PIPELINE

The user-assistance functionality we wish to implement in
MAGNET is providing tips to the user based on a predicted
next step in the tutorial. In order to achieve this, it is required
to predict the next step of the user and then to provide an ad-
equate hint for it, from the set of predefined short videos. The
machine learning pipeline we have implemented to achieve

this consist of the following steps: 1) Data collection, 2) & 3)
Data processing including data cleaning, feature selection and
data labelling, 4) ML model selection consisting of model
training, validation and testing and 5) model deployment.
This pipeline is depicted in figure 2 and each of its steps is
discussed in the subsequent paragraphs.

1) Data Collection: In order to acquire the user inter-
action data, we instrumented the AF3 framework such that
interactions of a user with the tool’s graphical user interface
are recorded. The instrumentation is achieved using SWT-
BOT [13] and does not interfere with AF3’s functionality.
Specifically, we have added an SWTBOT plugin on top of
AF3. The plugin starts along with the AF3 tool as a server that
listens to events that occur in widgets of AF3’s graphical user
interface (GUI). Additionally, we have implemented a thin
client that communicates via sockets with the SWTBOT server
and records to a file all such interactions. The raw data was
collected from 11 users during one tutorial session. Altogether,
the collected files contain approximately 28000 lines where
each line denotes a specific action at a time instance.

2) Data Cleaning: Each line in the collected data contains
UNIX Epoch time in milliseconds followed by a string for
each of the user’s actions/ interaction. The string consists of
two sub-parts, a) a GUI contextual description of the user
interaction, and b) a general description of the user action
initiated via mouse/ keyboard inputs. During analysis of the
data, several characteristics of the data were discovered. Some
of the actions recorded in the file are correlated with the
preceding actions: for instance, closing of a window is mostly
followed by default relocation to last visited window. The same
trend is observed with respect to few other attributes in the
data. Therefore, the data was filtered to remove such corre-
lations and reduce dimensionality, while ensuring minimum
loss of significant information. The filtered data consists of
approximately 5000 lines.

3) Feature selection and Labelling: After having achieved
a basic understanding of the data, two features were extracted
from the data namely, Action (mouse action/ key board action)
and Property (task dependent description of users state) in a
time ordered sequence. A single line of data in isolation at
a particular time may be of a practical use from the point of
view of task prediction. This is because each line defines a user
action at lower/ micro level e.g., one line may indicate opening
of a GUI window. On the other hand, a task is defined at a
higher level of abstraction which contains lower level actions
and conveys a practical meaning such as for example: opening
of a window, followed by defining parameters therein and
finally moving to a different window perspective. It therefore
became essential to label the data in relation to a set of
specific AF3 tasks – the classes to be used by the ML
classification algorithm. This forms the basis for the machine
learning model to understand the lower level data, recognize
the current task and predict the next task at an adequate
level of abstraction. Nine labels relevant to the tutorial were
defined. The labels consist of user tasks such as navigating to
component architecture, creation and specification (definition)

356

Fig. 1. Recommendation Video in AF3 using “Help Me”

Fig. 2. Machine Learning Pipeline

of components, specification of transitions, creation of ports,
writing code and simulation. While defining labels, we kept
in mind that these labels should neither be too generic nor
too specific, in order to aim for a reasonable granularity that
a machine learning algorithm can meaningfully build a model
for. The data was labelled manually (approx. 2800 lines) after
correlating features in the data with specific tasks. In some
cases, when the tasks could not be specifically identified from
the features, preceding and succeeding labels were used to
infer the current task.

4) Model Selection: Learning an objective during the tuto-
rial can be understood as a multi-classification problem based
on the features described above. Two levels of abstraction
are necessary for predicting the next state of user. The visual
representation of the two models is shown in figure 3.

Fig. 3. Visual repsentation of the models (Recognition and Prediction)

The first level model referred to herein as Task Recognition
Model takes the input consisting of features: Property (P)

357

and Action (A) in a time sequence of length u and predicts
the corresponding label (L). Figure 3 shows how the Task
Recognition Model uses a sequence of 5 previous steps i.e.,
u = 5 to predict the current task (label) at a given time t.
These predictions act as an input for the second level model.
The second model referred herein as Task Predictor Model
uses the sequence of output labels of length v from Task
Recognition Model as an input and predicts the next task of
the user at future time step t+1 as an output. As an example,
figure 3 shows Task Predictor Model uses a label sequence
of 2 previous steps i.e., v = 2 to predict the label L at future
timestep t+ 1.

Three different machine learning models were tried for
training the task recognition model. Due to the similarity
of the problem with sequence to sequence prediction, an
LSTM model was the first choice [24], [31]. The labelled data
was split into training and validation sets in a proportion of
80:20. The LSTM model achieved an accuracy of 20% on the
validation data in 100 iterations whereas the training accuracy
was very high. The results of LSTM model are shown in figure
4. We attribute the poor performance of the LSTM model on
validation data to the model overfitting the training data.

Fig. 4. Training and Validation Accuracy for LSTM Model

Given the weak results obtained from the LSTM, we sub-
sequently moved on to a Random Forest model. This model
achieves the best validation and test accuracies of 66% and
58% of all tried models, for u = 5. These results show
that random forest model outperforms the LSTM model in
our setting. To attempt further improvement of the accuracy,
we also experimented with XGBoost [18]. The results from
XGBoost are comparable with those of Random forest model,
with validation accuracy and test accuracy of 65% and 60%
respectively. Random forest was selected as the final task
recognition model on account of its simplicity in terms of
fewer tuning parameters, as compared to XGBoost.

Random Forest is also used for the Task Predictor Model
and it achieves validation and test accuracies of 51% and 56%
respectively for v = 1.

5) Model Deployment: The complete architecture after
deployment is shown in figure 5. Without the MAGNET plugin,
the user interacts with AF3 but there is no active guidance or
feedback from AF3 (1). If SWTBOT is activated, it records
the user interaction continuously in the background (2). The
model is deployed as a task predictor plugin in Autofocus.
The user clicks on the “Help Me” button and actions the
trained machine learning model (3). The data from SWTBoT
(4) is processed & analysed by the model to predict the user
task(s) (5). The video hints according to the predicted task
are displayed on the AF3 interface (6), thus providing active
guidance for the user and completing the feedback loop.

Fig. 5. Architecture of the Recommender System

IV. STATE OF THE ART

The published research that exists focuses on auto-
completion mechanism for code-based IDES, which differ
from MDD tools in many ways, chiefly that IDES for MDD
typically deal with many levels of abstraction, often encoded
as multiple graphical or textual DSLS. In these tools the
process of building software involves mastering a set of
different programming paradigms, as well as the inter-relations
between different views of the system being developed.

The study of how developers use IDEs was initiated more
than a decade ago, at the beginning of the 2000s. The Mylar
framework [25] from Kersten and Murphy (later renamed to
Mylyn) was one of the first of its kind to provide the developers
with the means to define and follow tasks when building
software. The framework, distributed as an Eclipse project,
allows tracking low-level user commands to keep the state of
the task up-to-date while dynamically adapting the IDE such
that the navigation possibilities of the IDE are adapted to the
developer’s needs at each point of the development.

Several authors have concentrated specifically on gathering
interaction information from IDEs. The work of Murphy
on Eclipse for development in Java [30] was seminal, but
more recent efforts exist such as the work from Amannet al.
for Visual Studio. A survey of methods for collecting IDE
interaction data has been proposed by Maalej et al. [29].

The natural step after collecting data is to analyse it for
patterns that reveal developers’ implicit development processes
and habitudes, having as goal improving the usability of
IDEs. Given the advent of advanced mining tools in the

358

2010s, authors such as Khodabandelou [26], Damevski [19]
and Shepherd [20] have worked on what is now known as
process mining. The authors have placed importance in not
only coming up with models of developer behavior from
low-level IDE logs of user-machine interaction, but also in
automatically building models of those processes (e.g. using
Markov chains) that can be understood by humans.

Since the past 5-10 years researchers have also started
exploring how recommender systems can come to the help
of software developers. Although the infamous “clippy” that
shipped with early versions of the Microsoft office suite was a
put off to having recommender systems as part of production
software, advances in machine learning and human-computer
interaction spawned new attempts at developing such function-
ality. Autodesk has implemented one such system for Auto-
cad to improve the learnability of their tool by contextually
proposing previously unseen commands. The company has
then conducted a large study with more than 1000 users [27].
The authors of the study conclude that recommender systems
are indeed useful and have a rich future in software applica-
tions. Damevski [27] as well as Bullmer [17] have explicitly
explored classification algorithms to predict developer’s behav-
ior, much as we do. They report accuracies between 20-60%,
which are in general lower than the accuracies we achieve.
However, it is relevant to mention that the IDEs these authors
explore are for code-based development, as opposed to our
work on IDEs for model-driven development. In particular,
their predictions are made on a large set of commands (e.g.
61 for the study in [17]) for which it will be naturally harder to
reach high accuracies as for our work presented here (where 9
labels were used). The same study reports that neural networks
have yielded a better accuracy, whereas in the study we present
here they have performed the worst.

Outside academia, AF3 strongly relates to modern low-
code tools, which employ model- and graphical-based software
development principles to enable developers to quickly build,
deploy and update applications. The two market leading tools
at the time of the writing of this article are mendix [8] and the
OutSystems [11] platform. mendix has implemented an AI-
based system similar to MAGNET, where most likely steps
are suggested to finish a logical workflow. Additionally, a
“mentoring” mode is available to teach new developers how
to build applications. OutSystems is currently investing very
strongly in AI-based techniques to aid in software develop-
ment, having created a laboratory [12] just for this purpose.
As with AF3, the AI assistant of the OutSystems framework
also predicts next steps in the development of the application,
which OutSystems claims increases developer productivity by
25%. Note that both mendix and OutSystems are proprietary
systems, while AutoFOCUS is distributed as open source.

JetBrains, the developers of a large range of code-based
tools for software development, have recently started col-
lecting data to improve their auto-completion systems since
2016 [3]. Additionally, a plugin for predictive coding [1] has
been developed for the Intellij tool from JetBrains that uses
machine learning for intelligent auto-completion, as well as

for inserting snippets of code based on comments written in
plain English.

V. PRELIMINARY RESULTS

As mentioned in section I, at fortiss we often offer work-
shops to demonstrate the various functionalities of AF3 to the
new users. We have used on of such workshops to evaluate the
usefulness of our IRS in one of the AF3 tutorial workshops.
The focus group comprised 9 participants and was of mixed
technical skills ranging from non-technical (e.g. managers
and head of technical departments) to technical (e.g. software
engineers). The existing format of the AF3 workshop is such
that a human tutor to demonstrates the different functionalities
of the AF3 at the beginning of the tutorial. The current
workshop setting made a few of our recommendation videos
redundant for the 3 participants having good programming
skills. Nonetheless, the remaining 6 participants having less
knowledge of programming (i.e., 5 managers and 1 professor)
reported our system was helpful during the workshop giving
their lower technical expertise. All feedback from the partici-
pants in the study was collected via a formal questionnaire.

As expected, we observed that providing information on
AF3 to new users (i.e., technical or non-technical) reduces the
use of our IRS. Seen from the reverse perspective, this points
towards reducing human intervention in the tutorial (which is
desired), which should lead to more usage of the IRS and a
better evaluation of our proposal. It is worth mentioning that
two participants (1 professor and one 1 software engineer)
were very enthusiastic about MAGNET during the workshop,
while the others were reticent to using it. This may indicate
a polarized view on the usage of MAGNET, although such a
claim calls for a future study.

In other interesting (and unexpected) feedback given to us
during the workshop, it was suggested having to-the-point
videos targeting the logical programming steps related to
the tutorial exercise in the workshop. This is reminiscent
of our earlier work on building process-aware modelling
environments [28], where we proposed a DSL to express static
development processes in MDD tools, to help for instance
with meeting software certification rules in certain domains
(e.g. avionics). Such feedback suggests fusing our previous
work on process-aware modelling with the IRS we propose
here to allow for both explicit and implicit (machine-learned)
software development processes in AF3.

Another point worth discussing is the utilization of SWT-
Bot [13] for the purpose of gathering the interaction data.
The SWTBot tool has been built for performing the functional
testing of the software interfaces. To the best of our knowledge
has not been, up to now, utilized to gather interaction data for
machine learning tasks.

VI. FUTURE DIRECTIONS

We have discussed an implementing a recommendation
system using ML to ease the learnability of AF3, in particular
in a tutorial setting. The results we present are preliminary
but encourage us to further pursue this avenue of research. In

359

particular, are currently considering a number of follow-ups
to this work:

• Improving data collection and labelling, as these pro-
cesses have been up until now long and painstaking. We
believe this can be partly achieved by building a “data
acquisition” mode in AF3, where users can labels sets of
their own interactions directly in the tool.

• Focusing specifically on improving user experience by
studying how different hint delivery mechanisms (e.g.
textual hints or highlighting certain parts of the IDE) im-
prove user satisfaction. The Human-Centered Engineering
group at fortiss is currently performing a study on the
desirability these mechanisms in AF3. The results of such
study should percolate into the MAGNET tool.

• Applying and evaluating different ML techniques to
achieve more accurate next-task predictions. The study
in this paper indicates that Random Forest achieves good
performance – nonetheless these results should be taken
with a grain of salt, given the low amount of labels
(classes) that data acquisition has been done in the context
of a tutorial. When broadening the scope of hints to the
whole AF3 tool, it might very well be the case that other
machine learning models will perform better.

• Studying how non user interaction data (e.g., AF3-model
related data) can improve in task predictions for the new
users. For the time being all predictions are based on
user/widget interaction and no information about the state
of the model of the embedded software system under
construction is taken into consideration. Due to its size, it
will is not possible to use the complete state of the model
for either training or classification. But, by identifying
deltas in the state of the model from one moment of time
to the next and taking this information into consideration
for training and prediction, we believe the accuracy of
next task prediction will increase. Note that a system
implementing the measurement of such deltas has already
been implemented in AF3. We have indeed used this
system to evaluate the state of a model in order to locate
a developer in a pre-defined development process [28].

• Recalibrating the AF3 tutorial format to maximize the
usage of the IRS during upcoming tutorial sessions.

• Extending the number of videos to include help for other
parts of the AF3 tool, such as deployment, requirements
engineering or formal verification. This is important not
only to the IRS, but also as a means to improve the
learnability of AF3 in general.

REFERENCES

[1] AI Predictive Coding plugin. https://plugins.jetbrains.com/plugin/
9203-ai-predictive-coding/.

[2] AutoFOCUS3 Tutorials. https://af3.fortiss.org/docs/tutorials/.
[3] Data Collection Post for Intellij. https://blog.jetbrains.com/idea/tag/

machine-learning/.
[4] Eclipse IDE. https://www.eclipse.org/ide/.
[5] Human-Centered Engineering. https://www.fortiss.org/en/research/

projects/human-centered-engineering/.
[6] JetBrains. https://www.jetbrains.com/.
[7] MATLAB Simulink. https://www.mathworks.com/products/matlab.html.

[8] mendix. https://www.mendix.com/.
[9] MetaCase MetaEdit+. https://www.metacase.com/.

[10] National Instruments LabVIEW. http://www.ni.com/en-us/shop/labview/
labview-details.html.

[11] OutSystems. https://www.outsystems.com/.
[12] outsystems.ai. https://www.outsystems.com/ai/.
[13] SWTBot. https://www.eclipse.org/swtbot/.
[14] V. Aravantinos, S. Voss, S. Teufl, F. Hölzl, and B. Schätz. Autofocus 3:

Tooling concepts for seamless, model-based development of embedded
systems. In ACES-MB&WUCOR@MoDELS, volume 1508 of CEUR
Workshop Proceedings, pages 19–26. CEUR-WS.org, 2015.

[15] S. Barner, A. Diewald, J. Migge, A. Syed, G. Fohler, M. Faugère, and
D. Gracia Pérez. DREAMS toolchain: Model-driven engineering of
mixed-criticality systems. In Proc. ACM/IEEE 20th Int.Conf. Model
Driven Eng. Lang. Syst. (MODELS ’17), pages 259–269. IEEE, 2017.

[16] W. Böhm, M. Junker, A. Vogelsang, S. Teufl, R. Pinger, and K. Rahn. A
formal systems engineering approach in practice: An experience report.
In Proc. 1st Int. Workshop Software Engineering Research and Industrial
Practices, pages 34–41, New York, NY, USA, 2014. ACM.

[17] T. Bulmer, L. Montgomery, and D. Damian. Predicting developers’
ide commands with machine learning. In Proceedings of the 15th
International Conference on Mining Software Repositories, MSR ’18,
pages 82–85, New York, NY, USA, 2018. ACM.

[18] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794,
New York, NY, USA, 2016. ACM.

[19] K. Damevski, H. Chen, D. Shepherd, and L. Pollock. Interactive
exploration of developer interaction traces using a hidden markov model.
In Proceedings of the 13th International Conference on Mining Software
Repositories, MSR ’16, pages 126–136, New York, NY, USA, 2016.
ACM.

[20] K. Damevski, D. C. Shepherd, J. Schneider, and L. Pollock. Mining
sequences of developer interactions in visual studio for usage smells.
volume 43, pages 359–371, April 2017.

[21] J. de Lara and H. Vangheluwe. AToM3): A Tool for Multi-formalism and
Meta-modelling. In FASE, volume 2306 of Lecture Notes in Computer
Science, pages 174–188. Springer, 2002.

[22] J. Eder, S. Zverlov, S. Voss, M. Khalil, and A. Ipatiov. Bringing
DSE to life: exploring the design space of an industrial automotive use
case. In Proc. ACM/IEEE 20th Int.Conf. Model Driven Eng. Lang. Syst.
(MODELS ’17), pages 270–280. IEEE, Sept. 2017.

[23] M. Feilkas, F. a. P. F. Hölzl, S. Rittmann, B. Schätz, W. Schwitzer,
W. Sitou, M. Spichkova, and D. Trachtenherz. A refined top- down
methodology for the development of automotive software systems:
The keylessentry system case study. Technical Report TUM-I1103,
Technische Universität München, 2011.

[24] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, Nov. 1997.

[25] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model for
ides. In M. Mezini and P. L. Tarr, editors, AOSD, pages 159–168. ACM,
2005.

[26] G. Khodabandelou, C. Hug, R. Deneckère, and C. Salinesi. Un-
supervised discovery of intentional process models from event logs.
In Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pages 282–291, New York, NY, USA, 2014.
ACM.

[27] W. Li, J. Matejka, T. Grossman, and G. W. Fitzmaurice. Deploying
communitycommands: A software command recommender system case
study. AI Magazine, 36(3):19–34, 2015.

[28] L. Lúcio, S. bin Abid, S. Rahman, V. Aravantinos, R. Kuestner, and
E. Harwardt. Process-aware model-driven development environments.
In MODELS (Satellite Events), volume 2019 of CEUR Workshop Pro-
ceedings, pages 405–411. CEUR-WS.org, 2017.

[29] W. Maalej, T. Fritz, and R. Robbes. Collecting and processing interaction
data for recommendation systems. In Recommendation Systems in
Software Engineering, pages 173–197. Springer, 2014.

[30] G. C. Murphy, M. Kersten, and L. Findlater. How are java software
developers using the eclipse ide? IEEE Softw., 23(4):76–83, July 2006.

[31] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 27, pages 3104–3112. Curran Associates, Inc.,
2014.

360

https://plugins.jetbrains.com/plugin/9203-ai-predictive-coding/
https://plugins.jetbrains.com/plugin/9203-ai-predictive-coding/
https://af3.fortiss.org/docs/tutorials/
https://blog.jetbrains.com/idea/tag/machine-learning/
https://blog.jetbrains.com/idea/tag/machine-learning/
https://www.eclipse.org/ide/
https://www.fortiss.org/en/research/projects/human-centered-engineering/
https://www.fortiss.org/en/research/projects/human-centered-engineering/
https://www.jetbrains.com/
https://www.mathworks.com/products/matlab.html
https://www.mendix.com/
https://www.metacase.com/
http://www.ni.com/en-us/shop/labview/labview-details.html
http://www.ni.com/en-us/shop/labview/labview-details.html
https://www.outsystems.com/
https://www.outsystems.com/ai/
https://www.eclipse.org/swtbot/

Assessing the Influence of Size Category of the
Project in God Class Detection, an Experimental
Approach based on Machine Learning (MLA)

Khalid Alkharabsheh
CiTIUS

Universidad de Santiago de Compostela
Santiago de Compostela, Spain

khalid.alkharabsheh@usc.es

Yania Crespo
Departamento de Informática

Universidad de Valladolid
Valladolid, Spain
yania@infor.uva.es

Manuel Fernández-Delgado
CiTIUS

Universidad de Santiago de Compostela
Santiago de Compostela, Spain

manuel.fernandez.delgado@usc.es

José M. Cotos
CiTIUS

Universidad de Santiago de Compostela
Santiago de Compostela, Spain

manel.cotos@usc.es

José A. Taboada
CiTIUS

Universidad de Santiago de Compostela
Santiago de Compostela, Spain

joseangel.taboada@usc.es

Abstract—Design Smell detection has proven to be an effective
strategy to improve software quality and consequently decrease
maintainability expenses. In this work, we explore the influence
of the size category of the software project on the automatic
detection of God Class Design Smell by different machine
learning techniques. A set of experiments were conducted with
eight different learning classifiers on a dataset formed by 12,588
classes of 24 systems. The results were evaluated using ROC
area and Kappa tests. The classifiers change their behaviour
when they are used in sets that differ in the value of the selected
size information of their classes. This study concludes that it is
possible to improve results, mainly in agreement, of God Class
detection feeding machine learning classifiers with project size
information of the classes to analyze.

Index Terms—Design Smell Detection; Machine Learning; God
Class.

I. INTRODUCTION

Software systems available in different departments of or-
ganizations to provide many services in different domains.
Even though the provided services are essential, but the more
critical is the software continues operating without problems
and mistakes. Software quality is an important concern for
software industries, academic, and researchers. Identifying
problems in source code or design of software, correcting
and modifying them are some of the main activities of the
maintenance process in order to increase quality.

All problems related to the software structure that does not
make compile or run-time errors are described by ”Design
Smell” [11]. The presence of Design Smells negatively affects
software quality factors, though technical debt increases [6].
Smells can appear in several software artifacts including
variables, instructions, operations, methods, classes, packages,
subsystems, layers, and their dependencies.

DOI reference number:10.18293/SEKE2019-140

God Class Design Smell is one of the most detected smells
in software according to our systematic mapping study [1]. It
has attracted the attention of the research community. God
Class is defined with different names as the Large Class
Bad Smell [10], the Blob Antipattern [5], and the God Class
Disharmony [15]. The term God Class Design Smell is the
name we use for bringing both together. It is considered as a
class level Design Smell.

Several approaches, tools, and techniques have been pro-
posed to improve the detection of God Class Design Smell.
However, some studies evidence the lack of agreement among
different tools and human experts. Moreover, they have a set of
limitations represented in understanding the precise definition
of God Class Design Smell and the process of mapping the
definition into effective detection algorithms. The current trend
in Design Smell detection has adopted machine learning for
deriving detection rules [12], [21].

This paper aims through an exploratory study to investigate
whether the size category of the project is relevant in God
Class detection. A set of experiments were conducted with
eight different classifiers. The selected classifiers are the most
recently reported in the literature and they jointly involve all
families of classifiers. Results are evaluated using ROC area
[4] and Kappa tests [2].

The main contributions of this study can be summarized
by determining the influence of project size information on
God Class Design Smell detection using machine learning
techniques. Moreover, a large dataset for God Class Design
Smell detection.

The rest of this paper is organized as follows: Section II
describes the related work. Section III presents the problem
statement ,research question, and hypothesis. Section IV de-
scribes the dataset we built. Section V exposes the methodol-

361

ogy we follow to identify the effectiveness of project domain
information in God Class Design Smell detection. Section VI
discusses the results of experiments. Section VII presents the
main threats to the validity and Section VIII explains our
conclusions.

II. RELATED WORK

In this section, we present studies exploiting machine learn-
ing techniques for Design Smell detection.

Jochen Kreimer [14] presents a method to detect Design
Flaws by combining object-oriented metrics and machine
learning. The proposed approach was validated using five De-
sign Flaws: Big Class also known as (The Blob), Feature Envy,
Long Method, Lazy Class and Delegator and two software
systems: IYC (91 classes) and WEKA (597 classes). Khomh
et al. [13] introduce BDTEX (Bayesian Detection Expert) a
Goal Question Metric-Based approach to detect Antipatterns
using Bayesian Belief Networks (BBNs) stood on rule-based
representation. The approach was validated using three An-
tipatterns: The Blob, Functional Decomposition and Spaghetti
Code and two Java programs: Xerces v2.7.0 (589 classes) and
GanttProject v1.10.2 (188 classes). Maiga et al. [16] introduce
SVMDetect, an approach to detect Antipatterns based on
support vector machine. They compute the object-oriented
metrics for each class. The empirical study involves four
Antipatterns: The Blob, Functional Decomposition, Spaghetti
Code and Swiss Army Knife and three open source software:
ArgoUML v0.19.8 (1,230 classes), Azureus v2.3.0.6 (1,449
classes) and Xerces v2.7.0 (513 classes). Fontana et al. [9]
present their approach based on machine learning techniques
for outline the common problems in the previous Design
Smells detection. The dataset has formed by the 59,333 classes
of 76 systems and a large set of relevant metrics. A set of
six code smells: God Class, Data Class, Feature Envy, God
Method, Brain Method, and Long Method were detected in
the experiment.

As we can see, the related works principally focused on nu-
merical information (mainly object-oriented metrics and other
well-known sets of metrics) on classes to detect a set of smells.
In our work, we focus the attention on certain nominal project
information (size category) and try to explore its influence
in God Class detection in order to take this information into
account in future work, in the aim of obtaining better results
that can be more useful for developers, improving agreement
among tools and experts.

The aim of this paper is analyzing if clarifying the size
category can lead to variations in the detection. The detection
problem is seen as a classification problem; using automatic
classifiers that separate classes in having God Class Design
Smell or not. Our dataset is formed by the 12,588 classes of
24 systems with different sizes and domains. In order to define
our dataset, we analyze these systems using five different tools
common in detecting God Class Borland Together [3], PMD
[8], iPlasma [18], DÉCOR [20] and JDeodorant [22].

III. PROBLEM STATEMENT

The problem that we examine in this study that most of the
research community has not taken into account the impact of
nominal project information on Design Smell detection. The
suspicion that we have raised involves this type of information
can be useful for developers to obtain better detection results.
For this reason, in this work, we address the effectiveness and
importance of project size nominal information in the detection
of God Class Design Smell. To address the study problem, we
introduce the following research question:

RQ: Does the differences between the size category of the
whole project influence in the detection of God Class Design
Smell?

We want to reject the null hypothesis formulated as:

Hsize
0 : Project size does not influence on God Class

detection.

We propose to obtain several classifiers trained with and
without the project size information under examination, work-
ing with the dataset taken as a whole in order to verify
whether this kind of information will affect on the behaviour
of classifiers or not. If this first exploration succeeds, the next
step should be to design the same experiment to investigate
the impact of the project size category in detecting God Class
as explained in Section V. The behaviour of classifiers is
evaluated by ROC area and Kappa performance measurements
as we will see in Sections V and VI.

IV. DATASET

Our dataset is formed by the 12,588 classes of 24 open
source systems written in Java obtained from SourceForge
source code repository which involved different domains and
size categories. We selected the SourceForge repository be-
cause it is the most widely known and used in the context
of open source software, and it supplies useful metadata for
projects. The projects are selected according to particular
criteria, such as should be written in Java, long life cycle with
several version, has a significant change history information
(development, maintenance), and the projects should be of
different size categories.

The high number of projects and classes is intended to
discard the probability of dependencies between classifiers
and a particular subset of data. Table I presents the main
characteristics of our dataset where includes [Project name,
Category of size, Number of Classes, Total Line of Code in
the project (TLOCP)].

The dataset is formed as follows: rows x1 to x16 represent
numerical attributes (metrics), x17, represent the project size
information and x18, the result of classification if a class is
God Class or not (resulting from the selected tools as a logical
or among them). Table II shows the full list of selected variable
x1 to x18 and their definition.

362

TABLE I
DATASET CHARACTERISTCS

ProjectName SizeCat. #Class TLOCP
jAudio-1.0.4 L 416 117,615
Freemind-1.0.1 L 782 106,396
JasperReports-4.7.1 L 1,797 350,690
SQuirreL-1.2 M-L 1,138 71,626
KeyStoreExplorer-5.1 M-L 384 83,144
DigiExtractor-2.5.2 M 80 15,668
AngryIPScanner-3.0 M 270 19,965
Plugfy-0.6 S 28 2,337
Matte-1.7 M-L 603 52,067
sMeta-1.0.3 M 222 30,843
xena-6.1.0 M-L 1,975 61,526
pmd-4.3.x M-L 800 82,885
checkstyle-6.2.0 M-L 277 41,104
JDistlib-0.3.8 M 78 32,081
JCLEC-4-base M 311 37,575
Javagraphplan-1.0 S-M 50 1,049
Mpxj-4.7 L 553 261,971
Apeiro-2.92 S-M 62 8,908
FullSync-0.10.2 M 169 24,323
OmegaT-3.1.8 L 716 121,909
Lucene-3.0.0 M-L 606 81,611
Ganttproject-2.0.10 M-L 621 66,540
JFreechart-1.0.X L 499 206,559
JHotDraw-5.2 M 151 17,807

TABLE II
VARIABLE DEFINITION

Metrics of class and package level (ratio scale)
Var Metric Definition
x1 LOC Total Lines of Code
x2 NCLOC Non-Comment Lines of Code
x3 CLOC Comment Lines of Code
x4 EXEC Executable Statements
x5 DC Density of Comments
x6 NOT Number of Types
x7 NOTa Number of Abstract Types
x8 NOTc Number of Concrete Types
x9 NOTe Number of Exported Types
x10 RFC Response for Class
x11 WMC Weighted Methods per Class
x12 DIT Depth in Tree
x13 NOC Number of Children in Tree
x14 DIP Dependency Inversion Principle
x15 LCOM Lack of Cohesion of Methods
x16 NOA Number of Attributes

Project level information (nominal scale)
Var Information Values
x17 Size category L, M-L, M, M-S, S

Smell detection (binary)
Var Design Smell According to
x18 God Class PMD, iPlasma, JDeodorant,

Décor, Together

The chosen projects are analyzed with RefactorIT v2.7 tool
1 [19] to compute a set of important class and package level
metrics. The selected metrics are widely used in state of the
art [13], [14], [17] for Design Smell detection, and some of
them are particularly related to God Class characteristics such
as cohesion (Lack of Cohesion (LCOM)), size (Line of Code
(LOC), Number of Attributes (NOA), Number of Children in
Tree (NOC), and complexity (Weighted Methods per Class

1http://RefactorIT.sourceforge.net

(WMA). The second part of Table II is regarding projects level
information, and we can see the size is consists of different
categories. We follow the same approach as [7] to classify the
projects based on categories.

As can be seen, the nominal data of size categories refers
to the size of the Total Line of Code in the whole project
(TLOCP). The project size is divided into six categories based
on the TLOCP include (Small (S) ≤ 4, 999; 5, 000 ≤ Small-
Medium (S-M)≤ 14, 999; 15000 ≤ Medium (M) ≤ 39, 999;
40, 000 ≤ Medium-large (M-L) ≤ 99, 999; 100, 000 ≤ Large
(L) ≤ 499, 999; Very large (VL)≥500,000). In fact, this is
more precisely an ordinal scale. But we are not going to treat
it as ordinal just as a nominal category.

The final part of the table focused on the selected God
Class detection tools. To obtain the value of variable x18, we
used the following five Design Smell detection tool: The five
tools are DÉCOR, JDeodorant, iPlasma, PMD, and Together.
The tools were selected based on the results of a systematic
mapping study [1] we conducted on the state of play in the
field of Design Smell detection for the period 2000 to 2017.
The selected tools are one of the most cited and used in the
literature, and are commonly employed in God Class detection.
Moreover, all the tools support projects implemented in the
Java language and the input source is source code while the
output is text in different formats such as CSV, txt, XML.
Also, most of the tools focus only on smell detection, except
for JDeodorant which includes a refactoring operation that is
performed after the Design Smells have been identified. Nearly
all of the tools have a GUI except for PMD, which is the only
tool that has been developed to support both a Textual User
Interface (TUI) and a GUI.

We use the output of these tools considered as experts for
feeding the data mining algorithms according to the following
criteria. If one tool or more detect God Class Design Smell in
a particular class, we assign a true value in the God Class
attribute. Otherwise, this attribute is set false (as a logical
or among them). According to this strategy, the presence of
the God Class smell is distributed along the different size
categories of the data we are dealing with. Dataset is available
on the web2.

Despite the high number of projects, our dataset includes
1,958 God Classes against 12,588 classes. According to our
experience in the area, the nature of God Class Design Smell
leads to obtaining low ratios of smelly classes detected in each
project. As we can observe from Table III, the number of God
Classes in all categories are enough as inputs to the classifiers
for God Class detection. Our dataset includes only one God
Class smell in the small size category (S). In our experience it
is normal in a small size project to detect one or at most two
God Classes if the project is not a complete disaster. We can
either discard this category or add more projects if we find.
But we do not, because in this case, the small category do
not represent a subset of all dataset or cause a problem if the
Hsize

0 . We decide to include this category in our experiments

2https://citius.usc.es/investigacion/datasets/project-nominal-information

363

because we choose all classes in each project to send feedback
to the project developers.

TABLE III
BUILDING SET, TESTING SET, AND GOD CLASS DISTRIBUTION BY THE

SIZE CATEGORIES.(NP: NUMBER OF PROJECT, NOC: NUMBER OF CLASS,
GC: GOD CLASSES)

Category #NP #NOC #GC %GC
L (Testing set) 6 4,763 967 20%
M-L (Building set) 8 5,123 623 12%
M-L (Testing set) 1,281 132 10%
M (Testing set) 7 1,281 198 16%
S-M (Testing set) 2 112 34 30%
S (Testing set) 1 28 1 4%

The high number of projects in a specific category of the
size does not mean having more God classes such as (L,
M) categories, but when the number of classes increases in
a particular category, it implies increasing the number of
God Classes. Therefore, it is difficult to balance the dataset
categories. The high number of categories implies a lot of
subsets to have God classes distributed across them. We
would need to increase the number of projects (and classes)
significantly to obtain God Class in all of them. Instead of
this, we modify our intention and only will use the M-L size
category to build classifiers as explained in the next section.

V. METHODOLOGY

In state of the art for Design Smell detection with machine
learning algorithms, a different set of classifiers have been
used. We choose a set of eight supervised machine learning
techniques that are available in Weka version 3.7 [23], which
is a comprehensive collection of machine learning algorithm
tools used for data analysis and predictive modeling. The high
number of selected techniques allows discarding one of them
if it is obtained a particular behaviour or it seems to depend
on specific data. We work based on different approaches with
the default parameters [NaiveBayes (NB), J48, RandomForest
(RF), JRip, SMO, IBK, CHIRP and RandomCommittee (RC)].
We decide training with default parameters in all cases because
we are not tuning for obtaining the best classifier. What we
want to show is that whatever the classifier is, it is a better
classifier if the project size category is taken into account.

Firstly, as an exploratory work, we have trained several
classifiers with and without size information (x17) to verify
whether the use of this type of information increases the
quality of classifiers or not. Secondly, the methodology we
propose consists of obtaining a classifier trained with projects
with the same value for size nominal variable (x17).

As we stated in Section III, the null hypothesis was for-
mulated as size project information does not affect on God
Class detection. The intention is to reject each null hypothesis
(Hsize

0). We assume in our experimental design that if size
information is not important, a classifier built for the category
Medium-Large (M-L) of size category info (x17), should
behave the same when classifying projects from different size
categories. If this does not happen and the classifiers behave

worse, we can reject the null hypothesis Hsize
0 and say that

the size category information is important.

Fig. 1. proposed approach.

Figure 1 summarizes the proposed methodology to obtain
the trained classifiers that we will use in the hypothesis testing
process. The building set, i.e., the set devoted for building a
classifier uses the 80% of the projects in M-L category for
x17. The testing set contains the projects in the rest of the
categories of size (L, M, S-M, S) plus the remaining 20%
from the category that has the highest number of classes (M-
L) previously selected to be the building set. This is the set
used to test the hypothesis. The set of classes in building and
testing data are completely different and are distributed on
different project categories.

The building set is divided into two parts. The first part
includes 80% to be the training set and the remaining 20%
to be the validation set. The training set is supplied to the
machine learning algorithm to obtain the required classifier.
After that, the validation set is used to validate it. If the
classifier is good, the testing set is supplied to the classifier
to test the hypothesis. Otherwise, we repeat the process of

364

using the training and validation set until a good classifier is
obtained.

The ROC area test obtains a comprehensive effectiveness
evaluation of classifiers. This test shows the relation between
the sensitivity and the specificity of the classifiers. Table IV
shows the traditional classification of this test.

TABLE IV
INTERPRETATION OF THE ROC AREA (R).

ROC value Interpretation
0.5 < ROC ≤ 0.6 Fail
0.6 < ROC ≤ 0.7 Poor
0.7 < ROC ≤ 0.8 Fair
0.8 < ROC ≤ 0.9 Good
0.9 < ROC ≤ 1 Excellent

Kappa measures the degree of agreement (or concordance)
of the nominal or ordinal assessments made by appraisers
when assessing the same samples. Kappa can range from −1 to
+1. The higher the value of Kappa, the stronger the agreement.
Table V shows the interpretation of this coefficient.

TABLE V
INTERPRETATION OF THE KAPPA VALUES (K).

Kappa value Degree of Agreement
k < 0.20 Poor
0.21 ≤ k < 0.40 Fair (Weak)
0.41 ≤ k < 0.60 Moderate
0.61 ≤ k < 0.80 Substantial (Good)
0.81 ≤ k ≤ 1.00 Almost perfect (Very Good)

VI. RESULTS AND DISCUSSION

In this section, we present the results of our experiments re-
garding the influence of the size category nominal information
on the detection of God Class to reject the null hypothesis.

Table VI shows the classifiers results when we trained them
with all dataset as a whole without size category information
(cat. info.) and with size category information. In the ROC
area, the majority of classifiers obtain a Good to Excellent
behaviour with and without size information except for IBk
and SMO in the first case (without size) and JRip in the second
case(with size). In particular, SMO’s behaviour according to
ROC is fair and almost fair in both cases. On the other hand,
in the Kappa test, which is considered better indicator because
the ratio of detected God Class in the most categories is
less than 20%, the classifiers obtain a better result with the
selected size information than without this information. In
this case, SMO and NB obtained the worst results in general
(0.467, 0.4967), respectively. According to Kappa analysis, the
behaviour of classifiers is improved with the size information.
Based on this, we conducted the experiment explained in
Figure 1 on the size in order to analyze Hsize

0 .
Figure 2 shows the ROC area results of the classifiers trained

regarding a single category (M-L building set) for project
size information x17. All classifiers when exercised with the
testing set for the same values of the categories (M-L) for size,

TABLE VI
TRAINED CLASSIFIERS

Without size cat. Info. With size cat. Info.
Classifier ROC Kappa ROC Kappa
IBK 0.776 0.3062 0.989 0.934
CHAIRP 0.85 0.5505 0.812 0.7041
J48 0.874 0.4572 0.941 0.7936
JRip 0.864 0.529 0.772 0.6097
SMO 0.703 0.5054 0.683 0.467
NB 0.946 0.5659 0.86 0.4967
RC 0.918 0.4799 1 0.9986
RF 0.944 0.5479 1 0.9982

that were used for building the classifiers obtain the highest
values of ROC area compared with the rest of the categories
in size nominal information (the top black line of the figure).
It deserves to say that we are not training the classifiers to
be the best. As we stated before, we are just working with
default parameters. What we are showing here is that the same
algorithm is better being sensitive to the project size category
in which it was trained. So, it is considered good evidence
that taking into account the information we are analyzing in
this work for God Class detection would improve results.

Fig. 2. ROC area performance.

Figure 3 presents the results of the Kappa test for the
classifiers trained regarding a single category (building set) for
project size information. The testing set with the same value in
the size category (M-L) is marked as the black highlighted line
in the top of the figure. The better Kappa values are obtained,
compared with the rest of the categories except NB in the (M-
L) category. Based on the Kappa results, we can say, the size
nominal information influence on the detection of God Class.
Therefore, we can reject the null hypothesis Hsize

0 .

VII. THREATS TO VALIDITY

In this paper, we highlighted a set of threats to internal
validity that affects negatively on our experiment such as the
disproportionate number of project in every category of the
size nominal information. On the other hand, as threats to
external validity, all project is written in Java in order to use
the selected set of tools. We did not include the “very large”
size projects. Also, the dataset did not include a set of different
versions of the same project. This work is focusing on one type
of smell (God Class). We need to study other smells that can
be detected in different software artifacts. Another threat is

365

Fig. 3. Kappa values.

the limited number of class level metrics we use and the tools
used to analyze the projects (in the metric collection and smell
detection).

VIII. CONCLUSIONS AND FUTURE WORK

Our study presented an experimental approach based on
machine learning techniques to identify the effective influence
of the size category of the project regarding the detection of
God Class. In this paper, we present an exploratory study
to check whether this information is relevant to be supplied
to the classifier and can lead to variations in the classifica-
tion usefulness, mainly concerning effectiveness (ROC) and
agreement (Kappa). All classifiers behave worst according to
ROC area and Kappa value tests for categories that were not
present when building the classifiers. This study concludes
the importance of the size category of the project in the
Design Smell detection through machine learning classifiers
and should be taken into account in the future works in order
to obtain more useful classifiers.

A large dataset formed by the 12, 588 classes of 24 systems
with different domains and size categories was defined. The
classes in the dataset were analyzed by the five different tools
selected as experts for God Class detection.

Our future work will focus on replicating the experiments
reported in this work rather than using automatic tools as
experts we will involve professional human experts from the
industry in identifying true God Classes. The same approach
could also be extended to study other software context infor-
mation, such as domain, programming language. Also includ-
ing other types of design smell, machine learning techniques,
and metrics, to confirm whether the proposed methodology
has general applicability.

REFERENCES

[1] Khalid Alkharabsheh, Yania Crespo, Esperanza Manso, and José A.
Taboada. Software design smell detection: a systematic mapping study.
Software Quality Journal, pages 1–80, Oct 2018.

[2] N.J.M. Blackman and J.J. Koval. Interval estimation for cohen’s kappa
as a measure of agreement. Statistics in medicine, 19(5):723–741, 2000.

[3] Borland. Together. http://www.borland.com/us/products/together. [Ac-
cessed: 2014-04-06].

[4] Andrew P Bradley. The use of the area under the roc curve in
the evaluation of machine learning algorithms. Pattern recognition,
30(7):1145–1159, 1997.

[5] William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and
Thomas J. Mowbray. AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis. John Wiley and Sons, March 1998.

[6] Ward Cunningham. The wycash portfolio management system. ACM
SIGPLAN OOPS Messenger, 4(2):29–30, 1993.

[7] Francesca Arcelli Fontana, Vincenzo Ferme, Armando Marino, Bohme
Walter, and Pawel Martenka. Investigating the impact of code smells
on systems quality: An empirical study on systems of different appli-
cation domains. In 29th IEEE International Conference on Software
Maintenance, pages 260 – 269, September 2013.

[8] Francesca Arcelli Fontana and Stefano Spinelli. Impact of refactoring on
quality code evaluation. In 4th Workshop on Refactoring Tools, pages
37–40, New York, NY, USA, 2011.

[9] Francesca Arcelli Fontana, M. Zanoni, Armando Marino, and Mika V.
Mantyla. Code smell detection: Towards a machine learning-based
approach. In 29th IEEE International Conference on Software Mainte-
nance, pages 396 – 399, September 2013.

[10] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Object
Technology Series. Addison-Wesley, June 1999.

[11] Francisco Javier Prez Garcı́a. Refactoring Planning for Design Smell
Correction in Object-Oriented Software. PhD thesis, Universidad de
Valladolid, Valladolid, 2011.

[12] A. Hamid, M. Ilyas, M. Hummayun, and A. Nawaz. A Comparative
Study on Code Smell Detection Tools. International Journal of Ad-
vanced Science and Technology, 60:25–32, 2013.

[13] Foutse Khomh, Stephane Vaucher, Yann-Gaél Guéhéneuc, and Houari
Sahraoui. BDTEX: A GQM-based bayesian approach for the detection
of antipatterns. The Journal of Systems and Software, 84(4):559–572,
2011.

[14] Jochen Kreimer. Adaptive detection of design flaws. Electronic Notes
in Theoretical Computer Science, 141(4):117–136, December 2005.

[15] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Prac-
tice - Using Software Metrics to Characterize, Evaluate, and Improve
the Design of Object-Oriented Systems. Springer, 2006.

[16] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Saban andYann
Gal Guéhéneuc, Giuliano Antoniol, and Esma Ameur. Support vector
machines for anti-pattern detection. In 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering., pages 278–281,
September 2012.

[17] Nakarin Maneerat and Pomsiri Muenchaisri. Bad-smell prediction
from software design model using machine learning techniques. In
8th International Joint Conference on Computer Science and Software
Engineering, pages 331 – 336, May 2011.

[18] Cristina Marinescu, Radu Marinescu, Petru Florin Mihancea, Daniel
Ratiu, and Richard Wettel. iPlasma: An integrated platform for quality
assessment of object-oriented design. In 21st International Conference
on Software Maintenance - Industrial and Tool Volume, pages 77–80,
Budapest, Hungary, September 2005.

[19] Raúl Marticorena, Carlos López, and Yania Crespo. Extending a
taxonomy of bad code smells with metrics. In 7th ECCOP International
Workshop on Object-Oriented Reengineering (WOOR), page 6. Citeseer,
2006.

[20] Naouel Moha and Yann-Gael Guéhéneuc. DÉCOR: A tool for the de-
tection of design defects. In 22nd IEEE/ACM International Conference
on Automated Software Engineering, pages 527–528, New York, NY,
USA, 2007.

[21] Javier Pérez, Carlos López, Naouel Moha, and Tom Mens. A classifi-
cation framework and survey for design smell management. Technical
Report 2011/01, Grupo GIRO, Departamento de Informática, Universi-
dad de Valladolid, March 2011.

[22] Nikolaos Tsantalis, Tsantalis Chaikalis, and Alexander Chatzigeorgiou.
JDeodorant: Identification and removal of type-checking bad smells. In
12th European Conference on Software Maintenance and Reengineer-
ing, pages 329–331, April 2008.

[23] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining Practical
Machine Learning Tools and Techniques. Elsevier, 2011.

366

A Services Development Approach for Smart Home
Based on Natural Language Instructions

Yiyan Chen1,2, Zhanghui Liu1,2, Zhiming Huang1,2, Chuanshumin Hu1,2, and Xing Chen1,2,*

1College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
2Key Laboratory of Network Computing and Intelligent Information Processing

Fuzhou University, Fuzhou 350116, China
*chenxing@fzu.edu.cn

Abstract—With development of the infrastructures supporting
smart home which has entered in a new stage featured by intelli-
gent services. The services based on natural language instructions
are aimed at simplifying and improving our lives. To customize
and develop these services more efficiently, this paper proposes
an approach to model and execute services based on natural
language instructions at runtime which introduces the knowledge
graph into development process. Firstly, a concept model of
knowledge graph is introduced for smart home services. Secondly,
we put forward the mechanism to construct the instance of
knowledge graph for smart home services. Finally, rules of
transformation are provided to achieve mapping from natural
language instructions to the services of knowledge graph. We
evaluate our model on a prototype system and the experimental
results show that our approach can develop services at runtime
and effectually reduce the lines of code by 90%.

Index Terms—services development, smart home, knowledge
graph, runtime model, natural language

I. INTRODUCTION

The continuous development of smart home infrastructure
has ushered in a new era characterized by smart services.
A large number of new devices which are complex and
heterogeneous such as intelligent robots, smart wearable de-
vices and smart home appliances will access to the network
for interaction and collaboration [1] [2]. Human-computer
interaction based on natural language has become the main
interaction method in smart home like Amazon Echo [3] and
Google Home [4].

Smart home service based on natural language commands
is actually a process of decision-making and implementation
according to the instructions given by users and the infor-
mation of their environment [5]. At present, the management
interface of the device is directly invoked by a programming
language such as C or Java to implement services development
of smart home. Although this kind of programming has good
adaptability, it will bring high price. Developers must be
familiar with the management interfaces of different smart
devices in order to implement the interaction. In addition, the
application system is based on the underlying code bound to a
specific intelligent device, which makes it impossible to reuse
its management logic. It is hard to expand the manage system

DOI reference number: 10.18293/SEKE2019-173

when the devices change, though the management mechanism
is similar.

Due to the gap between problem domains and system imple-
mentations, accomplishing mapping between them can create
significant programming complexity. The knowledge graph is
used to describe the concepts, entities, events and relationships
between the object, which can serve as a bridge between
system requirements and system implementation. Moreover, it
turns to be easier to integrate the devices into control system of
smart homes. If we want to introduce knowledge graph into the
development of smart home services, there are two problems
which need to be solved. One is how to define the knowledge
graph model to describe the smart home scene. The other is
how to map natural language utterances to services provided
by devices in the knowledge graph.

In this paper the method is proposed to quickly customize
and develop smart home service on the basis of natural
language instructions. Our contributions are as following:

• A concept model of knowledge graph is introduced for
smart home services.

• We put forward the mechanism to constructing the in-
stance of knowledge graph for smart home services.

• Transformation rules are proposed to achieve mapping
from natural language instructions to the services of
knowledge graph.

II. RELATED WORK

In the development process of IoT applications, program-
ming is usually carried out at the operating system level. This
situation makes the programmer to focus on the underlaying
related issues rather than the application logic [6]. Guang
et al. [7] proposed a top-down IoT application development
method and support system. The system could automatically
generate platform-specific configuration and execution code by
given the platform-independent application management logic.
In addition, some research work [8] [9] proposed a service-
oriented architecture-based solution that provided a device
access interface in the form of RESTFul service to shield the
heterogeneity and complexity of the underlying system.

The Peking University team conducted research on runtime
model theory and construction methods [10] [11]. When
the system meta-model and a set of management interfaces

367

was given, the SM@RT tool [14] can automatically generate
code. When the systematic meta-model changed, SM@RT can
generate new mapping code automatically.

III. APPROACH OVERVIEW

A. Concept model of knowledge graph

The concept model of knowledge graph provides an abstract
representation of smart home services, and aim to describe the
concepts and relationships of abstract elements for smart home
scene, as shown in Figure 1.

Location

ServiceDevice

User

Context

In
cr
e
a
se

Fig. 1. Concept model of knowledge graph for services of smart home

As Table I illustrates, the concept model defines the concept-
s of the smart home scenario such as location, user, context,
device and service. We give further explanations for those
concepts and their properties in this model.

TABLE I
CONCEPTS AND PROPERTIES IN THE CONCEPTUAL MODEL OF SMART

HOME KNOWLEDGE GRAPH

Concept Name Conceptual Properties
Location <LName>

User <UName, LName>
Context <UName, LName, CType, CValue>
Device <DName, LName, {Key1,Key2, ...,Keyn} >
Service <DName, LName, DFunction, CType, Effect>

Location indicates a specific area and the name of the area
is expressed by LName. User is used to describe the service
object and UName is the name of user. The attribute LName
is the area where the user is located. Context represents an
environment state of users. UName is the name of current
service object. LName represents the area where the users
are located. CType is to describe an type of environment
status (eg brightness, temperature). CV alue is the value of
status. Device represents the equipment object and it contains
three properties LName, DName and Keyi. Keyi means the
configuration parameter or system indicator of device. Service
indicates a service to change the environment or operating the
device and it contains five properties. We need to emphasize
the DFunction and Effect here. DFuction is the function
interface of the device corresponding to the service. Effect
is an operation of changing the environment or managing the
devices meeting the instruction given by user.

The conceptual model also defines the relationship between
concepts mentioned above, as shown in Figure 1. For example,

X
Located−−−−−→ L indicates node User, Context, Device and

Service are located in area L. U Sense−−−−→ C represents user is
aware of the state of the context. S Increase−−−−−−→ C shows that
the service is used to raise the state value of the context.

B. Mapping natural language to service

The implementation of the smart home services in natural
language is based on the knowledge graph model of smart
home. The goal is to map natural language commands to
specific service and the knowledge graph contains all the
information of services. Hence, we have two main tasks in
this part.

Firstly, the task of information extraction is to identify
the semantics in natural language commands. At present,
information extraction methods are mainly divided into two
categories, one is based on statistical learning method and the
other is based on rule pattern matching method. Statistical
learning method is portable and robust. However, it needs a
lot of training data to set parameters and optimize the system.
Rule-based matching method has high efficiency and accuracy.
The text of smart home domain has the characteristics of
domain, regularity and simple logic. The rule-based method
can achieve better extraction effect.

Secondly, the conversion rules are builded to map the
information to services of knowledge graph. When services
matching the commands are found, it is available to execute
the device functional interfaces satisfied with users’ need. The
specific transformation rules are given in Section V.

IV. RUNTIME MODELING

In this part, we will introduce the runtime modeling method
of knowledge graph for smart home. With the purpose of
describing the context knowledge of smart home, we establish
knowledge graph instances by constructing concept instances
and relationship instances.

A. Concept instances modeling

The concept instances are constructed based on the devel-
oper configuration. For realizing bidirectional synchronization
between concept instances and the real-time information of the
scene, a set of rules for mapping are proposed. Developers
need to provide relevant configurations to describe specific
objective facts in the scenario, including scene information,
the mapping of concept instances to smart devices and the
environment of service objects.

The configuration of scene information provides a col-
lection of locations L = {L1, L2, ..., Ln}. The mapping
between concept instances and devices provides a collection
of devices D = {D1, D2, ..., Dn}, a collection of services
S = {S1, S2, ..., Sn} and the relationship between them.
The configuration of users’ environment provides data which
include collection of users U = {U1, U2, ..., Un}, positioning
devices T = {T1, T2, ..., Tn}, and environmental state of users
C = {C1, C2, ..., Cn}. Then the corresponding concept in-
stances are generated by the collections mentioned. Moreover,

368

TABLE II
MAPPING RULES FOR MODEL OPERATIONS OF LOCATION, USER AND CONTEXT INSTANCES

Location User Context

List List ∗ L→ {L1, L2, ..., Ln} List ∗ U → {U1, U2, ..., Un} List ∗ C → {C1, C2, ..., C3}
Get Li.properties→ Li.properties Get Ui.properties→ Ui.properties Get Ci.properties→ Ci.properties

Get Get Li.LName→ Li.LName
Get Ui.UName→ Ui.UName
Get Ui.LName→ RTModel (Get Ti.location)

Get Ci.UName→ Ci.UName

Get Ci.LName→ Get Uj .LName
(
(∃Uj)Uj

Sense−−−−→ Ci

)
Get Ci.CType→ Ci.CType

Get Ci.CV alue→ Get Dj .keyn
(
(∃Dj)Dj

Provide−−−−−−→ Si

)
Set - - -

TABLE III
MAPPING RULES FOR MODEL OPERATIONS OF DEVICE AND SERVICE INSTANCES

Device Service

List List ∗D → {D1, D2, ..., Dn} List ∗ U → {U1, U2, ..., Un}
Get Di.properties→ Di.properties Get Si.properties→ Si.properties

Get
Get Di.DName→ Di.DName
Get Di.LName→ Di.LName
Get Di.keym → RTModel (Get Di.keym)

Get Si.DName→ Si.DName
(
(∃Dj)Dj

Provide−−−−−−→ Si

)
Get Si.LName→ Si.LName
Get Si.CType→ Si.CType
Get Si.Effect→ Si.Effect
Get Si.DFaction→ Si.DFunction

Set Get Di.keym → RTModel (Set Di.keym) -

the SM@RT tool [10] [11] is used to construct the runtime
model of the smart devices and positioning devices.

The model operation methods of the concept instances
mainly include three types, namely List, Get and Set. List
is used to get all instances of the same type and its proper-
ties. Get and Set are used to read and write the attribute
values of instances respectively. In order to maintain the
bidirectional synchronization of the concept instances and the
scene realtime information, the mapping rules are defined,
as shown in Table II and Table III. There are three main
mechanisms for the bidirectional synchronization of knowl-
edge graph and the real-time information of scene by con-
figuration information, runtime models and rules respectively.
As Table II shown, the attribute LName of location Li is
from the configuration like Get Li.LName → Li.LName.
And there are similar situations in other instances of concept.
The LName of the user U and the Keym of the device
need to be obtained through the runtime model, such as Get
Ui.LName → RTModel (Get Ti.location). The LName
and CV alue of the context as well as LName of the service
need to be obtained by rules, such as Get Ci.LName→ Get

Uj .LName
(
(∃Uj)Uj

Sense−−−−→ Ci

)
.

B. Relation instances modeling

As illustrated in Table IV, we further define the rules
for constructing relation instance to express the relation-
ships between concepts in a smart home scenario. When
two instances of a concept meet certain preconditions, the
relationship between them is constructed. For instance in Rule
4, if the area LName and the CType of the service Si is
equal to the context Cj , and Effect of Si is Increase, the
relationship instance Si

increase−−−−−→ Cj is created. In Rule 2 and
3, the relationship Scence and Provide involve the user’s
environmental information and the device’s features in the real

scenario, so this kind of information needs to be obtained from
the developers’ configuration data.

Fig. 2. Instance of dependency parsing tree

V. MAPPING NATURAL LANGUAGE TO SERVICES

In this chapter, we first apply dependency parser to infor-
mation extraction. Secondly, knowledge reasoning rules are
specified to transform the results of information extraction into
the search of service nodes in the knowledge graph.

Dependent syntax explains the syntactic structure of sen-
tence by analyzing the dependencies between components
within a language unit, as shown in Figure 2. According to the
characteristics of commands in smart home scene, we chose
dependency parsing to extract the information from natural
language instructions.

The final goal is to determine the Service instance Si

based on the properties DName(D), LName(L), CType(C)
and Effect(E) to invoke the DFuction. Therefore, the task
of information extraction is to identify four kinds of the
mentioned information. This will allow us to convert any
natural language utterance to a canonical representation, which
we can map to services.

A. Rules of Extraction

In this paper, Stanford Parser is applied for dependency
parsing. The generation of the extraction rules mainly depends
on the Part of Speech (POS) of the extraction task and the
dependency characteristics.

369

TABLE IV
RULES FOR CONSTRUCTING RELATION INSTANCES

Relation Instance Precondition
1 Xi

Locate−−−−−→ Lj Xi.LName = Lj .LName

2 Ui
Sense−−−−→ Cj −

3 Di
Provide−−−−−−→ Sj −

4 Si
increase−−−−−−→ Cj Si.LName = Cj .LName ∧ Si.CType = Cj .CType ∧ Si.Effect = “Increase”

5 Si
Reduce−−−−−→ Cj Si.LName = Cj .LName ∧ Si.CType = Cj .CType ∧ Si.Effect = “Reduce”

6 Si
Assign−−−−−→ Cj Si.LName = Cj .LName ∧ Si.CType = Cj .CType ∧ Si.Effect = “Assign”

1) Extraction Rules of “Effect”: Effect is the operation
of changing the environment or managing the device in
commands given by users. By summarizing the commands for
the smart home scene, we found that an operation is usually
represented by a single verb or a verb phrase, like “increase”
and “turn on”. There is a specific dependency “cpmpound:prt”
between words in a verb phrase. The dependency path of the
verb part of the sentence is shown in Figure 3. In algorithm
1, we elaborate how to extract the “Effect” according to the
dependency relationship. The identifier p is used to represent
the nodes in the dependency parsing tree. For example, every
word in Figure 2 can be expressed as p. We use p.word to
describe content of the node p. p→son illustrates the child
node of p. The part of speed of p is represented by p.pos.
p→head expresses the parent node of p. Above all, we imply
r(p, q) to describe the dependency relationship between node
p and q.

Fig. 3. Dependency paths of verb part

Algorithm 1 Extracting the “Effect” information
Input: Dependency parsing of the command;
Output: “Effect” information E
Find the node p whose part of speech is “VB”, E=p.word;
while p has a child node p→son and the relationship
r (p, p→ son) is “compound:prt” do

E=E+(p→ son).word;
p=p→ son;

end while

2) Extraction Rules of DName, LName and CType: Map-
ping the attributes DName, LName and CType to the
commands is the information of device, area and attribute of
environment or device. The expression of these three kinds of
information can be summarized in the following two ways.

• Entity of a single noun, like “light”, “temperature”,
“bedroom”.

• Entity composed by phrase. It can be divided into two
categories. One is the form of “noun+noun” and their
relationship is “compound”, like “air condition”. The
other is the form of “adjective+noun”, their relationship
is “amod”, like “sitting room”.

The data stored in the knowledge map is matched with the
extracted information to classify. In summary, the extraction
rules for the three kinds of information as algorithm 2 shows.

Algorithm 2 Extracting the “device”, “location” and “at-
tribute” information

Input: Dependency parsing of the command;
Output: “device” information D, “location” information L,
“attribute” information A
Find the node p whose part of speech is “NN”, C=p.word;
while p has a child node p→son and the relationship
r (p, p→ son) is “amod” or “compound” do

N=N+(p→ son).word;
p=p→ son;

end while
Look for knowledge graph node Si;
Judge the type of information N is DName, LName or
CType.

B. Rules for Knowledge Reasoning

After information extraction is done, we need to map
extracted information to service in knowledge graph through
transformation mechanism. Universal rules of knowledge rea-
soning is proposed in term of different extraction results for
matching the services. Rules are listed in Table V.

Rule 1, 2 and 3 outline that the user directly specifies the
operation of a device. For example, when the user specifies
“”D, “L”, “C” and “E”, construct rule 1. If there is service
instance Si and the value of attribute LName is L, DName
is D, CType is C, and Effect is E, call the function interface
DFunction of service Si.

Rules 4 and 5 describe the knowledge reasoning based on
the user’s environment when the information given by the
user is insufficient to locate the specific service. For example,
when the user gives the operation and device, construct rule
4. Firstly, the location information of the device is obtained
according to the LName of the current user Ui. Then, we

370

need to find a service Sj that meets the following conditions.
The attribute LName value of Si is equal to LName of Ui,
DName of Si is D, and Effect is E. Finally, the function
interface pointed to by the attribute DFunction of the service
Si is called.

VI. EVALUATION

In this section, we build a prototype system of smart
home for the actual scene to evaluate the method. Firstly, we
evaluate validity of the modeling method for knowledge graph
instances. Secondly, we compare the development difficulty
and execution performance of the service with the traditional
method. Finally, we discuss the precision of information
extraction.

A. Study Case

Device: air conditioner

Device :light

Location : balcony

Device: water pump

Device: air conditioner

Device: air purifier

Device : light

User: Jack

User: Ben

Location:sitting room

Location : bedroom

Device : curtain

Device:water pump

Device:led

Fig. 4. Example scenario of smart home

There are 3 areas in the scene, which are the sitting room,
bedroom and balcony, as shown in Figure 4. For example, there
are some smart devices such as an air conditoner, lights and an
air purifier in the sitting room. The scene includes four types
of environmental states: temperature, humidity, brightness and
particulate matter. There are services such as “turn on”, “turn
off”, “increase”, “reduce” and so on for various functions of
different devices. Fig. 5 shows the instance of the knowledge
graph which is generated with respect to the smart home scene.

Fig. 5. Instance model of the knowledge graph for smart home

B. Evaluation of the Model

In this section, we develop smart home services based on
Java to verify the effectiveness of the method, comparing the
process and the difficulty of services development with the
method we proposed.

1) Process of Service Development: To develop services
based on Java, developers must be familiar with the man-
agement interfaces of different intelligent devices and realize
their interaction. Moreover, because services are based on
these management interfaces, their management logic cannot
be reused.

We built the runtime model of the smart devices with the
help of the SM@RT tool [10] [11], which realizes the data
read-write and function invocation of the devices in a unified
manner (SM@RT is available from the reference [12]). S-
M@RT(supporting model at runtime) is a tool for constructing
the runtime software architecture by model-driven, including
domain-specific modeling language (SM@RT language) and
code generator (SM@RT generator).

SM@RT language allows users to define the meta-model
and accessing model of run time software architecture. The
meta-model defines the structure and manageable elements of
the target system. The accessing model declares the methods
of managing these elements in meta-model.

SM@RT generator can automatically generate and maintain
the infrastructure of run time software architecture based on
meta-model and access model, and reflect the real-time state
of the underlying system to the run time model. At the same
time, the intelligent device run time model only needs to be
constructed once then it can be reused in different smart home
scenarios. Therefore, it does not bring extra work.

Based on the run time model of smart devices, developers
can automatically build voice control services in smart homes
by describing Scenario-Oriented knowledge, configuring the
mapping relationship between conceptual instances and smart
devices, and describing the environment of service objects.

2) Difficulty in Service Development: Table VI compares
lines of code for smart home services developed by the two
methods. We develop services in Java, and each service is de-
veloped independently. When using the method we proposed,
developers need to finish the scenario oriented configuration,
and the basic code are 115 lines.

For example, it takes 197 lines of code to implement the
service S11 for temperature adjustment performed by Jack.
The workload for these two parts in service S11 can be 126 and
71 lines respectively. It only takes 6 lines of configuration code
to achieve the same functionality in our method. Implementing
these services by traditional method needs 188 lines of code
in average, but only 16 lines are required using the proposed
method, reducing the workload by 90%.

C. the Accuracy of Information Extraction

We convene 50 volunteers to give natural language instruc-
tions based on the prototype system. Because the smart home
scene we built is small, the corpus obtained is limited. In the
end, we receive 1321 responses regarding what the respondents

371

TABLE V
RULES FOR KNOWLEDGE REASONING

Condition Reasoning Rules
D+L+A+O (∃Si) ((Si.DName = D) ∧ (Si.LName = L) ∧ (Si.CType = A) ∧ (Si.Effect = O))⇒ Si.DFunction

D+L+O (∃Si) ((Si.DName = D) ∧ (Si.LName = L) ∧ (Si.Effect = O))⇒ Si.DFunction
L+A+O (∃Si) ((Si.LName = L) ∧ (Si.CType = A) ∧ (Si.Effect = O))⇒ Si.DFunction

D+O (∃Sj) (∃Ui) ((Ui.UName = uname) ∧ (Sj .LName = Ui.LName) ∧ (Sj .DName = D) ∧ (Sj .Effect = O))⇒ Sj .DFunction
A+O (∃Ui) (Ui.UName = uname) ∧ (∀Sj) ((Sj .LName = Ui.LName) ∧ (Sj .CType = A) ∧ (Sj .Effect = O))⇒ Sj .DFunction

TABLE VI
COMPARISON IN LOC OF TWO APPROACHES

Basic S11 S12 S13 S21 S22 S23 S33 S34 S42 S43 Avarage
Java 0 197 231 181 210 189 140 216 184 140 195 188

Our Approach 115 6 6 6 6 6 6 6 6 6 6 16

want their smart home to do. We extracted the information
from these commands and the results of the evaluation are
shown in Table VII.

We will discussed the results according to the evaluation
data. The accuracy of DName, LName, CType and Effect
extraction from the table is 93%, 90%, 84% and 80%. Because
users have different expressions of the same concept or entity.
For example, “sitting room” and “living room”. Therefore,
when the user does not use the same word in the knowledge
map to perform operations on the device, it will lead to failure
of information extraction. The information extraction method
of this paper achieves better results when the user follows the
scene information.

TABLE VII
THE ACCURACY OF INFORMATION EXTRACTION

Type Sentence Number Right Back Number Precision
DName 867 771 89%
LName 906 815 90%
CType 532 447 84%
Effect 766 612 80%

VII. CONCLUSION

To customize and develop smart home services more effi-
ciently, an approach is proposed to model and execute services
based on natural language instructions at runtime. Due to the
gap between problem domains and system implementations,
accomplishing mapping between them can create significant
programming complexity. In order to solve the problem we
introduce the knowledge graph serve as a bridge between sys-
tem requirements and system implementation. Experimental
results show that the proposed method can greatly reduce the
difficulty and complexity of developing smart home services.
But, due to the lack of technical and design capabilities there
are some function implementation could be optimized. Firstly,
the detection module [13] should be added to check the
correctness and completeness of the instance model. Secondly,
the information extraction method need to be improved by
entity linking to increase the precision.

VIII. ACKNOWLEDGMENT

This work was supported by the National Key R&D Pro-
gram of China under Grant No. 2017YFB1002000, the Talent
Program of Fujian Province for Distinguished Young Schol-
ars in Higher Education and the Guiding Project of Fujian
Province under Grant No. 2018H0017.

REFERENCES

[1] K. Xu, X. L. Wang, W. Wei, H. B. Song, and B. Mao, Toward software
defined smart home, IEEE Communications Magazine, 2016, 54(5):116-
122.

[2] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu
and P. Bahl. An operating system for the home. Usenix Conference
on Networked Systems Design and Implementation, 2012:25-25.

[3] T. Edwards, J. Edwards, E. Dot. The Amazon Echo Dot User Guide:
Newbie to Expert in 1 Hour! The Echo Dot User Manual That Should
Have Come In the Box. Tim Edwards & Jenna Edwards.

[4] P. Dempesey. 2017. The teardown: Google Home personal assistant.
Engineering & Technoloy 12, 3(Apr. 2017), 80-81.

[5] G. Campagna, R. Ramesh, S. Xu, F. Michael, S. L. Monica. Al-
mond: The Architecture of an Open, Crowdsourced, Privacy-Preserving,
Programmable Virtual Assistant. In International World Wide Web
Conferences Steering Committee, 2017.

[6] L. Mottola and G. P. Picco. Programming wireless sensor net-
works:Fundamental concepts and state of the art. Acm Computing
Surveys,2009,43(3):1-51.

[7] G. Y. Guan, W. Dong, Y. Gao, K. B. Fu and Z. H. Chen. TinyLink:
A Holistic System for Rapid Development of IoT Applications. In
International Conference on Mobile Computing and NETWORKING.
New York: ACM, 2017:383-395.

[8] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. M. S. D.
Souza and V. Trif. SOA-Based Integration of the Internet of Things in
Enterprise Services. In IEEE International Conference on Web Services.
2009:968-975.

[9] K. Janowicz, A. Brring, C. Stasch, S. Sachade, T. Everding and A.
Llaves. A RESTful Proxy and Data Model for Linked Sensor Data.
International Journal of Digital Earth, 2013, 6(3):233-254.

[10] G. Huang, H. Song and H. Mei, SM@RT:towards architecture-based
runtime management of Internetware systems, In Asia-paci?c Sympo-
sium on Internetware, pp.1-10, 2009.

[11] H. Song, G. Huang, F.Chauvel, Y. F. Xiong, Z. J. Hu, Y. C. Sun and H.
Mei. Supporting runtime software architecture: A bidirectional transfor-
mation based approach. Journal of Systems & Software. 2011,85(5):711-
723.

[12] Peking University. SM@RT: Supporting models at runtime.
http://code.google.com/p/smatrt/, 2009.

[13] H. He, X. Chen, S. Cai, Y. Zhang, G. Huang. Testing bidirectional model
transformation using metamorphic testing. Information and Software
Technology, 2018, 104:109-129.

372

Modeling User Contextual Behavior Semantics with
Geographical Influence for Point-Of-Interest

Recommendation

Dongjin Yu, Kaihui Xu, Dongjing Wang
School of Computer Science and Technology

Hangzhou Dianzi University
Hangzhou, China

yudj@hdu.edu.cn, xkhsky@163.com, dongjing.wang@hdu.edu.cn

Abstract—Point-Of-Interest (POI) recommendation assists users

to find their preferred places and helps businesses to attract

potential customers. However, the data sparsity and the

complexity of user check-in behavior pose a big challenge to POI

recommender systems. To tackle this challenge, we propose a POI

recommendation method named HeteGeoRankRec based on user

contextual behavior semantics. First, to mine the fine-grained user

behavioral features, we employ the meta path of Heterogeneous

Information Network (HIN) to represent the complex semantic

relationship among users and POIs and integrate the context

constraints (such as time and weather) into the meta paths.

Secondly, we propose a weighted matrix factorization model

considering the influence of geographical distance to obtain

semantic preference through the user-POI semantic correlativity

matrixes generated by multiple meta paths. Finally, we introduce

a ranking-based fusion method, which unifies the recommendation

results of different meta paths as the final preference of users.

Experiments on the real data collected from Foursquare show that

HeteGeoRankRec has the better performance than the state-of-

the-art baselines.

Keywords—location-based social network; heterogeneous

information network; context information; point-of-interest

recommendation; behavior semantics.

I. INTRODUCTION
In recent years, thanks for the widespread of Internet and

mobile devices, Location-Based Social Networks (LBSNs) have
become increasingly popular. Users explore their preferred
locations, such as libraries, restaurants and stores, through the
"check-in" behavior provided by the LBSN services. For
example, more than 50 million people use Foursquare every
month 1 . The personalized POI recommendation service is
designed to improve the LBSN service experience by mining
user preferences through check-in data.

However, POI recommendation faces serious challenges.
First, the number of POIs visited by a user usually accounts for
only a small portion of all the POIs, which results in the highly

DOI reference number: 10.18293/SEKE2019-178

1 https://foursquare.com/about

sparse user-POI check-in data. In addition, the decision-making
process for user check-in behavior is very complex and prone to
be affected by rich context information [1]. For example, user’s
mobility is significantly affected by geographical distance [2,3].
In other words, users are more inclined to visit closer locations.
Meanwhile, user’s visiting preference might be affected by their
social relationships [4], meaning a user may follow the
suggestions from his friends or some influential people. Besides,
the user's preference may also be affected by the time [5] and the
weather [6]. Taking Fig. 1 as an example, Mary may prefer to
visit the library on rainy days, while Skye may like to go to the
restaurant for lunch. Unfortunately, most existing works lack
deep mining of user behavior semantics and suffer from the
much worse data sparsity problem.

Figure 1. An example of LBSN.

In this paper, we propose a novel POI recommendation
model named HeteGeoRankRec, based on user contextual
behavior semantics. First, we employ the meta path of
Heterogeneous Information Network (HIN) to represent the
complex semantic relationships of LBSN. Afterwards, to mine
fine-grained user behavioral features, we integrate the context
constraints, such as time and weather, to the meta paths.
Furthermore, we propose a weighted matrix factorization

Bob

Mary

Skye

19:05

13:00

18:00

18:00

12:00

21:00

373

considering geographical distance, from which we obtain the
semantic preference through the user-POI semantic correlativity
matrixes. Finally, we introduce a ranking-based fusion method,
which unifies the recommendation results obtained from
different meta paths as the final user preference.

The rest of the paper is organized as follows. After
presenting related work in Section Ⅱ, we introduce the related
concepts and problem definition in Section Ⅲ. Our proposed
model is given in Section Ⅳ, followed by its experimental
evaluation in Section Ⅴ. Finally, Section Ⅵ concludes this paper
and outlines the future work.

II. RELATED WORK
The POI recommendation plays an important topic in the

field of recommendation systems, attracting the attention from
both the academic and industrial fields. The context information,
such as geographical influence, has always been regarded as a
very significant impact on the recommendation performance [7].
For example, Li et al. [8] considered the user’s general interests
as a mixture of intrinsic and extrinsic interests, where the former
is personal-taste driven and the latter is environment driven.
Wang et al. [9] modeled the POI-specific geographical influence
between two POIs using three factors: the geo-influence of POI,
the geo-susceptibility of POI, and their physical distance.
However, only considering the geographical influence is not
always enough to represent the user's behavior characteristics.

User’s social relationships may affect the user check-in
behavior. For example, in [4], Gao et al. held that the social
relationships and check-in sequences significantly affect the
user's behavior and proposed a fusion model to combine two
features to predict user’s preference. Besides, Li et al. [10]
learned potential locations from three types of friends and
incorporated potential locations into matrix factorization model
to overcome the cold-start problem. In addition, there are some
works considering temporal effect [5] and content information
[11]. Although the aforementioned works improve the
recommendation performance to some extent by modeling the
context information, they lack deep mining of user behavior
semantics and suffer from the data sparsity problem.

In recent years, some researches [12,13,14] attempted to
apply HIN to the recommendation tasks to integrate more
information and represent user behavior semantics. For example,
Zhao et al. [13] proposed a HIN-based recommendation method,
which uses matrix factorization and factorization machine to
solve the information fusion problem. Wang et al. [14] utilized
the meta-path-based approach to extract implicit relationships
between a user and a POI, and applied logistic regression to
establish a prediction model for recommendation. However,
they simply regarded the location that the user has not visited as
a negative sample, without considering LBSN actually lacks the
explicit feedback of POI preferences.

III. THE PRELIMINARY
As an abstract representation of the real world, the

information network [15] focuses on the connection between the
different types of objects, which is usually defined as follows:

Definition 1. Information Network. An information
network is a directed graph 𝐺 = (𝑉, 𝐸), where 𝑉 is a set of
objects and 𝐸 is a set of links, with an object type mapping
function ∅:𝑉 → 𝐴 and a link type mapping function 𝜑: 𝐸 → 𝑅.
In other words, each object 𝑣 ∈ 𝑉 belongs to one particular
object type ∅(𝑣): ∈ 𝐴 , and each link 𝑒 ∈ 𝐸 belongs to one
particular relation 𝜑(𝑒): ∈ 𝑅. When there exists more than one
type of object, i.e., |𝐴| > 1, or one type of relation, i.e., |𝑅| > 1,
the network is called a heterogeneous information network.
Otherwise, it is a homogeneous information network.

Definition 2. Network Schema. The network schema is a
meta template of information network, denoted as 𝑇𝐺 = (𝐴, 𝑅),
with the object type mapping ∅: 𝑉 → 𝐴 and the link mapping
𝜑: 𝐸 → 𝑅.

Fig. 2 shows an example of LBSN heterogeneous
information network schema. The network schema serves as a
template for a network and tells how many types of objects there
are in the network and where the possible links exist, thereby
making the heterogeneous information network semi-structured.

Figure 2. LBSN heterogeneous information network schema.

Definition 3. Meta Path. A meta path 𝑀 is a path defined
on the graph of network schema 𝑇𝐺 = (𝐴, 𝑅), denoted as 𝑀 =

𝐴1
𝑅1
→𝐴2

𝑅2
→⋯

𝑅𝑙−1
→ 𝐴𝑙.

For simplicity, we denote the meta path as 𝑀 = 𝐴1𝐴2⋯𝐴𝑙 .
As shown in Fig. 2, in a LBSN heterogeneous information
network, the co-check-in relationship between users can be
represented by a meta path 𝑈

𝑐ℎ𝑒𝑐𝑘−𝑖𝑛
→ 𝑃

𝑐ℎ𝑒𝑐𝑘𝑒𝑑−𝑖𝑛 𝑏𝑦
→ 𝑈 ,

abbreviated as 𝑈𝑃𝑈, where 𝑈 and 𝑃 represent the user objects
and location objects respectively.

Definition 4. Context-constrained Meta Path. A context-
constrained meta path is a meta path with the context attribute

constraints on relations, denoted as 𝑀𝑐 = 𝐴1
𝛿1(𝑅1)
→ 𝐴2

𝛿2(𝑅2)
→ ⋯

𝛿𝑙(𝑅𝑙−1)
→ 𝐴𝑙 |𝑆, where 𝛿(𝑅) represents a set of context attribute
values on relation 𝑅, 𝑆 defines the context of the meta path and
the corresponding attribute value constraints.

For example, suppose the whole day is divided into multiple
time slices 𝑇1, 𝑇2, ⋯ , 𝑇𝑛, and the check-in relationship between
user 𝑈 and POI 𝑃 can occur in multiple time slices. We use 𝑈
{𝑇1,𝑇2}
→ 𝑃

𝑇1
→𝑈 to indicate that two users check in 𝑃 at 𝑇1, and one

of them makes a check-in at the 𝑇2 again. Moreover, the path
𝑈
𝑇𝑖
→𝑃

𝑇𝑗
→𝑈|{𝑆: 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ∈ {𝑇𝑖𝑚𝑒}, 𝑇𝑖 = 𝑇𝑗} means that two

users check in the same POI at the same time slice. Taking Fig.
1 as an example, we can easily find that although three people

User POI Catg.

CityGroup

Friend with
Check in Belong to

Locate in Belong to

374

all go to the gym, the temporal preferences for Bob and Skye are
more similar.

Definition 5. Counting Matrix. For a meta path 𝑀 =
𝐴1𝐴2⋯𝐴𝑙 , we define its counting matrix as 𝐶𝑀 =
𝑊𝐴1𝐴2𝑊𝐴2𝐴3 ⋅ … ⋅ 𝑊𝐴𝑙−1𝐴𝑙, where 𝑊𝐴𝑖𝐴𝑗 is the adjacency matrix

between 𝐴𝑖 and 𝐴𝑗. The values in the counting matrix represent

the number of times the interactions occur between objects.

Problem Definition. Given an LBSN heterogeneous
information network 𝐺, and a check-in record set 𝑆 with context
information, the problem we try to resolve is to build a
personalized recommendation model, and return the Top-K
unvisited POIs for each user 𝑢.

IV. THE FRAMEWORK
In this section, we present the proposed POI

recommendation method, called HeteGeoRankRec, in detail
(Fig. 3).

Figure 3. The Framework of HeteGeoRankRec.

A. Build Semantic Correlativity Matrixes Based on Context-

constrained Meta Path

1) Design Meta Paths: We first employ the meta path to
build the semantic relationship sequences for further analysis of
user preferences. Taking the path 𝑈𝑃𝑈𝑃 as an example, it may
indicate that users prefer locations where people with common
check-in records have checked in, which is a user-based
collaborative recommendation. Moreover, the 𝑈𝑈𝑃 path
represents that users prefer the locations checked in by their
friends, which is a social recommendation. Therefore, we can
make the recommendation more explainable by designing
reasonable meta paths to represent different user behavior
semantics. Table Ⅰ lists the meta paths and their corresponding
semantics, where 𝐶 represents the category of POI.

In addition, the context-constrained meta path is used to
capture the user's preferences in different contexts (e.g. time,
weather). For the meta path like 𝑈 ∗ 𝑈𝑃 (e.g. 𝑀3 and 𝑀5 in
Table Ⅰ), we add context constraints as follows:

𝑀𝑐: 𝑈
𝑖
→𝑃 ∗ 𝑃

𝑗
→𝑈

𝑘
→𝑃|{𝑆: 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 ∈ 𝑍, 𝑖 = 𝑗 = 𝑘} (1)

where 𝑍 = {𝑇𝑖𝑚𝑒,𝑊𝑒𝑎𝑡ℎ𝑒𝑟} represents a set of context types.
Note that weather indicators, such as cloud cover and
temperature, can also be divided into multiple numerical

segments. Here, 𝑖 = 𝑗 = 𝑘 indicates that the behavior occurs in
same context.

TABLE I. THE META PATHS AND ITS SEMANTICS

Symbol Meta path Semantic

𝑀1 𝑈𝑃 Users prefer locations they have checked in

𝑀2 𝑈𝑈𝑃 Users prefer locations where their friends
have checked in

𝑀3 𝑈𝑃𝑈𝑃 Users prefer locations where people with
common check-in records have checked in

𝑀4 𝑈𝑃𝐶𝑃 Users prefer the same category of locations
they have checked in

𝑀5 𝑈𝑃𝐶𝑃𝑈𝑃
Users prefer locations where people having
checked in the POIs of the same category
have checked in

2) Build Semantic Correlativity Matrix: We employ the
counting matrix defined above as a counting-based correlativity
matrix between user objects and location objects, denoted as 𝑆𝑀.
This can effectively alleviate the sparsity of the user-POI
relation matrix by computing the correlativity through meta
path. The counting-based correlativity reflects the idea of high
correlativity between nodes with high visibility in the LBSN
heterogeneous information network. Such an idea is intuitive
and suitable for recommendation task. Taking the time context
as an example, the semantic correlativity matrix is built
according to Eq. (2), which involves three steps: (a) Divide the
time of day into multiple slices 𝑇1, 𝑇2, ⋯ , 𝑇𝑛, and obtain user
check-in records for each slice; (b) Obtain the correlativity
matrixes 𝑆𝑀𝑇𝑖 by calculating the correlativity from meta paths
within each time slice; (c) Add the correlativity matrixes to
construct the semantic correlativity matrix 𝑆𝑀𝑐 of the context-
constrained meta path.

𝑆𝑀𝑇𝑖
= (𝑊𝐴1𝐴2𝑊𝐴2𝐴3⋯𝑊𝐴𝑙−1𝐴𝑙)

𝑇𝑖 , S𝑀𝑐 = ∑S𝑀𝑇𝑖
 (2)

B. Predict POI Preference Based on Weighted Matrix

Factorization

In this section, we extend the weighted matrix factorization
algorithm based on implicit feedback proposed in [16] and
optimize the objective function by adding geographical
influence factor to make it suitable for POI recommendation.

1) Calculate User-POI Check-in Probability: Users are
more inclined to visit closer locations. The check-in probability
of the user from one location to another 𝑥 (𝑘𝑚) away
approximately follows the power law distribution [2], as the
following:

𝑦 = 𝑃𝑟𝑢 (𝑖, 𝑗) = 𝑎 ⋅ 𝑥
𝑏 ()

Let 𝑎 = 2𝑤0，𝑏 = 𝑤1, and Eq. (3) is then transformed into
Eq. (4) by taking the logarithm:

 𝑙𝑜𝑔 𝑦 = 𝑤0 + 𝑤1 𝑙𝑜𝑔 𝑥 (4)

Let 𝑦′ = 𝑙𝑜𝑔 𝑦 , 𝑥′ = 𝑙𝑜𝑔 𝑥 . We then use the linear
regression method to optimize the following loss function to
obtain the regression coefficient:

POI

Weather

Time

Friend

Category

Input Check-in record

𝑆𝑀1

Build LBSN HIN

Predict Preference from
Semantic Correlativity Matrix

𝑟 𝑢,𝑖
1

𝑟 𝑢,𝑖
2

𝑟 𝑢,𝑖

Recommend POIs Based
on Learning to Rank

 1

 2

𝑆𝑀2

𝑆𝑀

375

 𝐿 =
1

2
∑ (𝑦′ − 𝑝𝑛)

2𝑁
𝑛=1 +

𝜆

2
||𝒘||2 ()

where 𝑤0 and 𝑤1 are regression coefficients, denoted together
by 𝒘 , 𝑝𝑛 is real check-in probability to the 𝑥′ , and the
regularization parameter 𝜆 is used to prevent the model from
overfitting.

Then the check-in probability from POI 𝑖 to 𝑗 for user 𝑢 is
normalized by Eq. (6):

 𝑃𝑟𝑢
𝐺(𝑖, 𝑗) =

𝑃𝑟𝑢 (𝑖,𝑗)

𝑀𝑎𝑥(𝑃𝑟𝑢)
 ()

where the denominator represents the maximum check-in
probability of two POIs among the user records.

2) Incorporate Geographical Influence: Suppose the
corresponding value in the meta-path-based semantic
correlativity matrix is represented as 𝑆𝑀𝑢,𝑖. We define the user
implicit preference as follows:

 𝑟𝑢,𝑖 = {
1 𝑆𝑀𝑢,𝑖 > 0

0 𝑆𝑀𝑢,𝑖 = 0
 ()

In other words, 𝑟𝑢,𝑖 indicates whether there is a value greater
than 0 in the correlativity matrix. Furthermore, we introduce
𝑐𝑢,𝑖 to measure our confidence in 𝑟𝑢,𝑖. In general, as 𝑆𝑀𝑢,𝑖 grows,
there is a stronger indication that user indeed prefers the
location. Eq. (8) defines 𝑐𝑢,𝑖 , where 𝛼 controls the rate of
increase.

 𝑐𝑢,𝑖 = 1 + 𝛼𝑆𝑀𝑢,𝑖 ()

We believe that the user's preference for unvisited POIs is
limited by the distance between the candidate POIs and the
POIs that the user has checked in. Thus, based on matrix
factorization, the new user preference can be defined as Eq. (9):

 𝑟 𝑢,𝑖 = 𝛽𝑥𝑢
𝑇𝑦𝑖 +

(1−𝛽)

|𝐷𝑢|
∑ 𝑃𝑟𝑢

𝐺(𝑖, 𝑘)𝑥𝑢
𝑇𝑦𝑘𝑘𝜖𝐷𝑢 ()

where 𝛽 is geographical influence factor, 𝐷𝑢 represents a set of
POIs that user 𝑢 has checked in, 𝑥𝑢 and 𝑦𝑖 represents the latent
feature vectors under same dimension 𝑓 for user 𝑢 and POI 𝑖.

Then, we solve the low-dimensional feature vector
corresponding to the user and the POI by minimizing the loss
function defined as Eq. (10) where 𝜆 is used to prevent the
model from overfitting.

 𝑚𝑖𝑛𝑥∗,𝑦∗ ∑ 𝑐𝑢,𝑖(𝑟𝑢,𝑖 − 𝑟 𝑢,𝑖)
2 + 𝜆(‖𝑥𝑢‖

2+‖𝑦𝑖‖
2)(𝑢,𝑖)∈𝑇 ()

The alternating least squares method is used to optimize the
above loss function. For simplicity, we define the following
variable:

 𝑦�̃� = 𝛽𝑦𝑖 +
1−𝛽

|𝐷𝑢|
∑ 𝑃𝑟𝑢

𝐺(𝑖, 𝑘)𝑦𝑘𝑘𝜖𝐷𝑢
 ()

The updating equations for 𝑥𝑢 and 𝑦𝑖 are obtained as:

 𝑥𝑢 = (∑ 𝑐𝑢,𝑖𝑦�̃�𝑦�̃�
𝑇 + 𝜆𝐼𝑖)−1 ⋅ ∑ 𝑐𝑢,𝑖𝑟𝑢,𝑖𝑦�̃�𝑖 ()

 𝑦𝑖 = (𝛽
2∑𝑐𝑢,𝑖𝑥𝑢𝑥𝑢

𝑇

𝑢

+ 𝜆𝐼)−1 ×

(13)
 𝛽∑𝑐𝑢,𝑖(𝑟𝑢,𝑖𝑥𝑢 +

1 − 𝛽

|𝐷𝑢|
∑ 𝑃𝑟𝑢

𝐺(𝑖, 𝑘)𝑥𝑢
𝑇𝑦𝑘𝑥𝑢

𝑘𝜖𝐷𝑢

)

𝑢

C. Recommend POIs Based on Learning to Rank

Suppose we have designed 𝐹 meta paths and 𝐺 context-
constrained meta paths, and have obtained 𝐿 = 𝐹 + 𝐺 user-POI
semantic correlativity matrixes 𝑆𝑀1 , 𝑆𝑀2 ,…, 𝑆𝑀

 . Each matrix
generates the user semantic preference 𝑟 𝑢,𝑖𝑙 through the matrix
factorization algorithm described above. After combining the
different semantic features, the final preference of user 𝑢 for
POI 𝑖 can be formulated as:

 𝑟𝑢,𝑖
∗ = ∑ 𝑙 ⋅ 𝑟 𝑢,𝑖

𝑙
𝑙=1 ()

where 𝑙 represents the weight of the preference obtained by
meta path 𝑙.

LBSN often lacks negative feedback, because we regard the
POIs that the user has checked in as the positive samples.
However, the POIs where the user has not visited yet does not
simply mean that they are not interested in (they may not find
this location). Therefore, a direct and effective recommendation
model should be able to better rank the POI pairs for users,
indicating that the user's preference for the POI with high
correlativity is greater than the POI with low correlativity in
user semantic correlativity matrix. Here, we adopt the idea of
pair-wise learning. More specifically, we use the relative orders
of POIs as the samples to learn the weights in Eq. (14).

Based on the method proposed in [17], we use the Eq. (15)
to express the probability that user 𝑢 prefers POI 𝑖 instead of 𝑗:

 𝑝(𝑖 >𝑢 𝑗|) =
1

1+𝑒
−(𝑟𝑢,𝑖

∗ −𝑟𝑢,𝑗
∗)

 ()

where = { 1, 2⋯ } is a weight vector, >𝑢 represents the
ordering relationship of two POIs.

According to the Bayesian formula, if we want all the POIs
to be sorted correctly, we need to maximize the following
posterior probability:

 𝑝(| >𝑢) ∝ 𝑝(>𝑢 |)𝑝() ()

Assuming that the user's ranking preference for POI pairs is
independent, the likelihood function can be defined by:

𝑝(𝑅|) = ∏ 𝑝(𝑅𝑢|)𝑢∈𝑈 = ∏ ∏ 𝑝(𝑖 >𝑢 𝑗|)(𝑖>𝑢𝑗)∈𝑅𝑢𝑢∈𝑈 ()

where 𝑅 represents a set of ordering relationships of the POI
pairs.

We assume that 𝑝() follows a Gaussian distribution with
zero mean and variance-covariance matrix ∑ = 𝜆𝜃𝐼𝜃 . Thus, the
objective function of ranking optimization can be formulated as:

O(θ) = −ln 𝑝(| >𝑢) = − ln 𝑝(>𝑢 |)𝑝()

 = −∑ ∑ ln 𝑝(𝑖 >𝑢 𝑗|) − 𝜆𝜃|| ||
2

(𝑖>𝑢𝑗)∈𝑅𝑢𝑢∈𝑈 ()

376

We employ stochastic gradient descent (SGD) to optimize
the above objective function. After obtaining , the predicted
value of user 𝑢 for all POIs can be calculated by the Eq. (14).
Finally, we select 𝐾 POIs that user has not visited with the
highest predicted value and recommend them to the user.

V. EXPERIMENTS

A. Experimental Setup

1) Dataset: The experiments are based on the Foursquare
dataset2 provided by the author of literature [10], including the
real-world check-in data from 2010 to 2011. Each check-in
record includes a user ID, a location ID, and a timestamp, where
each location has its latitude, longitude and category, and each
user is associated with her friends. In addition, we used the API
of darksky.net 3 to collect the weather information for each
<latitude, longitude, timestamp> record, including temperature,
humidity and cloud cover. To evaluate the performances of the
proposed method HeteGeoRankRec4 , implemented based on
LibRec [18], we construct two datasets via extracting the check-
in records generated from Los Angeles and San Diego. The
detailed statistics of the datasets are shown in Table Ⅱ.

TABLE II. STATISTICS OF DATASETS

 #Users #POIs #Check-ins Sparsity

Los Angeles 2,026 8,270 51,917 99.83%
San Diego 916 4,919 26,762 99.71%

In order to make the experiments more consistent with real

situation, we split training data 𝐷𝑡𝑟𝑎𝑖𝑛 and testing data 𝐷𝑡𝑒𝑠𝑡 as
follows: for each individual user, (a) aggregating her check-ins
for each location; (b) sorting the location according to the first
time that the user checked in; (c) selecting the earliest 80% to
train the model and using the next 20% as testing.

2) Evaluation Metrics: We employ two widely used metrics
to evaluate the performance of different recommendation
methods, namely precision and recall, denoted by Pre@K and
Rec@K, where K is the number of recommended POIs. We
compute Pre@K and Rec@K as follows:

 𝑃𝑟𝑒@𝐾 =
1

|𝐷𝑡𝑒𝑠𝑡|
∑

|𝑅𝑢∩𝑇𝑢|

|𝑅𝑢|
𝑢∈𝐷𝑡𝑒𝑠𝑡 ()

 𝑅𝑒𝑐@𝐾 =
1

|𝐷𝑡𝑒𝑠𝑡|
∑

|𝑅𝑢∩𝑇𝑢|

|𝑇𝑢|
𝑢∈𝐷𝑡𝑒𝑠𝑡

 ()

where 𝑅𝑢 represents the Top-K recommendation results for
user 𝑢, and 𝑇𝑢 is a set of POIs visited by user 𝑢 in 𝐷𝑡𝑒𝑠𝑡 .

3) Parameters Settings: We use the meta paths listed in
Table Ⅰ to calculate the semantic correlativity matrixes and add
time and weather context constraints to 𝑀3 and 𝑀5. We divide
the time of day into three slices and the weather indicators into
three segments in tertile, and build the semantic correlativity
matrixes by the method described in Section Ⅳ.A. The
parameters of check-in probability are obtained through

2 https://dropbox.com/s/pa1mni3h8qdkdby/Foursquare.zip?dl=0
3 https://darksky.net/dev

learning. In particular, we set the latent feature number 𝑓 of the
matrix factorization model to 10, the geographical influence
factor 𝛽 to 0.8, and the regularization parameter 𝜆 to 0.01.

4) Baseline Methods: We compare the proposed method
with the following baseline methods:

• WRMF [16]: A matrix factorization model for implicit
feedback.

• BPRMF [17]: A matrix factorization model which
optimizes the ordering of the preference for the observed
location and the unobserved location.

• GMF: A matrix factorization model based on that
proposed in Section Ⅳ.B and check-in matrix
(correlativity matrix generated from UP meta path)
directly for recommendation.

• USG [2]: A model combining user preferences, social
relationships, and geographical influence with collabo-
rative filtering.

• RankGeoMF [3]: A matrix factorization model based on
ranking and geographical influence for POI
recommendation.

• ASMF [10]: A model which learns a set of user’s
potential locations from her three types of friends, and
then incorporates them into matrix factorization.

B. Experimental Result

1) Performance Comparison: The comparisons between
the HeteGeoRankRec and other methods in terms of Pre@K
and Rec@K is shown in Fig. 4. Both WRMF and BPRMF are
recommendation methods for implicit feedback data. Due to the
severe data sparsity problem of LBSN, these two methods do
not perform well. However, we observe GMF improves WRMF
by 55.7% and 19.5% in terms of Pre@5 on Los Angeles and
San Diego datasets, respectively, due to the incorporation of
geographical influence. Besides, USG exhibits better
performance than RankGeoMF on both datasets. One possible
reason is that USG integrates geographical, social information
and user preference, while RankGeoMF only uses geographical
information. Most importantly, on average, the proposed
HeteGeoRankRec outperforms its competitors WRMF,
BPRMF, GMF, USG, RankGeoMF and ASMF, in terms of
Pre@5, by 81.1%, 70.5%, 31.4%, 27.2%, 49.5% and 11.4%
respectively.

2) Context Influence: The performance comparisons of
HeteGeoRankRec with different contexts are shown in Fig. 5,
which indicate the limited benefit when it only introduces one
type of context information. However, combining the time and
weather context will greatly improve the Pre@K and Rec@K
on both datasets. Therefore, it can be easily concluded that
considering various contexts to mine the user's behavior from
multiple dimensions makes the model more accurate.

4 https://github.com/Skyexu/HeteGeoRankRec

377

Figure 4. Performance comparisons of different methods.

Figure 5. Performance comparisons of different contexts.

VI. CONCLUSION
In this paper, we propose a POI recommendation method

called HeteGeoRankRec based on the contextual behavioral
semantics. It employs meta paths to represent the complex
semantic relationship of user behavior, and combines social
relationships, location categories, time and weather contexts,
and geographical distance to mine the fine-grained user
behavioral characteristics. In the future, we will further study the
following issues: (a) deeply explore the influence factors of user
behavior in LBSN; (b) express more information on the LBSN
heterogeneous information network; and (c) study POI
recommendation at specific contexts (e.g. time, weather).

REFERENCES
[1] Y. Liu, T. Pham, G. Cong, Q. Yuan. “An experimental evaluation of

point-of-interest recommendation in location-based social networks,” in
Proceedings of the VLDB Endowment, vol 10, no 10, 2017, pp. 1010-1021.

[2] M. Ye, P. Yin, W. C. Lee, D. Lee, “Exploiting geographical influence for
collaborative point-of-interest recommendation,” in Proceedings of the
34th International ACM SIGIR Conference on Research and Development
in Information Retrieval, ACM, 2011, pp. 325-334.

[3] X. Li, G. Cong, X. Li, T. Pham, S. Krishnaswamy, “Rank-geofm: A
ranking based geographical factorization method for point of interest
recommendation,” in Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
ACM, 2015, pp. 433-442.

[4] H. Gao, J. Tang, H. Liu, “Exploring social-historical ties on location-
based social networks,” in Proceedings of the 6h International AAAI
Conference on Weblogs and Social Media , 2012.

[5] H. Gao, J. Tang, X. Hu, H. Liu, “Exploring temporal effects for location
recommendation on location-based social networks,” in Proceedings of
the 7th ACM Conference on Recommender Systems, ACM, 2013, pp. 93-
100.

[6] C. Trattner, A. Oberegger, L. Eberhard, D. Parra, L. Marinho,
“Understanding the Impact of Weather for POI Recommendations,” in
RecTour@ RecSys, 2016, pp. 16-23.

[7] D. Yu, Y. Wu, C. Liu, X. Sun, “Collective POI Querying Based on
Multiple Keywords and User Preference,” in Proceedings of the 24th
International Conference on Database Systems for Advanced
Applications, Springer, 2019, pp. 609-625.

[8] H. Li., Y. Ge, D. Lian., H. Liu, “Learning User’s Intrinsic and Extrinsic
Interests for Point-of-Interest Recommendation: A Unified Approach,” in
Proceedings of the 26th International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, 2017, pp. 19-25.

[9] H. Wang, H. Shen, W. Ouyang, X. Cheng, “Exploiting POI-Specific
Geographical Influence for Point-of-Interest Recommendation, ” in
Proceedings of International Joint Conferences on Artificial Intelligence
(IJCAI), ACM, 2018, pp. 3877-3883.

[10] H. Li, Y. Ge, R. Hong, H. Zhu, “Point-of-interest recommendations:
Learning potential check-ins from friends,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data
mining, ACM, 2016, pp. 975-984.

[11] S. Xing, Q. Wang, X. Zhao, T. Li, “Content-aware point-of-interest
recommendation based on convolutional neural network,” Applied
Intelligence, vol 49, 2019, pp. 858-871.

[12] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, J. Han,
“Personalized entity recommendation: A heterogeneous information
network approach,” in Proceedings of the 7th ACM international
conference on Web search and data mining, ACM, 2014, pp. 283-292.

[13] H. Zhao, Q. Yao, J. Li, Y. Song, D. L. Lee, “Meta-graph based
recommendation fusion over heterogeneous information networks,” in
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, 2017, pp. 635-644.

[14] Z. S. Wang, J. F. Juang, W. G. Teng, “Predicting poi visits with a
heterogeneous information network,” Technologies and Applications of
Artificial Intelligence (TAAI), IEEE, 2015, pp. 388-395.

[15] Y. Sun, J. Han, X. Yan, P. S. Yu, T. Wu, “Pathsim: Meta path-based top-
k similarity search in heterogeneous information networks,” in
Proceedings of the VLDB Endowment 4, 2011, pp. 992-1003.

[16] Y. Hu, Y. Koren, C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in Proceedings of the 8th IEEE International
Conference on Data Mining, IEEE, 2008, pp. 263-272.

[17] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, “BPR:
Bayesian personalized ranking from implicit feedback,” in Proceedings
of the 25th conference on uncertainty in artificial intelligence, AUAI
Press, 2009, pp. 452-461.

[18] G. Guo, J. Zhang, Z. Sun and N. Yorke-Smith, “LibRec: A Java Library
for Recommender Systems,” in Posters, Demos, Late-breaking Results
and Workshop Proceedings of the 23rd Conference on User Modelling,
Adaptation and Personalization(UMAP), 2015.

(a) Pre@K - Los Angeles

(b) Rec@K - Los Angeles

(c) Pre@K - San Diego

(d) Rec@K - San Diego

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

5 10 15 20

P
re

@
K

K

WRMF BPRMF

GMF USG

RankGeoMF ASMF

HeteGeoRankRec

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

5 10 15 20

R
e

c
@

K

K

WRMF BPRMF

GMF USG

RankGeoMF ASMF

HeteGeoRankRec

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

5 10 15 20

P
re

@
K

K

WRMF BPRMF

GMF USG

RankGeoMF ASMF

HeteGeoRankRec

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

5 10 15 20

R
e

c
@

K

K

WRMF BPRMF

GMF USG

RankGeoMF ASMF

HeteGeoRankRec

(a) Pre@K - Los Angeles

(b) Rec@K - Los Angeles

(c) Pre@K - San Diego

(d) Rec@K - San Diego

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

5 10 15 20

P
re

@
K

K

No context Time Weather Time and weather

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

5 10 15 20

R
e

c
@

K

K

No context Time Weather Time and weather

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

5 10 15 20

P
re

@
K

K

No context Time Weather Time and weather

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

5 10 15 20

R
e

c
@

K

K

No context Time Weather Time and weather

378

A Deep Learning Model Based on Sparse Matrix for

Point-of-Interest Recommendation

Jun Zeng
School of Big Data & Software Engineering

Chongqing University

Chongqing, China
zengjun@cqu.edu.cn

Yinghua Li
School of Big Data & Software Engineering

Chongqing University
Chongqing, China

yinghuali@cqu.edu.cn

Haoran Tang
School of Big Data & Software Engineering

Chongqing University

Chongqing, China
tanghaoran@cqu.edu.cn

Xin He
School of Big Data & Software Engineering

Chongqing University

Chongqing, China
hexin@cqu.edu.cn

Abstract—Point-of-interest (POI) recommendation that consists of

location-based social networks (LBSNs) and provides personal

services for users has become an important part in the field of

recommendation system. Due to the sparseness of user check-in

matrix, POI recommendation faces great challenges. However,

most researches just consider of spatial and temporal impact on

recommendation and do not solve the problem of sparsity. This

paper proposes a POI recommendation model called RBMNMF

which is based on sparse matrix of user check-ins. Firstly, by

stacking restricted Boltzmann machines (RBM), the potential

relationship between users and POIs is learned and multiple user-

POI matrices are extracted. Second, fill the original sparse matrix

by using non-negative matrix factorization (NMF). Finally, fuse

those prediction matrices to generate final POI recommendation

for users, which is benefit for solving the problem of sparsity

effectively. Experiments on real-world data set prove that the

model we propose has a better accuracy than traditional

algorithms.

Keywords—Point-of-Interest Recommendation, Social Network,

Restricted Boltzmann Machine, Non-Negative Matrix Factorization,

Hybrid Mode

I. INTRODUCTION
Mobile internet technology has developed at a high speed

which makes location-based social networks (LBSNs) become
popular such as Foursquare, Gowalla, Yelp and Facebook.
Compared with traditional social networks, LBSNs allow users
share locations with their friends by check-in on POIs (such as
cinemas, amusement parks and restaurants). The number of POIs
has increased faster at present, so it’s necessary to recommend
satisfying POIs to users for saving choice time and improving
their experience of life in city. However, mining locations
among a large number of POIs that user may have interest in is
a great challenge.

DOI reference number: 10.18293/SEKE2019-156

Different from traditional recommendation system, the
challenge of POI recommendation is bigger because the user-
POI check-in matrix is a high-dimension sparse matrix, which
makes analysis of user-POI matrix more difficult. From some
popular data sets such as Foursquare and Gowalla, we observe
that sometimes a user just visited a few locations, leading to
unreasonable recommendations under the whole location space.
Therefore, data sparsity has become a critical problem for POIs
recommendation, which is needed to be emphasized and solved.
The classical collaborative filtering (CF) algorithm calculates
the similarity between users or recommend locations based on
check-ins. But faced with the high-dimension sparse matrix of
user check-in data, the similarity calculation of users could not
be achieved and CF does not solve the problem of data sparsity.

For overcoming the sparsity, this paper proposes a deep
learning model based on sparse user check-in matrix for POI
recommendation, which constructs bidirectional analysis of
users and POIs and aims to recommend POIs to users that meet
users’ preferences. The main contributions of this paper are as
follows.

 Propose a deep learning model called RBMNMF for POI
recommendation that is based on sparse matrix of user
check-ins.

 Construct strong correlation values between users and
POIs to observe and analyze users’ preferences for POIs
by calculating bidirectional scores between users and
POIs.

 Combine stacking restricted Boltzmann machines with
non-negative matrix factorization to solve the problem of
data sparsity fundamentally.

 Experiments on real-world data set proves that
RBMNMF we propose outperforms other traditional
algorithms in terms of data sparsity.

379

This paper consists of five sections. Section 2 introduces
some related algorithms of POI recommendation in LBSNs.
Section 3 explicates the RBMNMF model we propose for sparse
matrix of user check-ins. Section 4 shows experiments we have
and the performance of our model. Section 5 summarizes this
paper and discusses the future work.

II. RELETED WORK
At present, location-based POI recommendation in social

networks has attracted wide attention from researchers who
comes from different fields. Quan et al. [1] considered that the
time factor plays an important role in POI recommendation
because users visit different locations in different time periods
and proposed a collaborative recommendation algorithm
combining time factor. References [2-5] regarded users’ mobile
trajectories as key information when recommending and mined
those trajectories to recommend POIs. Ramesh [6] proposed a
fusion algorithm that integrated time, space and social
relationships into a unified framework for POI recommendation.
There have been many achievements for POI recommendation
so far, which can be divided into the following three aspects.

 Collaborative filtering (CF): Although CF is the most
famous recommendation algorithm, accurate recognition
for similar user is a great challenge to CF because of the
sparse matrix of user check-ins. Meanwhile, CF ignores
lots of user information that is helpful for recommending.
Shu et al. [7] proposed a collaborative filtering
recommendation algorithm based on topic model to
extract user preference of topics (such as culture, history,
landscape and so on) information and recommended
comprehensive POIs for users. Yang et al. [8] designed a
general semi-supervised learning framework based on
context information and reduced data sparsity by
smoothing adjacent users.

 POI recommendation based on mobile trajectory: User’s
daily trajectory of movement is an important behavior
pattern. Ya [9] extracted semantic information from user
GPS trajectory to recommend POIs for users based on
time, space and popularity. Zheng et al. [10] proposed a
possible path algorithm for uncertain trajectory based on
historical trajectory to reduce the uncertainty of user’s
trajectory. Thus, it is obvious that trajectory plays an
important role for POI recommendation.

 POI recommendation based on geographical impact:
Distance of a location has a great impact on user's
preference for POI. For example, people will not tend to
choose location that is far away from people’s current
locations. Therefore, recommendation system could
filter out distant locations [11-13]. Ying et al. [14]
considered user’s social intention, preference, location
popularity and other factors to calculate prior probability
of POIs for users.

All algorithms mentioned above recommend POIs for users
only by considering additional information of users’ sparse
check-in matrix and do not solve the problem of data sparsity
effectively. However, some researchers focus on the
technologies that aims to solve the problem of data sparsity such
as matrix factorization [15, 16]. Yildirim [17] use PageRank

algorithm to improve cosine similarity method and alleviated
data sparsity. Moreover, Ruslan [18] used restricted Boltzmann
machine to handle large-scale data that achieved good
performance.

In this paper, we propose a deep learning model called
RBMNMF based on sparse matrix of user check-ins for POI
recommendation. RBMNMF combines the neural network with
non-negative matrix factorization and calculates strong
correlation values between users and POIs from bidirectional
way, which makes the final prediction matrix smoother.
Moreover, RBMNMF are able to display users' preferences for
POIs intuitively and solve the problem of data sparsity
effectively. Moreover, RBMNMF has a higher accuracy when
recommending and outperform some single sparse matrix
filling algorithms.

III. HYBRID MODEL BASED ON SPARSE MATRIX OF USER
CHECK-INS

A. Definations

This section defines the sparse user check-in matrix,
elaborates on issues of our research and presents the framework
of the model we propose. User historical check-ins based on
LBSNs includes user ID, location ID, longitude and latitude,
check-in time and so on. For simplicity, table 1 shows the
meanings of all the symbols in this paper.

TABLE I. THE MEANINGS OF ALL SYMBOLS

Symbol Meaning

 u user ID

 l location ID

 ,u l
s User score of location

 ,l u
s Score of correlation between user and location

 ux User vector

 lx Location vector

 U Set of all users
 L Set of all locations

 ,u lM Sparse user-location matrix based on user check-ins

 ,l uM Sparse location-user matrix based on user check-ins

Definition 1: (POI). If user u has a check-in at a location
l , then location l is regarded as a point-of-interest (POI). For
example, jl and

kl are two different POIs that user u has
visited .

Definition 2: (Sparse User Check-in Matrix). From the
LBSNs data set, construct the check-in matrix ,u lM and ,i ju ls

denotes the number of check-ins of user iu at the location
jl ,

where iu U ,
jl L .

Definition 3: (Sparse User Check-in One-Zero Matrix).
If the values of elements in check-in matrix ,u lM are greater
than 0, then set those values to 1, otherwise 0. Then we obtain
the sparse one-zero matrix

0
1 ,u lM .

380

Definition 4: (Location-User Correlation One-Zero

Matrix). Transpose the sparse user check-in one-zero matrix
0
1 ,u lM to location-user correlation one-zero matrix 0

1 ,l uM .

Where 0 0
1 , 1 ,()T

l u u lM M and ,l us 0
1 ,l uM which is the value

in the matrix 0
1 ,l uM . ,j il us denotes the score of the correlation

for a location
jl on user

iu .

B. Model framework

In order to solve the sparsity problem of user check-in data,
this paper proposes a hybrid model called RBMNMF that
combines deep learning models with non-negative matrix
factorization. The hybrid model considers both user-location and

location-user bidirectional information. The model framework is
shown in Fig.1.

Sparse user check-in matrix is inputted into stacking RBMs,
NMF model and single RBM respectively, and then fuse result
of each part to produce a recommendation list after each part
calculates its own prediction matrix. RBMNMF model is
composed of three parts mentioned above and each part is
independent. Moreover, RBMNMF can effectively solve the
problem of data sparsity.

C. Restricted Boltzmann Machine Based on Sparse Matrix

Restricted Boltzmann machine (RBM) is an undirected
graph probability model with one layer of visible variables and
one layer of latent variables, which is shown in Fig.2.

Fig.1 The main architecture of our proposed mode

Fig.2 Structure of RBM

RBM model has been widely used in binary data
distribution. RBM is defined as binary random vector

{0,1}dv that is an energy-based model. The energy function
is as (1), where 𝒂 and 𝒃 are offset vectors of hidden layer and
visible layer respectively. Other symbols will be explained
latter.

 T T T

ij i j i i j j

E

w v h b v a h

v,h v Wh b v a h
 (1)

The specific training process of our RBM model is as follows,
where 0

v and 1
v are visible-layer vectors (0

v is also a binary
check-in vector at the beginning), 0

h and 1
h are hidden-layer

vectors, W denotes the parametric matrix and β is learning
rate.

Calculate 0
v :

Input a user vector 𝒙 and the visible-layer 0 v x
Calculate 0

h :

Calculating the Opening Probability of Hidden-Layer

Neurons:

 0 .0 01|
jj ij i

i

P w a

h v v (2)

The hidden-layer vector 0
h is obtained by random

values filtered from 0 to 1
Calculate 1

v :
0

h reconstructs visible layer:

 1 .0 01|
ii ij j

i

P w b

v h h (3)

RBM1

user check-in matrix

RBM2

NMF1

RBM3

transpose

Fuse

Recommendation

Stacking RMBs
(Subsection C) Hybrid RBMNMF

(Subsection E)

NMF
(Subsection D)

user check-in matrix

 { }

 { }

…

…

381

The visible-layer vector 1
v is obtained by random

values filtered from 0 to 1
Calculate 1

h :
1

v reconstructs hidden layer:

 0 .1 11|
jj ij i

i

P w a

h v v (4)

The hidden vector 1
h is obtained by random values

filtered from 0 to 1
Update Parametric Matrix:

 0 0 1 1T T

 W β h v h v W (5)

 0 1 b β v v b (6)

 0 1 a β h h a (7)

In order to prevent over-fitting and make our model
smoother, data transformation and stacking RBMs are used to
train data set, which is shown in Fig.3.

Firstly, input 0
1 ,u lM that is the original user check-in matrix

to stacking restricted Boltzmann machines model for sparse
data training and filling, and then predict the location score 0M
and 1M for users. The combination of two RBMs will enhance
the matrix computation and make prediction more reasonable,
which is demonstrated from our experiments.

Secondly, input 0
1 ,l uM to a single RBM and then predict the

user score 2M for locations. 0
1 ,l uM is the transposition of

0
1 ,u lM . The reason why we take this measure is that most
existing works only consider of users’ preference for POIs and
ignore the POIs attraction to users. Thus, we decide to take
transposition into account. The final predictive matrix '

preM of
restricted Boltzmann machine model based on sparse matrix is
as follows.

0 1 2
' ()T
preM M M M (8)

Fig.3 The workflow of stacking RBMs

Fig.4 Combination of stacking RBMs and NMF

 { }

 { }

…

…

RBM 1

RBM 2

+

…

…

RBM 3

 …

 0 1 … 0

 0 1 … 1

… … … … …

 1 0 … 0

 …

 0 0 … 1

 1 1 … 0

… … … … …

 0 1 … 0

 …

 0.2 0.3 … 0.4

 0.5 0.1 … 0.7

… … … … …

 0.8 0.3 … 0.2

…

…

…

RBM 1

RBM 2
…

…

…

RBM 3

+

 NMF

+

382

D. Non-Negative Matrix Factorization Model Based on

Sparse Matrix

Values of elements in sparse user check-in matrix are all
non-negative. However, the traditional matrix factorization
model will get negative values from original matrix, which have
no practical significance for user check-in matrix.

Non-negative matrix factorization (NMF) can factorize the
user check-in matrix into two non-negative matrices and fill the
sparse matrix with positive values. Therefore, it solves the
sparse problem of matrix effectively and it’s easy to observe the
user's preference for locations. NMF is shown in Fig.4. ,u nM

and ,n lM is the result of factorization of ,u lM . Thereafter, 3M
is the multiplication of them, which is filled with more negative
values.

Fig.5 The result of factorization of NMF

In ,u lM , the value of each element represents the times that
the user has visited the location. As shown above, using NMF
model, predictive matrix 3M fills the elements of ,u lM . Each
element’s value of 3M denotes the preference of a user for a
location.

E. Hybrid RBMNMF Model

In order to make our model smoother, we propose a hybrid
model called RBMNMF that fuses the models mentioned in the
above sections, as shown in figure 4.

The whole process of RBMNMF is as follows.
1) Input 0

1 ,u lM into two stacking RBMs model for sparse
data training and filling. Then predict location score matrices

0M and 1M .

2) Input 0
1 ,l uM into a single RBM and predict the location-

user correlation score matrix 2M . Then transpose the 2M .
3) Factorize ,u lM into two non-negative matrices to obtain

another location score matrix 3M for users.
4) Predict the final recommendation matrix as follows.

 0 1 2 3()T
preM M M M M (9)

5) Recommend Top-N POIs to users according to preM .

IV. EXPERIMENTS

A. Datasets

Foursquare is a social networking site that records a large
number of geographic information of users' current locations.
This paper uses the data set provided by Quan et al. [1] which
contains 342850 check-ins from August 2010 to July 2011 in
Singapore. Yuan [1] deletes users whose check-ins are less than
5 and locations checked by less than 5 users. After processing,
the foursquare data set contains 2321 users, 5596 POIs and
194108 check-ins. For each user, choose 12.5% of the user’s

POIs for tuning parameters and another 25% of the user’s POIs
for testing data randomly. The left POIs are used for training.
The formats of each check-in is user ID, location ID, longitude
and latitude, check-in time and time ID respectively.

B. Evaluation Metric

We use 𝑃𝑟𝑒 𝑖𝑠𝑖𝑜𝑛@𝑁 and 𝑅𝑒 𝑎 @𝑁 to evaluate our
model, which are as follows.

() ()
@

()
R u T u

precision N
R u

 (10)

() ()
@

()
R u T u

Recall N
T u

 (11)

()R u denotes the list of POIs recommended to user u and
()T u denotes the list of POIs that are actually checked in by

user u in the test data. ()R u is the total number of POIs in
()R u and ()T u is the total number of POIs in ()T u . The final

precision and recall are the average of all users.

C. Experimental Result

In order to verify the recommendation effectiveness of our
RBMNMF model, we compare RBMNMF with single sparse
matrix filling algorithms in the same training data and test data.
Those algorithms are as table 2 shows. The core of this paper is
to integrate non-negative matrix factorization and stacking
RBMs. So we focus on comparing our proposed algorithm with
single NMF or single RBM but CF is a popular algorithm that
we should also consider.

TABLE II. COMPARISON ALGORITHMS

Algorithm Description

CF Collaborative filtering (CF) is the most popular and classical

recommendation algorithm
RBM Single restricted Boltzmann machine based on sparse matrix

of user check-ins
NMF Single non-negative matrix factorization based on sparse

matrix of user check-ins
RBMNMF The hybrid model we propose

The experimental results are shown in Fig.6 and Fig.7. We
recommend N (N = 5, 10, 20, 30) POIs for each user. The
performance of CF is the worst among all algorithms and
possibly due to the data set, the precision of CF does not change
significantly. No matter what the value of N is, the precision

 …

 0 0.5 … 1.9

 0 2.3 … 0

… … … … …

 1.2 1 … 0

 …

 0 0.8 … 0

 2.0 0 … 0

… … … … …

 0 0 … 2.5

 …

 0 1.8 … 0

 0 1 … 3.8

… … … … …

 3 2.5 … 0

=

383

and recall of RBMNMF are generally better than other single
algorithms. Hence, even though there is a lack of user
information, RBMNMF we propose are able to fill the sparse
matrix well and have an excellent performance when
recommending. The results of experiments demonstrate
RBMNMF could be used into improving traditional algorithms.

However, there is a limitation in RBMNMF. When stacking
RBMs process check-in data, we adopt the behavior of check-
in to represent the user's preference for a location by 0 or 1. That
treats all locations equally that a user has visited even though
they have different numbers of check-ins.

Figure 6. Precision with different N

Figure 7. Recall with different N

V. CONCLUSION
For the sake of overcoming the sparsity problem of user

check-in matrix, we propose a deep learning model called
RBMNMF that combines stacking restricted Boltzmann
machines with non-negative matrix factorization to make the
prediction model smoother. RBMNMF fills the user check-in
matrix and alleviates the problem of data sparsity effectively.
Therefore, we could observe each user's preference value for
each POI intuitively and then recommend satisfying POIs to
users. In the future, more information will be taken into account
such as time, geographical effect and location popularity to
improve our model.

ACKNOWLEDGMENT
This research is supported by the National Natural Science

Foundation of China (Grant No. 61502062, Grant No. 61672117
and Grant No. 61602070).

REFERENCES
[1] Yuan, Quan , et al. "Time-aware point-of-interest recommendation."

International Acm Sigir Conference on Research & Development in
Information Retrieval ACM, pages 363-372, 2013.

[2] Yu, Zheng, et al. "Recommending friends and locations based on
individual location history." Acm Transactions on the Web, pages 1-44,
2011.

[3] Yu, Zheng, and X. Xing. "Learning Location Correlation from GPS
Trajectories." Eleventh International Conference on Mobile Data
Management, pages 27-32,2010.

[4] Zheng, Yu , and X. Xie . "Learning travel recommendations from user-
generated GPS traces." ACM Transactions on Intelligent Systems and
Technology, pages 1-29, 2011.

[5] Ye, Mao , et al. "Exploiting geographical influence for collaborative
point-of-interest recommendation." Proceeding of the 34th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 325-334, 2011

[6] Baral, Ramesh , and T. Li . "MAPS: A Multi Aspect Personalized POI
Recommender System." Acm Conference on Recommender Systems
ACM, pages 281-284, 2016.

[7] Jiang, Shuhui , et al. "Author topic model-based collaborative filtering
for personalized POI recommendations." IEEE Transactions on
Multimedia, pages 907-918, 2015

[8] Yang, Carl , et al. "Bridging collaborative filtering and semi-supervised
learning: A neural approach for POI recommendation." Acm Sigkdd
International Conference on Knowledge Discovery & Data Mining ACM,
pages 1245-1254, 2017.

[9] Liu, Yaqiong , and H. S. Seah . "Points of interest recommendation from
GPS trajectories." International Journal of Geographical Information
Systems, pages 953-979, 2015.

[10] Zheng, Kai , et al. "Reducing Uncertainty of Low-Sampling-Rate
Trajectories." 2012 IEEE 28th International Conference on Data
Engineering IEEE Computer Society, pages 1144-1155, 2012.

[11] Bao, Jie , Y. Zheng , and M. F. Mokbel . "Location-based and preference-
aware recommendation using sparse geo-social networking data."
Proceedings of the 20th International Conference on Advances in
Geographic Information Systems, pages 199-208, 2012.

[12] Ference, Gregory , M. Ye , and W. C. Lee . "Location recommendation
for out-of-town users in location-based social networks." Proceedings of
the 22nd ACM international conference on Conference on information &
knowledge management ACM, pages 721-726, 2013.

[13] Wang, Hao , M. Terrovitis , and N. Mamoulis ."Location
recommendation in location-based social networks using user check-in
data." Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages
364-373, 2013.

[14] Ying, Jia Ching , et al. "Mining User Check-In Behavior with a Random
Walk for Urban Point-of-Interest Recommendations." ACM
Transactions on Intelligent Systems and Technology, pages 1-26, 2014.

[15] Ma, Hao , et al. "SoRec: Social recommendation using probabilistic
matrix factorization." ACM, pages 931-940, 2008.

[16] Lian, Defu , et al. "GeoMF : Joint Geographical Modeling and Matrix
Factorization for Point-of-Interest Recommendation." Acm Sigkdd
International Conference on Knowledge Discovery & Data Mining ACM,
pages 831-840, 2014.

[17] Yildirim, Hilmi , and M. S. Krishnamoorthy . "A random walk method
for alleviating the sparsity problem in collaborative filtering." Acm
Conference on Recommender Systems ACM, pages 131-138, 2008.

[18] Salakhutdinov, Ruslan , A. Mnih , and G. Hinton . " [ACM Press the 24th
international conference - Corvalis, Oregon (2007.06.20-2007.06.24)]
Proceedings of the 24th international conference on Machine learning -
ICML \"07 - Restricted Boltzmann machines for collaborative filtering."
(2007):791-798.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N=5 N=10 N=20 N=30

P
re
ci
si
o
n
@
N

CF

NMF

RBM

RBMNMF

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N=5 N=10 N=20 N=30

R
ec
al
l@
N

CF

NMF

RBM

RBMNMF

384

Improving Code Generation From
Descriptive Text By Combining Deep Learning

and Syntax Rules

Xiangru Tanga,b, Zhihao Wangc, Jiyang Qic, Zengyang Lia,b,∗
aSchool of Computer Science, Central China Normal University, Wuhan, China

bHubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China
cSchool of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

xrtang@mails.ccnu.edu.cn, zhihaowang@hust.edu.cn, jyqi@hust.edu.cn, zengyangli@mail.ccnu.edu.cn

Abstract—Code generation is a model-driven engineering ap-
proach that enables developers to generate source code auto-
matically and achieves extremely high development productivity.
Specifically, generating code from a descriptive text reduces the
time and expense of software development significantly. However,
the performance of existing methods is not satisfying, since they
are either of low accuracy (lack of specifics of the generated
code) or too complicated (lack of efficiency in training). In this
work, we proposed three novel methods by combining neural
architectures and syntax rules, aiming at explicitly capturing the
syntactical characteristics of target code. First, we proposed three
models based on the Combination of Deep learning and Syntax
rules (CDS models). Then, we evaluated CDS models with BLEU
metric by comparing our models with existing methods. The
results show that our models outperform existing methods for
the challenging code generation task. Finally, we conducted a
comparative study between the three CDS models. With further
analysis we provided advice on the choice of neural architectures
by considering both task accuracy and efficiency. Experimental
results show that (1) there is a trade-off between speed and
accuracy of the model, and (2) one of our CDS models (i.e., the
CDS-POOLING model) outperforms other existing methods for
the challenging code generation task.

Index Terms—code generation, neural network, abstract syntax
tree, encoder-decoder

I. INTRODUCTION

Code generation is a process of generating source code
from sentences that describe code functionality [1]–[3]. Firstly,
generating code automatically with given descriptive sentences
as constraints is significantly faster than writing the code
manually. Moreover, the generated code works in an expected
way and is more maintainable and extendable. In contrast,
with code written manually, different developers tend to use
different styles, which may lead to software errors. Thus, code
generation is of great significance throughout the software
development lifecycle.

However, code generation is challenging because its output
must abide by the syntax rules strictly, and the arithmetic speed

* Corresponding author.
This work is partially supported by the National Natural Science Foundation
of China (NSFC) under the Grant Nos. 61702377 and 61773175.
DOI reference number: 10.18293/SEKE2019-170

Fig. 1. An example of Hearth Stone dataset

for the purpose of practicability should also be considered.
Considerable effort has been invested in code generation,
which results in several types of code generation approaches.
However, they often fail to generate executable code correctly
because they hardly capture complicated code structures.

Recently, deep learning approaches based on neural net-
works have shown significant performance improvement on
many artificial intelligence tasks. Public datasets speed up the
development of the code generation area. One of high-quality
datasets is Hearth Stone 1, which aims to generate Python code
based on Hearth Stone card description. An example is shown
in Fig 1, in which a piece of code lies along the bottom. Each
card is identified by ten attributes (e.g., name and attack) and
has a text box to describe the effect of the card.

In this work, we proposed three models based on the
Combination of Deep learning and Syntax rules (CDS mod-
els). This work involves some neural architectures (e.g, self-
attention network, CNN) which have already resulted in
significant progress in the field of natural language process-
ing. Meanwhile, considering the essential difference between

1 available at https://github.com/deepmind/card2code

385

code and natural language, our work also takes syntax rules
into account. Specifically, we represented the code in a tree
structure. In addition, considering the poor performance of
Recurrent Neural Network in existing methods [1]–[4], we
adopted the pooling operation and self-attention mechanism
in code generation tasks. Moreover, we explored the strengths
and weaknesses of our CDS models (i.e., CDS-POOLING, CDS-
CNN, and CDS-SAN models).

The key contributions of our study are described as follows:
a) We proposed three novel code generation frameworks,

based on the Combination of Deep learning and Syntax
rules (CDS models). To the best of our knowledge, we are
the first to use Transformer model (self-attention network)
and pooling operation in code generation. And our high-
performance models lead to a significant improvement of
BLEU score.

b) We conducted a comparative study between three models
we proposed. We also thought that researchers need a
comprehensive analysis of the task and should adopt
simple and effective networks, when using deep learning
methods.

II. RELATED WORK

Generating code in software engineering has a long history.
Some early works focus on domain specific languages [5],
[6]. For general-purpose code generation, such as [7], which
tries to generate the code for parsing input documents. It
was presented that data driven methods instead of instead of
manual methods are used in manufacturing model, and code
could be generated automatically.

There are some early works using syntax rules only. (1)
Parser Generation approach: some tools such as template
engine [8] were used to automatically generate parser, but
it is too complicated and cannot cover every scenario. (2)
Model Driven approach: an entire application or just its
skeleton is generated. (3) Database-related approach: usually
the programmer defines a database schema, from which entire
CRUD (Create, Retrieve, Update, and Delete) operations or
just the code to handle the database can be generated. (4)
Metaprograming approach: some researchers developed a new
language which could manipulate another piece of source
code; it means that the source code is just another data
structure that can be manipulated [9]. (5) Retrieval-based
approach: some researchers leveraged subtree retrieval mecha-
nism, which can explicitly output existing code examples. [10].

Recently, neural networks are introduced to code generation.
Encoder-Decoder architecture has shown good performance in
practical applications, such as machine translation, dialogue
system, and image captioning. The encoder processes an input
sequence x = (x1, ..., xm) of m elements and returns state
representations z = (z1, ..., zm). The decoder takes z and
generates the output sequence y = (y1, ..., yn) left to right. To
generate output yi+1, the decoder computes a new hidden state
hi+1 based on the previous state hi, an embedding gi of the
previous target language word yi, as well as a conditional input
ci derived from the encoder output z. Based on this generic

formulation, various encoder-decoder architectures have been
proposed.

Recent works on neural machine translation mostly base on
sequence-to-sequence models are worth referring for us. [11],
[12] and many works following adopt attention based models
to get better performance with longer sentences. [13] uses
CNNs to build sequence-to-sequence model which is faster
and allows to discover compositional structure. Transformer
is proposed in [14] first. Although originally used in transla-
tion tasks, self-attentive feed-forward sequence models have
been shown to achieve impressive results on many sequence
modeling tasks [14]–[16]. For code generation task, some re-
searchers attempted to adopt sequence-to-sequence models [1]
or models based on abstract syntax tree [2]–[4], [17] to get
valid program. The decoder of neural network models above
are all based on RNNs except for [17] which uses CNNs to
capture information.

Moreover, some researchers found that much simpler
word-embedding-based architectures exhibit impressive per-
formance, compared with more-sophisticated models using
RNN or CNN [14]. There are some related works which
introduced pooling to some tasks. [18]–[20] show that average
pooling can obtain impressive accuracy on both sentence and
document-level sentiment analysis, factoid question-answering
and text classification tasks with much less training time than
competing methods.

III. ARCHITECTURE

We first define the code generation task as below:
Given a descriptive text q, our target is to generate code

(e.g., Python code), specifically in an AST a format. In this
paper, we start with the syntactic code generation model
proposed in [2]. It focuses on generating AST from text, and
then converting it to concrete code. Formally, our goal is to
find a best generated AST â as Eq.(1).:

â = argmax
a

p(a|q) (1)

p(a|q) =
T∏

t=1

p(yt|y<t, q) (2)

where y<t represents y1...yt−1 and T is the number of total
time steps.

Our CDS models can be divided into three dimensions:
pooling based, CNN based, and self-attention network based.
We train these three models independently, with input of (a)
predicted structure of AST, (b) name of variables, and (c) name
of functions containing syntax information.

A. CDS-POOLING

Word embeddings can learn a lot from rich unstructured
descriptive text, which are widely adopted as building blocks
in the area of Natural Language Processing (NLP). Word
embeddings can cluster similar words in semantical level by
representing each word as a fixed-length vector and encoding
the linguistic regularities and patterns implicitly. Thus, our

386

CDS-POOLING model is closely related to Deep Averaging
Network, which demonstrates that the average pooling op-
eration achieves tremendous results for some NLP tasks.
Pooling operations capture high level semantic features and
low level word characters information, just same as a method
of information fusion. Moreover, we explored different pooling
operations, rather than only average-pooling.
Average Pooling：Average pooling computes the element-
wise average over word-vectors for the descriptive text, which
average the value of K dimensions for all word embedding.
Thus, Average Pooling is able to obtain a representation z with
the same dimension as the embedding itself.

z =
1

L

L∑
i=1

vi (3)

Max Pooling：Max Pooling extracts the most salient fea-
tures from every word-embedding dimension, by taking the
maximum value along each dimension of the word vectors.

z = Max-pooling(v1, v2, ..., vL) (4)

where the j-th component of z is the maximum element
in the set v1j , ..., vLj , where v1j is, for example, the j-th
component of v1. With this pooling operation, those words
that are unimportant or unrelated to our task will be ignored
in the encoding process.

Hierarchical Pooling: Both average- and max- pooling do
not take word order into consideration, which could be useful
for code generation tasks. Thus, we also proposed a hierarchi-
cal pooling layer, where the two abstracted pooling features are
concatenated together to represent the sentence embeddings.
However, Hierarchical Pooling learns fixed-length representa-
tions for the n-grams that appear in the corpus, rather than just
capturing their occurrences via count features, which is more
suitable for code generation.

For all CDS-POOLING variants above, there is no additional
network to extract features. We just apply max-poling after
embedding, and then attention mechanism is used to acquire
information between features. Finally, two layers of fully
connect neural network and a softmax layer is applied to get
the classification result. Thus, CDS-POOLING model quickly
captures only intrinsic word-embedding information for code
generation. In experiments, we proved that the CDS-POOLING
model significantly promote the precision and accelerate the
calculation speed.

B. CDS-CNN

The Convolutional Neural Network (CNN) [21] is another
strategy extensively employed encode text sequences. Convo-
lution operation can be described as using filters w ∈ Rhk to
capture word-level features. For each kernel F , a convolution
operation uses a D×K slide. First, We applied the embedding
mentioned above as input, which is a tensor of D×L dimen-
sions. L represents the length of descriptive sentence and D is
the embedding dimensions. Then, for each step, we summed
the weighted value in filters and applied nonlinear activation

Fig. 2. Simple Word-Embedding-Based Model

operation to obtain the filter. Finally, the filters become a
vector which represents the output. In practice, several layers
are applied to capture the hierarchical information.

We learned from [22] and applied residual structure in
our model. What’s more, we also conducted batch normal-
ization [23] to speed up the training process and improve
the model performance. Our CDS-CNN model is showed in
Fig 3. The embedding input has the shape of N × L × D.
Our designed interact-CNN takes into account the relationship
between natural language and semantic structure. Moreover,
we use the concatenation operation to mix the information
from natural language and AST together. But attention is
needed for our operation of transposing the length-dimension
and embedding-dimension to fully mix the information. At the
final part of interact-CNN, we applied max-pooling to get the
hierarchical information. Through the interact-CNN part, the
shape of our tensor is reduced to N ×D. At the final part of
Fig 3, there are multilayer perceptron (MLP) and softmax layer
to generate final AST. CNN can be fully trained in parallel to
better exploit the floating-point computation capacity of GPU,
compared with RNN in the train step.

Fig. 3. Encoder-Decoder CNN

C. CDS-SAN

Transformer architecture [14] is based entirely on attention
mechanisms and achieves best performance in the neural
machine translation. In this work, we adopted the self-attention
network architecture, which is a modified version of Trans-
former for two reasons. Firstly, it could be trained fast for its

387

parallelizable structure, while traditional RNN model is com-
putational and time consuming due to its recurrent structure.
Secondly, it naturally constructs the long-term dependence via
the attention mechanism, see Eq 4. It implies that Transformer
architecture learns non-local dependencies between tokens
regardless of the distance between them.

The self-attention network (SAN) is a special case of the
attention mechanism, which models the dependencies between
tokens from the same sequence [14]. In our work, the self-
attention layer aims to create the embedding representations
of the original text input. Specifically, given the text H =
(h1, h2, ..., hL) carrying the semantics of the original review
along all time steps from the encoder, self-attention network
first yields a weight matrix Aenc = (a1

enc, a2
enc, ..., aL

enc,
computed as Aenc = softmax(w2

enctanh(w1
encHT)),

where w1
enc is a parameter vector and w2

enc is a parameter
matrix. Softmax function is used to normalize the attention
weights.

Since embeddings represent linguistic context information
weakly, we use self-attention network to encode input for a
better representation and drop out the decode part.

Fig. 4. Self-attention Network

IV. EXPERIMENT

Our experiment aims to answer the following research
questions (RQs):

RQ1:How do CDS models perform?
Our work intends to make a comparative study of the

differences between our CDS models and existing state-of-
the-art methods (e.g., LPN [1], SNM [2], ASN [3], and
SEQ2TREE [4] all mentioned above in section II).

RQ2:Can we find a trade-off between training speed and
accuracy of the result?

Most models with more expressive composition functions
perform well? Speed and accuracy, which matters more in
reality? This work includes a rigorous evaluation regarding
the added value of sophisticated composition functions.

A. Dataset

We used Hearth Stone dataset introduced by [1] as a
practical code-generation application. It has 655 cards in total,
533 cards for training, 66 cards for validating, and 66 cards for
testing. Each card is identified by ten attributes (e.g., TYPE

and ATK) and has an functional describe in the text box. Code
implementations of these cards implement the game logic and
card effects once per turn.

B. Evaluation Metrics

We used billingual evaluation understudy score (BLEU) [24]
as the evaluation metric in our experiment. Although BLEU is
developed for translation tasks originally, it can be used to
evaluate programs in this work through measuring how close
the generated code is to the ground truth code in terms of
n-grams.

To obtain the BLEU score, we computed modified n-grams
precision (pn) first. The modified n-grams prediction is
computed as follows. All candidate n-grams counts and their
corresponding maximum reference counts are collected. In the
code generation task, the reference is executable code.

pn =

∑
C∈{Candidates}

∑
n-gram∈C

Countclip(n-gram)∑
C’∈{Candidates}

∑
n-gram’∈C’

Count(n-gram’)
(5)

Then, we define BP to penalize the generated program shorter
than ground truth. c is the length of generated code and r is
the reference code length.

BP =

{
1 if c > r

e1−r/c if c ≤ r
(6)

Finally, we get

BLEU-N = BP · exp(
N∑

n=1

wn log pn) (7)

In our experiment, we used N = 4 and uniform weights wn =
1/N .

Additionally, we also calculated the ACCURACY score
which represents the percentage of 66 test codes that can be
executed and absolutely correct.

C. Experiment Hyperparameters

For the CDS-POOLING model, our character embedding
has 256 dimensions. We used a dropout rate of 0.7; for
the CDS-CNN model, we set the embedding size as 128
to concentrated information and hidden-layer size as 128 to
extract features. The dropout rate is 0.5 because CNN model
is more complicated than pooling. For the CDS-SAN model,
we followed the base Transformer [14], with 4 encoder layers
of 128 hidden dimensions, and 8 attention heads per-layer.
And the CNN filters followed the specifications of [21]. The
dropout rate is also 0.5, same as CDS-CNNẆe optimized these
models with Adam with default hyperparameters and set batch
size as 64. It took us 9 hours to train a pooling model on a
NVIDIA Tesla P100. We used a beam search for generating the
program, and computed BLEU scores to measure performance
on the testing set.

388

TABLE I
EXPERIMENTAL RESULTS

Model ACCURACY BLEU

SEQ2TREE 1.5 53.4
LPN 6.1 67.1
SNM 16.2 75.8
ASN 18.2 77.6

CDS-POOLING 15.6 78.9
CDS-CNN 19.7 77.0
CDS-SAN 16.7 77.8

D. Experimental results

Table I presents the results of our CDS models in code
generation, in comparison with exisiting methods, e.g., LPN
[1], SNM [2], ASN [3], and SEQ2TREE [4], which are the
state-of-the-art models in the code generation area. The results
show that adopting CDS-POOLING to capture the syntax rules
yields a better performance with much less training time
than other methods. Besides, compared with RNN, CNN is
better suited to capturing the structural information of long
sentences. Finally, theself-attention network based model also
outperforms existing methods.

Fig. 5. Loss Function Over Time

E. Result Analysis and Case study

The results demonstrate that CDS-POOLING is particularly
better than any other existing methods in both speed and
efficiency. As for CDS-SAN, when we made this model more
complicated, the ACCURACY score fell but BLEU score rose,
which means CDS-SAN can handle the detail better. CDS-CNN
model is good at generating more completely correct code.

As mentioned in [3], Hearth Stone contains classes with
similar structures, thus the code generation task can predigest
into the generation of tree-like AST and what we need to do is
to fill in tokens with certain variables and values. Nevertheless,
certain errors must occur because that Hearth-Stone’s code
contains complicated logic, which result in a low accuracy
[2]. To see more details, we presented an example of code
we generated by CDS-POOLING in table II. It illustrates that
our model can handle complicated code syntax effectively.
However, our generated code does not absolutely match the
reference code, but it is correct in general and can be executed.

To be more specific, the reason why the CDS-POOLING has
such an impressive result is that pooling operation builds an

information map to achieve a downsampling-process, which
throws away indifferent information. In contrast, the CDS-CNN
model tends to generate a structural correct code, which leads
to a higher ACCURACY (more absolutely correct codes) but a
similar BLEU compared with previous works.

TABLE II
THE COMPARING OF GENERATED CODE AND REFERENCE CODE

Descriptive Text:

annoy-o-tron name_end 1 atk_end 2 def_end 2 cost_end -1 dur_end

minion type_end neutral player_cls_end mech race_end

common rarity_end b taunt /b nl b divine shield /b

Generated Code:

class AnnoyoTron(MinionCard) :

def __init__ (self) :

super().__init__("Annoy-o-Tron", 2,

CHARACTER_CLASS.ALL, CARD_RARITY.COMMON,

minion_type = MINION_TYPE.MECH, divine_shield = True)

def create_minion (self, player) :

return Minion(1, 2, taunt = True, divine_shield = True)

Reference Code:

class AnnoyoTron(MinionCard) :

def __init__ (self) :

super().__init__("Annoy-o-Tron", 2,

CHARACTER_CLASS.ALL, CARD_RARITY.COMMON,

minion_type = MINION_TYPE.MECH)

def create_minion (self, player) :

return Minion(1, 2, divine_shield = True, taunt = True)

V. DISCUSSION AND ANALYSIS

RQ1: How do CDS models perform?
The results demonstrate that CDS-POOLING is particularly

better than any other existing methods in both speed and
efficiency. When we made model more complicated, the
ACCURACY result fell, but the BLEU score rose (see CDS-
SAN), which means that it can handle the details better. And
it clarifies CDS-CNN model is skilled at generating more
completely correct code. Results also illustrate that simple
pooling operation (CDS-POOLING) is surprisingly effective at
representing longer sequence. CDS-POOLING figures over all
elements of th tensor, and CDS-POOLING can be fully trained
in parallel to better exploit the floating-point computation
capacity of GPU, compared with RNN in the train step. In
addition, CDS-POOLING is more amenable to optimization
because the number of non-linearities unit is fixed, moreover,
it not be affected by the text input’s length. The max-pooling is
working as follows: we can consider the embedding size used
as 256 represent 256 kinds of semantics, and the max-pooling
operator is to extract the semantics in sentences.

RQ2: Can we find a trade-off between training speed
and accuracy of the result?

The experiment demonstrated that CDS-POOLING is the
most effective approach outperforming other complicated
models. This also tells us that a simple and effective method
should be a prevailing concern. Additionally, it helps re-
searchers to avoid the blind use of deep learning algorithms
when solving software engineering problems.

389

Considering the nature of this problem, more sophisticated
models reveal outstanding results but are excessively compu-
tationally expensive, because they need to optimize thousands
of parameters, e.g., RNN or CNN. On the contrary, maybe
some simpler models can be robust, which only compute the
sentence embedding by simply adding or averaging operation
over the word embedding, just as our CDS-POOLING. But
that also means, such a simple pooling operation does not
take word-order information into account. However, pooling
operation has the advantage of having significantly fewer
parameters, which means it can train much faster and obtain
a equally good precision, comparing to RNN or CNN. Thus,
there is a trade-off between training speed and efficiency.

VI. CONCLUSION AND FUTURE WORK

In this work, we are the first to introduce pooling operation,
fully convolutional model, and self-attention network for code
generation tasks to the best of our knowledge. Furthermore,
analysis shows that the pooling based model is the most
efficient. Thus, we achieved state-of-the-art results in the
code generation task. Specifically, on Hearth Stone dataset
we outperformed all the previous methods by 78.9 BLEU. In
addition, we provided some advice to researchers that they
must consider practical reality of target tasks, and do not
fall into the trap of using complicated deep learning models
blindly. In conclusion, our work has theoretical significance
and practical value in the field of software engineering.

In the future, we plan to adopt more models in code
generation tasks, aiming at seeking ways to improve the
performance. However, there is a syntactic difference between
various program languages. Thus, we also plan to apply CDS
models into more code generation datasets.

REFERENCES

[1] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. Kočiský,
F. Wang, and A. Senior, “Latent predictor networks for code generation,”
in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, 2016, pp. 599–609.

[2] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, 2017, pp. 440–450.

[3] M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax networks
for code generation and semantic parsing,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics,
2017, pp. 1139–1149.

[4] L. Dong and M. Lapata, “Language to logical form with neural atten-
tion,” in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, 2016, pp. 33–43.

[5] N. Kushman and R. Barzilay, “Using semantic unification to generate
regular expressions from natural language,” in Proceedings of the 2013
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies. Association for
Computational Linguistics, 2013, pp. 826–836.

[6] M. Raza, S. Gulwani, and N. Milic-Frayling, “Compositional program
synthesis from natural language and examples.” in IJCAI, Q. Yang and
M. Wooldridge, Eds. AAAI Press, pp. 792–800.

[7] T. Lei, F. Long, R. Barzilay, and M. Rinard, “From natural language
specifications to program input parsers,” in Proceedings of the 51st An-
nual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, 2013, pp.
1294–1303.

[8] M. M.-H. Tso, “Context-sensitive template engine,” Jul. 4 2000, uS
Patent 6,085,201.

[9] T. Veldhuizen, “Method and apparatus for generating inline code using
template metaprograms,” Nov. 10 1998, uS Patent 5,835,771.

[10] S. A. Hayati, R. Olivier, P. Avvaru, P. Yin, A. Tomasic, and G. Neubig,
“Retrieval-based neural code generation,” CoRR, vol. abs/1808.10025,
2018.

[11] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.

[12] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2015, pp. 1412–1421.

[13] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1243–1252.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 5998–6008.

[15] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018.

[16] N. Kitaev and D. Klein, “Constituency parsing with a self-attentive
encoder,” in Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 2018, pp. 2676–2686.

[17] Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang, “A
grammar-based structural CNN decoder for code generation,” CoRR,
vol. abs/1811.06837, 2018.

[18] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III, “Deep
unordered composition rivals syntactic methods for text classification,”
in Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). Association
for Computational Linguistics, 2015, pp. 1681–1691.

[19] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers. Association for Computational Linguistics,
2017, pp. 427–431.

[20] D. Shen, G. Wang, W. Wang, M. Renqiang Min, Q. Su, Y. Zhang,
C. Li, R. Henao, and L. Carin, “Baseline needs more love: On simple
word-embedding-based models and associated pooling mechanisms,”
in Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, 2018, pp. 440–450.

[21] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Association for Computational
Linguistics, 2014, pp. 1746–1751.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR, vol.
abs/1502.03167, 2015.

[24] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics, 2002.

390

Safe-by-Design Development Method for Artificial Intelligent Based Systems

Gabriel Pedroza, Morayo Adedjouma

CEA LIST, Department of System and Software Engineering
P.C. 174, Gif-sur-Yvette, 91191, France

{firstname.lastname}@cea.fr

Abstract

Albeit Artificial Intelligent (AI) based systems are nowa-
days deployed in a variety of safety critical domains,
current engineering methods and standards are barely
applicable for their development and assurance. The lack
of common criteria to assess safety levels as well as the
dependency of certain development phases w.r.t. the chosen
technology (e.g., machine learning modules) are among the
identified drawbacks. In addition, the development of such
engineering methods has been hampered by the emerging
challenges in AI-based systems design mainly regarding
autonomy, correctness and prevention of catastrophic risks.
In this paper we propose an approach to conduct a safe-
by-design development process for AI based systems. The
approach relies upon a method which benefits from a
reference AI architecture and safety principles. This contri-
bution helps to address safety concerns and to comprehend
current AI architectures diversity and particularities.

Index Terms—safe-by-design, AI, safety, engineering

I. Introduction

The implementation of Artificial Intelligence (AI) based
systems has progressed in many aspects. The technology
shows increasing levels in tasks automation and adaptation
to the context. For instance, for self-driving vehicles,
we can cite the DriveMe project on Volvo XC90 series
launched in 2013 [1], the Autopilot technology integrated
in Tesla vehicles since 2013 [2], and the Waymo project of
Google which conducted the world’s first self-driving ride
on public roads [3] claiming maximum autonomy level (5).
Several instances of systems based upon AI technology can
be found in the literature, e.g., [4], [5]. The main concerns
addressed by those architectures are related to (1) the limits
imposed by sensors’ detection, (2) the heuristic nature of

machine learning (ML) and deep learning (DL) techniques,
and (3) the variability and complexity of context scenarios.
Whereas current technology and implementations show
approach feasibility and provide some solutions to referred
concerns, they are mostly committed to improve system’s
autonomy letting aside other aspects of the engineering
process. In general for AI-based systems development, a
variety of engineering techniques are applied and com-
bined with almost empirical parameters, choices which
are finally tuned to optimize performance [6]. Despite the
engineering process has proven certain effectiveness, it also
shows some drawbacks regarding safety assessment. In
particular, the lack of a comprehensive process to settle
common criteria and thresholds for safety evaluation and
certification. To our knowledge, the problem is quite hard
to solve and no current approach overcomes related issues:
an AI-based system should integrate sensor devices with
limited - sometimes opaque - detection capabilities (≤90%
in average), deploy algorithms to identify and properly
react to complex, rather unforeseen, situational scenarios
and, on top of that, ensure negligible likelihood of oc-
currence for critical hazards and disfunctioning. Moreover,
whereas for typical development methods, like the V-cycle,
the phases and their sequencing are almost static, it is
observed that for AI-based systems, the nature of certain
engineering phases and their order may vary. Some of
the factors for that to occur are the dependency of the
engineering process on the AI technology choices, on the
knowledge bases - used for learning - and on their matu-
rity (representativeness of data sets, events, phenomena).
Although, it is consensual that safety analyses should be
conducted as early as possible and all along the life-cycle,
the few initiatives on that respect, like ISO/IEC 23053
[7], are still work in progress. Others, like ISO 21448
[8], provide insights on a safety-integrated process for
autonomous vehicles without settling generic criteria suit-
able for other application domains. Consequently, current

DOI reference number: 10.18293/SEKE2019-094

391

standards landscape is barely applicable to the growing
space of AI-based systems, and new safety methods and
analysis processes are required to develop them. To tackle
the referred issues, the main contribution of this paper is
an overall generic iterative (OGI) method to conduct safe-
by-design development of AI-based systems relying upon
a generic architecture and safety principles.
The rest of the paper is structured as follows. In Section
II, the reference AI architecture is introduced. In Section
III, some safety relevant aspects to AI-based systems are
highlighted. The OGI process for AI-based systems de-
velopment is described in Section IV, including safety as-
sessment phases. In Section V, the safe-by-design method
is applied to the development of an autonomous system.
Some related works are explained in Section VI. Finally,
a discussion and work perspectives come in Section VII.

II. Generic Reference AI-based Architecture

The specification of a process development for AI-based
systems should consider the following particularities:

• Engineering process dependent on AI technology:
Subsystems or components implementing ML/DL
modules are based upon parameters which may re-
quire to be set during conception, design, implementa-
tion and validation phases. For those subsystems and
components, a learning phase should be introduced
whereas for other typical (non-ML-based) subsystems
and components, the learning phase is non-existing.

• Engineering process dependent on knowledge bases:
The learning phases strongly depend upon target
objectives and external knowledge bases (KBs). For
many complex AI-based systems, an iteration on
design parameters may be necessary after a valida-
tion campaign, e.g., to adjust detection ranges and
accuracy. Detailed requirements cannot be elicited
before knowing the effectiveness of knowledge bases,
ML/DL techniques, and parameters choices.

• Knowledge bases maturity: Due to previous aspects,
the AI-based systems development shall not only
depend upon ML/DL techniques and development
methods, but also on building up knowledge bases
(KBs) and making them evolve so as to improve cov-
erage and accuracy of objects, events, and phenomena
detection. Referred KBs shall be useful for detection
and for high level reasoning, e.g., reasoning based
upon intuition [9].

We propose to integrate the previous specificities from
early stages of design. Since a huge diversity of archi-
tectures and process cycles currently exist, the specifi-
cation of a development process should be as generic
and comprehensive as possible. We find suitable to first
introduce a generic AI-based architecture aiming to cover

most of them. The Figure 1 illustrates the coarse domains
composing our reference architecture which are briefly
described in the following items and in section IV.

Fig. 1. Generic reference AI architecture

• External knowledge sources: this domain comprises
KBs required for training ML/DL modules, for their
implementation and validation. At the beginning,
these external KBs are not part of the system, but
they are integrated as a logical component during the
engineering process, for instance, after generation of
training sets (e.g., via the feature vectors).

• Missions/goals: this domain of the architecture covers
the fulfillment of functional and non-functional goals
and missions of the system. Certain missions and
goals may not require the deployment of ML/DL
modules. Thus, they can be deployed by components
and subsystems relying upon typical technology.

• AI knowledge basis: this domain includes components
for the fulfillment of principles, directives and rules
which guide the AI-behavior. The modules pertaining
to this domain provide a basis upon which missions
and goals can be accomplished by the system.

• Smartness development: the smartness of the system
relies, at least, upon two layers of reasoning. The first
layer is in charge of detection of external objects,
phenomena, and scenarios. The second layer includes
monitoring of system status, self-positioning and re-
acting to external conditions according to missions
and AI-principles. The development of system smart-
ness depends on AI techniques like ML and DL.

• Overall models: the development of autonomy and
smartness demands an understanding of environmen-
tal and internal system elements. As for external
elements, a model of the environment is to be settled.
Among others, this model allows the interpretation
of external stimuli. As for internal elements, the
system should be able to have a comprehensive model
of itself. Among others, this model allows to asses
system self-status. Both models capture the current
capabilities of the overall system. To ensure certain
independence, the AI-system should be able to learn

392

from new stimuli and situations and it should be able
to integrate and deploy new capabilities.

• Self-control: this domain includes the functions de-
ployed to realize autonomy during missions and goals
accomplishment. A typical functional path comprises
sensors→controllers→actuators that respectively sup-
port detection, processing and decision-taking.

III. Safety Concerns for AI-based Systems

Safety is one of utmost relevant concerns when design-
ing AI-based systems. However, it is also a vast and com-
plex subject considering the multiple applications domains
where they can be deployed and their related specificities.
The main safety related activity affected by the specificities
of AI-based systems is the hazard analysis at the con-
cept phase of the system. Indeed, the implementation of
ML/DL components rise new concerns regarding emerging
categories of hazardous events. Referred hazardous events
exhibit an increased risk level (which may even be catas-
trophic) due to the machine overtaking over former human-
based activities. Along with more autonomy, the transfer
of duties to AI-based algorithms implies no further human
interaction as safety barrier in case of hazards. In addition,
certain typical safety criteria like redundancy do not suffice
anymore to ensure expected levels of availability and also
accuracy. The specific aspects addressed in this paper are
described in line. Some of these aspects have already been
highlighted in emerging safety standards like ISO 21448
[8] (see Figure 2).

Fig. 2. Hazard events related to ML modules

• Events indistinguishability. This issue is mainly due to
physical limits of sensors. In particular, because real
and virtual images are practically indistinguishable.
For instance, the detection of a stop signal can be
easily faked by a photo of the same. Light rays
and other natural electromagnetic signals used for
detection can be reproduced by different objects.

• Targets variability. Many objects, elements and phe-
nomena to be detected by AI-based systems exhibit
certain variability. Although AI-based systems should
cope with referred variability, questions arise if the
system may face unforeseen situations beyond its

limits. For instance, sudden deterioration or disfunc-
tioning of context signs may lead to wrong detection
of objects.

• Noises and error propagation. Along with variability
issues, the noises added by the background and en-
vironmental phenomena increase hazards impact, in
particular in case of dismissed/miscalculated noises
and errors propagated through the system. Environ-
mental conditions (e.g., solar winds, snow) may im-
pose additional constraints to system operation and
behave as background noises.

• Human-machine interactions harmonization. The op-
eration of AI-based systems in real environment is
quite novel. Whereas risks related to machine-to-
machine or machine-to-environment interactions can
be assessed during design phases, predict the out-
comes of human-to-machine interactions is far more
complex [10]. Although an harmonization phase can
be conducted, complex human reactions (e.g., psycho-
logical, societal, political) are difficult to assess.

IV. Safe-by-Design Method for AI Systems

In this section, we introduce a method to develop the
architectural domains specified in section II. The safety
aspects described in section III are integrated into the
cycle. The method is illustrated in Figure 3 and is described
in the following subsections. The method is iterative and
several phases can be conducted in parallel even if inter-
dependencies may appear.

A. AI-based systems development method

The main phases of the OGI process are briefly de-
scribed in the following items.

1) Missions and goals. This phase comprises the spec-
ification of missions and goals the system should ac-
complish. The specification mostly targets functional
requirements of a typical engineering phase. How-
ever, as for safety-critical systems, it also includes
the management of non-functional requirements.

2) AI principles structuring. This phase covers the
specification and structuring of AI principles upon
which the system relies. As for typical requirements
stages, the formalization and validation of consis-
tency between AI principles is a major stake. This
principles are processed afterwards in phase 4.

3) De-compositional analysis. This phase is dedicated
to decompose, refine and structure missions and
goals up to obtain a layer including detailed func-
tions. This phase mostly follows a typical process
of design refinement. However, notice that a subset

393

Fig. 3. Method for AI systems development

of functions and blocks are to be carried out by
ML/DL-based modules as described in phase 7.

4) AI knowledge basis structuring. The structured AI
principles in phase 2 are first decomposed into a set
of high level directives which are afterwards refined
up to obtain a set of rules including specific system
behaviors. The elicited rules play the role of policies
which help to guide - or even enforce - system
behavior when needed.

5) Allocation of ML/DL techniques. This phase is ded-
icated to allocate concrete ML/DL techniques and
modules to the functions and blocks elicited in
phase 3, “De-compositional analysis”, and to the
behaviors elicited in phase 4, “AI knowledge basis
structuring”. The allocation should (1) accomplish
the missions and goals of the system and (2) ensure
the compliance with rules refined from AI principles
and directives.

6) Knowledge bases selection. Once the allocation of
ML/DL techniques is finished, the KBs for train-
ing the respective modules are selected. Of course,
building up new or dedicated KBs may be necessary.
The KBs are the basis to generate outside-world and
system models as well as the evolution model by
performing the training tasks (see phase 8).

7) Detailed AI architecture design. The detailed design

of the AI-based system comprises at least three tasks
or sub-phases. The first one consists in proposing
the architecture to support the functions specified
in previous phases 4 and 5, including allocations.
In the second sub-phase, a distribution of functions
over the support architecture is conducted. This task
covers the exploration of the design space. In the
third and last sub-phase, the first layer of intelligence
is developed by training the ML/DL modules, i.e.,
the self-control functions for detection, processing
and decision taking.

8) Overall models development and integration. The
second layer of intelligence is developed in this
phase: the AI-system should be able to learn from
new stimuli and situations. The models of the
external world and the system itself have been
partially developed and integrated during previous
training tasks. Upon outside-world and system
models, an evolution model should be elaborated
and integrated relying upon (1) specific principles
governing AI autonomy, (2) techniques and metrics
to assess and filter new stimuli and situations (e.g.
adaptive decision making [11]) and (3) techniques
to integrate new filtered knowledge so as to grow
up system and environment models.

9) Settle validation benchmark. After the allocation of
ML/DL techniques, a benchmark for validation can
be settled. The benchmark includes a set of target
objectives used to assess performance and emit ver-
dicts. The target objectives are refined from missions,
goals, AI principles and other requirements e.g.,
safety requirements. The benchmark also includes
the data sets selected or generated to test the per-
formance of ML/DL modules. When applicable, the
validation benchmark can be based upon typical
validation and verification techniques like testing,
simulation, and formal verification.

10) AI system performance assessment. The system per-
formance is evaluated relying upon the validation
benchmark. An iterative process starts in order to
fulfill the target objectives non satisfied after the first
validation campaign.

11) AI system implementation. Along with typical tech-
nology components, the components including
trained ML/DL modules and their parameters are
deployed in this phase.

B. Integration of safety aspects into the OGI cycle

The assessment of the specific safety aspects of ML/DL
components, introduced in Section III, demands dedicated
principles. Referred safety aspects are integrated into the
OGI cycle (see Figure 3) as follows:

394

a) Situations analysis. This activity corresponds to a
typical operational situation analysis as in hazard
analysis [12]. However, special attention is given
to situations in which autonomous functions operate
and are at stake.

b) Malfunctions, faults and hazards related to
ML/DL modules. Along with classical malfunc-
tions, faults and hazards, the aspects referred in
subsection IV-A are considered as sources of new
potential malfunctioning and hazardous behaviors.
For their identification, each safety aspect is re-
lated to the architecture parts potentially impacted.
For instance, regarding events indistinguishability,
ML/DL functions, blocks and components carry-
ing out detection are to be considered; for object
variability and noises and error propagation, the
reasoning layer used for environment interpretation
is in cause, and for the human-machine interaction
harmonization, the decision-taking reasoning layer is
targeted. In addition, the heuristic nature of ML/DL
algorithms as well as their dependency to external
KBs demand the definition of a malfunctioning
matrix including false positives and false negatives
occurrence. The autonomy of an AI-based system
can be assessed based on its ability to cope with
multiple components malfunctioning and hazards
(accidental, misuse, natural). Concretely, for each
component Ci and target Tj with background Bj
the probability of error should be minimized:

P [ErrorC(i,j)] := P [FalsePos(i,j)]+P [FalseNeg(i,j)],

FalsePos(i,j) := ∪j{Ci(Accept,Bj)},
FalseNeg(i,j) := ∪j{Ci(Reject, Tj)}.

Other factors of components failure can be consid-
ered, in particular the failure rate λi along with
the probability of failure over time P [FailC(i,t)] =
λie

−λit. Thus, the overall probability of component
disfunctioning can be calculated by:

P [DisfC(i,j,t)] = ω1P [FailC(i,t)]+ω2P [ErrorC(i,j)],

ω1 + ω2 = 1.

c) Identification and characterization of hazardous
scenarios. Along with classification of typical haz-
ardous scenarios, the hazardous scenarios involving
ML/DL components should be characterized. Notice
that, the typical scenarios referred in ISO 26262 [13]
as “reasonably foreseeable misuse” are no longer
under human control and consequently should also
be reclassified. To do so:

• Scenarios involving ML/DL components are de-
fined as combinations of external stimuli, system
response (internal stimuli) and malfunctions.

• For each scenario Sk, subsets of KBs are se-
lected to evaluate the performance of involved
ML/DL components ({Ci}):
– Data/features characterizing legitimate targets
Tj (true positives)

– Data/features characterizing targets’ back-
grounds Bj (true negatives)

• The likelihood of each scenario P [Sk] is esti-
mated by combining the disfunctioning prob-
abilities {P [DisfC(i,j,t)]} of involved compo-
nents {Ci} according to the architecture struc-
ture and relying upon basic probability theory.

d) Safety goals elicitation. Elicitation of safety goals
based upon ASIL levels is rather coarse and thus
inadequate considering the current nature of haz-
ardous scenarios {Sk}. Since a huge diversity and
complexity of hazardous scenarios are possible, three
cases are identified from which detailed requirements
can be elicited:

• The hazardous scenario Sk can be associated
to a concrete behavior which is formalized and
monitored. A monitoring formula φ including
safety threshold θ can thus be elicited. For
instance, in the case of autonomous vehicles,
a formula for minimal safety distance between
them is settled: φ ≥ θ. In this case, the detailed
requirements are elicited in terms of a maximum
threshold violation: P [φ < θ] ≤ δ.

• The hazardous scenario Sk can be associated to
a concrete behavior but deriving a safety moni-
toring formula is not evident. If the behavior can
be formalized and a validation test-bench can
be settled, then performance tests are conducted.
In this case, the detailed requirements can also
be elicited in terms of maximum probability of
error given by {P [DisfC(i,j,t)]}.

• The hazardous scenario or the associated be-
havior are complex. Conducting performance
tests is unfeasible. In this case, the behavior
can be formalized and a validation test-bench
can be settled relying upon simulation. For so-
phisticated simulation test-benches, the require-
ments can be elicited as in previous case, i.e.,
via {P [DisfC(i,j,t)]}. Otherwise, safety require-
ments may depend upon simulation scenarios.

V. OGI Method Tool Support and Evaluation

The modeling and safety assessment framework of
the OGI method is implemented in Sophia, a model-
based toolset integrated with Eclipse Papyrus editor for
UML/SysML models [14]. Sophia uses Papyrus extension
mechanisms to support safety and reliability analyses like
HARA, FMEA, FTA. We evaluate the OGI method on an
ongoing industry-academy experimentation of autonomous
shuttles deployment on a sensitive site, as described in
[12]. Due to lack of space, the evaluation only focus

395

on selected method phases. A critical mission of the
autonomous shuttle is to adopt a safe reaction in presence
of an obstacle on its trajectory. The selected scenario Sk

corresponding to the mission is presented in the sequence
diagram in Figure 4. The scenario Sk involves the Percep-

Fig. 4. Shuttle safety critical scenario

tion (i.e. ContextDetection and SelfDetection), Navigation
and Motion control functions of the system. In the first
exchanges, the shuttle detects an object on its route, and
is able to brake at safe distance to avoid an accident.
In the second iteration, although the system detects an
obstacle on its path, it is not recognized as a person
due to malfunctioning. Consequently, the shuttle does not
take appropriate decision to avoid the collision. Figure
5 presents an excerpt of the architecture design showing
the allocation of the scenario functions. The SelfDetection

Fig. 5. Excerpt of shuttle architecture design

function (see Detected() in Figure 4) is realized by an
inertial measurement unit (IMU), a relative GPS (RGPS)
and a ML/DL component for data fusion (see Fusion() in
Figure 4), the latter computes the vehicle dynamics e.g.
speed, acceleration, momentum (see VehiculeDynamics()
in Figure 4), thus settling the model of the system itself.
The ContextDetection relies upon a set of LIDARS and
Cameras, and upon an ML/DL data fusion component
which structures a model including speed and position
of objects within the surrounding vehicle’s environment.

The Navigation function is also an ML/DL component
that interprets the scene and take a decision according
to safety and AI-based directives (see SafetyAssessment()
in Figure 4). The decision is afterwards sent to an ordi-
nary Motion control component for action-taking. Deci-
sion Trees, Support Vector Machines, Gaussian Mixture
Models, Fuzzy Logic, and other unsupervised machine
learning are example of techniques to be used for the
ML/DL components. In order to acquire their capability
of detection, scene interpretation and decision taking, the
ML/DL components have been trained with dedicated
KBs prior to architecture’s definition. The shuttle process
development follows the phase 1 to phase 7 shown in
Figure 3. Notice that, in the hazardous scenario in Figure
4 (failure in person’s detection), since the system was
neither able to perform a collision avoidance maneuver,
it presupposes that an intelligence layer is missing: the
evolution model to face unknown situations is still to be
constructed (see Figure 3, Phase 8). The evaluation of the
hazardous scenario is conducted based upon our proposed
safety assessment method. To do so, an existing hazard
analysis of the shuttle [12] is considered which covers the
phases a, b, c, d of the OGI cycle (see Figure 3). The
concerning fault in the scenario is the non recognition of
a person as a such. The overall probability of the hazardous
scenario P [Sk] (see section IV) can be calculated in terms
of the probability of disfunctioning for each component
P [DisfC(i,j,0)] as follows:

P [Sk] := λLIDARλCamera + P [DisfECUCD]

+ λIMUλRGPS + P [DisfECUSD]

+ P [DisfECUNavigation] + λMotionControl.

A detailed requirement for the scenario can now be spec-
ified as P [Sk] ≤ θ which allows to settle a target for the
validation benchmark and assess the performance of the
system (covering phase 9 and phase 10 in Figure 3).

VI. Related Work

Several works have been presented to identify and in-
tegrate safety during AI systems development by industry
and academy. In [15], a survey of main AI safety problem-
atics is provided, among them, wrong or cost-ineffective
objective functions, and ineffective learning phases. In
[16], a preliminary study is conducted discussing different
aspects of AI systems’ safety. The authors propose the
application of classical formal verification principles to
AI systems design, like randomized formal methods for
training, in combination with design space exploration
guided by safety criteria. The authors in [17] present a
design strategy for autonomous architectures which maps
safety requirements over a global control module. A lot

396

of proposals exist addressing the optimization of ML/DL
based modules performance, e.g., [18]. All previous cited
approaches either only cover specific phases of the engi-
neering cycle or are quite specific to a given application do-
main. On the contrary, the work in [11] presents a holistic
approach for autonomous systems development addressing
similar safety concerns as in this paper, and also relying
upon a layered architecture. Unfortunately, it does not
propose any criterion for evaluation of hazardous scenarios
nor for safety goals elicitation. The theoretical perspective
for a safe AI cycle presented in [19] is quite aligned to the
one in this paper, with regard to the integration of KBs into
the engineering loop targeting data and software diversity.
Being a theoretical work, the elicitation of precise system
requirements is nonetheless not covered.

VII. Discussions and Perspectives

This paper presents an overall iterative generic (OGI)
method for development of AI-based systems. The method
is based upon reference architecture domains dependent
upon KBs, environment model, validation benchmarks,
among others. In addition, the method integrates assess-
ment activities to tackle specific safety-critical aspects of
such systems. The assessment provides an enhancement of
the typical hazard analysis method to infer safety goals. In
particular, it yields the disfunctioning likelihood of an AI-
based component considering the typical failure rate added
up with the error probability of ML/DL modules. By ap-
plying the OGI method to the autonomous shuttle, a multi-
factor uncertainty was identified intervening at different
levels of AI systems design. A first uncertainty comes
from the accuracy and maturity of external KBs which
impact the learning process and performance of ML/DL
components. The use of fine-grained approaches, like data
diversification [19], is promising to overcome this issue. A
second uncertainty is the difficulty to apprehend the infinite
usage-scenarios space resulting from a “continuum” of
possible environmental-operational contexts, variants and
configurations. This often leads to poor system-context
specifications not representative enough to characterize the
scenarios space. A current trend for this shortcoming is to
settle enough specificities, from a safety point of view, to
define categories of emblematic scenarios [20] useful in
particular for benchmarking but without guarantee of cov-
erage exhaustiveness. The third uncertainty factor comes
from the performance limits of AI-based components, e.g.,
sensors blinding or other still unveiled environment events.
Interpretation and decision-taking layers are also at stake
when arbitration algorithms face contradictory directives
and must solve them in critical scenarios, e.g., between
safety requirements and AI-knowledge basis (principles,
directives, rules). As of today, there is no ethical solution

that has reached consensus on this sensitive issue. Finally,
since AI-based systems may still be unable to properly
react to changing environments (as in the case study in
section V), deploy new capabilities in real time is of
utmost importance to ensure true systems intelligence and
autonomy. In future work, we plan to conduct larger-scale
application of the OGI method on others safety-critical AI-
based systems to strengthen our conclusions and enforce
approach validity. We are also assessing the applicability
of other standard-preconceived methods, like FMEA and
FTA, in the context of AI-based systems. We would further
like to complete the OGI method to cover latter stages of
the development cycle, i.e., testing and validation.

References

[1] Volvo. (2018) Drive me project. [Online].
Available: https://www.volvocars.com/intl/about/our-innovation-
brands/intellisafe/autonomous-driving/drive-me

[2] Tesla. (2018) Tesla autopilot. [Online]. Available:
https://www.tesla.com/autopilot

[3] Google. (2018) Waymo, google project. [Online]. Available:
https://waymo.com

[4] S. Dersten et al., “An analysis of a layered system architecture for
autonomous construction vehicles,” in (SysCon) 2015 Proceedings,
April 2015, pp. 582–588.

[5] A. Yavnai, “Distributed decentralized architecture for autonomous
cooperative operation of multiple agent system,” in AUV’94 Pro-
ceedings, July 1994, pp. 61–67.

[6] G. Pedroza et al., “A speaker verification system using svm over
a spanish corpus,” in 2009 Mexican International Conference on
Computer Science, Sep. 2009, pp. 381–386.

[7] Framework for Artificial Intelligence (AI) Systems Using Machine
Learning (ML). ISO, 2019.

[8] (2019) Road vehicles - safety of the intended functionality.
[9] A. Rauber et al. (2019) Transparency in algorith-

mic decision making. [Online]. Available: https://ercim-
news.ercim.eu/images/stories/EN116/EN116-web.pdf

[10] F. M. Favaro, N. Nader, S. O. Eurich, M. Tripp, and N. Varadaraju,
“Examining accident reports involving autonomous vehicles in
California,” PLOS ONE, vol. 12, pp. 1–20, 2017.

[11] A. Aniculaesei et al., “Towards a holistic software systems engi-
neering approach for dependable autonomous systems,” in SEFAIS
’18 Proceedings, 2018, pp. 23–30.

[12] M. Adedjouma et al., “Representative safety assessment of au-
tonomous vehicle for public transportation,” in ISORC 2018 Pro-
ceedings, 2018, pp. 124–129.

[13] ISO 26262: Road Vehicles - Functional Safety. ISO, 2011.
[14] M. Adedjouma and N. Yakymets, “A framework for model-based

dependability analysis of cyber-physical systems,” inpress 19th
IEEE International Symposium on High Assurance Systems Engi-
neering (HASE) 2019, Hangzhou, China, January 3-5, 2019, 2019.

[15] D. Amodei et al., “Concrete problems in ai safety,” CoRR, 06 2016.
[16] S. A. Seshia and D. Sadigh, “Towards verified artificial intelli-

gence,” CoRR, vol. abs/1606.08514, 2016.
[17] C. Molina et al., “Assuring fully autonomous vehicles safety by

design: The autonomous vehicle control AVC module strategy,”
(DSN-W) 2017 Proceedings, pp. 16–21, 2017.

[18] C. Huang et al., “A GA-based feature selection and parameters
optimization for support vector machines,” Expert Systems with
Applications, vol. 31, no. 2, pp. 231 – 240, 2006.

[19] R. Ashmore et al., “Rethinking diversity in the context of au-
tonomous systems,” in SSS 2019 Proceedings, 2019, pp. 175–192.

[20] A. Jang et al., “A study on situation analysis for asil determination,”
vol. 3, 01 2014.

397

Augmenting App Reviews with App Changelogs: An
Approach for App Reviews Classification

Chong Wang*, Tao Wang*, Peng Liang
School of Computer Science

Wuhan University, China
{cwang, liangp}@whu.edu.cn

Maya Daneva, Marten van Sinderen
School of Computer Science

University of Twente, the Netherlands
{m.daneva, m.j.vansinderen}@utwente.nl

Abstract—Recent research on the automatic classification of app
reviews either focused on grouping app reviews into categories
relevant to software evolution, or employed app reviews as the only
research data to improve app reviews classification. Although it
was reported that app review classification can benefit from
supplementing user reviews with the data from other sources, only
a few studies employed app changelogs for this purpose. This
paper explores how to augment app reviews with changelogs to
improve the accuracy and performance of classifying functional
and non-functional requirements in app reviews. Specifically, we
propose AUG-AC as an approach to extract feature words from
app changelogs and construct the augments for app reviews. Next,
we designed a series of experiments to evaluate our approach,
varying in the length of AC-based augments for app reviews. The
results show that AUG-AC outperforms the existing method by
using app changelogs as a source of data next to app reviews.

Keywords-app reviews, app changelogs, requirements analysis,
machine learning, data-driven requirements engineering

I. INTRODUCTION
With the rapid growth of mobile applications, massive sets

of data are provided by the crowds. Particularly, app reviews, a
type of explicit feedback from the users, have been recognized
as an important source of user requirements for app updating and
maintenance [1-3]. However, current research [1-2] mainly
concentrated on how to extract features or topics from a large
number of app reviews and then classify these topics into
categories relevant to software evolution. Several studies [4-7,
14] also explored the use of user feedback from other sources in
requirements elicitation. For example, Vu et al. [4] employed
user reviews of packaged software in Amazon to pre-extract
phrases for mining user opinions from app reviews, while Jiang
et al. [5] combined product reviews from Amazon with app
reviews as the research data. These authors [4-5] observed that
user reviews of software have similar characteristics to app
reviews: (1) the number of reviews is increasing rapidly every
day; (2) review texts contain many noise words, including emoji,
non-English words, misspelled words, user-defined
abbreviations; and (3) most reviews are non-informative (as
reported in [6], only around 30% of app reviews are informative
for app updates). To reduce the manual effort in filtering out
non-informative samples and identify valuable information for
developers, this paper explores if other information of apps,
especially the pieces with less noise (i.e. app changelogs), could
be a significant help.

App changelogs are posted by software vendors regularly in
weeks or months. These official texts are written in a
standardized way and comprise primary changes of the releases.
A 2018 ICSE study [7] has successfully employed app
changelogs to identify emerging issues in app reviews. We were
motivated by these findings, and set out to explore how to use
official app changelogs to improve the accuracy and
performance of classifying requirements in app reviews.
Especially, this paper intends to explore how to make use of app
changelogs in the automatic classification of app reviews from
the perspective of requirements types, and finally aid developers
in the maintenance and updating of apps.

The paper is structured as follows. Sect. II is on related works.
Sect. III presents our approach. Sect. IV reports on the
experimental results evaluating and comparing the accuracy and
performance of our approach with others. Sect. V discusses our
findings. Sect. VI is on validity threats. Sect. VII concludes.

II. RELATED WORK
Considering the automatic classification of app reviews,

some researchers proposed categories relevant to software
maintenance and evolution. Maalej et al. [1] introduced several
probabilistic techniques to classify app reviews into four
categories, i.e. bug reports, feature requests, user experience, and
text rating. Guzman et al. [2] proposed seven categories relevant
to software evolution, viz. bug report, feature strength, feature
shortcoming, user request, praise, complaint, and usage scenario.
The categories proposed in these two studies partially overlap,
since the authors intended to help app vendors and developers
filter critical reviews relevant to different aspects of software
maintenance. Other researchers considered the categories of app
reviews from the perspective of requirements types. In particular,
our previous works in [8-9] employed classic machine learning
algorithms to identify and classify functional and non-functional
requirements (FRs and NFRs) from app reviews. Another
similar study [10] performed automatic analysis on app reviews
for NFRs elicitation and prioritization. In all these studies,
however, app reviews were the only type of research data to
apply and compare specified classifiers.

To the best of our knowledge, only very few studies
employed research data from other sources to analyze app
reviews. Those other sources include user reviews of software
[4], of products [5], and app descriptions [14], etc. However,
both [4, 5] aimed to extract and cluster user opinions, rather than

*: The authors contributed equally to this work.
This work is supported by the National Key Research and Development

Plan under grant No. 2018YFB1003800, and the National Natural Science
Foundation of China under grant Nos. 61702378 and 61672387.

DOI reference number: 10.18293/SEKE2019-176
398

classifying requirements into different categories. In [14], Liu et
al. used app descriptions, another typical data in app stores, to
guide the analysis of user reviews. Gao et al. [7] used app
changelogs to identify emerging issues from app reviews,
instead of identifying and classifying requirements.

In contrast to these previous studies, the focus of our work is
mainly on how to augment app reviews with app changelogs in
order to improve the accuracy and performance of classifying
FRs and NFRs from app reviews.

III. OUR APPROACH
To employ official app changelogs for the automatic

identification and classification of requirements from app
reviews, we propose an approach, called AUG-AC, to
AUGment app reviews with the text feature words extracted
from App Changelogs (AC). In this section, we give an overview
of AUG-AC to explore how to improve the automatic
classification of app reviews by employing official app
changelogs. Each step of our approach will be detailed in a
subsection.

The experimental data collected and manually labeled in our
previous work [13] will be reused to evaluate the performance
and AUC-AC. The dataset includes 6000 app review sentences
of three apps (one from Apple App Store and two from Google
Play) and 2024 app changes filtered from 2005 official
changelogs of 30 apps (3	 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠	 ×10	 𝑎𝑝𝑝𝑠 in Apple App
Store). As described in [13], these app review sentences and
changes were labeled with six types of requirements, including
four types of NFRs defined in ISO 25010 [11] (i.e. Usability,
Reliability, Portability and Performance), FR, and ‘Others’- the
type referring to those review sentences and app changes that fit
neither FRs nor the four NFRs listed above.

A. Overview
Our approach consists of four main steps, as Figure 1 shows.

Figure 1. Overview of AUG-AC approach, focusing on the steps in grey.

The first step is to preprocess the sampled app reviews and
changelogs to get respective text feature words of each
requirements type (Sect. III.B). The second step (which is the
one foci of our work) creates a AC-based feature words
dictionary for augmenting app reviews (Sect. III.C). The third
step (the other focus of our work) augments app reviews with
the text features extracted in the second step to train the classifier
and group the app reviews into six pre-specified types of
requirements (Sect. III.D). In the last step, those augmented app
reviews generated in Sect. III.D construct the training set of the
specified classifier. The accuracy of applying this classifier to
categorizing app reviews in the test set will be evaluated by the
standard metrics Precision, Recall and F-measure (Sect. III.E).

B. Text Preprocessing
In this step, multiple Natural Language Processing (NLP)

techniques were applied to the text of app review sentences and
changes. Specifically, Natural Language Toolkit (NLTK) was
adopted to perform stopword removal, punctuation removal, and
lemmatization.

Next, considering each type of requirements, we intended to
extract text feature words from the app changelogs and treat
them as the candidate augmented words for the app reviews
labeled as this type. In general, the concerns of app changelogs
grouped in each type of requirements may not always be well
represented by the frequency and importance of a word. Thus,
for each type of requirements, Latent Dirichlet Allocation (LDA)
was employed to extract text feature words in app changelogs.
By applying LDA, app changelogs labeled as a certain type of
requirements into can be clustered into one topic and produce
topic words for this cluster (i.e. each type of requirements). In
this work, topic words of each cluster form the initial set of text
feature words to be augmented to those app reviews that are
labeled as the corresponding type of requirements.

C. Constructing AC-based Feature Dictionary
This step aims to construct an AC-based feature dictionary,

consisting of the text feature words that was extracted from app
changelogs and to be augmented to app reviews. As already said
in the beginning of Sect. III, six types of requirements have been
specified as the category labels for both app reviews and
changelogs. Accordingly, for each requirements type 𝑖, a AC-
based feature dictionary 𝐷1	 is needed (1) to store the text feature
words extracted from app changelogs typed as 𝑖 , and (2) to
provide candidate AC-based augmented words for app reviews
typed as 𝑖. In this paper, 𝐷1 is initialized as a set containing the
top 20 features words 𝑡12 extracted from app changelogs labeled
with requirements type 𝑖.

Algorithm 1: Constructing AC-based Feature Dictionary

Input: 𝐷1 – initial AC-based feature dictionary.
Output: 𝐷13– extended AC-based feature dictionary.
1 for each requirements type 𝑖
2 import 𝐷1;
3 Insert 𝐷1 to 𝐷13;
4 for each 𝑡12 ∈ 𝐷1
5 insert 𝑆𝑦𝑛𝑜𝑛𝑦𝑚(𝑡12) into 𝐷13;
6 insert 𝐴𝑛𝑡𝑜𝑛𝑦𝑚(𝑡12) into 𝐷13;
7 end for
8 return 𝐷13;
9 end for

Furthermore, we conducted a pilot study to compare the text
feature words extracted from app reviews and changelogs. The
preliminary results indicate that the reflection of app reviews on
app changelogs is often expressed as the synonyms and
antonyms of a certain text feature word, rather than using the
same terms. Since more text feature words benefit pre-training
of the classifier, the size of 𝐷1 is recommended to be extended to
cover more candidate AC-based augmented words. For this
purpose, WordNet in NLTK was applied to the initial dictionary
𝐷1 to generate the extended dictionary 𝐷13 for the requirements
type 𝑖. More specifically, for each text feature word 𝑡12 in 𝐷1, all
its synonyms and antonyms identified in WordNet were added

app
changelogs

1. Preprocessing 2. Constructing
feature dictionary

3. Augmenting
app reviews

4. Classifier
training

Classification of
app reviews

399

to generate 𝐷13. Algorithm 1 provides the details of constructing
an AC-based feature dictionary for each type of requirements.
This results in 𝐷13, which will be used in the next step of AUG-
AC to augment the app reviews labeled as requirements type 𝑖.
In our work, 𝐷13 consists of two parts, i.e. (1) the top 20 text
feature words extracted from the type 𝑖-labeled app changelogs
and (2) all the synonyms and antonyms of these 20 words.

D. Augmenting App Reviews
In this step, we select text feature words in the AC-based

feature dictionary created in Sect. III.C, in order to augment app
reviews. These augmented app reviews construct the training set
of the classifier for app reviews classification.

To achieve a higher accuracy in requirements classification
from app reviews, we proposed to augment app reviews with the
text feature words derived from those app changelogs whose
requirements type is identic with that of the app reviews to be
augmented. Specifically, for each type of requirements, we first
used Word2Vec in NLTK to calculate the similarity between the
AC-based text feature words and the app reviews labeled as the
same type. Below, formula (1) was defined to perform the
similarity calculation task, where 𝑟1< denotes the type 𝑖-labeled
app review sentence 𝑘 expressed by a vector 𝑟1< =
𝑡1<,@, 𝑡1<,A, ⋯ 𝑡1<,C ⋯ 𝑡1<,D , 𝑡1<,C denotes the m-th feature word

in 𝑟1< , 𝑡12 denotes the AC-based text feature word labeled as
requirements type 𝑖 , 𝑤1<,C denotes the weight of the feature
word 𝑡1<,C (produced by BoW) in the app review sentence 𝑟1<,
𝑠𝑖𝑚 𝑡1<,C, 𝑡12 denotes the similarity between the AC-based
feature word 𝑡12 and the app review-based feature word 𝑡1<,C
(calculated by Word2Vec), and 𝑛 denotes the number of AC-
based feature words to be augmented to the app review sentences.

Sim 𝑟1<, 𝑡12 =
𝑤1<,C ∗ 𝑠𝑖𝑚 𝑡1<,C, 𝑡12J

KL@

𝑤1<,CJ
KL@ 	

	 	 	 (1)

Considering each app review sentence 𝑟1< , the similarity
between 𝑟1< and 𝑡12, i.e. the value of Sim 𝑟1<, 𝑡12 , will be ranked.
As a result, the top 𝑛 AC-based feature words	 will be added to
the end of this review sentence as the semantic augment. This
means that 𝑛 can be treated as the length of AC-based augment
for app reviews. Algorithm 2 describes how to augment app
review sentences with AC-based text feature words extracted in
Sect. III.B and generated in Sect. III.C. Note that in our work,
the value of 𝑛 is pre-specified and fixed for augmenting app
reviews. How much length of AC-based augments, i.e. the
number of feature words augmented to app reviews, could bring
more accurate prediction of app review classification will be
discussed in Sect. IV.

Algorithm 2: Generating AC-Augmented App Reviews
Input: 𝐴𝑅1 – app reviews labeled as requirements type 𝑖

𝑛 - the length of AC-based augment
Output: 𝐴𝑢𝑔_𝐴𝑅1 – augmented 𝐴𝑅1 by adding 𝑛 words
1 for each requirements type 𝑖
2 for each 𝑟1< ∈ 𝐴𝑅1
3 for each word 𝑡12 ∈ 𝐷13
4 calculate Sim 𝑟1<, 𝑡12 ;
5 end for
6 sort 𝑡12 ∈ 𝐷13 by Sim 𝑟1<, 𝑡12 in descending order；
7 add the first 𝑛 𝑡12 to 𝑟1< to produce 𝑛𝑒𝑤_𝑟1<;

8 insert 𝑛𝑒𝑤_𝑟1< into 𝐴𝑢𝑔_𝐴𝑅1；
9 Return 𝐴𝑢𝑔_𝐴𝑅1;
10 end for
11 end for

E. Classifier Training and Evaluation
According to the experimental results in [1,9,13], Naïve

Bayes has been reported to outperform other machine learning
algorithms in the automatic classification of app reviews.
Therefore, this work adopted Naïve Bayes as the classification
technique to categorize FR and NFRs from app reviews. To
evaluate the performance of Naïve Bayes, 10-fold cross
validation was applied to reduce its overfitting in identification
and classification of app reviews. In addition, we adopted the
standard metrics Precision, Recall and F-measure to evaluate
the accuracy of Naïve Bayes on the automatic classification of
app reviews.

Weighted	 average	 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1\𝑅𝑒𝑐𝑎𝑙𝑙1\𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1\𝑅𝑒𝑐𝑎𝑙𝑙1\𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒1 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟11∈`abc

𝑁𝑢𝑚𝑏𝑒𝑟11∈`abc
	 	 	 (2)

More specifically, for each requirements type i, 	 Precisionj
is the fraction of the app reviews that are correctly classified as
requirements type i, Recallj is the fraction of the app reviews of
requirements type i that are correctly classified as type i, and
F − measurej is the harmonic average of the precision and
recall. Furthermore, we introduced weighted average precision,
recall and F-measure (see formula (2) below) to evaluate the
accuracy of classifying app reviews into categories of each
requirements type. In formula (2), 𝑁𝑢𝑚𝑏𝑒𝑟1 denotes the number
of app review sentences labeled as requirements type 𝑖 in the test
set of Naïve Bayes.

IV. RESULTS
This section reports the results of our experimental study and

compares the accuracy of Naïve Bayes in the automatic
classification of requirements from app reviews. The Naïve
Bayes algorithm was programmed with Python. All the
experiments were conducted on a 2.50GHz Core i5 CPU with
8GB RAM under Windows 10.

A. Impact of Length of Augments on App Reviews
Classficiation
As mentioned in Sect. III.C, the length of AC-based

augments depends on the number of AC-based text feature
words that added to the specified app reviews. Figure 2 shows
the precision, recall and F-measure of the automatic
classification of augmented app reviews with increasing number
of AC-based augmented words (from 5 to 70 words) with an
interval of 5 words, by applying Naïve Bayes. Note that in these
experiments, the maximum length of AC-based augments is set
as 70 words. The reasons are: (1) in [9], Lu and Peng have
reported that augments with 1.9 times of the length of an app
review sentence leaded to the best results in app reviews
classification; and (2) in our dataset, the longest app review
sentence has 37 words, and 70 words are around 1.9 times of the
maximum length of included app review sentences.

As observed in Figure 2, F-measure is growing rapidly when
less than 35 AC-based feature words are augmented to app
reviews. There are two peaks when the length of augments is 35

400

and 45 words respectively. When the number of added AC-
based feature words is greater than 50, the value of F-measure
decreased or fluctuated within a narrow range.

Figure 2. Accuracy of classifying augmented app reviews with varying

number of AC-based text feature words.

Furthermore, Table I zooms in the Precision, Recall and F-
measure for classifying each type of requirements in app reviews,
by employing AC-based augments with different lengths.
Typically, the experiments run on the app reviews augmented by
6 (i.e. the average length of app reviews in our dataset) and 37
(i.e. the maximum length of app reviews in our dataset) AC-
based text feature words. The results were listed in the columns
for precision, recall and F-measure in Table I. We found that for
two types or requirements – Reliability and Other, the accuracy
of app reviews classification seldom differs in the lengths of
augments for app reviews. Whereas, for ‘Usability’,
‘Portability’, ‘Performance’ and ‘FR’ typed app reviews, the
longer AC-based augment leads to much higher accuracy of
classifying app reviews. Specifically, we analyzed the influence
of the proportion of each type of requirements identified in app
reviews or changelogs on the accuracy of classifying app
reviews with different length of AC-based augments.

As shown in Figure 3(a), for two types of requirements –
‘Usability’ and ‘FR’, the higher proportion of app changelogs
labeled as these two requirements types leads to more accurate
identification and classification of these two types of

requirements in app reviews. Similarly, for the other two
requirements types – ‘Portability’ and ‘Performance’, the lower
proportion of app changelogs resulted in a lower accuracy of
classifying app reviews labeled as these two types. Whereas, it
is surprising to find that lower proportion of app changelogs
typed as ‘Reliability’ and ‘Other’ produced the two highest
accuracy of classifying these two types of requirements in app
reviews. Regarding the proportion of six specified types of
requirements in app reviews, Figure 3(b) indicates that the
higher (lower) accuracy of classifying app reviews labeled as a
certain requirements type usually responds to the higher (lower)
proportion of app reviews labeled as this type of requirements.

(a)

(b)

Figure 3. Influence of the proportion of each type in (a) app changelogs and
(b) app reviews on the F-measure of classifying augmented app reviews.

TABLE I. PROPORTION OF APP REVIEWS/CHANGELOGS AND ACCURACY OF REQUIREMENTS CLASSIFICATION IN AUGMENTED APP REVIEWS
(AC = APP CHANGELOGS, AR = APP REVIEWS)

Type Proportion
of AR

Proportion
of AC

Length of Augment = 6 words Length of Augment = 37 words
Precision Recall F-measure Precision Recall F-measure

Reliability 0.172 0.199 0.641 0.544 0.586 0.586 0.588 0.587

Usability 0.104 0.285 0.845 0.239 0.370 0.656 0.408 0.502

Portability 0.034 0.073 0.100 0.004 0.007 0.410 0.040 0.071

Performance 0.025 0.068 0.200 0.018 0.034 0.400 0.037 0.068

FR 0.126 0.222 0.582 0.289 0.386 0.468 0.486 0.476

Other 0.538 0.053 0.672 0.951 0.785 0.750 0.873 0.807
Weighted

average 0.641 0.665 0.611 0.656 0.678 0.652

401

B. Comparision with AUG-BoW
Similar to AUG-BoW in [9], our proposed AUG-AC also aims
at augmenting app reviews for more accurate classification of
app reviews. As we mentioned in Sect. II, AUG-AC differs in
employing official app changelogs to augment app reviews for
the identification and classification of requirements in app
reviews. To compare and evaluate the performance of these two
methods, we conducted a series of experiments varying in the
methods for generating augments and the length of augments.
As listed in the first row of Table II, we repeated AUG-BOW in
sampled app reviews in our dataset; while in the second to the
fourth row of Table II, the experiments evaluated AUG-AC in
the cases that the lengths of augments were the average length
of app reviews (i.e. 6.15 words), 1.9 times of this average length,
and the maximum length of included app reviews (i.e. 37 words)
respectively.

TABLE II. RESULTS ON CLASSIFYING APP REVIEWS AUGMENTED WITH
DIFFERENT TECHNIQUES.

Techniques Length of
augment Precision Recall F-measure

AUG-BoW
[9]

1.9 × length of an
app review [9] 0.651 0.642 0.569

AUG-AC 6 words 0.646 0.666 0.610

AUG-AC 15 words 0.650 0.674 0.631

AUG-AC 37 words 0.656 0.678 0.652

Our experimental results are in Table II. Therein, we observe
that once our proposed AUG-AC was applied to generate AC-
based augments for app reviews, the accuracy of app reviews
classification increases regardless of the length of augments.
That is, our proposed AUG-AC outperformed AUG-BoW [9] by
employing app changelogs for classifying requirements in app
reviews. Furthermore, we compared the time spent on the
automatic classification of augmented app reviews when
applying AUG-BoW and AUG-AC in our dataset respectively.
For this purpose, the time spent in two typical experiments – in
the 1st and 4th row of Table II, was calculated. Note that in this
work, we only concentrated on the time spent on augmenting app
reviews with app changelogs by these two methods. The reason
is that both AUG-BoW and AUG-AC adopted Naïve Bayes as
the classifier, and these two techniques may take the same time
period to classify augmented app reviews. The results are: (1)
AUG-BoW took 1315.77 seconds to construct ‘customized’
augments for each app review in the training set of Naïve Bayes,
and (2) AUG-AC took 106.64 seconds to complete the 37-word
augments for any included app reviews. It was obvious that app
reviews classification based on AUG-AC completed much faster
than that based on AUG-BoW.

V. DISCUSSION

A. Analysis on the length of AC-based augments
Regarding the length of AC-based augments, we observed

that the longer AC-based augments leaded to a higher accuracy
in classifying app reviews. However, the accuracy did not
continuously increase by augmenting app reviews with more
than around 40 text feature words. The reason could be that in
our AC-based feature dictionary, the AC-based feature words to
be added to app reviews were ranked according to their topic

relevance with the specified type of requirements. In turn, the
top 40 feature words selected for the construction of AC-based
augments were the most ‘type-sensitive’ ones, and also enough,
to provide much more accurate results in the app reviews
classification.

Next, the proportion of each type of requirements in app
reviews and changelogs was not always similar, indicating that
these two data sources concentrated on different types of
requirements. Taking ‘Usability’ NFR as an example, its
proportion in app changelogs is around 2.7 times of that in app
reviews. This finding implies that although apps may be
upgraded to fit different types of user requirements, the official
changelogs always pay more attention to this type of
requirement. The reason could be that for user, changes typed as
‘Usability’ were critical for making decision on whether this
release is appropriate for their demands. Regarding to the ‘Other’
type, the much lower proportion of app changelogs indicates that
they have less noise than app reviews.

Furthermore, we found that the rank of the proportion of
different types of requirements in app reviews nearly follow the
rank of accuracy in classifying these requirements types in app
reviews. The reason could be that both the training and test set
of Naïve Bayes consisted of app reviews. In contrast, the rank of
the proportion of different types of requirements in app
changelogs did not always correspond to the rank of accuracy in
classifying app reviews. For example, lower proportion of
‘Reliability’ and ‘Other’ types in app changelogs contributed to
more accurate results in app review classification. One reason
could be that for these two types of requirements, the AC-based
text feature words that were used to augment app reviews are
quite similar to the feature vectors of app reviews. The other
reason could be that compared with the other four types of
requirements, those that employed AC-based text feature words
are much more ‘topic sensitive’ to identify app reviews typed as
‘Reliability’ and ‘Other’. All the findings are positive to our
exploration on using app changelogs to classify requirements in
app reviews, and encourage further research on this topic.

B. Comparison between AUG-AC and AUG-BoW
Considering the accuracy of app reviews classification, we

found that our proposed AUG-AC method outperformed AUG-
BoW provided in [9] – the work that inspired our ideas to
improve the accuracy of app reviews classification with app
changelogs. Compared with AUG-BoW, AUG-AC spent much
less time in augmenting app reviews. The main reason is that in
AUG-AC, the augments of app reviews were constructed by
calculating the similarity between the AC-based feature words
of a certain type of requirements and the app reviews labeled as
this type. That is, for each type of requirements, 20 feature words
extracted from app reviews and their synonyms and antonyms
(around 300 words) selected from WordNet are candidates to be
calculated and ranked. Whereas, AUG-BoW augmented app
reviews by calculating the similarity between extracted text
feature words of a certain requirements type and all the app
reviews labeled as any type of requirements. These findings can
be deemed as the main advantage of our AUG-AC and the main
difference between AUG-BoW and AUG-AC.

402

VI. THREATS TO VADILITY
We followed the guidelines in [15-16] to evaluate the

possible threats to validity of our experimental results.

Construct validity: Our work reused the dataset in [13]. All
the app reviews and changelogs in this dataset were analyzed by
three coders independently, on the premise that they had a
consistent understanding on different types of requirements,
especially on NFR types defined in ISO 25010. As indicated in
[13], we believe this threat to construct validity is partially
mitigated by following the aforementioned labelling process.

Internal validity: There is an internal threat to validity
concerning how the proposed AUG-AC and the Naïve Bayes
classifier were programmed. We implemented them by Python.
The results of this exploratory study may vary if AUG-AC and
Naïve Bayes are implemented in other ways, e.g. in Weka. Thus,
how to improve the implementation of AUG-AC and Naïve
Bayes remains to be studied. Another internal validity threat is
that, not all the app changelogs and reviews were collected from
the same platform. Especially, the changelogs of WhatsApp
were collected from Apple App Store and the app reviews were
from Google Play. Different concerns of users in different
platforms may lead to the fact that the AC-based text feature
words provide insufficient semantics to app reviews, which may
further result in inaccurate classification of app reviews.
Therefore, more research is needed on app reviews and
changelogs from the same platform.

External validity: We investigated the user reviews of three
apps and changelogs of 30 apps which span over three categories
and two major mobile operating systems. We believe that the
threats to external validity are partially alleviated. Due to the
time and resource limitation, we did not cover many apps, and
we plan cover more categories of apps to increase the external
validity of the study results.

VII. CONCLUSIONS AND FUTURE WORK
This work explored to augment app reviews with official app

changelogs, in order to improve the accuracy of classifying
requirements, including FR and four types of NFRs, in app
reviews. For this purpose, AUG-AC was proposed to augment
app reviews with not only the text feature extracted from app
changelogs but also their synonyms and antonyms generated by
Word2Vec, in the case that both the employed app changelogs
and the app reviews to be augmented are labeled as the same
type of requirements. Next, a series of experiments was designed
to evaluate the performance of AUG-AC by varying the length
of AC-based augments. The experimental results indicate that
the AC-based augment of app reviews implemented by AUG-
AC can improve the accuracy of classifying requirements in app
reviews.

To further evaluate the performance of AUG-AC, our next
steps are: (1) re-evaluation of AUG-AC on a balanced dataset by
leveraging the proportions of different types of requirements in
current dataset; (2) evaluation of AUG-AC with app reviews and
changelogs of other apps in other categories of Apple App Store

or other app repositories (e.g. Google Play, other Android app
stores, etc.); and (3) validation of AUG-AC by using the dataset
labeled by more types of NFRs (e.g. Security).

REFERENCES
[1] W. Maalej, Z. Kurtanovic, H. Nabil, C. Stanik, “On the automatic

classification of app reviews”, Requirements Engineering, vol. 21, no. 3,
pp.311-331, 2016.

[2] E. Guzman, M. El-Haliby, B. ,“Ensemble Methods for App Re-view
Classification: An Approach for Software Evolution”, in Proc. of the 30th
IEEE/ACM International Conference on Automated Software
Engineering (ASE’15), Lincoln, USA, 2015, pp.771-776.

[3] S. Panichella, A. Di Sorbo, et al., “How Can I Improve My App?
Classifying User Reviews for Software Maintenance and Evolution”, in
Proc. of IEEE International Conference on Software Maintenance and
Evolution (ICSME’15), Bremen, Germany, 2015, pp.281-290.

[4] P.M. Vu, H.V. Pham, T.T. Nguyen, T. T. Nguyen, “Phrase-based
extraction of user opinions in mobile app reviews”, in Proc. of the 31st
IEEE/ACM International Conference on Automated Software
Engineering (ASE’16), Singapore, 2016, pp.726-731.

[5] W. Jiang, H. Ruan, et al, “For User-Driven Software Evolution:
Requirements Elicitation Derived from Mining Online Reviews”, In
Proceeding of the 18th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining (PAKDD’14), Taiwan, China,
2014, pp.584-595.

[6] N. Chen, J. Lin, S.C.H. et al, “AR-miner: Mining Informative Reviews
for Developers from Mobile App Marketplace”, in Proc. of the 36th
International Conference on Software Engineering (ICSE '14), Hyderabad,
India, ACM, 2014, pp.767-778.

[7] C. Gao, J. Zeng, M. R. Lyu and I. King, “Online App Review Analysis
for Identifying Emerging Issues”, in Proc. of the 40th International
Conference on Software Engineering (ICSE’18), Gothenburg, Sweden,
ACM, 2018, pp.48-58.

[8] H. Yang and P. Liang, “Identification and Classification of Requirements
from App User Reviews”, in Proc. of the 27th International Conference
on Software Engineering and Knowledge Engineering (SEKE’15),
Pittsburgh, USA, 2015, pp.7-12.

[9] M. Lu and P. Liang, “Automatic Classification of Non-Functional
Requirements from Augmented App User Reviews”, in Proc. of the 21st
International Conference on Evaluation and Assessment in Software
Engineering (EASE’17), Karlskrona, Sweden, 2017, pp.344-353.

[10] E.C. Groen, S. Kopczynska, et al., “Users-The Hidden Software Product
Quality Experts?”, in Proc. of the 25th International Requirements
Engineering Conference (RE’17), Lisbon, Portugal, 2017, pp.80-89.

[11] ISO. ISO/IEC 25010, Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models. FDIS, 2011.

[12] R. Wieringa. Design Science Methodology for Information Systems and
Software Engineering. Springer, ISBN 978-3-662-43838-1. 2014.

[13] C. Wang, F. Zhang, P. Liang, et al. “Can App Changelogs Improve
Requirements Classification from App Reviews? An Exploratory Study”,
In Proc. of the 12th International Symposium on Empirical Software
Engineering and Measurement (ESEM’18). ACM, Oulu, Finland, 2018,
pp.43:1-43:4.

[14] YZ. Liu, L Liu, HX Liu, and WY Wang, “Analyzing reviews guided by
App description for the software development and evolution”, Journal of
Software: Evolution and Process, vol. 30, no. 12, 2018, pp. ,

[15] Forrest Shull, Janice Singer, and Sjøberg Dag I. K. Guide to Advanced
Empirical Software Engineering. Springer, 2008.

[16] Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Regnell
Bjorn, and Anders Wesslen. Experimentation in Software Engineering.
Springer, 2012.

403

Prudent Practices for Designing
Virtual Desktop Experiments

Peiyu Liu, Wenzhi Chen, Zonghui Wang, Lirong Fu
College of Computer Science and Technology

Zhejiang University
Hangzhou, China

{liupeiyu, chenwz, zhwang, fulirong007}@zju.edu.cn

Abstract—Virtual desktop technology aims at accessing a
remote desktop by endpoint hardware. Great attention has been
increasingly paid to virtual desktop since it can increase the
utilization of computing resources and provide more flexible
accesses. However, researchers have not yet come up with a com-
prehensive set of rigorous standards of experimental design and
implementation in this field. Therefore, it is difficult to conduct
prudent experiments, which is correct, real, and transparent.

In this paper, we assess the experimental evaluations of
recently published papers on desktop virtualization. We observe
that most works can be further improved, due to the unsuitable
experimental environment and the lack of descriptions of exper-
imental settings. In this paper, in order to help researchers, re-
viewers, and readers, we propose several guidelines for designing
correct, real, and transparent desktop virtualization experiment.

Index Terms—Virtual Desktop; Prudent Experiment;

I. INTRODUCTION

Nowadays, with the rapid development of virtualization
technology, cloud computing has drawn great attention from
both academia and industry fields [1], [2]. The thin client was
first proposed in the 1990s, which finally develops rapidly in
the form of virtual desktops in the boom of cloud computing
[3], [4]. There are many mature solutions in the industry
fields [5]. The academic community has also proposed a lot of
impressive works [6]. Many desktop virtualization approaches
will conduct extensive experiments to verify the performance
of the proposed desktop virtualization systems. However, since
there is no comprehensive set of rigorous standards of exper-
imental design and implementation in this field, researchers
will face numerous pitfalls during the experiment.

In this paper, we investigate issues about the prudent ex-
perimental evaluation of desktop virtualization systems. We
observe that there are no general experimental standards in
this field, which makes it difficult to compare these projects
equally. In our previous research work, we notice that it is
hard to reproduce the experiments that are conducted in many
other approaches. Therefore, we put forward that the existing
systems of desktop virtualization could be further improved
in a rigor experimental standard. We solemnly declare that
we highly respect the existing works. Under the purpose
of helping researchers, we point out the current common
problems that every relevant researcher, including ourselves,

DOI reference number: 10.18293/SEKE2019-086

might encounter. One of these problems is that the description
of the experiments in many works is sometimes inadequate.
In addition, there are more serious issues that may affect the
correctness of the experiments.

Our goal is to establish a set of rigor guidelines for the
design, implementation, and description of prudent desktop
virtualization experiments. We regard correctness, reality, and
transparency as three cornerstones. Based on these corner-
stones, we propose guidelines that can help researchers in
prudent desktop virtualization experiments. We review existing
17 papers under our guidelines to confirm the validity of
these guidelines. Most papers can benefit from our proposed
guidelines. Through simple case study, we also validate the
existence of some pitfalls encountered in the desktop virtual-
ization experiments.

In summary, our work makes the following important con-
tributions.
(1) We discover the common pitfalls in desktop virtualization

experiments.
(2) We propose a set of guidelines to help researchers im-

prove the rigor of desktop virtualization experiments.
(3) We investigate 17 desktop virtualization papers and val-

idate that our guidelines are practical.
(4) We conduct simple case study to prove that the pitfalls

in the desktop virtualization experiments deserve great
attention.

II. RELATED WORK

In this section, we summarize existing works related to our
research.

Virtual Desktop Infrastructure (VDI): The technology that
allows users to run desktop operating systems on virtual
machines is known as VDI [6]. VDI manages a virtual desktop,
which is a desktop environment in a virtual machine (VM) that
runs on a centralized or remote server. A user can access a
virtual desktop through a variety of terminals. There are many
vendors which provide VDI solutions such as Citrix [5] and
VMware [7].

Desktop as a Service (DaaS): DaaS provides the benefit of
VDI without the cost and risk of managing physical resources,
which allows a user to access desktop applications by any
devices in anywhere [8]. Deboosere et al. propose a system

404

architecture to provide efficient desktop services in a cloud [9],
which specifically focuses on mobile users. Therefore, due to
resource constraints, virtual desktops are executed remotely.
Kim et al. design and implement a desktop virtualization
system using lightweight display protocols based on cloud
DaaS [10].

Virtual Mobile Infrastructure (VMI): VMI extends the
principles that allow VDI to run desktop applications on
desktops and mobile devices - only this time, mobile apps
are accessed remotely from mobile devices [11]. Su et al. pro-
pose vMobiDesk, a prototype system which provides mobile
users with remote accesses to virtual mobile desktop such as
Android desktop [12].

Prudent Practices for Designing Experiments: The rigor
of experiments is very important for all academic papers.
Previous researchers have analyzed the experimental rigor in
other research fields [13]. However, before our paper, the rigor
of desktop virtualization experiments has not been studied.

III. GUIDELINES FOR PRUDENT EXPERIMENT

We propose that the main pitfalls in existing desktop virtual-
ization experiments can be divided into three categories. First
of all, reasonable experimental setup and environment are the
keys to ensure the correctness of the experiment. In addition,
only real-world testings can realistically demonstrate that
the virtual desktop really satisfies the actual needs of users.
Finally, a transparent description of the experimental details
can help the reviewers and readers understand the experimental
setup and ensure the reproducibility of the experiment. Based
on the above cornerstones, the following content outlines the
guidelines of prudent virtual desktop experiments.

A. Correct Setting

1) Select the appropriate test indicators: The indicators
tested in each desktop virtualization approach are not always
the same. It is worthy to point out that the testing of parts of
indicators is indispensable. For instance, we observe that many
papers do not adequately test response time in virtual desktop
experiments. However, for desktop virtualization, the perfor-
mance of a system is strongly related to user interactions, no
matter how appreciative other test results in the experiments
are, the lack of response time testing will always be confusing.
We emphasize that it is necessary to use appropriate methods
to test important indicators.

2) Comprehensively consider the effects of experimental
equipment: Various devices can be used in the tests of the
performance of desktop virtualization systems. Obviously, the
equipment used by the researchers is not uniform. It is indeed
difficult to require everyone to use the same devices. We will
not make such unreasonable demands. However, researchers
should realize that different equipment may cause deviations
in experimental results. We point out that different devices
should be used in the same tests to decrease the experimental
bias.

3) Determine the impact of network settings: Different
network configurations are likely to significantly affect the
performance of a virtual desktop. In many existing papers,
the authors have configured excellent network connectivity,
which is almost impossible in real life. In such a network
environment, desktop virtualization systems may perform very
well. However, virtual desktops may not perform so well in
daily network environments. We propose to configure a variety
of network environments for comparison.

4) Pay attention to the effects of desktop resolutions: In
desktop virtualization systems, desktop data can be encoded
with any resolution when it is transmitted. When the same
desktop data is transmitted by different resolutions, the amount
of the data is different, which will have an impact on the net-
work bandwidth and response time. Therefore, we emphasize
that authors must pay attention to the influence of resolutions
and evaluate them in their papers.

B. Realistic Tests

1) Conduct real-world experiments: Desktop virtualization
works need to solve real-life problems, which should be able
to work in the real world while satisfying the needs of users.
To evaluate the actual performance of a desktop virtualization
system, real-world experiments should be conducted. We pro-
pose that using the equipment of users to conduct experiments
in the real-world working environment is more convincing.

2) Be cautious about the compatibility: For various rea-
sons, many papers are evaluated only in a single Operating
System (OS) version. However, considering the compatibility,
we propose that papers should explain whether the current
desktop virtualization system can be applied to other OS
versions, or investigate in detail how much work is needed
to port the desktop virtualization system to other OS versions.

C. Transparent Description

1) Detail description of the OS and tools used in the
experiment: Different OS versions and test tools may lead
to different experimental results. We insist that the author
is obliged to elaborate the OS version and test tools in
their paper, such as ”Windows 7 64-bit none third-party
programs installed”, ”netperf-2.7.0 released on 21 Jul 2015,
download address: https://github.com/HewlettPackard/netperf/
releases”, The detail description can improve the possibility
of reproducing experiments by readers.

2) Explain the reasons for the poor/outstanding perfor-
mance: If the virtual desktop does not perform well on a
test, we strongly recommend that the author should analyze
the possible causes of the poor performance carefully. It is
always a respectable practice to propose possible improvement
solutions. Even if the desktop virtualization system performs
well in the experiments, the author still needs to perform
a comprehensive analysis. If the experimental environment,
such as the condition of the network, is the reason for the
outstanding performance of a desktop virtualization system,
then ignore this reason is unfair for other papers.

405

TABLE I
LIST OF SURVEYED PAPERS CLASSED BY TOPIC. SOME TITLES ARE SHORTEN WITH [...].

Authors Title Venue

VDI
1 Baratto et al. [14] MobiDesk: Mobile Virtual Desktop Computing ACM MobiCom 2004

2 Baratto et al. [6] THINC: A Virtual Display Architecture for Thin-Client Computing ACM SOSP 2005

3 Kibe et al. [15] The Evaluations of Desktop as a Service in an Educational Cloud IEEE NBiS 2012

4 Alexander et al. [16] Building a Cloud Based Systems Lab ACM SIGITE 2012

5 Darabont et al. [17] Performance Analysis of Remote Desktop Virtualization based [...] MACRo 2015

6 Kim et al. [10] Cloud-based Virtual Desktop Service Using Lightweight [...] IEEE ICOIN 2016

7 Uehara et al. [18] Performance Evaluations of LXC based Educational Cloud in a [...] IEEE WAINA 2017

8 Triyason et al. [19] The impact of screen size toward QoE of cloud-based virtual desktop Elsevier PCOCEDIA 2017

DaaS
9 Beaty et al. [8] Desktop to Cloud Transformation Planning IEEE ISPDC 2009

10 Cristofaro et al. [20] Virtual Distro Dispatcher: a light-weight Desktop-as-a-Service [...] Springer CLOUD 2009

11 Lai et al. [21] A Service Based Lightweight Desktop Virtualization System IEEE ICSS 2010

12 Calyam et al. [22] Utility-directed resource allocation in virtual desktop clouds Elsevier COMNET 2011

13 Deboosere et al. [9] Cloud-based Desktop Services for Thin Clients IEEE INTERNET COMPUT 2012

VMI
14 Hung et al. [11] Executing mobile applications on the cloud: Framework and issues Elsevier COMPUT MATH APPL 2012

15 Nguyen et al. [23] An Efficient Video Hooking in Androidx86 to Reduce Server [...] Springer CUTE 2014

16 Su et al. [12] vMobiDesk: Desktop Virtualization for Mobile Operating System IEEE HPCC 2017

17 Wang et al. [24] FUSION: A Unified Application Model for Virtual Mobile [...] IEEE DSC 2017

TABLE II
CRITERIONS FROM THE CORRESPONDING GUIDELINES. ’? ? ?’: MUST COMPLY. ’??’: SHOULD BE FOLLOWED. ’?’: GOOD TO MEET.

Criterions Guidelines Rating Explication

Correct Setting
Response time test 2.1.(a) ? ? ? Perform response time test in a suitable manner

Bandwidth evaluation 2.1.(a) ? ? ? Test bandwidth in an appropriate way

Frame rate test 2.1.(a) ? ? ? Test the frame rate in a reasonable way

Different devices 2.1.(b) ?? Use different client devices for multiple sets of tests

Diverse network connectivity 2.1.(c) ? ? ? Configure a variety of network environments for comparison

Different resolutions 2.1.(d) ? ? ? Test virtual desktop performance under different resolutions

Realistic Test
real-world experiments 2.2.(a) ?? Conduct experiments in the real users’ work environment

Real users 2.2.(a) ? ? ? Ask real users to experience the system and measured users’ ratings.

Multiple OSes 2.2.(b) ? Conduct experiment with different server OS versions

Transparent Description
Introduction of OS version 2.3.(a) ? ? ? Detaile the OS version

Introduction of test tools 2.3.(a) ? ? ? Describe the selected test tool in detail

Interpretation of poor performance 2.3.(b) ? ? ? Analyze the possible causes of the poor performance carefully

Analysis of good performance 2.3.(b) ? ? ? Conduct in-depth analysis of good performance

Improvement solutions 2.3.(b) ? Propose possible improvement solutions

IV. ASSESSMENT OF GUIDELINES

In this section, we elaborate the assessment of the guidelines
presented in previous sections. The assessment method we use
is to extract criterions from the guidelines and then apply the
criterions to 17 recent papers listed in Table I for analysis.
Through this method, we validate the practical value of the
guidelines and obtain some observations.

A. Process of Assessment

In order to assess our guidelines, we extract more specific
criterions from the corresponding guidelines. Table II shows
the criterions we proposed. For researchers who study on
desktop virtualization, every criterion we define can be judged
directly with the corresponding papers. As shown in Table II,
we divide all the criterions into three levels. Among them,
level ’? ? ?’ indicates that the experiments in a rigorous paper

406

TABLE III
OVERVIEW AND BRIEF DESCRIPTION OF OBSERVATIONS.

Criterions Rating Yes Weak Description

Correct Setting
Response time test ? ? ? 8 (47.0%) 2 (11.8%) Only about half of the papers performed response time test in a

suitable manner. In addition, there are two papers that measured
response time, but their conclusions are too sloppy. None of the
remaining articles measured response time.

Bandwidth evaluation ? ? ? 9 (52.9%) 0 (0%) About half of the papers do not measure bandwidth consumption at
all.

Frame rate test ? ? ? 3 (17.6%) 0 (0%) Almost all papers have not evaluated the FPS of virtual desktops.

Diverse network connectivity ? ? ? 5 (29.4%) 0 (0%) Only five papers configured a variety of network environments for
comparison.

Different resolutions ? ? ? 6 (35.3%) 0 (0%) Less than half of papers tested the performance of virtual desktops at
different resolutions.

Different devices ?? 2 (11.8%) 0 (0%) Most papers do not mention support for multiple client devices. In
this case, client compatibility cannot be evaluated.

Realistic Test
Real users ? ? ? 2 (11.8%) 0 (0%) Few researchers have invited real users to participate in the evaluation

of desktop virtualization systems. In other words, basically only the
rigid numerical results are provided.

real-world experiments ?? 3 (17.6%) 1 (5.9%) A majority of papers do not conducted real-world experiment. Only
two papers met this criterion. In addition, there was a paper that used
tools to simulate different user environments.

Multiple OSes ? 1 (5.9%) 0 (0%) In only one case the authors conducted experiment with different
server OS versions.

Transparent Description
Introduction of OS version ? ? ? 10 (1%) 0 (0%) Seven papers do not describe the operating system version of the

virtual desktop. This puts those who wish to reproduce the experiment
into a situation where they have no rules to follow.

Introduction of test tools ? ? ? 6 (35.3%) 2 (11.8%) About half of the papers do not present information about the tool.
There are also two papers that just mention the name of the tool but
do not detail the version and other information.

Interpretation of poor performance ? ? ? 6(35.3%) 1(5.9%) Only about a third of the papers explain the reasons for the poor
performance in the experiment. There is also a paper that only explains
a part of the poor performance.

Analysis of good performance ? ? ? 3 (17.6%) 2 (11.8%) The vast majority of the papers just put some numerical results that
look very good but do not explain any of the deep reasons behind the
excellent results. There are also two papers that only explains a part
of the good performance.

Improvement solutions ? 1 (5.9%) 0 (0%) Only one paper proposes improved solutions after discussing the
causes of poor performance.

must comply with these criterions. Level ’??’ shows that these
criterions should be followed, while Level ’?’ means that it is
good to satisfy these criterions.

We leverage each criteria in Table II to evaluate the papers in
Table I. Two of our authors conduct a survey for all the papers.
Our goal is to investigate the prudence of the experiments
through all the available information in the paper. Therefore,
in the process of investigating the papers, we follow the rules
that only focus on the content of the papers. We do not review
the source code or contact the authors of the papers for more
details. We use these restrictions because they actually reflect
what readers and reviewers face. Reviewers are often not likely
to investigate details that the author has omitted. In the case of
a double-blind submission, there is simply no way to contact
the author. In other words, only the paper itself can be easily
accessed by reviewers and readers. It is the author’s obligation
to clarify the details in the paper.

B. Observations

Table III lists the statistics results of all the surveyed papers.
Yes refers to papers adhere to the guideline.

1) Correct Setting: About 47% of the papers conduct
experiments to test response time. Two papers take how users
feel as a performance measure, which is not suitable. Similarly,
half of the papers have bandwidth evaluation. For the frame
rate test, more than 80% of the approaches ignore the test.
No more than 50% of the papers use different devices to
evaluate the proposed systems. Only 27.7% of the papers test
different network connectivities. 30% of the works conduct
the experiment of different resolutions. We can see that most
papers do not include enough correct settings.

2) Realistic Test: The survey indicates that few papers con-
duct real-world experiments. From the table, we observe that
80% of the papers lack real-world experiments and only one

407

TABLE IV
SETTINGS FOR OUR EXPERIMENTAL PLATFORM.

Server Host

Processor 3.40GHz Intel Core i7-6700
RAM 8 GB
OS Ubuntu 16.04
Kernel Linux 4.4.0

Server Guest
Virtualization tool VirtualBox 5.2.10
RAM 1 GB of RAM
OS Android-x86-5.1.1

Client Device
Hardware Google Nexus 9
OS Android-6.0
RAM 2GB

Network
Hardware NETGEAR R8000
Frequency 2.4GHz/5GHz
Speed 1000MB

paper conduct experiments with different OS versions. Few
researchers (about 11%) have invited real users to participate
in the evaluation of desktop virtualization systems.

3) Transparent Description: Half of the papers do not
introduce the OS version that they leverage. 50.5% of the
papers do not describe the testing tools. Only half of the papers
mention network connectivity. Consequently, in the majority
of the cases, readers fail to figure out the experiment setup
adequately, nor can repeat the experiments. Meanwhile, we
find that more than 90% of the papers incompletely describe
experimental results. Only two papers offer improvement
solutions to address low-performance problems.

V. CASE STUDY

In order to explain the problems caused by the violation of
the guidelines intuitively, we design experiments to prove that
the aforementioned pitfalls will affect the evaluation results of
a desktop virtualization system.

Specifically, we analyze two experiments related to two cri-
terions: (1) the influence of resolution on experimental results,
and (2) the impact of network connectivity. The experiments
of the remaining criterions will be updated to arc.zju.edu.cn.
Based on our previous experience in desktop virtualization,
we believe that all the factors in the guidelines will affect the
experimental results. The desktop virtualization system used
in our experiment is vMobiDesk, which is a relatively new
VMI framework [12].

A. Experimental Setup

As shown in Table IV, all tests are performed on a server
machine with a 3.40GHz Intel Core i7-6700 processor and 8
GB RAM. The server machine runs Ubuntu 16.04 with Linux
4.4.0 kernel. The guest OS is Android-x86-5.1.1, which runs
in a virtual machine created by VirtualBox. The tested client
device is Google Nexus 9 running on Android-6.0 OS. A 100
Mbps, 1 ms latency LAN network is utilized to construct local
2.4GHz and 5GHz Wifi communication network between the
mobile device and the server.

640x480 800x600 1024x768 1280x720 1920x1080
Resolution

0

100

200

300

400

500

Ba
nd

w
id

th
(K

B/
s)

Fig. 1. Bandwidth consumption with different resolutions.

B. The Influence of Resolution

We measure the bandwidth consumption with differ-
ent resolutions during browsing web pages by vMo-
biDesk with iftop-0.17 (released on 12 Feb 2006, download
address For http://www.ex-parrot.com/∼pdw/iftop/download/
iftop-0.17.tar.gz). This experiment uses a 2.4GHz wireless
network. The results are shown in Table 1. The higher the reso-
lution, the more data of the virtual desktop system needs to be
transmitted. Therefore, the higher the bandwidth consumption
is required. When the resolution is 640 x 480, the bandwidth
consumption is only 262 KB/s. In contrast, it increases to 449
KB/s when the resolution is 1920 x 1080. The increment is up
to 71.4%. Without proper handling, this huge consumption will
obviously affect the accuracy of an experiment. For instance,
a paper ultimately concludes that the desktop virtualization
system takes up quite low bandwidth without claiming the use
of 640 x 480 resolution for the experiment, which will lead
to misunderstandings since the users still consider that the
bandwidth consumption remains so small even with a higher
resolution.

C. The Impact of Network Connectivity

We further measure the response time under different net-
work connectivity. We conduct experiments in the wireless
network environments of 2.4 GHz and 5 GHz, respectively.
The average response time is evaluated by several operations
such as opening an application, typing several words in a
document and returning back to the home screen, etc.

One obvious result is that the response time under 5GHz
Wifi is shorter than that under 2.4GHz Wifi. Regardless of
the resolution, this difference caused by the frequency of the
wireless network always exists. Taking resolution 1024 x 768
as an example, the response time under 5GHz wifi is 410 ms.
However, the response time under 2.4GHz wifi rises up to 680
ms. Although this result is not as shocking as the previous
experiments shown, 30% of time increment is also large
enough to affect the accuracy of an experiment. Leveraging
a 5GHz network in an experiment without elaboration will
lead to a misunderstanding of the excellent performance.

408

5GHz wifi
2.4GHz wifi

Fig. 2. Response time under different network connectivities.

VI. DISCUSSION

As shown in Section V, improper design of experiments,
ambiguous experimental descriptions, and other pitfalls will
cause deviations in the assessment of virtual desktop and
even lead to misunderstanding. We insist that it is the au-
thor’s responsibility to ensure the correctness, reality, and
transparency of their papers. Surprisingly and disappointingly,
our research shows that considering rigorousness, the majority
of experiments in desktop virtualization papers are subject to
improvement. To reiterate, we greatly respect the researchers,
including the authors of the papers we surveyed, and the results
of their work. However, it turns out that we have not yet
come up with a comprehensive set of rigorous standards of
experimental design and implementation in the desktop virtu-
alization field. We believe that a reasonable set of guidelines
will help everyone greatly improve their efficiency of work
and the quality of the paper. We hope our paper can bring
some help to reviewers, authors, and readers. This is the initial
motivation for us to carry out this work, and it is also our
ultimate goal.

VII. CONCLUSION

In this paper, We summarize pitfalls that are often encoun-
tered when conducting desktop virtualization experiments.
Based on this, we further propose guidelines that help re-
searchers design and implement prudent experiments in desk-
top virtualization systems. We extract specific criterions from
the corresponding guidelines and leverage each of the guide-
line criteria to evaluate the papers we selected. Our survey
results validate that many papers can be improved. Using our
proposed guidelines will help improve the quality of the papers
in the experimental part. Finally, we conduct experiments and
demonstrate the impact of some pitfalls succinctly.

VIII. ACKNOWLEDGEMENT

We appreciate the anonymous reviewers for their helpful
suggestions. Our paper is partly based on the work sup-
ported by the National Key R&D Program of China (No.
2016YFB0800201).

REFERENCES

[1] B. Hayes, “Cloud computing,” Communications of the Acm, vol. 51,
no. 7, pp. 9–11, 2008.

[2] P. K. Sahoo, C. K. Dehury, and B. Veeravalli, “Lvrm: On the design of
efficient link based virtual resource management algorithm for cloud
platforms,” IEEE Transactions on Parallel and Distributed Systems,
vol. PP, no. 99, pp. 1–1, 2018.

[3] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual
network computing,” IEEE Internet Computing, vol. 2, no. 1, pp. 33–38,
Jan. 1998.

[4] S. Haripriya., R. Indumathi., and M. S. Manikandan, “Virtual network
connection using mobile phones,” Compusoft International Journal of
Advanced Computer Technology, vol. 3, no. 6, 2014.

[5] “HDX Technologies Optimize User Experience - Citrix,” https://www.
citrix.com/products/xenapp-xendesktop/hdx-technologies.html.

[6] R. A. Baratto, L. N. Kim, and J. Nieh, “THINC: A Virtual Display
Architecture for Thin-client Computing,” in Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles, ser. SOSP ’05.
ACM, 2005, pp. 277–290.

[7] “Horizon 7 | Virtual Desktop Infrastructure | VDI | VMware,” https:
//www.vmware.com/products/horizon.html.

[8] K. Beaty, A. Kochut, and H. Shaikh, “Desktop to cloud transformation
planning,” in IEEE International Symposium on Parallel and distributed
Processing, 2009, pp. 1–8.

[9] L. Deboosere, B. Vankeirsbilck, P. Simoens, F. D. Turck, B. Dhoedt,
and P. Demeester, “Cloud-based desktop services for thin clients,” IEEE
Internet Computing, vol. 16, no. 6, pp. 60–67, 2012.

[10] S. Kim, J. Choi, S. Kim, and H. Kim, “Cloud-based virtual desktop
service using lightweight network display protocol,” in International
Conference on Information NETWORKING, 2016, pp. 244–248.

[11] S. H. Hung, C. S. Shih, J. P. Shieh, C. P. Lee, and Y. H. Huang,
“Executing mobile applications on the cloud: Framework and issues,”
Computers and Mathematics with Applications, vol. 63, no. 2, pp. 573–
587, 2012.

[12] K. Su, P. Jiang, Z. Wang, and W. Chen, “vmobidesk: Desktop virtual-
ization for mobile operating system,” in IEEE International Conference
on High PERFORMANCE Computing and Communications; IEEE
International Conference on Smart City; IEEE International Conference
on Data Science and Systems, 2017, pp. 945–950.

[13] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich , V. Paxson ,
N. Pohlmann, H. Bos, and M. V. Steen, “Prudent practices for designing
malware experiments: Status quo and outlook,” in Security and Privacy,
2012.

[14] R. A. Baratto, S. Potter, G. Su, and J. Nieh, “Mobidesk:mobile virtual
desktop computing,” in International Conference on Mobile Computing
and NETWORKING, 2004, pp. 1–15.

[15] S. Kibe, T. Koyama, and M. Uehara, “The evaluations of desktop
as a service in an educational cloud,” in International Conference on
Network-Based Information Systems, 2012, pp. 621–626.

[16] J. Alexander, A. Dick, J. Hacker, D. Hicks, and M. Stockman, “Building
a cloud based systems lab,” in Conference on Information Technology
Education, 2012, pp. 151–154.

[17] Ã. Darabont, K. J. Kiss, and J. Domokos, “Performance analysis of
remote desktop virtualization based on hyper-v versus remote desktop
services,” Macro, vol. 1, no. 1, pp. 125–134, 2015.

[18] M. Uehara, “Performance evaluations of lxc based educational cloud in a
bare metal server,” in International Conference on Advanced Information
NETWORKING and Applications Workshops, 2017, pp. 415–420.

[19] T. Triyason, W. Krathu, T. Triyason, and W. Krathu, “The impact
of screen size toward qoe of cloud-based virtual desktop,” Procedia
Computer Science, vol. 111, pp. 203–208, 2017.

[20] S. Cristofaro, F. Bertini, D. Lamanna, and R. Baldoni, “Virtual distro dis-
patcher: A light-weight desktop-as-a-service solution,” in International
Conference on Cloud Computing, 2009, pp. 247–260.

[21] G. Lai, H. Song, and X. Lin, “A service based lightweight desktop
virtualization system,” in International Conference on Service Sciences,
2010, pp. 277–282.

[22] P. Calyam, R. Patali, A. Berryman, A. M. Lai, and R. Ramnath, “Utility-
directed resource allocation in virtual desktop clouds,” Computer Net-
works, vol. 55, no. 18, pp. 4112–4130, 2011.

[23] T. D. Nguyen, C. T. Huynh, H. W. Lee, and E. N. Huh, “An efficient
video hooking in androidx86 to reduce server overhead in virtual
desktop infrastructure,” in Ubiquitous Information Technologies and
Applications. Springer Berlin Heidelberg, 2014, pp. 107–114.

[24] C.-M. Wang, Y.-S. Wu, and H.-H. Chung, “Fusion: A unified applica-
tion model for virtual mobile infrastructure,” in IEEE Conference on
Dependable and Secure Computing, 2017.

409

CrowDevBot: A Task-Oriented Conversational Bot
for Software Crowdsourcing Platform

Zeyu Ni, Zhangyuan Meng, Junming Cao, Beijun Shen*, Yuting Chen
School of Electronic Information and Electrical Engineering

Shanghai Jiao Tong University, Shanghai, China
{sfordj.ni, m602389789, junmingcao, bjshen, chenyt}@sjtu.edu.cn

Abstract—With the trends of developing software on the
Internet, many software crowdsourcing platforms are emerging.
They attract a lot of developers to bid for crowdsourced projects
and develop software systems collaboratively. In this paper,
we present CrowDevBot, a task-oriented conversational bot for
software crowdsourcing platform, that aims to assist online users
in completing crowdsourcing-related tasks in a more natural
manner. The key idea of CrowDevBot is to: (1) combine a rule-
based method and an SVM-NaiveBayes-C4.5 integrated learning
method to discover users’ intention; (2) employ an integrated
CRF (conditional random field) method with novel features
to improve the performance of slot filling; and (3) leverage
a software service knowledge base to unify entity names and
predefine the key slots of user query. We implement CrowDevBot
and integrate it into JointForce, an IT software crowdsourcing
platform in China. To the best of our knowledge, this is the
first time that a task-oriented conversational bot is practically
used in software crowdsourcing platform(s). We evaluated our
approach on real data set from JointForce. The results show
that our intention detecting method achieves F1-score of 87% on
the limited training data. For the slot filling, the F1-score of our
integrated CRF model reaches 82%, 8% higher than that of the
normal CRF model.

Index Terms—Task-oriented conversational bot, software
crowdsourcing platform, integrated statistical learning, user in-
tention understanding

I. INTRODUCTION

Software crowdsourcing [1] is a new software development
paradigm. In a crowdsourcing process, project requesters
and software developers need to complete many tasks, such
as recommending qualified developers, searching and biding
projects, querying project progresses, evaluating service quali-
ties, etc. This paper presents a task-oriented conversational bot
(CrowDevBot) for software crowdsourcing platform. A bot can
assist users in completing their crowdsourcing-related tasks
through conversation, rather than tedious mouse clicks. Thus
it supplements crowdsourcing platforms with strong flexibility.
Figure 1 demonstrates how such a bot helps an engineer to
complete his/her task.

Though developinging bots can benefit crowdsourcing plat-
forms in completing software crowdsourcing tasks in a more
friendly manner, it still faces three challenges:

Challenge 1. How is the cold start problem solved by a task-
oriented conversational bot? Different from online-shopping

*Corresponding author
DOI reference number: 10.18293/SEKE2019-068

Could you find some qualified developers for me?

What kind of project do you want to crowdsource?

I want to develop a web site.

Do you have any requirements about the
developers?

They should use java as the developing language and use
SpringMVC framework.

Here are the list of qualified developers:
1.Gooddeveloper
2.John
......

Fig. 1: An example of using CrowDevBot in crowdsourcing

websites, user interactions on software crowdsourcing plat-
form is much less, which brings the cold-start problem.
Statistical learning models or deep learning models may also
not work well due to limited data.

To solve the cold start problem, several rule-based methods
have been proposed for natural language understanding [2]
[3] [4]. However, rule-based methods usually have following
shortcomings: (1) The accuracy of understanding users’ inten-
tion relies on the quality of rules. (2) User queries are usually
flexible while a pre-defined rule set may not be complete.

Challenge 2. How is the performance of CRF model improved
for user intention understanding?

CRF (Conditional Random Field) is a widely used model for
solving the slot filling problem of user intention understanding.
Researches [5] [6] show that CRF can be a general model,
while many new deep learning models are not [7] [8] [9].

Due to limited training data, the normal CRF is still unsatis-
factory. To improve the slot filling performance of CRF model,
there are two key issues: (1) how to define effective features
according to the characteristics of software crowdsourcing
domain; and (2) how to design an improvement strategy to
achieve a more robust CRF model.

Challenge 3. How can the software service knowledge base
be utilized to enhance the capability of the bot?

Priori knowledge on software crowdsourcing can definitely
enhance the capability of CrowDevBot. Inspired by the work
of Zhao et al. [10], we build a knowledge base to represent
software service knowledge. As far as we know, this is the first
time that a task-oriented conversational bot is practically used

410

in software crowdsourcing scenario. So it will be challenging
for us to design and leverage the software service knowledge
base in CrowDevBot, to improve its performance.

To address these challenges, we propose a novel approach
to developing CrowDevBot. CrowDevBot consists of five
key components: user intention detecting, slot filling, dia-
log management, task execution, and answer generation. We
combine the rule-based method and a SVM-NaiveBayes-C4.5
integrated learning method to deal with the cold start problem
when detecting user intentions. CrowDevBot adaptively sets
weights for these two methods. For filling slots, we propose an
integrated CRF model with novel features, including syntactic
and semantic features. We also leverage a software service
knowledge base to predefine the key slots of software services
and normalize their entity names. So far, we have integrated
CrowDevBot into JointForce, one of the biggest IT software
crowdsourcing platforms in China. To the best of our knowl-
edge, this is the first time that a task-oriented conversational
bot is used in software crowdsourcing platform.

II. RELATED WORK

Storey and Zagalsky [11] propose that bots can act as
“conduits between users and services, typically through a
conversational UI”. Roughly bots can be divided into two
categories [12] : chat-oriented bots and task-oriented bots.
In recent years some task-oriented conversational bots have
been built both in industry (such as Apple’s Siri, Microsoft’s
Cortana) and in academia (such as those proposed by Zhou et
al. [10], and Wen et al. [13]). Bots are also rapidly becoming
a general interface for software services communication [14].
However, to our best knowledge, few task-oriented conversa-
tional bots have been developed for software crowdsourcing
platforms.

User Intention Detecting. User Intention Detecting is an
important part of task-oriented bots, which can be seen as
a classification problem. Particularly, more and more deep
models are proposed for this purpose. Kim Y et al. [15] first
apply the CNN (convolution neural network) model to solving
these problems. Xu et al. [16] use RNN (recurrent neural
network)) to detect user intentions. Compared to the CNN
model, RNN makes use of the sequence information, making
it fit for natural language problem. However, no matter how
novel the network structure, the performance is poor when
data is limited. It requires bots to handle this problem.

Slot Filling. After user intention is detected, the bot needs
to parse the user input and recognize the predefined key
slots (words to be filled in a sentence). It can be taken as
a named entity recognition problem. Mccallum [5] et al. use
the traditional CRF to solve this problem. Though this model
works, it is unable to handle the OOV problem, i.e., it cannot
recognize an entity which do not appear in the training data.
Thus more novel features need to be designed. Researches
[17] apply deep learning methods on solving this problem.
But as mentioned before, the restrictions on data reduce the
performance of these models.

Cold-Start Problem. When a task-oriented conversational
bot is built, it faces with the potential cold-start problems. The
cold-start problem is serious for the software crowdsourcing
platform as the user data is limited [18]. To solve the cold-
start problem in a universal way, Rieser V et al. [4] focuse on
developing a structured ontology for parsing utterance from
user into predefined semantic slots. Zhao Yan et al. [10]
present a general solution to the cold-start problem in online-
shopping domain. They use crowdsourcing to label training
data, while it is not suitable for our situation as data is limited.

III. APPROACH

A. Approach Overview

Our approach overview is shown in Figure 2. The task-
oriented conversational bot for software crowdsourcing plat-
form, named CrowDevBot, consists of 5 components.

1) User Intention Detecting: Given a user query, CrowDe-
vBot detects the user intentions with a combination method af-
ter entity name unification. A rule-based method and an SVM-
NaiveBayes-C4.5 integrated learning method is combined by
the following strategy: the rule based method is mainly used
in the CrowDevBot’s startup process; with data increases, the
SVM-NaiveBayes-C4.5 integrated learning method becomes
more effective, and thus its weight gets increased.

2) Slot Filling: This component gathers the key information
(called “slot”) from user queries. We design several key fea-
tures (including transition feature, start and end features, word
and syntactic features), and employ integrated CRF model to
fill slots together with probability distribution information to
achieve better precision and robustness.

3) Dialogue Management: In this component, the inter-
action process between user and CrowDevBot is managed.
CrowDevBot uses a FSM (Finite State Machine) to track the
dialogue states. When some slots are missing, it launches new
questions to ask. We utilize the software service knowledge
base (SSKB) to predefine the key slots for software services.
When all of the slots are filled, CrowDevBot invokes task
executing component to execute the task.

4) Task Executing: In this component, the user tasks are
executed: once CrowDevBot has identified user intention
and filled all slots, it will invoke the corresponding APIs
of software crowdsourcing platform and return results to
CrowDevBot.

5) Answer Generation: As all the supporting tasks are clear
and well defined, it can be easy to use a template library
to generate answers. CrowDevBot uses FSM to determine
which template to be used to generate answers or launch new
questions.

Next explains the details of the software service knowledge
base, user intention detecting and slot filling.

B. Software Service Knowledge Base

To leverage the domain knowledge of software crowdsourc-
ing, we build a software service knowledge base (SSKB).
The main data sources of SSKB includes the knowledge

411

Integrating

Rule based
matching

1. User intent detecting

Rule library

SVM-Naïve bayes-
C4.5 integrated

learning

SSKB

Entity name
normalizing

intent-1 CRF
model

intent-n CRF
model

Feature
engineering

Software
crowdsourcing

platform

2. Slot filling

4. Task executing

Combining

3. Dialogue management

Template
library

5. Answer generation

Intent & slots

Intent
probability
distribution
&processed
user query

.......

Intent
& slots

User query

Answer

Query
result

Query
result

Result

API

Answer
generating

S

E

Task API
Synthesis

Task API
invoking

FSM

Fig. 2: A general process of CrowDevBot in processing user queries in a software crowdsourcing platform

collected from software crowdsourcing experts, StackOver-
flow tag synonym system* and Wikipedia†. We apply NLP
technology to extract information from these (semi-)structured
data, and construct SSKB, which contains category system,
technologies, and attributes of software services. For more
details, see our project in github‡.

We exploit SSKE to improve the performance of CrowDe-
vBot in two scenarios. The first scenario is entity name
unification. In the dialogue with CrowDevBot, users tend
to express casually, with various aliases and abbreviations,
leading to decreases in precision of intention detecting and
slot filling. Thus we build a synonym dictionary using entity
synonym attributes in SSKE. During preprocessing, CrowDe-
vBot replaces aliases and abbreviations with standard names.

The second scenario exists in defining slots for software
services. For example, in Figure 1, after CrowDevBot receives
user input “I want to develop a web site”, it maps the query
to the entity “web development” in SSKE. Thus CrowDevBot
continuously asks user about the attributes values of “web
development” to complement the corresponding slots.

C. User Intention Detecting

User intention detecting can be formulated as a user query
classification problem. To solve it, we propose a mixture
method, which combines a rule based method and an SVM-
NaveBayes-C4.5 integrated learning method. Weights are dy-
namically assigned to these two methods. In the startup
process, CrowDevBot relies mainly on the rule based method,
as it requires less usable training data. After sufficient data
is collected, the SVM-NaveBayes-C4.5 integrated learning
method will make more contribution.

1) Rule-Based Method: Each kind of intention corresponds
to a set of query rules that are used to describe the possible
ontology structures of user queries. A rule consists of several

*http://stackoverflow.com/tags/synonyms
†https://www.wikipedia.org
‡https://github.com/SE1405Lab/SSKB

tokens. Each token has 3 attributes: Match pattern, Weight
and Indispensable. Here Match pattern contains its candidate
words, Weight shows the importance of the token to the whole
rule, and Indispensable explains the necessities of a token.

The matching algorithm is designed as Algorithm 1 shows.

Algorithm 1 Greedy rule matching algorithm.

Require: A rule (R) and word list (QL) of user query
Ensure: Matching degree (MD) between the rule and query

1: for each word or parse ∈ QL do
2: for each unmatched tokenT ∈ R do
3: compute the word2vec vector similarity between
w and each word in T.Match pattern, and record the
highest HSw

4: if HS > 0.5 then
5: mark this token as matched token and record

the similarity
6: goto step 1
7: if all tokens in (R.token|R.token.indispensable = 1)

are matched then
8: MD =

∑
a∈matched token tokena.weight×HSa∑

b∈R.token tokenb.weight

9: else
10: MD = 0
11: return MD

2) Integrated Learning Method: CrowDevBot faces with
the cold start problem, making deep learning techniques in-
appropriate to use. Thus we propose an integrated statistical
learning method to train the intention classification model.
We select SVM, Naive Bayes and C4.5 DT as basic models
and combine them following two strategies: Bagging and
AdaBoost.

We design three features after manual analysis on these
wrong detection cases.

• Semantic feature. The feature is produced by POS tag-
ging. The possible values includes noun, adjective, etc.

412

• N-gram feature. The n-gram feature [19] takes the word
sequence-level information to help analyze a sentence. In
our method, we take N as 3.

• Word2vec feature. The Word2Vec feature [20] represents
words with a low-dimentional vector, which helps under-
stand the semantics of words.

3) Method Combination: The results of these two methods
above are combined with weights:

R =W1R1 +W2R2, (1)

where W1 is the weight of rule-based method, and R1 is the
match degree between user query and each intention; W2 is
the weight of SVM-NaiveBayes-C4.5 method, and R2 is its
probability distribution. The intention with the highest R will
be regarded as the final output.

D. Slot Filling

We use CRF [6] as a basic model to fill the slots, as CRF
achieves better performance than general models (like HMM
[21]). Given the word sequence X = (x1, x2, ..., xm), CRF
computes the conditional probability of a label sequence. It
produces a label y = (y1, y2, ..., ym) sequence to maximize
p(y|x).

p(y|x) = 1

zλ(x)
exp{λ · f(y, x)} (2)

Meanwhile, it is intractable to compute f(y, x). Thus we
assume that the value of f(y, x) depends only on the adjacent
labels and the formula p(y|x) can be converted into

p(y|x) = 1

zλ(x)
exp{

M+1∑
i=1

λ · f(yi−1, yi, x, i)} , (3)

where zλ(x) is a normalization factor, and λ the weight vector
of feature functions. The training process aims to find a proper
λ for the CRF model.

We design several types of features for CRF:
• Transition feature: A transition feature describes the

transition between adjacent labels.
• Start feature: A start feature implies that a label happens

to be at the start position.
• End feature: An end feature implies that a label happens

to be at the end position.
• Word feature: A word feature represents the co-

occurrence of a word and a label.
• Syntactic feature: A syntactic feature represents the co-

occurrence of a POS tag of the word and a label.
• Semantic feature: Inspired by Li et al.’s work [22], we

design the semantic feature using “lexicons”, which are
clusters of semantically-related word or phrase constructs.
A semantic feature describes the co-occurrence of an
element in a lexicon L and a label.

We train several CRF models for each intention and inte-
grate them into one mixture model to fill slots of templates.
After the slot values are obtained, CrowDevBot uses SSKE to
examine whether the key slots are complete and then traces
the states using the FSM.

TABLE I: Intention detecting results w.r.t. different models
Model Precision Recall F1-score

Integrated (Bagging) 0.78 0.85 0.80
Integrated (Boosting) 0.83 0.89 0.83

SVM 0.77 0.81 0.78
Naive Bayes 0.65 0.73 0.68

DT(C4.5) 0.75 0.75 0.75
RNN 0.76 0.82 0.78

TABLE II: Intention detecting results with different methods
Method Precision Recall F1-score

Rule Based 0.90 0.61 0.73
Integrated Learning 0.83 0.89 0.83

Combination 0.90 0.85 0.87

IV. EXPERIMENTS

We evaluate our bot on real data from JointForce.

A. Experiment Setup

Three evaluation metrics are selected: Precision, Recall
and F-1 score. We have collected 1458 user queries from
JointForce§. These queries are classified into 6 categories, in
each of which we picked up 200 queries with slot information
and labeled them manually. We also asked Chinese linguists
to design 65 rules such that our rule-based method can be
applied.

B. Intention Detecting Experiments

We compared the effectiveness of each single statistical
learning model and the integrated model in detecting user
intentions. Due to the small amount of our data, we used
the BootStrapping method to obtain the training and testing
dataset.

The results are shown in Table I. The integrated statistical
learning model (with the Boosting training strategy) achieves
the highest precision and recall. On the contrary, the deep
models are not well supported by a small scale dataset, leading
to lower precision and recall.

Next we compared the effectiveness of the rule based
method, the integrated statistical learning method and the
combination method. The results, as Table II shows, denote
that the combination method is slightly better than the sta-
tistical learning method. The rule-based method achieves a
high precision, indicating the benefits from strictness. The
rule matching algorithm implies that, once the user query is
matched with one rule, it is much possible to be a true positive.

C. Slot Filling Experiments

We analyzed the feature contributions to slot filling, through
an experiment that applys our integrated CRF model with
different feature sets. The result is shown in Table III, where
iCRF represents our integreted CRF model. It demonstrates
that Word Feature (WF) , Transition Feature (TF), Semantic
Feature (SyF) and Syntactic Feature (SyF) contribute a lot to
slot filling, while Start Feature (StF) and End Feature (EF) are
less important. Also we can observe that the F1-score of our

§http://www.jfh.com

413

TABLE III: Slot filling results with different feature sets
Model Precision Recall F1-score

Normal CRF 0.78 0.71 0.74
iCRF+WF 0.53 0.45 0.49
iCRF+TF 0.38 0.30 0.33
iCRF+EF 0.08 0.04 0.05
iCRF+StF 0.05 0.02 0.03
iCRF+SeF 0.30 0.28 0.29
iCRF+SyF 0.35 0.31 0.33

iCRF+WF+TF 0.63 0.57 0.60
iCRF+WF+TF+EF 0.65 0.58 0.61

iCRF+WF+TF+EF+StF 0.66 0.60 0.63
iCRF+WF+TF+EF+StF+SeF 0.75 0.68 0.71

iCRF+WF+TF+EF+StF+SeF+SyF 0.86 0.78 0.82

TABLE IV: Results of entity name unification
With Entity Name unification Precision Recall F1-score

Yes 0.86 0.78 0.82
No 0.80 0.75 0.77

iCRF model reaches 82%, 8% higher than that of the normal
CRF model.

Besides, in order to evaluate the effectiveness of entity name
unification using SSKB, we performed slot filling with and
without the preprocessing step. The results are shown in Table
IV, which indicate that entity name unification preprocessing
improves the performance of our integrated CRF method on
the slot filling problem. Obviously, the number of words that
are out of vocabulary can be significantly reduced through this
preprocessing step.

V. CONCLUSION

This paper proposed an approach to building a task-oriented
conversational bot (CrowDevBot) for software crowdsourc-
ing platform. Several experiments are conducted to evaluate
our approach and CrowDevBot, using the real data from
JointForce. Experimental results show that the F1-score of
our intention detecting mixture method is 87% under the
limited training data, and the F1-score of our integrated CRF
model with novel features to fill slots is 82%, up to 8
points higher than normal CRF. Also the user satisfaction
ratio of CrowDevBot reaches 87% in average, which indicates
that CrowDevBot really helps online users to finish software
crowdsourcing tasks in real situation.

As for future work, we will leverage the reinforcement
learning technology to improve the performance of our in-
tention detecting and slot filling approach continuously, with
better use of the user feedbacks.

ACKNOWLEDGEMENT

This research was sponsored by the National Key Re-
search and Development Program of China (Project No.
2018YFB1003903), National Nature Science Foundation of
China (Grant No. 61472242 and 61572312), and Shanghai
Municipal Commission of Economy and Informatization (No.
201701052).

REFERENCES

[1] W. Wu, W. T. Tsai, and W. Li, “Creative software crowdsourcing: From
components and algorithm development to project concept formations,”
International Journal of Creative Computing, vol. 1, no. 1, pp. 57–91,
2013.

[2] N. Gupta, G. Tur, D. Hakkani-Tur, S. Bangalore, G. Riccardi, and
M. Gilbert, “The att spoken language understanding system,” IEEE
Transactions on Audio Speech and Language Processing, vol. 14, no. 1,
pp. 213–222, 2006.

[3] R. De Mori, F. Bechet, D. Hakkani-Tur, and M. Mctear, “Spoken
language understanding,” Signal Processing Magazine IEEE, vol. 25,
no. 3, pp. 50–58, 2008.

[4] V. Rieser and O. Lemon, Natural language generation as planning under
uncertainty for spoken dialogue systems. Springer-Verlag, 2010.

[5] A. Mccallum and W. Li, “Early results for named entity recognition
with conditional random fields, feature induction and web-enhanced lex-
icons,” in Proc. of the Conference on Computational Natural Language
Learning, 2003, pp. 188–191.

[6] J. D. Lafferty, A. Mccallum, and F. C. N. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data,”
in Eighteenth International Conference on Machine Learning, 2001, pp.
282–289.

[7] F. Dernoncourt, Y. L. Ji, and P. Szolovits, “Neuroner: an easy-to-use
program for named-entity recognition based on neural networks,” 2017.

[8] M. Habibi, L. Weber, M. Neves, D. L. Wiegandt, and U. Leser, “Deep
learning with word embeddings improves biomedical named entity
recognition,” Bioinformatics, vol. 33, no. 14, p. i37, 2017.

[9] T. H. Pham and P. Le-Hong, “End-to-end recurrent neural network mod-
els for vietnamese named entity recognition: Word-level vs. character-
level,” in International Conference of the Pacific Association for Com-
putational Linguistics, 2017, pp. 219–232.

[10] Z. Yan, N. Duan, P. Chen, M. Zhou, J. Zhou, and Z. Li, “Building
task-oriented dialogue systems for online shopping.” in AAAI, 2017, pp.
4618–4626.

[11] M. A. Storey and A. Zagalsky, “Disrupting developer productivity one
bot at a time,” in ACM Sigsoft International Symposium on Foundations
of Software Engineering, 2016, pp. 928–931.

[12] P. H. Su, M. Gasic, N. Mrki, L. M. R. Barahona, S. Ultes, D. Vandyke,
T. H. Wen, and S. Young, “On-line active reward learning for policy
optimisation in spoken dialogue systems,” in Meeting of the Association
for Computational Linguistics, 2016, pp. 2431–2441.

[13] T.-H. Wen, D. Vandyke, N. Mrksic, M. Gasic, L. M. Rojas-Barahona,
P.-H. Su, S. Ultes, and S. Young, “A network-based end-to-end trainable
task-oriented dialogue system,” arXiv preprint arXiv:1604.04562, 2016.

[14] C. Lebeuf, M. A. Storey, and A. Zagalsky, “Software bots,” IEEE
Software, vol. 35, no. 1, pp. 18–23, 2018.

[15] Y. Kim, “Convolutional neural networks for sentence classification,”
Eprint Arxiv, 2014.

[16] P. Xu and R. Sarikaya, “Convolutional neural network based triangular
crf for joint intent detection and slot filling,” in Automatic Speech
Recognition and Understanding, 2014, pp. 78–83.

[17] A. Jaech, L. Heck, and M. Ostendorf, “Domain adaptation of recurrent
neural networks for natural language understanding,” pp. 690–694, 2016.

[18] Y. Yang, W. Mo, B. Shen, and Y. Chen, “Cold-start developer recom-
mendation in software crowdsourcing: A topic sampling approach.” in
SEKE, 2017, pp. 376–381.

[19] W. B. Cavnar, “N-gram based text categorization,” in Proc. Third
Symposium on Document Analysis and Information Retrieval, 1994, pp.
161–175.

[20] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” Computer Science, 2013.

[21] Y. Y. Wang, A. Acero, J. Lee, and J. Lee, “Combining statistical
and knowledge-based spoken language understanding in conditional
models,” in Coling/acl on Main Conference Poster Sessions, 2006, pp.
882–889.

[22] X. Li, “Understanding the semantic structure of noun phrase queries,”
in Meeting of the Association for Computational Linguistics, 2010, pp.
1337–1345.

414

Retrieving Curated Stack Overflow Posts from
Project Task Similarities

Glaucia Melo
David R. Cheriton

School of Computer Science
University of Waterloo

Waterloo, Canada
gmelo@uwaterloo.ca

Toacy Oliveira
PESC/COPPE

Universidade Federal
do Rio de Janeiro

Rio de Janeiro, Brazil
toacy@cos.ufrj.br

Paulo Alencar
David R. Cheriton

School of Computer Science
University of Waterloo

Waterloo, Canada
palencar@uwaterloo.ca

Don Cowan
David R. Cheriton

School of Computer Science
University of Waterloo

Waterloo, Canada
dcowan@uwaterloo.ca

Abstract—Software development depends on diverse technolo-
gies and methods and, as a result, software development teams
often need to handle issues in which team members are not
experts. To address this lack of expertise, developers typically
rely on information obtained from web-based Q&A sites such
as Stack Overflow, a popular platform to find solutions to
specific technology-related problems. However, access to these
Q&A websites is currently not explicitly integrated with software
development projects. Therefore, software developers often need
to search for solutions to similar and recurring issues multiple
times. This lack of integration not only hinders the reuse of
the knowledge obtained but also compels developers to perform
repeated searches for recurring problems. In this paper, we
investigate an approach that explicitly associates project tasks
with Stack Overflow posts that have already been curated by
developers, and use project task similarities to investigate the
possibility to suggest curated Stack Overflow posts. Precision
and accuracy were 71.60% and 77.78%, respectively. We also
found indications that project task elements such as the process
activity, influence accuracy and precision if attempting to reuse
curated Stack Overflow posts.

Index Terms—Software engineering, stack overflow, project
task, text similarity.

I. INTRODUCTION

Software development is a knowledge-intensive collabora-
tive activity [1]. Currently, development changes with a variety
of technologies in use. Therefore, new knowledge must be
constantly gathered and software engineers need to engage
in tasks that are related to knowledge management, such
as learning, capturing, and reusing collaborative knowledge
during a software project [2]. During the execution of a
software development project, knowledge and expertise from
developers are vital for the project to succeed [2].

Software development is usually an integrated system of
code editors and debuggers [3] in which developers interact
to build a software product. To acquire external support
(e.g., code snippets), developers frequently switch between the
development environment and browsers [4]. In other words,
developers must leave the development environment, reason
about relevant and accurate terms for searches, open a browser,
verify the results of the search, check if the source is reliable,
and only then, transfer the knowledge obtained to the software

[5] [4]. Such activity usually occurs more than once, as
software projects are large-scale and iterative. We refer to this
effort of tapping into sources of support, reasoning about the
help needed and choosing among the vast available content, as
curation. We use curation inspired by humanities, and which
is defined as:

”Select, organize, and present (online content, mer-
chandise, information, etc.), typically using profes-
sional or expert knowledge.”

Essential sources of knowledge (information software de-
velopers use for support while working) are question and
answer (Q&A) websites. A famous Q&A website for software
engineers is Stack Overflow (SO) [6] [7] [8] [9]. Although
SO is widely used during software development [6], there are
still issues about explicitly associating the tasks performed
during development and the knowledge obtained from a SO
post. The lack of integration of the support often needed by
software developers with the development project is identified
by researchers as an open issue [10] [11]. Some works
have proposed solutions to integrate SO with the software
project through text overlap, mainly focusing on issues (bugs,
exceptions) [11] [12].

Research indicates that developers’ expertise largely con-
tributes to the success of software projects [2]; however,
current approaches to selecting SO posts that use text overlap
do not consider developers’ expertise. Integrating curated SO
posts with software development projects could help devel-
opers avoid performing curation multiple times, redundantly.
Additionally, integrating SO posts can convey other benefits,
such as keeping relevant information into the project, avoiding
searches of the same information, helping less experienced
developers know how experts are working and reducing work-
flow interruptions [4].

In this paper, we investigate the possibility to reuse curated
SO posts based on project task similarity by performing an
investigation on task contexts and submitting these contexts to
a similarity retrieval model. Precision and accuracy (the most
common metrics identified among our related works) were
collected. Two research questions guide the evaluation of the
implemented model: RQ1 investigates the precision and accu-DOI reference number: 10.18293/SEKE2019-083

415

racy of our proposal, facilitating a comparison among other
works. RQ2 compares different task contexts to understand
how different combinations can influence SO post reuse.

This paper is structured as follows. Section I presents
an introduction of the discussed subject. Section II presents
the study and implementation conducted to investigate the
association of Stack Overflow posts with project tasks. After,
Section III evaluates the study and implementation. Conclu-
sion, discussion, and future work are presented in Section IV.

II. STUDY ON RETRIEVING CURATED STACK OVERFLOW
POSTS

Curation is the act of searching and selecting useful SO
posts for a given problem during software development. The
process of curating SO posts is as follows. First, the developer
that has a problem or that needs support creates a search string
that may retrieve satisfactory results. Second, the search string
is submitted to SO. Third, SO executes the search according to
internal algorithms and lists the results. Finally, the developer
selects one (or a set of) SO post that can be used as support.
Each of these steps can be executed repeatedly until developers
are satisfied with the results listed and choose a SO post that
meets their needs. Once a solution is chosen, curation is over.
If results are not helpful, the developer changes the string,
exploring new terms that can indicate useful results.

Frequently, after a solution from a SO post is selected, the
post from where the solution was extracted is not associated
with the project task and, therefore, cannot be reused by
developers dealing with similar or recurring tasks. A growing
body of literature recognizes the importance of associating
external knowledge with the development [13] [11] [14] [10]
[15]. Stack Overflow is the source of support considered
in this work, and this support is presented in the form of
curated SO posts. Through the identification of similar project
tasks, SO posts that were once used to support a project
task during its solution could be automatically associated
with project tasks with similar context(s), therefore making
developers aware of this SO post previously used by another
developer. After a preliminary investigation [16], this work
was further developed. We researched what comprises the
context elements of a project task and implemented a process
model using the investigated context in Rapidminer1.

A. Project Task Context

Project Task Context is a set of elements that compose a
project task. Investigating possible project task context ele-
ments is essential to contribute to clarifying what information
from project tasks are available for similarity comparisons. For
completeness purposes, we have taken advantage of both aca-
demic and industrial perspectives, including project manage-
ment tools that support project tasks in software development.
It is important to consider other sources in grounding research
other than formal literature in software engineering [17],
allowing a broader theoretical aspect and bringing practical
insights to the work.

1rapidminer.com

From the academic perspective, after an ad-hoc literature
review, we found that software engineering is knowledge-
intensive due to its dynamism and the massive amount of
technology used activity [1] [18]. According to Lindvall
and colleagues [18], software engineering has two types of
knowledge associated with the project: technical and business
domain information. Our work does not consider application
domain information; it only considers technical information
because it aims to be agnostic to business characteristics.
We propose a context element that captures technological
information about project tasks (e.g., tags). A tag is a piece of
information related to an element. In this case, the elements
are any technical information directly related to the task that
can characterize the task. Each project has a specific context in
respect to product [19], such as technical characteristics that
every task will inherit necessarily, indicating the need for a
project tag.

From an industrial perspective, we analyzed project man-
agement tools, by verifying the default elements each tool has
for project tasks. In this ad-hoc analysis, we concluded that
some of the project task context elements identified in the
literature were also reported in software development tools that
support project workflows. The analyzed tools were JIRA2 ,
Trello3 and Redmine4, which are broadly used. After perform-
ing an analysis of both literature and project management tools
contents, we present a list of the identified context elements
in Table I.

TABLE I
CONTEXT ELEMENTS.

Element Description Source

Project/Board The name of the project
that tasks belongs to

Redmine, Trello
JIRA

Project Tag Tags related to the project Lindvall et al. [18]

Process Process information that can
be associated with the task Lindvall et al. [18]

Title The title of the task Redmine, Trello
JIRA

Description The description of the task Redmine, Trello
JIRA

Category A classification used to
divide tasks into different niche

Redmine
JIRA

Task Tag Tags related to the task Lindvall et al. [18],
JIRA, Trello

B. Study Implementation

After project task context elements were investigated in
both literature and project management tools, we propose an
implementation to obtain the similarities between project task
context elements. We implemented a process model that is
prepared to receive as input a dataset containing project tasks
associated with SO posts, and retrieves similarity indexes from
pairs of project tasks and evaluates if the SO posts are the same
between project tasks with a high degree of similarity.

2atlassian.com/Jira
3trello.com
4redmine.org

416

Fig. 1. RapidMiner process model.

RapidMiner (RapidMiner Studio version 8.2) was used
to implement a similarity process model. RapidMiner is a
compelling data science platform, requiring a small learning
curve to be used, widely adopted in the academic field [20].
The implemented RapidMiner model is illustrated in Figure
1. The model loads a dataset of project tasks, pre-processes
the text and executes a Jaccard algorithm [21] to retrieve text
similarities. More details can be found in the work of [22] and
the source code for the implemented model can be found on
GitHub (github.com/glauciams/task2stackRapidMiner).

III. EVALUATION

Based on the guidelines proposed by Shani et al. [23] we
verify the effectiveness of using task similarities to reuse
curated SO posts, through well-established metrics: precision
and accuracy. The research questions for the evaluation are:

RQ1: What are the precision and the accuracy metrics
for the collected sample? It is essential to verify these
metrics to gather quantitative results while ascertaining the
effectiveness of considering similar project tasks to reuse
curated SO posts. The metrics precision and accuracy were
chosen after being the most common metrics identified in the
works that relate to ours.

RQ2: What are the impacts in precision and accuracy
when different context elements are combined? We evaluate
different project task context combinations because task con-
texts can vary in each project. A project can maintain records
of processes and another project might not, for example. Given
this variation, it is essential to understand the impacts of
different project task context combinations.

Hypothesis: Project task similarity can provide helpful
suggestions for curated Stack Overflow posts. We test this
hypothesis by verifying whether similar tasks (similarity above
50%) share the same Stack Overflow posts.

Controlling Variables: Considering this study uses only
one dataset, having fixed controlled variables is not a concern.
We propose a study considering different variable combina-
tions to analyze the effects of the absence or presence of
variables on precision and accuracy.

A. Executing the implemented process model

To execute the implemented process model, a dataset with
project tasks has to be loaded to the RapidMiner process
model. The selected dataset was gathered from a company
in Brazil that has been developing software products for more
than 20 years and has a total of 30 employees. The software
development projects in this company follow agile guidelines,
and the project tasks are managed with the support of a project

management tool. We were able to gather 25 project tasks with
associated SO posts to each of the 25 tasks. The software
developers and managers of the company provided a dataset
of project tasks (context elements and SO posts associated
with each task).

B. Results, Discussion and Threats to Validity

After executing the evaluation of the dataset, precision and
accuracy are calculated, using the Jaccard algorithm. A confu-
sion matrix is generated by the execution of the RapidMiner
process model, which supports the extracted results.

Answering RQ1, the accuracy for the given dataset with the
elements identified in Section II is 77.78%, and the precision
mean 71.60%. Other works with similar characteristics present
different precision and accuracy results. Rahman et al. [24]
report 11% of precision and 88% of accuracy. The work of
Wang et al. [25] reports 62% of precision.

Answering RQ2, Table II presents the context attributes’
combination selected, the precision and accuracy extracted for
each combination, and changes made in each combination, as
it is not easy to perceive from the attribute list which attributes
were selected and which were not in the combination.

TABLE II
RQ2 RESULTS: CONTEXT COMBINATIONS

Precision Accuracy Combination changes
71.60% 77.78% Current Work - RQ1
61.17% 70% Included Interation
48.01% 54.69% Removed Process
69.81% 66.67% Removed Project Tags and Task Tags
45.64% 37.12% Removed Title and Description
40.87% 36.57% Removed Title
45.64% 37.12% Removed Description
54.76% 38.28% Removed TaskTags
61.46% 74.47% Removed ProjectTags
49.01% 41.18% Removed Category
61.46% 74.47% Removed Project
77.78% 85% Removed Project and Project Tags

71.67% 54% Removed Category, Process, Project,
Project Tags and Task Tags

13.51% 22.69% Removed Category, Process, Project,
Title and Description

According to the model proposed by Wohlin et al. [26], the
internal threats to the validity of this evaluation are the small
sample size, which can produce distortions in the expected
result and conclusions. A strategy to mitigate this problem
can include the use of more extensive or various samples.
The lack of another sample can also be characterized as an
external threat because it can jeopardize the generalization
of the study results. As construction threats, we can cite the

417

selection of methods and definitions of measures, which was
performed according to the related work, but with no other
indication of exactitude or representativeness. Finally, the fact
that the same developers can be involved in the study might
indicate conclusion threats, given the possibility the text of
project tasks can be standardized, in case they were written
by the same person.

IV. CONCLUSIONS

Identifying similar project tasks during software develop-
ment could decrease the curation effort of developers, when
in need of external support. We performed a study to identify
project task context elements, propose an implementation of a
process model and evaluate the proposal. The implementation
aims to verify if similar project tasks are associated with
the same SO posts curated by developers. Precision and
accuracy were 71.60% and 77.78%, respectively. We also
conclude that there is a significant variation of precision and
accuracy when project task context elements are added or
removed. When considering the project task context elements
initially identified in Section II, precision and accuracy are
the highest among all combinations. Results also indicate that
the hypothesis of the evaluation Project task similarity can
provide useful suggestions of curated SO posts is correct, as
the prediction and accuracy are as high as 70%. The model
built in RapidMiner can be used with other datasets with
similar characteristics, indicating the study is replicable.

Future work might involve the development of a recom-
mendation tool using the proposed strategy, allowing the
incorporation of rating mechanisms for given suggestions. The
tool was not developed in this work, as we intended to focus on
the study of the reuse of curated SO posts using task similarity.
A deeper understanding of the role of project task context
elements should be pursued, allowing the definition of weights
for specific contexts.

ACKNOWLEDGMENT

The authors thank the Natural Sciences and Engineering
Research Council of Canada (NSERC), the Emerging Leaders
in the Americas Program (ELAP) and MITACS.

REFERENCES

[1] C. Di Ciccio, A. Marrella, and A. Russo, “Knowledge-intensive pro-
cesses: characteristics, requirements and analysis of contemporary ap-
proaches,” Journal on Data Semantics, vol. 4, no. 1, pp. 29–57, 2015.

[2] S. Vasanthapriyan, J. Tian, and J. Xiang, “A survey on knowledge
management in software engineering,” in Software Quality, Reliability
and Security-Companion (QRS-C), 2015 IEEE International Conference
on. IEEE, 2015, pp. 237–244.

[3] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last summer -
an investigation of how developers spend their time.” Piscataway: The
Institute of Electrical and Electronics Engineers, Inc. (IEEE), May 1,
2015, p. 25.

[4] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and
T. Fritz, “The work life of developers: Activities, switches and perceived
productivity,” IEEE Transactions on Software Engineering, vol. 43,
no. 12, pp. 1178–1193, 2017.

[5] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Leveraging crowd knowl-
edge for software comprehension and development.” IEEE, Mar 2013,
pp. 57–66.

[6] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest qa site in the west.” ACM, May 7,
2011, pp. 2857–2866.

[7] S. Fumin, W. Xu, S. Hailong, and L. Xudong, “Recommendflow: Use
topic model to automatically recommend stack overflow qa in ide,”
in International Conference on Collaborative Computing: Networking,
Applications and Worksharing. Springer, 2016, pp. 521–526.

[8] X. Liu, B. Shen, H. Zhong, and J. Zhu, “Expsol: Recommending online
threads for exception-related bug reports,” in 2016 23rd Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2016, pp. 25–32.

[9] T. P. Sahu, N. K. Nagwani, and S. Verma, “An empirical analysis on
reducing open source software development tasks using stack overflow,”
Indian Journal of Science and Technology, vol. 9, no. 21, 2016.

[10] T. Wang, G. Yin, H. Wang, C. Yang, and P. Zou, “Linking stack overflow
to issue tracker for issue resolution.” ACM, Nov 17, 2014, pp. 11–14.

[11] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack overflow
in the ide.” IEEE Press, May 18, 2013, pp. 1295–1298.

[12] M. Rahman and C. K. Roy, “Surfclipse: Context-aware meta-search in
the ide,” in 2014 IEEE International Conference on Software Mainte-
nance and Evolution, 2014, pp. 617–620, iD: 1.

[13] D. Correa and A. Sureka, “Integrating issue tracking systems with
community-based question and answering websites,” in 2013 22nd
Australian Software Engineering Conference. IEEE, 2013, pp. 88–96.

[14] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining stackoverflow to turn the ide into a self-confident programming
prompter.” ACM, May 31, 2014, pp. 102–111.

[15] P. Kochhar, “Mining testing questions on stack overflow,” in Proceedings
of the 5th International Workshop on Software Mining. ACM, 2016,
pp. 32–38.

[16] G. Melo, U. Telemaco, T. Oliveira, P. Alencar, and D. Cowan, “Towards
using task similarity to recommend stack overflow posts,” in Avances
en Ingenieria de Software a Nivel Iberoamericano, CIbSE 2018, 2018,
pp. 199–211.

[17] V. Garousi, M. Felderer, and M. Mäntylä, “The need for multivocal
literature reviews in software engineering: complementing systematic
literature reviews with grey literature,” in Proceedings of the 20th
international conference on evaluation and assessment in software
engineering. ACM, 2016, p. 26.

[18] M. Lindvall and I. Rus, Knowledge management for software organiza-
tions, ser. Managing software engineering knowledge. Springer, 2003,
pp. 73–94.

[19] F. M. Santoro, P. Brézillon, and R. M. De Araujo, “Context dynamics in
software engineering process,” in International Conference on Computer
Supported Cooperative Work in Design. Springer, 2006, pp. 377–388.

[20] N. Schlitter, J. Lässig, S. Fischer, and I. Mierswa, “Distributed data
analytics using rapidminer and boinc,” in Proceedings of the 4th Rapid-
Miner Community Meeting and Conference (RCOMM 2013), 2013, pp.
81–95.

[21] P. Tan, M. Steinbach, and V. Kumar, Introduction to data mining, pearson
internat. ed. ed. Boston ; Munich [u.a.]: Pearson Addison Wesley, 2006.

[22] G. Melo, “Retrieving curated stack overflow posts of similar
project tasks,” Master’s thesis, Universidade Federal do Rio de
Janeiro, 2018. [Online]. Available: https://www.cos.ufrj.br/index.php/pt-
BR/publicacoes-pesquisa/details/15/2881

[23] G. Shani and A. Gunawardana, Evaluating Recommendation Systems,
1st ed., ser. Recommender Systems Handbook. Boston, MA: Springer
US, 2011, pp. 257–297.

[24] M. Rahman, S. Yeasmin, and C. K. Roy, “Towards a context-aware
ide-based meta search engine for recommendation about programming
errors and exceptions.” IEEE, Feb 2014, pp. 194–203.

[25] T. Wang, G. Yin, H. Wang, C. Yang, and P. Zou, “Automatic knowledge
sharing across communities: a case study on android issue tracker and
stack overflow,” in Service-Oriented System Engineering (SOSE), 2015
IEEE Symposium on. IEEE, 2015, pp. 107–116.

[26] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
Business Media, 2012.

418

Software Defect Prediction Model Based on
Improved Deep Forest and AutoEncoder by Forest

Wenbo Zheng†?B, Shaocong Mo§?B, Xin Jin¶, Yili Qu‖, Zefeng Xie†† and Jia Shuai‖
†School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China

§College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
¶School of Management, Huazhong University of Science and Technology, Wuhan 430074, China

‖School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
††School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China

Abstract—Software defect prediction is an important way to
make full use of software test resources and improve software
performance. To deal with the problem that of the shallow
machine learning based software defect prediction model can not
deeply mine the software tool data, we propose software defect
prediction model based on improved deep forest and autoencoder
by forest. Firstly, the original input features are transformed
by the data augmentation method to enhance the ability of
feature expression, and the autoencoder by forest performs the
data of dimensionality reduction on the features. Then, we use
the improved deep forest algorithm and autoencoder by forest
to build software defect prediction model. The experimental
results show that the proposed algorithm has higher performance
than the original deep forest (gcForest) algorithm and other
existing start-of-art algorithms, and has higher performance and
efficiency than other deep learning algorithms.

Keywords—Software defect prediction, Deep forest, AutoEn-
coder by forest, Data augmentation.

I. INTRODUCTION

As software systems continue playing a key role in all areas
of our society, defects arisen from these software have had a
major impact on businesses and the lives of people. However,
due to the significant increase in the size and complexity of
software code libraries, it has become increasingly difficult to
identify defects in software code [1], [2]. The importance and
challenges of defect prediction make it an active research area
in software engineering [3], [4]. Extensive research has been
used to develop predictive models and tools to help software
engineers and testers quickly narrow down the most likely
defective parts of the software code base [5], [6]. Early defect
prediction helps prioritize and optimize the effort and cost of
inspections and testing, especially when faced with cost and
deadline pressures [7], [8].

Machine learning techniques have been widely used to
build defect prediction models [9], [10]. Those techniques
derive a number of features (i.e. predictors) from software
code and feed them to common classifiers such as Naive
Bayes [11], Support Vector Machine [12] and Random Forests
[13]. But these methods are all shallow machine learning, and

?Wenbo Zheng and Shaocong Mo contribute equally to this study. They
are both the corresponding author.

BE-mail: zwb2017@stu.xjtu.edu.cn, mosc@zju.edu.cn
DOI reference number: 10.18293/SEKE2019-008

can not perfectly express the complex relationship between
unstructured data. When the amount of data reaches a certain
level, the learning ability of shallow algorithm is not as good
as the deep learning algorithm.

Due to the huge computational hardware requirements of
deep neural networks and the dependence of deep neural
networks on a large number of hyper parameters, the software
defect prediction methods based on deep neural networks are
difficult to train to the optimal degree. Zhi-Hua Zhou [14]
put forward a deep forest, make up the blank of the decision
tree in the field of deep learning. Deep forests have much
less parameters than deep neural network and the advantages
of higher classification accuracy. Further, Zhi-Hua Zhou [15]
put forward EncoderForest (eForest), a kind of auto-encoder,
to do data reduction or feature extraction for training model.
Therefore, why not use deep forest and eForest to build
sofeware defect prediction model?

In this paper, we present software defect prediction model
based on improved deep forest and autoencoder by forest.
First of all, we propose an improved deep forest algorithm
for the lack of multi-grained scanning in deep forests through
data augmentation. Then, the improved deep forest algorithm
and eForest are applied to software defect prediction problem.
Finally, we use this model to experiment with the Eclipse bug
dataset [16]. The experimental results show that the proposed
algorithm is better than existing start-of-art algorithms and less
time than the deep neural network algorithm. The contributions
of our paper are as below.

(1) We apply the deep forest and eForest to software defect
prediction problem and get better results.

(2) In our prediction system, the features are automatically
learned through the forests model, thus eliminating the
need for manual feature engineering which occupies most
of the effort in traditional approaches.

(3) An extensive evaluation using real open source data
provided by Eclipse repository demonstrates the empirical
strengths of our model for defect prediction.

The outline of this paper is as follows. Section II reviews
the works of defect prediction, deep forest and autoencoder
by forest. Section III describes how our prediction model is

419

built. We report our experiments to evaluate our approach in
Section IV. In Section V, we conclude the paper and outline
future work.

II. RELATED WORK

A. Defect Prediction

In the field of software engineering, it is impossible to detect
and eliminate all software defects by any means of detection
and verification. It is impossible to develop a software system
without any defects in an actual engineering project. Even if
the developer is careful and refined, it cannot be ruled out
that there are still some errors or unexpected defects in the
software system. Software defect prediction is an important
way to rationally use software testing resources and improve
software performance. Software detect prediction technology
can be used to predict more defects that may also exist as
early as possible according to the metrics information and
defects found in a software product, then testing and validation
resources are allocated based on the result appropriately.

The machine learning based defect prediction technology
can comprehensively and automatically learn the model to find
defects in the software, which has become the main method of
defect prediction. For constructing software detect prediction
models, many algorithms such as KNN, neural networks [17],
SVM [18], Nave Bayes [19], random forest [20] and ensemble
learning method [21] can be used. Moreover, there are mainly
three techniques are used for implementing the software detect
prediction models, as classification, regression and clustering.
However, none of these algorithms can perfectly express the
complex relationship between unstructured data. When the
amount of data reaches a certain level, the learning ability
of shallow structure algorithms is not as good as that of deep
structure algorithms.

B. Deep Forest

Zhi-Hua Zhou and Ji Feng [14] propose gcForest (multi-
Grained Cascade Forest) shown in Fig. 1(a), a novel deci-
sion tree ensemble method. This method generates a deep
forest(DF) ensemble, with a cascade structure which enables
gcForest to do representation learning. Its representational
learning ability can be further enhanced by multi-grained scan-
ning when the inputs are with high dimensionality, potentially
enabling gcForest to be contextual or structural aware. The
number of cascade levels can be adaptively determined such
that the model complexity can be automatically set, enabling
gcForest to perform excellently even on small-scale data,
which makes it possible to control training costs according
to computational resource available. Moreover, contrast to
DNNs, the gcForest has much fewer hyper-parameters and
its performance is robust in different hyper-parameter settings.
From experiments results, gcForest gets excellent performance
by using the default setting, competitive to DNNs on a
broad range of tasks, even across different data from different
domains. Deep forest offers an alternative when deep neural
networks are not superior, e.g., when DNNs are inferior to
random forest and XGBoost.

C. AutoEncoder by Forest

After gcForest, Zhi-Hua Zhou and Ji Feng [15] propose
autoencoder by forest called eforest, which is the first tree
ensemble based auto-encoder. As we know, auto-encoding is
a significant task; take convolutional neural networks (CNN)
as an example, it is achieved by deep neural networks (DNNs)
in auto-encoding way. This method presents a procedure for
enabling forests to do backward reconstruction by utilizing the
Maximal- Compatible Rule (MCR), as show in Fig. 1(b), the
rule is defined by the traversing backward decision paths of
the trees. Encoding and decoding are the two basic function
for an auto-encoder. The eForest makes a tree ensemble to
do forward encoding and backward decoding, so it is possible
for forest to construct an auto-encoder. In addition, the eForest
can be trained in both supervised or unsupervised way.

For encoding tasks, there is no difficulty for forest to do that.
Here is the encoding procedure: Once the input data traverse
down to the leaf nodes which belong to a trained tree ensemble
model contained T trees, the procedure will give back a T
dimensional vector.

For decoding task, here is the encoding procedure: Firstly,
each path can be identified by the leaf node without un-
certainty; Secondly, each path corresponds to a symbolic
rule; Thirdly, the Maximal-Compatible Rule (MCR) can be
calculated to reconstruct the original sample.

In all, auto-encoding task can be achieved by the eForest’s
forward encoding and backward decoding operations. Exper-
imental results shows eforest has the following advantages:
lower reconstruction error contrast to CNN or MLP based
auto-encoder, faster training speed, damage-tolerable and high
dataset adaption in same domain.

III. SOFTWARE DEFECT PREDICTION MODEL BASED ON
FORESTS

We propose our method in this section. Firstly, we propose
an improved deep forest algorithm for the lack of multi-
grained scanning in deep forests through data augmentation.
Secondly, the improved deep forest algorithm and eForest are
applied to software defect prediction problem, as shown in
Fig. 2.

A. Improved Deep Forest Algorithm

Despite the superior performance of deep forests, there are
still some shortcomings when using them to build the software
defect prediction model.

• Software defect prediction is a binary classification prob-
lem, which is to analyze the quality of software modules.
According to the classification rules, it is divided into
fault-proneness or non-fault-proneness class. Because the
main purpose of software defect prediction is to predict
whether the modules in the software have fault-proneness
modules, so we would set the fault-proneness module as
a positive example, and the non-fault-proneness module
as a negative example. Multi-grained scanning and cas-
cade structures are used the process that generated class
vectors to be aggregated into enhanced feature vectors.

420

For grained scanning: 500 trees per forest For cascade: 500 trees per forestCascade of Cascades

(a) Multi-Grained Cascade Forest [14]

x
1
? 0

x
2
? 1.5

x
3
? = RED

x
3
? = BLUE

Leaf Node

Leaf Node

Leaf Node

Leaf Node

Leaf Node Leaf Node

x
3
? = GREEN

x
4
? = NO

x
2
? 2.7

Yes

Yes

No

No

No

Tree 1

x
3
? = BLUE

Leaf Node

x
2
? 5

Leaf Node

Leaf Node

Leaf Node Leaf Node

x
2
? 2

x
1
? 0.5

x
3
? = GREEN

Yes

Yes

No

No

Tree 2

x
4
? = YES

x
3
? = RED

Leaf Node

x
2
? 8

Leaf Node

Leaf Node Leaf Node

x
1
? 1.6

Yes

No

No

Tree n

(b) Traversing backward along decision paths [15]

Fig. 1. Deep forest and autoencoder by forest

Forest
A1

Forest
B1

Forest
A2

Forest
B2

Forest
A3

Forest
B3

200-dim

200-dim

100-dim

100-dim

100-dim

100-dim

400-dim

800-dim

eForest
A1

eForest
B1

eForest
A2

eForest
B2

100-dim

100-dim

100-dim

100-dim

400-dim
Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

8-dim

eForest
A1

eForest
B1

eForest
A2

eForest
B2

4-dim

4-dim

4-dim

4-dim

16-dim
408-dim

INPUT: Feature Vector

Data Augmentation

1st Level Nth Level

OUTPUT: Prediction Result

average

Auto Encode

Auto Decode

Concatenate

Concatenate

Concatenate Concatenate

Concatenate

Concatenate

Concatenate

Concatenate

Concatenate

Concatenate

Fig. 2. Software defect prediction model using Forests

But this process can cause redundancy of the feature
space. For the software defect prediction problem, the
sum of the probability of the module belonging to the
positive class and the probability of the module belonging
to the negative class is 1, that is, the two probabilities
are linear correlation. If two probabilities are both used
to fuse the feature vectors, which can cause feature space
redundancy and increase the space complexity of the
algorithm.

• Multi-grained scanning has significant effects on spatially
related features, such as image matching and speech
recognition, while features that are spatially uncorrelated
(such as software defect prediction, text classification,
etc.) may lose important information. The reason is that
for spatially uncorrelated features, multi-grained scanning
reduces the importance of the the first and the last feature.
In the multi-grained scanning process, the first feature and
the last feature are only scanning once, that is, these two
features are used only once. If the first feature or the last
feature is very important, multi-grained scanning can not
effectively use this important feature.

To solve the problem that multi-grained scanning in deep
forests may lose important information, data augmentation
method is used to transform the original input features. Our
data augmentation method is to randomly extract features
from different original scales from the original input features
from the defective/non-defective training samples. The vector
by data augmentation is treated as a defective/non-defective
instance. The instances which is the same size are combined

100-dim

200 Instances

400-dim

INPUT: Feature Vector

Forest A

Forest B
Concatenate

200-dim

200-dim

200

Fig. 3. The process of data augmentation as an example

to form a training entity. The all training entities would train a
random forest and a complete random forest, respectively, to
predict to generate class vectors. We transform class vectors
to enhanced feature vectors.

To be specific, assume that the original input features are
400-dimension, we use randomly sampled methods 200 times,
and each sample size is 100-dimensional feature. Each 100-
dimensional sample feature is to form an instance. So a total
of 200 instances are generated. The 200 instances is called an
entity. The entity would be trained using a random The forest
and a completely random tree forest, respectively, and then we
get two class vectors which is 200-dimension. We transform
two 200-dimensional vectors to one 400-dimensional vector,
that is, the 400-dimensional original feature vector corresponds
to the 400-dimensional enhanced feature vector. The process
is shown in Fig. 3.

Similarly, we transform the two 200-dimensional features
sampled from each original input feature to generate two 200-
dimensional enhanced features vector. We do the concatenate

421

Forest
A1

Forest
B1

Forest
A2

Forest
B2

Forest
A3

Forest
B3

Data Augmentation

200-dim

200-dim

100-dim

100-dim

100-dim

100-dim

400-dim

800-dim
Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

4-dim

average

804-dim

INPUT: Feature Vector

1st Level Nth Level

OUTPUT: Prediction Result

Concatenate

Concatenate

Concatenate

Concatenate

Fig. 4. The pipeline of improved deep forest based on data augmentation

operator to transform the three enhanced feature vectors to
a 800-dimensional transformed feature vector. This is the re-
representation of the original input features by data augmen-
tation. In other words, each 400-dimensional original feature
vector is re-represented by the 800-dimensional transformed
feature vector.

The 800-dimensional transformed feature vector would be
passed to the cascade forest structure. If each layer of cascade
forest consists of 4 forests (two random forests and two com-
pletely random forests), the 804-dimensional feature vector
would be obtained at the end of the first layer. Then, input the
feature vector into the cascade forest structure of the next layer.
Repeat the process until the verification performance indicates
that the extension of the cascade forest structure should be
terminated.

In the test phase, given a test example, we first get the corre-
sponding 800-dimensional transformed feature vector through
the data augmentation process, and then predict through the
cascade forest structure until the last layer. The final prediction
result is decided on the 4 probabilities of 4-dimensional feature
vector in the last layer, and the average of the 4 probabilities is
the final prediction result. If the average value is greater than
or equal to 0.5, the test instance is predicted to be a positive
class, otherwise it is a negative class. The process is shown in
Fig. 4.

B. Software Defect Prediction Model using Forests

We use data augmentation algorithms to increase the amount
of data, challenging the time and efficiency of our algorithm.
Therefore, we use the eForest [15] to do data reduction. The
process is shown in Fig. 4.

First, we transform original 400-dimensional features to
800-dimensional transformed vectors using data augmentation.

Then, the 800-dimensional transformed feature vector
would be passed to the autoencoder using eForest. If au-
toencoder consists of 4 eForests, the 400-dimensional feature
vector would be obtained. The 400-dimensional feature vector
would be passed to the cascade forest structure. Because each
layer of cascade forest consists of 4 forests (two random
forests and two completely random forests) and we reset
each forest to output 2-dimensional class vector, the 408-
dimensional feature vector would be obtained at the end of

the first layer. Then, input the feature vector into the cascade
forest structure of the next layer. Repeat the process until the
verification performance indicates that the extension of the
cascade forest structure should be terminated. We get a 16-
dimensional feature vector through cascade forest structure.

Finally, the 16-dimensional feature vector would be passed
to the autodecoder which is the inverse structure of autoen-
coder. We get 8-dimensional feature vector. The final predic-
tion result is decided on the 8 probabilities of 8-dimensional
feature vector in the last layer, and the average of the 8
probabilities is the final prediction result. If the average value
is greater than or equal to 0.5, the test instance is predicted to
be a positive class, otherwise it is a negative class.

IV. EXPERIMENT RESULTS AND ANALYSIS

Reporting the average of precision/recall across the two
classes (defective and clean) is likely to overestimate the true
performance, since our dataset is imbalance (i.e. the number
of defective files are small). More importantly, predicting
defective files is more of interest than predicting clean files.
Hence, our evaluation is focus on the defective class.

A confusion matrix is used to store the correct and incorrect
decisions made by a prediction model. For example, if a
file is classified as defective when it is truly defective, the
classification is a true positive (tp). If the file is classified as
defective when it is actually clean, then the classification is a
false positive (fp). If the file is classified as clean when it is in
fact defective, then the classification is a false negative (fn).
Finally, if the issue is classified as clean and it is in fact clean,
then the classification is true negative (tn). The values stored
in the confusion matrix are used to compute the widely-used
Precision, Recall, and F-measure.

• Precision: The ratio of correctly predicted defective files
over all the files predicted as being defective. It is
calculated as:

pr =
tp

tp+ fp
(1)

• Recall: The ratio of correctly predicted defective files
over all of the true defective files. It is calculated as:

re =
tp

tp+ fn
(2)

• F-measure: Measures the weighted harmonic mean of the
precision and recall. It is calculated as:

F −measure =
2× pr × re

pr + re
(3)

All experiments were conducted using a 4-core PC with an
Intel Core i7 6700HQ with the NVIDIA GTX 1080, 16GB of
RAM, and Ubuntu Linux in practice.

To verify the advancement and robustness of our model, we
designed two experiments:
(1) Ablation Experiment. In order to verify the advancement

and rationality of our model, we experimented with each
component.

(2) Contrast Experiment. In order to verify the robust-
ness of our model, in the experiment separately to

422

TABLE I
THE RESULT OF ABLATION EXPERIMENT ON ECLIPSE BUG DATASET

Method gcForest [14] Improved Deep Forest gcForest [14]+eForest [15] Ours

Data Augumention × X × X

AutoEncoder/AutoDecoder × × X X

Training Set Test set Accuracy Rate Precision Recall F-measure Accuracy Rate Precision Recall F-measure Accuracy Rate Precision Recall F-measure Accuracy Rate Precision Recall F-measure

file2.0
file2.0 0.8845 0.6708 0.4031 0.5036 0.8847 0.6712 0.4038 0.5042 0.8861 0.6522 0.4601 0.5399 0.8865 0.6753 0.4603 0.5475
file2.1 0.8555 0.3208 0.2998 0.3099 0.8557 0.3217 0.3001 0.3106 0.8569 0.3361 0.3302 0.3331 0.8572 0.3368 0.3307 0.3337
file3.0 0.8505 0.4912 0.2832 0.3592 0.8511 0.4912 0.2834 0.3594 0.8427 0.4486 0.273 0.3394 0.8555 0.4492 0.2834 0.3475

file2.1
file2.0 0.8501 0.4543 0.1733 0.2509 0.8505 0.4551 0.1735 0.2512 0.852 0.476 0.2133 0.2946 0.8527 0.4763 0.2137 0.2950
file2.1 0.8978 0.5705 0.223 0.3206 0.8978 0.5715 0.2238 0.3216 0.8968 0.5446 0.2858 0.3748 0.8988 0.5853 0.2860 0.3843
file3.0 0.8453 0.4397 0.1652 0.2401 0.8461 0.4407 0.1652 0.2404 0.8453 0.4518 0.2124 0.2889 0.8660 0.4520 0.2125 0.2891

file3.0
file2.0 0.8575 0.5155 0.2728 0.3568 0.8579 0.5158 0.2736 0.3575 0.8575 0.5124 0.3384 0.4077 0.8583 0.5563 0.3390 0.4213
file2.1 0.8581 0.3221 0.281 0.3002 0.8584 0.3229 0.2811 0.3005 0.8556 0.3277 0.3173 0.3224 0.8656 0.3281 0.3181 0.3230
file3.0 0.8662 0.5911 0.324 0.4186 0.8667 0.5912 0.3241 0.4186 0.8637 0.5554 0.3974 0.4633 0.8674 0.5958 0.3980 0.4772

realize the Naive-Bayes-Based method [11], Support-
Vector-Machine-Based method [12], Random-Forests-
Based method [13], Deep Tree-based method [22] and
DNN-based method [23], Eclipse standard dataset on the
experiment and comparing with the result of the experi-
ment.

Note that in the experiment, the hyper-parameter settings we
used were consistent with the reference gcForest [14] and
eForest [15].

The data used in this experiment is derived from the Eclipse
standard dataset which is one of the most widely used public
datasets in software defect prediction research. Since this paper
studies the software defect prediction of the classification task,
and the Eclipse data set gives the number “post” of defects
(refers to the number of defects after the software is released),
it is necessary to convert the number “post” of defects into a
defective class “hasDefects”. The conversion method is:

hasDefect =

{
0, post = 0
1, post 6= 0

(4)

Since the structure of the “file” level data of the Eclipse
data set is same, one of the versions of the data is used as the
training data to learn the model, and the three versions of the
data can be predicted separately, so that the “file” level data
can be used for 9 predictions and verifications.

When the training set and the test set are from the same
version, the ten-fold cross-validation is used, that is, the data
set is equally divided into 10 parts, one of which is taken as
the prediction set, and the 9 remaining data are used as the
training set to construct the software defect prediction model
and do classification prediction. The experiment was carried
out for 10 rounds, and the average of 10 rounds of experiments
was taken as the final result.

A. Ablation Experiment
In order to verify the advancement and rationality of our

model, we experimented with each component. We use the
accuracy rate, precision, recall rate and F-measure to evaluate
the experimental results in the experiment. From Table.I, we
know our method is better than others. This shows that the
design of our algorithm is reasonable.

B. Contrast Experiment
In order to verify the robustness of our model, in the ex-

periment separately to realize the Naive-Bayes-Based method

TABLE II
THE RESULT OF CONTRAST EXPERIMENT ON ECLIPSE BUG DATASET

Method Training Set Test set Accuracy Rate Precision Recall F-measure Test Time/s

Naive-Bayes-Based

file2.0
file2.0 0.4049 0.2487 0.3818 0.3012 939.10
file2.1 0.3950 0.1990 0.1361 0.1617 992.42
file3.0 0.3621 0.1123 0.1366 0.1233 963.81

file2.1
file2.0 0.7169 0.1784 0.1876 0.1829 965.69
file2.1 0.5621 0.3514 0.2471 0.2902 981.40
file3.0 0.4467 0.0499 0.1744 0.0776 905.80

file3.0
file2.0 0.6412 0.4286 0.1163 0.1830 994.07
file2.1 0.7742 0.2874 0.3415 0.3121 963.66
file3.0 0.6147 0.3210 0.1127 0.1668 995.49

Support-Vector-Machine-Based

file2.0
file2.0 0.5266 0.4855 0.3372 0.3980 984.68
file2.1 0.5802 0.4319 0.1014 0.1642 940.42
file3.0 0.8175 0.2333 0.1178 0.1565 936.28

file2.1
file2.0 0.8011 0.1011 0.1754 0.1283 971.73
file2.1 0.8927 0.2631 0.1463 0.1880 991.80
file3.0 0.4862 0.1785 0.1936 0.1857 984.54

file3.0
file2.0 0.6165 0.4705 0.1964 0.2772 910.49
file2.1 0.7281 0.2550 0.0325 0.0576 996.15
file3.0 0.6047 0.5585 0.1147 0.1903 944.24

Random-Forests-Based

file2.0
file2.0 0.7175 0.5661 0.3932 0.4641 993.29
file2.1 0.7424 0.1544 0.2673 0.1957 926.15
file3.0 0.8227 0.3748 0.2418 0.2940 949.10

file2.1
file2.0 0.8093 0.4630 0.1572 0.2347 926.51
file2.1 0.7362 0.3983 0.2712 0.3227 968.88
file3.0 0.7906 0.2622 0.1532 0.1934 949.81

file3.0
file2.0 0.6972 0.4031 0.2695 0.3230 986.32
file2.1 0.6683 0.1613 0.2884 0.2068 988.58
file3.0 0.6860 0.4845 0.2445 0.3250 954.50

Deep Tree-based

file2.0
file2.0 0.7919 0.2475 0.3052 0.2734 2740.51
file2.1 0.8236 0.4088 0.1980 0.2667 3462.27
file3.0 0.8006 0.3925 0.1907 0.2567 2672.78

file2.1
file2.0 0.8806 0.5172 0.2197 0.3084 2711.65
file2.1 0.8445 0.4067 0.1393 0.2075 3313.87
file3.0 0.8333 0.5195 0.2640 0.3501 3251.04

file3.0
file2.0 0.8070 0.3062 0.2540 0.2777 3168.86
file2.1 0.8413 0.5205 0.3410 0.4121 2537.39
file3.0 0.4778 0.4877 0.1443 0.2228 2815.82

DNN-based

file2.0
file2.0 0.8856 0.5209 0.2136 0.3029 4070.51
file2.1 0.8140 0.1531 0.3253 0.2082 4629.74
file3.0 0.5592 0.2508 0.0559 0.0915 4449.19

file2.1
file2.0 0.8438 0.4124 0.0675 0.1161 4643.71
file2.1 0.8413 0.5248 0.1379 0.2184 4389.90
file3.0 0.6942 0.4166 0.1111 0.1754 4447.18

file3.0
file2.0 0.8260 0.5292 0.1614 0.2473 4767.79
file2.1 0.6791 0.0655 0.1613 0.0932 4486.30
file3.0 0.8282 0.4512 0.3592 0.4000 4566.45

Ours

file2.0
file2.0 0.8865 0.6753 0.4603 0.5475 2552.15
file2.1 0.8572 0.3368 0.3307 0.3337 2641.29
file3.0 0.8555 0.4492 0.2834 0.3475 2974.45

file2.1
file2.0 0.8527 0.4763 0.2137 0.2950 2666.39
file2.1 0.8988 0.5853 0.2860 0.3843 2472.26
file3.0 0.8660 0.4520 0.2125 0.2891 2560.44

file3.0
file2.0 0.8583 0.5563 0.3390 0.4213 2699.37
file2.1 0.8656 0.3281 0.3181 0.3230 2868.56
file3.0 0.8674 0.5958 0.3980 0.4772 2604.83

[11], Support-Vector-Machine-Based method [12], Random-
Forests-Based method [13], Deep Tree-based method [22]
and DNN-based method [23], Eclipse standard dataset on the
experiment and comparing with the result of the experiment.
We use the accuracy rate, precision, recall rate, F-measure
and the time of test to evaluate the experimental results in the
experiment.

From Table. II, we can get two points:
• In terms of performance, our algorithm is optimal in

all cases. Therefore, the robustness of our algorithm is
optimal among all methods.

423

• In terms of test time, our algorithm is not the least time
in all cases, but our algorithm is the least time in all cases
of deep learning. It shows that our algorithm has obvious
advantages in efficiency compared to other deep learning
algorithms.

From these two points, we know that our algorithm has
good robustness and efficiency.

V. CONCLUSION AND FUTURE WORK

In this paper, in order to solve the problem that the shallow
machine learning algorithm can not deeply mine the software
data features in the current software defect prediction, software
defect prediction model based on improved deep forest and
autoencoder by forest is proposed. Firstly, the original input
features are transformed by the data augmentation method to
enhance the ability of feature expression, and the autoencoder
by forest performs the data of dimensionality reduction on
the features. Then, we use the improved deep forest algorithm
and autoencoder by forest to build software defect prediction
model. The experimental results show that the proposed algo-
rithm has higher performance than the original deep forest (gc-
Forest) algorithm, and has higher performance and efficiency
than other deep learning algorithms. However, the algorithm
does not consider unbalanced data problem. In future, we will
be to study how to further improve the prediction performance
of the algorithm and consider a solution to the problem of data
imbalance in the training set.

ACKNOWLEDGMENT

This paper was supported in part by the National Natural
Science Foundation of China (Grant No. 61702386).

REFERENCES

[1] F. Wu, X. Jing, Y. Sun, J. Sun, L. Huang, F. Cui, and Y. Sun, “Cross-
project and within-project semisupervised software defect prediction: A
unified approach,” IEEE Transactions on Reliability, vol. 67, no. 2, pp.
581–597, June 2018.

[2] S. Huda, S. Alyahya, M. M. Ali, S. Ahmad, J. Abawajy, H. Al-Dossari,
and J. Yearwood, “A framework for software defect prediction and
metric selection,” IEEE Access, vol. 6, pp. 2844–2858, 2018.

[3] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Mensah,
“Mahakil: Diversity based oversampling approach to alleviate the class
imbalance issue in software defect prediction,” IEEE Transactions on
Software Engineering, vol. 44, no. 6, pp. 534–550, June 2018.

[4] E. A. Felix and S. P. Lee, “Integrated approach to software defect
prediction,” IEEE Access, vol. 5, pp. 21 524–21 547, 2017.

[5] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving tar-
get? a longitudinal case study of just-in-time defect prediction,” IEEE
Transactions on Software Engineering, vol. 44, no. 5, pp. 412–428, May
2018.

[6] S. Qiu, L. Lu, and S. Jiang, “Multiple-components weights modelfor
cross-project software defect prediction,” IET Software, vol. 12, no. 4,
pp. 345–355, 2018.

[7] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. Al-Dossari,
and S. Ahmad, “An ensemble oversampling model for class imbalance
problem in software defect prediction,” IEEE Access, vol. 6, pp. 24 184–
24 195, 2018.

[8] T. Chen, S. W. Thomas, H. Hemmati, M. Nagappan, and A. E. Hassan,
“An empirical study on the effect of testing on code quality using
topic models: A case study on software development systems,” IEEE
Transactions on Reliability, vol. 66, no. 3, pp. 806–824, Sept 2017.

[9] S. Herbold, A. Trautsch, and J. Grabowski, “A comparative study to
benchmark cross-project defect prediction approaches,” IEEE Transac-
tions on Software Engineering, vol. 44, no. 9, pp. 811–833, Sept 2018.

[10] C. Hu, X. Xue, L. Huang, H. Lyu, H. Wang, X. Li, H. Liu, M. Sun,
and W. Sun, “Decision-level defect prediction based on double focuses,”
Chinese Journal of Electronics, vol. 26, no. 2, pp. 256–262, 2017.

[11] T. Wang and W. Li, “Naive bayes software defect prediction model,”
in 2010 International Conference on Computational Intelligence and
Software Engineering, Dec 2010, pp. 1–4.

[12] H. Wei, C. Shan, C. Hu, H. Sun, and M. Lei, “Software defect dis-
tribution prediction model based on npe-svm,” China Communications,
vol. 15, no. 5, pp. 173–182, May 2018.

[13] D. R. Ibrahim, R. Ghnemat, and A. Hudaib, “Software defect prediction
using feature selection and random forest algorithm,” in 2017 Interna-
tional Conference on New Trends in Computing Sciences (ICTCS), Oct
2017, pp. 252–257.

[14] Z. Zhou and J. Feng, “Deep forest: Towards an alternative to
deep neural networks,” CoRR, vol. abs/1702.08835, 2017. [Online].
Available: http://arxiv.org/abs/1702.08835

[15] J. Feng and Z. Zhou, “Autoencoder by forest,” CoRR, vol.
abs/1709.09018, 2017. [Online]. Available: http://arxiv.org/abs/1709.
09018

[16] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Third International Workshop on Predictor Models in Soft-
ware Engineering (PROMISE’07: ICSE Workshops 2007), May 2007,
pp. 9–9.

[17] R. Jindal, R. Malhotra, and A. Jain, “Software defect prediction using
neural networks,” in Reliability, Infocom Technologies and Optimization
(ICRITO)(Trends and Future Directions), 2014 3rd International Con-
ference on. IEEE, 2014, pp. 1–6.

[18] P. Selvaraj and D. P. Thangaraj, “Support vector machine for software
defect prediction,” International Journal of Engineering & Technology
Research, vol. 1, no. 2, pp. 68–76, 2013.

[19] A. Okutan and O. T. Yıldız, “Software defect prediction using bayesian
networks,” Empirical Software Engineering, vol. 19, no. 1, pp. 154–181,
2014.

[20] S. G. Jacob et al., “Improved random forest algorithm for software defect
prediction through data mining techniques,” International Journal of
Computer Applications, vol. 117, no. 23, 2015.

[21] T. Wang, Z. Zhang, X. Jing, and L. Zhang, “Multiple kernel ensemble
learning for software defect prediction,” Automated Software Engineer-
ing, vol. 23, no. 4, pp. 569–590, 2016.

[22] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy, A. Ghose,
T. Kim, and C. Kim, “A deep tree-based model for software defect
prediction,” CoRR, vol. abs/1802.00921, 2018. [Online]. Available:
http://arxiv.org/abs/1802.00921

[23] A. V. Phan, M. L. Nguyen, and L. T. Bui, “Convolutional neural
networks over control flow graphs for software defect prediction,”
in 2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI), Nov 2017, pp. 45–52.

424

Multi-project Regression based Approach for Software Defect Number

Prediction∗

Qiguo Huang ★♯ Chao Ni ★♯ Xiang Chen ★✩ Qing Gu ★ Kaibo Cao ✩

★ State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
✩ School of Computer Science and Technology, Nantong University, Nantong 226019, China

Abstract

Software defect prediction can make software quality as-

surance (SQA) process more efficient, economic and tar-

geted. Previous studies mainly focused on classifying soft-

ware modules as defect-prone or not. However, predic-

tion the number of defects for a new software module is

rarely investigated. Moreover, these studies built models

independently for each project, which may ignore the re-

latedness among multiple projects. To effectively utilize

the relatedness, we propose a novel approach MPR (multi-

project regression) for SDNP (software defect number pre-

diction). To verify the effectiveness of MPR, we perform

experimental studies on 30 real-world projects and com-

pare our approach with 6 state-of-the-art baselines (i.e., LR,

NNR, SVR, DTR, BRR and DBR). AAE (Average absolute

error) and ARE (average relative error) performance mea-

sures are used to evaluate the performance of MPR. The

results show MPR can achieve better performance in most

cases, which indicates the competitiveness of MPR in the

context of SDNP.

1 Introduction

Software defects are introduced unconsciously during

the development process of software projects. After the

software projects are deployed, defects in the software will

produce unexpected behaviors, even cause huge economic

loss in worst cases. Therefore project managers want to

use software quality assurance methods to detect defects

as many as possible. Due to the limitation of testing re-

sources, project managers hope that they can resort to ef-

fective methods to identify potential defective modules as

early as possible. Software defect prediction [1–3] is one of

such effective methods. It helps to identify defective soft-

ware modules before the testing phase by analyzing some

underlying characteristics of the software system and thus

subsequently helps in allocating software testing resources

optimally and economically. It constructs defect prediction

models by mining software repositories (such as version

control systems, bug tracking systems) and uses the con-

structed models to identify potential defective modules in

the new projects.

Many studies have been conducted for software defect

prediction by using different statistical and machine learn-

ing techniques. Most of these studies have focused on clas-

sifying whether a software module has defects or not. That

means previous studies discreted defect number of program

modules into two categories: defective or non-defective [4].

However, such simple data preprocessing may lead to in-

formation loss. In addition, predicting defect number for

program modules can assist in sorting program modules and

then allocating more testing resources to these modules with

more defects. In this way, the allocation of testing resources

can be further optimized.

To the best of our knowledge, previous studies mainly

focused on classifying software modules as defect-prone or

not. Only a few studies built and evaluated models for de-

fect number prediction [5–7]. These studies built models

independently for each project, which may ignore the re-

latedness among multiple projects. In this paper, to fully

utilize the relatedness among projects and propose a novel

approach MPR (multi-project regression) for defect number

prediction. To verify the effectiveness of MPR, we perform

experimental studies on 30 real-world open-source projects

and compare our approach with 6 state-of-the-art baselines

(i.e., LR, NNR, SVR, DTR, BRR and DBR). AAE (Average

absolute error) and ARE (average relative error) are used as

performance measures. The results show MPR can achieve

better performance in most cases.

The main contributions of the paper can be summarized

as follows: (1) to our best knowledge, we firstly propose

a novel approach MPR for predicting defect number on

multiple projects. This approach can utilize the related-

ness among projects and builds many predictors simulta-

neously. (2) we conduct empirical studies on real-world

software projects to demonstrate the effectiveness of MPR.

The final results show that MPR can achieve a statistical

improvement over classical baselines.

2 Related Work

Previous studies mainly investigated regression based

methods for this SDNP. Graves et al. [5] considered a

generalized linear regression method and conducted em-

pirical studies on a large-scale telecommunication system.

They found a significant correlation among module’s age,

changes made to the modules and the age of changes.

Ostrand et al. [6] employed negative binomial regression

(NBR) method. Wang and Zhang [8] proposed BugState,

DOI Reference Number 10.18293 / SEKE2019-019
∗: Corresponding Author: Qing Gu and Chao Ni. ♯: Equally contributing authors.

425

which is based on a defect state transition model. Janes et

al. [9] considered three methods (i.e., NBR, zero-inflated

NBR, Poisson regression) for 5 real-time telecommuni-

cation systems and found that zero-inflated NBR method

achieved the best performance. Then Gao and Khoshgof-

taar [10] further performed empirical studies on two indus-

trial software projects and their results confirmed the best

performance of zero-inflated NBR. Chen et al. [11] con-

ducted empirical studies for 6 regression algorithms. Then

found that using decision tree regression can achieve the

highest performance in both within-project prediction sce-

nario and cross-project prediction scenario. Yu et al. [12]

explored resampling (i.e., SMOTEND and RUSND) and

ensemble learning (i.e., AdaBoost.R2) methods. Then they

proposed two hybrid methods (i.e., SMOTENDBoost and

RUSNDBoost) and these two methods can achieve higher

performance. Rathore and Kumar [13] explored the capa-

bility of decision tree regression in two different scenar-

ios (i.e., intra-release prediction scenario and inter-release

prediction scenario). They [14] compared six methods

for SDNP, such as genetic programming, multi-layer per-

ceptron, linear regression, decision tree regression, zero-

inflated Poisson regression, and negative binomial regres-

sion. Recently, they [15, 16] further considered ensemble

learning methods for SDNP.

Based on the above analysis, when performing SDNP for

many related projects, we found that the models proposed in

previous studies can merely build one model for one project

per time and they can not use useful information in other re-

lated projects. Different from previous studies, we propose

a novel method to build multiple regression models simul-

taneously for many related projects.

3 Our Proposed MPR Approach

This section first gives the preliminaries on multiple lin-

ear regression based on multi-task learning [17]. Then it

describes our proposed MPR approach in detail.

3.1 Preliminaries

Definition 1 (Multiple Liner Regression) Suppose there are

m projects to be learnt {P i}
m

i=1
, where all the projects

or at least a subset of them are related. A multiple lin-

ear regression model, which aims to improve the learn-

ing of a model for P i by using the knowledge contained

in the m projects, can be represented as the following:

Y i = X iW i + Bi, i = 1, · · · ,m, which can build many

liner regression models simultaneously.

In this definition, Y i = (yi
1
, · · · , yi

ni) ∈ R
ni

represents

the responds for the i-th project, regressed on the training

instance matrix X i = (xi
1
, · · · , xi

ni) ∈ R
ni

×F i

, where ni

and F i represent the number of training instances of the i-
th project and the feature space of i-th project respectively.

Bi ∈ R
ni

is a bias vector. There are m tasks in total. For

convenience, we transform these quantities into matrices.

That is, Y ∈ R
ni

×m represents the responses of the regres-

sion model, W ∈ R
F i

×m represents the regression param-

eters and B ∈ R
ni

×m represents the noise.

According to this definition, it is not hard to find that

the parameter W is very important since it contains the re-

latedness among different projects. For convenience, we

represent the parameters W as a matrix, where each col-

umn corresponds to a project, and each row corresponds to

a feature. Meanwhile, not only different projects have the

common characteristics, but also they have the personalized

characteristics. Therefore, both the shared information and

non-shared information are included in this parameter W .

It seems to be that any one structure might not fully cap-

ture all of those information, but a decomposition of the

structure might [18]. Therefore the matrix W should be

decomposed into two component matrices P and Q, i.e.,

W = P + Q. In particular, some rows of W would have

many non-zero entries, which are corresponding to features

shared by several projects (“shared information”). We use

a row-sparse [18, 19] matrix P to represent such shared in-

formation, where each row is either all zero or mostly non-

zero, and the number of non-zero rows is small. Some rows

of W would be project-sensitive, since they correspond to

those features, which are relevant for some projects but

not all (“non-shared information”). We use an elementwise

sparse matrix Q to represent such non-shared information.

It is obvious that some rows of W would have all zero en-

tries, since they correspond to those features that are not

relevant to any project.

The proposed method MPR uses the multiple linear

model [18] to explicitly model the relatedness among dif-

ferent projects. MPR estimates a sum of the two parameter

matrices P and Q with different regularizations for each to

encourage row-sparsity in P and elementwise sparsity in

Q, therefore MPR can effectively capture shared and non-

shared information among related projects.

3.2 The details of MPR Approach

Previous methods can build one regression model for one

target project at a time [11, 13, 14], while MPR can build

multiple regression models for multiple target projects at a

time. Fig. 1 presents the overall framework of MPR. In par-

ticular, some data preprocessing operations are performed

on these projects. For example, we normalize the numer-

ical features for all these projects. The number of related

projects to be learnt equals to the number of models out-

putted by MPR. Relatedness of different projects is a core

concept in multiple linear regression learning. In this pa-

per, we simply consider two type of relatedness. The one

is whether these project are developed by the same organi-

zation. The other is whether these project have the same

feature space.

426

Init Training

 Training

Data
Project n

 Training

Data

 Training

Data
Project 1

 Training

Data
Project 2

Features Labels
Model

Model

Model

Model

Output

B
ia

s D
a
ta

Projects

F
ea

tu
re

s

Shared-Features

Non-shared-Features

B
ia

s D
a
ta

Projectsj

F
ea

tu
re

s

Shared-Features

Non-shared-Features

Figure 1: The Framework of MPR

The process of MPR can be described in Algorithm 1.

In particular, MPR firstly needs to initialize the start points.

In our implementation, we simply initialize the start points

with a zero matrix (Line 1). In fact, the starting points can

be initialized to a guess value computed from data or a spec-

ified point. MPR defines some variables which control the

process of searching for optimal value for S, NS and B
(Line 2). Then, MPR goes into a loop block with maxIter
iteration times (Lines 3-24). In this loop, MPR updates

Shared,NonShared and Bias with the search factor α
(Lines 4-5). Later, it computes performance value and gra-

dients of the current search points (Line 6). Next, MPR

goes further into a inner loop in which it can only be ter-

minated when a specific terminating condition is satisfied

(Lines 7-18). In this inner loop, the Armijo Goldstein line

search scheme [20] is used to compute the optimal shared

and non-shared information structure together with the op-

timal bias data (Lines 8-17). After reaching the termination

of the inner loop, it stores previous search points and does

preparation for the next iteration. If the difference between

the latest two performance meets the requirements of max-

imum tolerance, MPR can jump out of the outer loop block

and return in advance (Lines 19-21). If not, MPR will go to

the next iteration with the updated change factor (i.e., t
′

,t)
(Lines 22-23). At last, it returns the best value for S,NS
and B after given iterations (Line 25).

4 Experiment Design and Result Analysis

4.1 Experimental Subjects

In our empirical studies, 30 projects from PROMISE are

used to verify the performances of MPR. These projects can

be downloaded from PROMISE and they are widely used

in previous empirical studies [11, 12, 15, 16, 21, 22]. The

characteristic of these projects are shown in Table 1, which

includes project name, number of modules, number (per-

centage) of defective modules and the maximum defects

contained in the modules. Each project use 20 metrics (i.e.,

features) to measure extracted modules, which are designed

0http://openscience.us/repo/

based on the code complexity and the characteristic of ob-

ject oriented program. Notice that the granularity of ex-

tracted program modules is set to class.

Table 1: Statistic of Experimental Subjects

Project (Versions) # Modules
Defective

Modules

% Defective

Modules
Max

ant(1.3,1.4,1.5,1.6,1.7) 125-745 33-338 10.92%-26.21% (3,3,2,10,10)

camel(1.0,1.2,1.4,1.6) 339-965 14-522 3.83%-35.53% (2,28,17,28)

ivy(1.1,1.4,2.0) 111-352 18-233 6.64%-56.76% (36,3,3)

jedit(3.2,4.0.,4.1,4.2) 272-367 106-382 13.08%-33.09% (45,23,17,10)

synapse(1.0,1.1,1.2) 157-256 21-145 10.19%-33.59% (4,7,9)

xalan(2.4,2.5,2.6) 723-885 156-625 15.21%-48.19% (7,9,9)

xerces(1.2,1.3) 440-453 115-193 15.23%-16.14% (4,30)

prop(1,2,3,4,5,6) 660-23014 79-5493 9.6%-15.3% (37,27,11,22,19,4)

4.2 Performance Measures
To evaluate the performance of MPR for SDNP, average

absolute error (AAE) and average relative error (ARE) per-

formance measures are used.

AAE measures the average magnitude of the errors in

a set of predictions. It shows the difference between the

predicted value and the actual value and is defined as:

AAE =
1

n

n
∑

i=1

∣

∣Ȳi − Yi

∣

∣ (1)

ARE calculates how large the absolute error is compared

with the total size of the object measured and is defined as:

ARE = (1/n)

n
∑

i=1

∣

∣Ȳi − Yi

∣

∣/(Yi + 1) (2)

In Formulation 1 and Formulation 2, Ȳi is the predicted

number of defects for i-th software module, Yi is the ac-

tual number of defects for this module and n represents

the number of modules. For ARE, sometimes Yi may be

zero. To mitigate this issue, we add the actual value of Yi to

one at the denominator to make the definition always well-

defined [10]. Notice that the smaller the value of AAE and

ARE, the better performance of the constructed regression

model [23].

4.3 Experimental Setup

To evaluate the performance of MPR, we consider 6

baselines (i.e., LR, NNR, SVR, DTR, BRR and DBR). To

427

Algorithm 1 Multiple Projects Regression (MPR)

Input:

X(n×F)×m: all the data of related projects;

Y (n×1)×m: the corresponding responses of all related

projects;

maxIter: the number of maximum iteration;

maxTol: the tolerance of the performance between two iter-

ations;

Output:

SharedF×m(S): all shared information among projects;

NonSharedF×m(NS): non-shared information for each

project;

Biasm×1(B): the bias data for regression;

1: Initial the start points: filling Shared, NonShared, Bias
with a zero matrix;

2: Let t=1, t
′

=iter=0, γ=1, γinc=2, α=Initial search factor,

which controls the search for optimal value of S,NS,B;

3: while (iter < maxIter) do

4: Set α = (t
′ − 1)/t;

5: Find next search point for S,NS,B with α, and store them

into Stmp, NStmp, Btmp;

6: Compute the whole loss value and gradients of the current

search points with Stmp, NStmp and Btmp , and return

gWtmp, gCtmp and Ltmp;

7: while (true) do

8: St = proximalL1,∞norm(Stmp − gWtmp

γ
, BRP.α

γ
);

9: NSt = proximalL1,1norm(NStmp − gWtmp

γ
, BRP.β

γ
);

10: Bt = Btmp − gCtmp/γ;

11: Evaluate performance and save it in list of funcV al;
12: Use the Frobenius norm operation on the delta of {St −

Stmp, NSt − NStmp, Bt − Btmp}, respectively, then

sum them up;

13: if (reach termination conditions) then

14: break;

15: else

16: γ = γ × γinc;

17: end if

18: end while

19: if (abs(funcV al(end) − funcV al(end − 1)) 6

maxTol× funcV al(end− 1)) then

20: break;

21: end if

22: iter ++;

23: Update t
′

and t, i.e., t
′

= t, t = 0.5× (1+
√
1 + 4× t2);

24: end while

25: return S,NS,B

avoid the errors in model implementation, we use these re-

gression models implemented by scikit-learn library, which

is a popular machine learning toolkit written by python

language. Notice our experiments use the default hyper-

parameter settings for different regression models. That is,

we do not perform hyper-parameter optimization for each

regression model. 6 regression models are briefly described

as follows:

Linear Regression (LR) is always used to solve the least

squares function of the linear relationship between one or

multiple independent variables and one dependent variable.

Nearest Neighbors Regression (NNR) is based on the k-

nearest neighbors algorithm, and the regression value of an

instance is calculated by the weighted average of its near-

est neighbors. Then, the weight is set proportional to the

inverse of the distance between the instance and its neigh-

bors.

Support Vector Regression (SVR) is the extended from

the Support Vector Machines, which only depends on a sub-

set of training data, because the cost function for building a

SVR model ignores any training data close to the prediction

results of the model.

Decision Tree Regression (DTR) learns simple decision

rules to approximate the curve of a given training data set,

and then predicts the target variable.

Bayesian Ridge Regression (BRR) is similar to the clas-

sical Ridge Regression. The hyper-parameters of such type

of models are introduced by prior probability and then es-

timated by maximizing the marginal log likelihood with

probabilistic models.

Gradient Boosting Regression (GBR) is in the form of

an ensemble of weak prediction models. Several base es-

timators are combined with a given learning algorithm to

improve the prediction accuracy over a single estimator.

For MPR, we train and test the regression model on all

projects simultaneously. Besides, 10-fold cross validation

(CV) are used in our experiments. In particular, we split the

original dataset into 10 folds equally. Then, the 9 folds are

treated as the training data, while the remaining one fold

is treated as the test data. For those baselines, we also use

10-fold CV to train and test regression models on all each

project independently. To overcome possible bias in the

data split process, we perform 10-fold CV for 10 times and

report the average performance values.

To check the significance of performance comparison,

we conduct Wilcoxon signed-rank test [24], which is a non-

parametric statistical hypothesis test. For all the tests, the

null hypotheses are that there is no difference between the

trained predictors, and the significance level α is set to 0.05.

If p-value is smaller than 0.05, we reject the null hypothe-

ses, otherwise we accept the null hypotheses.

428

4.4 Result Analysis

RQ: How effective is our proposed approach MPR for

SDNP? How much improvement can it achieve over the

baselines?

Motivation. Our main goal is to propose an approach to im-

prove the performance of model for addressing regression

issues by using the knowledge contained in related projects.

However, to show the feasibility of this approach, we must

analyze how effective it is in its prediction performance and

whether it can perform better than baselines. The answer

for this RQ would shed light on how much our approach

advances the state of the art of SDNP.

Approach. To answer this RQ, we compare MPR with LR,

NNR, SVR, DTR, BRR and GBR to investigate whether

MPR has competitiveness over these baselines. AAE and

ARE are used to evaluate the performance of these ap-

proaches. In addition, we run all these approaches 100 times

independently.

Results. Table 2 and Table 3 show the comparison results

among MPR and 6 state-of-the-art regression approaches

(i.e., LR, NNR, SVR, DTR, BRR and GBR) based on AAE

and ARE respectively. In both of these two tables, the first

column presents the names of projects. Here we assume that

all projects have a certain relatedness, since they consider

the same features. The remaining 7 columns list the per-

formance values of seven approaches in terms of different

performance measures (i.e., AAE and ARE). In each row,

the best results are in bold. Notice that all these results of

different methods are calculated by 100 independent runs.

Table 2: Comparison of MPR and Baseline Methods on

PROMISE Dataset in terms of AAE

Project MPR LR NNR SVR DTR BRR GBR

ant-1.3 0.32 0.43 0.36 0.44 0.46 0.38 0.45

ant-1.4 0.26 0.40 0.38 0.42 0.42 0.41 0.41

ant-1.5 0.29 0.22 0.19 0.26 0.18 0.21 0.18

ant-1.6 0.28 0.58 0.50 0.68 0.55 0.55 0.51

ant-1.7 0.20 0.49 0.48 0.61 0.58 0.48 0.50

camel-1.0 0.16 0.09 0.07 0.16 0.09 0.08 0.09

camel-1.2 0.15 1.06 1.05 0.96 1.08 1.06 1.01

camel-1.4 0.14 0.59 0.55 0.53 0.63 0.57 0.55

camel-1.6 0.14 0.79 0.79 0.67 0.83 0.77 0.73

ivy-1.1 0.28 1.68 1.65 1.93 1.96 1.39 1.50

ivy-1.4 0.24 0.15 0.12 0.21 0.11 0.13 0.13

ivy-2.0 0.24 0.26 0.23 0.31 0.27 0.23 0.23

jedit-3.2 0.27 1.54 1.56 1.54 1.82 1.46 1.60

jedit-4.0 0.28 0.83 0.88 0.90 1.02 0.81 0.87

jedit-4.1 0.29 0.70 0.77 0.86 0.83 0.69 0.78

jedit-4.2 0.26 0.38 0.41 0.45 0.43 0.39 0.36

synapse-1.0 0.19 0.29 0.21 0.28 0.23 0.24 0.22

synapse-1.1 0.19 0.57 0.53 0.59 0.55 0.53 0.50

synapse-1.2 0.19 0.65 0.60 0.67 0.72 0.59 0.64

xalan-2.4 0.05 0.32 0.30 0.37 0.33 0.31 0.30

xalan-2.5 0.04 0.63 0.59 0.61 0.64 0.64 0.59

xalan-2.6 0.06 0.62 0.56 0.62 0.58 0.64 0.53

xerces-1.2 0.07 0.43 0.38 0.38 0.33 0.43 0.35

xerces-1.3 0.06 0.77 0.54 0.55 0.49 0.74 0.46

prop-1 0.18 0.45 0.39 0.39 0.43 0.45 0.42

prop-2 0.24 0.29 0.25 0.27 0.24 0.29 0.28

prop-3 0.23 0.26 0.25 0.25 0.26 0.26 0.26

prop-4 0.44 0.26 0.23 0.26 0.23 0.25 0.24

prop-5 0.21 0.35 0.32 0.34 0.35 0.35 0.34

prop-6 0.18 0.21 0.19 0.22 0.17 0.20 0.19

Table 3: Comparison of MPR and Baseline Methods on

PROMISE Dataset in terms of ARE

Projects MPR LR NNR SVR DTR BRR GBR

ant-1.3 0.28 0.31 0.23 0.29 0.31 0.26 0.32

ant-1.4 0.24 0.30 0.27 0.31 0.30 0.29 0.31

ant-1.5 0.27 0.18 0.14 0.21 0.13 0.17 0.13

ant-1.6 0.23 0.38 0.30 0.38 0.31 0.36 0.31

ant-1.7 0.15 0.32 0.28 0.34 0.34 0.31 0.30

camel-1.0 0.16 0.07 0.05 0.14 0.06 0.06 0.07

camel-1.2 0.11 0.64 0.60 0.45 0.61 0.64 0.60

camel-1.4 0.11 0.37 0.32 0.28 0.39 0.35 0.34

camel-1.6 0.11 0.49 0.46 0.31 0.47 0.46 0.43

ivy-1.1 0.13 0.74 0.61 0.60 0.70 0.64 0.61

ivy-1.4 0.21 0.10 0.08 0.17 0.08 0.09 0.10

ivy-2.0 0.21 0.19 0.16 0.22 0.20 0.16 0.16

jedit-3.2 0.18 0.97 0.75 0.48 0.83 0.91 0.81

jedit-4.0 0.21 0.52 0.47 0.38 0.58 0.52 0.51

jedit-4.1 0.22 0.42 0.41 0.39 0.42 0.41 0.44

jedit-4.2 0.22 0.26 0.26 0.26 0.27 0.27 0.23

synapse-1.0 0.08 0.23 0.15 0.21 0.17 0.18 0.15

synapse-1.1 0.17 0.39 0.32 0.36 0.37 0.36 0.33

synapse-1.2 0.10 0.41 0.35 0.40 0.42 0.37 0.39

xalan-2.4 0.05 0.22 0.20 0.26 0.22 0.21 0.20

xalan-2.5 0.04 0.42 0.38 0.38 0.39 0.43 0.39

xalan-2.6 0.05 0.40 0.34 0.37 0.34 0.41 0.33

xerces-1.2 0.06 0.30 0.25 0.25 0.22 0.30 0.24

xerces-1.3 0.05 0.52 0.28 0.26 0.25 0.50 0.25

prop-1 0.16 0.29 0.23 0.21 0.25 0.29 0.26

prop-2 0.23 0.20 0.17 0.17 0.15 0.20 0.18

prop-3 0.18 0.18 0.17 0.17 0.17 0.18 0.18

prop-4 0.25 0.18 0.15 0.17 0.14 0.17 0.15

prop-5 0.18 0.24 0.22 0.21 0.24 0.24 0.23

prop-6 0.12 0.15 0.14 0.17 0.13 0.15 0.14

Considering the performance of AAE in Table 2, MPR

can achieve better performance in most cases. In particu-

lar, MPR achieves 4/5 wins, 3/4 wins, 1/3 wins, 4/4 wins,

3/3 wins, 3/3 wins, 2/2 wins and 4/6 wins on ant, camel,

ivy, jedit, synapse, xalan, xerces and prop, respectively.

MPR has dominate performance in jedit, synapse, xalan and

xerces. However, MPR achieves pool performance (e.g.,

0.44 on prop-4). Besides, DTR achieves good performance

in three projects (i.e., 0.11 on ivy-1.4, 0.23 on prop-4 and

0.17 on prop-6). Considering the performance of ARE in

Table 3, MPR can achieve better performance in most cases.

In particular, MPR achieves 3/5 wins, 3/4 wins, 1/3 wins,

4/4 wins, 3/3 wins, 3/3 wins, 2/2 wins and 3/6 wins on ant,

camel, ivy, jedit, synapse, xalan, xerces and prop, respec-

tively. MPR also achieves dominate performance in jedit

synapse, xalan, xerces and prop. However, MPR obtains

pool performance (e.g., 0.27 on ant-1.5). Besides, DTR

achieves good performance in four projects (i.e., 0.13 on

ant-1.5, 0.08 on ivy-1.4, 0.15 on prop-2 and 0.14 on prop-

4).

To check whether the performance differences among

MPR and six baseline approaches are significant, we con-

duct the Wilcoxon signed-rank test. Table 4 shows the re-

sults in detail. Considering thirty projects from PROMISE,

the p-values of “MPR vs LR”, “MPR vs NNR”, “MPR

vs SVR”, “MPR vs DTR”, “MPR vs BRR” and “MPR vs

GBR” are all less than 0.05, which indicates that MPR per-

forms statistically better than the baseline methods.

Conclusion: By utilizing the relatedness among projects,

429

Table 4: p-Value of the Wilcoxon Signed-Rank Test Among MPR and Baseline Methods.

Performance Measure MPR vs LR MPR vs NNR MPR vs SVR MPR vs DTR MPR vs BRR MPR vs GBR

AAE 7.76E-07 1.37E-05 2.08E-07 1.08E-05 3.06E-06 8.19E-06

ARE 5.75E-06 2.65E-04 6.28E-06 9.99E-05 2.48E-05 1.23E-04

MPR can achieve better and stable performance for SDNP

in most projects.

5 Conclusion and Future Work

In this paper, we propose a novel approach MPR, which

mainly based on multiple linear regression. To show the

effectiveness of MPR, we use two widely used regression

performance measures (i.e., AAE and ARE) to assess the

capability of MPR for SDNP on 30 projects. The results

show the competitiveness of MPR when compared with six

state-of-the-art baselines.

Acknowledge
Qiguo Huang and Chao Ni have contributed equally for

this work. This work was supported in part by National Nat-

ural Science Foundation of China (Grant Nos.61373012,

61202006, 91218302, 61321491) and China Scholarship

Council (Grant No. 201806190172), which supports over-

seas studies for Chao Ni to Monash University in Australia.

References

[1] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A sys-

tematic literature review on fault prediction performance in software

engineering,” IEEE Transactions on Software Engineering, vol. 38,

no. 6, pp. 1276–1304, 2012.

[2] C. Ni, W.-S. Liu, X. Chen, Q. Gu, D.-X. Chen, and Q.-G. Huang,

“A cluster based feature selection method for cross-project software

defect prediction,” Journal of Computer Science and Technology,

vol. 32, no. 6, pp. 1090–1107, 2017.

[3] C. Ni, X. Chen, F. Wu, Y. Shen, and Q. Gu, “An empirical study

on pareto based multi-objective feature selection for software defect

prediction,” Journal of Systems and Software, vol. 152, pp. 215–238,

2019.

[4] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “The impact

of using regression models to build defect classifiers,” in Proceedings

of International Conference on Mining Software Repositories, 2017,

pp. 135–145.

[5] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault

incidence using software change history,” IEEE Transactions on Soft-

ware Engineering, vol. 26, no. 7, pp. 653–661, 2002.

[6] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location

and number of faults in large software systems,” IEEE Transactions

on Software Engineering, vol. 31, no. 4, pp. 340–355, 2005.

[7] L. Yu, “Using negative binomial regression analysis to predict soft-

ware faults: A study of apache ant,” International Journal of Infor-

mation Technology & Computer Science, vol. 4, no. 8, pp. 63–70,

2012.

[8] J. Wang and H. Zhang, “Predicting defect numbers based on defect

state transition models,” in Proceedings of Acm-Ieee International

Symposium on Empirical Software Engineering and Measurement,

2012, pp. 191–200.

[9] A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, and

G. Succi, “Identification of defect-prone classes in telecommunica-

tion software systems using design metrics,” Information Sciences,

vol. 176, no. 24, pp. 3711–3734, 2006.

[10] K. Gao and T. M. Khoshgoftaar, “A comprehensive empirical study

of count models for software fault prediction,” IEEE Transactions on

Reliability, vol. 56, no. 2, pp. 223–236, 2007.

[11] M. Chen and Y. Ma, “An empirical study on predicting defect num-

bers,” in The International Conference on Software Engineering and

Knowledge Engineering, 2015.

[12] X. Yu, J. Liu, Z. Yang, X. Jia, Q. Ling, and S. Ye, “Learning from

imbalanced data for predicting the number of software defects,” in

Proceedings of the IEEE International Symposium on Software Reli-

ability Engineering, 2017, pp. 78–89.

[13] S. Kumar and S. Kumar, A Decision Tree Regression based Approach

for the Number of Software Faults Prediction. ACM Sigsoft Soft-

ware Engineering Notes, 2016, vol. 40, no. 1.

[14] S. S. Rathore and S. Kumar, “An empirical study of some software

fault prediction techniques for the number of faults prediction,” Soft

Computing, vol. 21, no. 24, pp. 7417–7434, 2017.

[15] ——, “Linear and non-linear heterogeneous ensemble methods to

predict the number of faults in software systems,” Knowledge-Based

Systems, vol. 119, pp. 232–256, 2017.

[16] ——, Towards an ensemble based system for predicting the number

of software faults. Pergamon Press, Inc., 2017, vol. 82, no. 1.

[17] Y. Zhang and Q. Yang, “A survey on multi-task learning,” CoRR, vol.

abs/1707.08114, 2017.

[18] A. Jalali, P. D. Ravikumar, S. Sanghavi, and R. Chao, “A dirty model

for multi-task learning,” in Proceedings of Neural Information Pro-

cessing Systems Conference, 2010, pp. 964–972.

[19] K. Lounici, M. Pontil, A. B. Tsybakov, and S. V. D. Geer, “Taking

advantage of sparsity in multi-task learning,” in Proceeding of The

Conference on Learning Theory, 2009.

[20] V. Torczon, “On the convergence of pattern search algorithms,” SIAM

Journal on optimization, vol. 7, no. 1, pp. 1–25, 1997.

[21] M. Yan, Y. Fang, D. Lo, X. Xia, and X. Zhang, “File-level defect

prediction: Unsupervised vs. supervised models,” in Proceedings of

ACM/IEEE International Symposium on Empirical Software Engi-

neering and Measurement, 2017, pp. 344–353.

[22] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on

software defect prediction with a simplified metric set,” Information

& Software Technology, vol. 59, no. C, pp. 170–190, 2015.

[23] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software engineering

metrics and models. Benjamin/Cummings Publishing Company,

Inc, 1986.

[24] F. Wilcoxon, “Individual comparisons by ranking methods,” Biomet-

rics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

430

Cross-Project Defect Prediction via Transferable
Deep Learning-Generated and Handcrafted Features

Shaojian Qiu1, Lu Lu1∗, Ziyi Cai1 and Siyu Jiang2
1School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

2School of Software Engineering, South China University of Technology, Guangzhou, China
∗Corresponding author email: lul@scut.edu.cn

Abstract—Although the machine learning-based software de-
fect prediction (SDP) method has shown promising value in
software engineering, yet challenges remain. To improve the
performance of SDP, some researchers have used deep learning
algorithms to extract the semantic and structural features of
the program. However, in more practical cross-project defect
prediction (CPDP) tasks, whether deep learning-generated fea-
tures can be directly used should be explored due to the data
distribution shift that usually exists in different projects. In this
paper, we propose a Transferable Hybrid Features Learning with
Convolutional Neural Network (CNN-THFL) framework to con-
duct CPDP. Specially, CNN-THFL mines deep learning-generated
features from token vectors extracted from programs’ abstract
syntax trees via convolutional neural network. Furthermore,
CNN-THFL learns the transferable joint features simultaneously
considering deep learning-generated and handcrafted features by
applying a transfer component analysis algorithm. Finally, the
features generated by CNN-THFL are fed to the classifier to
train a defect prediction model. Extensive experiments verify that
CNN-THFL can outperform referential methods on 72 pairs of
CPDP tasks formed by 9 open-source projects.

Keywords—Software defect prediction, Cross-project defect
prediction, Transfer learning, Semantic feature learning

I. INTRODUCTION

Under the trend of increasing software scale and complexity,
how to effectively ensure the reliability of software has become
a popular research topic. Software defect prediction (SDP),
as a novel proposition of quality assurance technology, has
received a great deal of attention from researchers [1]–[3]. It is
designed to build a predictive model with the machine-learning
model and historical software defect data before detecting the
defect-prone modules or files in the software. Effective defect
prediction can help software quality assurance teams or code
reviewers allocate testing resources more reasonably.

SDP usually consists of two phases: extracting features
from program files and training the predictor via the machine-
learning [4] method. In previous studies, the discriminant
features adopted to construct predictive models were elabo-
rately extracted. These handcrafted features mainly include
Halstead features [5] based on operators and operands, Mc-
Cabe features [6] based on dependencies, and CK features [7]
based on the object-oriented concept. In recent years, some
researchers [4], [8] have suggested that it is not enough to only
consider handcrafted features. To expand the features available
in SDP for improving predictive performance, they tried to

DOI reference number: 10.18293/SEKE2019-070

use the deep-learning methods (e.g., Deep Belief Network,
DBN and Convolutional Neural Network, CNN) to mine
the semantic and structural features hidden in the software
program. The main idea of these methods is to extract the deep
learning-generated features from the token vectors generated
by programs’ Abstract Syntax Trees (ASTs) and feed to the
data with these generated features to the machine-learning
classifier to obtain the SDP model. Their experiments show
that DBN and CNN methods are superior to the traditional
SDP methods that use only handcrafted features in the cross-
version defect prediction tasks [9].

In practice, it is often difficult to establish an accurate defect
predictor for new projects due to the scarcity of defect labels.
To overcome this problem, cross-project defect prediction
(CPDP) [7] was proposed as an alternative solution to defect
predictors that learn new projects (called target projects)
by using labeled data from mature projects (called source
projects). Then, in the tasks of CPDP, there is a research
question of whether deep learning-generated features extracted
from the source project can be directly used for the SDP
task of the target project. In [10], Wang et al. explore the
effect of DBN-generated features on CPDP tasks; however,
their experiments were based only on the assumption that the
semantic features generated by DBN can capture the common
features of defects, which means the features obtained from a
project can be used in other projects. In this paper, we posit
that this assumption may not always hold. We suggest that,
because the data of the source and target projects usually have
different distributions, the deep learning-generated features
should not be used directly in CPDP tasks.

Let us use an example to show this distribution discrepancy.
As shown in Figure 1, we present the data distribution of
two real projects, Apache Lucene v2.4 and Apache Ant v1.7.
Using these two projects, we can form a sample based on
DBN-generated features (Figure 1a) and a sample based on
CNN-generated features (Figure 1b). For a comparable demon-
stration, we selected two-dimensional features to be drawn
on the X and Y axes, respectively. We normalized the data
to be displayed with min-max scaling and charted the main
distributions in the coordinates. In Figure 1, the discrepancy
of the data distribution is clearly shown to exist in the two
projects (Pr(Xs) 6= Pr(Xt)). As we know, if the distribution
of training and test data do not match, we are facing sample
selection bias or covariate shift problems that will greatly

431

affect the performance of the predictive model [11].

0.0

0.1

0.2

0.3

0.5 0.6 0.7 0.8 0.9 1.0

DB
N-
ge
ne
ra
te
d
Fe
at
ur
e
#2

DBN-generated Feature #1

Lucene v2.4

0.0

0.1

0.2

0.3

0.5 0.6 0.7 0.8 0.9 1.0
DB

N-
ge
ne
ra
te
d
Fe
at
ur
e
#2

DBN-generated Feature #1

Log4j v1.2

(a) Distribution discrepancy based on DBN-generated features

0.5

0.6

0.7

0.8

0.9

1.0

0.4 0.5 0.6 0.7 0.8 0.9 1.0

CN
N-
ge
ne
ra
te
d
Fe
at
ur
e
#2

CNN-generated Feature #1

Lucene v2.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4 0.5 0.6 0.7 0.8 0.9 1.0

CN
N-
ge
ne
ra
te
d
Fe
at
ur
e
#2

CNN-generated Feature #1

Log4j v1.2

(b) Distribution discrepancy based on CNN-generated features

Fig. 1: The distribution discrepancy existed between projects.

To solve this problem, we proposed the Transferable Hy-
brid Features Learning framework with Convolutional Neural
Network (CNN-THFL) to perform CPDP. Specifically, we
parsed the source files into ASTs and selected representative
nodes on the AST to form token vectors. By converting
the token vectors into integer vectors, we adopted CNN to
extract the deep learning-generated features. In the process,
we concatenated deep learning-generated features with the
traditional handcrafted features to construct the hybrid fea-
tures [4]. To enhance the transferability of hybrid features
in CPDP tasks, we attempted to learn transfer components
across projects in a reproducing kernel Hilbert space (RKHS)
using transfer component analysis (TCA), which could match
the data distribution between projects. Finally, the transferable
hybrid features generated by CNN-THFL could be fed to the
base classifier to train the CPDP model.

The main contributions of this paper are:

- We propose a features-learning framework called
CNN-THFL, which jointly considers the transferability
of deep learning-generated and handcrafted features
in cross-project programs, to handle the distributions
discrepancy between projects in CPDP tasks.

- To validate the effectiveness of CNN-THFL, we evaluate
it on 72 pairs of CPDP tasks formed by 9 open-source
projects. The experimental results show that in terms of
average MCC, CNN-THFL improves the TCA by 30.1%

and the DP-CNN by 62.8%.

- By experimental comparison, we found that when using
CNN or DBN to mine deep learning-generated features,
better results can be attained if this is simultaneously
combined with handcrafted features and TCA algorithm,
indicating the necessity of using hybrid features and
considering their transferability.

We have organized the rest of this paper as follows. In
Section II, we review some related works. In Section III, we
show the high-level framework of CNN-THFL and elaborate
its steps. In Section IV, we provide the experimental setup.
In Section V, we show the experimental results to validate
the effectiveness of CNN-THFL framework. In Section VI,
we discuss the threats to validity. We concludes our work and
point out the potential future works in Section VII.

II. RELATED WORK

In this section, we briefly review the related CPDP works.
To effectively apply the SDP technique early in the software

lifecycle, CPDP is proposed as a more feasible solution. Its
central concept is learning a defect predictor for a new project
(target project) by using labeled data from a mature project
(source project). In a previous study of CPDP, Zimmermann
et al. [12] conducted a large-scale experimental study on its
feasibility. They selected 12 real-world projects and analyzed
a total of 622 pairs of CPDP tasks. The results show that only
3.4% of tasks were able to achieve acceptable performance.
To enhance the performance of the CPDP, Ma et al. [13]
developed a transfer Naive Bayes model (TNB) that uses the
weighted source data based on target set information to train
a weighted Naive Bayes classifier. Nam et al. [14] applied a
transfer-learning approach TCA+, which extended TCA [15]
with customized normalizing rules, to make data distributions
in source and target projects similar. The experimental results
show that TCA+ can improve the performance of CPDP by
transferable feature learning.

However, the aforementioned methods only use handcrafted
features (e.g., Halstead [5], McCabe [6], and CK features [7]).
In fact, if we can reasonably mine and use the semantic and
structural information of the programs, it will be possible to
further improve the performance of SDP. Recently, Wang et
al. [10] tried to leverage DBN to automatically learn semantic
features using token vectors extracted from the programs’
ASTs. Their evaluation of 10 open-source projects shows
that the DBN-learned features improve the performance of
SDP. Based on the framework of DBN method, Li et al. [4]
proposed that CNN is more advanced than DBN in capturing
local patterns. They proposed a framework called Defect
Prediction via Convolutional Neural Network (DP-CNN) to
extract semantic and structural features from token vectors.
The experimental results show that on average, DP-CNN
improves the performance of SDP. It is worth mentioning that
DP-CNN concatenates the CNN-learned feature vectors with
traditional handcrafted feature vectors to avoid losing potential

432

④ Performing defect prediction

AST nodes index
WhileStatement 1

MethodDeclaration 2
BlockStatement 3
IfStatement 4

Target Token VectorsTarget ASTs

TCA

Target Project

Source Project

Source ASTs
MethodDeclaration BlockStatement …MethodDeclaration BlockStatement …IfStatement MethodDeclaration ReturnStatement …

MethodDeclaration BlockStatement …MethodDeclaration BlockStatement …WhileStatement MethodDeclaration BlockStatement …

Unified Dictionary

1 2 3 …1 2 3 …1 2 3 …

1 2 3 …1 2 3 …4 2 5 …

Source Token Vectors

Target Integer Vectors

Source Integer Vectors

Pool Input
Conv

train CNN

Source Deep
Learning-Based
Features

Target Deep
Learning-Based
Features

Source
Handcrafted
Features

Target
Handcrafted
Features

+

+
Source Hybrid
Features

Target Hybrid
Features

Transferable
Source Hybrid
Features

Transferable
Target Hybrid
Features

Defect
Prediction

Classifier
train

ReturnStatement 5
…
…

…

① Parsing source code and converting into integer vectors

② Extracting deep learning-based features and constructing hybrid features③ Generating transferable features

Fig. 2: Overview of our CNN-THFL framework to perform CPDP.

information in the latter. However, neither the DBN nor the
CNN has considered the situation that there is distribution
discrepancy across projects in CPDP tasks (Wang et al. [10]
only assume that semantic features can capture the common
features of defects and directly use DBN-generated features in
CPDP tasks). Furthermore, this situation is exactly what we
want to study and handle in this paper.

III. METHODOLOGY

A. Overall Framework

As presented in Figure 2, our CNN-THFL framework con-
sists of four major steps: 1) parsing source code into tokens
and converting them into integer vectors; 2) leveraging the
CNN to automatically extract deep learning-generated features
and constructing hybrid features; 3) generating transferable hy-
brid features via TCA; and 4) building classifier and predicting
defects.

B. Parsing Source Code and Converting into Integer Vectors

AST is a tree representation of source code, and each struc-
ture in the source code can be represented as a node in the tree.
Related work [10] has proven that ASTs can be used to detect
the integrity and defects of source code. In this paper, we used
the Javalang1, an open-source Python package, to parse the
Java files and generate corresponding token vectors. Table I
lists the node categories and types used in this report. We use
the name of the node type as the identifier for each node in the
token vector. Considering that the names of methods, classes,
and types are project-specific [8], we also used the type name
(e.g., MethodDeclarations and ClassInvocation) to label nodes
instead of the specific name used in [4].

The token vector extracted by Javalang cannot be directly
used as input for CNN model training. To solve this problem,

1https://pypi.org/project/javalang/0.9.2/

TABLE I: The selected AST nodes.

Node Category Node Type

Nodes of method in-
vocations and instance
creations

MethodInvocation, SuperMethodInvocation,
ClassCreator

Declaration-related
nodes

PackageDeclaration, InterfaceDeclaration,
ClassDeclaration, ConstructorDeclaration,
MethodDeclaration, VariableDeclarator,
FormalParameter

Control-flow-related
nodes

IfStatement, ForStatement, WhileStatement,
DoStatement, AssertStatement, BreakState-
ment, ContinueStatement, ReturnStatement,
ThrowStatement, TryStatement, Synchro-
nizedStatement, SwitchStatement, Block-
Statement, CatchClauseParameter, TryRe-
source, CatchClause, SwitchStatementCase,
ForControl, EnhancedForControl

Other nodes BasicType, MemberReference, Reference-
Type, SuperMemberReference, Statement-
Expression,

referring to [4], we established a mapping dictionary between
tokens and integers so that the same token would be repre-
sented as the same integer. In this way, we could convert the
token vectors into integer vectors. Furthermore, because CNN
requires input vectors to have the same length, all input vectors
would be filled with zero to the length of the longest vector.

C. Extracting Deep Learning-Generated Features and Con-
structing Hybrid Features

In this study, we applied CNN’s feature-generation capa-
bility to capture the semantics and local structure of source
code [4]. Our CNN included an embedded layer, a convolu-
tional layer, a maximum pool layer, a full-connection layer,
and the last output layer as input to the base classifier. All
other layers adopted the ReLU activation function except the

433

output layer, which used the sigmoid as the activation function.
We implemented CNN by Pytorch2, which has efficient tools
for neural networks construction and enables fast, flexible
experimentation.

To apply the knowledge carried in the handcrafted features
at the same time, we stitched the these features of each project
with the deep learning-generated features. The handcrafted
features used in this paper were drawn from the metrics used
by Jureczko and Madeyski in their defect prediction work [16].
Notice that we used the same handcrafted features from the
source and target projects. We spliced deep learning-generated
feature vectors with handcrafted feature vectors using the
Concatenate method of Python to obtain hybrid feature vectors
as the input for the next step.

D. Generating Transferable Features

In this study, we hoped to find transferable feature represen-
tation to handle the distribution discrepancy between source
and target projects. TCA [15] is a transfer-learning method
that allows knowledge of defects from a source project to be
transferred to a target project. TCA attempts to learn some
of the transferable components in the RKHS using maximum
mean discrepancy [17]. In the subspace spanned by these
transferable components, the properties of source and target
data are preserved, and the data distributions in different
projects are similar to each other. Therefore, through the new
mapping data in this RKHS, we could train the base classifier
in the source project, which was also available for the target
project.

E. Performing Defect Prediction

For this paper, we chose logistic regression (LR) as a base
classifier. We followed the aforementioned steps to process
the files in the source and target projects and obtain the
transferable hybrid feature for each file. After we fed the TCA-
handled data of source project and corresponding label to the
LR model, the weights and deviations in our LR would be
obtained. Then we used the trained model to predict whether
the instances of the target project were defective.

IV. EXPERIMENTAL SETUP

A. Evaluated Projects

To assess the CNN-THFL framework, we collected 9 Java
open-source projects from the PROMISE repository, which has
been commonly used in recent CPDP researches [18]–[20].
Table II presents the basic information for the 9 projects. Each
project consists of a collection of Java files, their correspond-
ing 20 static code attributes (the detailed descriptions of which
can be found in [18]), and a label (defective or clean). To verify
the generality of our approach, the data sets were composed
of several projects with different sizes (ranging from 205 to
815) and defective rates (a minimum value of 11.4% and a
maximum value of 98.8%). In our CPDP task, given one of
the projects as the training data, another eight projects could

2https://pytorch.org

TABLE II: The 9 projects selected from the PROMISE repos-
itory.

Project Name Project Version Instance Count Defect Rate

Ant 1.7 745 22.3%

Camel 1.6 965 19.5%

Ivy 2.0 352 11.4%

Log4j 1.2 205 92.2 %

Lucene 2.4 340 59.7%

Synapse 1.2 256 33.6%

Velocity 1.6.1 229 34.1%

Xalan 2.7 909 98.8%

Xerces 1.4.4 588 74.3%

be used as the test data, respectively (e.g., using the data of
Ant v1.7 as a training set and the data of Camel v1.6 as the
test set). Thus, 72 pairs of CPDP tasks could be performed in
this study.

Software defect data have the typical characteristic of im-
balanced distribution [21], [22], with the number of minority
instances being less than the number of majority instances
(e.g., in the Ivy-v2.0 project, the number of defective instances
is far less than that of clean instances). In this study, we used
the method of random oversampling to avoid imbalanced data
that would degrade the performance of our model.

B. Evaluation Metrics

The metric of predictive performance is very important. Al-
though the F1-socre has been widely used in recent years [18],
[19], we believe that it has problems in SDP tasks [3], espe-
cially when there are imbalanced data sets. For example, F1-
score excludes true negatives (TN) from calculations, which
may be problematic. The test manager will be happy to know
whether the component is truly defect-free. Thus, we adopted
the Matthews Correlation Coefficient [23] (MCC), as a metric
of predictive performance.

As shown in Table III, there may be four outputs when
using the dichotomous classifier in the SDP task.

TABLE III: Confusion Matrix

Truly Defective Truly Clean

Predictively Defective TP FP

Predictively Clean FN TN

MCC is the geometric mean of the regression coefficients
of the problem and its dual. Based on the confusion matrix,
MCC is calculated by the following formula:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

As a correlation coefficient, MCC measures the relationship
between predictive class and true class by taking into account
all components of confusion matrix. Its return value is on a
scale [-1,1] where 1 means a perfect positive correlation and

434

-1 means a perfect negative correlation. Specifically, MCC can
take into account TN, and it is less sensitive to the imbalanced
data set.

C. Comparative Methods
We compared CNN-THFL with 9 methods including:
- LR. Traditional method, which builds a LR classifier only

using handcrafted features.
- TCA. A classic transferable features learning

method [15].
- DBN. A standard DBN model to extract semantic features

for SDP [10].
- DBN-TCA. A variant of DBN, which applies TCA to

obtain transferable DBN-learned features.
- DBN-DP. An improved version of DBN proposed by [4],

which concatenates the DBN-learned features with the
handcrafted features.

- DBN-THFL. A variant of CNN-THFL framework which
adopted DBN to generate deep learning features.

- CNN. A SDP method that extracts deep learning-
generated features via standard CNN.

- CNN-TCA. A variant of CNN that applies TCA to obtain
transferable CNN-learned features.

- CNN-DP. A state-of-the-art SDP method that is an im-
proved version of CNN proposed by [4].

Regarding the implementation of DBN, we adopted the
same network architectures and parameters as in [10], i.e.,
10 hidden layers and 100 nodes in each hidden layer. When
implementing CNN, referring to [4], we set the batch size as
32, the epoch number as 15, the embedding dimension as 30,
the number of hidden nodes as 100, the number of filters as 10,
and filter length as 5. To make fair comparisons, we followed
the same code-parsing process to generate integer vectors for
neural networks. For TCA, we used the source code provided
by its author [15]. For LR, we used the same implementation
of LogisticRegression in sklearn.linear model, and we adopted
default parameters settings by sklearn. Considering the process
of random oversampling and batch shuffle involve randomness,
we conducted each method 20 times, recording their average
result of MCC.

V. RESULTS

Because some data sets tend to produce over- or under-
performing models, we adopted the Scott-Knott ESD [24], [25]
test to compare the performance of the methods we examined
(see Figure 3). The Scott-Knott ESD test used here is a mean
comparison method that leverages hierarchical clustering to
divide a set of MCCs into statistically distinct groups with
non-negligible differences. The approach of this test consists
of two steps: (1) finding the partitions that maximize the MCC
means between groups, and (2) splitting into two groups or
merging them together in one group. A detailed description of
the Scott-Knott ESD test can be seen in [24]. We can use the sk

esd function of the ScottKnottESD3 R package to implement
the test easily and quickly.

3https://github.com/klainfo/ScottKnottESD

0.18 0.166 0.163 0.154 0.138 0.12 0.111 0.102
0.066 0.048

1 2 3 4 5

CNN−T
HFL

DBN−T
HFL

CNN−T
CA LR TCA

DBN−D
P

CNN−D
P

CNN DBN

DBN−T
CA

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Method

M
C

C

Fig. 3: The Scott-Knott ESD ranking of 10 different methods
across the 72 CPDP tasks. The blue diamond indicates the
average MCC of our studied methods.

Figure 3 presents the Scott-Knott ESD test of the MCC
results (including for 72 CPDP tasks). By comparing 9
referential methods, the average MCC of CNN-THFL was
0.18, which respectively outperformed DBN-THFL, CNN-
TCA, LR, TCA, DBN-DP, CNN-DP, and CNN by 8.9%,
10.5%, 17.1%, 30.1%, 50.8%, 62.8%, and 76.1%.

The following two points can be observed from Figure 3:
1) DBN-DP and CNN-DP, which consider concatenating the

deep learning-generated features with the handcrafted features,
will perform better than pure DBN and CNN.

2) Better prediction performance (in terms of MCC) can
be obtained by combining the THFL framework with deep-
learning methods. Among them, CNN-THFL can perform
better.

In summary, our CNN-THFL framework improves the
performance of CPDP tasks with the consideration of
distribution discrepancy between projects. It is worth
mentioning that not only CNN-THFL but also DBN-THFL
will achieve better performance than the methods without
THFL, so we recommend using hybrid features and
adapting the distribution discrepancy between projects
when performing CPDP. We believe that this improvement
of SDP would provide more effective help to test teams
for detecting software defects and reasonably allocating
test resources.

VI. THREATS TO VALIDITY

A. Implementation of DBN and DP-CNN
In this study, we compared the DBN method [10] and

DP-CNN method [4], which are the state-of-the-art deep
learning-based SDP methods. Because their implementations
have not been publicly released, we tried to reimplement the
corresponding methods by Pytorch with the same network

435

structures and parameters. However, we still cannot guarantee
that the effects of DBN and DP-CNN that we re-implemented
are exactly the same as those in [10] and [4]. However, in
our experiments, we used the unified processes (e.g., code-
parsing and oversampling steps) and tools (e.g., Pytorch and
LR classifier) to implement the CPDP framework. As such,
our comparative experiment should be fair.

B. Experimental Results Might Not Be Generalizable
In our experiments, 9 open-source projects were selected

from the PROMISE repository to access the CPDP methods.
The experimental results of these 9 projects (72 CPDP tasks)
do not represent all cases. For some other programming
languages and commercial software, our proposed method
might obtain better or worse results.

C. MCC Might Not Be the Only Appropriate Measure
In our work, we used MCC as the metric of predictive

performance. In fact, other metrics (e.g., F-score and G-
measure) can also be used in the SDP task. In this paper, we
recommend using MCC because it can take TN into account,
and it is less sensitive to the problem of imbalanced data sets.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a features learning framework
called CNN-THFL to improve the performance of CPDP.
CNN-THFL aims to mine both transferable deep learning-
generated and handcrafted features between source and target
projects. An important advantage of CNN-THFL is that it
explores the necessity for distribution adaptation of hybrid
features that concatenate deep learning-generated features with
the traditional handcrafted features in a CPDP task. CNN-
THFL is robust to differences in distribution between projects.
A large number of experiments on 9 projects with 72 CPDP
tasks have been carried out to verify that the proposed frame-
work can achieve better performance in terms of MCC than
the advanced referential methods. In future work, we plan
to investigate the up-to-date distribution adaptation method
to reduce the distribution discrepancy between projects. In
addition, we will try to solve the defect prediction across
multiple projects with CNN-THFL.

ACKNOWLEDGMENT

This research was supported by the National Nature Science
Foundation of China (No. 61370103), Guangzhou Produce &
Research Fund (201802020006) and Zhongshan Produce &
Research Fund(2017A1014).

REFERENCES

[1] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction
using ensemble learning on selected features,” Information and Software
Technology, vol. 58, pp. 388–402, 2015.

[2] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on software
defect prediction with a simplified metric set,” Information and Software
Technology, vol. 59, pp. 170–190, 2015.

[3] Q. Song, Y. Guo, and M. Shepperd, “A comprehensive investigation of
the role of imbalanced learning for software defect prediction,” IEEE
Transactions on Software Engineering, 2018.

[4] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via
convolutional neural network,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS), pp. 318–328, IEEE,
2017.

[5] H. H. Maurice, “Elements of software science (operating and program-
ming systems series),” 1977.

[6] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[7] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6,
pp. 476–493, 1994.

[8] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pp. 297–308, IEEE, 2016.

[9] Z. Xu, J. Liu, X. Luo, and T. Zhang, “Cross-version defect prediction via
hybrid active learning with kernel principal component analysis,” in 2018
IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 209–220, IEEE, 2018.

[10] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning for
software defect prediction,” IEEE Transactions on Software Engineering,
2018.

[11] J. Huang, A. Gretton, K. Borgwardt, B. Schölkopf, and A. J. Smola,
“Correcting sample selection bias by unlabeled data,” in Advances in
neural information processing systems, pp. 601–608, 2007.

[12] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in The 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pp. 91–100, ACM, 2009.

[13] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-
company software defect prediction,” Information and Software Tech-
nology, vol. 54, no. 3, pp. 248–256, 2012.

[14] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in 2013 35th
International Conference on Software Engineering (ICSE), pp. 382–391,
IEEE, 2013.

[15] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Transactions on Neural Networks,
vol. 22, no. 2, pp. 199–210, 2011.

[16] M. Jureczko and L. Madeyski, “Towards identifying software project
clusters with regard to defect prediction,” in Proceedings of the 6th
International Conference on Predictive Models in Software Engineering,
p. 9, ACM, 2010.

[17] K. M. Borgwardt, A. Gretton, M. J. Rasch, H. P. Kriegel, B. Schölkopf,
and A. J. Smola, “Integrating structured biological data by kernel
maximum mean discrepancy,” Bioinformatics, vol. 22, no. 14, pp. e49–
e57, 2006.

[18] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Mas-
sively compositional model for cross-project defect prediction,” IEEE
Transactions on software Engineering, vol. 42, no. 10, pp. 977–998,
2016.

[19] X. Y. Jing, F. Wu, X. Dong, and B. Xu, “An improved sda based
defect prediction framework for both within-project and cross-project
class-imbalance problems,” IEEE Transactions on Software Engineering,
vol. 43, no. 4, pp. 321–339, 2017.

[20] S. Qiu, L. Lu, and S. Jiang, “Multiple-components weights model for
cross-project software defect prediction,” IET Software, vol. 12, no. 4,
pp. 345–355, 2018.

[21] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples reduction in
cross-company software defects prediction,” Information and Software
Technology, vol. 62, pp. 67–77, 2015.

[22] S. Qiu, L. Lu, S. Jiang, and Y. Guo, “An investigation of imbalanced
ensemble learning methods for cross-project defect prediction,” Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, 2019.

[23] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen,
“Assessing the accuracy of prediction algorithms for classification: an
overview,” Bioinformatics, vol. 16, no. 5, pp. 412–424, 2000.

[24] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“An empirical comparison of model validation techniques for defect
prediction models,” IEEE Transactions on Software Engineering, vol. 43,
no. 1, pp. 1–18, 2017.

[25] S. Herbold, “Comments on scottknottesd in response to” an empiri-
cal comparison of model validation techniques for defect prediction
models”,” IEEE Transactions on Software Engineering, vol. 43, no. 11,
pp. 1091–1094, 2017.

436

An Investigation of Ensemble Approaches to
Cross-Version Defect Prediction

1st Xiaoxing Yang, 2nd Xin Li, 3rd Wushao Wen
School of Data and Computer Science

Sun Yat-Sen University
Guangzhou, China

(yangxx27@mail,lixin49@mail2,wenwsh@mail).sysu.edu.cn

4th Jianmin Su
School of Physics and Optoelectronic Engineering

Guangdong University of Technology
Guangzhou, China
jackysura@163.com

Abstract—Software defect prediction can help software testers
to focus on software modules with more defects. Many ensemble
methods have been proposed for software defect prediction to
divide software modules into defect-prone and defect-free, and
these ensemble methods have been proved to be more effective
than single learning algorithms. A few ensemble approaches
have been applied to predict the number of defects in software
modules, and they also perform well in most cases. The good
performance of ensemble approaches implies that ensemble
algorithms might not only improve the accuracy of software
defect classification models, but also improve the performance
of defect ranking models. Therefore, we propose an ensemble
method based on Yang et al.’s learning-to-rank approach in this
paper. Experimental results show that the learning-to-rank-based
ensemble approach performs better than the single learning-
to-rank approach, which means that the idea of ensemble can
improve the performance of the learning-to-rank approach to sort
modules in order of defect count. We also conduct a comparison
study of ensemble approaches for cross-version defect prediction
over 30 sets of cross-version data, which indicates that the
ensemble technique of random subspace is more appropriate than
boosting over these experimental data sets.

Index Terms—Software defect prediction; Ensemble approach-
es; Ranking task; Learning-to-rank

I. INTRODUCTION

Software testing activities play a key role in software
development, which consume a great amount of resources
including time, money and personnel [1]. Timely detecting and
repairing defects before releasing the products are critical for
software quality assurance [2], [3]. Software defect prediction
(SDP) employs software metrics (also referred to as features
or attributes) to predict the defect information of software
modules (classes, files, etc) in order to support software testing
activities [4]. The most frequently investigated tasks of SDP
include the classification task [3] and the ranking task [4]. We
focus on the ranking task in this paper.

SDP for the ranking task, by sorting software modules in
order of defect count, can help testers to focus on software
modules with more defects and identify defects more quickly
[1], [5]–[7]. Firstly, data is collected from software modules
according to software metrics, such as ’response for a class’
[8]. Subsequently, modelling approaches are used to construct

Corresponding author: Xiaoxing Yang (yangxx27@mail.sysu.edu.cn). DOI
reference number: 10.18293/SEKE2019-113

a model based on data from modules with known defect num-
bers. Finally, the model is used to predict defects of software
modules with unknown defect numbers, and thus an order of
these modules based on the predicted values is obtained, which
can help allocate testing resources (for instance, more testing
resources for modules with more defects) [7].

Many methods have been employed to construct SDP mod-
els for the ranking task, such as linear regression [9], nega-
tive binomial regression [1], recursive partitioning, Bayesian
additive regression trees, and random forest [10]. Yang et
al. proposed an effective learning-to-rank (LTR) method for
this task [4], which constructs SDP models by directly op-
timizing the ranking performance. That random forest [4],
[10] performed well for this task implies the usefulness of
ensemble algorithms to improve the performance of defect
ranking models. Therefore, in this paper, we investigate an
ensemble method based on Yang et al.’s LTR approach, in
order to see whether the idea of ensemble can benefit this
approach.

Considering that the use of ensemble methods for SDP with
ranking task was explored by very few researchers, Rathore
and Kumar presented a study of different ensemble methods
for the prediction of number of defects over three Eclipse data
sets [11]. To further compare the ensemble approaches for this
task, we conduct a comparison study of ensemble approaches
over 30 sets of cross-version data [7].

The main contributions of this paper include: (a) a novel
ensemble method based on Yang et al.’s LTR approach, and
a comparison study of the proposed ensemble approach with
the single LTR approach [4]; and (b) a comparison study of
ensemble approaches for cross-version defect prediction for
the ranking task.

The rest of this paper is organized as follows. Section 2
presents related work. In Section 3, we describe the proposed
ensemble method. The experimental methodologies are de-
tailed in Section 4 and experimental results are reported in
Section 5. Section 6 presents the threats to validity, and Section
7 draws the conclusions.

II. RELATED WORK

Data and model construction methods are key factors for
software defect prediction(SDP). Because we focus on en-

437

semble approaches for cross-version defect prediction for the
ranking task, this section mainly presents the related work
from two aspects: methods for constructing SDP models for
the ranking task, and ensemble methods in SDP.

A. Methods for Constructing SDP Models for the Ranking
Task

Compared with methods for constructing defect prediction
models for the classification task, there are fewer approaches
particularly proposed for constructing defect prediction models
for the ranking task. Most studies employed existing methods
to construct models to predict the number of defects. For
example, Yang and Wen [7] used two penalized regression
methods to construct prediction methods, and experimental
results showed that both penalized regression performed better
than linear regression and negative binomial regression for
cross-version defect prediction. Gao et al. [12] compared eight
count models, and the comparative study showed that zero-
inflated negative binomial regression, hurdle negative binomial
regression and hurdle Poisson regression with threshold 2 were
more effective. Weyuker et al. [10] compared four approaches
(negative binomial regression, random forest, recursive parti-
tioning and Bayesian additive regression trees) for predicting
the number of defects in software modules, and the study
showed better performance of negative binomial regression
and random forest models than the other two models. Con-
sidering that existing SDP models, which are optimized to
predict explicitly the number of defects in a software module,
might fail to give an accurate order because of the difficulty
to predict the exact number of defects in a software module
due to noisy data, Yang et al. [4] proposed a LTR approach
to directly optimize the ranking performance measure, and
the experimental results showed that the LTR approach and
random forest were better than other methods to construct SDP
models for the ranking task.

B. Ensemble Methods in SDP

Most existing work of ensemble methods for SDP dealt
with classification problems instead of ranking problems. For
example, Wang and Yao [13] investigated different types of
class imbalance learning methods, including re-sampling tech-
niques, threshold moving, and ensemble algorithms, and they
found that AdaBoost.NC showed the best overall performance
in terms of the measures including balance, G-mean, and
area under the curve. The authors also proposed a dynamic
version of AdaBoost.NC to adjust parameter automatically
during training. Kumar et al. [14] applied ensemble methods
to develop models to predict whether software modules are
defect-prone or not using 45 datasets from the PROMISE
repository. They concluded that ensemble method learning
algorithm outperformed individual classifiers. Yohannese et al.
[15] evaluated the capability of ensemble learning algorithms
in SDP for the classification task using eight NASA software
defect data sets. The experimental results revealed that the
combined technique could improve the performance. There

are other studies of ensemble methods for SDP for the
classification task [16]–[18].

Compared with the work of ensemble methods for defect
prediction for the classification task, there exist fewer studies
of ensemble methods for defect prediction for the ranking task.
A commonly used ensemble method in SDP for the ranking
task is random forest. Random forest has been proved to be
effective in many studies [4], [10]. Yu et al. [19] explored
the potential of using re-sampling techniques and ensemble
learning techniques to learn from imbalanced defect data for
predicting the number of defects. They studied the use of an
ensemble learning technique (i.e., the AdaBoost.R2 algorithm)
to handle imbalanced defect data for predicting the number of
defects. Experimental results showed the effectiveness of these
approaches. Rathore and Kumar [11] performed an empirical
study of different homogeneous ensemble methods for pre-
dicting the number of faults based on three Eclipse datasets.
Experimental results showed that overall ensemble methods
produced better performance than a single fault prediction
technique. According to their conclusion, random subspace
produced better results than other ensemble methods such
as boosting and bagging, and decision tree regression was
a better base learning technique than multilayer perceptron
and linear regression. These studies imply that ensemble
algorithms might not only improve the accuracy of software
defect classification models, but also improve the performance
of defect prediction models for the ranking task. Therefore,
we want to investigate the ensemble method that uses the LTR
approach as the base learning technique, to investigate whether
the idea of ensemble can improve the LTR approach for SDP.

III. THE LEARNING-TO-RANK-BASED ENSEMBLE
APPROACH

In this section, we briefly describe Yang et al.’s learning-
to-rank (LTR) approach [4]. Subsequently, we present our
proposed ensemble method based on this approach.

A. Yang et al.’s Learning-to-Rank Approach

Given a vector of metrics of a software module
x= (x1, x2, · · · · · · , xd), (xi: the ith metric, and d: number of
metrics), the goal of SDP for the ranking task is to predict its
relative defect number, which is denoted as f(x) as Equ.(1).

f(x) =

d∑
i=1

αixi (1)

where αis are parameters obtained by training. Once αis are
fixed, the model is learned. The LTR approach optimizes
performance of defect prediction models directly to obtain
the parameters using composite differential evolution (CoDE)
[20]. Details can be found in Yang et al.’s study [4].

B. The Learning-to-Rank-Based Ensemble Approach

When adopting the LTR model as the base learner, the
values of f(x) can vary greatly in the same ranking per-
formance. For this reason, when computing the final output
combining all base learning models, we use sigmoid function

438

to transform the predicted values by the base learning models.
When the values of fk(x) (the predicted values achieved by
the kth base learning models) are large, the values of the
corresponding sigmoid function are similar. In order to better
distinguish these values, we set a coefficient C1 for fk(x),
which will not affect the monotonicity. In addition, we set
different weights for different base learning models according
to their performance over the training set. Assuming that Pk

is the training performance of model fk(x), the final output
G1(x) that combines all base learning models is computed as
Equ.(2):

G1(x) =

N1∑
k=1

PW
k ∗ S(fk(C1 ∗ x))

=
N1∑
k=1

PW
k /(1 + exp−C1∗fk(x))

(2)

where N1 is the number of base learning models, and W
is the power that controls the contributions of different base
learning models to the final output according to their training
performance. When W equals to 0, the contributions of
all base learning models to the final output are the same,
regardless of the training performance of these base learning
models.

Rathore and Kumar’s study [11] showed that random sub-
space produced better results than other ensemble methods
such as boosting and bagging, and random forest [21] (which
adopts random subspace) has been proved to be effective in
many studies [4], [10]. Therefore, we learn from the selection
process of random forest. Assuming that there are d metrics,
a subset of N2 metrics are selected randomly. Subsequently,
the best N3 metrics are selected from the N2 metrics for
constructing base learning models. In this paper, we adopt
fault-percentile-average (FPA) [10] as the model performance
measure, which is detailed in Section IV. The effectiveness of
one metric can be evaluated by directly computing the FPA
value of the model based on the metric.

The detailed process of the learning-to-rank-based ensemble
approach (LTRE) are shown as follows.

1) Input:
M training vectors: xi = (xi1, xi2, ..., xid), i: 1 to M,
d: number of metrics; Number of base learning models:
N1; Number of alternative metrics: N2; Number of used
metrics: N3; Coefficient: C1; Power: W.

2) Process:
a) for j = 1, 2, ...d

i) compute the performance of model based on
training data with only the jth metric, and
obtain the corresponding performance Fj .

end for
b) for k = 1, 2, ...N1

i) select N2 metrics from all metrics randomly
ii) select the best N3 metrics from the selected N2

metrics according to Fj values

iii) use the training vectors with the best N3 met-
rics to train a model and obtain its performance:
A) model: fk(x) =

∑N3
j=1 αkjxj , j belongs

to the N3 metrics, αkjs are obtained using
CoDE.

B) training performance of model fk(x): Pk.
end for

3) Output: for a testing vector x, compute the predicted
value using Equ.(2)

IV. EXPERIMENTAL METHODOLOGIES

In this section, we detail our experimental data sets, the
performance measure and implementation.

A. Datasets

In order to facilitate others to reproduce results, we use 41
data sets from 11 open-source projects in PROMISE repository
[7], [22]. The characteristics of these experimental data sets
are shown in Table I. The columns of ’faulty modules’, ’range
of defects’, and ’total defects’ respectively record the number
of modules having defects (with the percentages of faulty
modules in the subsequent brackets), the ranges of defect
numbers in the corresponding data sets, and the total number
of defects in all modules of the corresponding data sets. The
metric number of these data sets is 20. Details of the specific
twenty metrics can be found Jureczko et al. ’s work [8].

B. Performance Measure

As mentioned in Yang et al.’s study [4], models with higher
prediction accuracy (smaller average absolute errors or relative
errors) might give a worse ranking, while fault-percentile-
average (FPA) [10] takes into account both practical use and
the whole ranking performance of prediction models, which is
consistent with cumulative lift chart [23] for measuring a rank-
ing [4]. Therefore, we adopt FPA as the model performance
measure.

Considering n modules f1, f2 , . . . , fn, listed in increasing
order of predicted defect number, ki as the actual defect
number in the module fi, and k=k1+k2+...+kn as the total
number of defects in all modules, the proportion of actual
defects in the top m predicted modules to the whole defects
is 1

k

∑n
i=n-m+1 ki. Then FPA is defined as follows [10]:

1

n

n∑
m=1

1

k

n∑
i=n-m+1

ki

Larger FPA means better ranking performance.

C. Implementation

There are two main objectives in this paper:
1) investigating whether the idea of ensemble can improve

Yang et al.’s LTR approach;
2) and comparing ensemble approaches for cross-version

defect prediction for the ranking task.
According to the two objectives, we first compare the learning-
to-rank-based ensemble method (LTRE) with the single LTR

439

TABLE I
EXPERIMENTAL DATA SETS

Datasets
name

module
number

faulty modules range of
defects

total
defects

ant-1.3 125 20(16%) [0,3] 33
ant-1.4 178 40(22.5%) [0,3] 47
ant-1.5 293 32(10.9%) [0,2] 35
ant-1.6 351 92(26.2%) [0,10] 184
ant-1.7 745 166(22.3%) [0,10] 338
lucene-2.0 195 91(46.7%) [0,22] 268
lucene-2.2 247 144(58.3%) [0,47] 414
lucene-2.4 340 203(59.7%) [0,30] 632
xalan-2.4 723 110(15.2%) [0,7] 156
xalan-2.5 803 387(48.2%) [0,9] 531
xalan-2.6 885 411(46.4%) [0,9] 625
xalan-2.7 909 898(98.8%) [0,8] 1213
xerces-init 162 77(47.5%) [0,11] 167
xerces-1.2 440 71(16.2%) [0,4] 115
xerces-1.3 453 69(15.2%) [0,30] 193
xerces-1.4 588 437(74.3%) [0,62] 1596
camel-1.0 339 13(3.8%) [0,2] 14
camel-1.2 608 216(35.5%) [0,28] 522
camel-1.4 872 145(16.6%) [0,17] 335
camel-1.6 965 188(19.5%) [0,28] 500
ivy-1.1 111 63(56.8%) [0,36] 233
ivy-1.4 241 16(6.6%) [0,3] 18
ivy-2.0 352 40(11.4%) [0,3] 56
synapse-1.0 157 16(10.2%) [0,4] 21
synapse-1.1 222 60(27.0%) [0,7] 99
synapse-1.2 256 86(33.6%) [0,9] 145
velocity-1.4 196 147(75.0%) [0,7] 210
velocity-1.5 214 142(66.4%) [0,10] 331
velocity-1.6 229 78(34.1%) [0,12] 190
jedit-3.2 272 90(33.1%) [0,45] 382
jedit-4.0 306 74(24.2%) [0,23] 226
jedit-4.1 312 79(25.3%) [0,17] 217
jedit-4.2 367 48(13.1%) [0,10] 106
jedit-4.3 492 11(2.2%) [0,2] 12
log4j-1.0 135 34(25.2%) [0,9] 61
log4j-1.1 109 37(33.9%) [0,9] 86
log4j-1.2 205 189(92.2%) [0,10] 498
poi-1.5 237 141(59.5%) [0,20] 342
poi-2.0 314 37(11.8%) [0,2] 39
poi-2.5 385 248(64.4%) [0,11] 496
poi-3.0 442 281(63.6%) [0,19] 500

approach. Subsequently, we conduct a comparison of six
ensemble methods over 30 sets of cross-version data: LTRE,
random forest [21], Bagging [24], Extra-Trees [25], gradient
boosting [26], and Adaboost [27].

Because we use the same data sets as Yang and Wen’s
paper [7], we directly use their experimental results of both
LTR and random forest in this paper. LTRE is implemented
in Java. For LTRE, N1 is set to 100, N2 is set to half of
all metrics, N3 is set to 2, C1 is set to 0.1, and W is set
to 3. Bagging, Extra-Trees, gradient boosting, and Adaboost
are implemented in Python, and their parameters are tuned
by GridSearchCV method which provides the grid search that
exhaustively generates candidates from a grid of parameter
values specified in advance. For each method, only a small
subset of parameters which play an important role are tuned,
while others are set as their default values. Because the best
parameters for different data sets are different, we choose the
most frequently occurring ones. Bagging uses decision trees
as base estimator, the number of trees is set to 200, and the

number of metrics is set to 0.4 of all metrics. To be noted,
the number of metrics for Bagging is not all metrics (the
performance of all metrics is worse than 0.4 of all metrics),
so the Bagging here is not the traditional Bagging [11].
The number of trees in Extra-Trees, gradient boosting and
Adaboost is also set to 200, the number of metrics in Extra-
Trees and gradient boosting is set to 1/3 of all metrics, and
the learning rate in gradient boosting and Adaboost is set to
0.1.

In order to simulate the actual situation, we adopt cross-
version defect prediction, whose merit has been shown in
Shukla et al.’s work [22]. SDP models constructed according
to one version are used to predict defects of the next version,
which is similar to actual use. All methods run 10 times for
the same set of data. We use Wilcoxon rank-sum test [28]
(which is called ranksum for short) to test whether 10 results
by one method is significantly larger than those by another
method using the same training and testing data.

V. EXPERIMENTAL RESULTS

In this section, we firstly show the comparison of the
learning-to-rank-based ensemble approach (LTRE) and the
single learning-to-rank approach (LTR) in order to see whether
the idea of ensemble can improve LTR for SDP. Subsequently,
the results of all compared ensemble approaches for cross-
version defect prediction are presented.

A. Comparison of LTRE with LTR

In this subsection, we compare LTRE and LTR. Experi-
mental results are shown in Table II. ’Ant-1.3-1.4’ in Table
II means using ant-1.3 as the training set and ant-1.4 as the
testing set, and others are similar. Hence, there are totally
30 sets of data (each set includes one training version and
one testing version). The columns of ’LTRE’ and ’LTR’
respectively record their mean FPA testing results, and the
column of ’pvalues’ records the p-values of ranksum test
between 10 results achieved respectively by LTRE and LTR
over the same set of data. We use bold type to mark the
significantly larger results at the 0.05 significance level.

In Table II, ’22’ in the row of ’larger times’ means that
LTRE achieves larger mean FPA values than LTR over 22 sets
of data. ’18’ in the row of ’significantly larger times’ means
that LTRE achieves significantly larger mean FPA values than
LTR at the 0.05 significance level over 18 out of 30 sets of
data. From these results, the idea of ensemble can benefit LTR
for SDP for the ranking task.

B. Comparison of Six Ensemble Approaches

In this subsection, we show the experimental results of six
ensemble approaches: LTRE, random forest (RF), Bagging,
Extra-Trees (ET), gradient boosting (GB), and Adaboost (A-
da). Table III shows the mean calculated over ten testing FPA
results in ten runs for these methods. We use bold type to
mark the largest results.

The best methods for different sets of data are very different:
one method achieves best results over some sets of data, but

440

TABLE III
MEAN FPA RESULTS OF ALL METHODS FOR CROSS-VERSION DEFECT PREDICTION

Datasets LTRE RF Bagging ET GB Ada
ant-1.3-1.4 0.5921 0.5941 0.6043 0.6366 0.5734 0.5781
ant-1.4-1.5 0.7789 0.6956 0.6779 0.6325 0.5574 0.5809
ant-1.5-1.6 0.8247 0.7656 0.7708 0.7632 0.7107 0.7529
ant-1.6-1.7 0.8251 0.8226 0.8191 0.8085 0.7876 0.8203
lucene-2.0-2.2 0.7168 0.7132 0.6535 0.6656 0.6182 0.6467
lucene-2.2-2.4 0.6937 0.6560 0.7870 0.7809 0.7877 0.7604
xalan-2.4-2.5 0.6417 0.6226 0.7654 0.7707 0.7618 0.7591
xalan-2.5-2.6 0.6725 0.6835 0.7812 0.7833 0.7332 0.7716
xalan-2.6-2.7 0.5685 0.5703 0.7648 0.7486 0.6741 0.7781
xerces-init-1.2 0.4944 0.7470 0.8593 0.8632 0.8553 0.8507
xerces-1.2-1.3 0.5373 0.7159 0.8441 0.8358 0.8230 0.8120
xerces-1.3-1.4 0.7622 0.7275 0.8515 0.8470 0.8431 0.8718
camel-1.0-1.2 0.6735 0.6568 0.7760 0.7187 0.7371 0.6393
camel-1.2-1.4 0.7738 0.7891 0.7717 0.7841 0.7721 0.7781
camel-1.4-1.6 0.7461 0.7652 0.5541 0.5599 0.5430 0.5497
ivy-1.1-1.4 0.7716 0.7850 0.7109 0.7118 0.7116 0.6971
ivy-1.4-2.0 0.8244 0.7834 0.6490 0.6378 0.6364 0.6832
synapse-1.0-1.1 0.7187 0.7070 0.6940 0.6825 0.6570 0.6544
synapse-1.1-1.2 0.6874 0.7042 0.5017 0.5164 0.5137 0.4940
velocity-1.4-1.5 0.6008 0.6733 0.6813 0.6683 0.6572 0.6904
velocity-1.5-1.6 0.7233 0.7582 0.7007 0.6513 0.6527 0.6847
jedit-3.2-4.0 0.8453 0.8610 0.7056 0.6963 0.6772 0.6857
jedit-4.0-4.1 0.8190 0.8438 0.6651 0.6463 0.6509 0.6680
jedit-4.1-4.2 0.8727 0.8555 0.7551 0.7611 0.7611 0.7547
jedit-4.2-4.3 0.6529 0.7227 0.6185 0.5907 0.6149 0.6340
log4j-1.0-1.1 0.8140 0.7819 0.6772 0.6404 0.6803 0.6749
log4j-1.1-1.2 0.5594 0.5577 0.5652 0.5592 0.5653 0.5640
poi-1.5-2.0 0.7003 0.6968 0.7360 0.7248 0.7306 0.7227
poi-2.0-2.5 0.5811 0.5020 0.6985 0.6998 0.6575 0.6726
poi-2.5-3.0 0.6854 0.6785 0.7211 0.7133 0.6970 0.7000
maximum times 8 8 4 5 2 3

worst results over other sets of data. For example, LTRE
achieves best result over ant-1.4-1.5, but worst result over
xerces-init-1.2. As a whole, LTRE and random forest achieve
maximum mean FPA values in most sets of data (eight for
each method). These results imply that LTRE is comparable
with other ensemble methods.

Bagging achieves larger mean results than Extra-Trees,
gradient boosting, and Adaboost over more data sets. In ad-
dition, Extra-Trees and Adaboost perform better than gradient
boosting over more data sets. To be noted, as mentioned in
Section IV, the number of metrics for Bagging is set to 40%
of all metrics because the performance of all metrics is worse
than partial metrics. And thus the Bagging here is actually a
combination of bagging and random subspace. This implies
that random subspace might be better than boosting methods
for these data sets.

VI. THREATS TO VALIDITY

In this paper, we investigate cross-version defect prediction
based on 41 data sets from 11 projects in PROMISE repository,
which reflects that the obtained results are strongly related to
the SDP domain. However, there are some threats that may
have an effect on our experimental results.

One threat is that only a few parameters of all experimental
approaches are tuned in a small range, and the results might
be different with other parameters setting.

In addition, the experimental data sets are only a very small
part of all data sets, among which there are many data sets

based on industrial software systems [12] that are not publicly
available. Other data sets might include different metrics and
totally different modules. The conclusions over these data sets
might not hold for other data sets.

The compared ensemble methods are only a small part of
all ensemble methods. We use decision tree regression as the
base learner for the compared ensemble methods in this paper.
When other base learners are used, the conclusion might be
different.

VII. CONCLUSIONS

Many studies have been conducted to sort software modules
according to the number of defects [5], [10]. Random forest
performed best in some previous studies [4], [10]. The good
performance of random forest for SDP implies that the idea
of ensemble might be useful to improve the performance
of defect ranking models. Yang et al. proposed a learning-
to-rank method (LTR) particularly for SDP [4], and their
experimental results showed its effectiveness. Therefore, we
propose a novel ensemble method based on LTR, which is
called the learning-to-rank-based ensemble method (LTRE),
in order to see whether the idea of ensemble can also improve
LTR for sorting module in order of defect count.

Experimental results over 30 sets of cross-version data show
that the proposed LTRE perform better than LTR, which
implies that the idea of ensemble can benefit LTR for SDP.

In addition, we conduct a comparison study of six ensemble
approaches for cross-version defect prediction for the ranking

441

TABLE II
MEAN FPA RESULTS OF LTRE AND LTR FOR CROSS-VERSION DEFECT

PREDICTION

Datasets LTRE LTR pvalues
ant-1.3-1.4 0.5921 0.5917 0.6771
ant-1.4-1.5 0.7789 0.7113 0.0002
ant-1.5-1.6 0.8247 0.7331 0.0002
ant-1.6-1.7 0.8251 0.8176 0.0002
lucene-2.0-2.2 0.7168 0.7125 0.0028
lucene-2.2-2.4 0.6937 0.6845 0.0002
xalan-2.4-2.5 0.6417 0.6467 0.0002
xalan-2.5-2.6 0.6725 0.6645 0.0006
xalan-2.6-2.7 0.5685 0.5692 0.1212
xerces-init-1.2 0.4944 0.6266 0.0002
xerces-1.2-1.3 0.5373 0.6763 0.0002
xerces-1.3-1.4 0.7622 0.7190 0.0002
camel-1.0-1.2 0.6735 0.6145 0.0002
camel-1.2-1.4 0.7738 0.7541 0.0002
camel-1.4-1.6 0.7461 0.7451 0.2263
ivy-1.1-1.4 0.7716 0.7489 0.0002
ivy-1.4-2.0 0.8244 0.7949 0.0002
synapse-1.0-1.1 0.7187 0.6661 0.0002
synapse-1.1-1.2 0.6874 0.6305 0.0002
velocity-1.4-1.5 0.6008 0.6153 0.0017
velocity-1.5-1.6 0.7233 0.7495 0.0002
jedit-3.2-4.0 0.8453 0.8447 0.4274
jedit-4.0-4.1 0.8190 0.8244 0.0046
jedit-4.1-4.2 0.8727 0.8692 0.0028
jedit-4.2-4.3 0.6529 0.6900 0.0002
log4j-1.0-1.1 0.8140 0.7996 0.0003
log4j-1.1-1.2 0.5594 0.5561 0.1212
poi-1.5-2.0 0.7003 0.6860 0.0028
poi-2.0-2.5 0.5811 0.5131 0.0002
poi-2.5-3.0 0.6854 0.6526 0.0002
larger times 22 8
significantly larger times 18 7

task over 41 publicly available data sets. The comparison
results show that LTRE can perform comparably with other
ensemble methods. LTRE and random forest achieve maxi-
mum mean FPA values in most sets of data. Nevertheless,
the compared ensemble methods have their own advantages in
sorting modules in order of defect count over the experimental
data sets. The best methods for different sets of data are
very different. Therefore, in our future work, we are going to
investigate how to choose the appropriate method according
to the characteristics of data.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China (Grants No. 61602534) and Fundamental
Research Funds for the Central Universities (No.17lgpy122).

REFERENCES

[1] T. Ostrand, E. Weyuker, and R. Bell, “Predicting the location and number
of faults in large software systems,” IEEE Transactions on Software
Engineering, vol. 31, no. 4, pp. 340–355, 2005.

[2] B. Boehm and V. Basili, “Software defect reduction top 10 list,” IEEE
Computer, vol. 34, pp. 135–137, 2001.

[3] Z. Xu, J. Liu, X. Luo, and T. Zhang, “Cross-version defect prediction
via hybrid active learning with kernel principal component analysis,” in
25th IEEE International Conference on Software Analysis, Evolution,
and Reengineering, 2018, pp. 209–220.

[4] X. Yang, K. Tang, and X. Yao, “A learning-to-rank approach to software
defect prediction,” IEEE Transactions on Reliability, vol. 64, no. 1, pp.
234–246, 2015.

[5] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison,” Empirical
Software Engineering, pp. 1–47, 2011.

[6] J. Nam and S. Kim, “Clami: defect prediction on unlabeled datasets,”
in 30th IEEE/ACM International Conference on Automated Software
Engineering, 2015. IEEE/ACM, 2015, pp. 452–463.

[7] X. Yang and W. Wen, “Ridge and lasso regression models for cross-
version defect prediction,” IEEE Transactions on Reliability, vol. 67,
no. 3, pp. 885–896, 2018.

[8] M. Jureczko and L. Madeyski, “Towards identifying software project
clusters with regard to defect prediction,” in Proceedings of the 6th
International Conference on Predictive Models in Software Engineering,
ser. PROMISE ’10, 2010, pp. 9:1–9:10.

[9] N. Ohlsson and H. Alberg, “Predicting fault-prone software modules
in telephone switches,” IEEE Transactions on Software Engineering,
vol. 22, no. 12, pp. 886–894, 1996.

[10] E. Weyuker, T. Ostrand, and R. Bell, “Comparing the effectiveness
of several modeling methods for fault prediction,” Empirical Software
Engineering, vol. 15, no. 3, pp. 277–295, 2010.

[11] S. Rathore and S. Kumar, “Ensemble methods for the prediction of
number of faults: a study on eclipse project,” in 11th International
Conference on Industrial and Information Systems, 2016, pp. 540–545.

[12] K. Gao and T. Khoshgoftaar, “A comprehensive empirical study of count
models for software defect prediction,” IEEE Transactions on Reliability,
vol. 56, no. 2, pp. 223–236, 2007.

[13] S. Wang and X. Yao, “Using class imbalance learning for software defect
prediction,” IEEE Transactions on Reliability, vol. 37, no. 3, pp. 356–
370, 2011.

[14] L. Kumar, S. Rath, and A. Sureka, “An empirical analysis on effective
fault prediction model developed using ensemble methods,” in 41th
Annual Computer Software and Applications Conference, 2017, pp. 244–
249.

[15] C. Yohannese, T. Li, M. Simfukwe, and F. Khurshid, “Ensembles based
combined learning for improved software fault prediction: a comparative
study,” in 12th International Conference on Intelligent Systems and
Knowledge Engineering, 2017, pp. 1–6.

[16] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. AI-Dossari,
and S. Ahmad, “An ensemble oversampling model for class imbalance
problem in software defect prediction,” accepted by IEEE Access, 2018.

[17] Z. Li, X. Jing, X. Zhu, and H. Zhang, “Heterogeneous defect prediction
through multiple kernel learning and ensemble learning,” in 2017
International Conference on Software Maintenance and Evolution, 2017,
pp. 91–102.

[18] Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble learning
to improve software defect prediction,” IEEE Transactions on Systems,
Man and Cybernetics-Part C: Applications and Reviews, vol. 42, no. 6,
pp. 1806–1817, 2012.

[19] X. Yu, J. Liu, Z. Yang, X. Jia, Q. Ling, and S. Ye, “Learning from
imbalanced data for predicting the number of software defects,” in 28th
International Symposium on Software Reliability Engineering, 2017, pp.
78–89.

[20] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with composite
trial vector generation strategies and control parameters,” IEEE Trans-
actions on Evolutionary Computation, vol. 15, no. 1, pp. 55–66, 2011.

[21] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[22] S. Shukla, T. Radhakrishnan, and K. Muthukumaran, “Multi-objective
cross-version defect prediction,” Soft Computing, pp. 1–22, 2016.

[23] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault pre-
diction models,” Empirical Software Engineering, vol. 13, no. 5, pp.
561–595, 2008.

[24] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, 1996.

[25] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, no. 1, pp. 3–42, 2006.

[26] J. Friedman, “Greedy function approximation: a gradient boosting ma-
chine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[27] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” Journal of Computer and
System Sciences, vol. 55, pp. 119–139, 1997.

[28] M. Fay and M. Proschan, “Wilcoxon-mann-whitney or t-test? on as-
sumptions for hypothesis tests and multiple interpretations of decision
rules,” Statistics Surveys, vol. 4, pp. 1–39, 2010.

442

A Multilevel Analysis Method
for Architecture Erosion

Tong Wang, Dongdong Wang, Bixin Li
School of Computer Science and Engineering

Southeast University, Nanjing, China

Abstract—During the evolution of software, improper change
operations may cause architecture erosion. Architecture erosion
creates problems on evolutionary costs, software performance
and software quality. Many methods have been proposed to
analyze architecture erosion. Architecture depends on the im-
plementation of code, that is, architecture erosion is caused by
code. However, few methods analyze the reasons for architecture
erosion based on code. Besides, architecture is eroded with
software evolution, but most methods do not analyze architecture
erosion based on the change of software. In this paper, we propose
a multilevel analysis method for architecture erosion. Our method
contains three steps. Firstly, we detect the changed pairs based
on two architectures by performing a multilevel change detection
method. Secondly, we detect whether the corresponding code
elements of changed pairs are erosion points by calculating
erosion degree. Thirdly, we establish a cost-benefit model of
repairing architecture erosion for repairing architecture erosion
more effectively with repaired few erosion points. We illustrate
our method through an open source project, and the experimental
results indicate that our method can detect the erosion points of
each level and the cost-benefit model is effectively.

Index Terms—architecture erosion, multilevel change detec-
tion, the cost-benefit model

I. INTRODUCTION

Software is continually evolved to meet new requirements.
With the evolution of software, architecture erosion often
occurs [1], [2]. Architecture erosion creates problems such as
the increase of software evolutionary costs [3], the decrease
of software performance [4], and the degradation of software
quality [5]. In a word, uncontrolled architecture erosion has a
negative impact on software [6]. In order to reduce the negative
impacts, analyzing software architecture erosion in time is an
important task during the development and maintenance of
software [7].

Some researchers propose analysis methods for architecture
erosion based on multiple types of indicators. Zhang et al.
detect architecture erosion based on the design decision of
architectural pattern [8], and Herold et al. detect architecture
erosion based on a common ontology [7]. The purpose of
detecting and repairing architecture erosion is reducing the
effects on architecture quality [9], that is, the decrease of ar-
chitecture quality is an important sign of architecture erosion,
but few methods analyze architecture erosion based on quality.
Besides, architecture depends on the implementation of source
code [10], but few methods analyze architecture erosion based

B. Li is the corresponding author. E-mail: bx.li@seu.edu.cn
DOI reference number:10.18293/SEKE2019-046

on code. Also, there may be many erosion points, but it is
impossible to repair all erosion points, so how to reduce the
erosion degree of architecture effectively by repairing fewer
erosion points is an important problem.

To overcome the above limitations, we proposed the multi-
level analysis method for architecture erosion. In our method,
we first detect the changed pairs of each level by performing
the multilevel change detection method. Then, we detect
whether the corresponding code elements of changed pairs
are erosion points by calculating the erosion degree. Finally,
we establish the cost-benefit model for providing the repairing
priority of erosion points.

To sum up, this work makes the following contributions.
• We detect the erosion points based on architecture quality

which is an important sign of architecture erosion.
• We analyze reasons for architecture erosion based on the

implementation of architecture by using the multilevel
change detection method.

• We establish the cost-benefit model of repairing ar-
chitecture erosion, in order to more effective repairing
architecture erosion by repairing fewer erosion points.

This paper is organized as follows. Section II introduces the
details of our method. In section III, we illustrate our method
though an open source project. Section IV presents related
work. In Section V, the threats to the validity of our method
are analyzed. In Section VI, we make a conclusion and discuss
future work.

II. OUR METHOD

A. Method Overview

Architecture erosion leads to the gradual deterioration of
software quality [11], that is, the deterioration of quality is an
important sign of architecture erosion. So, in this paper, we
define architecture erosion as follows.

Definition 1 architecture erosion: It is a phenomenon that
occurs when architecture quality is decreased with software
evolution.

The component dependency graph is a widely acceptable
representation of architecture, in our method, we use it to rep-
resent architecture. The component dependency graph consists
of the component and the dependency between components.
A component is a code element of the high abstraction level,
and it consists of multiple files. A file consists of multiple
statements. According to the granularity of code elements, we

443

divide architecture into three levels, component level, file level,
and statement level.

The architecture contains multiple components. In an eroded
architecture, not all components are eroded. Similarly, in an
eroded component, not all files are eroded. And in an eroded
file, not all statements are eroded. In order to narrow down the
range of erosion for reducing the repairing cost, we analyze
architecture erosion from architecture to component level, then
from component level to file level, finally from file level to
statement level.

Architecture is eroded with software evolution, so does
components, files, and statements. In order to analyze whether
components, files, and statements are eroded, we should first
detect changed pairs of each level by using a multilevel change
detection method. After detecting the changed pairs, we detect
whether the corresponding code of changed pairs are eroded.

Definition 2 changed pair: Let A1 be a original architec-
ture. Let A2 be a current architecture. Let C1 and C2 be two
code elements of the above architectures. If C1 is evolved to
C2, the two code elements constitute a changed pair. If C1 is
deleted and C2 is a new code element, then they respectively
constitute changed pairs with a virtual code element.

According to the above analysis, the overview of our
method is shown in Figure 1. The first step is detecting
the changed pairs of code elements, where add, delete and
update operations are denoted in the green, red and blue
border. The second step is calculating erosion degree to detect
whether the corresponding code elements of changed pairs
are erosion points, and the erosion points are denoted in gray
nodes. The third step is establishing the relations between the
number of repaired erosion points with the degree of decline in
architecture erosion, that is, we establish a cost-benefit model
of repairing erosion points. The model demonstrates how to
reduce more erosion degree of architecture by repairing fewer
erosion points.

Phase 2:

Calculate erosion degree

Phase 3:

Establish a cost-

benefit model
Architecture

Component level

File level

Statement level

File level

Statement level

Component level

Architecture

2 3 4

S1

...

S35

S1

...

S45

S1

...

S50

S1

...

S60

S1

...

S70

S1

...

S80

1

S1

...

S35

S1

...

S45

S1

...

S50

S1

...

S60

S1

...

S70

S1

...

S90

11

10

12 14

5

13

17 18 19 201615

6 7 8 9

Phase 1:

Detect changed pairs

2 3 4

S1

...

S35

S1

...

S45

S1

...

S50

S1

...

S60

S1

...

S70

S1

...

S80

1

S1

...

S35

S1

...

S45

S1

...

S50

S1

...

S60

S1

...

S70

S1

...

S90

11

10

12 14

5

13

17 18 19 201615

6 7 8 9

Cost

Benefit

Fig. 1. An overview of our method.

B. Detecting changed pairs of each level

In order to detect changed pairs at file level and statement
level, we perform the change detection method named the two-
step multilevel program analysis tree matching method [12].

The method can detect multilevel changes effectively, such as
method level, class level, and file level.

We perform the following steps to detect changed pairs at
component level: calculating the similarity between compo-
nents and identifying change operation based on component
similarity.

The component similarity indicates the degree of similarity.
The component consists of multiple files, so we calculate the
component similarity based on the contained files. The formula
is shown in Formula 1.

Sim(i, j) =
2 ∗ |Si

∩
Sj |

Li + Lj
(1)

where Sim(i, j) is the similarity between the ith component
and the jth component, Si is the file set contained in the ith
component, |X| is the number of elements of the set X and
Li is the number of code lines.

The components of the original architecture and the com-
ponents of the current architecture are matched based on the
component similarity to detect which components constitute
a changed pair. We consider the following three change
operations at the component level.
Add(C): A new component C is added in V2.
Delete(C): In V2, the component C is deleted.
Update(Ci, Cj): The component Ci is updated to Cj .
In order to identify the above change operations based

on the component similarity, we define two thresholds. The
first threshold is HighThreshold. If the component similarity
above HighThreshold, we deem that the two components
are the same, that is, the component is not changed during the
evolution process. The second threshold is LowThreshold. If
the component similarity above HighThreshold but below
LowThreshold, we deem that the change operation between
the changed pair is updating. If the component similarity
below LowThreshold, we deem that the two components of
the changes pair are respectively the new component of the
current architecture and the deleted component of the original
architecture. The algorithm of identifying change operations
is shown in Algorithm 1.

C. Calculating erosion degree

In this step, we detect whether the code elements of each
changed pair are eroded, that is, whether the code elements
are the erosion points.

Definition 3 erosion point: Let Ai and Aj constitute a
changed pair which respectively belong to the original archi-
tecture and the current architecture. If the change operation
between Ai and Aj causes architecture erosion, Ai and Aj

are the erosion points.
The decrease in architecture quality is an important sign of

architecture erosion. When architecture quality is decreased,
it indicates that architecture is eroded, correspondingly, if
architecture quality is increased, architecture is nor eroded.

In this paper, we take the change of understandability and
testability as the indicators of architecture erosion. Under-
standability and testability are important quality attributes

444

Algorithm 1 The algorithm of identifying change operations
Input: The component list of the original version oriCom

The component list of the current version curCom
The threshold of similarity threshold

Output: The list of the adding change add
The list of the deleting change delete
The list of the updating change update

1: Let oriMatched store the matched component of oriCom
2: Let curMatched store the matched component of curCom
3: Let match mark the component whether has been matched

successfully
4: Set match = false
5: for each oriComponent ∈ oriCom do
6: if match = true then
7: match = false
8: Continue
9: end if

10: for each curComponent ∈ curCom do
11: Let similarity is the similarity between oriComponent

and curComponent
12: if similarity = 1 then
13: put oriComponent in oriMatched
14: put curCmponent in curMatched
15: match = true Break
16: else
17: if similarity > threshold then
18: put oriComponent in oriMatched
19: put curCmponent in curMatched
20: put < oriComponent, curCmponent > in update
21: match = true Break
22: end if
23: end if
24: end for
25: end for
26: delete = oriCom - oriMatched
27: add = curCom - curMatched

for architecture [13]. Firstly, we measure the two quality
attributes.

Testability determines the required resources during testing
and making test plans [14]. Its calculating formula is shown
in Formula 2.

Testability = 1−
∑N

i=1
Oi
N

N
(2)

where T is the measurement of testability, N is the number
of elements, i denotes the ith code element, O is the fanout
of the ith element.

Understandability denotes the difficulty of understanding
architecture [15]. Its calculating formula is shown in Formula
3.

Understandability =

∑N
i=1 f(Ci)

N
(3)

where U is the measurement of understandability, N is the
number of elements, i denotes the ith element, Li is number of
code lines of the ith element, f(Ci) is the density of cognitive
complexity of the code element Ci. The calculating formula
of the density of cognitive complexity is shown in Formula 4.

f(Ci) =

1 Ci
Li

≤ 0.05

0.8 0.05 < Ci
Li

≤ 0.1

0.6 0.1 < Ci
Li

≤ 0.2

0.4 0.2 < Ci
Li

≤ 0.3

0.2 0.3 < Ci
Li

≤ 0.4

(4)

where f(Ci) is the density of cognitive complexity of the
code element Ci, Li is number of code lines of the ith
element and Ci is the cognitive complexity of the ith element.
Cognitive complexity can yield assessments of control flow
that correspond to programmers intuitions about the mental,
or cognitive effort required to understand those flows.

According to the above formulas, we the measurements
of understandability and testability, then we use the erosion
degree to represent the change of architecture quality before
and after evolution.

Definition 4 erosion degree: Let Ao and Ac be architectures
before and after software evolution. Let Ao[i] be a code ele-
ment of Ao and Ac[j] be a code element of Ac. If architecture
quality is decreased, the difference between Ao[i] and Ac[j]
is the erosion degree. If erosion degree is a negative value, it
indicates that the changed pair does not damage architecture
quality instead of increasing architecture quality.

The erosion degree is calculated based on a pair of code
elements before and after software evolution. To architecture,
the erosion degree depends on the change of the contained
components. Similarity, to a component, the erosion degree
depends on the changes of the contained files. Then, to file,
the erosion degree depends on the changes of the contained
statements.

The elements of the pair respectively belong to the original
architecture and the current architecture. When a code element
is deleted from the original architecture, and when a code
element is added in the current architecture, there is not a
corresponding code element in another architecture, so we
use the average measurement as the threshold to calculate the
erosion degree of the new code element and the deleted code
element.

The formula of erosion degree is shown in Formula 5.

f(Ei, Ej) =

Mj −Mi Ei is evolved to Ej

Mj −AV G Ej is a new code element
AV G−Mi Ei is a deleted code element

(5)

where Ei is the ith code element, f(Ei, Ej) is difference be-
tween the measurements of Ei and Ej , Mi is the measurement
of the ith code element and AV G is the average measurement
of the previous architecture.

D. Establishing the cost-benefit model

Considering the number of erosion points and the repairing
cost, in actual development process, it is impossible to repair
all erosion points. In order to more effective repair architecture
by repairing fewer erosion points, we establish the cost-benefit
model based on erosion contribution.

445

Definition 5 erosion contribution: Let C be an erosion
point. The erosion contribution of C denotes that, compared
with other eroded code elements of the same level, the degree
of influence on architecture erosion.

The formula of the erosion contribution is shown in Formula
6.

EC(Pi, Cj) =
f(Pi, Ci)∑|S|

(a,b)∈S f(Pa, Cb)
∗ PEC(Pi, Ci) (6)

where Oi is the ith code element of the original architecture,
Ci is the ith element of the current architecture, EC(Oi, Cj)
is the erosion contribution of the changed pair constituted by
Oi and Cj , f(Oi, Cj) is the erosion degree of the changed
pair constituted by Oi and Cj , S is the set of changed pairs
which are erosion points, |S| is the number of the elements of
S, (a, b) is the element of S and it denotes the changed pair
constituted by Oa and Cb, and PEC(Pi, Ci) is the erosion
contribution of the changed pair which is the corresponding
higher abstraction elements of Oi and Cj . The component
level is the highest abstraction level in our method. If Oi is a
component, the value of PEC(Oi, Ci) is 1.

The higher erosion contribution indicates that the corre-
sponding point has caused more negative effects on architec-
ture. So the erosion contribution denotes the relative urgency
degree of repairing. The order of repairing erosion points is
based on the erosion contribution from high to low.

Unlike the erosion degree, the erosion contribution is a
comparative value, because it is calculated based on the
erosion of other code elements of the same level. The sum
of erosion contribution of all erosion points is 1. The sum of
the erosion contribution of all repaired erosion points denotes
the degree of repairing architecture erosion, so it is used as
the indicator of the benefit.

Architecture depends on the implementation of the code,
and in the actual development process, developers repair
architecture erosion by modifying the code. So in our model,
we only take the erosion points belonging to statement level
into consideration.

Lines of code (LOC) is an important indicator for estimating
software costs, so we use the number of repaired erosion
points as the cost. With repairing erosion points, the erosion
degree of architecture is reduced which is caused by repairing
erosion points, so we use the sum of erosion contribution of
the repaired erosion points as the benefit.

The erosion contribution denotes the degree of effects on
architecture erosion. We sort all erosion points according to
the erosion contribution from high to low. There is a relation
between the number of repaired erosion points and the sum of
erosion contribution, and the cost-benefit model is established
based on the above relation.

III. ILLUSTRATIVE EXAMPLE

In this section, we choose an open source project as the
case to illustrate the process of our method. commons-lang is
a package which provides some basic APIs for some general

operations, such as automatically generating toString() re-
sults, automatically implementing hashCode() and equals(),
etc. commons− lang has received 1.5K stars in GitHub.

We choose four versions as cases to detect architecture
erosion. There is not a document about the architecture of
commons-lang, so we perform the recovery method proposed
by Kong et al. [16] to obtain its architecture. The basic
information of commons-lang is shown in Table I, where the
first column is the version number, the second column is the
number of code lines, the third column is the measurement
of testability, and the fourth column is the measurement of
understandability.

TABLE I
THE BASIC INFORMATION OF COMMONS-LANG

Version LOC Testability Understandability

3.1.0 52.8K 0.800 0.760
3.2.0 61.6K 0.733 0.667
3.3.0 63.5K 0.834 0.667
3.4.0 66.0K 0.834 0.760

Table I shows that, compared with the measurements of
version 3.1.0, the measurements of version 3.2.0 are decreased.
The decreasing measurements indicate that the architecture is
eroded in the evolution process, so we analyze the evolution
process. The erosion degree of understandability is -0.093, and
the erosion degree of testability is -0.067.

The first step is detecting changed pairs. We implement the
multilevel change detection method to detect the changed pairs
of file level and statement level, and detect changed pairs
of component level based on the component similarity. The
number of changed code elements of each level is shown
in Table II, where the first column is the change operation,
where the second column to the fourth column are respectively
component level, file level, and statement level. As the table
shows that, there are six changed pairs at the component level,
220 changed pairs at the file level, and 6829 changed pairs at
the statement level.

TABLE II
THE NUMBER OF CHANGED PAIRS OF EACH LEVEL

Type The number of changed code elements
Component level File level Statement level

Add 1 29 3416
Delete 3 0 822
Update 2 191 1798
Move \ 0 803
Total 6 220 6839

The second step is calculating erosion degree of each
changed pairs. We first calculate the erosion degree of changed
pairs of the component level, and the values of the erosion
degree are shown in Table III, where the first column is the
change operation of the component level, the second column
is the erosion degree to testability, and the third column is the
erosion degree to understandability. In the first column, we

446

use update, add and delete to represent the change operation,
and the corresponding element is the changed component. As
shown in Table III, Add(src-1) has the highest erosion degree
of testability, and Delete(commons\lang3-2) has the highest
erosion degree of understandability.

TABLE III
THE EROSION DEGREE OF CHANGED PAIRS OF THE COMPONENT LEVEL

Change operation ED Test. ED Under.

Update(commons\lang3) 2.380 -2.400
Update(src) -0.571 -5.700
Delete(commons\lang3-1) 0.142 4.100
Delete(commons\lang3-2) -0.570 3.950
Delete(lang3\text) -0.714 1.850
Add(src-1) 0.333 -0.800

There are 220 changed pairs of file level and 6839 changed
pairs of statement level. Due to the limitation of space, we only
show the erosion degree of some changed pairs in Table IV,
where the first column is the change operation of file level, the
second column is the erosion degree of testability, and the third
column is the erosion degree of understandability. As shown in
Table IV, Update(TypeUtils.java) has the highest erosion
contribution to testability, Add(Conversion.java) has the
highest erosion contribution to understandability.

TABLE IV
THE EROSION DEGREE OF CHANGED PAIRS OF FILE LEVEL

Change operation ED Test. ED Under.

Add(Conversion.java) 0 0.363
Add(InheritanceUtils.java) 0 0.233
Update(CharSequenceUtils.java) 0 0.215
Update(StrSubstitutor.java) 0 0.114
Update(FastDateFormatTest.java) 0 0.112
Update(TypeUtils.java) 0.376 0
Update(FastDateFormat.java) 0.233 0
ADD(TypeLiteral.java) 0.108 -0.057
ADD(FastDatePrinter.java) 0.108 0.087
ADD(Triple.java) 0.108 0.028
ADD(NotImplementedExceptionTest.java) 0.067 -0.086
Update(StringUtilsEqualsIndexOfTest.java) 0 -0.009

The third step is establishing the cost-benefit model based
on erosion contribution. There are 6839 changed pairs of
statement level, according to the erosion degree of them,
we find that, 1027 changed pairs are erosion points for
testability and 1453 changed pairs are erosion points for
understandability. We sort these erosion points according to
the erosion contribution from high to low. We respectively
numbered them from 1 to 1027, and from 1 to 1453, then we
establish the cost-benefit model. Due to the limitation of space,
we only demonstrate the cost-benefit model of testability in
Figure 2, where the x-axis represents the number of repaired
erosion points, and the y-axis represents the sum of erosion
contribution of the corresponding repaired erosion points.

As Figure 2 shows that, the growth rate of the sum of
erosion contribution declines with repairing more erosion
points, that is, the average benefit is reduced gradually. In

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800 1000

T
h
e

su
m

 o
f

er
o
si

o
n
 c

o
n
tr

ib
u
ti

o
n

The number of repaired erosion points

Fig. 2. The cost-benefit model of testability.

the example, we follow the Pareto principle which states that
80% of the effects come from 20% of the causes, so we only
repair the top 20% erosion points.

We repair erosion points by rolling back them to their
corresponding version. After rolling back the architecture is
denoted as the new architecture. We detect erosion degree
again based on the 3.1.0 version and the new architecture.
The comparison of architecture quality is shown in Figure 3.

0.60

0.64

0.68

0.72

0.76

0.80

Testability Understandability

3.1.0 3.2.0 New version

Fig. 3. The comparison of architecture quality.

According to Figure 3, we can draw two conclusions. First,
compared with the version 3.2.0, the contribution degree is
decreased, so the erosion points are detected and repaired.
Second, only 20% erosion points are repaired, but the erosion
degree falls by over 25%, so the cost-benefit model proposes
the repairing priority effectively.

IV. RELATED WORK

The purpose of analyzing architecture erosion is how to
locate the erosion points and how to repair the erosion points
[10], so we compare our method with related work from the
above aspects.

In the aspect of locating the erosion points, most researches
propose analysis methods for architecture erosion based on
one certain version. There are two main types of indicators,
the inconsistency between the requirements and the actual
implementation and the improper architecture pattern. Med-
vidovic et al. use the inconsistency as the indicator [17].
Zhang et al. detect architecture erosion of architectural pattern
by the design decision [8]. Herold et al. detect architecture
erosion of architecture pattern by the common ontology [7].
However, the above effects of architecture erosion all threaten
the architecture quality [7], that is, avoiding the effects on

447

software quality is the ultimate goal. So, in our method, we use
the architecture quality as the indicators to detect architecture
erosion.

In the aspect of repairing the erosion points. Terra et al.
provide an approach to provide recommendations for removing
architectural violations detected by the dependency constraint
language [10]. Mair et al. propose a heuristic search method
for adequate repairs using formalized and explicit knowledge
of software engineers [9]. However, the actual architecture is
implemented by its source code [10], so architecture erosion
need be repaired by modifying code. So, our method analyzes
architecture erosion from multiple levels.

In addition to the above aspects, our method establishes the
cost-benefit model for repairing architecture erosion. In order
to provide the repairing priority.

V. THREATS TO VALIDITY

Construct validity. We choose the component dependency
graph as the representation of software architecture. Due to
the limitations of the documents of architecture, we obtain
architecture by implementing an architecture recovery method.
There may be some deviations caused by the limitations
of the recovery method. However, the recovery method has
high accuracy, and in the future, the recovery method can be
replaced by other better methods.

Internal validity. In our example, we roll back erosion
points to their previous version. The experimental results in-
dicate that, after rolling back, architecture erosion is repaired.
However, rolling back erosion points may be not effective
for maintaining functionality. However, the cost-benefit model
is still useful for providing the priority of repairing erosion
points.

External validity. In this paper, we choose testability and
understandability as the indicators to detect architecture ero-
sion. The two quality are quantified based on the attributes
of components and dependencies, so we can use other quality
as the indicators if it is quantified based on the features of
components and dependencies.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a multilevel method for ana-
lyzing architecture erosion. Firstly, we detect changed pairs
of each level by calculating component similarity and per-
forming a multilevel change detection method. In this step,
the changed code elements are matched. Secondly, we detect
which changed pairs are the erosion points by calculating
erosion degree. Thirdly, we establish the cost-benefit model of
repairing architecture erosion based on the erosion contribution
of each erosion point. The cost-benefit model is useful to
obtain more benefits with less cost. We illustrate the process of
our method through an example, and the experimental results
indicate that our method can detect erosion points and the cost-
benefit model is useful for more effective repairing architecture
erosion by repairing fewer erosion points.

In future work, we will investigate how to propose more
suggestions for repairing architecture instead of rolling back.

ACKNOWLEDGEMENTS

This work is supported in part by the National Key R&D
Program of China under Grant 2018YFB1003902, in part by
the Cooperation Project with Huawei Technologies Co., Ltd.,
under Grant YBN2016020009, and in part by National Natural
Science Foundation of China under Grant 61872078, Grant
61572126, and Grant 61402103.

REFERENCES

[1] David Faitelson, Robert Heinrich, and Shmuel Tyszberowicz. Support-
ing software architecture evolution by functional decomposition. In
International Conference on Model-Driven Engineering and Software
Development, pages 435–442, 2017.

[2] Pooyan Behnamghader, Duc Minh Le, Joshua Garcia, Daniel Link,
Arman Shahbazian, and Nenad Medvidovic. A large-scale study of
architectural evolution in open-source software systems. Empirical
Software Engineering, 22(3):1–48, 2016.

[3] Hongyu Pei Breivold and Ivica Crnkovic. A systematic review on ar-
chitecting for software evolvability. In Australian Software Engineering
Conference, pages 13–22, 2010.

[4] Fabian Brosig, Philipp Meier, Steffen Becker, Anne Koziolek, Heiko
Koziolek, and Samuel Kounev. Quantitative evaluation of model-driven
performance analysis and simulation of component-based architectures.
IEEE Transactions on Software Engineering, 41(2):157–175, 2015.

[5] Ricardo Britto, Darja Smite, and Lars Ola Damm. Software architects in
large-scale distributed projects: An ericsson case study. IEEE Software,
33(6):48–55, 2016.

[6] Santonu Sarkar, Shubha Ramachandran, G. Sathish Kumar, Madhu K.
Iyengar, K. Rangarajan, and Saravanan Sivagnanam. Modularization
of a large-scale business application: A case study. IEEE Software,
26(2):28–35, 2009.

[7] S Herold and A Rausch. Complementing model-driven development
for the detection of software architecture erosion. In Proceedings of
the 5th International Workshop on Modeling in Software Engineering,
pages 24–30, 2013.

[8] Hui Song Franck Chauvel Hong Mei Lei Zhang, Yanchun Sun. Detecting
architecture erosion by design decision of architectural pattern. In SEKE,
pages 758–763, 2011.

[9] Matthias Mair and Sebastian Herold. Towards extensive software
architecture erosion repairs. In European Conference on Software
Architecture, pages 299–306, 2013.

[10] Ricardo Terra, M. T. Valente, Krzysztof Czarnecki, and R. S. Bigonha.
Recommending refactorings to reverse software architecture erosion. In
European Conference on Software Maintenance & Reengineering, pages
335–340, 2012.

[11] Lakshitha De Silva and Dharini Balasubramaniam. Controlling soft-
ware architecture erosion: A survey. Journal of Systems & Software,
85(1):132–151, 2012.

[12] Wang Tong, Wang Dongdong, Zhou Ying, and Li Bixin. Software
multiple-level change detection based on two-step mpat matching. In
IEEE International Conference on Software Analysis, Evolution and
Reengineering, pages 4–14, 2019.

[13] Srdjan Stevanetic and Uwe Zdun. Exploring the relationships between
the understandability of components in architectural component models
and component level metrics. In International Conference on Evaluation
& Assessment in Software Engineering, pages 1–10, 2014.

[14] Samar Mouchawrab, Lionel C Briand, and Yvan Labiche. A measure-
ment framework for object-oriented software testability. Information and
software technology, 47(15):979–997, 2005.

[15] Jitender Kumar Chhabra, KK Aggarwal, and Yogesh Singh. Code
and data spatial complexity: two important software understandability
measures. Information and software Technology, 45(8):539–546, 2003.

[16] Xianglong Kong, Bixin Li, Lulu Wang, and Wensheng Wu. Directory-
based dependency processing for software architecture recovery. IEEE
Access, 6:52321–52335, 2018.

[17] Gruenbacher P Medvidovic N, Egyed A. Stemming architectural erosion
by coupling architectural discovery and recovery. In Proceedings of
the 2nd International Software Requirements to Architectures Workshop,
pages 61–68, 2003.

448

The Affinity Platform:
Modular Architecture based on Independent Components

Alexandru Ardelean, Kuderna-Iulian Bența
Department of Computer Science

Faculty of Mathematics and Computer Science, Babeș-Bolyai University
Cluj-Napoca, Romania

ardeleanalexandru3@gmail.com and benta@cs.ubbcluj.ro

Abstract—This paper presents the Affinity Platform, a plugin

platform for developing software systems centered around the idea

of Independent Components. “Independent” refers to the ability

of a plugin to run on a machine not just as part of a software system

but also on its own. This way, software systems can be built out of

chains of Independent Components, making it easier to partially

reuse their Components and also to extend these systems in the

future. The Affinity Platform uses a graphical user interface to

represent a software system in the shape of a diagram. By

analyzing this diagram, it can generate linking scripts for

Components. The Affinity architecture also facilitates the

development of distributed and parallel software systems, as

Components are capable of operating independently on different

threads and machines. The Affinity Platform was used in the

development of an emotion recognition application in a

multimodal setup running on a mobile and resource-scarce

medium. In this scenario, the strongest points of the platform were

the ability to offload code to other machines, the ease of adapting

the system to different sensor setups, and the convenience of

developing Components individually and only having to connect

them at the end.

Keywords - CBSE, Independent Component, plugin architecture,

platform, chaining.

I. INTRODUCTION
As software systems are becoming more open, modular,

reusable, distributed, parallel, and context-aware, developers
seem to have a hard time molding their software applications
around all these requirements. Extending such systems is also
continually becoming more challenging. And the list of must-
have features is only getting longer. As the complexity of
software systems rises above the level at which a manageable
team can efficiently tackle it, new ways of organizing software
systems must be developed.

Inspired by audio plugins based on the audio in/audio out
paradigm, the Affinity architecture was envisioned for building
data flows. The building blocks of the Affinity Platform are
called Components [1]. A Component is abstracted as a data-
processing unit with multiple channels for input and output and
various configuration options. Components can be any software
program capable of extracting, processing or delivering data
over a medium, requiring at a minimum a channel for data input
or a channel for data output. Components can be linked together
into chained systems that can be automatically parallelized (on a

per-Component basis) or distributed among multiple machines.
Locally available Components are connected via a piping
mechanism, while connectivity between Components located on
different machines is achieved by interpolating between them
other Components responsible for sending and receiving data
over the desired medium.

The scenario in which this architecture was tested is that of a
context-aware software application for emotion detection. The
data flow of the app starts with a Component running on a
secondary device (A, a smartwatch) extracting data from
multiple sensor setups and sending its output to a more powerful
device (B, a smartphone). Device B runs a machine learning
algorithm for emotion recognition that processes the data and
sends the result over to a remote server (C, a cloud-based API).
Device C is represented by a Component that computes a virtual
diagram based on the data received from multiple A-B setups. A
visual representation of this example is illustrated in Figure 1.

Figure 1. Informal diagram of the main test scenario

The Affinity Platform can be seen as an additional layer on
top of regular software systems that connects them together in a
protocol-agnostic way. This layer being also language-agnostic
and OS-agnostic (Operating System), brings into the discussion
a new, higher level programming where applications are written

DOI reference number: 10.18293/SEKE2019-208

449

by simply interconnecting Components. Given a sufficiently
large repository of Components, complete software systems
could be built from already developed Components.

The main objective of this architecture consists of the
realization of chained data systems that can be easily distributed
and offloaded among various devices, such as mobile phones,
wearables, or autonomous vehicles. This system is meant to
serve as an enabler for data science fields but is not limited to
them, as this technology has the potential to substantially reduce
development time and greatly improve collaboration between
vastly different fields.

II. RELATED WORK
Most plugin architectures rely on strict application

programming interfaces (APIs) [2] and give little customization
options. Other systems, as for example Emacs [4], can be fully
customized - including their internals, but have the disadvantage
of requiring developers to learn a new and often cumbersome
scripting language. Eclipse [5] exemplifies another category of
plugin architecture - in Eclipse everything is a plugin, every item
included in its menus and submenus. Every plugin has a manifest
file that describes the way the plugin works and what interface
it requires. Eclipse-like plugins seem to strike the best balance
so far, but they are still too hard to use for regular users. React
Components [6] are also greatly appreciated by the developer
community. They are similar in functionality to plugins but have
the advantage of being able to work independently of their parent
system. The Affinity Platform builds on these predecessors but
adds the concept of treating even fully-fledged applications as
possible Components. This, together with its high level of
generality, makes Affinity stand out among traditional plugin
architectures and gives it the status of a platform for plugins. A
comparison of these traits is presented in Table I.

Chimera [7] was chosen as the best fitting solution for
linking Components due to its closely related philosophy to the
Affinity Platform. It is a language-agnostic component-based
framework capable of orchestrating independent applications. It
is boasting similar ease of use and compatibility to the UNIX
pipe system [8] while being more advanced, adding support for
features like distributed and parallel computing.

TABLE I. COMPARISON OF THE AFFINITY PLATFORM FROM THE POINT
OF VIEW OF PLUGIN ARCHITECTURES

Plugin Architectures

Emacs

[4]

Eclipse

[5]

React

[6]
Affinity

Extendable ✓ ✓ ✓ ✓
Full customizability of
resulted systems

✓ X ✓ ✓
Full control over the
granularity of plugins ✓ ✓ ✓ ✓

Independent plugins X X ✓ ✓

Easy to use for individuals X X ✓ ✓
No previous programming
knowledge required X X X ✓

High level platform X X X ✓

Chimera was considered as the starting point of the Affinity
Platform but needed a series of improvements. The main
complaint with Chimera is that it requires users to learn the
CHIML [9] markup language. To improve on this, a graphical
user interface (GUI) was designed in ordered to empower users
to easily discover Components and connect them together. It
makes use of diagram representations to express software
systems in a way that can be easily managed and understood.
Main features of this GUI include the ability to search for the
desired Component, add a Component to the diagram, change
the configuration options of a Component, and connect the
channels of two Components. In the end, a diagram can be used
to automatically generate the corresponding CHIML script. This
interpretation phase allows for certain optimization procedures
to be carried out, such as seamlessly adding parallelization to the
resulting script.

In order to chain Components running on mobile devices, the
terminal emulator Termux was used to achieve compatibility
with the Node.js run-time environment on the Android operating
system. Making use of Termux, CHIML scripts were able to run
on an Android mobile phone. The main differences between the
mentioned piping mechanisms are illustrated in Table II.

III. OVERVIEW
The Affinity Platform is built on the concept of fully

independent Components. They are considered the building
blocks of Affinity-developed software systems but are fully
capable of operating completely on their own outside of their
parent system. This kind of architecture closely follows core
software engineering principles such as being low in coupling
and high in cohesion.

Compatibility is a strong point as any existing application
can be easily integrated into the Platform as long as it can be
invoked by using the command line or is actively listening for
data. Each Component must define a number of input channels
and output channel, together with a set of configuration options
that can be specified by the user. These characteristics can be
defined using JavaScript Object Notation (JSON) in an
“affinity_component.json” file or, for applications built using
Node.js or related frameworks, they can be included straight into
the “package.json” file.

TABLE II. COMPARISON OF THE AFFINITY PLATFORM FROM THE POINT
OF VIEW OF SOFTWARE PIPING MECHANISMS

Piping Mechanisms

UNIX Pipe

[8]

Chimera

[7]
Affinity

Language agnostic ✓ ✓ ✓

Distributed computing X ✓ ✓

Parallel computing X ✓ ✓

Support for mobile platforms X X ✓
No previous programming
knowledge required ✓ X ✓

Visual interface X X ✓

450

Figure 2. The graphical user interface of the Affinity Platform

Other than building software systems from scratch, the
Affinity Platform can also be used to add plugins support to
already existing applications. This is done by simply exposing
input and/or output channels of the app, transforming it into a
Component. Afterward, new modules can be added by
connecting other Components to these channels.

Connections between Components are specified from an
output channel to an input channel and can be routed in varying
degrees of complexity. Interpolating Components gives
developers abilities like broadcasting data to multiple
Components, selectively sending data to the best available
machine, and fusing together data coming from multiple
Components before it gets processed.

The way inputs and outputs are connected is described in a
CHIML configuration file. To make writing these files easier, a
GUI application for generating CHIML configurations out of
system diagrams is made available to developers. Diagrams are
built using the mxGraph [10] JavaScript library, making
advanced editing options readily available. The current state of
the visual interface employed by the Affinity Platform can be
observed in Figure 2. At the moment, finishing touches are
added to analyzing these diagrams and generating optimized
CHIML files out of them. Scripts auto-generated from diagrams
can be edited in case a lower level of control is desired.

Components can be connected through the Chimera piping
system or through any communication channels such as

Hypertext Transfer Protocol, WebSocket, Remote Procedure
Call, Bluetooth Low Energy etc. implemented by other
Components. The inter-compatibility of input and output
channels is not guaranteed as Components are not limited by the
communication medium or data representation. These are left as
choices and they are not imposed as a responsibility of the
Component. Developers can easily achieve compatibility
between dissonant Components by defining inputs and outputs
that support different data representations or by incorporating
additional Components to act as translators between common
data representations or communication mediums.

IV. RESULTS
The Affinity Platform was envisioned during the

development of the main Affinity software application. A
simpler way of making the Affinity Emotion Analyzer and its
related algorithms available to the public was needed. A high
level of reliability and ease of use were desired in order for other
researchers to not just be able to extend and reuse this work but
to actually make it easy to do so.

Using the Affinity Platform, the main Components of the
Affinity application are exposed in an individual manner. This
means, for example, that if somebody wants to use just the
Affinity Emotion Analyzer, it could easily take it out of the
system and integrate it.

451

The results confirm that using the Affinity Platform can
improve the reusability of a software system and its Components
up to a state where they can be considered future-proof. In this
regard, the life expectancy of a Component is similar to that of
an audio plugin. A Component becomes obsolete only when
there is no longer a machine that can run its code or in the
improbable case that its communication medium is not
supported anymore and there is no way of adapting it to a
different medium. This is different from the way in which
regular plugins are added to an application as it doesn’t require
strict version compatibility. In extreme cases, a component could
be run on a totally different system, in a Docker container for
example, where all its dependencies are already met and thus
ensuring long-lasting compatibility.

What is even more impressive is that this is achieved with
minimal overhead on the part of developers. The only change
that they need to make is adding a simple manifest file to their
apps in order for the Affinity Platform to be able to identify them
as Components and manage their input and output channels.
This manifest file contains only the critical information about
how to invoke a Component, how to transfer data through it
(more specifically, its channels), and what configuration options
are available for it. Usually, this file is only a few lines long. An
example of how a minimal manifest file looks like is given in
Figure 3.

V. DISCUSSION
The results obtained in this experiment are indicative of the

potential of the Affinity Platform. Nonetheless, these are only
early results and what could be accomplished goes far beyond
what was presented in this experiment.

At this moment, the Affinity Platform is built around the
concept of Components but, as better understanding is gained
over the capabilities of these Components, we start to see how
smart and independent they could become in the future.
Components with the ability to reshape the connections of the
system that they are part of are an interesting proposition. They
could be the basis for integrating intelligent agents [11] in the
Affinity Platform, using them to create smart connections
between Components - connections made as a result of the data
the agent has about its other Components. For now, the platform
is closer related to component-based systems but it has strong
ties to intelligent agents and might prove to be a powerful tool
for building agent-oriented systems [12].

Concrete challenges of such a platform could be better
understood when an affective aware developer aims for high
precision in multimodal mobile affective applications [13].

Figure 3. Example of an affinity_component.json file

Real life (mobile) facial expressions recognition systems are
also demanding for high computing resources [14].

VI. CONCLUSION AND FUTURE WORK
This paper discusses the practical and theoretical aspects of

using a data-driven plugin architecture in Affective Computing
[3] and, more specific, context-aware applications.

Another area where this architecture could lead to substantial
advancements is in Artificial Intelligence (AI) systems for
writing software programs. As Components become more
specialized, they start to represent more granular pieces of
programming code, chunks of code similar to the ones that
programmers write intuitively after they get accustomed to
solving a recurring problem. AI could use these pieces to write
complete programs on its own by simply making connections
between Components. By gaining knowledge about the
Components used in a system, AI could also describe the use of
a system and make educated guesses about what it can do.

Currently, intelligent agents are thought to be the next step
in developing the Affinity Platform. Integrating Components
that can alter the inner linking of a system in order to better adapt
to their goal brings forward new ways of thinking about the
platform.

ACKNOWLEDGMENT
This work was supported by MHP Romania under MPH Lab

Cluj-Napoca – Babeș-Bolyai University collaboration project.

REFERENCES

[1] A. Kaur, K. S. Mann, “Component based software engineering,” IJCA,
vol. 2, no. 1, pp. 105-108, 2010.

[2] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of API
usability,” in Proc. ESEM, Baltimore, MD, USA, 2013, pp. 5–14.

[3] R. W. Picard, “Affective Computing,” MIT Press, 1997.
[4] Emacs, https://www.gnu.org/software/emacs/ (Accessed: 15/10/2018).
[5] The Eclipse plug-in architecture, https://www.eclipse.org/articles/Article-

Plug-in-architecture/plugin_architecture.html (Accessed: 15/10/2018).
[6] React components and props, https://reactjs.org/docs/components-and-

props.html (Accessed: 30/12/2018).
[7] G. F. Gunawan, M. Amien, J. F. Palandi, “Chimera - simple language

agnostic framework for stand alone and distributed computing,” CAIPT,
2017.

[8] W. R. Stevens, UNIX Network Programming, Prentice Hall, Inc., 1990.
[9] CHIML markup language, https://github.com/goFrendiAsgard/chimera-

framework/wiki/CHIML (Accessed: 30/12/2018).
[10] mxGraph version 3.9.12, https://jgraph.github.io/mxgraph/ (Accessed:

01/02/2019).
[11] M. Wooldrige, “Agent-based software engineering,” Mitsubishi Electric

Digital Library Group, 1997.
[12] H. Yu, Z.Q. Shen, C.Y Miao, “Intelligent software agent design tool using

goal net methodology,” IAT 2007.
[13] K.I. Bența, M. Cremene, M.F. Vaida, "A multimodal affective

monitoring tool for mobile learning," RoEduNet NER, Craiova, p. 34-38,
2015.

[14] K.I. Bența, M.F. Vaida, “Towards real-life facial expression recognition
systems,” AECE, 15(2), pp. 93-102, 2015.

452

https://www.gnu.org/software/emacs/
https://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
https://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://github.com/goFrendiAsgard/chimera-framework/wiki/CHIML
https://github.com/goFrendiAsgard/chimera-framework/wiki/CHIML
https://jgraph.github.io/mxgraph/

A Mapping Study about Data Lakes:
An Improved Definition and Possible Architectures

Julia Couto, Olimar Borges, Duncan Ruiz, Sabrina Marczak, and Rafael Prikladnicki
School of Technology, PUCRS - Pontifical Catholic University of Rio Grande do Sul - Porto Alegre, Brazil

{julia.couto, olimar.borges}@edu.pucrs.br, {duncan.ruiz, sabrina.marczak, rafaelp}@pucrs.br

Abstract—In the past few years, data lakes emerged as a
trending topic in big data technologies. Although literature
presents different points of view related to its functionalities,
it serves mainly to store a variety of data in a big data
context. In this paper, we aim to identify and analyze data
lake definitions and possible architectures. Our methodology was
composed of a systematic literature mapping based on PRISMA,
software engineering best practices to perform reviews, and
Kappa method to assess results’ quality. We performed the search
in eight different electronic databases to achieve a wide variety
of publishers in Computer Science. We first identified 662 papers
matching our search criteria; after filtering, we selected 87 papers
for review. We found that the term data lakes was first defined
by James Dixon in 2010. We also found that the term is often
related to raw data repositories. From the identified definitions,
we propose a new one as a means to better state what data lakes
refer to and improve how the community use them. Moreover,
we foind that Hadoop and its ecosystem compose the most used
toolset to create data lakes, revealing that this is the mainstream
in architectures for data lakes as of today’s available technologies.

Index Terms—Data lakes, Big Data, Literature review,
PRISMA, Hadoop.

I. INTRODUCTION

Data lakes are a recent and trending topic in big data
context [24], [81]. It is often referred as an architecture to
store big data. They are often compared to traditional data
warehouses, but both concepts differ in several aspects. For
instance, unlike data warehouses, data lakes can easily scale
and have the ability to store schema-less and multivariate
data that will be processed just when information needs to
be extracted from the stored dataset [8], [13], [38], [44], [80].
This native characteristic makes data lakes quite suitable for
big data ecosystems.

Although the concept was first used in earlier 2010 [20], it
was adopted by academia only a couple of years later. Thus,
there is no consolidated and universally accepted definition,
and its functionalities vary according to the context. For
example, some say it is only a data repository [30], [43],
[86], while others say it is a complete ecosystem, from data
acquisition to information visualization [9], [55], [62]. By
having these different functionalities, data lakes also present
different possible architecture configurations.

The foundation architecture to create a data lake may be
different according to some variables, such as its purpose, the
skills of the people responsible for creating it, the available

infrastructure, and tools. For example, when considering the
Hadoop Ecosystem, there are more than a hundred tools
available for it [22], with thousands of possible combinations
among their use. Knowing which ones are most commonly
used or those that are most commonly reported in the literature
may be useful for novices on big data, who need to set up an
initial data lake, and also for those who are more experienced
users, who might want to know new tools to add advanced
features to an existing data lake.

Therefore, the aim of our literature review was to better
understand what definitions have been used by the research
community for the term ’data lake’, and to propose a more
comprehensive definition to facilitate and improve its use.
Additionally, we also aimed to identify which big data ar-
chitectures are used to build a data lake as well as to map the
associated tools to do so.

More specifically, we performed a systematic mapping study
in eight electronic databases. From the 662 identified papers,
we selected 87 papers for review after filtering. We used the
PRISMA checklist [59] to help us improve the quality report of
our study, and the process suggested by Kitchenhan et al. [11]
to plan the steps to be followed. To enhance results quality and
measure the level of agreement between the researchers, we
used the Kappa [54] method. To reduce bias, two researchers
analyzed the selected papers and two others were consulted to
resolve disagreements.

Our study revealed that James Dixon was the first author to
use the concept of data lake to refer to a solution to store raw
data in a Hadoop ecosystem, in 2010 [20]. The first conference
paper to cite the term is from 2014, by O’Leary [63]. We
also found that the terms most frequently associated to data
lake are: store, raw, repository, formats, analysis, storage,
processed, and sources. About data lake architectures, Hadoop
is the most commonly used, stand-alone or in combination
with other tools, such as Spark and NoSQL databases. The
remaining sections present our study and results in details.

II. MATERIALS AND METHODS

A systematic mapping study, also known as mapping study
(MS), is a type of literature review, a research method largely
used to understand the state of art of some subject, and it
allows us to map its origins and also how it developed over
time, based on research questions. To develop our MS, we fol-
low the process defined by Brereton et al [11]. These authors
suggest three phases, namely Plan, Conduct, and DocumentDOI reference number: 10.18293/SEKE2019-129

453

TABLE I
PICO AND PICO DEFINITIONS

PICO PICo

Population: Big data systems Population: Big data sys-
tems

Intervention: Data lakes
Comparison: Definition of data lakes

Interest: Definitions and
architectures

Outcome: Definition of data lakes and big
data architectures in data lakes ecosystems

Context: Data lakes

the review, having ten stages to develop these phases. We also
use the Preferred Reporting Items for Systematic Review and
Meta-Analysis Protocols (PRISMA-P) [59] checklist, that has
a set of items that must be addressed to report a systematic
review, as described next.

A. Plan Review

In the Planning Phase, we defined research questions, and
developed and assessed the review protocol. This phase must
be done carefully because of it basis all subsequent research.

1) Specify Research Question: Our main objective is to
answer the following Research Question (RQ): What are the
definitions and possible big data architectures in data lake
ecosystems? To better explore the papers, we splitted RQ into
two, so each accepted paper can answer one or two questions:
1) What are the most common definitions to the term data
lake? 2) Which system architectures are reported to be used
in data lake ecosystems?

Aiming to limit and clarify our scope, we followed the PICO
(Population, Intervention, Comparison, and Outcome) and
PICo (Population, Interest, and Context) methods. These were
initially developed by Sacket [72], to facilitate the elaboration
of research definitions. PICO are most used for quantitative
studies, while qualitative studies usually apply PICo [89]. As a
MS can contain both qualitative and quantitative data, we used
PICO and PICo to help us elaborate our research question. We
present the scope of our research in Table I.

2) Develop Review Protocol: We developed and applied our
search protocol using digital libraries available in the internet.
We defined control studies so we could validate our search
strings. A control study is an primary study resulting from
systematized research, and which is known to answer our
research questions. We used it to check if the search strings are
adequate: if the control papers are not returned during string
adjustments, the strings need to be adjusted until they do so.
We used the two papers listed in Table II as control papers.
Table III lists the used eletronic databases and search strings.

TABLE II
CONTROL PAPERS.

Control
Study 1

Terrizzano, Ignacio G., et al. "Data Wrangling: The Challeng-
ing Journey from the Wild to the Lake." CIDR. 2015. [87]

Control
Study 2

Madera, Cedrine, and Anne Laurent. "The next information
architecture evolution: the data lake wave." Proc. Int’l Conf.
on Management of Digital EcoSystems. ACM, 2016. [50]

TABLE III
SEARCH STRINGS FOR EACH ELECTRONIC DATABASES.

Database Search String

Springer search?query=”data+lake”&facet-
language="En"&date-facet-
mode=between&showAll=true&facet-
discipline=”Computer+Science”

Google Scholar allintitle: "data lake"
Scopus TITLE-ABS-KEY (data lake) AND (LIMIT-TO (

SUBJAREA , "COMP")
Web of Science (from all databases): TOPIC: ("data lake") OR TI-

TLE: ("data lake") OR AUTHOR IDENTIFIER:
(”data lake”)

IEEE Xplore ((("Document Title":"data lake") OR "Ab-
stract":"data lake") OR "Author Keywords":”data
lake”)

Science Direct Title, abstract, keywords: "data lake"
arXiv order: -announced_date_first; page_size: 50; pri-

mary_classification: cs; terms: AND all="data lake"
ACM acmdlTitle:(+data +lake) AND recordAbstract:(+data

+lake) AND keywords.author.keyword:(+data +lake)

It is important to note that we did not set a data range for
the search. Returned results from as early as 1969 to 2013
referring to data lakes, upon inspection, were identified to
discuss geological lakes. Thus, given that these do not relate to
Computer Science, we discarded them; having the first paper
of interest reported in 2014.

3) Validate Review Protocol: Two researchers developed
the review protocol, who made several trials changing the
search string to obtain results relevant and aligned to the
research question. Then, the protocol was validated by two
other senior researchers with a PhD degree in Computer
Science. One of these researchers is a domain specialist in
databases and big data and the other in research methodology.
The study was conducted based on the updated protocol upon
their reviews, as presented next.

B. Conduct Review

We conducted the study as per the defined protocol.
1) Identify Relevant Research: We applied the defined

search string and, from the results, generated a bibtex file
format for each electronic database. Bibtex is a plain-text file-
format that contains lists of references, with information about
all paper that matches our search criteria.

2) Select Primary Studies: To reduce bias, we splitted
the papers to be analyzed between two researchers. We start
selection phase with 1st researcher reviewing and marking
each paper as accepted or rejected. Then, we perform three
review rounds, based on Kappa method [54], each one con-
taining a random sample of 5% of the papers population
that was reviewed by the second researcher. We used the
Kappa statistic [54] to measure the level of agreement between
the researchers. Kappa result is based on the number of
answers with the same result for both observers [46]. Its
maximum value is 1, when the researchers have almost perfect
agreement, and it tends to zero or less when there are no
agreement between them.

454

https://link.springer.com/
https://scholar.google.com
https://www.scopus.com
https://apps.webofknowledge.com
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://arxiv.org/
https://dl.acm.org/
http://www.bibtex.org/

TABLE IV
KAPPA RESULTS, BASED ON LANDIS & KOCH [46].

Kappa values Agreement 1° round 2° round 3° round

<0 Poor
0 – 0.20 Slight
0,21 – 0,40 Fair
0,41 – 0,60 Moderate 0.42
0,61 – 0,80 Substantial 0.64
0,81 – 1 Almost perfect 0.82

For each round, the 2nd researcher received a sample,
analyzed each paper, and marked each one as accepted or
rejected. Then, we compared the answers: if 1st and 2nd
researchers accepted the same paper, we have an agreement in
that paper. Then, we calculate Kappa value for the round. After
that, in the papers where there is no agreement, the two main
researchers discuss about the paper to reach a consensus. If
there is still no consensus, the other researchers are contacted
to help decide.

Landis & Koch [46] define a scale to interpret the Kappa
results (see Table IV). We can also see in this table the results
from the 3 rounds of analysis. We can see that the level
of agreement increased, from moderate in the 1st round to
substantial in the 2nd one, and in the last we achieved almost
perfect agreement. In each iteration, we discussed the results
and the reasons why some papers had been selected and other
had not, improving the agreement between the researchers on
the next iteration. From that, the second researcher received
the second-half of papers to independently review.

3) Assess Study Quality: In order to retrieve interesting
results related to the research topic, we defined inclusion
and exclusion criteria for the papers. To be accepted, papers
must meet all the following criteria: 1) Be a qualitative
or quantitative research on data lakes in data management;
2) Present a complete study in electronic format; 3) Be a
conference paper, review or journal. On the other hand, papers
we rejected meet at least one of the following criteria: 1)
Incomplete or short paper (less than 3 pages); 2) Unavailable
for download; 3) Not about data lakes in data management; 4)
Duplicated study; 5) Written in another language than English;
6) Conference proceedings index.

4) Extract Required Data: To help us organize and classify
the papers, we used a tool named StArt (State of the Art
through Systematic Review)1. StArt was developed by the
Federal University of São Carlos, Brazil, and it helps re-
searchers in the process of systematic literature reviews. StArt
has a execution phase with 3 processes: studies identification,
selection, and extraction. We first register the protocol, and
then we register each database and import its bib file, then use
StArt to help keep record of selected papers. After finishing
all data extraction using StArt, we exported the results to a
Google Sheets, so we could analyze the data.

5) Synthesize Data: We used Google Sheets to help analyze
and summarize our results. It also helped to work collabora-

1Available at: http://lapes.dc.ufscar.br/tools/start_tool

TABLE V
PAPERS PER ELECTRONIC DATABASES.

Source Initial Accepted

Scopus 108 53 papers: [1]–[3], [5], [9], [10], [13]–[19],
[23]–[29], [31]–[33], [37], [40], [45], [49],
[50], [57], [60]–[66], [68], [70], [71], [73],
[76]–[78], [81]–[84], [88], [90], [91], [93]–
[95]

Springer 222 20 papers: [4], [6], [12], [21], [30], [36],
[38], [39], [41]–[43], [47], [51], [53], [69],
[74], [79], [85], [86], [92]

Google Scholar 197 6 papers: [8], [34], [56], [67], [80], [87]
Web of Science 71 4 papers: [7], [44], [48], [58]
Science Direct 19 2 papers: [35], [75]
IEEE Xplore 32 1 paper: [52]
arXiv 7 1 paper: [55]
ACM 6 0 papers

tively, as Google Sheets is available online.

C. Document Review

1) Write Review Report: After finishing answering the
questions of the MS, we use our protocol as a basis to
document the Review. Results are presented in Section III.

2) Validate Report: Once we finished the report, it was
independently reviewed by three senior researchers. Each one
read and suggest improvements that were adjusted to this final
version.

III. RESULTS

We started with 662 papers retrieved from the initial search
through the web engines. During the process, we identified
that 155 are duplicated, and 419 were rejected according to
exclusion criteria previously explained. At the end of MS
process, we accepted 87 papers, published between 2014 and
2018. Table V presents the distribution of papers per database.
In this table, we can see that most of the papers came from
Springer and Google Scholar. It happens because Springer
does not allow us to refine the filter of the studies, so results
contains lots of books and books chapters, which we reject,
as we explained in inclusion and exclusion criteria. Google
Scholar, in the same way, does not allow complementary
filters, frequently redirects to other engines, and it also brings
a lot of websites and non-scientific reports among the results.

Among the rejected papers, 75 were published before 2010,
when the term data lake was first used in big data context. We
have to manually reject the older ones due to the fact that
in most electronic databases we cannot filter results to show
only Computer Science related studies. The papers previous
to 2010 are mostly from Geology or Civil Engineering. We
found that there is an increasing interest in data lakes, since
2014, with most papers being published in 2018.

Other interesting aspect we can see in Table V is that more
than half papers we accepted are from Scopus. It happens due
to the fact that Scopus is the largest database of abstracts and
scientific citations, compiling more than 71 million records,
23 million titles and 5,000 publishers, among them ACM,
Elsevier, IEEE, Springer, etc. So, we probably accepted papers

455

https://www.google.com/sheets/about/
http://lapes.dc.ufscar.br/tools/start_tool
https://www.scopus.com
https://link.springer.com/
https://scholar.google.com
https://apps.webofknowledge.com
https://www.sciencedirect.com/
https://ieeexplore.ieee.org/
https://arxiv.org/
https://dl.acm.org/

from other databases using Scopus reference, and then it was
marked as duplicated in the original database version.

A. What are the most common definitions to the term data
lake?

From the 87 papers we accepted, 71 present data lake
definitions. We read each one and copied the definition they
present to the term data lake. Then, we created a unique text
containing all definitions, and we passed through a web tool to
count the words. This tool removed the stopwords, the most
frequent terms in English, that are usually removed before
natural language processing. Then, it returned a list containing
all the other words and the amount of times they appear in the
text. We analyzed the resulting list and grouped the variances
in the same word, by the most frequent one: e.g.: analyses,
analyzing, and analysis were grouped into analysis. Table VI
presents the top 30 most frequent words. Then, based on the
most frequent words, we create a word cloud (Figure 1) and
a new definition to the term data lake, presented below.

Data lake is a central repository system for storage,
processing, and analysis of raw data, in which the data is
kept in its original format and is processed to be queried

only when needed. It can store a varied amount of formats
in big data ecosystems, from unstructured, semi-structured,

to structured data sources.

During our analysis, we mapped who the authors of the
papers references when using a definition for data lakes. We
found that James Dixon was the first one to use the term lake
in big data context, in a post in its blog in 2010 [20], and he
is referenced by ten papers [4], [6], [17], [32], [38], [44], [62],
[63], [67], [91]. The first author to reference Dixon’s Concept
in academic context was O’Leary [63], in a paper published in
2014. We also discovered the most cited academic definition
for data lakes is from Terrizzano et al. [87], mentioned in
twelve papers [5], [26], [27], [33], [34], [52], [66], [78], [82],
[84], [91], [93].

Fig. 1. Word cloud with the terms most commonly related to data lakes

TABLE VI
30 MOST FREQUENT WORDS RELATED TO DATA LAKE DEFINITIONS.

Word Count Word Count Word Count

data 357 amount 20 scalable 13
lake 105 system 20 schema 13

store 81 big 17 set 13
raw 45 structured 17 structure 13

repository 42 large 16 available 12
formats 37 needed 16 enterprise 12
analysis 29 original 16 Hadoop 12
storage 28 native 14 ingest 12

processed 26 unstructured 14 massive 12
sources 21 various 14 vast 12

B. Which system architectures are reported to be used in data
lakes ecosystems?

System architectures are formed by a set of tools that work
together to achieve the environment objective. Among the 87
papers we mapped, we identified 117 different tools used in
data lake architectures. Table VII lists the tools cited more
than once. Of all the tools, Apache Hadoop was the most
mentioned, having 37 citations ([1], [6], [8], [9], [12], [18],
[23]–[25], [27], [28], [30], [31], [40], [42]–[44], [47], [48],
[50], [52], [55], [61], [65], [67]–[71], [73], [76], [80], [82]–
[86], [88]). Hadoop is a platform that allows distributed pro-
cessing of large data sets in computer clusters. It is currently
considered a complete ecosystem to Big Data storage and
processing. We list and categorize the remaining tools in five
groups, described as follows.

1) Ingestion: Class of tools that work on data acquisition
and collection, from the most varied sources. In this group,
the most cited tool is Apache Kafka, which consists of a high-
capacity, low latency distributed streaming platform for real-
time data processing.

2) Storage: Represented by tools to store, integrate and
normalize data. Besides Hadoop, Apache Cassandra and Mon-
goDB, are the most popular for this group. Apache Cassandra
is a highly scalable, column-driven distributed database that
has a data model based on Google’s BigTable. MongoDB
is a multi-platform, document-oriented database that stores
data in JSON documents with the dynamic schema. It can be
considered the most famous NoSQL database on the market.

3) Processing: Tools in this group are responsible for
analyzing, processing and transforming the raw data, so we
can extract information from it. In this group, Apache Spark
is the most cited in all papers, besides Apache Hadoop. It
is a framework for distributed computing that provides an
interface for clustered programming with parallelism and fault
tolerance.

4) Presentation: Tools that help us make sense of the data,
in a visual manner. In this case, Microsoft Power BI and
Tableau are the most mentioned in the papers. Power BI is a
cloud-based Business Analytics service focused on presenting
information across dashboards. Tableau is a software for
interactive data visualization.

456

https://www.wordclouds.com/
https://hadoop.apache.org/
https://kafka.apache.org
http://cassandra.apache.org/
https://www.mongodb.com/
https://www.mongodb.com/
https://spark.apache.org/
https://powerbi.microsoft.com
https://www.tableau.com

TABLE VII
ARCHITECTURES: THE MOST USED TOOLS IN DATA LAKES

Tool Amount Papers

1) Ingestion
Apache Kafka 10 [1], [6], [9], [31], [47], [55], [68], [76],

[82], [85]
Apache Flume 7 [1], [6], [27], [52], [61], [70], [83]
Apache Sqoop 5 [1], [27], [47], [52], [55]
Apache Nifi 3 [1], [55], [76]
Komadu 2 [83], [84]
Talend Studio 2 [1], [93]

2) Storage
Apache Cassandra 6 [1], [6], [21], [40], [41], [45]
MongoDB 6 [16], [33], [35], [41], [43], [62]
Apache HBase 4 [1], [31], [47], [69]
MySQL 4 [1], [33], [43], [84]
Neo4J 3 [65], [85], [91]
Oracle 3 [1], [12], [42]
Apache Mahout 2 [1], [42]
GlusterFS 2 [48], [64]
PostgreSQL 2 [41], [78]

3) Processing
Apache Spark 26 [1], [6], [8], [9], [12], [18], [24], [27],

[33], [35], [40], [42], [44], [47], [49],
[51], [52], [55], [61], [68], [69], [71],
[82]–[84], [92]

Apache Hive 11 [1], [6], [9], [12], [25], [27], [31], [43],
[55], [61], [69]

Apache Storm 7 [1], [42], [55], [65], [82]–[84]
Apache Impala 4 [12], [61], [69], [88]
Apache Drill 4 [12], [43], [65], [71]
Apache Oozie 4 [1], [27], [52], [55]
Python 4 [1], [16], [35], [88]
Apache Flink 3 [6], [44], [82]
Apache Pig 3 [1], [27], [52]
Apache POI 2 [1], [66]
Kepler 2 [83], [84]
Shiny 2 [27], [52]
Splunk 2 [1], [69]
WEKA 2 [42], [93]

4) Presentantion
Microsoft Power BI 2 [88], [90]
Tableau 2 [1], [61]

5) Security
Apache Ranger 4 [31], [55], [70], [71]
Kerberos 3 [55], [70], [71]
Apache Ambari 2 [55], [71]
Apache Knox 2 [31], [71]
Apache Sentry 2 [31], [71]

5) Security: Includes tools to manage system authentication
and authorization, assure data security, permit auditing, and
allow data encryption. Apache Ranger is the most mentioned.
It is a framework for activating, monitoring and managing
data security in the Apache Hadoop ecosystem. According to
our analysis, the Apache Software Foundation (ASF) develops
most of the tools reported in the studies for data lake archi-
tectures, helping creating the most used ecosystems.

IV. CONCLUSION

In this paper, we presented a systematic mapping study to
better explain data lakes definition and architecture. We started
with 662 papers, and we end up with 87 in the final set, after
our criteria selection. The papers we selected are from 2014
to 2018, and came from eight different electronic databases.

We learned that the term data lake was first used in 2010 to
designate a big data system. We proposed a new definition
from the selected papers in our study for the concept data
lake. We also found that Hadoop and its ecosystem comprises
the most frequent architecture to built data lakes.

One limitation of our study is that we choose to limit the
search only to the papers that have the term "data lake". We
know that many researchers can be working with data lakes
without using this buzzword, but as we want to know its
definition, we chose to accept that limitation. For future work,
we plan to further the investigation on the used tools and
architectures, discussing the categories we listed and building
a framework to help beginners to choose the best configuration
according to its needs.

REFERENCES

[1] F. Ahmad et al., “Qos lake: Challenges, design and technologies,” in
SigTelCom, 2017, pp. 65–70.

[2] A. Ahmadov et al., “Towards a hybrid imputation approach using web
tables,” in BDC. IEEE/ACM, 2015, pp. 21–30.

[3] H. Alili et al., “Quality based data integration for enriching user data
sources in service lakes,” in ICWS. IEEE, 2018, pp. 163–170.

[4] H. Alrehamy et al., “Semlinker: automating big data integration for
casual users,” Journal of Big Data, vol. 5, no. 1, p. 14, 2018.

[5] A. Alserafi et al., “Towards information profiling: Data lake content
metadata management,” in ICDMW. IEEE, 2016, pp. 178–185.

[6] S. Auer et al., “The bigdataeurope platform – supporting the variety
dimension of big data,” in ICWE. Springer, 2017, pp. 41–59.

[7] A. Beheshti et al., “Coredb: A data lake service,” in CIKM. ACM,
2017, pp. 2451–2454.

[8] R. Benaissa et al., “Clustering approach for data lake based on medoid’s
ranking strategy,” in CSA. Springer, 2018, pp. 250–260.

[9] M. Bhandarkar, “Adbench: A complete benchmark for modern data
pipelines,” in TPCTC. Springer, 2017, pp. 107–120.

[10] W. Brackenbury et al., “Draining the data swamp: A similarity-based
approach,” in HILDA. ACM, 2018, pp. 13:1–13:7.

[11] P. Brereton et al., “Lessons from applying the systematic literature
review process within the software engineering domain,” Journal of
systems and software, vol. 80, no. 4, pp. 571–583, 2007.

[12] P. Ceravolo et al., “Big data semantics,” Journal on Data Semantics,
vol. 7, no. 2, pp. 65–85, 2018.

[13] B. Cha et al., “International network performance and security testing
based on dist. abyss storage cluster and draft of data lake framework,”
Security and Communication Networks, vol. 2018, pp. 1–14, 2018.

[14] H. Chen et al., “An early functional and performance experiment of the
marfs hybrid storage ecosystem,” in IC2E. IEEE, 2017, pp. 59–66.

[15] Y. Chen et al., “Enhancing the data privacy for public data lakes,” in
ICASI. IEEE, 2018, pp. 1065–1068.

[16] A. Ciociola et al., “Umap: Urban mobility analysis platform to harvest
car sharing data,” in SmartWorld. IEEE, 2017, pp. 1–8.

[17] N. Dessì et al., “Increasing open government data transparency with
spatial dimension,” in WETICE. IEEE, 2016, pp. 247–249.

[18] A. Dholakia et al., “Designing a high performance cluster for large-scale
sql-on-hadoop analytics,” in Big Data. IEEE, 2017, pp. 1701–1703.

[19] C. Diamantini et al., “An approach to extracting thematic views from
highly heterogeneous sources of a data lake,” in SEBD, 2018, pp. 1–12.

[20] J. Dixon, “Pentaho, hadoop, and data lakes,” https://jamesdixon.
wordpress.com/2010/10/14/, 2010, accessed: 2019-02-20.

[21] H. Dutta, “Graph based data governance model for real time data
ingestion,” CSI Trans. on ICT, vol. 3, no. 2, pp. 119–125, 2015.

[22] J. R. et al., “The hadoop ecosystem table,” https://hadoopecosystemtable.
github.io/, 2019, accessed: 2019-02-22.

[23] H. Fang, “Managing data lakes in big data era,” in CYBER. IEEE,
2015, pp. 820–824.

[24] M. Farid et al., “Clams: Bringing quality to data lakes,” in ICMD. ACM,
2016, pp. 2089–2092.

[25] A. Farrugia et al., “Towards social network analytics for understanding
and managing enterprise data lakes,” in ASONAM. IEEE/ACM, 2016,
pp. 1213–1220.

457

https://kafka.apache.org/
https://flume.apache.org/
https://sqoop.apache.org/
https://nifi.apache.org/
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.bq/
https://www.talend.com/products/talend-open-studio/
http://cassandra.apache.org/
https://www.mongodb.com/
https://hbase.apache.org/
https://www.mysql.com/
https://neo4j.com/
https://www.oracle.com/br/index.html
https://mahout.apache.org/
https://docs.gluster.org/
https://www.postgresql.org/
https://spark.apache.org/
https://hive.apache.org/
http://storm.apache.org/
https://impala.apache.org/
https://drill.apache.org/
https://oozie.apache.org/
https://www.python.org/
https://flink.apache.org/
https://pig.apache.org/
https://poi.apache.org/
http://www.keplerproject.org/en/Apache/
https://shiny.rstudio.com/
https://www.splunk.com/
https://www.cs.waikato.ac.nz/ml/weka/
https://powerbi.microsoft.com/
https://www.tableau.com/
https://ranger.apache.org/
https://web.mit.edu/kerberos/
https://ambari.apache.org/
https://knox.apache.org/
https://sentry.apache.org/
https://ranger.apache.org/
https://www.apache.org/
https://jamesdixon.wordpress.com/2010/10/14/
https://jamesdixon.wordpress.com/2010/10/14/
https://hadoopecosystemtable.github.io/
https://hadoopecosystemtable.github.io/

[26] Y. Gao et al., “Navigating the data lake with datamaran,” CoRR, vol.
abs/1708.08905, 2017.

[27] I. García et al., “Towards a scalable architecture for flight data manage-
ment,” in DATA, INSTICC. SciTePress, 2017, pp. 263–268.

[28] S. Gollapudi, “Aggregating financial services data without assumptions,”
in ICSC. IEEE, 2015, pp. 312–315.

[29] N. Golov et al., “Big data normalization for massively parallel proc.
databases,” Comp. Standards & Interfaces, vol. 54, pp. 86 – 93, 2017.

[30] C. Gröger, “Building an industry 4.0 analytics platform,” Datenbank-
Spektrum, vol. 18, no. 1, pp. 5–14, 2018.

[31] M. Gupta et al., “An attribute-based access control model for secure big
data proc. in hadoop ecosystem,” in ABAC. ACM, 2018, pp. 13–24.

[32] R. Hai et al., “Constance: An intelligent data lake system,” in ICMD.
ACM, 2016, pp. 2097–2100.

[33] ——, “Query rewriting for heterogeneous data lakes,” in ADBIS.
Springer, 2018, pp. 35–49.

[34] A. Y. Halevy et al., “Managing google’s data lake: an overview of the
goods system,” IEEE Data Eng. Bull., vol. 39, no. 3, pp. 5–14, 2016.

[35] J. Herman et al., “Using big data for insights into sustainable energy
consumption in industrial and mining sectors,” Journal of Cleaner
Production, vol. 197, pp. 1352 – 1364, 2018.

[36] J. Hui et al., “Integration of big data: A survey,” in Data Science.
Springer, 2018, pp. 101–121.

[37] M. Jarke, “Data spaces: Combining goal-driven and data-driven ap-
proaches in community decision and negotiation support,” in GDN.
Springer, 2017, pp. 3–14.

[38] M. Jarke et al., On Warehouses, Lakes, and Spaces. Springer, 2017,
ch. 16, pp. 231–245.

[39] P. Jovanovic et al., A Unified View of Data-Intensive Flows in Business
Intelligence Systems: A Survey. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, ch. 3, pp. 66–107.

[40] M. Karpathiotakis et al., “No data left behind: Real-time insights from
a complex data ecosystem,” in SoCC. ACM, 2017, pp. 108–120.

[41] N. Kasrin et al., “Semantic data management for experimental manu-
facturing tech.” Datenbank-Spektrum, vol. 18, no. 1, pp. 27–37, 2018.

[42] L. Kassner et al., “The stuttgart it architecture for manufacturing,” in
ICEIS. Springer, 2017, pp. 53–80.

[43] P. Kathiravelu et al., “A dynamic dw platform for creating and accessing
biomedical data lakes,” in DMAH. Springer, 2017, pp. 101–120.

[44] P. P. Khine et al., “Data lake: a new ideology in big data era,” ITM Web
Conf., vol. 17, p. 11, 2018.

[45] H. Kondylakis et al., “Implementing a data management infrastructure
for big healthcare data,” in BHI. IEEE, 2018, pp. 361–364.

[46] J. R. Landis et al., “The measurement of observer agreement for
categorical data,” biometrics, pp. 159–174, 1977.

[47] T.-H.-Y. Le et al., “Big data driven architecture for medical knowledge
management systems in intracranial hemorrhage diagnosis,” in IUKM.
Springer, 2018, pp. 214–225.

[48] C. Li et al., “The design and application of astronomy data lake in
china-vo,” in ADASS, vol. 512. ASP, 2017, p. 157.

[49] A. Maccioni et al., “Crossing the finish line faster when paddling the
data lake with kayak,” VLDB, vol. 10, no. 12, pp. 1853–1856, 2017.

[50] C. Madera et al., “The next information architecture evolution: The data
lake wave,” in MEDES. ACM, 2016, pp. 174–180.

[51] K. P. Maksymowicz et al., “A holistic approach to testing biomedical
hypotheses and analysis of biomedical data,” in BDAS. Springer, 2016,
pp. 449–462.

[52] M. A. Martínez-Prieto et al., “Integrating flight-related information into
a (big) data lake,” in DASC. IEEE/AIAA, 2017, pp. 1–10.

[53] S. McCarthy et al., “Combining web and enterprise data for lightweight
data mart construction,” in DEXA. Springer, 2018, pp. 138–146.

[54] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia
medica, vol. 22, no. 3, pp. 276–282, 2012.

[55] J. McPadden et al., “A scalable data science platform for healthcare and
precision medicine research,” CoRR, vol. abs/1808.04849, 2018.

[56] S. D. Meena et al., “Data lakes - a new repository for big data analytics,”
Int. Journal of Adv. Research in CS, vol. 7, no. 5, pp. 65–67, 2016.

[57] N. Miloslavskaya et al., “Big data, fast data and data lake concepts,”
Procedia Computer Science, vol. 88, pp. 300 – 305, 2016.

[58] S. Mitrovic, “Specifics of the integration of business intelligence and
big data technologies in the processes of economic analysis,” Business
Informatics, vol. 42, no. 4, pp. 40–46, 2017.

[59] D. Moher et al., “Preferred reporting items for systematic review and
meta-analysis protocols,” Systematic reviews, vol. 4, no. 1, p. 1, 2015.

[60] B. M. Mrozek et al., “Soft and declarative fishing of information in
big data lake,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 5, pp.
2732–2747, 2018.

[61] A. A. Munshi et al., “Data lake lambda architecture for smart grids big
data analytics,” IEEE Access, vol. 6, pp. 40 463–40 471, 2018.

[62] I. D. Nogueira et al., “Modeling data lake metadata with a data vault,”
CoRR, vol. abs/1807.04035, 2018.

[63] D. E. O’Leary, “Embedding ai and crowdsourcing in the big data lake,”
Intelligent Systems, vol. 29, no. 5, pp. 70–73, 2014.

[64] E. Pena et al., “Framework to use modern big data software tools to
improve operations at the paranal observatory,” in Proc. SPIE, vol.
10704, 2018, pp. 10 704 – 10 704 – 11.

[65] A. Pomp et al., “Enabling semantics in enterprises,” in ICEIS. Springer,
2018, pp. 428–450.

[66] C. Quix et al., “GEMMS: A generic and extensible metadata manage-
ment system for data lakes,” in CAiSE, 2016, pp. 129–136.

[67] K. Rajesh et al., “An introduction to data lake,” i-manager’s Journal on
Information Technology, vol. 5, no. 2, pp. 1–4, 2016.

[68] R. Ramakrishnan et al., “Azure data lake store: A hyperscale distributed
file service for big data analytics,” in ICMD. ACM, 2017, pp. 51–63.

[69] B. Ramesh, Big Data Architecture. New Delhi: Springer India, 2015,
ch. 2, pp. 29–59.

[70] S. Rangarajan et al., “Scalable architecture for personalized healthcare
service rec. using big data lake,” in ASSRI. Springer, 2018, pp. 65–79.

[71] P. Revathy et al., “Analysis of big data security practices,” in iCATccT,
2017, pp. 264–267.

[72] D. L. Sackett, Evidence-based Medicine How to practice and teach
EBM. WB Saunders Company, 1997.

[73] H. B. Sankaranarayanan et al., “Passenger reviews reference architecture
using big data lakes,” in Confluence, 2017, pp. 204–209.

[74] R. S. Santos et al., “Big data analytics in a public general hospital,” in
MOD. Springer, 2016, pp. 433–441.

[75] S. Sharma, “Expanded cloud plumes hiding big data ecosystem,” Future
Generation Computer Systems, vol. 59, pp. 63 – 92, 2016.

[76] G. Shlyuger, “Apply analytical grid processing to sensor data collec-
tions,” in SPIE, vol. 10185, 2017, pp. 10 185 – 10 185 – 13.

[77] K. Singh et al., “Visual bayesian fusion to navigate a data lake,” in
FUSION, 2016, pp. 987–994.

[78] T. J. Skluzacek et al., “Klimatic: A virtual data lake for harvesting and
distribution of geospatial data,” in PDSW-DISCS, 2016, pp. 31–36.

[79] G. V. Solar et al., “Big data management: What to keep from the past to
face future challenges?” DS and Eng., vol. 2, no. 4, pp. 328–345, 2017.

[80] R. K. Sreekala PK, “Data lake in the big data era: An overview,” Library
Herald, vol. 56, no. 1, pp. 11–15, 2018.

[81] M. K. Srinivasan et al., “State-of-the-art big data security taxonomies,”
in ISEC. ACM, 2018, pp. 16:1–16:7.

[82] J. Stefanowski et al., “Exploring complex and big data,” Int. J. Appl.
Math. Comput. Sci., vol. 27, no. 4, pp. 669–679, 2017.

[83] I. Suriarachchi et al., “Crossing analytics systems: A case for integrated
provenance in data lakes,” in e-Science. IEEE, 2016, pp. 349–354.

[84] ——, “Provenance as essential infrastructure for data lakes,” in IPAW,
2016, pp. 178–182.

[85] Y. Taher et al., “A service-based system for sentiment analysis and vis.
of twitter data in realtime,” in ICSOC. Springer, 2017, pp. 199–202.

[86] ——, “A context-aware analytics for processing tweets and analysing
sentiment in realtime,” in OTM. Springer, 2016, pp. 910–917.

[87] I. G. Terrizzano et al., “Data wrangling: The challenging journey from
the wild to the lake,” in CIDR, 2015, pp. 1–9.

[88] S. Tovernić et al., “Solution for detecting sensitive data inside a data
lake,” in MIPRO, 2018, pp. 1284–1288.

[89] M. University, “Systematic reviews: Using pico or pico,” https://goo.gl/
fqPoCY, 2018, accessed: 2018-12-20.

[90] W. Villegas-Ch et al., “Big data, the next step in the evolution of
educational data analysis,” in ICITS 2018. Springer, 2018, pp. 138–147.

[91] C. Walker et al., “Personal data lake with data gravity pull,” in BDCloud.
IEEE, 2015, pp. 160–167.

[92] R. Wenning et al., Compliance Using Metadata. Springer, 2018, ch. 3,
pp. 31–45.

[93] M. Wibowo et al., “Machine learning in data lake for combining data
silos,” in DMBD. Springer, 2017, pp. 294–306.

[94] S. Yadav et al., “Business data fusion,” in Fusion, 2015, pp. 1876–1885.
[95] T. Yamada et al., “Interactive service for visualizing data assoc. using

a self-org. structure of schemas,” in SOCA. IEEE, 2017, pp. 230–233.

458

https://goo.gl/fqPoCY
https://goo.gl/fqPoCY

Architecture for Discovery and Customization of
Multi-tenant Learning Process as a service and

resources allocation in cloud computing

Sameh Azouzi

ISITCom Hammam Sousse
Laboratory RIADI-GDL, ENSI,

Mannouba, Tunisia
Azouzi_sameh@yahoo.fr

Sonia Ayachi Ghannouchi
ISG Sousse/ Laboratory RIADI-GDL,

ENSI, Mannouba, Tunisia
s.ayachi@coselearn.org

Zaki Brahmi
ISITCom Hammam Sousse

Laboratory RIADI-GDL, ENSI,
Mannouba, Tunisia

zakibrahmi@gmail.com

Abstract— Collaborative e-learning based on several means of
electronic communication mechanism specifically internet and
web2.0 (such as forum, virtual classroom, videoconference,
etc.) has become the current trend in e-learning systems. The
cloud computing environment presents itself an important
infrastructure for supporting these collaborative e-learning
systems and for optimizing these service-based systems in a
multi-tenant way. In this paper, we discuss the problem of
discovering multi-tenant e-learning processes. For this, we
propose an architecture for a configurable learning process
discovery environment and the allocation of resources (Saas,
Paas, Iaas) necessary for the execution of the corresponding
learning activities.

Keywords- Discovery e-learning process; collaboratif e-
learning; business process; resource allocation; cloud
computing.

I. INTRODUCTION
E-learning is defined as Internet-enabled learning [1]. E-

Learning components can include multi-format content,
knowledge sharing, inclusion of collaboration tools, and
social networking. It is important to emphasize the value of
collaboration and knowledge sharing between learners and
teachers in e-learning systems. In this context, great attention
is given by researchers, developers and educators to
collaborative learning through Learning Management
Systems (LMS). However, several studies in literature show
some limitations of these e-learning platforms (LMS) [4] [5]
[6]. These limitations are mainly at the level of collaboration
and interaction between different actors of an e-learning
activity; they based mainly on texts and photos. The form
and effect of collaboration and interaction are relatively
simple and limited.

DOI reference number: 10.18293/SEKE2019-136

 So, it is unrealistic for each school to offer its own e-
learning system that responds to learner expectations and
manages the new neo-digital society. In order to remedy
these different LMS deficiencies, we have contributed in
previous work [7] to a general, collaborative, configurable
and multi-tenant e-learning system. The collaboration we
propose is synchronous and asynchronous. And we also
suggest using the business process line approach (BPL)
inspired by the Software Product Line (SPL) approach for
the development of multi-tenant e-learning applications. The
proposed general e-learning process could be implemented in
a variety of contexts and accommodates the different needs
of universities and teachers. However, all variants of our
model share a set of common elements / activities and others
differ by some variable activities.

Thus, the adoption of an SPL and BPL approach in the
field of e-learning seems to be a promising solution. On the
one hand, it overcomes the limitations of LMS systems, and
on the other hand, it provides institutions with e-learning
applications tailored to their needs.

Motivated by the difference and diversity of the needs of
tenants (teachers / learners), institutions are looking for e-
learning systems available outside their organizations that
are rapidly adapting to the new demands of their teachers and
learners and reducing costs of development and
maintenance. Cloud computing is the best solution because
of its ability to outsource service-based learning processes
with a pay-per-use model.

According to the National Institute of Standards and
Technology (NSIT), cloud computing is a model that allows
providers to share their resources (services, networks,
storage servers, and applications) and the users who access
them in a ubiquitous, and convenient way of request [8]. In a
multi-tenant environment, the use of a configurable learning
process provides configurable learning that can be
configured by different tenants based on their specific needs

459

mailto:Azouzi_sameh@yahoo.fr
mailto:s.ayachi@coselearn.org

[9]. Different approaches for modeling multi-tenant
configurable processes have been proposed; mainly they
focused on configurable business process discovery and
focused on configurable resource allocation. Thus, in this
sense, we propose a discovery architecture of learning
services considered as business processes in the cloud. In our
architecture, we also offer discovery of other Saas, Paas, Iaas
cloud services and collaborative web2.0 services that
facilitate the deployment and execution of all types of
learning activities in different contexts. But some activities
require a wide bandwidth or a very powerful CPU; other
activities require collaborative web2.0 applications and SaaS
services to be executed.

In order to overview all these aspects, this contribution is
arranged as follows.

In Section 2 we introduce the main concepts of Cloud
Computing, e-learning including its infrastructure and main
layers, configurable learning process, multi-tenant and
resource allocation.

Next, Section 3 describes our proposed architecture.
Finally, the main concluding remarks are given in Section 4.

II. PRELIMINAIRES
In this section, we give a brief description of related

topics, which are utilized in this work.

A. Configurable learning process
The world of education and training has embraced new

methods and new pedagogical tools. Since the computer, at
first, and the Internet, then, have appears in classrooms,
departments but also and especially in the daily life of each
of the actors involved, the school (in the most generic sense
of the term) is engaged in a real race to stay the more
possible in line with the reality of society. Each school faces
a major challenge, which is the development of a learning
system that manages IT innovations and meets the needs of
teachers / learners knowing that they do not cease to evolve.
Starting from this point, there comes the idea of developing a
configurable e-learning process. A configurable process
model allows the sharing of a process between different
tenants, which can be customized according to specific
needs. To model a configurable learning process, one must
study the variability of this process. In our work, we view the
e-learning process as a multi-tenant business process and
each tenant can choose a sub-process (configuration) of the
overall process. With respect to business process variability,
tenants can have varying business workflows. Therefore, the
application must allow configuration and customization to
meet the tenant's goals and requirements [23]. In previous
work we have presented the modeling of a multi-tenant
configurable general e-learning process [7,24].

B. Cloud computing and e-learning
Cloud computing uses a new technology that develops

applications in a way that allows both the execution of the
application and the storage of data to be performed
ubiquitously for all users. Cloud architecture provides user
support at different levels that vary according to their

different characteristics. The different levels can be
described as follows [3]:

• Infrastructure as a Service (IaaS): remote
management and control of hardware resources
provided by a system.

• Platform as a Service (PaaS): offers the cloud
platform along with a series of libraries to develop
applications in which the distribution of tasks, the
persistence and other layers are transparent for the
developer.

• Software as a Service (SaaS): consists in offering
different applications to be used through the
internet as opposed to a local installation.

Figure 1. Illustration of the layers for the Services Oriented Architecture
[12]

There are incipient developments that broach the topic of
cloud technology and e-learning [2], however few studies
incorporate both concepts. The success of the solution
software as a service (Saas) is real and is easily applicable
for e-learning. Cloud computing, Saas and e-learning are
completely complementary. Accordingly, we note that the
focus on changing traditional e-learning systems to more
collaborative interactive learning environments has
increased. J. Méndez & J. Gonzalez [3] highlights limitations
of traditional e-learning pointing that system creation and
maintenance are placed inside the educational institutions,
which can cause a lot of problems including huge
investments with no gain and lack of development potential.
In 2009, cloud computing is presented by [20] as a new
computing model to implement e-learning ecosystem to
overcome the problems in the traditional system. The author
considers that cloud computing is able to add some critical
features to e-learning ecosystem, such as: configuration at
real-time, utilization of resources, on demand resource
sharing and better management for software or hardware
[20]. The cloud-based system supports the construction of a
new generation of e-learning systems that is accessible from
a wide range of hardware devices, while storing data inside
the cloud.

B. Dong &al., [22] proposes a platform architecture
based on the integration of cloud computing and web 2.0 for
developing intelligent virtual learning community and makes
the learning environment more productive, scalable, flexible
and adjustable towards students demands and needed

460

information and communication technologies. The author
states that the usage of cloud computing and web2.0 for e-
learning affects the way e-learning software projects are
managed and the proposed intelligent virtual learning
community enhances the efficiency of learning environment,
provides up-to-date resources, constancy, guaranteed quality
of service, dependability, scalability, minimized time,
efficient usage of resources, flexibility, and maintaining of e-
learning system.

Within the same context, Ouf, Nasr and Helmy [21] have
proposed an e-learning system based on the integration of
cloud computing and Web 2.0 technologies to meet the
requirements for e-learning environment such as flexibility
and compliance towards students’ needs and concerns,
improve and enhance the efficiency of learning environment.

Aljenaa & al., in [23] introduced the main components of
a system of effective e-learning through using cloud
computing technology. The authors insist on the importance
of the following components:
• "Cloud software platform" which contains the LMS

platform and the necessary tools of collaboration and
communication to meet the needs of learners throughout
the process of learning;

• "Operational and management components" to make the
management of the learning process;

C. Multi-tenancy
Multi-tenancy being one of the key features of service in

cloud, the service providers can offer single application to
multiple users. A multi-tenant application caters a
personalized customer experience improving performance
and efficiency and provides a flexible space for customers to
efficiently pursue new business demands. From the software
vendor perspective, such multi-tenant applications, improve
resource utilization and reduce the operational costs in
delivering the software as a service. Each of the tenants may
have unique requirements that differ from each other.
Customization plays a vital role to converge specific
requirements of every tenant. It is up to the vendor, what
extent of customization to be offered to the tenant [10]. Two
main goals of multi-tenancy are isolation and sharing, which
are contradictory [11]. As we discussed in the introduction,
the primary motivation of multi-tenancy is to enable
management of the needs of universities/learners that are
rapidly changing and diversified. However, at the same time,
each user needs complete isolation and often does not want
to know even the existence of the other users. Furthermore, a
multi-tenant setup will inevitably attract more requests, and
therefore must be scalable. Scalability in a multi-tenant setup
has several dimensions: that is supporting large number of
requests, processes, and tenants [11].

D. Resource allocation in cloud-based Business process

In previous work, we considered e-learning processes as
business processes, because of the similarity between the two
in the orchestration of learning activities and that of business

processes [7]. Thus, we use the BPFM approach for
modeling configurable e-learning processes in the cloud.
Running a learning process requires Iaas-level resources that
can be distributed across virtual machines (VMs), SaaS
services and applications, and Paas platforms. Until today,
research on business process discovery in the cloud and
resource allocation has been rare. There are works such as
[13, 14], which focus on the allocation of human resources.
Some other works explicitly consider the characteristics of
the cloud: In [18], the authors proposed an approach for
configurable cloud resources allocation in multi-tenant
business process. Their aim is to shift the cloud resource
allocation from the tenant side to the cloud process provider
side for a centralized resource allocation management.
Through configuration, different tenants can easily
customize the selection of the needed resources taking into
account two important properties: elasticity and shareability.

S. Schulte & al. In [15, 16] develop a Platform for Elastic
Processes, which combines the functionalities of a BPMS
with that of a Cloud resource management system. Recently,
work in the area of configurable process modeling has been
proposed with perspectives for resource allocation. La Rosa
& al. In [25] Offer C-EPC (configurable event driven
process chains) with resource, data and physical object
capture capabilities. However, they focus on human
resources and there is no support for cloud resources. In [17],
A. Hallerbach & al. Extend process variants with options
(Provop) to properly model and manage large collections of
process variants. Juhnke & al. [18] provide an extension to a
standard BPEL workflow engine, which allows the use of
Cloud resources to execute business processes. The same
applies to the work by Bessai & al. [19], who also assumes
that workflows are composed of single software services.
The authors offer different methods to optimize resource
allocation and scheduling, pareto-optimal solution covering
both cost and time. E. Hachicha & al. [26] proposed an
approach for configurable cloud resource allocation in multi-
tenant business processes and to shift the cloud resource
allocation from the tenant side to the cloud process provider
side for a centralized resource allocation management. Table
I summarizes these approaches and relates them to properties
that are important in a cloud setting. We observe that
resource variability, cloud features, and allocation are only
partially covered or not at all. In the following, we aim to fill
these gaps by the definition of our novel approach which
allows the configurable e-learning process discovery and
allows the cloud resources allocation needed for the learning
activities execution such as IaaS, PaaS and SaaS.

461

 TABLE I. Evaluation of previous approaches

 Criteria
Approach

Control-
flow

variability

Multy-
tenancy

Ressource
variability

Ressource
allocation

Saas

Ressource
allocation

Iaas

Ressource
allocation

Paas

BP-
discovery in
cloud

[18] - + - - + - -
[15, 16] + - - - + - -

[17] + + - - - - -
[19] - - - - + - -
[26] + + + - + - -

Our approach + + + + + + +

E. Discussion
We can conclude by considering that all these research

works concerning the systems of e-learning in the cloud,
integrating the multi-tenant aspect and allocating the
resources needed to execute an e-learning process suffer
from some limits namely:

The absence of a complete initiative or approach for the
construction of an agile and reconfigurable process of
learning adaptable to change and being able to evolve to
meet the needs of learners;

• Lack of collaboration in learning processes and
limited re-use possibilities from the processes
deployed by other universities/teachers;

• The allocation of resources in the cloud is limited to
the infrastructure level.

In our research work, we considered an e-learning
process as a multi-tenant configurable business process in the
cloud (BPaas) and to achieve this goal we combined the
Software Product Line (SPL) and Business Process
Management approach (BPM).
In the next section we will:
- Provide an approach for discovering a multi-tenant

configurable e-learning process and configurable cloud
resource allocation.

- The allocation of cloud resources (Iaas, Paas, Saas)
configurable in multi-tenant e-learning process.

III. MULTI-TENANCY AWARE CONFIGURABLE LEARNING
PROCESS AS A SERVIE DISCOVERY ARCHITECTURE

The goal of this research work is the development of

multi-tenant, configurable and collaborative learning
process, that utilizes BPM and SPL for modeling the
learning process and cloud computing. In cloud computing
environments, there are two actors: the providers and the
cloud computing users. On the one hand, suppliers hold
massive resources in their large data centers and rent these
resources to users. On the other hand, there are users who
have applications with various loads and rent resources from
the providers for running their applications. Once the final
deployment solution has been defined and the learning
process is deployed, multi-tenant configurable learning
process description are created and published by learning
process providers into service registries hosted in cloud data
centers. In the datacenter registers, there are also descriptions
of other cloud services namely Saas, Paas, Iaas and others
collaborative Web2.0 services that have been used in the
execution of the process. Published learning process as a
services artifact are specified as business processes. The
proposed discovery architecture provides personalized
learning process configurations for tenants as presented in
figure 2.

462

Figure 2. Conceptual architecture of Multi-tenant aware configurable learning process as a service discovery architecture and allocation of cloud ressources

The discovery system consists of a modular architecture
organized into separate modules: Request BPaas/ Cloud
services, Discovery, Reconfigurable learning process/ Cloud
services, LPaas/ Cloud services instances (execution).

Each module is composed of one or more components
cited as follows:

• Reconfigurable learning process / cloud services:
Our configurable learning process is created and
published in configurable service registries hosted in
cloud data centers. Thus, cloud services such as
Saas, Paas, Iaas and collaborative web2.0 services
are published by several cloud service providers.
These services will be used in the execution of the e-
learning process. This is what the allocation of
resources required for the execution of such activity
requires.

• Requests BPaas/ Cloud services: Tenants who are in
our case Institutions / Teachers look in the registers
for configurable e-learning process configurations.
They can formulate their required process
configuration by selecting a set of activities. So, they
look for cloud services that they want to use in
running selected activities.

• Discovery: this module consists of two sub-modules:
BPaas discovery and cloud services discovery. The
"BPaas Discovery" module run to locate, discover
and generate the appropriate configuration. This
module uses another cloud service discovery module
"discovery cloud service" to discover collaborative
web2.0 services and other services (Saas, Paas, Iaas).
These services will be used to carry out the selected
activities, collaborate with experts, share knowledge
and pedagogical resources, and strengthen the
infrastructure to carry out such a task.

• LPaas / cloud services instances (runtime): The
return of the discovery module are instances of
BPaas / cloud services that respond to a request
configuration. Once the recommended configuration
is generated, it will be run as a business process in
the cloud.

The multi-tenant aware discovery of configurable
business process as a service is one of the most important
and difficult issues, because of multiplicity and non-
standardization of their description in cloud. In this paper,
we introduce the combination of BPM approach and SPL
approach for modeling collaborative, configurable e-learning
process; then we introduce our architecture for discovery of
the learning process in cloud. Our approach empowers
multiple tenants to discover their desired learning process
service configured variants, considering individual variants.
To do so, we reduce the problem of configurable matching to
a tree matching problem and we are going to adapt existing
algorithms for this aim. We are doing the necessary
experiments to show the feasibility of our approach.

IV. CONCLUSION

In this work, we exposed the limitations of existing e-
learning systems (LMS) and discussed our contribution in
previous work on modeling a collaborative, configurable and
multi-tenant e-learning process. with the use of the Business
Process Feature Model (BPFM) approach. Subsequently, we
exposed the basic concepts of deploying a learning process
as a business process (BPaas) in the cloud: the different
layers of cloud computing, the multi-tenant aspect and the
supply of resources for running a process in the cloud.

For this, we propose an architecture of a discovery
framework of a learning process and the allocation of
resources cloud computing which allows the personalization

463

of e- learning services and the selection of collaborative web
2.0 services, services to infrastructure level and platform
level.

In our future work, we are going to engage in showing
the feasibility of our architecture where we rely on the
structural matching approach and the graph-edit distance for
e-learning BPaas discovery in the cloud.

REFERENCES
[1] Mayer, R., Clark, R.: E-Learning and the Science of Instruction:

Proven Guidelines forConsumers and Designers of Multimedia
Learning, 3rd edn. Pfeiffer (2011).

[2] Ercan, T.: Effective use of cloud computing in educational
institutions. Procedia Socialand Behavioral Sciences 2, 938–942
(2010).

[3] J. Méndez, J. Gonzalez, "Implementing motivational features in
reactive blended learning : Application to an introductory control
engineering course", Education, IEEE transaction, vol. 54, no. 4, pp.
619-627, 2011.

[4] V. Stantchev, R. Colomo-Palacios, P. Soto-Acosta, and S. Misra,
“Learning management systems and cloud file hosting services: A
study on students’ acceptance,” Computers in Human Behavior, Vol.
31, February 2014, pp. 612–619.

[5] M. A. Conde, F. García, M. J. Rodríguez-Conde, M. Alier, and A.
García-Holgado, "Perceived openness of Learning Management
Systems by students and teachers in education and technology
courses,"Computers in Human Behavior, Vol. 31, February 2014, pp.
517-526.

[6] Z. Du, X. Fu, C. Zhao, Q. Liu, and T. Liu, "Interactive and
Collaborative E-Learning Platform with Integrated Social Software
and Learning Management System,"Proceedings of the 2012
International Conference onInformation Technology and Software
Engineering, Lecture Notes in Electrical Engineering, Vol. 212, 2013,
pp 11-18.

[7] Sameh Azouzi, Sonia AyachiGhannouchi, Zaki Brahmi: “Modeling
of a Collaborative Learning Process with Business Process Model
Notation”, International Conference on Digital Economy, pp. 95—
104, 2017.

[8] Mell, Peter, and Tim Grance. "The NIST definition of cloud
computing." (2011).

[9] Aalst, W.: Business Process Con_guration in The Cloud: How to
Support andAnalyze Multi-Tenant Processes? In: ECOWS, IEEE
(2011) 3-10.

[10] Ankit Bhilwar, Sandesh Jain, others: “Multi-tenant enabled e-
Learning platform: Blended with workflowtechnologies”, e-Learning,
e-Management and e-Services (IC3e), 2014 IEEE Conference on, pp.
88—92, 2014.

[11] MilindaPathirage, Srinath Perera, IndikaKumara,
SanjivaWeerawarana: “A multi-tenant architecture for business
process executions”, Web services (icws), 2011 ieee international
conference on, pp. 121—128, 2011.

[12] Fernandez, A, Peralta, D, Herrera, F., et al. An overview of e-
learning in cloud computing. In : Workshop on Learning Technology

for Education in Cloud (LTEC'12). Springer, Berlin, Heidelberg,
2012. p. 35-46.

[13] Cabanillas, C., et al.: Towards process-aware cross-organizational
human resource management. In: BPMDS, EMMSAD CAiSE,
Greece, June 16-17. (2014) 79-93.

[14] Kajan, E., et al.: The network-based business process. IEEE IC 18
(2014) 63-69.

[15] Schulte, S., et al.: Costdriven optimization of cloud resource
allocation for elastic processes. In: International Journal of Cloud
Computing. (2013) 2326-7550.

[16] Schulte, S., et al.: Realizing elastic processes with viepep. (In:
Service-Oriented Computing - ICSOC, China, Nov 12-15, 2012,
Revised Selected Papers) 439-442.

[17] Hallerbach, A., et al.: Capturing variability in business process
models: The provop approach. Journal of Software Maintenance and
Evolution: R & P (2010) 519-546.

[18] Juhnke, E., Dörnemann, T., Bock, D., Freisleben, B. (2011). Multi-
objetive Scheduling of BPEL Workflows in Geographically
Distributed Clouds, Proc. of IEEE 4th Intern. Conf. on Cloud
Computing (CLOUD 2011), Washington DC, USA, 412-419.

[19] Bessai, K., Youcef, S., Oulamara, A., Godart, C. (2013). Bi-criteria
Strategies for Business Processes Scheduling in Cloud Environments
with Fairness Metrics, Proc. of IEEE 7th Intern. Conf. on Research
Challenges inInformation Science (RCIS 2013), Paris, France, 1-10.

[20] D. Chandran, "Hybrid E-learning platform based on cloud
architecture model: A proposal", in Signal and Image Processing
(ICSIP), 2010 International Conference on, Chennai, 2010, pp. 534 -
537.

[21] S. Ouf , M. Nasr, and Y. Helmy , "An enhanced e-learning ecosystem
based on an integration between cloud computing and Web2.0"?in
Signal Processing and Information Technology (ISSPIT), 2010, pp.
48 - 55.

[22] B. Dong, Q. Zheng, J. Yang, H. Li, M. Qiao, "An e-learning
ecosystem based on cloud computing infrastructure", in Advanced
Learning Technologies, 2009. ICALT 2009. Ninth IEEE International
Conference, Riga, 2009, pp. 2009125 - 127.

[23] AssylbekJumagaliyev, Jonathan Nicholas David Whittle, Yehia Said
Shahat Ahmed Elkhatib: “Evolving multi-tenant SaaS cloud
applications using model-driven engineering”, 2016.

[24] Azouzi Sameh, Zaki Brahmi, and Sonia Ayachi Ghannouchi.
"Customization of multi-tenant learning process as a service with
Business Process Feature Model." Procedia Computer Science 126
(2018): 606-615.

[25] Rosa, M.L., et al.: Configurable multi-perspective business process
models. Inf. Syst. 36 (2011) 313–340

[26] Hachicha, Emna, et al. "A configurable resource allocation for multi-
tenant process development in the cloud." International Conference
on Advanced Information Systems Engineering. Springer, Cham,
2016.

464

An Empirical Study about Software Architecture Configuration Practices
with the Java Spring Framework

Quentin Perez, Alexandre Le Borgne, Christelle Urtado, and Sylvain Vauttier

LGI2P, IMT Mines Ales, Univ Montpellier, Ales, France

{Quentin.Perez,Alexandre.Le-Borgne,Christelle.Urtado,Sylvain.Vauttier}@mines-ales.fr

Abstract

Software architecture modeling plays a key role in soft-
ware development and, beyond, in software quality. The
Spring framework is widely used in industry to deploy soft-
ware. This paper evaluates whether Spring fosters good
practices for architecture definition. It describes the results
of an empirical study, based on a corpus of open-source
Spring projects. Analysis shows that a strong (70%) major-
ity of projects mixes all Spring architecture definition fea-
tures. This can be considered as a pragmatic use of a very
flexible tool. However, few good practice documentation
and tool assistance exist to prevent hazardous architecture
constructions. The paper highlights these situations and
concludes on recommendations to assist developers.

Keywords: Software architecture, architecture deploy-
ment, architecture configuration, empirical software engi-
neering, Spring framework, GitHub open-source project.

1 Introduction

Architecture design is a critical issue that impacts soft-
ware engineering [5]. Architectures are the natural conse-
quence of modularity: They compose software from ele-
mentary components that can easily be developed, tested,
maintained or reused.

Spring is a popular industrial framework designed for ar-
chitecture development in Java. As established by a survey
involving 2044 developers1, it is the most used framework
for web-service development. Spring has evolved over time
with technologies (e.g., adoption of Java annotations) or ap-

1https://zeroturnaround.com/rebellabs/java-tools-and-technologies-
landscape-2016/

plication needs (e.g., automation of deployment). Spring
now provides developers with multiple features, that com-
plement one another and sometimes overlap, for the archi-
tecture definition.

The remainder of this paper is organized as follows. Sec-
tion 2 motivates this work. Section 3 first describes the
features provided by the Spring framework then compares
them with respect to expected qualities. Section 4 describes
the empirical study on developers’ practices. First , the
methodology used for GitHub data extraction is presented.
Then, the statistical analysis is developed before identify-
ing threats to the study’s validity and presenting the imple-
mented tool that supports our study. To conclude, Section 5
presents related works and Section 6 draws perspectives for
this work.

2 Motivations

Architecture models are used in nearly all steps of the
software lifecycle, from its early design, as an abstract, ideal
solution to meet users requirements, to its actual deploy-
ment and execution. Academic research has proposed many
architecture description languages (ADLs) to support archi-
tecture conceptual design [11] whereas industry has pro-
posed frameworks for runtime architecture deployment and
management [4]. The ideal technology should both be flex-
ible and easy to use for software developers and help doc-
ument the architecture, increase component reusability and
maintainability and manage change for software architects.

Defining a software architecture amounts to describe
its components and their connections (the links that sup-
port their interactions). In the case of Java software, this
amounts to define the constituent objects and the reference
bindings to be created at runtime. When no specific archi-

DOI reference number: 10.18293/SEKE2019-202
465

tecture management feature is available, architecture con-
struction is classically hard-coded in the main procedure.
Otherwise, an architecture deployment descriptor can be de-
fined through a framework to set the architecture up. To
compare their modeling capabilities, we have established a
set of expected qualities:
Explicitness. Explicit architecture models are defined with
dedicated elements, clearly separated from source code.
Declarativity. Declarative architecture models are defined
by abstract elements, that specify the expected instantiated
structures, not the instantiation code.
Encapsulation. Encapsulated architecture model defini-
tions are not scattered across source code but gathered into
modules.
Assistance. Assisted architecture design is supported by
tools that verify consistency, use of good practices or archi-
tectural styles, and control evolution to prevent architecture
drift or erosion [13].

The purpose of this study is to compare the different
kinds of architecture descriptors provided by Spring and to
run an empirical analysis to determine whether industrial
practice is influenced by architecture model qualities.

3 Spring Features and their Qualities

Since Spring 4 (2013), three closely related architecture
definition features are offered to developers:
XML descriptors. Architectures are defined by several
XML descriptors that are parsed and interpreted at runtime
by the Spring container. Architecture components are de-
clared by the <bean> tag, which must define an identifier
(id) and the instantiated class (class). Listing 1 defines a
small home automation architecture composed of an Or-
chestrator object connected to a Lamp and a Clock. Con-
nections are defined by binding bean properties to bean ref-
erences, as declared by property tags. Bean properties cor-
respond to component dependencies (actually instance at-
tributes). These component dependencies are supplied by
the Spring container using the declared beans in the XML
descriptor (dependency injection).
Configuration classes. Architectures can alternatively be
defined by specific Java classes, identified by the @Config-
uration annotation (see Listing 2). Configuration classes are
automatically detected by the Spring container and executed
to build the architecture. Beans are declared by methods
annotated by @Bean. This enables to program all the nec-
essary pre- or post- bean instantiation treatments required
to manage complex settings. Connections are handled by
passing bean references to bean constructors, as for the my-
Orchestrator bean in Listing 2, or to bean property setters.
In Listing 2, the clock1 and lamp1 methods are thus used
to retrieve the bean references passed to the myOrchestra-
tor constructor. Being genuine Java, configuration classes

leverage IDE tools and compile-time verification, as type-
safe bean connections and scoped identifiers.
Self-annotated classes. Architecture definition is inte-
grated to the code of the supporting classes thanks to anno-
tations. The @Component annotation identifies the classes
that will be automatically instantiated by the container to
create architecture beans (see Listings 3 and 4)2. Simi-
larly, the @Autowired annotation, which can be associated
to attributes, setters or constructors, identifies dependencies
(i.e., connections) that will automatically be supplied by the
container, using corresponding existing beans (retrieved by
name or type). On the one hand, self-annotated classes are
the most declarative way to define architectures. On the
other hand, architecture definitions are scattered through
and mixed with source code.

Moreover, Spring also supports any combination of the
aforementioned architecture definition features.

Feature Quality Analysis. XML descriptors and configu-
ration classes enable explicit and encapsulated architecture
definitions. Regarding modularity, configuration classes
leverage the object-orientation of Java. Considering these
three qualities, configuration classes are the best choice and
self-annotated classes the worst. This analysis is coherent
with technical literature that recommends to limit the use of
self-annotated classes to small projects [8, 14, 15]. Besides,
self-annotated classes define architectures only with single-
ton classes. Rather than a limitation, this constraint is in-
tended to enforce strong cohesion between class and archi-
tecture structures. Two antagonist approaches of architec-
ture definition are thus supported: architectures that are or-
thogonal (generic and flexible) or integrated (to avoid archi-
tectural drifts) to the code of classes. Self-annotated classes
therefore are recommended for projects that are subject to
frequent changes [1, 2, 14]. When it comes to choosing
features for architecture definition, technical literature only
provides scarce guidance, often considering this choice as
a matter of developers’ tastes [16, 17, 15]. Furthermore, to
our knowledge, the qualities of architecture definition mix-
ing features have not yet been studied. We expect that these
feature combinations result from rational decisions of ex-
perienced developers that use the most adapted feature to
different parts of architectures.

4 Empirical Study of Developers’ Practices
when Using Spring Framework

Data Extraction. A corpus of 524 projects has been ex-
tracted from GitHub. In order to consider only significant,
quality projects, we applied the selection criteria proposed

2Specialized annotations, like @Service, @Repository and @Con-
troller, have been derived from @Component to identify the roles of beans
in specific architecture kinds, like web-service architectures.

466

<beans
xmlns="http://www.springframework.org/schema/beans">
<bean class="my.smartHome.Clock" id="clock1" />
<bean class="my.smartHome.Lamp" id="lamp1" />
<bean class="my.smartHome.Orchestrator" id="myOrchestrator">

<property name="time" ref="clock1" />
<property name="light" ref="lamp1" />

< /bean>
< /beans>

Listing 1: XML descriptor bean configuration

@Configuration
public class BeansConfiguration{
@Bean
public Clock clock1(){return new Clock();}
@Bean
public Lamp lamp1(){return new AdjustableLamp();}
@Bean
public Orchestrator myOrchestrator()
{return new Orchestrator(clock1(),lamp1());}

}

Listing 2: Annotation-based bean configuration

// Clock.java file extract
@Component
public class Clock implements Time {/*...*/}
// Lamp.java file extract
@Component
public class Lamp implements Light {/*...*/}

Listing 3: Annotated components

// Orchestrator.java file extract
@Component
public class Orchestrator{
@Autowired
private Time time;
@Autowired
private Light light;

}

Listing 4: Autowired configuration

in Jarczyk et al. [7], like the numbers of forks and stars.
We thus extracted the last commit of projects with 100 stars
or more, forked at least 10 times, written in Java, con-
taining the “Spring” keyword and created after 2010-01-01
(i.e., after Spring release 3). For reproducibility purposes,
our metadata is available online3.
Empirical Analysis. To understand the state-of-practice,
we first analyzed which Spring features where used in the
studied corpus. Surprisingly, a majority of Spring projects
mixes architecture definition features (' 69.3%) and, de-
spite their qualities, configurations classes are only used
in a minority of projects (' 6.5%). They are challenged
by XML descriptors (' 12.6%) and self-annotated classes
(' 11.6%). Apart from routine, in the case of XML descrip-
tors, which are the oldest proposed feature, declarativity
may thus be a key quality in developers’ decisions. Figure 1
presents the distribution of all the combination of architec-
ture definition features, depending on the size of the projects
measured with the Source Lines Of Code (SLOC) metric.
As expected, self-annotated classes alone are only used in
small projects. Surprise comes again from configuration
classes, that are used alone in only rather small projects.
Explicit and encapsulated architecture descriptions do not
appear to be a primary concern. Again, declarative features
are rather used in bigger projects and even the biggest ones.
More interestingly, the biggest project seems to require the
support of all the features together.

To confirm the intuition that project size has an impact
on used features, we evaluate two hypotheses using a non-
parametric statistical Kruskal-Wallis test:

Null hypothesis Alternative hypothesis
H0 : No influence of archi-
tecture definition features on
project size.

H1 : Influence of architecture
definition features on project
size.

3https://github.com/DedalArmy/MISORTIMA/tree
/data-study-spring-deploy-features

Defining risk α = 5%, the result of the test isH ' 93.68
with a p-value of ' 5.196−18. As p-value ≤ α, the null
hypothesis H0 is rejected with a 5% risk. This demon-
strates that architecture definition features have a signifi-
cant influence on project size. As the choice of architec-
ture definition features by the developer obviously does not
determine the size of the project, we can infer that the cor-
relation we measure is the reciprocal relation of the actual
situation: the choice of architecture definition features is in-
fluenced by the size of the project. It would be interesting to
study whether the choice of the technique is done a priori
or evolves, depending on the size of the project.

Finally, we also analyzed isolatedly the use of self-
annotated classes on the corpus of 524 Spring projects, de-
pending of their size, using a chi-square test. This test re-
jects the hypothesis of a relation between project size and
use of self-annotated classes, confirming the intuitive analy-
sis of Figure 1. Usage of self-annotated classes thus seems
definitely motivated by declarative convenience rather than
sound modeling capabilities.

Figure 1: Distribution of architecture definition features re-
garding SLOC

467

Threats to Validity. One of the major issues regarding
validity of our study is its generalization. This paper fo-
cuses exclusively on the Spring framework although Spring
is only one among many architecture definition frameworks.
This focus might bias the study. It would thus be interesting
to explore developers’ practices while they use other frame-
works in order to compare results with those of this paper.
Moreover, by using data provided and mined through the
GitHub API we are confronted to the threats already identi-
fied by Kalliamvakou et al. [9].

5 Related Works

Several works on the deployment of component archi-
tecture have already been carried out. Parrish et al. [12]
modeled the deployment of component architectures in a
formal way. It makes it possible to describe several deploy-
ment strategies while ensuring deployment safety in terms
of installation and component compatibility. Dearle [3]
compared the different methods for architecture deployment
and showed that dependency injection, as implemented in
Spring, is a desirable mechanism for component lifecycle
management. Another study has shown that Spring reduces
the developers’ workload, in particular by extra flexibility,
as compared to Java EE [6]. To our knowledge, there is
a lack of research on architecture definition combinations
and different practices in terms of deployment configura-
tion even if a strong technical literature exists on the subject
[8, 14, 15, 16, 17].

6 Conclusion

The empirical analysis we have run on a corpus of 524
projects extracted from the hosting GitHub service about
the usage of the architectural definition features provided
by the Spring framework leaves opened questions. It shows
that usage is strongly related to project size and thus results
from rational developer decisions. However, usage seems
to be motivated by rather practical than quality concerns,
as shown by the predominant use of combined features in-
cluding self-annotated classes in any size of projects. A
first perspective is to study more precisely how Spring fea-
tures are combined according to project size or domain. We
also plan to compare features from other technologies (lan-
guages) and frameworks.

Previous work has shown that it is possible to recover an
explicit architecture documentation by mining Spring XML
configuration files and compiled source code [10]. How-
ever, the relevance of results depend on the quality of the
architecture modeled in the code. The goal of the on-going
work presented in this paper is complementary: fostering
the best architectural qualities when source code is used as
a standalone model in agile processes.

A more practical perspective is to pursue the develop-
ment effort to try and better assist developers in their archi-
tecture deployment activities by visualization and develop-
ment of assistance tools.

References

[1] J. Carnell. Spring Microservices in Action. Manning, 2017.
[2] I. Cosmina, R. Harrop, C. Schaefer, and C. Ho. Pro Spring

5: An in-depth guide to the Spring framework and its tools.
Apress, 5th edition, 2017.

[3] A. Dearle. Software deployment, past, present and future.
In L. C. Briand and A. L. Wolf, editors, FOSE workshop at
29th ICSE, pages 269–284, Minneapolis, USA, May 2007.
IEEE.

[4] S. Ducasse and D. Pollet. Software architecture reconstruc-
tion: A process-oriented taxonomy. IEEE Transactions on
Software Engineering, 35(4):573–591, April 2009.

[5] D. Garlan. Software architecture: A roadmap. In FOSE
track at 20th ICSE, pages 91–101, Limerick, Ireland, June
2000. ACM.

[6] P. Gupta and M. C. Govil. Spring Web MVC framework
for rapid open source J2EE application development: a case
study. IJEST, 2(6):1684–1689, 2010.

[7] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and
A. Wierzbicki. GitHub projects. quality analysis of open-
source software. In L. M. Aiello and D. McFarland, edi-
tors, 6th international SocInfo conference, volume 8851 of
LNCS, pages 80–94, Barcelona, Spain, Nov. 2014. Springer.

[8] T. M. Jog. Learning Spring 5.0. Packt, 2017.
[9] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.

German, and D. Damian. The promises and perils of mining
GitHub. In 11th Working MSR conference, pages 92–101,
Hyderabad, India, May 2014. ACM.

[10] A. Le Borgne, D. Delahaye, M. Huchard, C. Urtado, and
S. Vauttier. Recovering three-level architectures from the
code of open-source java Spring projects. In X. He, editor,
30th international SEKE conference, pages 199–202, San
Francisco, USA, July 2018.

[11] A. Mokni, C. Urtado, S. Vauttier, M. Huchard, and
Z. Huaxi Yulin. A formal approach for managing
component-based architecture evolution. Science of Com-
puter Programming, 127:24–49, Oct. 2016.

[12] A. Parrish, B. Dixon, and D. Cordes. A conceptual foun-
dation for component-based software deployment. JSS,
57(3):193–200, July 2001.

[13] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. SIGSOFT Software Engineering
Notes, 17(4):40–52, Oct. 1992.

[14] D. Rajput. Spring 5 design patterns: Master efficient appli-
cation development with patterns such as proxy, singleton,
the template method, and more. Packt, 2017.

[15] A. Sarin and J. Sharma. Getting Started with Spring Frame-
work: A Hands-On Guide to Begin Developing Applications
Using Spring Framework. CreateSpace, 3rd edition, 2016.

[16] C. Walls. Spring in action. Manning, 4th edition, Nov. 2014.
[17] N. S. Williams. Professional Java for Web Applications. Wi-

ley & sons, 2014.

468

Recover and Optimize Software Architecture
Based on Source Code and Directory Hierarchies

Tong Wang, Yelian Zhang, Xufang Gong, Bixin Li
School of Computer Science and Engineering

Southeast University, Nanjing, China

Abstract—Software architecture helps developers understand
and maintain software, so how to obtain accurate architecture is
critical. The architecture recovery technique is a widely used
method for obtaining architecture. In order to improve the
accuracy and efficiency of the architecture recovery technique,
we propose a method for recovering and optimizing software
architecture based on source code and directory hierarchies. Our
method consists of three steps: first, we extract architecture-
related information from source code and directory hierarchies
and construct a file dependency graph; then, we preprocess and
cluster code elements to construct a preliminary architecture;
finally, we optimize architecture by clustering code elements
based on the structural similarity and renaming components.
We perform our method on four representative open source
projects and compare our method with representative architec-
ture recovery techniques. The experimental results show that
the architectures recovered by our method has higher accuracy
with higher efficiency than the compared architecture recovery
techniques.

Index Terms—architecture recovery; clustering; architecture
optimization

I. INTRODUCTION

Software architecture provides a high-level abstraction view
to developers, so it is useful for understanding software to
make evolution plans, reduce development costs, improve
software performance [1] and improve software quality [2],
[3], so how to obtain accurate software architecture is a hotspot
issue.

The automated recovery technique mainly includes two
phases, information extraction and information-based recov-
ery. In the information extraction phase, the data sources
commonly include source code and directory hierarchies [4].
The directory hierarchy is set by developers, so it reflects the
logical relations between files [5]. These data sources provide
valid information for software architecture recovery. However,
most architecture recovery techniques usually only use one of
them to recover architecture resulting in the low accuracy. In
the information-based recovery phase, there are many types of
recovery algorithms. However, there is a huge amount of code
elements in large scale programs, so how to improve efficiency
is also an important problem.

In summary, the current automated architecture recovery
technique has the following problems. a) The data source is
single. When information is missing, the accuracy would be
reduced. b) In a large scale program, the number of code

B. Li is the corresponding author. E-mail: bx.li@seu.edu.cn
DOI reference number:10.18293/SEKE2019-045

elements is huge, so it will take a long time to recover
architecture.

In order to solve the above problems, we propose the
method for architecture recovery and optimization based on
source code and directory hierarchies (ARO). The main con-
tributions of this paper are mainly reflected in the following
three aspects.

• The architecture-related information is extracted from
source code and directory hierarchy to improve accuracy.
The information of source code reflects the specific
implementation of the architecture. The information of
directory hierarchies is related to developers’ design.

• The file dependency graph is preprocessed to improve
efficiency. The file dependency graph is preprocessed
to reduce the number of clustered code elements for
reducing the time consumed, then we perform K-center-
hierarchy algorithm to cluster code elements around the
core code.

• The architecture is optimized. We optimize architecture
by clustering based on the structural similarity and re-
naming components.

II. RELATED WORK

The automated recovery technique mainly includes two
phases, information extraction, and information-based recov-
ery.

Mainstream data sources contain the following types. a)
Source code. Text analysis or feature localization of the source
code of the program by constructing a platform similar to
lexical analysis and grammar analysis, and the use of infor-
mation retrieval technology to discover associations between
documents. b) Documents. Documents related to software are
collected, such as software design documents, UML diagrams,
code comments, user manuals, etc., to establish the concept
[6]. c) Directory hierarchy. Some methods consider the infor-
mation to identify components, that is, it is a supplement to
the information obtained by other methods and improves the
accuracy of partitioning components [4].

Mainstream methods of information-based recovery contain
the following types. a) Domain knowledge. Domain-based
methods are performed in a top-down process or a bottom-
up process. In the top-down process, the documents related to
architecture materials are used to recover architecture. In the
bottom-up process, according to the comments, the declaration
of variable names, etc., using domain knowledge to recover

469

architecture [7]. b) Clustering. This type of method uses math-
ematical methods to study and process the classification [8]. c)
Machine Learning. The information of code elements is trained
to recover architecture. Machine learning-based methods are
generally not used alone, but as a supplement to clustering
algorithms to improve the accuracy of clustering. d) Pattern
Matching. The recovery process is modeled as a mapping
between the high-level abstraction and the code elements. It is
a semi-automated technique that requires manual participation,
and graph matching also requires a lot of computer resources
and time [9].

According to the above analysis, we find that only the
clustering algorithm and the machine learning method do not
require additional manual intervention. However, it is diffi-
cult to obtain the training set [10]. Therefore, the clustering
algorithm is more widely used in the automatic recovery
architecture technique.

III. OUR METHOD

Our method contains the following steps: extracting in-
formation, preprocessing and clustering code elements, and
optimizing architecture.

A. Extracting information

The information of source code is extracted by automatical-
ly analyzing source code, such as the dependency information
between code elements and the basic information of code
elements. The process of extracting information from source
code contains two steps. a) Construct an abstract syntax
tree. The source code is converted into an abstract syntax
tree which is an intermediate representation. b) Analyze the
abstract syntax tree. By analyzing the abstract syntax tree, the
information between the code elements is extracted. A code
element is a unit of code, such as a file, a package, and so
on. The dependency between code elements can be divided
into multiple types, such as the reference dependency between
files, the generalization dependency between classes, and so
on. Then we integrate dependency information to construct the
file dependency graph.

The information of directory hierarchies reflects the log-
ical dependencies between files, and it is mainly used in
the following two aspects: a) Aggregating components. In
source code, some files do not have dependencies with other
files, such as test case files. These files are presented as an
independent component in architecture. A large number of
independent components have effects on the understandability,
so we cluster independent files into an independent component.
b) Adjusting components. The relations between files of the
same directory do not strictly comply with the high cohesion
principle and the low coupling principle, so we adjust compo-
nents based on the dependencies between directories.

B. Preprocessing and clustering code elements

Before we perform the clustering algorithm, we preprocess
the file dependency graph to reduce the number of files,
resulting in reducing the time consumed.

In the preprocessing process, independent files are clustered
as early as possible, which is beneficial to reduce the number
of nodes in the dependency graph and to comply with the
high cohesion principle and the low coupling principle. Then,
we preprocess the file dependency graph by clustering code
elements which are related to the types of strong dependency
and the structure of strong dependency. The dependency type
between code elements indicates the degree of the closeness
between them. The common types of strong dependency
between code elements contain the following types: the gen-
eralization dependency, the implementation dependency, the
combination dependency, the definition dependency, and the
declaration dependency. Five dependency structures belong to
the structure of strong dependency. The structure of strong
dependency contains the following structures: the single de-
pendency, the tightly coupled, the closed-loop dependency, and
the open-loop dependency.

After preprocessing the file dependency graph, we cluster
code elements based on the distance between code elements.
The distance is calculated based on the dependence intensity
and the similarity of the directory.

Dependency Intensity(DI) represents the degree of the
closeness between two code elements, and it depends on
the dependency type and the number of dependencies. The
DI between the code element x and the code element y is
calculated as the following formula.

DIab =

∑N
i=1 αiNum(i, A,B)

ln(LOCA)
(1)

where N represents the number of dependency types between
a and b, i represents the ith dependency type, Num(i, a, b)
represents the number of i dependency between a and b, αi

represents the weight of the dependency type.
Directory similarity(DirSim) describes the degree of the

similarity between directories. If two code elements are in
the same directory, the directory similarity is 1. The directory
similarity between the code element a and the code element
b is calculated as the following formula.

DirSim(a, b) =
|Dir(a)| ∩ |Dir(b)|
|Dir(a)| ∪ |Dir(b)| (2)

where DirSim(a, b) is directory similarity between the code
element a and the code element b, the Dir(a) represents the
directory path of a, |Dir(a)| represents the directory depth of
a.

Element distance(ET) is used to describe the distance be-
tween two code elements. We consider the distance between
code elements based on the directory similarity and the de-
pendency strength. The ET between the code element a and
the code element b is calculated as the following formula.

ET (a, b) = DirSim(a, b) ∗DIab (3)

where ET (A,B) is the code element A and the code element
B, DirSim(A,B) represents the directory similarity between
A and B, and DIAB represents the dependence intensity
between A and B.

470

The clustering efficiency is low when it deals with large
amounts of code elements. Therefore, ARO first performs
the K-center clustering algorithm to reduce the number of
code elements. The K-center clustering algorithm contains four
steps. Firstly, the code elements are sorted according to the
sum of fanin and fanout of them. Secondly, the top K code
elements are the clustered centers. Thirdly, the nearest code
elements of them are clustered into centers. Fourthly, if the
number of code lines is less than the threshold, ARO performs
the first three steps iteratively. The purpose of performing the
K-center algorithm contains the following aspects. Firstly, the
number of code elements is reduced. Secondly, code elements
are clustered around the K centers, and the K centers are the
core code, that is, code elements are clustered around the core
code.

After performing the K-center algorithm, the K clusters are
used to construct the k ∗ k structure, and L(K) denotes the
level of the kth cluster, and the distance between the cluster
(r) and the cluster (s) is represented as d[(r), (s)]. The details
of the clustering process are as follows.

1) There are k clusters in the structure D, and each cluster
is composed by a code entity. Let the number m is 0, and the
L(m) is 0.

2) The minimum of the distance in the D is represented as
min, and the cluster is (r) and (s).

3) (r) and (s) are clustered together into a new code entity
(r, s). Let the number m is m+1, and the L(m) is d[(r), (s)].

4) The D is updated, and the columns and rows of (r)
and (s) are deleted. The new cluster (r, s) is added into
D. Let the distance between cluster k − 1 and (r, s) is
mind[(k), (r)], d[(k), (s)].

5) Step 2 to step 4 are performed iteratively until the number
of code lines of the code elements is greater than the threshold.

The K-center-hierarchy clustering algorithm is shown in
Algorithm 1.

C. Optimizing architecture

The first step of optimizing architecture is clustering code
elements based on the structural similarity. The structural
similarity between the code elements is equal to the average
of the fanin and the fanout. RelativeSim(a, b) denotes the
structural similarity between the code element a and the code
element b. The formula is as follows:

RelSim(a, b) =

{
C

∑|O(a)|
i=1

∑|O(b)|
j=1 ReleSim(Oi(a),Oj(b))

|O(a)||O(b)| a ̸= b

1 a = b
(4)

where O(a) denotes the fanout of a, the parameter C is a
damping factor. If O(a) = O(b) = A, then RelSim(a, b) =
C ∗ RelSim(A,A) = C, so C ∈ (0, 1). If two the structural
similarity between two nodes is higher than the threshold, the
two nodes are clustered into a new node.

The second step is renaming components. The file name
and the directory name are set by developers based on the
function of the source code, so we rename components based
on their corresponding directory names. The renaming process

Algorithm 1 The K-center-hierarchy clustering algorithm
Input:

Preprocessed file dependency graph PFDG
Output:

Component dependency graph CDG
1: Procedure Cluster(PFDG graph)
2: for each node ∈ nodesets do
3: if node is a central node then
4: process the next node
5: end if
6: if node.scale > V alue then
7: process the next node
8: end if
9: for j=i+1;j<nodesets.num;j++ do

10: if min > s(i, j) then
11: min=s(i,j)
12: end if
13: select the min distance s(i,r)=min
14: combine (i)node and (r)node into one cluster
15: Update graph by updating rules(including delete r node and update

nodesets)
16: if node is the latest node then
17: break
18: else
19: i=i-1
20: Until all the clusters beyond the cluster size
21: end if
22: end for
23: end for

contains the following steps: a) Identify the corresponding
component of each directory. b) All files are traversed to find
out whether there is a specific directory contains most files
of the component, if there is, then the component is named
the directory name. c) All code elements are traversed to
find out whether there are three generations of relatives that
contain most of the files in the component, if there is, then the
component is named as their common grandparent directory.

IV. EXPERIMENTS AND EVALUATION

In this section, we evaluate ARO by comparing it with some
related methods to answer the following research questions:

RQ1: Does our method improve the accuracy of the recov-
ered architecture?

RQ2: Does our method improve the efficiency of the
recovered architecture?

A. Accuracy evaluation

MoJoSim is an indicator of evaluating the similarity be-
tween the recovered architecture and the ground-truth archi-
tecture, and it is used in much related work [11], [12]. In this
paper, we use it to evaluate the accuracy of ARO. MoJoSim
is calculated as follows.

MoJoSim(RA,GA) = (1− mno(RA,GA)

n
) ∗ 100% (5)

where RA is the recovered architecture, GA is the ground-
truth architecture, mno(A,B) is the minimum number of
Move and Join operations of converting A to B, n is the
number of clustered code elements. If MoJoSim is 100%,
it indicates that the two architectures are the same, and 0%
indicates that the two architectures are completely inconsistent.

471

Table I shows the MoJoSim range of the nine methods and
our method.

TABLE I
THE MOJOSIM RANGE OF EACH METHOD

Data source Method MoJoSim

Our paper Our method 0.55-0.75

Bittencourt and Guerrero et al. [13] EQ 0.20-0.60
KM 0.40-0.80
MQ 0.30-0.70
DSM 0.35-0.75

Wu et al. [17] CL90 0.40-0.48
CL75 0.45-0.52
ACDC 0.28-0.35
SL75 0.10-0.15
SL90 0.07-0.10

As shown in Table I, our method has a higher MoJoSim
value than other methods. DSM, KM, and our method cluster
elements based on the distance, but only KM and our method
cluster elements around the core code. In a word, the archi-
tecture recovered by our method is closer to the ground-truth
architecture, so the accuracy of our method is higher than the
above methods.

B. Efficiency evaluation

Bittencourt et al. [12] proposed a cluster-based architecture
recovery method, then Michele et al. [13] introduced fold-
in and fold-out based on Bittencourt’s method. Both of the
above methods have been widely recognized, so we compare
our method with the above two methods to evaluate efficiency
of ARO.
PostGreSQL is an open source project, and it is often used

as an experimental case for architecture recovery. We choose
30 versions as the experimental cases. The time consumed of
the above three methods is shown in Figure 1.

0

100

200

300

400

500

600

700

800

900

1000

1 6 11 16 21 26

Bittencourt Michele Our method

Fig. 1. The time consumed of the three methods

As shown in Figure 1, the average time consumed of the
above three methods is 835.288 seconds, 495.568 seconds and
81.814 seconds, respectively. Bittencourt’s method takes the
longest time, and our method takes the shortest time. In a
word, compared to the two methods, our method has higher
efficiency.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a method for recovering and
optimizing software architecture based on source code and
directory hierarchies to improve accuracy and efficiency. ARO

extracts specific information about the implementation of
architecture from source code and directory hierarchies to
improve accuracy. Then ARO improves the efficiency by
preprocessing the file dependency graph and the K-center-
hierarchy algorithm. Finally, ARO optimizes architecture. Ex-
perimental results indicate that compared with the represen-
tative architecture recovery methods listed in this paper, the
architectures recovered by ARO has higher accuracy with
higher efficiency.

In our future work, we will extract more information about
architecture to improve accuracy, such as the compiled build
files, architecture documents, and other files.

ACKNOWLEDGEMENTS

This work is supported in part by the National Key R&D
Program of China under Grant 2018YFB1003902, in part by
the Cooperation Project with Huawei Technologies Co., Ltd.,
under Grant YBN2016020009, and in part by National Natural
Science Foundation of China under Grant 61872078, Grant
61572126, and Grant 61402103.

REFERENCES

[1] Fabian Brosig, Philipp Meier, Steffen Becker, Anne Koziolek, Heiko
Koziolek, and Samuel Kounev. Quantitative evaluation of model-driven
performance analysis and simulation of component-based architectures.
IEEE Transactions on Software Engineering, 41(2):157–175, 2015.

[2] Ricardo Britto, Daria Smite, and Lars Ola Damm. Software architects
in large-scale distributed projects: An ericsson case. IEEE Software,
33(6):48–55, 2016.

[3] Koziolek, Heiko, Schlich, Bastian, Becker, Steffen, Hauck, and
Michael. Performance and reliability prediction for evolving service-
oriented;software systems. Empirical Software Engineering, 18(4):746–
790, 2013.

[4] Michele Risi, Giuseppe Scanniello, and Genoveffa Tortora. Using fold-in
and fold-out in the architecture recovery of software systems, volume 24.
2012.

[5] Xianglong Kong, Bixin Li, Lulu Wang, and Wensheng Wu. Directory-
based dependency processing for software architecture recovery. IEEE
Access, 6:52321–52335.

[6] Liu Jing, Zhiming Lui, Xiaoshan Li, Jifend He, and Yifeng Chen. To-
wards the integration of a formal object-oriented method and relational
unified process. Software Evolution with Uml & Xml, pages 101–133,
2005.

[7] Fritz Solms. Experiences with using the systematic method for architec-
ture recovery (symar). In South African Institute for Computer Scientists
and Information Technologists Conference, pages 170–178, 2013.

[8] Onaiza Maqbool and Haroon Babri. Hierarchical clustering for software
architecture recovery. IEEE Transactions on Software Engineering,
33(11):759–780, 2007.

[9] Kamran Sartipi. Software architecture recovery based on pattern
matching. In International Conference on Software Maintenance, pages
293–296, 2003.

[10] H Sajnani. Automatic software architecture recovery: A machine
learning approach. In IEEE International Conference on Program
Comprehension, pages 265–268, 2012.

[11] Thibaud Lutellier, Devin Chollack, Joshua Garcia, Lin Tan, Derek
Rayside, Nenad Medvidovic, and Robert Kroeger. Comparing soft-
ware architecture recovery techniques using accurate dependencies. In
IEEE/ACM IEEE International Conference on Software Engineering,
pages 67–69, 2015.

[12] Roberto Almeida Bittencourt and Dalton Dario Serey Guerrero. Compar-
ison of graph clustering algorithms for recovering software architecture
module views. In European Conference on Software Maintenance &
Reengineering, pages 251–254, 2009.

[13] Anna Corazza, Sergio Di Martino, and Giuseppe Scanniello. A proba-
bilistic based approach towards software system clustering. In European
Conference on Software Maintenance and Reengineering, pages 88–96,
2011.

472

Automated user-oriented description
of emerging composite ambient applications

M. Koussaifi, S. Trouilhet, J.-P. Arcangeli, J.-M. Bruel
IRIT, University of Toulouse, France

Abstract—Ambient environments consist of components sur-
rounding the user and offering services. Applications can
here be composed opportunistically and automatically by an
intelligent system that puts together available components.
Thus, applications that are a priori unknown emerge from the
environment. The problem is in the intelligible presentation to
an average user of those emerging composite applications. Our
approach consists in automatic generation of user-oriented ap-
plication descriptions from unit descriptions of each component
and service. For that, we propose a well-defined language for
component description and a method for combining descrip-
tions. A prototype has been developed and used to experiment
the generation of different composite application descriptions.
Based on these experiments, we assess the degree of fulfillment
of the requirements we have identified for the problem.

I. INTRODUCTION

Applications of the Internet of Things, ambient and
cyber-physical systems consist of fixed or mobile connected
devices. Devices host independently developed and man-
aged software components that provide services specified
by interfaces and, in turn, may require other services [1].
Components are building blocks that can be assembled by
binding required and provided services to build composite
applications.

Due to mobility and separate management, devices and
software components may appear and disappear without
this dynamics being foreseen. Hence, the environment is
open and its changes are out of control. Humans are at the
core of these dynamic systems and can use the applications
at their disposal. Ambient intelligence aims at offering
them a personalized environment adapted to the current
situation, anticipating their needs and providing them the
right applications at the right time with the least effort
possible.

We are currently exploring and designing a solution
in which components are dynamically and automatically
assembled to build new composite applications and so
customize the environment at runtime. Our approach is
rather disruptive: unlike the traditional goal-directed top-
down mode, applications are built on the fly in bottom-up
mode from the components that are present and available
at the time, without user needs being made explicit. That
way, composite applications continuously emerge from the
environment, taking advantage of opportunities as they
arise: for example, a slider on a smartphone can oppor-
tunely be composed with a connected lamp and provide

DOI reference number: 10.18293/SEKE2019-131

the user with a lightening service when entering a room.
Here, contrary to the traditional SOA paradigm, the user
does not specify a service or search for it in “pull mode”, but
context-adapted applications are provided in “push mode”.

Automated composition is supported by an assembly
engine in line with the autonomic computing principles
and the MAPE-K model [2]: it senses the existing com-
ponents and decides of the connections (it may bind a
required service and a provided one if their interfaces are
compatible) without using a pre-established plan. The heart
of the engine is a distributed multi-agent system where
agents, close to the software components and their services,
cooperate and decide on the connections [3]. To make the
right decisions and offer relevant applications, the engine
(i.e., the agents) learns at runtime by reinforcement. Thus,
the engine assures proactivity and runtime adaptation in
the context of openness, dynamics and unpredictability.

In such a context of automation based on artificial intel-
ligence, we believe that, whatever the engine’s decisions are,
the deployment of emerging applications should remain
under user control. So, she/he must first be informed of the
new application. Then, depending on its interest, she/he
must be able to accept it or not, possibly to modify it
(provided that she/he has the required skills) and so to
contribute to the customization of her/his environment. So,
the user must be put “in the loop" [4]. In addition, the
user’s actions about the emerging application (acceptance,
rejection, modification) are sources of feedback for the
engine’s learning. Based on them, the engine builds a model
of the user’s preferences and habits. Unknown a priori, this
model is built at runtime and evolves dynamically.

Therefore, it is essential to assist the user in the appro-
priation of the emerging applications pushed by the engine.
For that, applications must be presented to the user in a
useful and understandable way. The goal of this paper is to
propose a solution to provide the user with an intelligible
description of emerging applications.

The paper is organized as follows. Section II describes in
more details the problem and lists the main requirements.
Section III analyzes the related work on service description
and shows that the solutions are very limited in relation
to our problem. Section IV presents and illustrates our
approach to meet the requirements. Section V describes
an experiment based on a prototype we have developed. It
shows the feasibility of our approach and assesses whether
it meets the requirements. Finally, a conclusion is given in
Section VI as well as the perspectives of this work.473

II. PROBLEM STATEMENT

In the absence of prior specification, emerging applica-
tions are unknown a priori and possibly surprising. They
result from local interactions between distributed agents
that constitute the engine. Composition relies on learned
user preferences and a matching between required and
provided services.

The user must be aware of the emerging application, its
function and how to use it, to consider if she/he could
benefit from. Therefore, applications must be presented in
an intelligible way. Here, we target average users that are
not familiar to programming and computer science. For
instance, the user may be the inhabitant of a smart house
or a public transport traveller in a smart city.

Consider a simple assembly consisting of a switch and
a lamp. In that case, we would ideally like to tell the user
something like “if you click on the switch, the lamp will turn
ON/OFF". Therefore, the problem lies in the construction
of the understandable description of an application defined
by an assembly of software components, and to compute
the description from the participating components, their
services and bindings.

A. Previous work

In [4], we have proposed an architecture that puts the
user in the loop (see Fig. 1). An editor presents the emerging
application, allows the user to accept it, then it is deployed,
or to reject it, then it is cancelled, or to modify it (that is
add, remove or change bindings between services). Accep-
tance, rejection, and modifications are notified back to the
engine for learning.

Fig. 1. Overall solution architecture

For that, the editor exposes a structural description of the
application (see Fig. 2) that is an editable graph of software
components that are connected through their respective
services, as well as other available components that may
be useful. This is achieved using model transformation
techniques that transform the output of the engine (set of
components, services and bindings) into a model (conform-
ing to a metamodel we have defined for this purpose) that
is presented for the user.

In the state of our work, the solution is limited to the
presentation of an editable structure of the application. On
one hand, this allows the user to build of a tailor-made
ambient environment. On the other hand, this requires
to understand component-based architecture, at least the
meaning of an assembly of components. Therefore, struc-
tural presentation is not understandable by an average user,

Fig. 2. Structural presentation via the editor

who needs to know the function rendered by the application
(in other words its semantics), and how to use it.

The next section lists the requirements we have identified
for an efficient presentation of an emerging application.

B. Requirements

1) Semantics: The function (i.e., the semantics) of the
application must be exhibited. For example, “the applica-
tion allows to light up the lamp”.

2) Usage: The instructions on how to use the application
must be exhibited. For example, “press the switch to turn
ON/OFF the light”.

3) Intelligibility: The description must be understand-
able by an average user, without programming skills.

4) Presentation scalability: The description should re-
main useful and intelligible even when the application has
about ten or more components.

5) Automated processing: The description must be au-
tomatically built by combining unit descriptions of compo-
nents without human support.

6) Expressiveness: The description language must be
expressive enough for software engineers with standard
skills to make descriptions of the components they provide.

III. RELATED WORK

Fundamentally, software components and services are
developed and documented for composition and reuse.
In practice, they are built from scratch or from existing
ones. In service-oriented engineering, service discovery and
selection are fundamental operations. Selection generally
aims to choose a service on a qualitative basis among
several ones that have been previously discovered. Discov-
ery and selection are performed either manually or more
or less automatically, at design or runtime, from service
descriptions.

In this section, we examine the related work in the field
of service description. We first study the questions related
to the target and objective of the description, then the
questions of content and tools of description.

A. For whom and why describing a service?

Designers use service descriptions as documentation.
They likewise describe the intent and use of the services
they develop. When engineers specify business processes
to be realized through the composition of existing services,474

they describe (composite) services too. For example, com-
position of Web services are first explicitly specified by the
service requester, then processed more or less automatically
[5]. Thus, in that top-down mode, the demanded composite
service is specified a priori, so no more description is
necessary.

In [6], authors propose a user-centric service composition
platform that assists end-users without skills in service-
oriented engineering. End-users first enter their goals using
a few keywords. Then an editor presents the available
services and suggests possible and modifiable processes.

Most of the existing solutions use service description to
support automated service discovery, selection and compo-
sition. Services are described to be processed by a program.
Description allows service location and use, as is the case
for WSDL [7] in the field of Web Services.

Semantic description of Web services first targets interop-
erability [8]. Relying on semantics also has a positive impact
on the quality of the composition [9], in particular when
Quality of Service (QoS) attributes are considered [10], [11].
In [12], authors propose semantic enhancement of software
components with their properties and functionality to sup-
port matching between candidate components.

B. How to describe a service?

Service description can take more or less advanced forms
depending on the requirements for discovery, selection
and composition. In [13], authors overview and classify
service description approaches used in automated service
composition research.

In a basic way, descriptions may be limited to a syntactic
level. For example, in object-oriented middleware like Java
RMI [14], remote objects that provide services are registered
and located only through a name. Services (resources in
general terms) may be described more precisely using
keywords in order to be retrieved by their characteristics
rather than a simple identifier.

The semantic description of a service can be functional.
It can take the form of a signature with inputs and
outputs, possibly completed by preconditions and effects
[15]. Authors of [11] explain that signature is not enough
because different functions may have the same signature
on the one hand, and that two services rendering the same
function may differ fundamentally in their performances on
the other hand. Therefore, service description may include
extrafunctional properties that is QoS-related properties.

In [16], authors have proposed different techniques to
create descriptions of services using the DAML-S language
that was proposed to bridge the gap between the Web
services infrastructure and the Semantic Web [17]. Ac-
cording to [13], OWL-S that succeeded to DAML-S has
become a standard for industrial service composition. OWL-
S [18] is an ontology for describing Semantic Web services
that enables their automated discovery, composition and
use. Ontology-driven description of services proved to be
efficient for selection and composition [6].

C. Analysis

There are many solutions for functional and extrafunc-
tional service description. Most of them focus on service
discovery, selection, and top-down composition in order to
build a complex service from unit ones. In our bottom-
up approach, as the complex service to be built is un-
known, there exists no solution which aims at combining
descriptions. In most cases, service description supports
automation, for example when based on ontologies. But
in that case, descriptions are little or not at all intelligible
by average human users. In addition, when extrafunctional
properties are considered, they mainly concern the quality
of services, but not their usage. In conclusion, to the
best of our knowledge, there is no work that meets our
requirements, mainly those concerning usage, intelligibil-
ity, and automated processing, in the context of bottom-
up and goal-free application construction. Nevertheless,
a functional description of services using signatures with
preconditions and effects [15] may help in extracting the
semantic information about the components’ behavior and
their interactions, that should be useful for the entire
application description.

IV. PROPOSITION

This section presents our approach to describe compo-
nents and their services, and to compute user-oriented
descriptions of emerging composite ambient applications
(assemblies of software components). Descriptions mainly
consist of rules that explain the components and the appli-
cations. Composite application descriptions are generated
from the unit descriptions of the components that are
given at component design time, and the bindings between
services that are supplied by the engine. Generation is
achieved by combining the descriptions together, precisely
the rules that belong to each unit description. At the
end, the combination process aims at building a rule or
a set of rules that describes the application, that can be
then transformed into a text readable by the user. Our
contributions are: (i) a language for the description of
components’ services and (ii) a combination method.

In the following, our proposition is explained in details.

A. Component and Service Description

A component description (CD) is a tuple that expresses
how the component and its services work and interact with
other connected components.

C D =<Component N ame,Role,St ates,

Pr ovi dedSer vi ces,Requi r edSer vi ces >

ComponentName and Role are strings: the name of
the component and a free text (e.g., ComponentName =
“Switch”, Role = “Send a signal when pressed”). As com-
ponents may have an internal state, such as a lamp that
is ON/OFF, States is the (possibly empty) set of possible
states (e.g., States = {“ON”,“OFF”}). Last, the component’s475

required and provided service descriptions are gathered in
the ProvidedServices and RequiredServices sets.

A service, whether provided or required, is also described
by a tuple (SD).

SD =< Ser vi ceN ame, IO Acti on,

Launcher,Ser vi ceDescr i pti on,

BoundTo,Rul es >

ServiceName is a string (e.g., ServiceName = “Command”).

IOAction represents how the service interacts with other
services. It may have the following forms: VAL@OUTPUT or
TRIGGER ServiceName. The first form refers to the emission
of a message on the output interface of a required service.
VAL covers all possible data types that the service handles
(as the services have previously been composed by the
engine, the type matching problem has been already re-
solved; thus types are useless for our descriptions), and may
even be omitted. The second form refers to the transfer of
control between services inside a component. Furthermore,
IOAction can be empty for a provided service handling only
the evolution of the component’s state, without any output
(e.g., the OnOff provided service of the lamp that changes
the state to ON/OFF).

Launcher is a key defining what activates the service. It
covers two cases. The first refers to an external interaction
coming from another component (onRequired) or to an in-
ternal one coming from the component itself (onTriggered).
The second case refers to an interaction coming from the
user and can have multiple values such as onButtonPressed,
onSliderDragged, onCheckBoxChecked. . .

ServiceDescription describes the service in a free text
(e.g., ServiceDescription = “Turn ON/OFF the lamp”). This
attribute is used by our combination algorithm to generate
a textual form of the description (see section IV-B).

BoundTo is a set of services within their component (C-S)
described as follows.

C −S =Component N ame.Ser vi ceN ame

For example, C −S = Switch.Command.

Rules is a set of logic rules of the form “Condi ti on =⇒
Consequence ′′ that describes the service behavior. It is
written as follows in BNF notation [19] where < cp > is
a comparator, S ∈ St ates and V is a value. Note that
IOAction and Launcher have been put out of the rules for
expressiveness and separation of concerns purpose.

Launcher

[∧ (ST AT E < cp > S)]

[∧ (V AL@I N PU T < cp > V)]

=⇒
IO Acti on |

ST AT E = S |
IO Acti on ∧ (ST AT E = S) |

NOP

The common case is “Launcher =⇒ IOAction”. Premises
concerning the component’s state and the inputted value
are optional. It is usually the case for services that have
no condition to check, other than their Launcher, before
triggering their action. For example, for a switch to issue a
command, it is only necessary that the button is pressed
by the user.

In the general case, the condition part of a rule may
contain a test on the component’s state or on an inputted
value. For the consequence part of the rule, several forms
are possible. In particular, it may contain a state changing
operation. Furthermore, NOP is a special key used if the
service does not carry out any operation.

Here are examples of service descriptions of the Com-
mand service required by a switch and the OnOff service
provided by a lamp, that have been connected by the
assembly engine. Component and service descriptions have
initially been written by the designer. They are completed
by the engine by filling the BoundTo attribute according to
the emerging assembly.

< (ServiceName) Command ,

(IOAction) @OU T PU T,

(Launcher) onBut tonPr essed ,

(ServiceDescription) Send a si g nal ,

(BoundTo) {Lamp.OnO f f },

(Rules) {Launcher =⇒ IOAction} >

< (ServiceName) OnO f f ,

(IOAction),

(Launcher) onRequi r ed ,

(ServiceDescription) Tur n ON /OF F the l amp,

(BoundTo) {Swi tch.Command},

(Rules) {Launcher ∧ (ST AT E ==OF F)

=⇒ ST AT E =ON ,

Launcher ∧ (ST AT E ==ON)

=⇒ ST AT E =OF F } >

The next section presents the method for combining
descriptions.476

B. Combination of descriptions

Application descriptions are generated mainly from the
rules that describe the services, and then from the re-
maining attributes (if used by the rules). If a service S1 is
connected to a service S2 then the rules of S1 are combined
with the rules of S2 to generate the rules that describe the
composition.

The combination algorithm first finds matching keys
available in each possible pair of rules which belong
to S1 and S2 descriptions. For example: VAL@OUTPUT
matches onRequired and VAL@INPUT ; TRIGGER Service-
Name matches onTriggered. Then, the algorithm infers the
combined rules by transitivity. For example:

∗ R1: A =⇒ B ∧ C
∗ R2: C =⇒ D
R1 and R2 are combined into:
∗ R: A =⇒ B ∧ D

Note that there might be several combined rules at the
same time, for example:

∗ R1: A =⇒ B
∗ R2: B ∧ B ′ =⇒ C
∗ R3: B ∧ B ′′ =⇒ D
R1, R2 and R3 are combined into:
∗ R ′: A ∧ B ′ =⇒ C
∗ R ′′: A ∧ B ′′ =⇒ D

Here is an example for the Switch-Lamp application:

∗ R ′: LauncherCommand ∧ (ST AT E == ON) =⇒
ST AT E =OF F
∗ R ′′: LauncherCommand ∧ (ST AT E == OF F) =⇒
ST AT E =ON

The combined rules are transformed into a
textual form to be presented to the user. An
attribute is linked to its component and the label is
replaced by its content (LauncherCommand becomes
OnBut tonPr essed o f Swi tch). The Ser vi ceDescr i pti on
content is used to make the elements of the rule more
explicit (the ST AT E element and Tur n ON /OF F the l amp
are compared). Finally, the =⇒ is translated in a verbal
form (I MPLI ES . . . I F). In addition, the algorithm is able
to group rules that have the same launcher. The textual
presentation of the Switch-Lamp application is:

onButtonPressed of Switch IMPLIES
Turn OFF the lamp IF Lamp is ON
Turn ON the lamp IF Lamp is OFF

Note that the generated textual description may some-
times not be grammatically correct. At this point, syntax
improvement is left for future work.

The above example has the simplest topology, but the
solution targets more complex ones: pipeline, star. . . Our
description language can easily be extended. For example
in order to cover the case of a component that requires
several services sequentially, a sequence operator could
be added to the description language and handled by the
combination algorithm.

The next section shows the experimentation we have
carried out and analyzes our solution in relation to the
requirements.

V. EXPERIMENTATION AND ANALYSIS

A. Proof of concept

In order to demonstrate the feasibility of our approach,
we have developed a prototype in Java, where each com-
ponent and its services XML-like descriptions are stored
in a separate file. It was tested on different composite
applications built by our assembly engine.

Here is an example with three components assembled
in pipeline mode: a slider, a converter and a lamp. The
slider acts as a switch. It requires the ProcessVal service.
The converter provides the Transform service: it receives
a value and, if greater than 50, transforms it into an
order for the lamp through the Order required service.
As in the previous section, the lamp provides the OnOff
service. The descriptions of the services are given below
(see Section IV-A for OnOff).

< (ServiceName) Pr ocessV al ,

(IOAction) V AL@OU T PU T,

(Launcher) onSl i der Dr ag g ed ,

(ServiceDescription) Send a value ∈ [0,100],

(BoundTo) {Conver ter.Tr ans f or m},

(Rules) {Launcher =⇒ IOAction} >

< (ServiceName) Tr ans f or m,

(IOAction) T RIGGER Or der,

(Launcher) onRequi r ed ,

(ServiceDescription) C hang e val ue i nto si g nal ,

(BoundTo) {Sl i der.Pr ocessV al }

(Rules) {Launcher ∧ (V AL@I N PU T > 50)

=⇒ IO Acti on,

Launcher ∧ (V AL@I N PU T <= 50) =⇒ NOP } >

< (ServiceName) Or der,

(IOAction) @OU T PU T,

(Launcher) onTr i g g er ed ,

(ServiceDescription) Send a si g nal ,

(BoundTo) {Lamp.OnO f f },

(Rules) {Launcher =⇒ IOAction} >

477

Fig. 3 shows the rules resulting from the combination
algorithm. Then, the rules are transformed into a more
intelligible textual version to describe the emerging appli-
cation (Fig. 4).

Fig. 3. Description’s rules of the emerging application

Fig. 4. User-oriented description of the emerging application

B. Analysis

Rules describing the composite application are actually
inferred. They provide the information about both the
function of the application and how the user can interact
with it. Thus, the rule-based description of the components
and their services in an assembly makes possible to satisfy
the main requirements we have defined (see Section II-B)
concerning semantics, usage, and automated processing. By
transforming rules into text, the understanding is made
easier. Nevertheless, no real users have yet assessed the
intelligibility. User assessment experiments could help us
in improving the description language and the rule combi-
nation process. Concerning expressiveness, we consider that
the rule-based language is expressive enough for software
engineers. Moreover many elements of CD and SD could
be automatically extracted from the code of components,
in particular from the signatures of methods. Presentation
scalability requirement has yet to be improved. We would
like to allow the folding and unfolding of descriptions when
a number of components are involved, and therefore offer
a kind of “responsive” presentation of applications with
different levels of abstraction.

VI. CONCLUSION

In this paper, we have exposed an approach that aims
to answer the requirements to generate user-oriented in-
telligible descriptions of emerging assemblies of software
components. We have presented the limitations of the
current solutions and highlighted the benefits of our one.
We have developed a proof of concept that shows that our
approach can meet the requirements. Further experiments
must now be carried out on more complex composite
applications and topologies in order to consolidate our
solution and enrich the description language. Real users
should be involved in the experiments to improve and
validate intelligibility and scalability of the presentation.

Our next step towards addressing the scalability issue
will be to fully use the power of Model-Driven Engineering

(MDE) approaches and tools to support the automatic
generation of combination algorithms from the description
language definition itself. Our description language being
a domain-specific language (DSL), and our input assembly
being a model, MDE which has been proved useful in this
particular case [20] will allow us to define transformation
between assemblies and their descriptions.

REFERENCES

[1] I. Sommerville, “Component-based software engineering,” in Software
Engineering, ch. 16, pp. 464–489, Pearson Education, 10 ed., 2016.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, pp. 41–50, Jan. 2003.

[3] W. Younes, S. Trouilhet, F. Adreit, and J.-P. Arcangeli, “Towards an
intelligent user-oriented middleware for opportunistic composition
of services in ambient spaces,” in Proceedings of the 5th Workshop
on Middleware and Applications for the Internet of Things, M4IoT’18,
(New York, NY, USA), pp. 25–30, ACM, 2018.

[4] M. Koussaifi, S. Trouilhet, J.-P. Arcangeli, and J.-M. Bruel, “Ambient
intelligence users in the loop: Towards a model-driven approach,”
in Software Technologies: Applications and Foundations (M. Mazzara,
I. Ober, and G. Salaün, eds.), pp. 558–572, Springer, 2018.

[5] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and
X. Xu, “Web services composition: A decade’s overview,” Information
Sciences, vol. 280, pp. 218 – 238, 2014.

[6] H. Xiao, Y. Zou, R. Tang, J. Ng, and L. Nigul, “Ontology-driven
service composition for end-users,” Service Oriented Computing and
Applications, vol. 5, p. 159, Mar 2011.

[7] “Web Services Description Language.” https://www.w3.org/TR/wsdl/.
Accessed: 2019-01-31.

[8] H. Nacer and D. Aissani, “Semantic web services: Standards, appli-
cations, challenges and solutions,” Journal of Network and Computer
Applications, vol. 44, pp. 134–151, Sept. 2014.

[9] Y. Charif and N. Sabouret, “An overview of semantic web services
composition approaches,” Electronic Notes in Theoretical Computer
Science, vol. 146, no. 1, pp. 33 – 41, 2006. Proceedings of the First
International Workshop on Context for Web Services (CWS 2005).

[10] E. Chindenga, M. S. Scott, and C. Gurajena, “Semantics Based Service
Orchestration in IoT,” in Proceedings of the South African Institute of
Computer Scientists and Information Technologists, SAICSIT’17, (New
York, NY, USA), pp. 7:1–7:7, ACM, 2017.

[11] A. Hurault, F. Camillo, M. Daydé, R. Guivarch, M. Pantel, C. Puglisi,
and H. Astsatryan, “Semantic description of services: issues and
examples.” Computer Science and Information Technologies, Yerevan
(Arménia), 2009.

[12] J. M. Gomez, S. Han, I. Toma, B. Sapkota, and A. Garcia-Crespo, “A
Semantically-enhanced Component-based Architecture for Software
Composition,” in Int. Multi-Conf. on Computing in the Global Infor-
mation Technology (ICCGI’06), pp. 43–47, Aug 2006.

[13] Y. Fanjiang, Y. Syu, S. Ma, and J. Kuo, “An overview and classification
of service description approaches in automated service composition
research,” IEEE Transaction on Services Computing, vol. 10, pp. 176–
189, March 2017.

[14] “Java Remote Method Invocation (RMI).” https://docs.oracle.com/
javase/tutorial/rmi/index.html. Accessed: 2019-01-31.

[15] M. Klusch, “Semantic web service description,” in CASCOM: Intelli-
gent Service Coordination in the Semantic Web, (Basel), pp. 31–57,
Birkhäuser Basel, 2008.

[16] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Composing web
services on the semantic web,” The VLDB Journal, vol. 12, pp. 333–
351, Nov. 2003.

[17] M. Paolucci and K. Sycara, “Autonomous semantic web services,” IEEE
Internet Computing, vol. 7, pp. 34–41, Sept. 2003.

[18] “OWL-S: Semantic Markup for Web Services.” https://www.w3.org/
Submission/OWL-S/. Accessed: 2019-01-31.

[19] “Backus–Naur Form (BNF).” https://www.w3.org/Notation.html. Ac-
cessed: 2019-01-31.

[20] H. Bruneliere, R. Eramo, A. Gomez, V. Besnard, J.-M. Bruel,
M. Gogolla, A. Kästner, and A. Rutle, “Model-Driven Engineering
for Design-Runtime Interaction in Complex Systems: Scientific Chal-
lenges and Roadmap,” in MDE@DeRun 2018 workshop, vol. 11176 of
LNCS, June 2018.

478

Usability of Chatbots: A Systematic Mapping Study

Ranci Ren
Dep. Ing. Informática

Univ. Autónoma de Madrid
Madrid, Spain

ranci.ren@estudiante.uam.es

John W. Castro
Dep. Ing. Informática y Ciencias de la Computación

Universidad de Atacama
Copiapó, Chile

john.castro@uda.cl

Silvia T. Acuña, Juan de Lara
Dep. Ing. Informática

Univ. Autónoma de Madrid
Madrid, Spain

{silvia.acunna, juan.delara}@uam.es

Abstract— Background: The use of chatbots has increased
considerably in recent years. These are used in different areas
and by a wide variety of users. Due to this fact, it is essential to
incorporate usability in their development. Aim: Our objective is
to identify the state of the art in chatbot usability and applied
human-computer interaction techniques, to analyze how to
evaluate chatbots usability. Method: A systematic mapping study
has been conducted, searching the main scientific databases. The
search retrieved 170 citations and 19 articles were retained as
primary studies. Results: The works were categorized according
to four criteria: usability techniques, usability characteristics,
research methods and type of chatbots. Conclusions: Chatbot
usability is a very incipient field of research, where the published
studies are mainly surveys, usability tests, and rather informal
experimental studies. Hence, it becomes necessary to perform
more formal experiments to measure user experience, and exploit
these results to provide usability-aware design guidelines.

Keywords—Usability; chatbots; systematic mapping study

I. INTRODUCTION
Chatbots are computer programs with a textual or voice

interface, based on natural language [1]. They are specifically
designed to make user interaction as natural as possible, and
have received extensive attention from academia and industry
in recent years. Chatbots not only enable a faster and more
natural way to access information, but they will become a key
factor in the process of humanizing machines in the near future.

Usability is defined as the degree to which a program can
be used to achieve quantified objectives with effectiveness,
efficiency, and satisfaction in a specified context of use [2].
Usability is a critical aspect in interactive software systems and
so it is essential to incorporate usability in chatbots, to improve
user experience. Chatbots are become pervasive and are used in
many areas, such as bookings of all sorts of services, to obtain
medical advice and for online shopping [1][3][4]. The multiple
uses and benefits of chatbots explain their strong growth in
terms of users, satisfaction and saving resources. It is expected
that the number of users will grow in the US by 23.1% [5].
Although the market is still beginning to take shape (compared
to the number of websites, the number of bots is still not large)
it is estimated that the market size will expand massively [4].

Many universities and commercial companies have put into
use chatbots interacting with mature systems. At the
commercial level, Facebook messenger already has more than
300,000 chatbots in use [5]. This makes downloading and
installing new apps unnecessary, and the use of smartphones
allows for personalization possibilities [6]. Further, the use of

chatbots can be more cost-effective than human-assisted
support [7]. Some companies are building chatbots
independently (e.g., Microsoft is promoting the idea of
“conversation as a Platform”) to support a variety of media,
from Skype to search [8]. Chatbots are not an emerging
concept. Research on dialogue systems can be traced back to
the 50s, where Alan M. Turing posed the question “can
machines think?” proposing the Turing test as a criterion for
judging whether the machine has intelligence [9].
Weizenbaum’s development of ELIZA at MIT in the 60s can
be considered the first dialogue system [1]. Lately, the
advances in natural language processing (NLP) have boosted
the raise of many chatbot development frameworks (e.g.
DialogFlow (http://dialogflow.com)).

However, there are currently few works that discuss the
usability of chatbots in an integrated and formalized manner.
The objectives of our research are to identify the state of the art
in chatbots usability and the applied Human-Computer
Interaction (HCI) techniques by a Systematic Mapping Study
(SMS) and to analyze how to evaluate the usability of chatbots.
The contribution of this research is a picture of the current state
of usability in chatbots. For this purpose, we present a SMS
where we classify the types of chatbots, the measured usability
characteristics, the applied usability techniques and the
research methods used to evaluate chatbot usability.

Paper organization. In Sec. 2, we present related work. In
Sec. 3, we describe the research method of the SMS. Sec. 4
presents the results of the SMS. In Sec. 5, we discuss the
results and threats to validity, and finally Sec. 6 concludes.

II. RELATED WORKS
We found only three systematic reviews related to chatbots

[9][10][11]. The one by Klopfenstein et al. [9] surveys
conversational interfaces, patterns, and paradigms. However,
they do not detail the literature retrieval process, and hence it
may be potentially incomplete. The survey traces the history of
chatbots, from ELIZA to modern chatbots for MOOCs. They
conclude that only a subset of chatbots are designed for
communicating in natural language, which sometimes makes
users disappointed. Then they compare features of major
messaging platforms that support bots, like Messenger,
WeChat, Line and Skype. Most of them already support a
variety of message types, pictures, videos, and sounds.
However, none of them have comprehensive enough features.
For example Line has groups, buttons and carousel features,
but no payment and quick message reply. They detail
advantages of bots for users and developers, and conclude

DOI reference number: 10.18293/SEKE2019-029

479

stressing the benefits of chatbots as a new software platform to
provide services and data to users.

The work by Ramesh et al. [10] surveys design techniques
for conversational agents. The paper presents various solutions
for building chatbots, including AIML, NLP and Natural
Language Understanding (NLU). The authors describe the
general structure of a chatbot, which consists of a responder,
classifier and graph master. Then, they list several design
techniques for chatbots, from pattern matching, to recurrent
neural networks. They stress that NLP techniques are
increasingly being used in recent years. The paper presents a
classification of chatbots, which includes retrieval-based and
generative-based, long and short conversations and open/closed
domain. Retrieval-based chatbots pick responses from a pool of
predefined ones. The third work, by Laranjo et al. [11] makes a
systematic review of conversational agents in health. This
review retrieved 1,513 research papers, and identified 17
primary studies. The search was performed in April 2017 and
updated in February 2018. They describe 14 different
conversational agents distinguishing type of communication
technology, dialogue management, dialogue initiative, input
modality and task-oriented aspects. The evaluation measures
were divided into three main types: technical performance, user
experience and health-related measures.

Overall, these works do not focus on usability techniques or
usability characteristics of chatbots. Therefore, to the best of
our knowledge, there is no SMS on the status of the chatbot
usability. Our work covers this gap.

III. RESEACH METHOD
We aim to answer the following research questions: (RQ1)

What is the state of the art of usability in the development of
chatbots? and (RQ2) How to evaluate the usability of chatbots
using HCI principles? To answer both questions, we have
executed an SMS to identify and classify these issues in the
published literature [12].

Search String Selection
The first step is identifying search strings and relevant

keywords. For this purpose, several options were tried and the
best one chosen. In particular, we first read some initial articles,
obtaining keywords and basic knowledge related to the topic.
After combining the opinions of two experts in HCI, we opted
for the search string: (usability OR “usability technique” OR
“usability practice” OR “user interaction” OR “user
experience”) AND (chatbots OR “chatbots development” OR
“conversational agents” OR chatterbot OR “artificial
conversational entity” OR “mobile chatbots”).

Databases and Search Protocol
The search was performed in sequence from Scopus, ACM

Digital Library, IEEE Xplorer, SpringerLink and Science
Direct. The search fields used were determined by the options
provided by each database. Considering that the concept of
chatbots is still relatively new, the search range is from January
2014 to October 2018. We ordered the search considering the
data base that returned most results. The search fields were
selected to assure that searches were similar across data bases.

The criteria used to retrieve the fundamental studies are
summarized below.

• Inclusion criteria: The paper is written in English; AND
The abstract or title mentions an issue regarding the
chatbots and usability; OR The abstract mentions an issue
related to usability engineering or HCI techniques; OR The
abstract mentions an issue related to the user experience.

• Exclusion criteria: The paper does not present any issue
related to the chatbots and usability; OR The paper does
not present any issue related to the chatbots and user
interaction; OR The paper does not present any issue
related to the chatbots and user experience.

Paper Selection
The searches were run using the search string defined. The

number of papers returned by the first search was 170, which
are called Retrieved Papers. Then by inspecting the title,
keywords and abstract of each retrieved paper, 41 papers were
filtered to the group of Candidate Papers. The whole group of
Candidate Papers was screened for duplicates. When duplicates
were found, only the first occurrence of the paper was counted
and maintained, the others were deleted. The final group has 39
papers, which is called Non-Duplicate Candidate Papers. Each
paper of the Non-Duplicate Candidate Papers group was read,
to determine if they described any sort of usability of chatbots.
The results were cross-checked by two experts in the HCI area,
and any disagreement was discussed and resolved in our
meetings. Finally, 19 papers were identified as primary studies.

IV. SYNTHESIS OF THE RESULTS
Figure 1 provides an overview of the primary studies

retrieved by the SMS. It is made of three categories,
determined by the year of publication, type of paper
(conference, journal, chapter) and usability characteristics. The
left-hand side is composed of two scatter (XY) charts with
bubbles at the intersections of each category. The size of each
bubble is determined by the number of primary studies that
have been classified as belonging to the respective categories at
the bubble coordinates.

Conference

Effectiveness

Efficiency

2015

2016

0 1 2

2017

Journal

2014

3 4

2018

Satisfaction

Book
Chapter

4

3

4

1

1 1

1

2

2

5 6

11

5

10 4

4

1

1

1

Figure 1. Overview of the Primary Studies

The right-hand side of the Figure shows the number of
primary studies by publication year. Publications started to
grow from 2015, and many articles (mainly in conferences)

480

have been published each year since then, confirming the
interest in the field. It can be noted that most interest in chatbot
usability is on effectiveness and satisfaction.

After conducting the SMS and analyzing the literature with
respect to the usability of chatbots, the primary studies were
classified from four different perspectives: usability techniques,
usability characteristics, research methods and type of chatbots.
These categories are reviewed next.

A. Usability Techniques
The primary studies in this category identify the adoption of

usability techniques from HCI. This is the second-most studied
group in the literature. The usability techniques are shown in
Table I. From the analysis of the papers, we found that
questionnaires and interviews are most commonly used.

TABLE I. USABILITY TECHNIQUES

Usability Techniques Primary studies

Questionnaire (SUS/ad-hoc) [1][3][13][14][15][16][17][18][19][20]
[21][22][23][24][25][26]

Interview [15][21][22][23][24][26][27][28][29]

Think-aloud [15][19][22]

Direct observation [20]

Cognitive walkthrough [22]

In most cases, two or more techniques are combined for the
usability evaluation. Each of these methods has its own
characteristics, and cannot fully meet all requirements of the
usability test in isolation. Hence, it is necessary to combine
various methods. For example, in [20], direct observation and
the System Usability Scale (SUS) questionnaire are jointly
used. In [21], questionnaires and interviews are used together
in every research phase. In [22] the authors conduct a usability
test to compare the usability of three chatbot platforms by using
a SUS questionnaire, think-aloud and interview to rate the
feedback from participants. A post-task questionnaire and an
open-ended interview were used together in [26]. In [15], they
video-recorded the experiment process for a retrospective
think-aloud, and then conducted an interview and a
questionnaire after accomplishing the tasks. In [24], user
testing is combined with questionnaires and interview. In [23],
they conducted semi-structured interviews and used different
standard questionnaires together in the first and last evaluation
period. In the middle period, to gather more comprehensive
information, they used the SUS questionnaire. In [13], they
developed a pre-study questionnaire to illustrate the types of
interactions perceived to be the most frequent with an Alexa
chatbot. In [1], participants were asked to fill the metrics to
measure their user experience, and also were asked to compare
two different interfaces and justify their responses.

In some cases, the authors used just one single technique to
measure usability. In [14], they conducted a survey using a
questionnaire. In [16], though they mainly used questionnaires
to measure usability, they track user experience through
different questionnaires from different periods with open
questions. In [27], they used structured interviews. In [17],
different questionnaires were used in three different periods of

the experiment. In [18], the authors used questionnaires to
measure quantitative and qualitative evaluations of the new
NLP method used by the chatbot. In [29], during the interview,
participants had to explain the difficulties they had. In [28] to
avoid excessive verbosity and to use verbal instead of text
feedback, they used interview with open questions. In [25], to
evaluate their web client, the authors used a questionnaire
related to reliability, usability, and functionality of the system.
Overall, we can conclude that the technique used depends on
the specific conditions, while there is no standard proposal.

B. Usability Characteristics
According to the primary studies, usability characteristics

are mainly identified in three aspects: Effectiveness, Efficiency
and Satisfaction.

1) Effectiveness: Effectiveness is defined as the accuracy
and completeness with which users achieve specified goals in
HCI [30][31]. From Figure 1, most papers consider
effectiveness as an essential factor when evaluating the
usability of chatbots. Table II shows more details on the used
effectiveness criteria.

TABLE II. EFFECTIVENESS

Measures of Effectiveness Primary studies

Task completion [1][13][22][25][27]

Accuracy [17][18][24][25][26][28]

Recall [18][25]

Experts and Users’ assessment [14][15][21][24]

We have identified task completion, accuracy of chatbot
reply, comparison with recall and expert assessment as the
main means to assess effectiveness. In [14] by gathering
feedback from experts and potential users, they evaluate
grading of the perceived quality of effectiveness of the chatbot
[31] and find some shortcomings and possible solutions that
will enhance the application’s usability for its intended
audience. In these works, the number of correct responses or
interventions indicates the accuracy (to measure if user achieve
specified goal [30]) and recall (users’ ability to recall
information from the interface [31]). The result shows that
most chatbots achieve the required accuracy and recall of
response [25][26]. For example, through comparing with other
chatbots with similar functionality for completing the task, the
authors in [1] proved their e-commerce chatbot performs better
than the default chatbot. In [18], according to the result of the
questionnaire, 80% participants claimed that the content of the
retrieved information is clear and useful. In [27], the authors
measure the number of users who complete the task (interview)
through two different tools, showing that the chatbot has higher
acceptability. To identify the measures of characteristics
accuracy and recall, the works [30][31] have been followed.

However, there are still problems to achieve a high level of
task completion and accuracy of the chatbot reply. In [13], 19
incomplete tasks were reported, because of an ill-defined
system design. In [17], during the evaluation, there were some
problems with the DBpedia semantic entry point, which

481

affected the accuracy of some of the users. In [28], 46 entries
were negotiated, of which 7 (15.2 %) did not correspond
correctly to the user’s original wishes, but when a participant
use more lengthy sentences, he produced noticeably more
utterances compared to the average of the others. This problem
mainly resulted from the inability of the system to process
long, convoluted utterances properly and lacking the ability to
guide the user during the interaction. In [24], the chatbot
generated unnecessary information in response to highly
structured conversations. In [25], the factor affecting the
accuracy of chatbot reply is the need to handle one or more
user conversation turns before providing the answer.

2) Efficiency: Efficiency relates to the resources expended
in relation to the accuracy and completeness with which the
users achieve their goals [30][31]. Most papers discuss task
completion time, mental effort and communication effort to use
the chatbot, as shown in Table III.

TABLE III. EFFICIENCY

Measures of Efficiency Primary studies

Task completion time [1][29]

Mental effort [1][3]

Communication effort [17][20][21]

In [1], the authors compare the number of views and
average time the participants took in completing a task with the
Convey chatbot, and a default one. The results showed they
spent more effort and time with Convey in performing the task.

Perceived autonomy and competence are factors favoring
efficiency in chatbot usability [3]. In [17], it was noted that,
since the chatbot can correct erroneous inputs, users do not
need to spend much communication effort when talking to the
chatbot. In addition, less communication effort makes the
chatbot easier to operate. In [20] the authors count the number
of participants’ cumulative assertions to measure the
communication effort. Its steady increase demonstrates that
users can use the chatbot efficiently in short time. Finally, users
spend more communication effort when the chatbot has limited
conversational ability, as discussed in [21].

3) Satisfaction: This is the largest group of papers within
the primary studies. Satisfaction is defined as the degree to
which user needs are satisfied when a product or system is
used in a specified context of use [30][31]. The measures of
satisfaction include ease-of-use, context-dependent questions,
satisfaction before and during use, complexity control,
physical discomfort of the interface, pleasure, the willing of
use the chatbot again, and enjoyoment and learnability. From
Table IV, the ease-of-use, willing to use the chatbot again and
user experience are the main measures of satisfaction used.
Emotional aspects such as perceived utility, pleasure, comfort,
are also considered in [24], and are related to the user
experience. Among the primary studies, works have been
found measuring the user experience mainly considering the
physical discomfort and pleasure. These works are highlighted
with a rectangle in the Table IV.

It must be noted that chatbots have more exploration space
for interaction with users. A physical chatbot was proposed in

[16] to support self-management of diabetes by children. The
usability evaluation included capabilities, social presence, and
the quantity of speech and movements. Children stated that
physical chatbots were more (inter)active, more present and
capable of doing different things, such as dancing. Chatbots
with actual images or entities are more likely to establish
relationships with users, improving their experience. In [29], a
combination of speech-and-gesture makes users get well better
with the chatbot. In [22], the authors compared Pandorabot
with two other chatbots. Overall, Pandorabot’s voice sounded
less robotic, entertaining users better.

TABLE IV. SATISFACTION

Measures of Satisfaction Primary studies

Ease-of-use [1][14][16][17][18][19][22][23][24][26]

Context-dependent question [22][23][29]

Before use [14][21][23]

During use [3][21]

Complexity control [14][18][23][25]

Physical discomfort [14][18][21]

Pleasure [1][13][16][17][21][22][26][29]

Want to use again [1][14][16][17][21]

Learnability [15][16][22]

Besides, more flexibility and speech commands context-
dependent are required for better usability. In [1] participants
mentioned that a shopping chatbot was easy to use since it
tracked their search history. In [17] some users did not consider
they needed an affective enhanced semantic chatbot at home. In
[23] the authors observed that the acceptance of the chatbot
decreases since its response mismatched the users’ initial
expectations. Potential explanations for such inconsistencies
might include fundamental differences in user expectations for
the chatbot and the emphasis on the interactive and entertaining
qualities of the system over its informational value. The user
background should be considered a key point in evaluating
satisfaction. Cultural, socio-economical and personal
preferences can influence the opinions towards the chatbot. In
[23], the authors noticed that users in the Netherlands were
more experienced with technology than in the other two
countries of the study, therefore their expectations towards the
novel technology were higher. In [15] users with higher
technical knowledge learned quicker to use the chatbot.

C. Research Methods
The research methods used by the authors of the primary

studies within this group include surveys of chatbots users’
experience, experiments of using chatbots to realize some
given tasks, usability tests, case studies and quasi-experiments.
The research methods are detailed in Table V. The most
common research methods include survey, experiment and
usability test. In most experiments, very simple tasks are
proposed. For example, using Apple Siri to find an inexpensive
hotel in Osaka [15], search a flight ticket and hotel [3], whether

482

a simple chatbot can be appropriately used as a delivery
mechanism [24], buying shoes [1], measuring the quality and
quantity of the information retrieved [18], taking a structured
interview with chatbot [27], or playing a game [29]. However,
real-life situations are more complicated.

TABLE V. RESEARCH METHODS

Research methods Primary studies

Survey [13][16][19][22][24][25][26]

Experiment [1][3][13][14][15][16][17][19]

Usability test [18][19][22][25][27][28]

Case study [14][20][23][29]

Quasi-experiment [20][21][25]

Rather than aiming to fully recreate the real-world task,
simulation-based assessment should incorporate
psychologically relevant aspects and situations from the real-
world task and the environment, such as time-pressure, or high
uncertainty. In [17], the authors show that when the chatbot has
visual appearance and emotions, users do not notice small
changes in voice and facial expressions. The experiment
concludes that it is not necessary to use extremely accurate
facial expressions for realistic use. In [21], the authors
deployed a digital pet avatar in the participants’ home for 3
months to simulate real-life situations as much as possible. In
[20], experiments were designed in a complex way, to simulate
real-word situations. This is sometimes necessary, because if
we were unable to use the chatbot effectively with a design as
realistic as possible (but nonetheless simplified), it would be
unlikely to be effective under more challenging conditions for
the military, law enforcement and others in safety-critical real-
world environments.

In most cases, researchers make comparisons. For example,
in [14], the authors compare a chatbot with a similar one or
with a similar application. Research methods can also be
combined, which typically yields better results. In [13], a pre-
survey questionnaire was performed to assess the usability of
an Alexa chatbot. Then, an experiment was conducted to
investigate specific problems. Machine learning (ML)
algorithms, in combination with cloud-based databases can be
used to solve some current shortcomings of handling natural
language (e.g., chatbots can’t recognize the words that they
haven’t been programmed for, and some chatbots speak
unnatural language [24][26]).

D. Type of Chatbots
The AIML technology is still widely used in the design of

chatbots [24][25]. However, the use of chatbots using NLP is
growing [20]. For example, the PAL project [16] can generate
reasonable feedback through user-entered information. In [13],
the authors show that the chatbot can be used via natural
language phonic control, to perform search, entertainment, and
to control other devices. In [14], more users are satisfied with
the chatbot, due to its speaker functionality and natural
conversation flow. In [18], the authors used Object Relational
Mapping (ORM) frameworks to improve the process of

generating SQL statements from NL queries. Many chatbots
are built as Embodied Conversational Agents (ECA), and there
are increasing number of chatbots with image, sound and
personality [17][21][23][29]. However, sometimes chatbots
have negative emotions. When the ECA has a negative
personality, it tends to ignore or blame the user [17]. In
addition, the chatbot is required to have the ability to learn and
adapt to its user context to be useful [23]. Therefore, complete
evaluations should be carried out to obtain a better
comprehension of these issues.

V. DISCUSSION AND VALIDITY THREATS
The analysis reveals that the incorporation of usability

techniques in the chatbot development process in a formalized
manner is not strongly reflected in the primary studies. We
found three papers reviewing the chatbot literature: one
discussing the conversational interfaces, patterns, and
paradigms [9], one investigating design techniques for
conversational agents [10], and a systematic review of
conversational agents in healthcare [11]. None of them does a
SMS in chatbots usability, which proves our work is original.
Judging by the increase in publications since 2015, the
integration of usability of chatbots is of notable interest.
However, there is no agreement on what would be a formalized
and more systematic integration yet. Therefore, it is an open
problem that requires more research effort. Even though the
literature retrieved by the SMS provides a picture of chatbot
usability, no paper provides generally applicable guidelines for
chatbots usability. On one hand, the validity of our SMS is
threatened by including only papers written in English. On the
other, the authors of an SMS may make errors of judgement
when analyzing the relevant publications. This is a horizontal
rather than a vertical analysis, on which ground relevant
publications may have been overlooked. Additionally, although
the terms used in the search string were the most commonly
accepted by other authors, other terms used describing relevant
publications may have been overlooked. Finally, the
publications were evaluated and classified based on the
judgment and experience of the authors, and other researchers
may have evaluated the publications differently.

VI. CONCLUSIONS
This paper has described an SMS study conducted to

answer two research questions: RQ1. What is the state of the
art of usability in the development of chatbots? We retrieved 19
primary studies dealing with integration from four different
perspectives: usability techniques, usability characteristics,
research methods and types of chatbots. The usability
techniques are applied to evaluate the usability of the
developed chatbot, but not in the analysis and design activities
of the chatbot. The procedure more frequently followed to
evaluate the usability of chatbot is to select a group of subjects
to use the chatbot freely or perform certain tasks and then
measure satisfaction with a SUS survey.

RQ2. How to evaluate the usability of chatbots using HCI
principles? The evaluation of the usability of chatbots must be
done considering the context of use, i.e. the environment where
the chatbot will be used, and with representative subjects to
whom the chatbot is directed. The most commonly used

483

methods are surveys, experiments and usability tests. The
experimentation and replication of experiments is key within
HCI. Achieving successful replicas in a discipline allows its
results to be added to previous ones, making the body of
knowledge grow. However, there is an absence of controlled
experiments and replicas measuring chatbots usability.

There are many ways for practitioners to apply the usability
material in this paper: (i) The chatbot implementation team can
use usability characteristics (Tables II-IV) as checklists to help
them solve critical problems, and (ii) comparing the test results
of the same system at different times can check whether the
usability characteristics is improved or decreased.

The real-life application of a chatbot will save time to
companies, leading to financial gain because of the tasks it is
able to take on. As the intelligence and technology of chatbots
evolve, they will take on more responsibilities. The chatbot
industry is very much interested in the adoption of usability
techniques in its development process. On this ground, there is
a need for usability-aware design guidelines.

ACKNOWLEDGMENT
Work supported by the R&D program of the Madrid

Region (S2018/TCS-4314), and the Spanish Ministry of
Science (project MASSIVE, RTI2018-095222-B-I00).

REFERENCES
[1] M. Jain, R. Kota, P. Kumar and S.N. Patel. “Convey: Exploring the use

of a context view for chatbots”. Proc. CHI Conference on Human
Factors in Computing Systems, p. 468. 2018.

[2] ISO 9241-11. “Ergonomic requirements for office work with visual
display terminals (VDTs)–Part II guidance on usability”. 1998.

[3] Q.N. Nguyen and A. Sidorova. “Understanding user interactions with a
chatbot: A self-determination theory approach”. In Americas Conference
on Information Systems 2018: Digital Disruption. 2018.

[4] K.Panetta. “Gartner’s top 10 strategic technology trends for 2017”.
Online: https://www.gartner.com/smarterwithgartner/gartner-top-10-
technology-trends-2017/ 2016. [Accessed march 26-2019]

[5] J. Pereira and O. Díaz. “A quality analysis of facebook messenger’s
most popular chatbots”. Proc. of ACM SAC, pp. 2144-2150. 2018.

[6] C. Messina. “2016 Will be the year of conversational commerce”.
Online: https://medium.com/chris-messina/2016-will-be-the-year-of-
conversational-commerce-1586e85e3991. 2016. [Accessed 12/14/2018].

[7] J. Lester, K. Branting and B. Mott. “Conversational agents”. The
Practical Handbook of Internet Computing, Chapman and Hall/CRC, pp.
220-240. 2004.

[8] L. Sullivan. “Facebook chatbots hit 70% failure rate as consumers warm
up to the tech”. Online: https://www.mediapost.com/
publications/article/295718/ 2017. [Accessed march 26-2019]

[9] L.C. Klopfenstein, S. Delpriori, S. Malatini and A. Bogliolo. “The rise
of bots: A survey of conversational interfaces, patterns, and paradigms”.
Proc. Conference on Designing Interactive Systems, pp. 555-565. 2017.

[10] K. Ramesh, S. Ravishankaran, A. Joshi and K. Chandrasekaran. “May.
A survey of design techniques for conversational agents”. In Int. Conf.
on Inform., Commun. and Computing Technology, pp. 336-350. 2017.

[11] L. Laranjo, A.G. Dunn, H.L.Tong, A.B.Kocaballi, J.Chen, R.Bashir,
D.Surian, B.Gallego, F.Magrabi, A.Y. Lau and E.Coiera.
“Conversational agents in healthcare: a systematic review”. Journal of
the American Medical Informatics Associat., 25(9), pp.1248-1258. 2018.

[12] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. “Systematic
mapping studies in software engineering”. In Proceedings of the 12th
Int. Conf. on Evaluation and Assessment in Soft. Eng., pp. 71-80. 2008.

[13] I. Lopatovska, K. Rink, I. Knight, K. Raines, K. Cosenza, H. Williams,
P. Sorsche, D. Hirsch, Q. Li, and A. Martinez. “Talk to me: Exploring
user interactions with the amazon alexa”. Journal of Librarianship and
Information Science. 2018.

[14] A. Cheng, V. Raghavaraju, J. Kanugo, Y.P. Handrianto and Y. Shang.
“Development and evaluation of a healthy coping voice interface
application using the Google home for elderly patients with type 2
diabetes”. In Consumer Communications & Networking Conference
(CCNC), 2018 15th IEEE Annual, pp. 1-5. 2018.

[15] M.L. Chen and H.C. Wang. “How personal experience and technical
knowledge affect using conversational agents”. Proc. 23rd Inter. Conf.
on Intelligent User Interfaces Companion, p. 53. 2018.

[16] C. Sinoo, S. van der Pal, O.A.B. Henkemans, A. Keizer, B.P. Bierman,
R. Looije and M.A. Neerincx. “Friendship with a robot: Children’s
perception of similarity between a robot’s physical and virtual
embodiment that supports diabetes self-management”. Patient education
and counseling. 2018.

[17] J. Pérez, Y. Sánchez, F.J. Serón, and E. Cerezo. “Interacting with a
semantic affective ECA”. Proc. Conf. Intelligent Virtual Agents, pp.
374-384. 2017.

[18] A. Alghamdi, M. Owda and K. Crockett. “Natural language interface to
relational database (NLI-RDB) through ORM”. Advances in Intelligent
Systems and Computing, vol 513. Springer, Cham 2017.

[19] M.L. Tielman, M.A. Neerincx, R. Bidarra, B. Kybartas and W.P.
Brinkman. “A therapy system for post-traumatic stress disorder using a
virtual agent and virtual storytelling to reconstruct traumatic memories”.
Journal of medical systems, 41(8), p.125. 2017.

[20] A. Preece, W. Webberley, D. Braines, E.G. Zaroukian and J.Z. Bakdash.
“SHERLOCK: Experimental evaluation of a conversational agent for
mobile information tasks”. IEEE Transactions on Human-Machine
Systems, 47(6), pp.1017-1028. 2017.

[21] N.C. Chi, O. Sparks, S.Y. Lin, A. Lazar, H.J. Thompson and G. Demiris.
“Pilot testing a digital pet avatar for older adults”. Geriatric Nursing,
38(6), pp.542-547. 2017.

[22] J. Saenz, W. Burgess, E. Gustitis, A. Mena and F. Sasangohar. “The
usability analysis of chatbot technologies for internal personnel
communications”. In 67th Annual Conference and Expo of the Institute
of Industrial Engineers, pp. 1357-1362. 2017.

[23] C. Tsiourti, J. Quintas, M. Ben-Moussa, S. Hanke, N.A. Nijdam and D.
Konstantas. “The CaMeLi Framework—A multimodal virtual
companion for older adults”. In Proceedings of SAI Intelligent Systems
Conference, pp. 196-217. 2018.

[24] D. Elmasri and A. Maeder. “A conversational agent for an online mental
health intervention”. Proc. Int. Conf. Brain and Health Informatics, pp.
243-251. 2016.

[25] A.I. Niculescu, K.H. Yeo, L.F. D'Haro, S. Kim, R. Jiang and R.E.
Banchs. “Design and evaluation of a conversational agent for the
touristic domain”. In APSIPA, pp. 1-10. 2014.

[26] S. Tegos, S. Demetriadis and T. Tsiatsos. “A configurable
conversational agent to trigger students’ productive dialogue: a pilot
study in the CALL domain”. International Journal of Artificial
Intelligence in Education, 24(1), pp.62-91. 2014.

[27] J.A. Micoulaud, P. Sagaspe, E. De Sevin, S. Bioulac, A. Sauteraud and
P. Philip. “Acceptability of embodied conversational agent in a health
care context”. Proc. Conf. Intelligent Virtual Agents, pp. 416-419. 2016.

[28] R. Yaghoubzadeh, K. Pitsch and S. Kopp. “Adaptive grounding and
dialogue management for autonomous conversational assistants for
elderly users”. Proc. Conf. Intelligent Virtual Agents, pp. 28-38. 2015.

[29] D. Novick and L.M. Rodríguez. “Extending empirical analysis of
usability and playability to multimodal computer games”. In Intern.
Conf. of Design, User Experience, and Usability, pp. 469-478. 2016.

[30] ISO/IEC 25010. “Systems and software engineering–systems and
software quality requirements and evaluation (SQuaRE)–system and
software quality models”. 2010.

[31] K. Hornbæk. “Current practice in measuring usability: Challenges to
usability studies and research”. International Journal of Human-
Computer Studies, 64(2), pp. 79-102. 2006.

484

DOI: 10.18293/SEKE2019-054

Extending Behavior-Driven Development for

Assessing User Interface Design Artifacts

Thiago Rocha Silva

Department of Computer Science,
Norwegian University of Science and

Technology (NTNU), Norway

thiago.silva@ntnu.no

Marco Winckler

SPARKS-i3S,
Université Nice Sophia Antipolis

(Polytech), France

winckler@unice.fr

Hallvard Trætteberg

Department of Computer Science,
Norwegian University of Science and

Technology (NTNU), Norway

hal@ntnu.no

Abstract — This paper presents a scenario-based approach to
specify requirements and tests by extending Behavior-Driven
Development (BDD) with the aim of ensuring the consistency
between user requirements and user interface design artifacts. The
approach has been evaluated by exploiting user requirements
specified by a group of potential Product Owners (POs) for a web
system to book business trips. Such requirements gave rise to a set
of User Stories that have been refined and used to automatically
check the consistency of task models, user interface (UI)
prototypes, and final UIs of the system. The results have shown our
approach was able to identify different types of inconsistencies in
the set of analyzed artifacts and consistently keep the semantic
traces between them.

Index Terms — Behavior-Driven Development (BDD); User
Interface Design Artifacts; Automated Requirements Assessment.

I. INTRODUCTION

Modeling is recognized as a crucial activity to manage the
abstraction and the inherent complexity of developing software
systems. As a consequence, software systems tend to be
designed based on several requirements artifacts which model
different aspects and different points of view about the system.
Considering that different phases of development require
distinct information, resultant artifacts from modeling tend to be
very diverse throughout the development, and ensuring their
consistency is quite challenging [1]. To face this challenge, extra
effort should be put on getting requirements described in a
consistent way across the multiple artifacts. Requirements
specifications should not, for example, describe a given
requirement in a user interface (UI) prototype which is
conflicting with its representation in a task model.

Behavior-Driven Development (BDD) [2] has aroused
interest from both academic and industrial communities as a
method allowing specifying testable user requirements in natural
language using a single textual artifact. BDD describes User
Stories (US) [3] and scenarios in a easily understandable way for
both technical and non-technical stakeholders. In addition, BDD
scenarios allow specifying “executable requirements”, i.e.
requirements that can be directly tested from their textual
specification. Despite providing support to automated testing of
user requirements, BDD and other testing approaches essentially
focus on assessing fully interactive artifacts such as full-fledged
(final) versions of user interfaces. Automated assessment of
model-based artifacts such as task models, UI prototypes, etc. is
not supported.

Motivated by such a gap, we have researched and developed
an approach based on BDD and User Stories to support the
specification and the automated assessment of functional aspects
of user requirements on user interface design artifacts such as
task models, UI prototypes, and final UIs [4]–[8]. This paper
presents a refined version of this approach and summarizes the
new results we got in a case study exploiting User Stories
specified by potential Product Owners (POs) to automatically
assess user interface design artifacts for a web system to book
business trips. The following sections present the foundations of
this work as well as the refined version of our approach and a
brief discussion of the results obtained with this case study.

II. FOUNDATIONS

A. Behavior-Driven Development (BDD)
According to Smart [9], BDD is a set of software engineering

practices designed to help teams focus their efforts on
identifying, understanding, and building valuable features that
matter to businesses. BDD practitioners use conversations
around concrete examples of system behavior to help understand
how features will provide value to the business. BDD
encourages business analysts, software developers, and testers to
collaborate more closely by enabling them to express
requirements in a more testable way, in a form that both the
development team and business stakeholders can easily
understand. BDD tools can help turn these requirements into
automated tests that help guide the developer, verify the feature,
and document the application.

BDD specification is based on User Stories and scenarios
which allow to specify executable requirements and test
specifications by means of a Domain-Specific Language (DSL)
provided by Gherkin. User Stories were firstly proposed by
Cohn [3]. North [10] has proposed a particular template to
specify them in BDD and named it as “BDD story”:

Title (one line describing the story)
Narrative:
As a [role], I want [feature], So that [benefit]
Scenario 1: Title
Given [context], When [event], Then [outcome]

In this template, BDD stories are described with a title, a
narrative and a set of scenarios representing the acceptance
criteria. The title provides a general description of the story,
referring to a feature this story represents. The narrative
describes the referred feature in terms of the role that will benefit
from the feature (“As a”), the feature itself (“I want”), and the

485

benefit it will bring to the business (“So that”). The acceptance
criteria are defined through a set of scenarios, each one with a
title and three main clauses: “Given” to provide the context in
which the scenario will be actioned, “When” to describe events
that will trigger the scenario and “Then” to present outcomes that
might be checked to verify the proper behavior of the system.
Each one of these clauses can include an “And” statement to
provide multiple contexts, events and/or outcomes. Each
statement in this representation is called a step.

B. User Interface Design Artifacts
1) Task Models: Task models provide a goal-oriented

description of interactive systems but avoiding the need of detail
required for a full description of the user interface. Each task can
be specified at various abstraction levels, describing an activity
that has to be carried out to fulfill the user’s goals. By modeling
tasks, designers are able to describe activities in a fine
granularity, for example, covering the temporal sequence of
tasks to be carried out by the user or system, as well as any
preconditions for each task [11]. The use of task models serves
multiple purposes, such as better understanding the application
under development, being a “record” of multidisciplinary
discussions between multiple stakeholders, helping the design,
the usability evaluation, the performance evaluation, and the
user when performing the tasks. Task models are also useful as
documentation of requirements both related with content and
structure. HAMSTERS [12] is a tool-supported graphical task
modeling notation for task modeling. In HAMSTERS, tasks can
be of several types such as abstract, system, user, and interactive
tasks. Temporal relationships between tasks are represented by
means of operators. Operators can also be of several types such
as enable, concurrent, choice, and order independent operators.
The temporal operators allow extracting usage scenarios for the
system. This is done by following the multiple achievable paths
in the model, with each combination of them generating an
executable scenario that can be performed in the system.

2) User Interface (UI) Prototypes and Final UIs: A UI

prototype is an early representation of an interactive system.

They encourage communication, helping designers, engineers,

managers, software developers, customers and users to discuss

design options and interact with each other. Prototypes are often

used in an iterative design process where they are refined and

become more and more close to the final UI through the

identification of user needs and constraints. While the beginning

of the project requires a low-level of formality with UI

prototypes being hand-sketched in order to explore design

solutions and clarify user requirements, the development phase

requires more refined versions frequently describing

presentation and dialog aspects of the interaction. By running

simulations on prototypes, we can determine and evaluate

potential scenarios that users can perform in the system [13]. The

presentation aspect of full-fledged user interfaces frequently

corresponds to how the user “see” the system. From the user’s

point of view, the presentation of a user interface actually is the

system, so if some feature is not available there, then it does not

exist at all. Mature UI versions are the source for acceptance

testing and will be used by users and other stakeholders to assert

whether or not features can be considered as done.

III. THE PROPOSED APPROACH

Our proposed approach for assessing the considered artifacts
is illustrated in Figure 1, where User Story scenarios are used to
ensure consistency in our target artifacts (task models, UI
prototypes and final UIs). Therein are exemplified five steps of
scenarios being tested against equivalent tasks in task model
scenarios, and the equivalent interaction elements in UI
prototypes and final UIs. In the first example, the step “When I
select ‘<field>’” corresponds to the task “Select <field>” in the
task model scenario. Such a correspondence is due to the fact
that the step and the task represent the same behavior, i.e.
selecting something, and both of them are placed at the first
position in their respective scenario artifacts. The interaction
element “field” that will be affected by such a behavior will be
assessed on the UI prototype and on the final UI. In both
artifacts, such a field has been designed with a CheckBox as
interaction element. The semantics of the interaction in
CheckBoxes is compatible with selections, i.e. we are able to
select CheckBoxes, so the consistency is assured.

Figure 1. The approach for assessing the different UI artifacts.

The same is true in the example with the second step (“When
I click on ‘<field>’”). There is a corresponding task “Click on
<field>” at the same second position in the task model scenario,
and the interaction element “Button”, that has been chosen to
address this behavior in both the UI prototype and the final UI, is
semantically compatible with the action of clicking, thus the
consistency is assured as well. In the third example, the step
“When I choose ‘value’ referring to ‘field’” is also compatible
with the task “Choose <field>” in the task model, and with the
interaction elements DataChooser and Calendar, respectively in
the UI prototype and in the final UI. Notice that, despite being
two different interaction elements, DataChooser and Calendar
support a similar behavior, i.e. both of them support the behavior
of choosing values referring to a field.

The example provided with the fourth step (“When I click on
‘<field>’”) illustrates an inconsistency being identified. Even
though there exists a corresponding task in the task model
scenario, the interaction elements that have been chosen to
address this behavior (TextInput in the UI prototype and
TextField in the final UI) are not compatible with the action of
clicking, i.e. such kind of interaction element does not
semantically support such an action. The semantics of
TextInputs (or TextFields) is receiving values, not being clicked.
Such an example is provided with the fifth step (“When I set

486

‘value’ in the field ‘<field>’”). For this step, the consistency is
assured because TextInputs and TextFields support the behavior
of having values being set on them. All this semantic analysis is
supported by the use of an ontology that models the interaction
elements and the interactive behaviors they support [14], [15].

The present strategy for assessment allows tracking some
key elements in the UI design artifacts and check whether they
are consistent with the user requirements. The solution has been
implemented in Java integrating multiple frameworks such as
JBehave, JDOM, JUnit, and Selenium WebDriver.

A. Alternatives for Performing the Approach
Depending on the project phase, our approach can be applied

in two ways. The first one is applied when the project is running,
and artifacts have already been designed. In such a case, our
approach can be used to assess such artifacts, indicating where
they are not in accordance with the specified requirements. The
second one refers to a project in the beginning, where no artifacts
have been designed yet. In this case, by using the ontology, they
can be modeled in a consistent way from the beginning, taking
into account the possible interactions supported by each
interaction element on the UI.

Figure 2. The graph of options for performing our approach (colors are used

to visually identify the different paths).

Figure 2 illustrates the resultant graph of options considered.
The colored lines indicate the possible paths to be taken in the
workflow. The yellow path indicates the design of scenarized
artifacts before writing formatted User Stories. The green path
indicates the opposite, while the blue path indicates both
activities in parallel. Notice that regardless the path chosen, the
extraction of scenarios is only possible after having designed the
scenarized artifacts, and the identification of requirements is a
precondition for all the other activities. Finally, to run tests on
the artifacts, it is required to have extracted scenarios and written
the User Stories. The approach benefits from the independence
for testing artifacts, i.e. tests can run on a single artifact or on a
set of scenarized artifacts which will be targeted at a given time.

IV. CASE STUDY

To investigate the potential of the approach, we have
conducted a case study with an existing web system for booking
business trips. We have studied the current implementation of
user requirements in this system, and by applying a manual
reverse engineering, we redesigned the appropriate task models

and UI prototypes for the system. Based on a set of User Stories
collected in a previous study [16], we refined it to simulate the
assessment of the resultant user interface design artifacts. The
aim of this present study is to provide a preliminary evaluation
regarding the extent of inconsistencies our approach is able to
identify in the targeted artifacts.

We started the study by setting up an initial version of User
Stories before reengineering initial versions of task models (in
HAMSTERS) and UI prototypes (in Balsamiq) from the existing
web system. After getting a first version of task models, we
extracted a representative set of scenarios from them. By
following our strategy for testing, we parsed and ran the initial
version of User Stories against the initial set of extracted
scenarios. As the strategy we follow for testing scenarios in task
models parses all the steps of each scenario at once, the first
round of results was obtained with a single battery of tests.
Following this step, we ran the same initial version of User
Stories against initial versions of Balsamiq prototypes. Unlike
the strategy for testing task models, the strategy we follow for
testing UI prototypes and final UIs parses each step of each
scenario at a time, so if an error is found out, the test stops until
the error is fixed. That requires to run several batteries of tests
until having the entire set of scenarios tested. Consequently, at
the end of running, the tested scenarios are fully consistent with
the UIs. Finally, we analyzed the testing results and the main
types of inconsistencies identified in each artifact.

In total, we set up for assessment 3 User Stories with 15
different scenarios, reengineered 3 task models (and extracted 10
scenarios from them), reengineered 11 UI prototypes, and tested
7 different final UIs. For scenarios extracted from task models,
testing results return the equivalent position of each task in the
US scenarios. For UI prototypes and final UIs, the expected
result for each step is the presence on the UI of one and only one
of the supported interaction elements designed to address a given
interactive behavior.

TABLE I. RESULTS AFTER ASSESSING THE ARTIFACTS

Artifact
Total

(Steps Analyzed)
Results

Consistent Inconsistent

Task Models 147 5 142

UI Prototypes 36 21 15

Final UIs 288 276 12

Table 1 summarizes the results obtained. For task models,
the most common source of the 142 inconsistencies identified
concerned the task gaps present in the beginning of the scenario.
As the assessment is performed in the extracted scenarios which
represent a sequential instance of the tasks in the task model, a
task gap in the beginning causes a domino effect in the
forthcoming tasks in the scenario. So even if the remaining tasks
in the scenario are semantically equivalent to the respective
steps, they will be shown as inconsistent once they will be found
in wrong positions due to this gap. For UI prototypes, from the
15 inconsistencies identified, we noticed they were mainly due
to interaction elements specified with different names in the step
and in the prototype. For final UIs, the high number of consistent
steps (276 out of 288) in the set of scenarios analyzed is due to
the need of fixing the inconsistency found before moving
forward to the next steps. This makes that the scenarios which

487

call previous ones, in order to reuse steps and reach a given state
of the system, already have these steps fully consistent during
the test. Most part of the inconsistencies on final UIs was due to
interaction elements that do not carry a unique and single
identifier (or carry a dynamically generated one) and, as such,
cannot be reached during the test.

We could also remark that some of the inconsistencies
identified showed to be more critical than others. While simple
inconsistencies such as differences in names of tasks and fields,
conflicts between expected and actual elements, and messages
and elements not found are easy to solve, conflicts between
specification and modeling, and different specification strategies
for task models represent more critical problems. On UI
prototypes, the presence of semantically inconsistent elements
as well as more than one element to represent the same field are
also critical problems. On final UIs, fields already filled-in
denotates inconsistencies that exposes important design errors.
During the test, we also noticed that some inconsistencies were
due to a wrong specification of the step in the US scenario, and
not to a problem in the design of the artifact itself. So, to fix these
inconsistencies, steps of US scenarios needed to be modified
during the battery of tests to obtain a consistent specification of
user requirements and artifacts. An immediate consequence of
this fact is that scenarios used to test a given version of an artifact
may be different than the ones which were used to test another
artifact previously. This makes regression tests essential to
ensure that a given modification in the set of US scenarios did
not break the consistency of other artifacts and ended up making
some artifact (that so far was consistent with the requirements)
inconsistent again.

As limitations of the approach, it is worthwhile to mention
that its current version covers only the assessment of
HAMSTERS task models, Balsamiq UI prototypes and web
final UIs. The need of extracting scenarios from task models to
perform testing in such artifacts, and tools that do not support
yet the automatic classification of errors are other limitations.

V. CONCLUSION AND FUTURE WORKS

This paper summarizes the new results we got by applying
our approach for specifying and checking the consistency of user
requirements on core user interface design artifacts. Compared
to plain-vanilla BDD, this approach benefits from (i) an
extension to assess other software artifacts than final UIs, and
(ii) a common vocabulary to be reused for specifying interactive
scenarios without requiring developers to implement the
mentioned behaviors. Compared to other approaches for
assessing requirements and artifacts, the term “test” is usually
not employed under the argument that such artifacts cannot be
“run”, i.e. executed for testing purposes, so in practice they are
just manually reviewed or inspected in a process called
verification. Manual verification of the software outcomes is
highly time-consuming, error-prone and even impracticable for
large software systems. Fully interactive artifacts such as final
UIs can in addition be validated by users who can interact with
the artifact and assess whether its behavior is aligned with their
actual needs. As within our approach we succeed automatically
running User Stories on software artifacts for assessing their
consistency with user requirements, we actually provide the
“test” component for both verification and validation of artifacts
in the software development. We consider this a big step towards

the automated testing (and not only the manual verification) of
software artifacts by means of a consistent approach allowing
fully verification, validation, and testing (VV&T).

Future works include evaluating the impact of maintaining
and successively evolving the mentioned artifacts throughout a
real software development process, besides investigating the
suitability of the approach for assessing a wider group of
artifacts, especially those related to conceptual aspects of
software modeling such as class diagrams. Concerning the tools,
the development of a plugin to suggest and autocomplete steps
in the User Story scenarios based on the interactive behaviors of
the ontology is also envisioned.

REFERENCES

[1] M. Winckler and P. Palanque, “Models as Representations for Supporting

the Development of e-Procedures,” in Usability in Government Systems,

Elsevier, 2012, pp. 301–315.

[2] D. Chelimsky, D. Astels, B. Helmkamp, D. North, Z. Dennis, and A.

Hellesoy, The RSpec Book: Behaviour Driven Development with RSpec,
Cucumber, and Friends. Pragmatic Bookshelf, 2010.

[3] M. Cohn, User Stories Applied for Agile Software Development. Addison-

Wesley, 2004.

[4] T. R. Silva and M. A. A. Winckler, “Towards Automated Requirements

Checking Throughout Development Processes of Interactive Systems,” in

2nd Workshop on Continuous Requirements Engineering (CRE), REFSQ
2016, 2016, pp. 1–2.

[5] T. R. Silva, “Definition of a Behavior-Driven Model for Requirements

Specification and Testing of Interactive Systems,” in Proceedings of the
24th International Requirements Engineering Conference (RE 2016),
2016, pp. 444–449.

[6] T. R. Silva, J.-L. Hak, and M. Winckler, “Testing Prototypes and Final

User Interfaces Through an Ontological Perspective for Behavior-Driven

Development,” in HCSE 2016 and HESSD 2016, LNCS, vol. 9856,

Springer, 2016, pp. 86–107.

[7] T. R. Silva, J.-L. Hak, and M. Winckler, “An Approach for Multi-Artifact

Testing Through an Ontological Perspective for Behavior-Driven

Development,” Complex Systems Informatics and Modeling Quarterly,

no. 7, pp. 81–107, 2016.

[8] T. R. Silva and M. Winckler, “A Scenario-Based Approach for Checking

Consistency in User Interface Design Artifacts,” in Proceedings of the
16th Brazilian Symposium on Human Factors in Computing Systems (IHC
2017), 2017, vol. 1, pp. 21–30.

[9] J. F. Smart, BDD in Action: Behavior-driven development for the whole
software lifecycle, 1 edition. Manning Publications, 2014.

[10] D. North, “What’s in a Story?,” 2019. [Online]. Available:

https://dannorth.net/whats-in-a-story/. [Accessed: 01-Jan-2019].

[11] F. Paternò, C. Santoro, L. D. Spano, and D. Raggett, “W3C, MBUI - Task

Models,” 2017. [Online]. Available: http://www.w3.org/TR/task-models/.

[12] C. Martinie, P. Palanque, and M. A. Winckler, “Structuring and

Composition Mechanisms to Address Scalability Issues in Task Models,”

in INTERACT 2011, 2011, vol. 6948 LNCS, no. 3, pp. 589–609.

[13] M. Beaudouin-Lafon and W. E. Mackay, “Prototyping Tools and

Techniques,” in Prototype Development and Tools, 2000, pp. 1–41.

[14] T. R. Silva, J.-L. Hak, and M. Winckler, “A Formal Ontology for

Describing Interactive Behaviors and Supporting Automated Testing on

User Interfaces,” International Journal of Semantic Computing, vol. 11,

no. 04, pp. 513–539, 2017.

[15] T. R. Silva, J.-L. Hak, and M. Winckler, “A Behavior-Based Ontology for

Supporting Automated Assessment of Interactive Systems,” in

Proceedings of the 11th IEEE International Conference on Semantic
Computing (ICSC 2017), 2017, pp. 250–257.

[16] T. R. Silva, M. Winckler, and C. Bach, “Evaluating the usage of

predefined interactive behaviors for writing user stories: an empirical

study with potential product owners,” Cognition, Technology & Work,

2019.

488

DOI reference number: 10.18293/SEKE2019-100

A Method to Recommend Artifacts to New Tasks in
Software Projects

Edson M. Lucasa,b, Toacy C. Oliveiraa, Paulo S.C. Alencarc
aPESC/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

bPolytechnic Institute (IPRJ/UERJ), Nova Friburgo, Brazil
cDavid Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

edmlucas@cos.ufrj.br, toacy@cos.ufrj.br, palencar@uwaterloo.ca

Abstract— The software development workflow typically involves
developers executing tasks and manipulating artifacts.
When developers receive a new task they typically
envision a task context with the artifacts they intend to
manipulate based on their past experiences. Given
software projects may last several months, accumulating
a vast amount of tasks, artifacts and developers,
envisioning this initial task context may be difficult and
error-prone. Developers have to walk-through months of
past experiences or examine the experience of other
developers, select similar tasks and then define the initial
context. This paper introduces a method that helps
developers defining the initial task context by combining
interaction information over artifacts with text
information of tasks. First, the Method uses the
Clustering technique to organize project tasks into
similar groups by interaction in artifacts. Then, the
Method uses the Natural Language Processing technique
to associate a new task with groups of similar tasks by
interaction. The evaluation shows that the clustering of
similar tasks by interaction produces similar tasks
assigned with artifacts that will be edited by new tasks.
The association of new tasks with similar groups by
interaction indicates correlation between textual
similarity and interaction similarity.

Keywords-component; interaction; task context;
recommendation

I. INTRODUCTION
Software development projects last for months or years,

where developers interact with each other and manipulate many
artifacts. A typical task context in software development is
formed by a set of artifacts that the developer uses to perform a
task [1], [2]. Another widely explored context variable is the
identification of task experts [3], as well as by experts in similar
tasks to the new task [4].

When the developer receives a task to correct an error or add
new functionality to the software, the developer usually starts by
searching for artifacts that he needs to change to accomplish the
task. This search is based on the developer's experience and the
human capacity to remember of the artifacts already used in
previous similar tasks [5]. In addition, the search is time-
consuming, even when using the traditional navigation and

textual search tools available in development environments, e.g.,
Eclipse Project Explorer.

In this scenario, recommending an initial task context can
help developers in performing new tasks. The recommendation
tools in Software Engineering aim to reduce the uncertainties of
the future through the analysis of project history, and in a more
specific way, according to Robillard et al. [6], these tools are
software applications that provides information items estimated
as valuable to a software engineering task in a given context.

Aiming at inferring new task context, some works focus on
the recommendation of artifacts, i.e., source code, files, classes,
packages [1], [7]–[11], others in the recommendation of artifact
experts [12], [13]. Proposals [14], [15] and [16] recommend
experts to new tasks. Malheiros et al. [17] and Ashok et al. [18]
recommend similar tasks to new task, while Wang et al. [4] and
Ashok et al. [18] also recommend experts on similar tasks to new
task.

This paper presents part of the Tacin method (Task Context
based on Interactions) to recommend a new task context in
software development projects. First, we defined that two tasks
are similar by interaction if the developers edited at least one
common artifact while performing the tasks. The weight of
similarity is equal to the number of artifacts in common. After,
the Method uses the Clustering technique to organize project
tasks into similar groups by interaction in artifacts [19]. Then,
the Method uses the Natural Language Processing technique to
associate a new task with groups of similar tasks by interaction
[20]. In this article, the edit interaction values are captured by
Mylyn, an interaction model [28].

In the evaluation, the clustering of similar tasks by
interaction indicated the production of task groups that had only
6% of the artifacts available in the project, but containing 77%
of the artifacts that will be edited by new tasks. The association
of new tasks with similar groups by interaction reduced by 90%
the available artifacts and produced a recall of 52%. Therefore,
the evaluation indicates success in Clustering and need for
improvement in Natural Language Processing technique, i.e.,
improve the recall to a percentage closer to 77%.

This paper is organized as follows. Section II defines
Clustering and Natural Language Processing. Section III
presents the Method to recommend artifacts to new tasks in
software projects. Section IV assesses the Method based on

489

average hits on recommending artifacts to new tasks. Section VI
reviews related work and Section VI concludes our paper with a
brief description of future work.

II. BACKGROUND
Developers interact with artifacts and collaborate among

them to perfom tasks in software development projects. The
task objective is generally expressed by text. For example, the
Mylyn Docs project uses a short description in natural language
(English) to express an error. So, developer uses this textual
information to search artifacts from the project's artifact
database to correct it.

Table 1. Short description of task 245759 from the Mylyn Docs project.

 TaskId 245759a
Short
Description

cannot run the HtmlViewer or MarkupViewer in a
stand-alone GUI

a. Available in https://bugs.eclipse.org/bugs/show_bug.cgi?id=245759.

The project task history is large since the projects last
months, but for each performed task is possible to have the
artifacts that were edited and by whom. Our method uses
Clustering technique to organize the software project history
database in clusters using edit interaction information. After, our
method uses Natural Language Processing technique to identify
the cluster that best fits the new task using textual information
[20]. In this section we briefly introduce these two techniques.

Clustering is a computational technique for organizing data
objects (elements) into groups (clusters) in order to provide an
organization to support the human being in understanding
information. Most similar elements tend to stay in the same
group, while less similar or non-similar elements tend to stay in
different groups [21], [22]. Similar groups do not have an
identification according to the content of the groups, so this
technique is also known as unsupervised learning.

The Natural Language Processing (NLP) is formed by a set
of computational techniques motivated by theory for the
automatic analysis and representation of human language [20].
The techniques and models designed for one language are not
easily generalized to other languages in most cases [23].
According to Cambria and White [20], NLP research began with
the word analysis paradigm, evolved to the analysis of concepts,
and it is expected that models can understand narratives in the
future.

III. METHOD TO RECOMMEND ARTIFACTS TO NEW TASKS
The Tacin method recommends a new task context defined

as: 1- artifacts that will probably be edited by developers to
perform a new task; 2- performed tasks similar to the new task;
3- experts in the new task. This paper presents the part of Tacin
to recommends artifacts to new tasks in software projects.

In software projects, developers create or change artifacts to
perform tasks. So, Tacin defines that the similarity weight
between two tasks is equal to the number of artifacts edited in
common between them. First, Tacin organizes task history into
groups of similar tasks by edit interaction. Figure 1 shows the
task representation of the Mylyn Docs project. Tasks are
represented by green triangles; artifacts by blue squares;

interactions by black lines linking tasks to their artifacts. A black
line can represent one or more edit interactions on artifact.

The automatic determination of similar groups from a dataset
is extensively studied in the literature [21]. Tacin uses
LNS_SMC (Large Neighborhood Search - Software Module
Clustering) heuristic based on the large neighborhood search
metaheuristic. The LNS_SMC algorithm was chosen because
presented a good efficiency using the Modularization Quality
(MQ) measure applied to the clustering problem of software
modules [20].

Figure 1 illustrates the association of a new task with the
project task history organized in clusters. Each cluster can be
seen as a single task where its short description is defined as the
concatenation of the short descriptions of all tasks belonging to
the cluster. Thus, the textual similarity between the new task and
the clusters can be calculated.

Figure 1 also illustrates the recommendation of artifacts
with Tacin. The first three groups (clusters) that present the
greatest textual similarity to the new task are selected for the
recommendation. Tacin recommends artifacts that belong to the
group(s) considering three options: 1 - only the group most
similar textually to the new task; 2 - the two groups most similar
textually to the new task; 3 - and the three groups most similar
textually to the new task. Tacin chooses a option accoording
with the effectiveness of past recommendations. For this, the
harmonic average between Reduction and Recall (Rc-measure)
for three options is calculated for each new task, equations
defined in (1-3). The option that has the highest Rc-measure
receives 1 point. Then Tacin can recommend artifacts to
developers using the highest scoring option. If there is a tie,
Tacin recommends the option of a smaller number of selected
groups.
Reduction = 1 - |Recommended Artifacts|
 |Project Artifacts| (1)

Recall = |Recommended Artifacts Ç Relevant Artifacts|
 |Relevant Artifacts| (2)

Rc-measure = 2 ×(Recall × Reduction)
 (Recall + Reduction) (3)

Figure 1. Illustration of the method to recommend artifacts to compose the

context of a new task in software development project.

490

IV. ASSESSMENT
The planning of the study includes objective, case, research

questions and method according to the guide to conduct and
report case study in Software Engineering [24]. The objective is
described in the format indicated by GQM [25]: Analyze the
Tacin method to recommend artifacts for the purpose of
evaluating their effectiveness from the perspective of the
developer in the context of a software development project.
According to this objective following the RQ1 research
question: Is the Tacin method effective in recommending
artifacts at the beginning of a new software development task?

The effectiveness of Tacin depends on the effectiveness of
task clustering by edit interaction and the correlation between
textual similarity and similarity by edit interaction between
tasks. Then two research sub-questions were defined: RQ1.A: Is
task clustering by edit interaction effective for recommending
artifacts? RQ1.B: Is there evidence on the existence of
correlation between textual similarity and similarity by edit
interaction among tasks?

Tacin reduces the number of artifacts available at the
beginning of a new task, trying not to omit the artifacts that will
be edited by developers. Equation 1 present Reduction measure.
Equation 2 show Recall measure. So, Equation 3 combines these
two measures in a harmonic way. Therefore, the Rc-measure
metric was chosen to measure the efficacy of the Method.

The Mylyn Docs project was the case selected to evaluate the
artifacts recommendation because it has the textual information
of the tasks and developer interactions on the artifacts. The data
collected from Mylyn Docs project was generated by the Mylyn,
Git and Bugzilla tools. The Mylyn plugin logs developer’s
interactions about artifacts as interaction event with kind=’edit’.
The parameters for the query were Classification = Mylyn and
Product = "Mylyn Docs" and Component = EPUB or
Framework or HtmlText or Wikitext and Status = RESOLVE
and Resolution = FIXED and Match ALL of the following
separately→Attachment Description→ contains the string→
mylyn/context/zip. The query was executed in the site
https://bugs.eclipse.org/bugs/query.cgi at April 05, 2017 and
returned 334 tasks with 49906 edit interactions performed by 6
developers over 1538 artifacts. We have identified many
performed tasks in the Mylyn Docs project that do not have
Mylyn logging. So, committing actions were collected to infer
editing actions, usually, a committing action submits edited files
to code repository. Commits extraction resulted in 918 commits
performed by 33 developers over 5407 artifacts.

 The study generated artifact recommendations to new task
in 20 trials, simulating a new task on each first day of the month
from 09/01/2008 to 04/01/2010 to evaluate a long time period.
The artifacts that were associated with tasks up to the date of the
trial and were also associated with the new task after their
completion form the set of relevant artifacts of the new task.
Tacin tries find these relevant artifacts using only edit
interactions finished before the start of each new task. Each trial
generates groups of similar tasks by edit interaction. For each
trial, 30 trials using the LNS_SMC were performed and the
cluster with the highest MQ was chosen to be used to make
recommendation.

Tacin calculates all textual similarities between the new task
and the calculated clusters. The short description field of the
new task was used with concatenation of all the short description
fields of the tasks in each cluster. RapidMiner Studio was used
to calculate textual similarity. The text processing used the
functions Replace Tokens, Transform Cases, Tokenize, Filter
Stopwords, Filter Tokens (by Length) and Stem (Porter). Then
the texts were represented in vectors using the occurrence of
terms. Finally, the similarities between the vectors (texts) were
calculated using the cosine similarity function.

The evaluation contemplates three options of
recommendation according to textual similarity among new task
and tasks clustered by edit interaction. The first option evaluates
the recommendation of the artifacts to the group that presents
greater similarity. The second recommends the task artifacts of
the two groups that present the greatest similarities. Likewise,
the third one recommends the task artifacts of the first 3 groups.
These 3 options are rated according to Recall, Reduction and Rc-
measure for each trial.

A. Results
The average Recall of the first option was 37%, with

Reduction equal to 97% and Rc-measure of 41%. The second
option presented Recall equal to 45%, Reduction of 93% and
48% of Rc-measure. The third one obtained average Recall of
52%, Reduction of 90% and 57% of Rc-measure. Accordingly,
we observed that the third option is the best according to the
average values of Rc-measure.

The result of this study shows that clustering of similar tasks
by interaction (RQ1.A) built at least one cluster that had only 6%
(94% of Reduction) of the artifacts available in the project, but
that had 77% of relevant artifacts (Recall) for a new task. The
conclusion is that the answer is yes to RQ1.A when combined
LNS_SMC with MQ. In 8 rounds, the first cluster more similar
textually with the new task also presented the highest Recall.
However, in 10 trials, the 3 clusters most similar textually to the
new task did not present maximum Recall, among these, in 4
trials (20%) there are no correlation between similarity by
interaction and textual. The conclusion is that the answer is yes
also for RQ1.B, the study showed that there is evidence of
correlation between textual similarity and similarity by
interaction in software development tasks.

V. RELATED WORK
Hipikat uses a large number of documents available in the

project such as source code, documentation, communications
between developers (e-mail, discussion forums), error reporting
and test plans. The Hipikat evaluation presented an average
Recall of 65% [1]. Antunes et al. [8] proposed a recommendation
system to recommend a list of relevant artifacts. The System
uses developer interactions in real time and artifact access time
to list the most relevant artifacts. Then it uses the relations of the
language structure (Java) and textual associations to order the
recommended artifacts in a decreasing way of relevance. The
evaluation showed an average Recall of 42,7%.

The proposal of Ye et al. [9] lists a classification of relevant
artifacts (top 10) to correct an error in the software considering
the information of the project history. The evaluation indicates

491

that the proposal can recommend relevant artifacts in 70% of the
recommendations. CodeRAnts is a recommendation method for
recommending artifacts. This Method is based on the repetition
of the textual searches performed by the programmers and on the
metaphor of the ant colony [10]. The evaluation was performed
in a simulated environment, in this environment CodeRAnts
obtained an average Recall of 71%. Almhana et al. [11] have
shown that to recommend relevant artifacts to support the
developer in the correction of an error can be mitigated as a
multi-objective problem, maximizing the relevance of the
recommended artifacts and minimizing the number of
recommended artifacts. The evaluation showed strong evidence
that the proposal may recommend lists with relevant artifacts:
Recall @ 5 = 72%; Recall 10 = 81%; Recall 15 = 87%; Recall
20 = 94%.

VI. CONCLUSION
This paper presents part of Tacin method to recommend

artifacts to compose the context of new tasks in software
projects. Tacin makes use of Clustering and Natural Language
Processing techniques. The clustering of task history in similar
tasks by interaction presented a Recall of 77%. The next study
will consider the degree of relevance between artifact and task.
The textual association of the new task with the similar task
groups to produce artifacts recommendation with 52% of Recall.
This study uses only task short description field. The next study
should consider other text information from task history, e.g.,
comments from developers while performing tasks. In addition,
other techniques such as dw-cosine [26], an extension of the
cosine of similarity, and also techniques for small texts with
grammatical errors need to be evaluated.

ACKNOWLEDGMENT
This work was partially supported by the Brazilian funding

agencies CAPES and CNPq and Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES
[1] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: a

project memory for software development,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 446–465, Jun. 2005.

[2] M. Kersten, “Focusing knowledge work with task context,” University
of British Columbia, 2007.

[3] D. W. McDonald and M. S. Ackerman, “Expertise Recommender: A
Flexible Recommendation System and Architecture,” in Proceedings of
the 2000 ACM Conference on Computer Supported Cooperative Work,
New York, NY, USA, 2000, pp. 231–240.

[4] Z. Wang, H. Sun, Y. Fu, and L. Ye, “Recommending crowdsourced
software developers in consideration of skill improvement,” presented
at the ASE 2017 - Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, 2017, pp. 717–722.

[5] I. Roediger Henry L., “Relativity of Remembering: Why the Laws of
Memory Vanished,” Annu. Rev. Psychol., vol. 59, no. 1, pp. 225–254,
Dec. 2007.

[6] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann, Eds.,
Recommendation Systems in Software Engineering. Berlin Heidelberg:
Springer-Verlag, 2014.

[7] M. Andric, W. Hall, and L. Carr, “Assisting artifact retrieval in software
engineering projects,” presented at the Proceedings of the 2004 ACM
Symposium on Document Engineering, 2004, pp. 48–50.

[8] B. Antunes, J. Cordeiro, and P. Gomes, “An Approach to Context-based
Recommendation in Software Development,” in Proceedings of the

Sixth ACM Conference on Recommender Systems, New York, NY,
USA, 2012, pp. 171–178.

[9] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for bug
reports using domain knowledge,” presented at the Proceedings of the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 2014, vol. 16-21-November-2014, pp. 689–699.

[10] I. Caicedo-Castro and H. Duarte-Amaya, “CodeRAnts : A
recommendation method based on collaborative searching and ant
colonies , applied to reusing of open source code,” 2015.

[11] R. Almhana, W. Mkaouer, M. Kessentini, and A. Ouni,
“Recommending relevant classes for bug reports using multi-objective
search,” presented at the ASE 2016 - Proceedings of the 31st
IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 286–295.

[12] A. Moraes, E. Silva, C. da Trindade, Y. Barbosa, and S. Meira,
“Recommending Experts Using Communication History,” in
Proceedings of the 2Nd International Workshop on Recommendation
Systems for Software Engineering, New York, NY, USA, 2010, pp. 41–
45.

[13] T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and E. Hill, “Degree-of-
knowledge: Modeling a developer’s knowledge of code,” ACM
Transactions on Software Engineering and Methodology, vol. 23, no.
2, 2014.

[14] X. Xie, W. Zhang, Y. Yang, and Q. Wang, “DRETOM: Developer
Recommendation Based on Topic Models for Bug Resolution,” in
Proceedings of the 8th International Conference on Predictive Models
in Software Engineering, New York, NY, USA, 2012, pp. 19–28.

[15] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer
recommendation for bug resolution,” presented at the Proceedings -
Working Conference on Reverse Engineering, WCRE, 2013, pp. 72–
81.

[16] J. Zhu, B. Shen, and F. Hu, “A learning to rank framework for developer
recommendation in software crowdsourcing,” presented at the
Proceedings - Asia-Pacific Software Engineering Conference, APSEC,
2016, vol. 2016-May, pp. 285–292.

[17] Y. Malheiros, A. Moraes, C. Trindade, and S. Meira, “A Source Code
Recommender System to Support Newcomers,” in 2012 IEEE 36th
Annual Computer Software and Applications Conference, 2012, pp. 19–
24.

[18] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V.
Vangala, “DebugAdvisor: A recommender system for debugging,”
presented at the ESEC-FSE’09 - Proceedings of the Joint 12th European
Software Engineering Conference and 17th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, 2009, pp.
373–382.

[19] M. C. Monçores, A. C. F. Alvim, and M. O. Barros, “Large
Neighborhood Search applied to the Software Module Clustering
problem,” Computers & Operations Research, vol. 91, pp. 92–111,
Mar. 2018.

[20] E. Cambria and B. White, “Jumping NLP Curves: A Review of Natural
Language Processing Research [Review Article],” IEEE
Computational Intelligence Magazine, vol. 9, no. 2, pp. 48–57, May
2014.

[21] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999.

[22] J. Han, M. Kamber, and J. Pei, “10 - Cluster Analysis: Basic Concepts
and Methods,” in Data Mining (Third Edition), Third Edition., J. Han,
M. Kamber, and J. Pei, Eds. Boston: Morgan Kaufmann, 2012, pp. 443–
495.

[23] R. Levy and C. Manning, “Is It Harder to Parse Chinese, or the Chinese
Treebank?,” in Proceedings of the 41st Annual Meeting on Association
for Computational Linguistics - Volume 1, Stroudsburg, PA, USA,
2003, pp. 439–446.

[24] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, p. 131, Dec. 2008.

[25] V. R. Basili, “Software Modeling and Measurement: The
Goal/Question/Metric Paradigm,” University of Maryland at College
Park, College Park, MD, USA, 1992.

[26] B. Li and L. Han, “Distance Weighted Cosine Similarity Measure for
Text Classification,” in Intelligent Data Engineering and Automated
Learning – IDEAL 2013, 2013, pp. 611–618.

492

SOTagger - Towards Classifying Stack Overflow
Posts through Contextual Tagging

Akhila Sri Manasa Venigalla
Indian Institute of Technology

Tirupati, India
cs18m017@iittp.ac.in

Chaitanya S. Lakkundi
Indian Institute of Technology

Tirupati, India
cs18s502@iittp.ac.in

Sridhar Chimalakonda
Indian Institute of Technology

Tirupati, India
ch@iittp.ac.in

Abstract—There is an ever increasing growth in the use
of Q&A websites such as Stack Overflow (SO), so are the
number of posts on them. These websites serve as knowledge
sharing platforms where Subject Matter Experts (SMEs) and
developers answer questions posted by other users. It is
effort intensive for developers to navigate to right posts
because of the large volume of posts on the platform, despite
the presence of existing tags, that are based on technologies.
Tagging these posts based on their context and purpose might
help developers and SMEs in easily identifying questions
they wish to answer and also in identifying contextually
similar posts. To support this idea, we propose SOTagger
as a prototype plug-in for Stack Overflow to tag questions
contextually. We have considered SO data provided on
SOTorrent and automated the identification of 6 categories
of questions using Latent Dirichlet Allocation. We have also
manually verified relevance of these categories. Using these
categories and dataset, we have built a classification model to
classify a post into one of these six categories using Support
Vector Machine. We have evaluated SOTagger by conducting
a user survey with 32 developers. The preliminary results
are promising with about 80% developers recommending the
plugin to others.

Index Terms—Stack Overflow, Contextual Tagging, LDA

I. Introduction

Stack Overflow (SO) is one of the most frequently
used websites with about 11M visits every day. With a
user base of 10M users, about 7.3K questions are posted
per day. It comprises of about 18 million questions, of
which 71% are answered1. These questions correspond
to various technical categories, tools, libraries and are
tagged into atmost 5 of 54K tags2 present on the website.
This tagging is done based on their technical relevance
with the posted content and is used to organize posts
and thus help users to browse for questions and answers
concerning to particular topics such as javascript, jquery,
python and so on [1]. However, these tags don’t classify
questions based on the context in which they are asked.
The context would capture situations pertaining to con-
ceptual understanding, issue resolving and so on.

Recent studies have aimed at classifying questions on
SO based on their context and arrived at almost similar

DOI reference number: 10.18293/SEKE2019-067
1https://stackexchange.com/sites?view=list#traffic
2http://bit.ly/SONumTags

taxonomies of categories. They have used various tech-
niques such as K-NN clustering [2], automatic catego-
rization by topic modeling using LDA and MALLET [3]
and manual categorizations [1], [4]. Some of these stud-
ies have aimed to contextually categorize technology-
specific questions such as questions related to Android
application development [2] and mobile operating sys-
tems like Android, Apple and Microsoft Windows. How-
ever, existing tools do not categorize posts on SO plat-
form based on context. To this end, the contributions of
this paper are as follows:
• SOTagger3 - a prototype plug-in that classifies posts

on SO into six categories: Conceptual, Discrepancy,
Implementation, Error, Learning and MWE (Minimum
Working Example).

• Application of NLP techniques - Latent Dirichlet
Allocation(LDA) and Machine learning (ML) classi-
fier - Support Vector Classifier (SVC) to classify SO
posts.

• Evaluation of SOTagger with 32 professional devel-
opers and manual cross-verification of 100 posts.

II. RelatedWork

In the recent years, several studies have been done
to analyze posts on SO, which include analyzing de-
velopers’ area of interest based on questions asked [5],
analyzing and suggesting tags of the questions [2] [1]
[6] [7], identifying difficulties faced by developers [8],
identifying trending technological topics [9], and so on.
Researchers have classified posts on SO based on the
context by manually interviewing software developers.
In a survey conducted by Latoza et al., 179 professional
software developers were asked to identify hard-to-
answer questions pertaining to code that they solicit
wherein 371 questions were reported. They have man-
ually categorized them into 21 categories with 94 dis-
tinct questions, of which the 5 most frequently reported
categories were - Rationale, Intent and Implementation,
Debugging, Refactoring and History of code [10].

Studies have been conducted to investigate various
question categories based on the context in which they

3https://github.com/chaitanya-lakkundi/SOTagger

493

https://stackexchange.com/sites?view=list#traffic
http://bit.ly/SONumTags
https://github.com/chaitanya-lakkundi/SOTagger

were asked. Rosen et al. manually categorized 380 posts
on SO into 3 question categories based on the three in-
terrogative words- How, What and Why, corresponding to
three mobile operating system categories - Android, Apple
and Microsoft Windows [4]. Treude et al. have manually
classified 385 questions on SO into 10 categories - How to,
Decision Help, Discrepancy, Environment, Error, Conceptual,
Review, Non-Functional, Novice, Noise [1]. Although meth-
ods involving manual effort are necessary to capture
ground truth, we see a need to find better ways to scale
this approach such that automation is possible.

Elucidating further studies, Beyer et al. have proposed
7 question categories - API Change, API Usage, Concep-
tual, Discrepancy, Learning, Errors, Review by manually
classifying 500 SO Android posts and performed auto-
matic classification using supervised machine learning
algorithms with a precision of 88% [2]. Allamanis et
al. found 5 major question categories using LDA and
unsupervised machine learning algorithm [3].

Insofar as the development in methods of classification
is concerned, the research community has progressed
from significant manual studies to automating them
using machine learning algorithms and NLP techniques.
Contemporary tools such as EnTAGREC++ [6], TagCom-
bine [7] have been developed to provide tag suggestions
to users when they post questions on SO. These tools
suggest tags based on technologies involved in the post
content. The prototype plug-in we propose, SOTagger,
tags posts on SO based on their purpose or intent rather
than considering the technologies involved. Based on
the existing work on classifying posts [2] [1] [4] [3], we
propose a taxonomy to tag posts contextually.

III. Proposed Taxonomy

Posts can be classified using several NLP techniques
such as LDA, LSA, TF-IDF. However, inline with the
existing work, we followed LDA technique.

We present six question categories that we have de-
rived from existing studies and results obtained from
LDA topic modeling. As a result of LDA topic modeling
configured for 6 topics, we obtained 6 topics charac-
terized by keywords for each topic, along with the
weightage of keywords in every topic. Omitting the
technical terms and considering interrogatives, it has
been observed that Topic 0 comprises of discrepancy, Topic
1 contains error, Topic 2 contains how-to or implementa-
tion, Topic 3 contains learning, Topic 4 contains conceptual
and Topic 5 contains MWE keywords respectively, as
shown in Table I. These results obtained by applying
LDA on SO posts indicate the presence of contextual
categories in SO data. Comparing these results with the
existing taxonomy discussed by Beyer et al. in [2] and
other taxonomies presented in [1] [4] [3], we reorganize
few categories in the existing literature and arrive at
labelling five of these six topics as conceptual, discrep-
ancy, implementation, error and learning respectively. We

TABLE I
Taxonomy of Question Categories

S.No. Topics Keywords

1 Conceptual What is use/difference,
Is there a way, Is it possible[2]

2 Discrepancy doesn’t work, tried to,
have/facing problem, before upgrade
previous version [2]

3 Implementation How to implement [4] [3] [1]
4 Error Exception, error [2]
5 Learning suggest, tutorial,

where can I find [2]
6 MWE for this code, code tags

observed that many of the posts on SO contained code
snippets, which could indicate that users post questions
containing code to reproduce the bug they are facing.
Such code snippets serve as Minimum Working Examples
(MWE)4, which is proposed as another category MWE.
We observe this naming to be inline with work proposed
by Allamanis et al. [3]. Each post can be classified into
one or more of these six categories.

Fig. 1. Overview of Approach for SOTagger

IV. DesignMethodology

We followed a six step approach in designing a con-
textual classification model as shown in Fig 1.

Step 1 - Extract DataSet. To perform categorization
of SO posts, we downloaded Posts.xml file avilable on
SOTorrent5. We considered a subset of this file that con-
stituted 100K Stack Overflow posts under Body column
and filtered out questions based on PostTypeId column
that resulted in a dataset of 20K posts.

Step 2 - Data Preprocessing. Data present in Body
column whose PostTypeId = 1 was considered for pre-
processing. We considered English stop words provided
by NLTK library and omitted interrogative words from
the list of stop words keeping in view, the taxonomy pro-
posed. We processed the data for stop word, punctuation
removal and lemmatization using spaCy.

4https://stackoverflow.com/help/mcve
5https://zenodo.org/record/2273117

494

https://stackoverflow.com/help/mcve
https://zenodo.org/record/2273117

Fig. 2. A Snapshot of SOTagger

Step 3 - Latent Dirichlet Allocation Model. We
applied LDA to perform topic modeling. We primarily
created a dictionary of lemmatized words and then
created a corpus of these words with their frequency
of occurrence. Considering this corpus, we generated an
LDA model that categorizes given data into 6 topics.

Step 4 - Naming Topics. Based on existing taxonomies
in the literature [2] [1] [4] [3], we identified contextually
useful keywords in each of the 6 topics, and used them
to identify and name topics.

Step 5 - Append Labels to Dataset. The LDA model
provided us with a topic-document correlation matrix,
where document refers to content of one post. This ma-
trix contained probabilities of every identified topic for
each document. We then classified posts in the dataset
into topics based on the dominant topic from correlation
matrix which had the highest probability.

Step 6 - Prepare a Machine Learning model - Build
SVM Model. We applied various machine learning clas-
sification algorithms such as Linear SVC, Logistic Re-
gression, Multinomial Naive Bayes, Random Forest Classifier
to arrive at the best classification model on available
dataset with 75% train and 25% test data. We observed
that SVC was able to classify the given data set with
higher accuracy (78.5%) than other models. Based on
this, we designed SVC model and pipelined to Calibrat-
edClassifierCV to get prediction probabilities.

V. Development of SOTagger
This plug-in has been developed as an extension to

Google Chrome to support classification of posts on SO.
It tags posts on SO based on their context. SOTagger
reads SO posts on the page and extracts questions from
these posts which are fed into previously developed
ML classification models using SVM classification. This
model outputs the categories of specific posts along

with associated probabilities which are presented as tags
below the posts on SO platform.

A snapshot of SOTagger is shown in Fig 2 for a
sample post on SO. Tags corresponding to context of the
question are displayed below the post as shown in [D] of
Fig 2 and are arranged in decreasing order of probability.
The probability with which a post is tagged into each
of the displayed categories is represented by a bar as
depicted in [E] of Fig 2. According to SOTagger, this post
is classified as MWE category with highest probability.
As pointed in [B] of Fig 2, presence of code segment
justifies classification of the post into MWE category.
Presence of What keyword as highlighted in [A] of Fig
2, contributes to Conceptual tag, with a lesser probability
than MWE tag. is there phrase represented by [C] of Fig
2 contributes to Learning category, with least probability.

However, the keywords or phrases demonstrated in
Fig 2, are for the purpose of analyzing the correctness of
SOTagger, but are not the only basis for classification. Ac-
tual classification was based on NLP and ML techniques
that have been used in development of SOTagger.

VI. Evaluation and Results

We evaluated SOTagger by conducting a user survey
with 32 professional developers with a development
experience ranging from 2 years to 19 years.

The participants were asked to use SOTagger, navigate
to SO website and analyze the contextual tags added by
SOTagger. A user survey was conducted with the help
of five point Likert scale, containing a questionnaire as
provided in Table II.

Apart from user survey, we manually evaluated6 con-
textual tags of about 100 random posts on SO tagged
by SOTagger and obtained an accuracy of 77%. The

6https://git.io/fjC83

495

https://git.io/fjC83

results of our survey indicate, SOTagger had a good
user-friendly interface (82% in Q1). In Q2, about 85% of
participants have agreed that SOTagger has appropriately
tagged the posts. The ratings in Q3 and Q4 indicate
that SOTagger has helped about 80% of participants in
faster browsing of posts on SO and that the experiment
has been considerably interesting (81% in Q4). In Q5,
most of the participants have agreed that they would
recommend SOTagger to their peers (83%). .

TABLE II
Questions in survey using a 5-point Likert scale.

Q1: How easy was it to use SOTagger interface?

Q2: SOTagger has tagged SO posts
correctly based on their context.

Q3: SOTagger has helped me in quick browsing
of posts based on context.

Q4: SOTagger has kept the whole experiment interesting
and informative.

Q5: I will recommend SOTagger to my peers.

VII. Threats to Validity

We have manually examined top 20 posts based on
probability values in each of the 6 topics generated by
LDA technique to assign topic name. This could be in-
accurate considering limited number of posts examined.

To understand the accuracy of classification, we ran-
domly browsed 100 posts on SO. We realize that exami-
nation of 100 posts in total is not enough to get an overall
idea about the accuracy of classification. During the
creation of LDA model, we tweaked a few parameters
such as chunk size and number of passes which resulted
in different statistical distribution of topics. Some of the
distributions were imbalanced and biased towards one
particular topic. We selected those parameters which
resulted in a nearly Gaussian distribution. We assume
that LDA model which classifies data in Gaussian dis-
tribution performs better than other models. However,
initial results show that accuracy of trained LDA model
is around 70%, but with scope for experimenting with
other distributions. The machine learning model has
been trained on a dataset of 20K questions, however we
should consider a larger number of posts from SO to
improve our approach.

VIII. Conclusion and FutureWork

In this paper, we presented SOTagger, a prototype
plug-in to SO that tags questions on SO based on the
purpose for which they are asked. We performed LDA
topic modeling on data set available on SOTorrent to
identify categories. We labelled the resultant LDA topics
by harmonizing the existing taxonomies. We presented 6

question categories, independent of technical aspects in-
volved in the questions. We then labelled question posts
in the dataset into one or more of the 6 categories. We
applied SVC on the labelled dataset to obtain machine
learning classification model which was integrated into
the plug-in to support tagging of posts on SO.

As a part of future work, we plan to extend SOTagger
to display contextual tags of posts on SO landing page
by training machine learning model only over titles of
questions. We plan to work in the direction to improve
levels of taxonomy from single level presented in the
paper to multiple levels and display the same as a part
of detailed contextual tagging. We could conduct an
experiment to check whether we get better results by
considering the opening and closing statements of SO
posts.

Questions tagged with MWE could be of greater use
for future research. Researchers interested to understand
and analyze code provided by users when posing ques-
tions can easily find questions with this tag. We envi-
sion that future work based on this paper may include
clustering posts classified as MWE to automatically find
bugs, combine co-occurring tags to formulate new tags
and so on. Also, several empirical studies on SO posts
such as understanding code quality, misuse of code snip-
pets and automatic bug reporting could be conducted.

References
[1] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers

ask and answer questions on the web?: Nier track,” in 2011 33rd
International Conference on Software Engineering (ICSE). IEEE, 2011,
pp. 804–807.

[2] S. Beyer, C. Macho, M. Pinzger, and M. Di Penta, “Automatically
classifying posts into question categories on stack overflow,” in
Proceedings of the 26th Conference on Program Comprehension. ACM,
2018, pp. 211–221.

[3] M. Allamanis and C. Sutton, “Why, when, and what: analyzing
stack overflow questions by topic, type, and code,” in 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE,
2013, pp. 53–56.

[4] C. Rosen and E. Shihab, “What are mobile developers asking
about? a large scale study using stack overflow,” Empirical Soft-
ware Engineering, vol. 21, no. 3, pp. 1192–1223, 2016.

[5] R. K.-W. Lee and D. Lo, “Github and stack overflow: Analyz-
ing developer interests across multiple social collaborative plat-
forms,” in International Conference on Social Informatics. Springer,
2017, pp. 245–256.

[6] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec
++: An enhanced tag recommendation system for software
information sites,” Empirical Software Engineering, vol. 23, no. 2,
pp. 800–832, 2018. [Online]. Available: https://doi.org/10.1007/
s10664-017-9533-1

[7] X.-Y. Wang, X. Xia, and D. Lo, “Tagcombine: Recommending tags
to contents in software information sites,” Journal of Computer
Science and Technology, vol. 30, no. 5, pp. 1017–1035, 2015.

[8] A. Joorabchi, M. English, and A. E. Mahdi, “Text mining stack-
overflow: An insight into challenges and subject-related diffi-
culties faced by computer science learners,” Journal of Enterprise
Information Management, vol. 29, no. 2, pp. 255–275, 2016.

[9] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? an analysis of topics and trends in stack overflow,”
Empirical Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[10] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about
code,” in Evaluation and Usability of Programming Languages and
Tools. ACM, 2010, p. 8.

496

https://doi.org/10.1007/s10664-017-9533-1
https://doi.org/10.1007/s10664-017-9533-1

An Annotated Repository for MATLAB Code
António Relvas

NOVA LINCS
DI-NOVA/FCT

Portugal

Nuno C. Marques
NOVA LINCS
DI-NOVA/FCT

Portugal
Email: nmm@fct.unl.pt

Miguel P. Monteiro
NOVA LINCS
DI-NOVA/FCT

Portugal
Email: mtpm@fct.unl.pt

Glauco Carneiro
Universidade Salvador

UNIFACS
Brazil

Email: glauco.carneiro@unifacs.br

Abstract—Currently, there is the need for systems to manage
repositories of MATLAB code bases capable of supporting global
queries and feed their results to analyses components. Such
features are not directly supported in current platforms. This
paper presents a repository management system that supports
queries over semi-automatically annotated code files and are
able to associate them to higher level concepts. To meet this
need, this paper proposes an approach that equips the repository
with support for sophisticated queries over its stored code base
and allows patterns to emerge from such queries, namely for
visualisation and further analysis. This is achieved through
the synergistic combination of a token-based metrics extraction
component and a relational model fed by an ubiquitous data
mining process. The code base is represented by means of
relational knowledge, enabling intelligent queries that can be
extended with new code metrics. Presently, query results are
being used for the detection of concerns, including those whose
code is scattered over multiple modular units. This paper outlines
the proposed system’s architecture and presents a proof-of-
concept implementation developed for MATLAB programs. It
is evaluated by means of a set of illustrative queries over a seed
repository of MATLAB systems.

Index Terms—MATLAB, Concern, Self Organizing Map, Ubi-
SOM, Advanced Data Exploration, Software Repository Man-
agement System

I. INTRODUCTION

The MATLAB language is known to lack support for
fully fledged modules capable of enclosing most concerns
typically present in MATLAB systems [1] [2]. Its basic units
of modularity are m-files (MATLAB code files) and toolboxes,
comprising folders of m-files and optionally sub-folders. The
latter often correspond to standalone programs or libraries
made available for the user community. Lack of modularity
makes it hard to obtain well-organised code that is easy to
read and reuse [1] [3]–[5]. These shortcomings motivated
ongoing research to study the symptoms induced by the lack
of modularity [3] and use of that knowledge for the detection
of unmodularised concerns in existing systems [6] [5].

The above research on concern detection techniques is
centred on the idea of decomposing m-files into its low-level
elements [3] and derive a number of metrics based on that
information [6] [5]. A number of analysis components can
subsequently be plugged into the system to derive higher-level
information. Further details are given in section II.

Developing and maturing the concern detection techniques
entailed the assembling of repositories of many MATLAB

systems in order to exercise and test functionalities. A number
of metrics were derived, which were extracted from the code
base by means of a tool that includes a lexical analyser
for MATLAB [3] [6] [5]. Activities on the code repository
included the performing of many kinds of search, e.g., to find
new patterns, perform studies, check results. Initially, it was
carried out by the metrics extraction tool. As search patterns
tended to become increasingly elaborate and structured, the
motivation for mounting the entire repository in a more
intelligent system arose. This paper presents the outcome of
that effort.

This paper presents a repository management system that
exposes low-level data and allows the plugging of new analysis
and visualisation components, which can be added over time.
The repository management system could compute many of
the queries previously supported by the lexical analyser tool
and much else besides. It supports queries over automatically
added annotations received from a data mining process and
related annotations made by humans. Among other things, the
system is able to expose associations between m-files based
on higher level concepts.

Past work illustrated one potential use of the proposed
repository through the implementation of a high level knowl-
edge from a Self Organizing Map (SOM) data mining
model that derives patterns from the code to enable the
semi-automatic detection of (possibly unmodularised) con-
cerns [6] [5]. By semi-automatic, we mean a process that
starts with a machine learning classification phase, whose
output can be corrected by a human or enriched by new
annotations. We implemented a relational database and an
associated web interface through which query results produced
by the UbiSOM algorithm [7] are made available for further
processing.

The rest of this paper is organised as follows. Section II
describes the token-based technique used to decompose m-
files. Next, section III describes the system’s architecture and
the relational model that enables a wide variety of queries
over the code. Section IV illustrates how an external concern
mining model can be used to automatically provide concern
relevant tagging for all m-files in the repository. Section V
presents a number of queries that illustrate the repository’s
capabilities. Section VI provides a short discussion of this
work and section VII concludes the paper.

DOI reference number: 10.18293/SEKE2019-137

497

II. USE CASE: CONCERN DETECTION

This section relates to past research on the detection of
concerns in MATLAB code bases [3] [5] and describes an
use case for the annotated repository.

A concern is any abstraction, concept or cohesive set of
functionalities that would ideally be enclosed in its own
module, for the sake of comprehensibility and ease of main-
tenance and evolution [8]. Ideally, each individual concern
would map to a different unit of modularity (e.g., an m-file
or a function in MATLAB), with each unit having a single,
primary concern. However, several factors contribute to this
not being so in practice. The limited and incipient nature
of MATLAB’s modules and limited programming experience
from many users, among other issues, contribute to many
concerns remaining unmodularised. As a consequence, poten-
tially useful and reusable pieces of code are left scattered
throughout a system’s m-files and functions, and tangled
with conceptually unrelated code. Scattering and tangling are
the two dual symptoms usually observed in the code when
modularity support is deficient [9] [8]. Tangling is particularly
harmful to the comprehensibility of all concerns found in the
modular unit, including the primary concern [1] [4] [3].

The concern detection technique explored in this paper
bases the representation of an entire code base of a repository,
comprising all systems stored in it, on the decomposition of
each and every code file into tokens, i.e., the lexical elements
extracted by means of the lexical analyser. The subset of
tokens that are words (keywords and identifiers) plays an
important role in the concern detection approach. It is based
on the the idea that specific groups of word tokens can be
associated to specific concerns, with individual tokens being
associated to one concern at most. Patterns of occurrence
of such tokens can be used to identify the presence of the
associated concern in the code unit.

Presently, this approach is focused on function names, par-
ticularly names of functions from standard MATLAB libraries,
because they are deemed more intention-revealing and are
common to many MATLAB systems. Such names provide a
measure of guarantee that the technique will operate uniformly
in most systems. Programmer defined variable names are not
currently considered because they are more variable across a
repository of systems developed by many different teams.

The examples shown in section V serve as an illustration
of the technique. They are focused on concern verification
of function arguments, which relates to the processing that
many MATLAB functions must carry out at the beginning
to determine in which ”mode” they were called (e.g., by
finding out how many arguments it received). It is associated
to a group of tokens that include nargin, varargin and
varargout.

III. THE RELATIONAL MODEL

This section describes a relational model for a MATLAB
seed code repository. It is important to note that although the
system presented in this paper was developed as a proof of
concept focused on MATLAB systems, its design – described

here – was created in view of covering a broader range of
systems and programming languages.

The annotated repository was developed with the purpose
of accommodating in one place all the data needed to per-
form exploratory analyses on MATLAB code, by means of
advanced analysis components. The diversity and quantity of
data being generated called for a powerful solution for data
storage and query support. For this reason, a relational data
model was adopted (e.g., [10]). It represents all data as tuples,
grouped into relations. Note that all tokens are stored into the
model: not just word tokens but also symbolic tokens, literals,
etc. Such a model can easily be implemented in a relational
database management system. A MySQL solution proved to
be sufficient for the Web component of the system, while data
analysis is based on snapshots of the systems in the repository,
taken at the time of analysis of relevant information stored in
a SQLite database.

The relational model represents the toolboxes, m-files and
their complete contents (including comments, though presently
they are not used). New systems, toolboxes and m-files can
be added and similarly represented, including new versions of
existing elements. Two main entities represent the organisation
of all the systems into toolboxes and m-files and taking into
account the possibility of multiple versions of these elements.
Each m-file is in turn decomposed into code lines containing
MATLAB code and thus stored. To reconstruct the original
file (e.g., for visualisation or for some other subsequent
processing), the model provides a separate entity to represent
lines with comments only.

Tokens are the main subject of the analysis in this paper.
Figure 1 depicts the main entities and relations for modeling
the relation of MATLAB tokens and annotations within the
repository according to the notation used by Silberschatz et.
al. [11]. Blocks are intermediate entities grouping one or
several lines and that are part of an m-file. Relations between
toolboxes, m-files, code blocks, lines and tokens are simple
one-to-many relations. For instance, a given line is always
part of a block, which is always part of some m-file. Though
an m-file is not necessarily organized into functions, we are
mainly interested in that set of m-files since our focus is on
MATLAB modularity. Under that view, blocks will always
belong to some function, which in turn always belongs to some
m-file. Decomposition of the entire code base along these lines
requires just some basic parsing functionality added to the
lexical analyser tool. Each block ends either with the end
keyword or when another clearly defined block (e.g., a new
function or control structure) begins. During design, we chose
to also model each line of code in the repository as a tuple of
the entity Lines_mfiles identified by its unique line_id
identification code. The line number within the m-file and the
block unique id are also unique identifiers for each line in
the repository.

A token instance refers to individual occurrences of a
given token. For instance, the various occurrences in the code
of the while keyword can be said to be instances of the
while token. The present token-based approach requires the

498

Lines_mfiles Lines_tokens Tokens Concerns

block token concernci name nameline_id code

hasin

line

Annotationsannotation

describes

Clusters

mfile

tag by

cluster text

text

identifyBlocks-mfiles has

Models

model desc

detect is a

Fig. 1. Part of the system ER diagram for token related entities.

identification of each token instance, which is done by the
lexical analyser tool. Each line comprises a sequence of token
instances (order and position are important). Each non-empty
line comprises at least one token instance or is a pure comment
line in Fig. 1. Since a line can contain more than one instance
of a given token, a weak entity (Lines_tokens in Fig. 1)
is used to represent it. That weak entity is identified by the
line_id of the Lines_mfiles entity and token position
within the line (attribute ic). So, it is possible to know the
line containing the token instance (attribute line from entity
Lines_mfiles). This way, an indirect relation is made
where each token instance is associated to its code or name.
A token can also be associated to a given concern and a
concern can be associated to several tokens — represented
by the identify relation in Fig. 1. The design takes into
account that future analyses may approach the code repository
based on many different selection criteria. Annotations are also
easily added using the Lines_tokens weak entity. This
way a new entity Annotations is used so that users can
add annotations when relevant Lines_tokens are found
in Fig. 1. A simple annotation revision process is already
supported: only accepted annotations will be shown in the final
user interface.

During tool tests there was often a need to look for
different combinations of two or more tokens or token-concern
combinations. For instance, it was useful to find and visualize
in what context some combinations occur in different m-files.
The query can be done directly with a regular expression on
the code field of entity Lines_mfiles, but this search is
slow and slow to write. Besides, it will always be ineffective
because limited to a single code line. As an alternative, the web
interface performs a quick generation of queries in SQL (over
the relational model). To obtain results quickly, the search is
done on a first token after which an inner join is added for
each additional token, of the resulting relation with itself. This
way, it is possible to identify a sequence of elements (tokens
or concerns) that are associated in the same m-file (through
entity Lines_tokens). If they are relevant, extra constraints
can be added to the query. For example, it is possible to
specify a limit on the number of rows (or tokens) between
the occurrences of both search tokens (the ic field of entity

Lines_tokens is essential for a correct result).
The code base used as testing material for the present

research originates from a repository of MATLAB programs
and toolboxes originally assembled to test a compiler for MAT-
LAB [12]. It comprises 35 193 m-files organised by toolboxes
and covering various application domains, downloaded from
Sourceforge and GitHub [12]. The repository was already used
in previous work for concern mining [6] [5].

The output of a fully automatic concern mining compo-
nent can be easily related with this system. The relational
model aims to be generic and should support hierarchical
unsupervised machine learning methods. The simultaneous
reference to several concern mining models is supported
by means of an aggregation between entities Models and
its detected Clusters. Such aggregation can be used for
tagging Blocks-mfiles entries with the cluster assigned
by a model, resulting from a data mining process over the
repository. Also some unsupervised learning methods discover
models where clusters can be related with other clusters (e.g.
in hierarchical clustering methods). This way, each block in
the repository can be assigned to a cluster derived from the
concern mining model and the resulting cluster can be a sub-
cluster of another related cluster. Moreover, no restriction
is made regarding sharing of clusters among models (this
could be useful in situations where related models identify
the same kind of clusters). Finally, Block-mfiles tagging
can be continuously updated by a ubiquitous data mining
process (such as illustrated in section IV) or can be directly
assigned/revised by means of a human made model (which
probably entails laborious manual m-file cluster identification
and correction tasks). The concern mining model presented in
previous work [5] is used in the illustrative results presented
in section V.

IV. VALIDATION USING UBISOM OUTPUT MODELS FOR
CONCERN MINING

The system’s design should provide for a continuous in-
coming stream and storage of MATLAB code files. Analysis
and mining of its contents can be done based on ubiquitous
data mining algorithms [13]. The UbiSOM algorithm was
selected as an illustrative validation of this approach [5].
Appropriate support was developed for the continuous analysis

499

of data, approached as a data stream in which new m-files and
toolboxes can be continuously added. The use of metrics to
characterize the relevant blocks of code in the various m-files
makes it possible to represent those blocks as a set of measures
for different concerns, i.e., a set of feature-value pairs that
is also stored in the database in a patterns entity. Each
new set of such value pairs can be analyzed by means of the
UbiSOM algorithm [7]. Note that each concern gives rise to
its own specific value for each metric considered.

The UbiSOM component performs a continuous analysis
of the data stream and maintains a SOM summarising all m-
files in the repository and its contents, updating it whenever
new contents are added. The relational model can deal with
multiple SOM instances, all of which are represented in the
database. This opens the way for (suitably trained) users to
specify queries over the repository (using SQL) that also use
SOM information to perform selections based of higher-level
concepts. Note that each resulting SOM model and related
query results can immediately become internally accessible to
the system for subsequent processing.

The SOM model used consists of a fixed rectangular grid of
units. Each unit can be seen as a generalisation of representa-
tions of sets of m-files with similar metric values – also called
a prototype [14]. In the relational model, the patterns entity
can also represent the various units of the SOM – again as
sets of feature-value pairs. This way, for a given SOM model
it is possible to associate each m-file to the SOM unit whose
vector of metric values is closer to it (Euclidean distance is
used for this purpose). The SOM community would call this
unit the best matching unit (BMU) for that m-file. Various
sub-sets of units in contiguous areas of the SOM, are also
aggregated into regions of similar units in the SOM, whose
information is stored as tuples in the database. Regions and
units are represented in the entity Clusters.

V. ILLUSTRATIVE QUERIES

This section presents results that can be derived from mining
the seed code base for higher level concepts. We call these
intelligent queries. To facilitate comparison of results, we use
an already published set of metrics and corresponding SOM
model as an illustrative example [5] and which is copied into
the database.

The set of concerns and related metric values are used as
different dimensions or positions in the pattern vector fed
to UbiSOM. The study refers to two disjoint clusters of m-
files that were labelled as regions A1 and A3 in the original
dataset [6] [5]. We retain the A1 and A3 labels in the database
mainly to facilitate the task of readers wanting to make the
connection with previous work [6] [5]. The description that
follows does not depend on details from the other study.
Though no m-file can belong to two clusters simultaneously,
the previous analysis revealed the simultaneous presence of
two or more concerns in those clusters [5]. This is a clear
indicator of code tangling, which in turn is a clear indicator of
deficient modularity [3] [6] [5]. From this, it can be concluded
that the situation in which multiple concerns are found in the

Fig. 2. Code view in the web system.

same m-file arises often. Several such cases are reported in
that study [6] [5]. In it, A1 and A3 correspond to two SOM
regions that represent two disjoint sets of m-files.

One of the concerns detected in m-files from the A1 and
A3 clusters is verification of function arguments. It relates to
functions that were prepared to be called in several different
”modes”, which are selected on the basis of the number
of arguments that were passed upon its call. The previous
study calls them schizophrenic functions [6] [5]. Typically,
such functions use the nargin function from the MATLAB
standard library and/or related functions. nargin returns the
number of input arguments given in the call. A glimpse of
code pattern based on calls to nargin is provided in Fig. 2
and Table II. In many cases, these nargin calls are made
in a considerable number of points at the start of the code’s
schizophrenic function.

To illustrate the use of queries that join the relational rep-
resentation of the SOM model with the data in the repository,
a query is next shown, which returns the number of tokens
associated to a given concern for each m-file covered any
of the two regions A1 and A3, i.e., A1 or A3 [6] [5].
These regions represent the set of m-files that also give rise
to high metric values relative to the concern verification of
function arguments. Restricting the query to the set of m-
files from regions A1 or A3, facilitates the analysis. Note
that the restriction could be specified on the basis of other
concerns (also restricted to A1 or A3 in this case). These
are an examples of high-level restrictions that would be hard
to express without the intelligent assistant for an annotated
repository presented in the current paper.

TABLE I
CONTENT (TOP 5 COUNTS) HIGHER LEVEL CONCEPTS QUERY

Cluster Sub-cluster m-file linesCount VFACount
per m-file per m-file

A3 19 31424 779 202
A3 19 12311 480 67
A3 79 9252 950 49
A1 739 30854 452 45
A1 799 24100 162 40

500

Table I shows an output example of this query. It
represents the dataset restricted to clusters A3 or A1

(column Cluster), SOM unit identifications (column
Sub-cluster), the respective m-file id (column m-file),
the number of lines of code of each m-file (column
linesCount) and the number of tokens associated to con-
cern verification of function arguments (column VFACount).
After the query, we learn that the m-file with id = 31424
has 202 tokens associated to the concern under analysis (a
significantly high value, with 26 occurrences per 100 lines of
code). Table II shows a few code lines where token nargin
occurs, in some cases complemented with the following lines
for clarity. It is used in lines 185-189 and again in 195-200.
In the second example, nargin checks whether the function
receives zero arguments. In the third example, an error is
issued in case the number of arguments equals 1.

TABLE II
SQL CODE PATTERN ’%ARGIN%’ IN M-FILE=31324

line code
1

185–189

195–200

The system’s current implementation is a web prototype
that pays special attention to code visualization. The code
view enables token highlighting and provides pop-overs for
various kinds of information as illustrated in Fig. 2. A frame
is also available for searching non-contiguous token sequences
in repositories as illustrated in Fig. 3. It also provides a
TreeMap view (not shown) suitable for the visualisation of
hierarchical data, e.g., toolboxes > m-files > concern [15],
[16]. A visualization of the SOM model is also provided,
which allows the selection of elements to derive a database
relation of m-files belonging to specific SOM units and their
regions.

VI. DISCUSSION

One may ask why a relational model was used instead of
say a noSQL-type model. Granted, noSQL-type and graph
databases may offer specific advantages in some cases. How-
ever, we opted for a relational model because token-based data
comprises a significantly structured domain. The relational
model facilitates integration with additional components and
transaction support to cope with the addition of new annota-
tions on the part of different users. It also facilitates efficiency
gains for some queries, which are left for future work.
Mathworks1 maintains the MATLAB Central website,

which aims to provide the best support for MATLAB. It

1The leading company proprietary and developing MATLAB language.

Fig. 3. Example of the web interface frame for token sequences.

has a forum that is claimed to contain 110, 000 answered
questions and a File Exchange toolbox repository for sharing
code, where developers can easily import their toolboxes from
GitHub [17]. As in every other software repository that we
are aware of, the focus is on the toolbox. All toolboxes can be
tagged and some of those toolboxes have online tutorials or
even Webinars. There is also an area for MATLAB code exam-
ples, conveniently indexed by main topics in the language (e.g.
matrixes and arrays) and highlighting to toolsets with example
code. Each function also points to code examples. Unfortu-
nately, MATLAB developers do not seem to have direct query
access to that huge repository of code. We searched many
repositories in several other major programming languages but
failed to find a system managing a repository of MATLAB
programs and toolboxes that supports global analyses and
enables extraction of higher-level concepts. By contrast, this
paper proposes a software repository enabling searches down
to the level of tokens and which are still able to link results
to the enclosing toolbox.

Tokens are usually defined as the smallest individual ele-
ments of any program. Queries over tokens allow the search
of all the information in the repository. As token usages
are also very diverse and case specific, there is a need for
higher level searches, namely over concerns. However, there
are too many possible types of tokens and token combinations.
The use of concerns in queries allow for a more direct
representation of the concepts involved in the reasoning of
software developers when working on the code, thus bridging
an important conceptual gap. To search for concerns, we need
to resort to their manifestation in the code, by means of metrics
on code patterns [5]. The present work is based on concern
metrics and also relates to past research work on that category
of metrics [18] [19].

It should be noted that the higher level concepts used
in the illustrative queries are the combinations of concerns
used in section V, which refers to our recent work on this
front [5]. Presently, the database contains just the clusters and
regions explained in that model [5]. Searches over the higher

501

level concepts with combinations of concerns proved very
promising for several kinds of search regarding the concerns
present in the code. However, the database and supporting site
are more general. It is a relevant subject for this research to
find other UbiSOM models (possibly with new metrics) that
may answer different questions. The system is general enough
to frame and annotate results from new knowledge discovery
models and we are available to collaborate with the community
to add new models to the system.

Past work used the UbiSOM algorithm to explore the related
set of concern metrics [5], through which manual analyses of
SOM results led to the detection of many cases of the joint
occurrence of multiple concerns in a single m-file. However
that method was still based on a generic data mining tool and
unable to query a software repository. The repository here
described uses the SOM as a data-mining tool to identify
clusters of m-files having similar patterns regarding possible
distinct sets of concern metrics. The SQL queries that can
be devised over such clusters provide the advanced user with
higher level concepts. Such queries result in sets of m-files
available in the repository. A visual web interface allows end-
users (namely MATLAB programmers) to search over relevant
higher level concepts, such as the illustrative schizophrenic
functions concept described in V.

VII. CONCLUSION

This paper proposes a software repository management
system supporting intelligent queries over MATLAB code files
and able to associate them to higher level concepts. This is
achieved by the synergistic combination of a token extraction
tool, a relational database and the advanced exploratory capa-
bilities of a Self-Organizing Map. A web interface supports
queries over the resulting knowledge stored in a relational
model. The latter supports a token-based advanced exploration
of the repository. Higher level concepts from SOMs – based
on software concerns – can be used by programmers, by
means of the web interface. A demonstration web site with
full illustrative examples of such higher level concepts and
supplementary material is available 2. In addition, direct access
to the repository database is freely available for research
purposes.

Regarding future work, SOMs can be used for tackling
problems other than those covered in this paper. SOM models
are already available in our database, which opens the way for
extending the present annotation with additional data mining
processes. For instance, WEBSOM [20] is a classical use of
SOM to document clustering. Line comments provide another
interesting opportunity: if we approach them as documents,
the joint inclusion of such a SOM in our database comprises
a promising topic for future work on mining.

REFERENCES

[1] J. M. Cardoso, J. M. Fernandes, and M. P. Monteiro, “Adding aspect-
oriented features to matlab,” in Fifth International Conference on
Aspect-Oriented Software Development (AOSD 2016), 2006.

2http://bit.ly/MatlabAnnotatedRepository

[2] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren, “Aspectmatlab: An
aspect-oriented scientific programming language,” in Proceedings of the
9th International Conference on Aspect-Oriented Software Development,
pp. 181–192, ACM, 2010.

[3] M. Monteiro, J. Cardoso, and S. Posea, “Identification and charac-
terization of crosscutting concerns in matlab systems,” in Conference
on Compilers, Programming Languages, Related Technologies and
Applications (CoRTA 2010), Braga, Portugal, pp. 9–10, 2010.

[4] J. M. Cardoso, J. M. Fernandes, M. P. Monteiro, T. Carvalho, and
R. Nobre, “Enriching matlab with aspect-oriented features for develop-
ing embedded systems,” Journal of Systems Architecture, vol. 59, no. 7,
pp. 412–428, 2013.

[5] N. Cavalheiro Marques, M. Monteiro, and B. Silva, “Analysis of a token
density metric for concern detection in matlab sources using ubisom,”
Expert Systems, vol. 35, no. 4, 2018.

[6] M. P. Monteiro, N. C. Marques, B. Silva, B. Palma, and J. Cardoso, “To-
ward a token-based approach to concern detection in matlab sources,” in
proceedings of the 18th Portuguese Conference on Artificial Intelligence,
pp. 573–584, Springer, 2017.

[7] B. Silva, Exploratory Cluster Analysis from Ubiquitous Data Streams
using Self-Organizing Maps. PhD thesis, Faculdade de Ciências e
Tecnologia da Universidade Nova de Lisboa, 12 2016. Manuscipt
available at: http://hdl.handle.net/10362/19974.

[8] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr, “N degrees of
separation: multi-dimensional separation of concerns,” in Proceedings
of the 21st international conference on Software engineering, pp. 107–
119, ACM, 1999.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” in Proceedings of
11th European Conference on Object-Oriented Programming, pp. 220–
242, Springer, 1997.

[10] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, vol. 13, pp. 377–387, June 1970.

[11] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database system
concepts. New York: McGraw-Hill, 6 ed., 2010.

[12] J. Bispo and J. M. P. Cardoso, “A matlab subset to c compiler targeting
embedded systems,” Software: Practice and Experience, vol. 47, no. 2,
pp. 249–272, 2017.

[13] J. Gama, Knowledge Discovery from Data Streams. Chapman &
Hall/CRC, 1st ed., 2010.

[14] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[15] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based anal-
ysis of quality for large-scale software systems,” in Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering, pp. 214–223, ACM, 2005.

[16] B. Shneiderman, “Tree visualization with tree-maps: 2-d space-filling
approach,” ACM Transactions on graphics (TOG), vol. 11, no. 1, pp. 92–
99, 1992.

[17] “Math Works matlab central website.” https://www.mathworks.com/
matlabcentral/. Accessed: 2019-01-22.

[18] E. Figueiredo, C. Sant’Anna, A. Garcia, T. T. Bartolomei, W. Cazzola,
and A. Marchetto, “On the maintainability of aspect-oriented software:
A concern-oriented measurement framework,” in Proceedings of the
12th European Conference on Software Maintenance and Reengineering,
pp. 183–192, IEEE, 2008.

[19] E. Figueiredo, C. Sant’Anna, A. Garcia, and C. Lucena, “Applying and
evaluating concern-sensitive design heuristics,” Journal of Systems and
Software, vol. 85, no. 2, pp. 227–243, 2012.

[20] S. Kaski, T. Honkela, K. Lagus, and T. Kohonen, “Websom–self-
organizing maps of document collections1,” Neurocomputing, vol. 21,
no. 1-3, pp. 101–117, 1998.

502

BDFIS: Binary Decision Access Control Model
Based On Fuzzy Inference Systems

Diogo Domingues Regateiro¹, Óscar Mortágua Pereira², Rui L. Aguiar³
Instituto de Telecomunicações

DETI, University of Aveiro
Aveiro, Portugal

{diogoregateiro¹, omp², ruilaa³}@ua.pt

Abstract—Access control is a ubiquitous feature in almost all

computer systems, and as data becomes more and more of an

important asset for organizations, so do the associated access

control policies. However, with the increase in the amount of data

being produced, e.g. in IoT and social networks, the interest in

simpler access control is increasing as well since more subjects

(public, researchers, etc.) are now requesting access to it. Defining

the exact conditions to allow each subject to access the data can be

difficult, especially when vaguely defined conditions such as

"expertise of a researcher" come into play. Fuzzy Inference

Systems (FIS) allow to process these vague conditions and enables

access control mechanisms to be more easily applied. The

contribution of this paper lies in showing how a FIS can be used to

output binary access control decisions (grant/deny) and what are

the differences in the inference process that stems from restricting

the output to these two output values.

Keywords-fuzzy systems, vague knowledge, information security,

access control.

I. INTRODUCTION
Access control has always been an important feature in any

system, be it physical or digital, as it restricts access to a
resource in a controlled and selective manner [1]. The most
successful access control models are usually those that mimic
real-world ways of managing permissions within the context of
their application, of which the Role-based Access Control
(RBAC) [2] model is a key reference. RBAC is a classical model
that maps subjects trying to access some resource to a role, a
meaningful category within the context of the system being
protected, and crisp access control rules define the resources a
subject playing a given role may access to successfully complete
its tasks. Other classical access control models operate in a
similar manner, using crisp rules that clearly define which
resources each subject may access.

However, with the advent of big data and social networks,
the quantity and complexity of data available that needs to be
stored and processed have increased considerably. Classical
access control models are ill-suited to handle these scenarios, as
they require tight mappings between subjects, objects, and
permissions. This means new subjects must be manually
assigned to their permissions before they can access the data,
which introduces delays and adds security management loads.

Additionally, the real world is not always as unambiguous as

the classical access control models require it to be in their
policies. For example, some documentation from European
projects may not be publicly available but could be disclosed to
experts researching in some area related to a project. There is no
hard definition of what makes someone an expert, so normally it
would have to be checked manually on a case-by-case basis. In
such situations, the fuzzy set theory is an appropriate solution
since it can handle vague concepts, such as expertise of the
subject, without requiring crisp values within its rules. Thus,
allowing policy rules to be richer in meaning and flexibility.

The theory of fuzzy logic [3] aims to capture how human
perception and cognition interpret the world, which is not
unambiguous all the time. To this end, it uses relative graded
memberships between a subject and a vague concept. Thus,
fuzzy logic permits the inclusion of vague human assessments in
computing problems, which proved to be an effective way to
deal with multi-criteria problems [4]. Solutions known as fuzzy
inference systems (FIS) were then designed to map a set of
inputs to outputs, using fuzzy logic and fuzzy sets to define
vague conditions. These characteristics allowed fuzzy logic and
fuzzy set theory to find a lot of uses in various areas, such as
medicine [5]–[7], computer security [8]–[14], networking [15],
[16], aeronautics [17], stock trading [18], and many others [4],
[19]–[22].

Consider a community managed public data, like a wiki,
where only subjects that are experts (to some degree) on the
contents of a page would be able to modify it. Since wiki pages
are generally given categories related to their contents and other
related tags, the access control system could access services such
as Scopus to retrieve the number of publications, their keywords,
citations, etc. This information could then be fed into a fuzzy
inference system to determine the level of expertise of the user
and help the access control system to make its access control
decisions. Thus, leading to fewer modifications by users with
malicious intents and more modifications with quality content.

Thus, the contribution of this paper lies in proposing an
access control model that uses a FIS to make binary access
control decisions, herein known as BDFIS; the presentation of
application scenarios where such a system could be useful; and
what are its benefits/issues when compared to other access
control mechanisms.

The rest of this paper is organized as follows: section II will

This work is funded by FCT/MEC through national funds and when
applicable co-funded by FEDER – PT2020 partnership agreement under the
project UID/EEA/50008/2019 and SFRH/BD/109911/2015.

DOI reference number: 10.18293/SEKE2019-039
503

provide some of the state of the art in regards to the application
of fuzzy set theory in access control; section III will provide the
analysis made to each step made during the output generation
process of the BDFIS; section IV will present a proof of concept
of the proposed model; and section V will provide a short
discussion while addressing the issues found.

II. RELATED WORK
The fuzzy set theory is a topic that has been researched in

recent years to tackle scenarios where the information that needs
to be processed is vague, which can include management
science, politics, social psychology, artificial intelligence, and
access control, among others [4]. This capability to handle vague
information is what enables it to be useful in scenarios where
binary decisions must be made and the decision rules are
difficult to define in a crisp manner.

Surprisingly, it was found that there is very little research
done in terms of the application of fuzzy set theory in access
control systems. The issue is suspected to come from the fact
that by using vague conditions in the form of fuzzy sets, a fuzzy-
based access control system does not explicitly state which input
values would grant access to some resource which would not.
This paper is focused on exploring these limitations and where
fuzzy systems can be improved for this area of intervention.

In [23], the authors introduce Fuzzy Role-based Access
Control (FRBAC), which uses fuzzy relations between users-
roles and roles-permissions:

• USERS x ROLES → [0, 1]

• ROLES x PERMISSIONS → [0, 1]

This approach allows for users to have partial permission
assignments, which are then used to calculate the access degree
they have to each resource. Then, if the access degree is used
directly to control access to a resource, the resource itself must
have fractional access, defined using the following access
function where USERS is the set of users, OPS the set of
operations and OBS the set of objects:

• access: USERS x OPS x OBS → [0, 1]

Martínez-García et al. define a function that takes a threshold
variable δ (i.e. a value between 0 and 1) and returns grant if the
access degree is greater than δ or deny if not. However, this
approach still restricts the fuzzy sets to roles. Therefore, it limits
the type of access control logic that can be used. BDFIS, in
contrast, does not require subjects to be mapped to the protected
resources through any specific model, such as roles, allowing to
abstract any mapping between them.

Another work was found where the trust level of devices is
measured, so a fuzzy approach to trust-based access control
could be achieved (FTBAC) [11]. This is done by capturing
information about the devices to determine the vague concepts
Experience (EX), Knowledge (KN) and Recommendation (RC),
and several fuzzy sets (linguistic terms) were defined for each
one. The following values for each concept are calculated for a
context c between two devices A and B, used as inputs for the
membership functions of the linguistic terms.

EX depends on the history of interactions 𝑣𝑘 between A and

B, where 𝑘 ∈ [0, 𝑛] , incrementing or decrementing when a
positive or negative interaction occurs, as shown in (1).

(EX)c =
∑ vk

n
k=1

∑ |vk|n
k=1

 ()

KN is calculated with the help of direct knowledge d, indirect
knowledge r, and their respective weights (Wd , Wr), where
d, r ∈ [−1,1], Wd, Wr ∈ [0,1], and Wd + Wr = 1, as shown in
(2).

(KN)c = Wd ∗ d + Wr ∗ r ()

The RC is calculated by device A based on the summation of
the RC values from n other devices about device B. Wi and (rc)i
are weights assigned by device A to the recommendation of the
ith device and its RC value respectively, where rc ∈ [−1,1] and
Wi ∈ [0,1], as shown in (3).

 (RC)c =
∑ Wi

n
1 ∗(rc)i

∑ (rc)i
n
1

 ()

Different permissions can be mapped to different levels of
trust, so depending on the level of trust the granted permissions
change. This the access decisions solely based on the level of
trust. If there are other access conditions, they need to be
considered separately. Since BDFIS can abstract any mapping
rule between subjects and resources, the level of trust can be
used in the same manner. However, unlike FTBAC, other access
requirements can be added without issue to the inference system.

Another work was carried out that uses fuzzy set theory to
calculate a measure of risk and applies it to enhance the access
security of eHealth cloud applications [10]. To achieve this,
three different inputs are used: data sensitivity; action severity;
and risk history. Next, a set of rules is applied to calculate the
level of risk associated. A crisp output value is then determined
by applying a defuzzification technique, which indicates the
overall level of risk as a percentage. However, the process to
determine whether the access should be granted given a risk
level is not detailed. Moreover, this approach is specific to the
measurement of the level of risk with a given access attempt.
This limits the applicability of this approach when compared to
BDFIS, which can use most concepts in its policies.

Figure 1. Conceptual BDFIS block diagram.

504

III. BINARY DECISION FIS ANALYSIS
In this section, a FIS is analyzed regarding its applicability

to binary decision making (access control grant/deny decisions)
in each of its processing steps.

There are many different types of FIS [24]–[28]. However,
the Mamdani-type FIS [28] was chosen for analysis since it is a
type of system that is commonly available on most FIS
implementation tools, has widespread use and it was found to be
easily adaptable to support binary decisions. The Sugano-type
FIS [27] is also commonly available in such tools, but it falls
short as it has less expressive power and interpretability than the
Mamdani-type FIS [29]. Fig. (1) shows the conceptual BDFIS
that will emerge from the analysis made in this section and will
serve as an illustrative guide to the proposed modifications.

The standard Mamdani-type FIS goes through the following
set of steps during processing:

1. The determination of the set of fuzzy rules by an expert
in the application context (i.e. the rules block);

2. The fuzzification of the input variable values into the
input linguistic terms (LTs) using the associated
membership functions;

3. The application of the fuzzy rules to establish the rule
strengths to the output LTs, known as the fuzzy
decision components (FDC) in the BDFIS;

4. The combination of the rule strength and the output
LTs membership functions to determine the
consequence functions for each output variable;

5. The combination of the consequence functions to get
an output distribution function for each output variable;

6. The defuzzification step, which outputs a single crisp
value for each output variable (a decision in the context
of the BDFIS) given an output distribution function
(required only if a crisp output is needed).

These steps will be detailed in the following subsections and
how they were modified for the BDFIS.

A. Fuzzy Rule Determination

The fuzzy rule determination process involves deciding
which linguistic terms are going to be used within the FIS, both
for input and output variables, and how they influence each other
using predefined rules.

The input linguistic terms should stay effectively the same as
they still qualify the attributes available in the application
context. The input linguistic terms and their membership
functions are still required to be written by an expert.

The output variables and linguistic terms, however, are
dependent on the decisions must be made. In the case of an
access control system, the decisions are either to grant or deny a
subject some permission to a resource. Thus, permissions can be
declared as the output variables according to Def. (1).

Definition 1. Access permissions in a BDFIS are output
variables associated with exactly two FDC linguistic terms: one
for a positive decision 𝐹𝐷𝐶+ (yes/grant); and one for a negative
decision 𝐹𝐷𝐶− (no/deny).

The rules can then take input linguistic terms from one or
more input variables and establish a relation to one of the FDCs.
To illustrate, consider two input variables A and B, with the
linguistic terms LTA and LTB, and an output variable Z. A rule
can take the form "if A is LTA and/or B is LTB then Z is FDC±".
For example, "if Expertise is High and Activity is Moderate then
Read is Granted."

This shows how a FIS can be used to easily encode vague
access conditions: given a set of vague concepts about a subject
(e.g. Expertise, level of Activity, etc.), the permissions (Read,
Write, etc.) to the resource are output variables that are defined
by either being granted (𝐹𝐷𝐶+) or denied (𝐹𝐷𝐶−). Furthermore,
the permission and decision pair are easily identifiable.

B. Input Fuzzification And Rule Strength

The input fuzzification process and rule strength
determination are steps that qualify the input variables in terms
of the defined linguistic terms. Given a set of linguistic terms Ti
for an input variable i, the membership degree of a subject s to
each linguistic term 𝑡 ∈ 𝑇𝑖 is obtained by applying that linguistic
term membership function 𝜇𝑡, as shown in (4).

 𝜇𝑡(𝑠): 𝑡 → [0,1], t ∈ Ti ()

To illustrate, if 𝜇𝑡(𝑥) = 𝑥/20, 0 ≤ 𝑥 ≤ 20 is used to define
the “high” linguistic term for the “number of publications” input
variable, then if a subject has 15 publications it has a
membership degree of 15/20 = 0.75 to that linguistic term.
The membership functions 𝜇 are defined by an expert in the
application context the BDFIS is to be deployed on, since vague
concepts like Expertise can change slightly depending on the
context. After a membership degree is calculated for each input
linguistic term, the rule strength for each output FDC can be
determined. This is usually done by applying the fuzzy logic
operators as dictated by the rules (AND, OR, and NOT). If more
than one rule applies to the same FDC, the rule strength of each
such rule is unified by typically applying the OR operator. These
operators have several different implementations for fuzzy logic
that can be used, but they always satisfy the De Morgan’s Laws.

To reiterate, there are only two possible output linguistic
terms: the FDC− and the FDC+. This makes it clear for which
outcome a rule is being used for instead of having something
more abstract, such as the user expertise level, and lets the
system make access control decisions based on it.

C. Consequence Determination

The next step is to determine the consequence of the rules
and to do so it is necessary to think about what the output is
intended to be.

The goal is to have a FIS that can make a binary access
control decision for each permission (i.e. grant or deny). As
such, each decision is defined by two linguistic terms, the FDC+
and FDC− output linguistic terms previously introduced. These
represent the positive and negative decisions for a single output,
respectively. This way, a subject attempting to access some
piece of information or service is mapped automatically through
rule strengths to each FDC.

Since each FDC is also a fuzzy set, each can have any

505

membership function that the security expert chooses. However,
a simpler approach is proposed to reduce the complexity of the
calculations and the potential performance bottleneck that
running a FIS can introduce. Instead of a user-defined output
membership function, each FDC will have a predefined
singleton function (see Def. (2)) instead.

Definition 2. A given function f(x) is a singleton function if
its output is always 0 except for a single input value x0 , for
which its output is 1 as shown in (5).

 f(x) = {
1, if x = x0

0, if x ≠ x0
 ()

Since it is expected for the BDFIS to output a decision, it
makes sense that they are each associated with a single value.
This is partially the reason why the membership function for
each FDC is proposed to be a singleton function. This is done by
setting the single function x0 value to 0 for the FDC− and to the
value 1 for the FDC+. These values were carefully chosen since
they simplify the defuzzification step considerably, which will
be shown in section III.D.

Thus, the membership functions of the FDC− (μ−(x)) and
FDC+ (μ+(x)) are singletons that are defined as shown in (6) and
(7), respectively.

 μ−(x) = {
1, if x = 0
0, if x ≠ 0

 ()

 μ+(x) = {
1, if x = 1
0, if x ≠ 1

 ()

Finally, the process of determining the consequence consists
of truncating the output membership function, i.e. both 𝜇−(𝑥)
and 𝜇+(𝑥). Def. (3) shows how this process is accomplished.

Definition 3. The process of truncating a given function f at
the value y = y0 generates a new function g that has the same
output as f except that any output value greater than y0 becomes
y0, as shown in (8).

 g(x) = min(f(x), y0) ()

Determining the consequence from these singleton functions
also becomes easier for the following reasons:

1. Singleton functions only have one input value (x = x0)
for which the output is not 0, thus only one value may
have to be truncated;

2. The FDC singleton membership functions always
output 1 for the value x = x0;

3. The rule strength applicable to each FDC always lies
within the range [0,1] since it is the result of the
application of fuzzy logic.

Since the output membership function of each FDC is either
0 or 1 as stated in reasons (1) and (2) and the rule strength is a
value within the range [0,1] as stated in reason (3), the
consequence function C is determined by simply replacing the
output value 1 with the rule strength RS for that 𝐹𝐷𝐶, as shown

in (9) for 𝐹𝐷𝐶− and (10) for 𝐹𝐷𝐶+.

 C−(x) = {
RS−, if x = 0

0, if x ≠ 0
 ()

 C+(x) = {
RS+, if x = 1

0, if x ≠ 1
 ()

These consequence functions can then be used in the
defuzzification step to generate a single, crisp output value. This
explains in part how using singleton functions simplifies the
computation of the final decisions. However, further benefits
from this approach will be explored in the following subsection.

D. Consequence Combination And Defuzzification

The next step in the process involves combining the
consequence functions of both FDCs (C− and C+) into an output
distribution function for each output decision. This allows to
apply a defuzzification method, an inverse transformation to the
fuzzification step, that outputs a crisp output value for each
output decision.

These steps are optional and depend on the level of
information the system requires to reach a decision. If the system
requires more than a crisp output value, it can use the rule
strengths given to each FDC and make a more informed decision
this way. For example, a use case could require an access control
system to ask a human to manually grant or deny access if the
rule strengths of both FDCs are close to one another.

However, if the system requires a crisp value between 0 and
1, then the consequence functions can be combined into an
output distribution function (Def. (4)) and a defuzzification step
may be used.

Definition 4. Given the consequence functions C− and C+ of
an output variable O , the output distribution function θ
associated with O is the result of applying an accumulative
function S, as shown in (11).

 θ(x) = S(C−, C+) ()

The approach used in this paper uses the maximum
accumulative function. Consider that both FDC− and FDC+
have RS− and RS+ rule strengths respectively. The resulting
output distribution function for each output decision Z (𝜃𝑍) is
shown in (12).

θZ(𝑥) = {
𝑅𝑆−, if x = 0
𝑅𝑆+, if x = 1

0, if x ≠ 0 ∧ x ≠ 1
 ()

Therefore, all output distribution functions are the
combination of two singleton functions, one for the FDC− on the
x value 0 and the other for the FDC+ on the x value 1.

A defuzzification method can then be applied to each output
distribution function generated this way for each output variable.
To show why the selected x values for each singleton were
chosen, the commonly used center of gravity for singletons
(COGS) defuzzification technique will be applied to 𝜃𝑍 . The
general COGS formula for a given output distribution function

506

θZ is given in (13).

 COGS(θZ) =
∑ xx ∗θZ(x)

∑ θZ(x)x
 ()

Note that if the output distribution function 𝜃𝑍 is not
generated from singleton membership functions then the
formula for the center of gravity is a division of two primitives.
Fortunately, since the proposed output distribution functions are
always the combination of two singletons, which are also always
defined on the x values 0 and 1, the formula (14) follows:

 COGS(θZ) =
0∗θZ(0)+1∗θZ(1)

θZ(0)+θZ(1)
=

θZ(1)

θZ(0)+θZ(1)
 ()

As it can be seen, the COGS formula was simplified to a
simple fraction of the rule strength of the FDC+ to the sum of the
rule strengths of the FDC− and FDC+, reducing its complexity.

The application of the COGS defuzzification method to each
output distribution function results in a crisp output value, which
can used to arrive at a final decision. The simplest way to achieve
this is to set a fixed threshold, such as 0.5, and if the crisp output
is lower than the threshold then the decision is negative (deny,
in the access control context), otherwise, it is positive (grant, in
the access control context). The threshold value can be increased
or decreased to fine-tune the system as required by an expert.
Any other method to arrive at a decision is valid, such as the
maximum method which takes the x value that maximizes the
output distribution function and depends only on the use case.

E. BDFIS Analysis

A modified Mamdani-type FIS called BDFIS has been
proposed and detailed in this paper. However, upon further
analysis, it was found that the consequence determination lacks
some of its former expressibility. The reason behind this comes
from the fact that the output linguistic terms and distribution
functions are now fixed, i.e. FDCs and singleton functions
respectively, while these functions could be defined freely in a
standard FIS. This forces the rule strengths for the FDCs to be
calculated directly from the input linguistic terms, where
abstract concepts such as Expertise could be defined in a
standard FIS instead. Thus, the ability to define abstract concepts
is hindered to some degree.

While this fact may not impact use cases with simpler access
control policies, it can impact the interpretability of the defined
rules in others. Consider a rule that defines the vague concept of
Expertise, such as “if Number_of_Publications is High then
Expertise is High". If someone is newly hired to manage a
system that uses this rule, it is clear what it is expressing: the
expertise of the subject.

As is, the BDFIS would need the input variables to be
mapped directly to the output decision variables, meaning that
the Expertise vague concept cannot be explicitly defined or used
in the mapping to the FDCs. Thus, a new security expert would
need more detailed external documentation to understand what
the rules are meant to represent to master the system, to write
new rules, etc. However, it is possible to add a second layer of
rules and intermediate variables to allow this (or more for
additional abstraction). The input linguistic terms are mapped to

these intermediate variables, which can include vague concepts
like Expertise, and then these variables are mapped to the FDCs.
This approach allows for rules to remain easily interpretable by
humans at the cost of some processing.

IV. PROOF OF CONCEPT
In this section, a proof of concept of the BDFIS will be

shown. The prototype of the BDFIS used for this proof of
concept uses JFuzzyLogic[30][31] and is available at
github.com/Regateiro/FuzzyAC/tree/master/java/BDFIS. The
academic.fcl file defines a BDFIS that makes access control
decisions based on the expertise of a subject, using the Fuzzy
Control Language (FCL)[32]. The BDFIS also comprises of two
blocks of variables and rules, the first calculates the degree of
expertise of the subject and the second the access control
permissions. Fig. (2) shows the output of the proof of concept
BDFIS implementation using the provided FCL file.

Figure 2. Sample BDFIS implementation output.

The defined BDFIS takes two input variables: the number of
publications (omitted); and the number of citations (lines 1-4).
These are used to determine the Expertise of the subject in the
first set of rules (lines 6-10). The Expertise is then applied in the
second set of rules to calculate the FDCs for a Read and Write
permissions (lines 12-18). These are necessary to calculate
whether the subject is granted each permission, by checking if
the final defuzzified value is greater than 0.5 (grant) or not
(deny). This value can be modified by an expert to require
subjects to have lower or higher membership degrees to be
granted access.

The numbers to the right of the input and output variables
denote the crisp value associated with them (either provided as
input or calculated from defuzzification). The number to the
right of the terms denote their associated membership degrees.
These are calculated from piecewise linear membership
functions and rules defined by an expert in the academic.fcl file
using the steps and methods explained in this paper. The BDFIS
implementation automatically passes the Expertise value
calculated by the first set of rules to the second set of rules as an
input. Finally, since the Read permission has the output value
1.0 > 0.5, it is granted, and the Write permission with the output
value 0.275862 < 0.5 is denied.

507

V. DISCUSSION
In this paper, a FIS that can make binary access control

decisions was proposed. Through the analysis made to each
processing step, several changes were introduced that allowed a
Mamdani-type FIS to specialize in the output of binary
decisions. Furthermore, some proposed modifications optimized
the output generation process, making this type of systems to
have the potential for deployment in access control scenarios
that deal with vague knowledge. Given the broad spectrum of
areas where FIS are used, it shows that they are useful if
correctly defined. By creating the BDFIS as closely as possible
to a standard FIS, it is expected that it can be just as effective in
access control scenarios.

One might question the appropriateness of applying fuzzy set
theory to model access control since its inherent vagueness
prevents an expert from easily knowing if a subject can access
the protected data or not. Furthermore, auditing such a system is
not easy given that new subjects may request access at any time.

Due to the vague nature of the fuzzy access control rules, the
exact ranges of input values that grant access to the data is not
clear. Thus, the possibility that an unexpected combination of
input values granting access to the data may exist. It is important
to note, however, that such a fuzzy access control model would
still be deterministic. Furthermore, since vague conditions are
applicable to a range of input values (with varying membership
degrees), fewer rules are needed when compared to classic
models, which generally requires each combination of input
values to be written down as a separate rule. Nonetheless, fuzzy-
based access control models are not easily accepted to manage
sensitive data (e.g. hospital patient data), understandably due to
the issues related to its inherent vagueness.

For future work, it is intended to build a system that can audit
a BDFIS for correctness, an important feature for any access
control system to have, and the calibration of the threshold
values. Since the subject parameters used as input values are
fuzzified, it is hard to determine from the fuzzy rules if they have
access to a resource or not. Thus, being able to determine which
input values grant or deny access is an important step towards
making BDFIS a viable part of an access control system.

REFERENCES
[1] R. Shirey, “Internet Security Glossary, Version 2,” Aug. 2007.
[2] D. Ferraiolo and D. Kuhn, “Role-based access controls,” 15th Natl.

Comput. Secur. Conf., 1992, pp. 554–563.
[3] L. a. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, 1965, pp. 338–353.
[4] H. Singh et al., “Real-Life Applications of Fuzzy Logic,” Adv. Fuzzy

Syst., vol. 2013, 2013, pp. 1–3.
[5] N. H. Phuong and V. Kreinovich, “Fuzzy logic and its applications in

medicine,” Int. J. Med. Inform., vol. 62, no. 2–3, Jul. 2001, pp. 165–173.
[6] M. A. Ghahazi, M. H. Fazel Zarandi, M. H. Harirchian, and S. R.

Damirchi-Darasi, “Fuzzy rule based expert system for diagnosis of
multiple sclerosis,” in 2014 IEEE Conference on Norbert Wiener in the
21st Century (21CW), 2014, pp. 1–5.

[7] S. SushilSikchi, S. Sikchi, and A. M. S., “Fuzzy Expert Systems (FES) for
Medical Diagnosis,” Int. J. Comput. Appl., vol. 63, no. 11, Feb. 2013, pp.
7–16.

[8] S. Berenjian, M. Shajari, N. Farshid, and M. Hatamian, “Intelligent
Automated Intrusion Response System based on fuzzy decision making
and risk assessment,” in 2016 IEEE 8th International Conference on
Intelligent Systems (IS), 2016, pp. 709–714.

[9] S. Al Amro, F. Chiclana, and D. A. Elizondo, “Application of Fuzzy Logic
in Computer Security and Forensics,” in Studies in Computational
Intelligence, vol. 394, 2012, pp. 35–49.

[10] J. Li, Y. Bai, and N. Zaman, “A Fuzzy Modeling Approach for Risk-
Based Access Control in eHealth Cloud,” in 2013 12th IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications, 2013, pp. 17–23.

[11] P. N. Mahalle, P. A. Thakre, N. R. Prasad, and R. Prasad, “A fuzzy
approach to trust based access control in internet of things,” in Wireless
VITAE 2013, 2013, pp. 1–5.

[12] H. Takabi, M. Amini, and R. Jalili, “Enhancing Role-Based Access
Control Model through Fuzzy Relations,” in Third International
Symposium on Information Assurance and Security, 2007, no. 500, pp.
131–136.

[13] M. Botha and R. von Solms, “Utilising fuzzy logic and trend analysis for
effective intrusion detection,” Comput. Secur., vol. 22, no. 5, 2003, pp.
423–434.

[14] V. C. V. Hu, D. F. Ferraiolo, and D. R. Kuhn, “Assessment of access
control systems,” Nistir 7316, 2006, p. 60.

[15] V. Henn, “Fuzzy route choice model for traffic assignment,” Fuzzy Sets
Syst., vol. 116, no. 1, Nov. 2000, pp. 77–101.

[16] S. N. Shiaeles, V. Katos, A. S. Karakos, and B. K. Papadopoulos, “Real
time DDoS detection using fuzzy estimators,” Comput. Secur., vol. 31,
no. 6, 2012, pp. 782–790.

[17] J. Luo and E. Lan, “Fuzzy Logic Controllers for Aircraft Flight Control,”
in Fuzzy Logic and Intelligent Systems, vol. 3, Dordrecht: Springer
Netherlands, 1995, pp. 85–124.

[18] S. Othman and E. Schneider, “Decision making using fuzzy logic for
stock trading,” in 2010 International Symposium on Information
Technology, 2010, pp. 880–884.

[19] Ying Bai, H. Zhuang, and D. Wang, Advanced Fuzzy Logic Technologies
in Industrial Applications. London: Springer London, 2006.

[20] W. Liu and H. Liao, “A Bibliometric Analysis of Fuzzy Decision
Research During 1970–2015,” Int. J. Fuzzy Syst., vol. 19, no. 1, Feb. 2017,
pp. 1–14.

[21] Y. Wardhana, B. Hardian, G. Guarddin, and H. Rasyidi, “Context aware
door access control on private room using fuzzy logic: Case study of smart
home,” in 2013 International Conference on Advanced Computer Science
and Information Systems (ICACSIS), 2013, pp. 155–159.

[22] A. C. F. Guimarães and C. M. F. Lapa, “Fuzzy inference to risk
assessment on nuclear engineering systems,” Appl. Soft Comput., vol. 7,
no. 1, Jan. 2007, pp. 17–28.

[23] C. Martínez-García, G. Navarro-Arribas, and J. Borrell, “Fuzzy Role-
Based Access Control,” Inf. Process. Lett., vol. 111, no. 10, 2011, pp.
483–487.

[24] F. Qian, S. Sen, and O. Spatscheck, “[JJ]Characterizing resource usage
for mobile web browsing,” MobiSys ’14, 2014, pp. 218–231.

[25] R. Werneck, J. Setubal, and A. da Conceicão, “(old) Finding minimum
congestion spanning trees,” J. Exp. Algorithmics, vol. 5, 2000, p. 11.

[26] M. Conti, R. Di Pietro, L. V Mancini, and A. Mei, “(old) Distributed data
source verification in wireless sensor networks,” Inf. Fusion, vol. 10, no.
4, 2009, pp. 342–353.

[27] M. Sugeno, “Industrial applications of fuzzy control,” Elsevier Sci. Pub.
Co., 1985.

[28] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller,” Int. J. Man. Mach. Stud., vol. 7, no. 1, 1975,
pp. 1–13.

[29] A. Kaur and A. Kaur, “Comparison of Mamdani-Type and Sugeno-Type
Fuzzy Inference Systems for Air Conditioning System,” Int. J. Soft
Comput. Eng., vol. 2, no. 2, 2012, pp. 323–325.

[30] P. Cingolani and J. Alcalá-Fdez, “JFuzzyLogic: A robust and flexible
Fuzzy-Logic inference system language implementation,” in IEEE
International Conference on Fuzzy Systems, 2012.

[31] P. Cingolani and J. Alcala-Fdez, “jFuzzyLogic: a Java Library to Design
Fuzzy Logic Controllers According to the Standard for Fuzzy Control
Programming,” Int. J. Comp. Int. Syst., vol. 6, no. sup1, 2013, pp. 61–75.

[32] IEC, “Fuzzy Control Programming (IEC 1131-7 CD1).” pp. 1–53, 1997.

508

Fuzzy Bi-Objective Particle Swarm Optimization
for Next Release Problem

Carlos Casanova∗, Giovanni Daián Rottoli∗, Esteban Schab∗, Luciano Bracco∗,
Fernando Pereyra∗ and Anabella De Battista∗

∗ Computational Intelligence and Software Engineering Research Group (GIICIS)
Regional Faculty from Concepción del Uruguay.

National Technological University (UTN), Entre Rı́os, Argentina.
Email: {casanovac,rottolig,schabe,braccol,pereyraf,debattistaa}@frcu.utn.edu.ar

Abstract—In search-based software engineering (SBSE),
software engineers usually have to select one among many
quasi-optimal solutions with different values for the objectives
of interest for a particular problem domain. Because of
this, a metaheuristic algorithm is needed to explore a larger
extension of the Pareto optimal front to provide a bigger set
of possible solutions. In this regard the Fuzzy Multi-Objective
Particle Swarm Optimization (FMOPSO), a novel a posteriori
algorithm, is proposed in this paper and compared with other
state-of-the-art algorithms. The results show that FMOPSO is
adequate for finding very detailed Pareto Fronts.

Index Terms—Search-Based Software Engineering;
Multi-Objective Optimization; Particle Swarm Optimization;
Next Release Problem; Fuzzy Logic.

I. INTRODUCTION

Search-Based Software Engineering (SBSE) is a discipline
that aims to help software engineers build high quality
software through the application of search methods. The main
strategy is to change the focus from describing how to develop
the software to describing what the software characteristics
are. This description has to be codified to be understood by a
search algorithm capable of generating new possible products
and evaluate their quality using a set of rules provided by the
engineer [1].

The problems to be solved using this type of approach are
formulated as optimization problems that have, in the majority
of the cases, a combinatorial search space and multiple
objectives. Because of this, metaheuristics are generaly
used, discarding classical methods for optimization such as
mathematical programming.

This paper introduces a first version of a novel metaheuristic
algorithm named Fuzzy Multi-Objective Particle Swarm
Optimization (FMOPSO), designed to deal with this kind
of problems by creating a fitness function of multiple
objectives using fuzzy weight factors. Different configurations
of this fitness function are used to guide the method
in the aproximation of the Pareto-optimal front. This
new algorithm has been tested on two instances of a
well-known Search-Based Software Engineering problem, the
Next Release Problem (NRP).

DOI reference number: 10.18293/SEKE2019-082

This problem, first proposed by [2], is aimed at finding
a requirement subset to be implemented that satisfy the
stakeholders’ needs, looking for the maximization of the profit
and minimization of the implementation cost [3]. In addition, it
may also be restricted by dependencies between requirements
such as precedence and simultaneity, among others.

The rest of this paper is organized as follows. In Section
II the multi-objective optimization is introduced. Section III
describes the Fuzzy Bi-Objective Particle Swarm Optimization
algorithm proposed in this paper. Section IV explores the
behavior of this proposal and compares it with another well
known state-of-the-art algorithms. Finally, Section V contains
the conclusions and future work.

II. MULTI-OBJECTIVE OPTIMIZATION

A commonly used optimization approach consists on
selecting as objective function one of the system’s attributes
and using it to define the (total) order of preferences of the
feasible solutions, resulting a mono-objective problem. The
rest of the attributes modeled as constraints.

On the other hand, the multi-objective optimization
approach uses several attributes as objective function. These
objectives compete against each other defining a partial order
on the solution space where there are solutions that are not
comparable a priori. This partial order is called Dominance
Relation. The set of all the non-dominated solutions is called
Pareto Front, and is the result of an optimization method
that makes no assumptions about the preferences of the
decision-maker.

It is important for the Pareto Front to be as detailed as
possible so the decision-maker can select the solution that
best fits their needs. Additionally, the Pareto Front provides
valuable information about the relation between the competing
objectives to use to analyze “What if...?” questions.

III. FUZZY MULTI-OBJECTIVE PARTICLE SWARM
OPTIMIZATION

Particle Swarm Optimization (PSO) is a population-based
metaheuristic, which means that in each iteration there is a
set (swarm) of possible solutions called particles that move
through the search space to find new solutions.

509

The movement or change in the position of each particle is
computed using a movement equation. This equation specifies
the way in which the solution is perturbed. Thus, this is a
perturbative metaheuristic.

Each particle has access to a fitness function that evaluates
the efficiency of the particle’s position. This function is the
objective function to be optimized. Then, each particle i in
the iteration k+1 change its position X [k+1]

i according to the
particle’s velocity V [k+1]

i , computed using the movement rule:

V
[k+1]
i = V

[k]
i +wC×r

[k+1]
1 ×

[
b
[k]
i –X

[k]
i

]
+wS×r

[k+1]
2 ×

[
b
[k]
G –X

[k]
i

]
(1)

where b
[k]
i is the best position reached by the particle in

previous iterations, bG[k] is the best position reached by the
swarm in previous iterations, r1 and r2 are random numbers
uniformly distributed in the interval [0,1], and wC and wS

are prefixed constants. These three terms from the movement
equation are, in that order, the inertia term, the memory term,
and the cooperation term. Consequently, the position X

[k+1]
i

is modified as follow:
X

[k+1]
i = X

[k]
i + V

[k+1]
i (2)

A. Canonical PSO Implementation
PSO is an algorithm that was originally designed to work

with continuous variables. However, in order to approach
combinatorial optimization problems, it can be reformulated
to take into account the combinatorial aspects of the problem
into the movement equation. It is because of this that the
Canonical PSO model comes up [4], specifying the necessary
and sufficient conditions to use PSO in any domain. According
to it, the representation of the following items has to be
defined: (a) the position and velocity of a particle; (b) a
scalar-valued or vector-valued fitness function; (c) a total or
partial order relation on the fitness function codomain; (d) the
binary operations:

- subtraction(position, position)
−−→ velocity

- external product(real number, velocity)
·−→ velocity

- addition(velocity, velocity)
⊕−→ velocity

- displacement(position, velocity)
+−→ position

For the Next Release Problem, binary vectors are used to
represent the position and velocity of a particle [5]. Each
vector has a lenght equal to the number of requirements. In the
position vector, each component xj represents the decision of
including (1) or excluding (0) requirement j. In the velocity
vector instead, the value 1 in the position vj means the value
in xj has to change to its complement.

The binary operations are described in the following
sections.

B. Fuzzy Single-Objectivization
It is possible to compose a single objective function of

multiple objectives using fuzzy sets [6]. A fuzzy decision set
D̃ can be built from nO objectives Õ1, Õ2, . . . , ÕnO using the
intersection according to the triangular norm t, that represents
the objectives confluence. Thus, D̃ is defined as follow:

D̃ = Õ1 ∩t Õ2 ∩t · · · ∩t ÕnO (3)

then, using an in-order notation:

µD̃(x) = µÕ1
(x) t µÕ2

(x) t . . . t µÕnO
(x) (4)

It is reasonable in the majority of the cases to choose the
option x with the maximum membership degree to the fuzzy
decision set.

Furthermore, [7] presents a mechanism to give to
each objective differentiated preferences by affecting the
membership function using an exponential weighting factor ρ
in order to contract (increase), with ρ > 1, or dilate (decrease),
with ρ < 1, the relevance of each objective.

Let ρ1, ρ2, . . . , ρnO be the exponential weighting factors
associated with each objective such that

∑nO
i=1 ρi = nO. In

consequence, D̃ is defined as follows:

µD̃(x) = µρ1
Õ1

(x) t µρ2
Õ2

(x) t . . . t µ
ρnO

ÕnO
(x) (5)

The problem addressed in this paper contemplates two
objectives: the implementation cost C, and the profit B given
by the stakeholders’ satisfaction. The membership function of
the fuzzy number associated to the cost is:

µC(X, ρC) =

1 if C(X) ≤ Cmin(

C(X)−Cmax
Cmin−Cmax

)ρC
if Cmin < C(X) < Cmax

0 if C(X) ≥ Cmax
(6)

where C(X) is the cost of implementing the solution X , Cmin

and Cmax are the minimum and maximum values of reference
for the cost variable, and ρC is the prefixed weighting factor.

In the same way, the membership function of the fuzzy
number associated to the profit is:

µB(X, ρB) =

1 if B(X) ≥ Bmax(

B(X)–Bmin
Bmax–Bmin

)ρB
if Bmin < B(X) < Bmax

0 if B(X) ≤ Bmin
(7)

where B(X) is the profit given by the solution X , Bmin and
Bmax are the minimum and maximum values of reference for
the profit variable, and ρB is the prefixed weighting factor.

If the stakeholders’ preferences are not known and it is
required to find the whole Pareto Front, this method is still
suitable by using multiple weighting factor values to specialize
the search in multiple regions of the search space at the same
time.

This strategy may be implemented by assigning different
values for the weighting factors to disctinct groups of particles,
so each group explores a different region of the space (Fig.

Fig. 1: Configurations of the fuzzy numbers for different
groups (by column) with two objectives: Profit (blue): ρ̄ =
(0, 0.5, 1, 1.5, 2) and Cost (red): ρ̄ = (2, 1.5, 1, 0.5, 0).

510

1). Therefore, the fitness function evaluated for a position X
in group j is:

µD(X, j) = min

(
µC

(
X,

2(j − 1)

(n− 1)

)
, µB

(
X, 2−

2(j − 1)

(n− 1)

))
(8)

C. Topology and individual best updates

A key aspect to consider when using PSO is to define how
the particles communicate with each other. The component
that rules this communication is called topology.

Assuming that there are n different weighting factors values
or, in other words, n groups into the swarm, the particles
assigned to the jth group share a single best group position
denoted bj that is used into the memory term of the movement
equation. If each group has the same number of particles,
say m, the swarm is thus arranged in a matrix Mm×n.
Consequently, each particle can be denoted with a double
subindex (i, j), with 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Additionally, each particle has access to the best position
reached by its adjacent groups bj−1 and bj+1, if they exist. In
order to determine the position to be used in the cooperation
term, the one with the highest value is selected.

Furthermore, an additional rule has to be taken into account
to update the best group solutions bj . When a new position
X

[k+1]
ij is computed, it is evaluated according to at most

three version of the fitness function: µD(X
[k+1]
ij , j − 1),

µD(X
[k+1]
ij , j) and µD(X

[k+1]
ij , j + 1).

As each particle is affected by its neighbours, this particle
can find a good solution to its own fitness function version
or to the version of its neighbors. Thus, when it is time
to update the best group positions, bj , the new position to
be evaluated are X

[k+1]
il , with i ∈ {1, . . . ,m} and l ∈

{max(1, j − 1), . . . ,min(j + 1, n)}.

D. Binary Operators

The binary operations used in the FMOPSO implementation
are Xor, And & Or from Boole’s Algebra, denoted by ⊕, ·,
+, respectively. In this approach, the movement equation leave
aside the inertia term:

V
[k+1]
ij = r

[k+1]
1 ·

(
b
[k]
j ⊕X

[k]
ij

)
+ r

[k+1]
2 ·

(
b
[k]
V j ⊕X

[k]
ij

)
(9)

This rule can compute an unfeasible position, thus, the
Xor operation related to the movement is performed in
increasing order adding predecessors or removing successors,
as appropriate.

Finally, if the particle does not change its position in two
consecutive iterations, a mutation is applied on a random
component to invert its value, adding predecessors or removing
successors too.

IV. EXPERIMENTAL DESIGN

A study on two NRP instances obtained from the classic set
of instances of [8] were performed. The first one, named nrp1
has 140 requirements and 100 stakeholders. The second one,
named nrp2, has 620 requirements and 500 stakeholders. Both
instances have precedence relations between requirements. The
reference values Bmin and Cmin were set to 0 for both

instances. The values for Bmax were 2909 for nrp1 and
14708 for nrp2. The values for Cmax were 787 for nrp1 and
4758 for nrp2. These values were found through an exact
mono-objective optimization using Branch & Bound.

Several tests were conducted on the aforementioned
instances using the proposed FMOPSO algorithm. The
results were compared with two widely used state-of-the-art
algorithms: NSGA-II (Non-Dominated Sorting Genetic
Algorithm) [9] and IBEA (Indicator-Based Evolutionary
Algorithm) [10].

The metrics used for the comparison were the Hypervolume
(HV), to evaluate the quality of the solution, and the Pareto
Front Size (PFS), to assess the population diversity [11].

The parameters were tuned ad-hoc by executing each
algorithm 5 times with many different configurations to find
the best set of values. The best configurations were selected
according to the median of the Hypervolume. With this best
setting for each algorithm, 10 more executions were performed
to obtain a representative value distribution of the selected
metrics. All the partial results can be found in [12].

The software used for the experiment was written in C++
using and extending the ParadisEO library [13]. FMOPSO
was implemented by the authors. The ParadisEO’s versions of
NSGA-II and IBEA were used. The crossover operator used
to produce two new individuals is equivalent to the boolean
operators + and ·. The mutation operator is the same used in
the FMOPSO, as mentioned before. The code can be found in
https://github.com/casanovac/FMOPSO.

The running time was the same for all the algorithms: 30
seconds for nrp1 and 60 seconds for nrp2.

A. Results

The results (Table I) show that FMOPSO is a better option
regarding diversity, this is, the values for the PFS metric,
obtained using this algorithm, are higher than those obtained
using the state-of-the-art alternatives. However, FMOPSO
is overtaken by IBEA for the Hypervolume, but shows a
better performance than NSGA-II, a widely used algorithm
in Search-Based Software Engineering (Fig. 2).

Additionally, Figure 3 shows that NSGA-II does not cover
the Pareto Front uniformly: there are many regions that were
not explored. IBEA, on the other hand, generates the best
non-dominated solutions, but with many gaps too. FMOPSO,
however, scans the whole front in a uniform way, with a low

TABLE I: Result Descriptors

Problem NRP1 NRP2
Metric Algorithm FMOPSO IBEA NSGAII FMOPSO IBEA NSGAII

HV

Min 0.5651 0.5586 0.5256 0.4550 0.4967 0.3952
1st Q. 0.5673 0.5614 0.5323 0.4570 0.4977 0.3996
Median 0.5683 0.5652 0.5347 0.4592 0.4981 0.4032
Mean 0.5679 0.5631 0.5351 0.4594 0.4982 0.4027

3rd Q. 0.5689 0.5646 0.5392 0.4612 0.4990 0.4052
Max 0.5695 0.5668 0.5422 0.4663 0.4996 0.4106

PFS

Min 227 85 100 338 45 242
1st Q. 234 85 105.5 347 47.25 251.5
Median 239 87.5 112 353.5 48 259
Mean 240 88.22 110.2 353.2 47.9 257.8

3rd Q. 250 90.5 115 357,5 49 263
Max 253 95 116 369 50 271

511

Fig. 2: Box plots with the distribution of the HV (Top) and the
PFS (Bottom) on two instances of the Next Release Problem.

quality loss, as can be seen in the scatterplot related to the
second instance of the problem.

According to this study, FMOPSO is an adequate alternative
when the purpose is to obtain a very detailed Pareto Front, with
a very good level of quality.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the Bi-Objective Next Release Problem has
been presented at a conceptual level. A novel a posteriori
metaheuristic algorithm that aproximates the Pareto Front
for the aforementioned bi-objective NRP was also presented:
FMOPSO. This algorithm composes a fitness function by
using mixed weights for different groups of particles from
the swarm.

Technical and theoretical aspects on this algorithm
have been presented. A comparative study was performed
comparing this proposal with two different state-of-the-art
algorithms.. The obtained results are promising and encourage
to keep looking forward to the study of many yet unexplored
aspects of this new algorithm.

It is necessary to adapt FMOPSO to be used in an interactive
way. Extending the FMOPSO to deal with other SBSE
problems that include more than two objectives should also
be a goal.

ACKNOWLEDGEMENTS

Thanks to the National Technological University from
Argentina (UTN) through the project SIUTICU0005297TC:
“Preference-based Multi-objective Optimization Approaches
applied to Software Engineering”, and to Kevin-Mark Bozell
Poudereux, for proofreading the translation.

Fig. 3: Pareto Fronts from a random execution of the
algorithms

REFERENCES

[1] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[2] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley, “The next release
problem,” Information and Software Technology, 2001.

[3] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-objective next
release problem,” in Proceedings of the 9th annual conference on
Genetic and evolutionary computation - GECCO ’07. ACM Press,
2007, p. 1129.

[4] M. Clerc, Particle Swarm Optimization, 2006.
[5] F. Afshinmanesh, A. Marandi, and A. Rahimi-Kian, “A novel binary

particle swarm optimization method using artificial immune system,”
in Computer as a Tool, 2005. EUROCON 2005. The International
Conference on. IEEE, 2005, pp. 217–220.

[6] R. E. Bellman and L. A. Zadeh, “Decision-making in a fuzzy
environment,” Management science, vol. 17, no. 4, pp. B–141, 1970.

[7] R. R. Yager, “Multiple objective decision-making using fuzzy sets,”
International Journal of Man-Machine Studies, vol. 9, no. 4, pp.
375–382, 1977.

[8] J. Xuan, H. Jiang, Z. Ren, and Z. Luo, “Solving the Large Scale Next
Release Problem with a Backbone-Based Multilevel Algorithm,” IEEE
Transactions on Software Engineering, vol. 38, no. 5, pp. 1195–1212,
sep 2012.

[9] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast
elitist non-dominated sorting genetic algorithm for multi-objective
optimization: Nsga-ii,” in International conference on parallel problem
solving from nature. Springer, 2000, pp. 849–858.

[10] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in International Conference on Parallel Problem Solving from
Nature. Springer, 2004, pp. 832–842.

[11] C. Grosan, M. Oltean, and D. Dumitrescu, “Performance metrics for
multiobjective optimization evolutionary algorithms,” in Proceedings of
Conference on Applied and Industrial Mathematics (CAIM), Oradea,
2003.

[12] C. Casanova, A. De Battista, E. Schab, G. D. Rottoli,
L. Bracco, and F. Pereyra, “Execution Results Bi-Objective
NRP with FMOPSO-IBEA-NSGAII,” feb 2019. [Online]. Available:
https://dx.doi.org/10.17632/d7y3x97hsx.1

[13] S. Cahon, N. Melab, and E.-G. Talbi, “Paradiseo: A framework for the
reusable design of parallel and distributed metaheuristics,” Journal of
heuristics, vol. 10, no. 3, pp. 357–380, 2004.

512

Language Independent POS-tagging Using
Automatically Generated Markov Chains.

Joaquim Assunção1, Paulo Fernandes2, Lucelene Lopes2

1 UFSM Department of Applied Computing – Santa Maria – Brazil
2 Roberts Wesleyan College – Rochester, NY – USA

joaquim@inf.ufsm.br, fernandes_paulo@roberts.edu, lopes_lucelene@roberts.edu

Abstract
This paper proposes a method to predict word grammatical classes
using automatically generated discrete-time Markov chains to
model typical sentences. Such method advantage relies on the avail-
ability of input resources needed to build an efficient and effective
solution to virtually any language, dialect, or domain lingo. One
of the main advantages of the proposed method is its simplicity
when compared to other sophisticated approaches based on Hidden
Markov Models or even more complex formalisms. The proposed
method is instantiated to an example and we show that the achieved
efficiency and effectiveness bring advantages to traditional similar
solutions.

1 Introduction
Part-Of-Speech (POS) tagging is a very basic task for all
Natural Language Processing (NLP) techniques based on
linguistic approach. However, only well resourced languages
have very effective solution for POS tagging [14]. This fact
makes statistical approaches very popular to less resourced
languages [6, 13] or even domain lingo [17]. Acquiring
information on informal texts, as social networks chats and
comments, the use of a tool independent of formal language
definition is even more interesting, since it can help to tackle
an open NLP problem.

In contrast with the difficulty to find out structured
knowledge for less resourced and informal languages, the
Internet offers abundant unstructured material (texts) in ev-
ery language and dialect. Consequently, a procedure capable
to produce structured knowledge from textual sources would
cope with such limitations.

As for software tools, the basic modules needed for a
POS-tagger are a dictionary retriever (to identify possible
grammatical classes for known words) and a predictor (to
disambiguate words that can be employed with more than
one role, or guess the role for unknown words). The
dictionary retrieving task for any language can be solved

∗DOI reference number: 10.18293/SEKE2019-097

very efficiently by the use of decision diagrams [12], and
even multilingual dictionary retrievers can be implemented
very efficiently [3].

The gap between a dictionary retriever and a POS-
tagger is essentially the syntactic disambiguation task. In
the context of this paper we limit ourselves to consider only
a shallow POS-tagger assigning a word class to each word,
but the methods and techniques discussed in this paper can
be applied to even more sophisticated POS-tagger without
any loss of generalization.

Our goal is to provide an effective grammatical class
predictor to words inside a sentence previously tagged with
an efficient dictionary retriever. In order to do so, we propose
the construction of Markov chains [16] to describe typical
phrases and use the transient analysis of such chains to
predict the grammatical class of each word. These typical
phrases can be viewed as a training set for the POS-tagger.
Consequently, the produced Markov chains can be viewed
as a model of the language patterns, i.e., the structured
knowledge of the target language. The enlargement of scope
of POS-taggers would benefit several NLP tasks like term
extraction [9, 10], ontology processing [5], and textual data
mining [1], to cite a few.

Our proposed method fits into a POS-tagging land-
scape as simpler than sophisticated approaches based on
Data mining approaches as Support Vector Machines -
SVM [4], or inference models as Conditional Random Fields
- CRF [8]. Nevertheless, our method is more flexible than
traditional linguistic approaches heavily anchored in specific
languages [2, 15].

2 Basic Tools
To better understand this paper proposed method, this section
presents brief descriptions of Markov chains and Decision
Diagrams-based dictionary retrievers.

2.1 Markov Chains Markov chains is a formalism to
represent discrete state models as, in our case, a finite

513

automaton where the transitions are fired by the occurrence
of a stochastic process [16]. Although there is a very large
variety of Markovian models the plain discrete-time Markov
chains are sufficient to express a model as a set of states and
transitions among them associated to known probabilities.
To exemplify such chains, as will be used in the context of
this paper, Figure 1 depicts a simple chain with three states:
Sunny, Cloudy, and Rainy.

CloudySunny

Rainy

0.3

0.7

0.1

0.2

0.5

0.5 0.5

0.2

Figure 1: Simple Markov chain example.

Formally, we denote a DTMC by a matrix P where
the element p(i, j) corresponds to the probability of leav-
ing state i towards state j, e.g., in the chain of Fig. 1,
p(Rainy,Cloudy) = 0.7 and p(Sunny,Rainy) = 0.0. For a
model like this it is possible to make simple predictions, as
for example, if a unknown day was preceded by a Sunny
day and succeeded by a another Sunny day, it is possible to
analyze all three possible intermediate states: Sunny-Sunny-
Sunny (0.5×0.5= 0.25); Sunny-Cloudy-Sunny (0.5×0.3=
0.15); and Sunny-Rainy-Sunny (0.0× 0.1 = 0.0). Since all
three possibilities sums up 0.4, it is possible to say that the
intermediate day was: Sunny with probability 0.625 (0.25

0.4) or
Cloudy with probability 0.375 (0.15

0.4).

2.2 Diagram Decision-based Dictionary Retriever The
use of decision diagrams to recognize words, and associate
its word class (or possible classes), can be very efficient and
very effective as proposed in the WAGGER software tool [3].
According to this work, a decision diagram structure holding
a multilingual dictionary with English and Portuguese words
(a little more than one million words) can be used to tag
possible word classes to large corpora (for instance, two
million words) in less than three seconds using a personal
machine. Such performance leads us to employ WAGGER
for all experiments in our paper.

The technology behind such a dictionary retriever are
Multi-Terminal Multi-valued Decision Diagrams [7]. Such
structures are not only very effective to provide a fast recov-
ery using small amounts of memory, but they also provide
flexible structures that can be enhanced, for instance, by in-
cluding new dictionary words.

The input of WAGGER is a dictionary in textual format,
i.e., a list of words with their possible word classes. Then,
it generates a MTMDD structure that can acts as dictionary
retriever for a list of sentences that are annotated with the

possible word classes of each sentences’ word.

Figure 2: WAGGER output for an example sentence.

The WAGGER output is all words of each sentence fol-
lowed by the possible word classes. For example, Figure 2
presents the output of WAGGER using our English dictio-
nary [3] for the sentence “I believe what I see, but I see what
I look and I look what I want to look”. In this figure, the cor-
rect word class is indicated in bold. For instance, word “and”
plays the role of conjunction in this sentence, but according
to the dictionary “and” can also be employed as a noun.

In order to formalize the WAGGER output we will
denote by ws

i the i-th word in sentence s, and C(ws
i) the set of

all possible word classes of word ws
i . Note that the set C(ws

i)
of a given word is independent of the sentence in which the
word is (s). For instance, the word “and” (the thirteenth word
of the example sentence) is formally defined by:

ws
13 = “and” C(ws

13) = {conjunction,noun}

3 Proposed Method
The proposed method follows the general idea of train and
test, since it starts with a set of sentences manually tagged
(training set), and only after we attempt to disambiguate
word tags for sentences tagged by WAGGER (testing set).
Figure 3 depicts the proposed method with the training
task to construct the Markov chains, and the testing task
to disambiguate WAGGER multiple or absent tags. It is
important to notice that the training task needs a supervised
action: a human made annotation, required according to the
language of the target corpus.. All other tasks, including the
annotation made by WAGGER, are fully automated, and, as
exemplified in Section 4, memory and time efficient.

Figure 3: Proposed method.

514

3.1 Training Task Giving annotated sentences as the ex-
ample in Figure 4, we construct a Markov chain for each sen-
tence considering the sequences of word classes found in the
sentence. This process corresponds to the capturing of an ap-
proximative model of the patterns of word class sequences,
having each example sentence as an instance of the language
usage.

Figure 4: Manually annotated sentence used as training.

Basically, the Markov chain created has all word classes
as the chain states, and every exiting arc represents a possible
succession of words classes. For instance, the adjectives
(adj) are succeeded twice by a noun (n) and once by a
conjunction (conj). Hence, the adj state has transition
towards n with probability 2

3 and a transition towards conj
with probability 1

3 . Repeating the same procedure for all
word classes creates the Markov chain depicted in Figure 5.

adj

n

verb

art punct

conj

adv

pron

prep

2/3

1/3

1/21/2

1/2

1/2

1/2

1/2

1/2

1/2

1/1

2/3

1/3

1/1

1/5
1/5

1/5

2/5

Figure 5: Markov chain for sentence in Figure 4.

This same process of creation of Markov chain is re-
peated for a certain number of sentences. For example,
Figure 2 sentence correctly annotated would produce the
Markov chain depicted in Figure 6.

3.2 Disambiguation using Markov Chains The disam-
biguation process is made through the estimation of prob-
abilities of neighbors words according to the constructed
chains. Every word that needs disambiguation is analyzed
to all possible word classes, i.e., we compute the probabil-
ity of its immediate predecessor and successors according to
each chain.

verb

punct

conj

pronprep

6/9

3/7

1/2 1/2

2/2

1/1

2/7

1/7

1/7

3/9

Figure 6: Markov chain for sentence in Figure 2.

Formally, a word wi in sentence s, has its probability of
being of word class c computed according its predecessor
(Eq. 3.1) and successor (Eq. 3.2) to chain m respectively by:

←−c (m)
ws

i
=

∑
k∈C(wi−1)

p(m)
[k(ws

i−1),c(w
s
i)]

|C(ws
i−1) |

(3.1)

−→c (m)
ws

i
=

∑
k∈C(wi+1)

p(m)
[c(ws

i),k(w
s
i+1)]

|C(ws
i+1) |

(3.2)

where p(m)
[x,y] is the probability of leaving state x and going to

state y in the Markov chain m.
The overall probability of a word wi in sentence s be of

class c according to all training chains of a set M is given by:

ĉws
i
=

∑m∈M
←−c (m)

ws
i
+−→c (m)

ws
i

2 |M |
(3.3)

Hence, the disambiguation of a word ws
i will be made by

choosing the word class c ∈C(wi) with the maximum value
ĉws

i
.

For example, considering the sentence “The old book is
dusty and black.”, the WAGGER annotation is depicted in
Figure 7. In this sentence the words “book” - ws

3 (either a
noun or a verb) and “black” - ws

7 (either an adjective, a noun
or a verb) need disambiguation.

Figure 7: Example sentence to disambiguate.

Using the first chain (Figure 5), let us call it m1, we
observe that the probability of a noun be preceded by an
adjective (“old” precedes “book”) is equal to 2

3 , and since
“old” can only be an adjective, i.e., C(“old”) = {adjective},

515

we express formally:

←−n (m1)

“book” =
p(m1)

[adj,n]
|C(“old”) |

=
0.6667

1
= 0.6667

We also observe that the probability of a noun to precede
a verb (“book” precedes “is”) is also equal to 2

3 , and since
“is” can only be a verb, i.e., C(“is”) = {verb}, we express
formally:

−→n (m1)

“book” =
p(m1)

[n,verb]
|C(“is”) |

=
0.6667

1
= 0.6667

Analogously, repeating the computations for the second
chain (Figure 6), let us call it m2, we obtain zero values,
since there is no word class noun in it, formally:

←−n (m2)

“book” =
p(m2)

[adj,n]
|C(“old”) |

=
0.0
1

= 0.0

−→n (m2)

“book” =
p(m2)

[n,verb]
|C(“is”) |

=
0.0
1

= 0.0

Computing the overall probability for “book” be a noun
considering the two Markov chains (M = {m1,m2}) will be
formally:

n̂“book” =
←−n (m1)

“book” +
−→n (m1)

“book” +
←−n (m2)

“book” +
−→n (m2)

“book”
2 |M |

n̂“book” = 0.3333

Analogously, computing the probability of “book” being a
verb in the sentence of Figure 7, we formally obtain:

v̂erb“book” =
0.4
4

= 0.1

As result, we conclude (correctly) that “book” must be
tagged as a noun (probability 0.33), and not a verb (prob-
ability 0.1). Analogously, we conclude (also correctly) that
“black” must be considered an adjective, since:

âdjws
7
= 0.13 n̂ws

7
= 0.08 v̂erbws

7
= 0.12

4 Application Example
We employ the proposed method in a larger scale to illustrate
the efficiency and effectiveness benefits of our approach. To
do so, we choose the following test bed:

• Two POS-tagger to Portuguese: PALAVRAS [2] and
LX-Center Suite [15];

• A Portuguese dictionary and the WAGGER dictionary
retriever [3];

• Fifty Brazilian Portuguese manually annotated sen-
tences to be used as training set;

• One hundred and twenty eight Brazilian Portuguese
manually annotated sentences to be used as test set.

Applying our proposed method to the sentences of the
training set has produced 50 discrete-time Markov chains.
As mentioned, these chains can be considered an approxima-
tive model of Brazilian language usage in terms of word class
sequences. The choice of these sentences is not particularly
planed, since these sentences were randomly taken from do-
main corpora composed of articles and other academic texts
of several scientific domains [11].

After that, 128 sentences were also randomly chosen
from the same corpora in order to test our proposed method.
The only concern choosing these 128 test sentences were not
to choose a sentence that was already used as training set.
For both training and testing sets, the manual annotation was
performed by two linguist specialists.

The application of our method to the training set deliv-
ered 2,455 correctly classified words from a total of 2,958
words from the testing set. This result corresponds to a
83.0% precision, which is comparable to the precision of
word class tagging made by PALAVRAS (86.1%) and LX-
Center (88.8%).

In terms of efficiency, however, our proposed method is
far more impressive, while the time spent for PALAVRAS
and LX-Center were measured in terms of minutes, the per-
formance of our method took less than one second. Table 1
summarizes the effectiveness (precision) and efficiency (time
to tag) of the prototype implementing our proposed method
in comparison with PALAVRAS and LX-Center running on
a portable machine with i7 2.2 GHz processor, 8 Gbytes
memory. This table results indicate a reasonable effective-
ness and an extraordinary efficiency improvement. Such per-
formance let us believe that the proposed method is a worthy
option for real-time POS-tagger.

Table 1: Overall comparative performance of the proposed
method prototype.

correct words precision time to tag

our method 2,455 83.0% <1 sec.

PALAVRAS 2,548 86.1% 2.3 min.

LX-Center 2,627 88.8% 1.5 min.

Finally, it is important to remember that unlike
PALAVRAS and LX-Center rigid approaches, our method is
based on train and test phases. Therefore, a careful choice of
a training set may improve the effectiveness of our method.

516

5 Final Considerations
This work lays down the basic ideas to a novel approach
to predict grammatical classes from corpora. This novel
idea is much simpler than sophisticated HMM, CRF or
SVM. Nevertheless, our method is more prone to evolution
than traditional rigid approaches available at existing POS-
taggers like PALAVRAS and LX-Center Suite.

The examples presented here embody the core concept
of our technique, yet the results delivered a reasonable
precision and very impressive efficiency. We believe that
a trusted Markov chain database can make a difference in
this kind of scenario. Thus, we are currently working on
the construction of a solid training databases for several
formal and informal languages in order to promote a broader
test. For instance, we are building an additional lexicon
of informal words and abbreviations usually employed in
informal chats to try to grasp a reasonable POS-tagging for
such a complex dialect.

We also expect to refine the disambiguation phase by
considering more information than just the predecessor and
successor of the target word. It is important to call the reader
attention that the number of Markov chains is not an obstacle
to the efficiency, since the weight computed according to
each Markov chain may be computed independently, i.e., a
parallel implementation of the proposed method would scale
very well to a very large number of Markov chains.

Despite those promising future works, the initial results
encourage this line of research. In fact, our approach seems
to gather the flexibility of sophisticated learning methods,
the easiness of development, and computational efficiency.
Therefore, our proposed method can bring effective and
efficient POS-tagging to virtually any language, dialect or
domain lingo.

References

[1] J. ASSUNÇÃO, P. FERNANDES, L. LOPES, AND

S. NORMEY, Distributed Stochastic Aware Random Forests
- Efficient Data Mining for Big Data, in 2013 IEEE Confer-
ence on Big Data, San Clara, CA, USA, June 2013, IEEE
Computer Society, pp. 484–485.

[2] E. BICK, The parsing system PALAVRAS: automatic gram-
matical analysis of portuguese in constraint grammar frame-
work, PhD thesis, Arhus University, Arhus, Danemark, 2000.

[3] P. FERNANDES, L. LOPES, C. A. PROLO, A. SALES, AND

R. VIEIRA, A fast, memory efficient, scalable and multilin-
gual dictionary retriever, in Proceedings of the Eight Inter-
national Conference on Language Resources and Evaluation
(LREC’12), N. Calzolari, ed., Istanbul, Turkey, may 2012, Eu-
ropean Language Resources Association (ELRA), pp. 2520–
2524.

[4] J. GIMÉNEZ AND L. MÀRQUEZ, Svmtool: A general pos tag-
ger generator based on support vector machines., in LREC,
European Language Resources Association, 2004.

[5] R. GRANADA, L. LOPES, C. RAMISCH, C. TROJAHN,
R. VIEIRA, AND A. VILLAVICENCIO, A comparable corpus
based on aligned multilingual ontologies, in Proceedings of
the First Workshop on Multilingual Modeling, 2012, pp. 25–
31.

[6] F. M. HASAN, N. UZ ZAMAN, AND M. KHAN, Comparison
of different pos tagging techniques (n-gram, hmm and brill’s
tagger) for bangla, in Advances and Innovations in Systems,
Computing Sciences and Software Engineering, K. Elleithy,
ed., Springer Netherlands, 2007, pp. 121–126.

[7] T. KAM, T. VILLA, R. K. BRYATON, AND

A. SANGIOVANNI-VINCENTELLI, Multi-valued deci-
sion diagrams: theory and applications, Multiplie-Valued
Logic, 4 (1998), pp. 9–62.

[8] J. D. LAFFERTY, A. MCCALLUM, AND F. C. N. PEREIRA,
Conditional random fields: Probabilistic models for segment-
ing and labeling sequence data, in Proceedings of the Eigh-
teenth International Conference on Machine Learning, ICML
’01, San Francisco, CA, USA, 2001, Morgan Kaufmann Pub-
lishers Inc., pp. 282–289.

[9] L. LOPES, P. FERNANDES, AND R. VIEIRA, Estimating term
domain relevance through term frequency, disjoint corpora
frequency - tf-dcf, Knowledge-Based Systems, 97 (2016),
pp. 237 – 249.

[10] , Exato – high quality term extraction for portuguese
and english, in Proceedings of IEEE/WIC/ACM International
Conference on Web Intelligence, WI 2016, San Francisco,
CA, USA, Oct. 2016, IEEE Computer Society, pp. 531–536.

[11] L. LOPES AND R. VIEIRA, Building domain specific parsed
corpora in portuguese language, in Proceedings of the X
National Meeting on Artificial and Computational Intelligence
(ENIAC), 2013, pp. 1–12.

[12] C. L. LUCCHESI AND T. KOWALTOWSKI, Applications of
finite automata representing large vocabularies, Software:
Practice and Experience, 23 (1993), pp. 15–30.

[13] C. D. MANNING, P. RAGHAVAN, AND H. SCHÜTZE, Intro-
duction to Information Retrieval, Cambridge University Press,
Cambridge, 2008.

[14] F. SEGOND, A. SCHILLER, G. GREFENSTETTE, AND

J. CHANOD, An experiment in semantic tagging using hid-
den markov model tagging, in ACL/EACL Workshop on Au-
tomatic Information Extraction and Building of Lexical Se-
mantic Resources for NLP Applications, 1997, pp. 78–81.

[15] J. SILVA, A. BRANCO, S. CASTRO, AND R. REIS, Out-
of-the-box robust parsing of portuguese, in PROPOR 2010,
2010, pp. 75–85.

[16] W. J. STEWART, Probability, Markov Chains, Queues, and
Simulation, Princeton University Press, USA, 2009.

[17] Y. TSURUOKA, Y. TATEISHI, J.-D. KIM, T. OHTA, J. MC-
NAUGHT, S. ANANIADOU, AND J. TSUJII, Developing a ro-
bust part-of-speech tagger for biomedical text, in Advances in
Informatics, P. Bozanis and E. Houstis, eds., vol. 3746 of Lec-
ture Notes in Computer Science, Springer Berlin Heidelberg,
2005, pp. 382–392.

517

Generating SQL Statements from Natural Language
Queries: A Multitask Learning Approach

Chunqi Chen, Yunxiang Xiong, Beijun Shen*, Yuting Chen
School of Electronic Information and Electrical Engineering

Shanghai Jiao Tong University, Shanghai, China
{15274521452, bruinx, bjshen, chenyt}@sjtu.edu.cn

Abstract—NL2SQL advocates an idea of helping engineers
and/or end users generate SQL statements from natural language
queries. However, it still remains a strong challenge in improving
its precision and scalability. This paper introduces MultiSQL,
a multitask deep learning approach to performing NL2SQL.
MultiSQL unifies the task representations and trains a model
in parallel on multiple tasks, including NL2SQL, machine trans-
lation, etc. It employs a multitask question-answering network
for jointly learning all tasks and transferring knowledge among
tasks. We have evaluated MultiSQL on two query datasets:
WikiSQL (an open sourced dataset) and CnSQL (a Chinese
dataset we created). The evaluation results clearly show the
effectiveness of MultiSQL. In particular, the accuracies achieved
by MultiSQL approximate those achieved by the state-of-the-art
NL2SQL methods on WikiSQL, and its accuracy is 78%, which
is 17% higher than the “Chinese2English + NL2SQL” method
on CnSQL.

Index Terms—NL2SQL, SQL statement generation, deep
learning, multitask learning

I. INTRODUCTION

With the rapid development of data engineering, industry
engineers frequently perform data queries for data analyses
and/or obtaining online reports. SQL is a popular and flexible
language for querying data. In order to facilitate end users
to perform data queries, some studies on NL2SQL, i.e.,
translating natural language queries into SQL statements, have
been conducted.

So far two mainstreams of NL2SQL methods do exist. One
mainstream is to use a seq2seq (sequence to sequence) model
with neural networks for query generation [1], [2]. In partic-
ular, training a seq2seq model requires a standard format [2].
Meanwhile, a query result can have different logical forms,
which reduces the effectiveness of the training process. Seq2set
(sequence to set) is another mainstream, which divides a query
into parts and generates them individually [3], [4]. A seq2set
method is capable of processing the disorders of filtering
conditions effectively, but it may miss internal dependencies
in the input sequences.

The existing efforts have achieved remarkable results. How-
ever, they are still facing two main difficulties when applied
in practice.

*Corresponding author.
DOI reference number: 10.18293/SEKE2019-024

First, many NL2SQL methods are only evaluated on the
machine-generated datasets, making their effectiveness un-
clearly shown. Indeed, most of the methods are evaluated
on WikiSQL*–an open sourced dataset automatically extracted
from Wikipedia. An NL2SQL method should be evaluated on
both the machine- and the human-generated datasets [5].

Second, many NL2SQL methods are not scalable, as they
only focus on translating queries in English into SQL state-
ments. In case that queries in other languages are raised, they
must at first be translated into descriptions in English, and
then to SQL statements. The imprecision occurred during the
translation stage can be propagated.

One solution to this is combining the language transla-
tion task with NL2SQL to seize the latent information in
the queries and datasets. This paper presents MultiSQL, a
multitask learning approach to NL2SQL. MultiSQL learns one
model for multiple NLP tasks, including NL2SQL, machine
comprehension, machine translation, etc. MultiSQL uses a
TCR (Task-Content-Result) template to unify all tasks, and
builds a multitask deep learning network for jointly learning
all tasks and transferring knowledge among them.

This paper makes the next contributions:
1) A deep learning approach. We propose a general,

scalable multitask deep learning approach, MultiSQL,
to NL2SQL. MultiSQL trains a model for multiple NLP
tasks, and takes three training strategies for accelerating
sample efficient learnings and supporting knowledge
transfers among tasks.

2) A multitasking neural network. We design a multi-
tasking neural network with an encoder and a decoder.
The encoder adopts dual coattention to represent the task
and its content sequences, compressing all of this in-
formation with two BiLSTMs. The decoder with multi-
pointer-generator utilizes attention over the content, task
and previously output tokens to make decisions.

3) Dataset and evaluation. We have evaluated Multi-
SQL on WikiSQL and CnSQL. CnSQL is a Chinese
SQL dataset we collected from real-world applications.
Through transfer learning, the performance of NL2SQL
is enhanced, achieving the logical form accuracy of
78.7% and the database execution accuracy of 86.1%.
Furthermore, MultiSQL achieves logical form accuracy

*https://github.com/salesforce/WikiSQL

518

of 78%, which is 17% higher than the “Chinese2English
+ NL2SQL” method.

II. RELATED WORK

A. Code Generation and NL2SQL
Code generation is becoming a promising approach to

improve the productivity of software development. At present,
there are three mainstream technologies: generation from
models using templates [6], program synthesis by logic specifi-
cation, and code generation and recommendation via machine
learning or information retrieval [7]. NL2SQL is one of its
research hotspots in recent decades, and in particular, neural-
network-based NL2SQL has achieved remarkable results.

Dong and Lapata [1] have introduced a seq2seq approach
that uses the augmented pointer network to convert textual
queries to logical forms. Zhong et al. [2] have published
the WikiSQL dataset and proposed a seq2seq model with
reinforcement learning. Xu et al. [3] have further improved
the results by taking a seq2set model and an attentional model.
Similarly, Guo and Gao [8] have developed tailored modules
to process three components in SQL queries. A parallel
work [4] obtained a high execution accuracy on WikiSQL
for SQL statements belongs to the “select-aggregator-where”
type. External knowledge bases are also employed for tagging
question words. Sun et al. [9] have presented a generative
learning model to replicate contents in column names, cells,
or SQL keywords. They have also improved the generation of
the WHERE clauses by leveraging the column-cell relations.

B. Multitask Learning
Multitask learning is a machine learning paradigm. It aims

to improve the generalization performance of a task using
many other related tasks. Multitask learning has been success-
fully applied in the domain of natural language processing.

Collobert et al. [10] have proposed a unified framework for
processing multiple natural language tasks, including chunk-
ing and part-of-speech tagging. Hashimoto et al. [11] have
presented a neural network for dependency analysis, semantic
correlation, and natural language reasoning. Zero-shot transla-
tion can be achieved by multitasking in language translations
[12], where seq2seq models use two or more encoders and
decoders for translation, parsing, and image subtitles [13].
Through model modularization, the above approaches can be
applied to image classification and speech recognition [14].
Learning this modularity can further alleviate task interrup-
tions [15]. Through multitask learning, the model can be
used to learn some generally purposed expressions, since
simultaneous learning of relevant tasks can provide inductive
bias. Performance can be improved due to knowledge transfers
across tasks.

III. APPROACH

MultiSQL is a multitask-learning-based approach to
NL2SQL. As Fig. 1 shows, it takes a deep learning model to
learn multiple tasks simultaneously. The deep learning model
consists of a dual coattention encoder and a multi-pointer-
generator decoder.

A. A Multitask QA Network

In MultiSQL, every task is formulated as a QA (Question
Answering) task. Multiple tasks are trained jointly using a
deep learning model, and knowledge is shared among tasks.
Task Unification. We design a TCR (Task-Content-Result)
template to unify all the tasks. Each task instance is described
with a task, content, and result, as Fig. 2 shows. During
training, MultiSQL takes three sequences as its inputs: a
content C with l tokens, a task Q with m tokens, and a
result A with n tokens. Each token is represented by a demb-
dimensional embedding.
Dual Coattention and Multi-Pointer. A task formed by the
TCR template often contains key information that constrains
the search space. MultiSQL uses dual coattention [16] for
presenting conditions for both sequences, compresses the
information with two BiLSTMs, applies self-attention [17]
to collect long-distance dependencies, and then uses two
BiLSTMs to get representations of the task and its content. The
multi-pointer-generator [18] decoder uses attentions over the
content, task, and previously output tokens to make a decision:
copying from the content, copying from the task, or generating
from a limited vocabulary.
Cross-task Transfer. MultiSQL facilitates sample-efficient
learning and knowledge transfers among tasks. Three multitask
collaborative training strategies can be used: joint learning
(training all tasks jointly), curriculum learning (training simple
tasks first), and anti-curriculum learning (training hard tasks
first).

B. Encoder

MultiSQL adopts a deep stack-based recurrent neural net-
work with a collaborative- and self-attention mechanism to
generate the content embedding and the task embedding. The
encoder takes six steps in the encoding process:
Step 1. Independent Encoding. A linear layer projects the
input matrices onto a common d-dimensional space:

CW1 = Cproj ∈ Rl×d QW1 = Qproj ∈ Rm×d

The projected representations are fed into a shared BiLSTM
BILSTMind to get the independent encoded representations
Cind ∈ Rl×d and Qind ∈ Rl×d.
Step 2. Alignment. The encoder obtains the coattended
representations by aligning encoded representations of each
sequence. The alignments are obtained by normalizing dot-
product similarity scores between the content sequence and
the task sequence:

softmax(CindQ
>
ind) = Scq softmax(QindC

>
ind) = Sqc

Step 3. Dual Coattention. These alignments are used to
compute weighted summations of a token in one sequence
and a relevant token in another sequence:

S>cqCind = Csum S>qcQind = Qsum

519

多
头

F
F
N

多
头

F
F
N

独立编码 对准 对偶协同注意力 压缩 自注意力 最终编码

Task

Content

Multi-head

FFN

… 中间状态

α
F
F
N

内容注意力

α
任务注意力

任务指针

内容指针

循环
内容

词汇表分布

λ γ

综合分布

Result

Input OutputEncoder Decoder

Self-attention

多指针生成
多
头

F
F
N

多
头

F
F
N

独立编码 对准 对偶协同注意力 压缩 自注意力 最终编码

Task

Content

Multi-head

FFN

… 中间状态

α
F
F
N

内容注意力

α
任务注意力

任务指针

内容指针

循环
内容

词汇表分布

λ γ

综合分布

Result

Input OutputEncoder Decoder

Self-attention

多指针生成

M
u

lti-h
ead

FFN

M
u

lti-h
ead

FFN

Independent
Encoding

Alignment

Dual Coattention

Compression

Self-attention

Final
Encoding

Task

Content

Multi-head

FFN

… Intermediate State

α

FFN

Content
Attention

α

Task
Attention

Task Pointer

Content Pointer

Content & Task
State

External Vocabulary
Distribution

λ γ

Distribution

Result

Input OutputEncoder Decoder

Self-attention

Multi-Pointer-Generator

Transfer

Transfer

Task1

Task2

Taskn

Fig. 1: An overview of the MultiSQL approach.

Task

Translate Chinese to
English

Generate SQL statements
from neural text in
English

Content

告诉我南澳有哪些注意要点

The table has column names…
Tell me what the notes
are for South Australia

Result

Tell me what the notes
are for South Australia

SELECT notes from table
WHERE
‘Current Slogan’ =
‘South Australia

Fig. 2: Some TCR examples.

The coattended representations use the same weights to
transfer information gained from alignments back to the orig-
inal sequences:

S>qcCsum = Ccoa S>cqQsum = Qcoa

Step 4. Compression. In order to compress embeddings from
dual coattention back to the more manageable dimension d,
we concatenate all of the four representations and feed them
into separate BiLSTMs:

BiLSTMcomC([Cproj ;Cind;Qsum;Ccoa]) = Ccom

BiLSTMcomQ([Qproj ;Qind;Csum;Qcoa]) = Qcom

Step 5. Self-attention. We use multi-head, scaled dot-product
attention [17] to capture long distance dependencies within
each sequence.

Attention(X̃, Ỹ , Z̃) = softmax{X̃Ỹ
>

√
d
}Z̃

MultiHead(X̃, Ỹ , Z̃) = [h1; · · · ;hp]W o,

where hj = Attention(X̃W X̃
j , Ỹ W

Ỹ
j , Z̃W

Z̃
j)

All transformations in the above equations are linear such
that the multi-head attention representations maintain dimen-
sionality as d.

MultiHeadC(Ccom, Ccom, Ccom) = Cmha

MultiHeadQ(Qcom, Qcom, Qcom) = Qmha

We then use the projected, residual feedforward networks
(FFNs). The FNNs are equipped with ReLU activations and
layer normalization on the inputs and outputs (with parameters
U ∈ Rd×f , V ∈ Rf×d):

FFN(X) = max(0, XU)V +X

FFNC(Ccom + Cmha) = Cself ∈ Rl×d

FFNQ(Qcom +Qmha) = Qself ∈ Rm×d

Step 6. Encoding. Finally, we feed Cself and Qself into
two BiLSTMs BiLSTMfinC and BiLSTMfinQ to get the
representations Cfin ∈ Rl×d and Qfin ∈ Rm×d, respectively.

C. Decoder

MultiSQL’s decoder takes four steps in decoding:
Step 1. Self-attention. The decoder starts by projecting the
answer embeddings onto a d-dimensional space:

AW2 = Aproj ∈ Rn×d

Since recurrence and convolution are not contained in this
step, we add positional encodings to Aproj :

Aproj + PE = Appr ∈ Rn×d,

where PE[t, k] = {
sin(t

10000
k
2d

) k is even;

cos(t

10000
k−1
2d

) Otherwise.

520

We use self-attention so that the decoder is aware of
previous outputs and the content to prepare for the next output.
A residual FFN layer is applied to the content:

MultiHeadA(Appr, Appr, Appr) = Amha ∈ Rn×d

MultiHeadAC((Amha +Appr), Cfin, Cfin) = Aac ∈ Rn×d

FFNA(Aac +Amha +Appr) = Aself ∈ Rn×d

Step 2. Getting Intermediate Decoder State. We next apply
a standard LSTM with attention to get a recurrent content state
c̃t for time-step t. The LSTM produces an intermediate state
ht using the previous answer word At−1

self and recurrent content
state:

LSTM([At−1
self ; c̃t−1], ht−1) = ht ∈ Rd

Step 3. Task and Content Attention. This intermediate state
is used to get attention weights αC

t and αQ
t , allowing the

decoder to focus on encoded information of the time step t:

softmax(Cfin(W2ht)) = αC
t ∈ Rl

softmax(Qfin(W3ht)) = αQ
t ∈ Rm

Content representations are combined with these weights
and fed through an FFN with tanh activation to form the
content state and the task state:

tanh(W4[C
>
finα

C
t ;ht] = c̃t ∈ Rd

tanh(W5[Q
>
finα

Q
t ;ht] = q̃t ∈ Rd

Step 4. Multi-Pointer-Generator. The model may generate
tokens that are not in the task or the content. Thus additional
vocabulary tokens v are accessed. We obtain distributions over
tokens in the task, content, and the external vocabulary:∑

i:ci=wt

(αC
t)i = pc(wt) ∈ Rn

∑
i:qi=wt

(αQ
t)i = pq(wt) ∈ Rm

softmax(Wv c̃t) = pv(wt) ∈ Rv

Two scalar tune the importance of each distribution in
determining the output distribution:

σ(Wpv[c̃t;ht; (Aself)t−1]) = γ ∈ [0, 1]

σ(Wcq[q̃t;ht; (Aself)t−1]) = λ ∈ [0, 1]

γpv(wt) + (1− γ)[λpc(wt) + (1− λ)pq(wt)] = p(wt)

A token-level negative log-likelihood loss is used through-
out the training process: L = −

∑T
t log p(at).

IV. EXPERIMENTS

We have implemented MultiSQL and evaluated it on several
datasets. The evaluation is designed to answer the following
research questions:
• RQ1. Is MultiSQL more effective than singletask learning

methods?
• RQ2. Can MultiSQL be used to generate SQL statements

from queries in other languages (Chinese in this study)?

A. Setup

The experiment contains ten NLP tasks, each of which
is evaluated using one dataset. The ten datasets used in the
evaluation are listed in Table I. In particular, NL2SQL was
evaluated on WikiSQL (an open sourced dataset) and CnSQL
(a Chinese dataset we created). CnSQL† includes 1534 pairs
of Chinese queries and SQL statements. It was collected by
the human engineers from end-user queries in a Chinese HR
outsourcing platform (ezhiyang.com).

Several commonly used metrics are chosen: logical form
accuracy [2] for NL2SQL, BLEU [19] for Chinese-English
translation, and F1-Score for machine comprehension.

B. Results for RQ1

The pointer-generator seq2seq (S2S) model [18] is selected
for comparison. The results for comparing the singletask and
the multitask learnings are shown in Table I. Here, (w/SAtt),
(+CAtt), (+QPtr), and (+ACurr) represent the S2S model with
an adjunction of the self-attention mechanism, the dual co-
attention mechanism, the task pointer, and the anti-curriculum
learning strategy, respectively.

1) Singletask Learning
The self-attentive (w/SAtt) mechanism [17] increases the

capacity of the S2S model of integrating information from the
task and the content. It improves the performance on most of
the tasks. For WikiSQL, this model approximates the state-of-
the-art (72.4%), but it does not use a structured approach.

We supplement the model with a coattention mechanism
(+CAtt) next. The performances on part of the tasks are
improved while decrease on the others and significantly reduce
on MNLI and MWSC. For these two tasks, since the S2S
baselines have the content concatenated to the task, the pointer
generator mechanism can copy words directly from the input.
In case that the task and the content are separated, the
effectiveness of the model may be reduced.

Thereafter, we add a task pointer (+QPtr) to the network,
which boosts the performance on MNLI and MWS. It also
improves performance on SQuAD to 75.5% in nF1, which
matches the performance of the first wave of SQuAD models
that utilize direct span supervision [16].

When tested on WikiSQL, the final model achieves logical
form accuracy of 72.6% and database execution accuracy of
80.4%.

2) Multitask Learning
During multitask learning, the S2S model performs worse

on many tasks than the singletask model, with a total score
of 483.6 points. However, the performance of the model is
getting better and better after the combination of (w/SAtt),
(+CAtt), and (+QPtr) sequentially. The score finally reaches
to 584.7 points.

Performances on tasks requiring heavy use of the external
vocabulary drop more than 50% from the S2S baselines until
(+QPtr) is added. In addition to a coattended content, the task
pointer utilizes a coattended task, allowing task information

†https://github.com/SimonCqChen/CnSQL

521

TABLE I: Results for the singletask and multitask learnings.

Task Dataset Singletask Multitask

S2S w/SAtt +CAtt +QPtr S2S w/SAtt +CAtt +QPtr +ACurr

NL2SQL WikiSQL 60.0 72.4 72.3 72.6 45.8 64.8 72.9 74.0 78.7
Machine Translation IWSLT 25.0 23.3 26.0 25.5 14.2 23.6 29.0 26.1 29.7

Machine Comprehension SQuAD 48.2 68.2 74.6 75.5 47.5 66.8 71.8 70.8 74.3
Text Summarization CNN/DM 19.0 20.0 25.1 24.0 25.7 14.0 15.7 23.9 24.6

Natural Language Inference MNLI 67.5 68.5 34.7 72.8 60.9 69.0 70.4 70.5 69.2
Sentiment Classification SST 86.4 86.8 86.2 88.1 85.9 84.7 86.5 86.2 86.4
Semantic Role Labeling QA-SRL 63.5 67.8 74.8 75.2 68.7 75.1 76.1 75.8 77.6
Relationship Extraction QA-ZRE 20.0 19.9 16.6 15.6 28.5 31.7 28.5 28.0 34.7
Goal Oriented Dialogue WOZ 85.3 86.0 86.5 84.4 84.0 82.8 75.1 80.6 84.1

Semantic Parsing MWSC 43.9 46.3 40.4 52.4 52.4 43.9 37.8 48.8 48.4

Total Score - - - - 483.6 566.4 543.8 584.7 607.7

to flow directly into the decoder. The main reason is that it
is easy for the model to decide, if it can directly access the
task, whether generating output tokens is more appropriate
than copying.

By multitask joint learning with anti-curriculum strategy,
the logical form accuracy of NL2SQL reaches 78.7%, and the
database execution accuracy gets 86.1%.

C. Results for RQ2

The baseline for comparison is NL2SQL with Google’s
translator. The results show that MultiSQL obtains logical
form accuracy of 78% on CnSQL. It is 17% higher than that of
the baseline. The results also indicate that MultiSQL performs
well both on the human- and the machine-generated datasets.

V. CONCLUSION

MultiSQL is a multitask learning approach to generating
SQL statements from natural language queries. MultiSQL
leverages a deep learning model for jointly learning multiple
tasks such that the performance of NL2SQL can get improved.
The evaluation results show the effectiveness of MultiSQL.
It achieves accuracies that approximate those of the state-
of-the-art methods and outperforms the existing methods for
translating Chinese queries into SQL statements.

In the future, we will improve MultiSQL by introducing
other state-of-the-art language models. We also plan to feed
domain knowledge into MultiSQL, expecting that the deep
learning model can be further enhanced.

VI. ACKNOWLEDGEMENT

This research was sponsored by the National Key Re-
search and Development Program of China (Project No.
2018YFB1003903), National Nature Science Foundation of
China (Grant No. 61472242 and 61572312), and Shanghai
Municipal Commission of Economy and Informatization (No.
201701052).

REFERENCES

[1] L. Dong and M. Lapata, “Language to logical form with neural atten-
tion,” arXiv preprint arXiv:1601.01280, 2016.

[2] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating structured
queries from natural language using reinforcement learning,” arXiv
preprint arXiv:1709.00103, 2017.

[3] X. Xu, C. Liu, and D. Song, “Sqlnet: Generating structured queries
from natural language without reinforcement learning,” arXiv preprint
arXiv:1711.04436, 2017.

[4] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. Radev, “Typesql:
Knowledge-based type-aware neural text-to-sql generation,” arXiv
preprint arXiv:1804.09769, 2018.

[5] C. Finegan-Dollak, J. K. Kummerfeld, L. Zhang, K. Ramanathan,
S. Sadasivam, R. Zhang, and D. Radev, “Improving text-to-sql evaluation
methodology,” arXiv preprint arXiv:1806.09029, 2018.

[6] F. Mao, X. Cai, B. Shen, Y. Xia, and B. Jin, “Operational pattern based
code generation for management information system: An industrial case
study,” in 2016 17th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), pp. 425–430, IEEE, 2016.

[7] S. Zhou, H. Zhong, and B. Shen, “Slampa: Recommending code snippets
with statistical language model,” in The 25th Asia-Pacific Software
Engineering Conference (APSEC), 2018.

[8] T. Guo and H. Gao, “Bidirectional attention for sql generation,” arXiv
preprint arXiv:1801.00076, 2017.

[9] Y. Sun, D. Tang, N. Duan, J. Ji, G. Cao, X. Feng, B. Qin, T. Liu, and
M. Zhou, “Semantic parsing with syntax-and table-aware sql genera-
tion,” arXiv preprint arXiv:1804.08338, 2018.

[10] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of machine learning research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[11] K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher, “A joint many-
task model: Growing a neural network for multiple nlp tasks,” arXiv
preprint arXiv:1611.01587, 2016.

[12] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Tho-
rat, F. Viégas, M. Wattenberg, G. Corrado, et al., “Google’s multilin-
gual neural machine translation system: Enabling zero-shot translation,”
Transactions of the Association for Computational Linguistics, vol. 5,
pp. 339–351, 2017.

[13] M.-T. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and L. Kaiser, “Multi-
task sequence to sequence learning,” arXiv preprint arXiv:1511.06114,
2015.

[14] L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones,
and J. Uszkoreit, “One model to learn them all,” arXiv preprint
arXiv:1706.05137, 2017.

[15] S. Ruder, J. Bingel, I. Augenstein, and A. Søgaard, “Learning what to
share between loosely related tasks,” arXiv preprint arXiv:1705.08142,
2017.

[16] C. Xiong, V. Zhong, and R. Socher, “Dynamic coattention networks for
question answering,” arXiv preprint arXiv:1611.01604, 2016.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, pp. 5998–6008, 2017.

[18] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summariza-
tion with pointer-generator networks,” arXiv preprint arXiv:1704.04368,
2017.

[19] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting on association for computational linguistics, pp. 311–
318, Association for Computational Linguistics, 2002.

522

Forward Engineering Completeness for Software

by Using Requirements Validation Framework

Nayyar Iqbal1,2,3, Jun Sang1,2, Min Gao1,2, Haibo Hu1,2, Hong Xiang1,2

1Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education,
Chongqing University, Chongqing 400044, China

2School of Big Data & Software Engineering, Chongqing University, Chongqing 401331, China
3Department of Computer Science, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan

nayyariqbal@cqu.edu.cn, jsang@cqu.edu.cn, gaomin@cqu.edu.cn, haibo.hu@cqu.edu.cn, xianghong@cqu.edu.cn

Abstract—In software development environment, software

companies usually ignore the user requirements validation

process in requirement gathering phase, which results in large

number of modifications being required in the software

maintenance phase to fulfill the customer requirements.

Identification of accurate requirements from user stories and

determining the effectiveness of work deliverable of software

industry has always been a challenging task. In this paper, a new

measurement approach for forward engineering completeness

for software was introduced by using requirements validation

framework. The forward engineering completeness for software

was measured in two steps. In the first step, software component

structure was developed in order to find the functional and non-

functional requirements rejected by the customers in the

requirement validation framework. In the second step,

completeness of software from component-based development

was determined in which the following parameters, such as

functional, non-functional completeness attributes, were

considered in the measurement process, and the unadopted

attributes of the reuse code were also considered. Quality level

for the attributes were assigned based upon the valuation of

interior quality of the source code. Therefore, it resulted in the

reduction of development time required for the software and the

cost required for the software development was also reduced. A

case study was incorporated in this research to explain the

measurement process of forward engineering completeness. If

the forward engineering code is satisfying the quality standards,

then the code is in the completeness form. The attributes of code

that negates to be used were considered as unadopted attributes.

Keywords-completeness; forward engineering; functional

requirements; non-functional requirements; requirements

engineering; validation

I. INTRODUCTION
It has been observed that software industries that abused

the Requirement Engineering (RE) in the software
development process resulted in the project failures [1-6].
Ana-Maria et al. [7] argued that business analysts needed to
focus on requirement gathering techniques in a technically
responsible way. Question had been raised as to the

relationship between the functional and non-functional
requirements, with some, such as Vishal and Xiaoqing [8],
argued that there was reciprocal relationship. Software quality
measurement is one of the most complicated tasks in software
design methodology [9]. Quality of the software can be
determined by the success of software system for this various
parameters, framework and methodologies has been proposed
[10]. Forward Engineering as defined by Pressman [11] “In
most cases, forward engineering does not simply create a
modern equivalent of an older program. Rather, new user and
technology requirements are integrated into the reengineering
effort. The redeveloped program extends the capabilities of
the older application”. Reverse and forward engineering are
practiced in the legacy systems to extend the system usable
lifespan [12].

Requirements are client’s invariant statements related to
sub system or system [13]. Functional requirement describes
the complete functionality of software components that should
be required in the software. Non-functional requirement
describes the requirements of software with respect to
security, usability, portability, availability, capacity,
efficiency and reliability [14]. In past lot of work has been
done by the researchers on functional and non-functional
requirements. But illustrating the graphical user interface for
user requirements in the software specification, in order to
validate the user requirements has always been ignored in the
requirement gathering phase. This research focus on the
importance of validation of user requirements so that time and
budget wasted in the modification of software in the
maintenance phase can be saved. Thalheim [15] suggested the
design quality parameters which include completeness,
naturalness, minimality and flexibility. The software after the
development process is said to be in the completeness form, if
it satisfies all the functional and non-functional requirements.
Component is a reusable visible interface, which is the
factored form of any software or sub system. Software
architecture is a static structure that represents arrangement of
components [13]. This research was conducted with the
collaboration of software company. In this new template is
introduced by the authors that demonstrates the requirements
of software components, which is illustrated in Table 1. In DOI reference number: 10.18293/SEKE2019-144

523

order to identify the adjusted and unadopted requirements
Table 1 was discussed in the requirements validation
framework.

In this research authors defines the two types of
requirements unadopted and adjusted requirements. The
functional or non-functional requirements rejected by Chief
Executive Officer (CEO) of software users/customers are
called unadopted requirements. Business analyst gathers the
software requirements from software users/customers in
natural language, after this these requirements were illustrated
in Table 1, i.e. if software users/customers identifies that user
login should not be by user name and password, but it must be
by any of the followings: thumb scan, scan of Quick Response
(QR) code or scanning the bar code of employee card etc. in
the requirement validation framework then the rejected
requirements are called unadopted requirements. Adjusted
requirements are new requirements (functional or non-
functional requirements) which are added in the software
according to users demand or when any existing software
components are replaced with new software components, then
new functional and non-functional requirements are
incorporated into the software. Examples includes:
replacement of software component of login (email address
and password) with QR code. In addition, as existing
functionality of software was to calculate percentile of student
result and now the customer of software has demanded that
the software must also calculate Cumulative Grade Point
Average (CGPA) of the student. Completeness is defined as
“the state or condition of having all the necessary or
appropriate parts” [16]. Whereas requirements completeness
is defined as “a quality demanded to the set of software
requirements and to each requirement itself, in order to ensure
that there is no information left aside” [17].

In order to adapt the complete customer requirements in
the software, software industries are developing the software
globally [18]. The purpose of global software development is
to gather the adjusted requirements of the software. As
different countries use different social network software, such
as Instagram, Twitter, Reddit, and Facebook etc., according to
their requirements, therefore different regions in the world has
different adjusted requirements. These differences are due to
cultural difference, language difference, platform difference,
business process difference and how the organization interpret
with manual work. Different countries have different cultural
and business-related problems so there is need to develop the
software that captures the complete organization processing
tasks. For this adjusted requirement must be incorporated in
the requirement gathering phase, so that the developed
software must be in the complete form.

II. METHODOLOGY
In this research authors develops the software by using

forward engineering completeness approach. The
methodology structure is illustrated in the Fig. 1. The
developed system is said to be in forward engineering
completeness, if it is developed with complete conditions or
states of new business procedures and rules according to
software engineering philosophies. In System Specification
(SyS) information related to functional requirements, data

requirements, quality requirements and constraints for
software was determined. Problem definition, objectives,
goals, context and major capabilities of the software was
determined.

Figure 1. Forward Engineering Completeness

The purpose of requirement validation framework was to
identify unadopted requirements as illustrated in the Fig. 2. In
this business requirements were gathered from the users in
which user identifies the goal and objectives of the system.

Figure 1. Requirements Validation Framework

The business analyst specifies the functional and non-
functional requirements of the system. The business analyst
and software engineer completed the task of software
specification as shown in Table 1. The Software Quality
Assurance (SQA) team members performed testing on the
software to identify the errors in the software components.
The basic purpose of this Table 1 was to present it in the
framework meeting so the different categories of end-users
from different regions can present their views. Scribe writes
the report of the meeting. Chief executive officer attended the
meeting along with end-users. Project manager and
development team leader monitored the complete working
process from requirement gathering to validation process.
Software developer delivers the presentation of software
requirements. The advantage of using this requirement
validation framework showed the successful completion of
software because after this process software modifications
were not required in the software maintenance phase.

524

Rules & Definitions

Where S stands for Software, Ri, FRj, NFRk stands for n
number of Requirements, Functional Requirements and Non-
Functional Requirements respectively. Where 1 < i < n, 1 < j
< n and 1 < k < n.

S (R1, R2, R3, …Rn)

whereas
FRj & NFRk ∈ Ri

As defined by Sommerville [19]
S (“what a software should do” & “how the system will do

so”)

Therefore
S (FR1 & NFR1, FR2 & NFR2, FR3 & NFR3, …. FRn & NFRn)

Unadopted and adjusted requirements can be functional or
non-functional requirements. Unadopted functional,
unadopted non-functional, adjusted functional and adjusted
non-functional requirements are represented by UFRl,
UNFRm, AFRp and ANFRq respectively. SFEC stands for
software developed by forward engineering completeness
approach. Where 1 < l < n, 1 < m < n, 1 < p < n and 1 < q <
n.

FRj & NFRk ∈ S and
also

UFRl & UNFRm ∈ S

but
AFRp & ANFRq ∉ S

whereas
AFRp & ANFRq ∈ SFEC

In order to measure the Forward Engineering
Completeness for the software this research incorporates case
study and two steps were considered in the measurement
process. In the first step, unadopted requirements were
identified in the requirement validation framework and for
adjusted requirements, structure of software component was
also discussed. In the second step, software completeness was
calculated by using following parameters. i-First parameter
was functional and non-functional requirements attributes.
These attributes determine the completeness of the forward
engineering. In this integration among the attributes was also
determined, which increases the completeness value. More
completeness scales the forward engineering process closer to
the actual budget and development schedule of the software
and vice versa. ii-Second parameter was unadopted attributes.
In which authors identified those attributes that were not
required in the software by requirement validation framework.
The identification of unadopted attributes helps in budget and
time saving. The time spent on developing the software
components that were not required in the developed software,
was saved by identifying the unadopted attribute in the initial
phase.

As clarified by Sommerville [19] “the non-functional
requirements should define the usability, security, availability
and performance requirements of the service”. Therefore,
usability and security were important for each component in
non-functional requirements. The introduced technique was
helpful for software engineers to measure the forward
engineering completeness for software. In forward

engineering, the software changes can be in terms of
technology or adding new functionality e.g. if software was
developed in old technology it can be changed to new
technology for this, functional, non-functional and unadopted
requirements were identified according to plate form
difference.

III. CASE STUDY
Table 1 consists of three columns, first column describes

the functional requirements of software, second column
describes the system response and the third column illustrates
the software components structure. Table 1 was discussed in
the requirement validation framework. The non-functional
requirements where were applicable, were explained by using
software component structures in the requirement validation
framework. In the pre-condition, user login the system by
using organization email address. The organization email
addresses and default password were issued by the
organization for their employees.

TABLE I. REQUIREMENTS OF SOFTWARE COMPONENTS

Functional
Requirements

System

Response

Software

Components

FR1: The system shall
display text box to
enter the email address

The system displays a
message asking the
user to enter
organization email
address

FR2: The system shall
display text box to enter
the password

The system displays a
message asking the
user to enter the
password

 The system displays a
message of “Successful
Login”

 The system displays
the user Employee
Number (EN) and
name after the login

FR3: The system shall
display options (yes/no)
to change the password

The system asks the
user if he/she wants to
change the password

 If the user clicks on the
yes option, the system
displays a message
asking the user to enter
current password, new
password and confirm
new password

 The system displays
the message “Password
Changed Please login
again with new
Password”

FR4: The system shall
display drop-down list
for the selection of
department

The system displays a
message asking the
user to select the
department from the
drop-down list

525

FR5: The system shall
display drop-down list
for the selection of
employee title

The system displays a
message asking the
user to select employee
title from the drop-
down list

FR6: The system shall
display calendar control
for the selection of date
of joining

The system displays a
message asking the
user to select date of
joining the organization
from the calendar
control

FR7: The system shall
display drop-down list
for the selection of bank
title

The system displays a
message asking the
user to select bank title
from the drop-down list

FR8: The system shall
display text box to enter
bank account number

The system displays a
message asking the
user to enter bank
account number

FR9: The system shall
display text box to enter
home address

The system displays a
message asking the
user to enter home
address

FR10: The system shall
display text box to enter
contact number

The system displays a
message asking the
user to enter contact
number

FR11: The system shall
display options (yes/no)
to save the changes

The system displays a
message asking the
user whether he/she
wants to save the
required data in the
software or not

 The system displays the
message “Changes

Saved” if user clicks
on the yes option

A. Condition 1

Customer1 from organization1, requested the modification
in the software, functional and non-functional requirements
for user login were by scanning the bar code of employee card
with the bar code reader instead of login by email address and
password. The bar code reader will be connected with the
system through serial port or interface device called wedge or
keyboard port. The bar code of the card will be matched with
the repository of the user saved in the software in order to find
the user matching text (identification).

According to Table 1, Functional Requirement Attributes
(FRA) are those that defines the system behavior under precise
circumstances. FRA (email_address, password,
change_password, current_password, new_password,
confirm_new_password, department, employee_title,
date_of_joining, bank_title, bank_account_number,
home_address, contact_number, save_changes). Non-
functional Requirement Attributes (NFRA) are those that
defines in what way a system must act and create restraints on
its functionality. NFRA (security, usability, portability,
availability, capacity, efficiency, reliability, performance,
integrity, recovery, compatibility, maintainability).
Unadopted Attributes, Total functional and non-functional
requirements Attributes are represented by UA and TA
respectively. In this following were the unadopted attributes
email_address, password, change_password,

current_password, new_password, confirm_new_password.
FRA = 14, NFRA = 12, UA = 6, TA = 26.

Functional Requirement Attributes Completeness

(FRAC) = FRA/TA = 14/26 = 0.54

Non-Functional Requirements Attributes Completeness

(NFRAC) = NFRA/TA = 12/26 = 0.46

Unadopted Attributes Completeness

(UAC) = UA/TA = 6/26 = 0.23

Software Completeness = FRAC + NFRAC - UAC

= 0.54 + 0.46 - 0.23 = 0.77

As the value are represented in unit interval (0, 1).

B. Condition 2

Customer2 from organization2, whose functional and non-
functional requirement were: when the user login the system
by email address and password. The system shall send PIN at
the user cellphone for further authentication of user. So, there
was requirement of new functionality by the user to be added
in the software. The new functionality was required to be
integrated with email software component. According to
Table 1, FRA = 14, NFRA = 12, UA = 1, TA = 26.

Functional Requirement Attributes Completeness

(FRAC) = FRA/TA = 14/26 = 0.54

Non-Functional Requirements Attributes Completeness

(NFRAC) = NFRA/TA = 12/26 = 0.46

Unadopted Attributes Completeness

(UAC) = UA/TA = 1/26 = 0.04

Software Completeness = FRAC + NFRAC - UAC

= 0.54 + 0.46 – 0.04 = 0.96

C. Condition 3

Customer3 from organization3, functional and non-
functional requirements for user login were by thumb scan or
by scanning the Quick Response (QR) code instead of login
by email address and password. QR code functionalities are
represented in the Fig. 3 [10].

Figure 3. QR Code

According to Table 1, the value of FRA, NFRA, UA and
TA were same as for condition 1, because unadopted attributes
in both conditions were same.

Software Completeness = FRAC + NFRAC - UAC

= 0.54 + 0.46 - 0.23 = 0.77

526

D. Condition 4

Customer4 from organization4, functional and non-
functional requirements were by selecting images for the
password. The images must be available in the software.
According to Table 1, FRA = 14, NFRA = 12, UA = 4, TA =
26. In this unadopted attribute were password,
current_password, new_password, confirm_new_password.

Functional Requirement Attributes Completeness

(FRAC) = FRA/TA = 14/26 = 0.54

Non-Functional Requirements Attributes Completeness

(NFRAC) = NFRA/TA = 12/26 = 0.46

Unadopted Attributes Completeness

(UAC) = UA/TA = 4/26 = 0.15

Software Completeness = FRAC + NFRAC - UAC

= 0.54 + 0.46 - 0.15 = 0.85

Figure 4. Images Displayed for Password

In this user selects six images for password according to
his/her order.

Figure 5. Images Selected for Password

In this research, complete software was developed in
which team A used Forward Engineering (FE) approach.
Team B developed the software by using Forward
Engineering Completeness (FEC) approach. Both approaches
were evaluated by monitoring following types of
errors/defects [11]: Incomplete or Erroneous Specification
(IES), Misinterpretation of Customer Communication
(MCC), Intentional Deviation from Specification (IDS),
Inconsistent Component Interface (ICI), Miscellaneous
(MIS). Total number of Correct Functionalities (CF) in the
software were also counted. In this research only IES, MCC,
IDS, ICI, MIS, were monitored, because these errors/defects
were related to the introduced technique. Total number of
functional and non-functional requirements in the software
were 1398. Table 1 represents the basic software
components. During the evaluation process following errors
in the software were identified: IES = 173, MCC = 122, IDS
= 27, ICI = 42, MIS = 301, CF = 733 as shown in Fig. 6. All
other errors/defects that does not belong to IES, MCC, IDS,
ICI, were considered in the MIS. One value was assigned for
one error/defect whether that error/defect belongs to
functional or non-functional requirements of 1398 total
requirements.

Figure 6. Errors & Correct Functionalities in FE Approach

In forward engineering completeness same type of
errors/defects were monitored in the development process in
order to determine the importance of requirement validation
framework. Total number of functional and non-functional
requirements were in the range of 1398 to 1430. The range in
requirements were due to modifications in the unadopted
requirements in order to fulfill different customer needs.
Maximum value of requirements was assigned to the total
requirements. During the evaluation process total number of
errors in the software were as: IES = 11, MCC = 14, IDS =
9, ICI = 21, MIS = 39, CF = 1336 as shown in Fig. 7.

Figure 7. Errors & Correct Functionalities in FEC Approach

Team A developed the software without following the
introduced techniques whereas team B followed the template
of table for software requirements. After this these
requirements were validated in the requirement validation
framework before the actual development of software. Team
A software development duration was more than the
prescribed duration whereas team B developed the software
in less than the prescribed duration. Total percentage of errors
in software requirements was about 48% in forward
engineering approach. In forward engineering completeness
approach total percentage of errors in software requirements
was about 7%. The decrease in errors was due to the
validation of requirements before the software development.
It has been observed that if development time of software
increase, budget allocated for that software becomes less. As
team A completed the software two months more than
prescribed duration, so for these two months extra budget was

IES
12%

MCC
9%

IDS
2%

ICI
3% MIS

22%

CF
52%

Other
74%

Forward Engineer ing

IES MCC IDS ICI MIS CF

IES
1%

MCC
1%

IDS
1%

ICI
1%

MIS
3%

CF
93%

Other
96%

Forward Engineer ing
Completeness

IES MCC IDS ICI MIS CF

527

used in order to fulfill the salaries requirements of employees
and other expenses of software company. Software
development time increases due to identification of errors and
defects in software, if these are found in last phases of system
development life cycle than more time is required to remove
them. As team B developed the software by using
requirement validation framework therefore the defects
found in this were nearly negligible. From the Fig. 7 it has
been observed that whenever unadopted requirements are
identified at the start of software development, there was
reduction in budget and time duration for development also
reduces. Forty-five days were required by Team A to perform
corrective, adaptive, perfective and preventive maintenance
whereas Team B completed all maintenance types in one day.

IV. CONCLUSIONS
This research supported the convincing evidence that,

whenever requirement validation framework was used in the
forward engineering, then surplus budget allocated for the
maintenance phase was saved. The suitability of attributes
allows illustrating conclusion about how suitable software
component was for a specific problem. The time required to
develop the software was also reduced. The time spends on
corrective, adaptive, perfective and preventive maintenance
reduces approximately 1 to 2 months for one-year projects,
whereas in normal routine it takes 2 to 3 times more than
scheduled time. It has been observed that software size is
increasing day by day due to change in technology and new
requirements of end-users. As software size increases
ultimately the software complexity also increases. In the final
phase the software, size becomes like a pyramid so if user
stories are ignored in the requirement gathering phase then
large number of errors and defects are identified in the
software. The requirement validation framework identified
the unadopted requirement in the software and new
requirement were also identified in the face to face meeting
which resulted the software in completeness form. The
identification of unadopted requirement saved the software
engineers from complexity of errors and defects.

ACKNOWLEDGMENT
This work was supported by Chongqing Research

Program of Basic Science & Frontier Technology with Grant
No. cstc2017jcyjB0305.

REFERENCES
[1] S. Lauesen, “Problem-Oriented Requirements in Practice -A Case

Study”, In REFSQ 2018, Utrecht, Netherlands, 2018, pp. 3-19.
[2] R. B. Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni, R.

Feldt, “Quality requirements in industrial practice - an extended

interview study at eleven companies,” IEEE Trans. Softw. Eng. Vol.
38, 2012, pp. 923–935.

[3] R. Berntsson-Svensson, T. Olsson, B. Regnell, “An Investigation of
How Quality Requirements are Specified in Industrial Practice”, Inf.
Softw. Technol. vol. 55, 2013, pp. 1224–1236.

[4] K. Wnuk, R. K. Kollu, “A Systematic Mapping Study on Requirements
Scoping”, In: Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, Limerick,
Ireland, 2016.

[5] P. Zave, M. Jackson, “Four Dark Corners of Requirements
Engineering”, ACM Trans. Softw. Eng. Methodol. 6(1), 1997, pp. 1–
30.

[6] S. Hotomski, E. B. Charrada, M. Glinz, “An Exploratory Study on
Handling Requirements and Acceptance Test Documentation in
Industry”, In: 24th IEEE International Requirements Engineering
Conference, Beijing, China, 2016, pp. 116–129.

[7] G. Ana-Maria, O. Cristina-Claudia, A. B. Robert, “Security
Requirements Elicitation from Engineering Governance, Risk
Management and Compliance”, In REFSQ 2018, Utrecht, Netherlands,
2018, pp. 283-289.

[8] S. Vishal, F. L. Xiaoqing, “Analysis of Conflicts Among Non-
Functional Requirements Using Integrated Analysis of Functional and
Non-Functional Requirements”, In 31st Annual International Computer
Software and Applications Conference, IEEE Computer Society,
Beijing, China, 2007, pp. 215-218.

[9] M. K. Chawla, I. Chhabra, “A Quantitative Framework for Integrated
Software Quality Measurement in Multiversions Systems,”
International Conference on Internet of Things and Applications,
IEEE, Pune, India, 2016, pp. 310-315.

[10] M. Yan, X. Xia, X. Zhang, L. Xu, D. Yang, “A Systematic Mapping
Study of Quality Assessment Models for Software Products,”
International Conference on Software Analysis, Testing and Evolution,
IEEE, Harbin, China, 2017, pp. 67-71.

[11] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
McGraw-Hill Education, New York, USA, 8th ed, 2014.

[12] M. Rouse, “Legacy Platform”, Internet: https://whatis.techtarget.com/
definition/legacy-platform-legacy-operating-system, March 2011,
[February 22, 2019].

[13] D. Gustafson, Schaum's Outlines Software Engineering, McGraw-Hill
Education, New York, USA, 1st ed, 2002.

[14] X. Lian, L. Zhang, “Optimized Feature Selection Towards Functional
and Non-Functional Requirements in Software Product Lines”, IEEE,
22nd International Conference on Software Analysis, Evolution, and
Reengineering, Montreal, QC, Canada, 2015, pp. 191-200.

[15] B. Thalheim, Entity-Relationship Modeling: Foundations of Database
Technology, Springer-Verlag, Berlin, Germany, 1st ed, 2000.

[16] G. D. S. Hadad, C. S. Litvak, J. H. Doorn, M. Ridao, Dealing with
Completeness in Requirements Engineering, McGraw-Hill Education,
New York, USA, 5th ed, 2015.

[17] M. K. Pour, “Encyclopedia of Information Science and Technology”,
IGI Global, USA, 4th ed, 2017.

[18] J. Noll, S. Beecham, I. Richardson, Global Software Development and
Collaboration: Barriers and Solutions, ACM Inroads - Special Section
on Global Intercultural Collaboration, 1(3), 2010, pp. 66-78.

[19] I. Sommerville, Software Engineering, Pearson Education Limited,
London, England, 10th ed, 2015.

528

https://whatis.techtarget.com/
http://ieeexplore.ieee.org/document/7081829/
http://ieeexplore.ieee.org/document/7081829/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7066219
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7066219

 Improving Mobile Device Interaction for
Parkinson’s Disease Patients via PD-Helper

Farzana Jabeen 1,2, Linmi Tao1, Yirou Guo3, Shiyu Zhang4, Shanshan Mei5
1Key Laboratory of Pervasive Computing, Ministry of Education, Beijing China
1Dept. of Computer Science & Technology, Tsinghua University, Beijing China

2National University of Science and Technology, Islamabad, Pakistan
3Department of Electronic Engineering, Beihang University; 4International School, BUPT, Beijing, China

5Neurology Department, Xuan Wu Hospital, Beijing, China

Abstract—In current era, smart devices play vital role in social
connectivity and performing routinely activities. The motor and
non-motor (rigidity, tremor at rest, dysarthria, slowness of
movement, and depression) symptoms of Parkinson’s disease (PD)
have definite negative impacts on patients’ interaction with smart
devices. An adaptable interface named PD-Helper is designed and
developed to meet the physical capabilities as well as social needs
of patients and to improve the accessibility via smart devices.
Single touch interaction is provided via scanning selection
technique, video and web user controls and input method editor
(IME) application allows PD patients to access web browsing,
entertainment like watching videos, typing text and contacting
medical stuff. 40 users with PD, participated in the evaluation
process of the PD-Helper. Preliminary results are promising and
satisfactory. Further studies are in progress to attest the PD helper
potential, such as improving the quality of life of people with other
Neurological disorders.

Keywords-component; Parkinson’s Disease, Mobile Interaction,
Accessibility, Single touch interaction, interaction with smart devices

I. INTRODUCTION

In current society, Parkinson’s disease (PD) is a progressive
degenerative disorder that affects the nervous system and
consequently decreases the quality of life (QOL) effecting more
than 1% of the patients worldwide and in China [8,13]. As smart
devices becoming an indispensable part of human life, PD also
inevitably need to use modern communication products. Smart
technology has evolved the ways of interaction such as input
becomes based on tiny touch screens, on screen keyboards, on
gesture and finger input [1]. But the physiology and psychology
of the patients with PD are very different from the target
customers of smart phones [1,8,22]. Cardinal symptoms of PD
like rigidity and tremor, neurological disorders like insomnia
and severe fatigue, undermined speech and voice capabilities are
likely to reduce the individual’s mobility and autonomy and thus
affect the way they interact with smart devices [8].

At present, the smart device with less functions can solve the
basic needs of the special groups, but cannot meet the fashion
need of the special groups for health, recreation and social
demand [1]. The problems of existing smart devices and
computers are divided into three sectors: user interface,
interaction design, physical capabilities. As for user interface,
decorative fonts prevent patients with visual problems reading
text easily [5], patients with visual problems find it hard to adapt

to the brightness changes between screens [1,4], elder patients
may have problems with perception of the application and the
devices itself and verbiage in system requires an understanding
of smart devices basics to make sense [10]. In terms of
interaction design, for smart devices, the interaction is mainly
implemented by gestures on the screen. And the problem lies in
that motor-impaired PD patients cannot accurately tap on a small
icon on the screen or perform those interaction gestures well,
like sliding or scrolling. Buttons of touch screens react too fast
and this is a problem for the elderly [4]. Audio interaction is also
not feasible as PD has strong effects in patients’ language
competence, which result in their lack of clarity and loudness
and make it hard for ASR to recognize what they are saying [22].
What’s more, spreading information across screens or forcing
scrolling may be problematic due to working memory decline
[2] and decline in ability to coordinate multiple tasks using
attention switching [3]. Screens which present too many options
or buttons may become confusing due to patients scanning the
whole screen towards their goal rather than zeroing in, by visual
cues, on what they are looking for [10]. Considering physical
capabilities, smartphones usual keypad is not good for elderly
and the physical buttons from mobile phones are too small.
Design of the size should consider the trade-off between the
screen size and handset size for patients to hold. As for the
volume of audio interaction, when some instructions of a UI
want to be given by voice, patients with audio impairment
cannot receive the signal in some frequencies range [1].
Consider whether to listen carefully to the elderly, but also need
to consider the impact of the size of the sound on vision [12].

To provide an optimal design to the intended audience, we
designed and developed PD-Helper to satisfy the patients’ need
of communication, entertainment and requirement for medical
care. With consideration of usability, accessibility and
customization, application is developed based on scanning
technique to provide single touch interaction over entire screen
of smart devices. Personalization feature allows patients to
adjust the font size, background color and scanning speed
according to one’s individual pace. 40 users with PD,
participated in the evaluation process of the prototype.
Preliminary results are promising and indicate a good level of
acceptance. The contributions of this study are that 1) an easy
and feasible solution that helps PD patients to enhance their
interaction with smart devices 2) A single platform that provides
access to four major daily life utilities to satisfy the fundamental
needs of PD patients 3) To accommodate the variant conditions

DOI reference number: 10.18293/SEKE2019-153

529

of PD Patients, they can choose controllable speed, and entire
screen as touch keypad helps to improve the accuracy, single
touch interaction smoothly fits to their physical limitations and
helps to reduce physical fatigue. 4)This research also insights
that by improving the accessibility and usability of interaction
design of smart devices, they can be really helpful to provide a
more productive, independent, social and fulfilling life to elder
society.

II. RELATED WORK

Assistive technology is trying to assist the elderly society and
motor impaired by providing a variety of applications to cope
with interaction challenges in web search, text input as well as
for health care. Keyboard is an essential modularity to interact
with mobile phones. Researchers tried to optimize the
QWERTY keyboard for a high efficiency by changing the layout
[21], changing the key size, width or color [17,18] and different
kinds of gestures such as swipe [19], shake [14] and other hand
gestures [16] are used to promote typing efficiency. For web
browsing, [11] developed a browser allowed patients to choose
the links by presenting a series of brain responses within limited
time. Web Accessibility Initiative provides bigger text with
larger clicking areas and patients can order a special mouse to
deal with the problem of shaking hands. For patients’ Health
care system, [7] did a survey to determine participants’
perceptions of whether PROME would facilitate patient-
physician communication. For multimedia, [23] created a Brain-
Computer-Interaction system based on electroencephalography
(EEG) signals to meet the recreation need of people with severe
disability.

Though the development of the IME seems highly improved
the efficiency of typing for healthy people, but the number of
keys and the complexity of gestures increase difficulty for
patients whose hands are shaky to tap or follow the gestures that
is why systems [14-21] are not suitable for PD patients.

The browsers which have been developed [9, 11, 23, 24]
have a strong limitation due to precise use of mouse control
movement, hence is not adaptable to PD patients. It is more
important for doctors to get patients feedback to decide whether
the medicine is suitable or not [6,7]. But the need to access
medical services directly by expressing patient feeling is still
need to pay attention.

Multimedia and recreation content access is really helpful to
change the mind state of patients especially when they feel
depressed. PD patients are incapable to use most of them [23].
All above mentioned problems highlight the need of our
proposed PD-Helper system that can help PD patients to
interact with smart device applications according to their
physical capabilities. The details are given below in the design
section.

III. APPLICATION DESIGN

To make our design in accordance with PD patients’ needs
and physical capabilities, we have considered following aspects:
accessibility, simple design without intervention of wearable
sensors and additional hardware and interaction technique
should be feasible for PD patients; usability, the system is easy
to learn and use; customization, users are allowed to make
adjustment to the system settings according to their own

controllability. We carefully considered and applied the three
aspects in user interface design, interaction design and physical
capabilities adaptation.

A. User interface design

 Main interface: PD-Helper provides four modules,
namely website browsing, multimedia access, notebook
and health care. As for the layout of the four modules
and main interface, we adopted a neutral color scheme
as background color and highlighting colors as icons’
color, in order to ease the visual burden for PD patients
to distinguish the flashing icons. The layout is concise
and consistent in the whole system. Each icon and
graphic representing modules or functions are easy to
identify and are displayed with a larger size than that of
the traditional mobile systems.

 IME interface: The layout is designed with 7 keys and
one large size touch pad to make the interaction easier
and efficient for motor impaired patients. First the initial
alphabet (consonant) of pinyin is displayed. After that
the system will show the possible pinyin combination.
By selecting desiring combination, system will display
the Chinese characters. The desired choices in each step
are displayed within 7 keys.

B. Interaction design: Single touch and menu selection

PD-Helper provides a single touch interaction and whole
screen as input area for users. Considering the trembling or
rigidity symptoms, single touch allows users to touch the screen
for a very short time to realize input and the application sets a
large touch pad for them to touch and decrease the probability of
error. Users do not click over individual keys and alphabets to
select, they can tap over the entire area to make a selection.
Menu selection is realized using scanning technique rather than
touching on the small area of an icon. When the target items start
to flash in turn, users can touch anywhere on the screen to select
them.

C. Input technique: IME and shortcut menu

Consonant Character Input Method [25] is used in the IME
application. To control the interaction via single touch, scanning
ambiguous keyboard concept is used, because this is an efficient
way to implement the system with reduced size and control the
output via single key [23]. Sequence of typing one word is as
follows. First look up for the initial alphabet (consonant) of
pinyin. After that system will show the possible pinyin
combination. By selecting desiring combination, system will
display the Chinese characters. A small offline database
connects the IME application to retrieve the Chinese characters
efficiently. To maintain the efficiency during whole typing
process, an online database is connected. So that if user does not
find desired character, he just need to select the “x”, system will
type pinyin directly in the textbox. After user finished one
sentence, system will replace pinyin with corresponding Chinese
character.

D. Physical capabilities adaptation

A design should meet the patients’ physical capabilities to
make it adaptable at user level. Fig.1 shows the difference
between device interaction and user capabilities to interact with

530

them. As interaction techniques based on precise target selection
are out of questions for the patients, so it is really challenge for
them to cope with these devices.

PD-Helper uses scanning technique to make selection, Icons
flash in turn and users can touch on the entire screen to realize
their input. Single tap input allows users to input with least
physical effort. In this way, these applications accessible to more
people with physical disabilities. Personalization settings are
provided to change the scanning speed (4s, 3s, 2s), and color
theme to facilitate the diverse conditions of PD. The web user
controls with scanning technique and video easy control help
patients to access the applications.

Figure 1. Physical capabilities adaptation

IV. APPLICATION IMPLEMENTATION

To implement the proposed design, we developed PD-Helper
for Android platform. PD-Helper is composite of four modules,
namely web browsing, multimedia, notebook and healthcare and
provide patients with social connectivity, medical care and
entertainment. The detailed implementation of each module in
the application is listed below:

A. Main menu

Figure 2. Main menu of PD-Helper

Main page displays four modules and their icons flash
clockwise from website to multimedia, then notebook and the
lastly healthcare (see Fig.2). Lower most right settings help to
change the scan interval speed of the entire application. The

selection in PD-Helper can be made by single tap anywhere on
the entire screen.

B. Web browsing

This module allows patients to browse the internet. When
user opens browser, internet browser page divides into 2 parts:
page control area and web control area (see Fig.3). Web page
control area consists of web controls that start to scan in turn
and helps to increase and decrease the font, refresh the current
page, open new page and return to main menu by single tapping
over the screen.

Figure 3. Web-Browsing PD-Helper

C. Multimedia

Video source: Multimedia Access provides a list of videos
for users to watch, including some classic movies and
rehabilitation treatment videos (see Fig.4).

Easy control: users touch the screen to select the video, and
it plays automatically. Users can pause and play by single
tapping for a short time, and then tap it again to continue to play.
Touching the screen for a bit long time can exit the video and
return to the video list. This mechanism is easy for PD patients
to control videos.

Figure 4. Multimedia module of PD-Helper

531

D. Notebook

This module provides an IME application that designed
specifically for PD patients to type Chinese character in the text
input area via single touch. Notebook application helps to type
text, save notes, record notes and view the previous records.
Users can also browse some relevant articles by typing keyword
via “search” function. It provides many motivational cards with
pictures and some motivational words to encourage users to
change their mood. The content of the cards will be changed with
tapping on the screen. Patients often have trouble in sleeping
well due to physical therapy and psychological stress. The
subsection “Sleep” provides many hypnotic music to improve
PD patients’ sleep quality (see Fig.5).

Figure 5. Notebook module of PD-Helper

Figure 6. Health care connectivity

E. Healthcare

PD patients may suffer from speech impairment and are
unable to express their need. This module provides common
possible symptoms and needs for patients to express their
feelings to the medical care staff automatically via the message
system (see Fig. 6). The system helps to select the category of
symptoms from the column via scanning technique and then pick
the detailed symptoms in the corresponding row via single tap
over the entire screen. The message will be sent to the contact
number of care taker staff.

V. USER STUDIES

We conducted user studies to test the usability and to
determine the effects of PD-Helper with PD patients. 40

recruited patients (18 males, 22 females) with age ranging from
43 to 89 (mean=69; SD=11.03) have been divided into two
group according to their PD symptoms, namely tremor (T) and
rigidity(R). Neurologist helped us to make selection of patients
based on information from hospital records and nursing staff.
Patient inclusion criteria includes 1) Parkinson’s disease
symptoms (Rigidity, Tremor), 2) off state. Neurologist helped to
motivate the patients to take part in the user study voluntarily.
Neurologists helped to collect UDPRS data of participants. We
divided the patient’s disease degree of severity into 3 levels only
(using UDPRD data). All the patients signed informed patient
consent form willingly and voluntarily participated to test the
system.

To test the adaptability and accessibility of PD-helper with
patients an experiment with 30 min time span is conducted.
Keeping in view patient physical condition, it was tiring for a
patient to test all the modules of PD helper. To test each module,
we have divided patients into groups based on their capability to
test the different modules. 22 Patients who were familiar with
pinyin helped to test the notebook /IME module. The 18 patients
with no or little knowledge of smart devices helped to test the
web browsing and multimedia module. During the test sessions,
participants had to perform the following tasks with three
different scanning speeds.

Task 1: play the third video from the multimedia module, and
check the play, pause and close functions.

Task 2: Patient has to open SOHU website and used the all
available web user controls to increase, decrease font, refresh the
page, open new page, and back to main menu.

Task3: Type a random sentence (selected from the old
Chinese poem and daily life sentences) with the note book
module (see Table III).

Test was conducted on Tablet (7.5 inches screen, android
OS). Patients performed the test while holding the tablet in
assistant hand, in their own hand and over the table as well.

A. Results and data of Task 1

18 participants took part to complete the video test. During
test session, patient has to play a video, then use play, pause and
close features of the application that are specifically designed to
assist the diverse conditions of PD. The aim of the test is to
measure the accuracy rate of users’ operation with different
speed interval on video task. Before the test, we estimated the
time required to complete the task without error and the
estimated time (ET) for 2-4s speed interval is respectively 71.6s,
73.6s and 75.2s. We then measured the actual time (AT)
participants took to complete the task in the test. Accuracy rate
calculated in the following way:

R (Accuracy rate) = 1 -100% *(AT-ET)/ AT (1)

TABLE I. ACCURACY AND ERROR RATE OF TASK 1

Speed
Interval

Accuracy Rate Error Rate

T R T R

4s 95.4 91.9 4.6 8.1

3s 88.0 89.9 12.0 10.1

532

Speed
Interval

Accuracy Rate Error Rate

T R T R

2s 78.7 80.5 11.3 19.5

B. Results and data of Task 2

18 participants took test in web browsing module and all of
them have completed the test. The test aims at testing the
usability of web browsing mechanism and measuring the
accuracy rate of users’ operation with different speed interval.
Before the test, we estimated the time required to complete the
task without error and the estimated time (ET) for 2-4s speed
interval is respectively 30s, 40s and 50s. We then measured the
actual time (AT) participants took to complete the task in the
test. Accuracy rate calculated by equation (1).

TABLE II. ACCURACY AND ERROR RATE OF TASK 2

Speed
Interval

Accuracy Rate Error Rate

T R T R

4s 92.2 98.7 7.8 1.3

3s 85.3 90.4 14.7 9.6

2s 77.6 79.9 22.4 20.1

C. Results and data of Task 3

22 Participants overall have been divided according to their
degree of severity to test the correlation between degree of
severity, different speed interval (1s, 2s, 3s) and typing speed.
 Patient used Table III sentences to complete the task 3. By
keeping in view patients’ physical condition short random
sentences are preferably selected to avoid from tiredness and
physical fatigue. In 1s speed interval test, the numbers of people
with degree of severity from 1 to 3 are respectively 4, 13, 5. In
2s speed interval test, there are 19 people with 2 degrees of
severity and 3 people with 3 degrees of severity. In 3s speed
interval test, 10 people are with 2 degrees of severity and 12
people are with 3 degrees of severity.

Figure 7. Interval Plot of w/m speed

In terms of speed interval in relation to typing speed (Fig.
7), people have an approximately average typing speed of 2

words/minute with 1s interval, 1.1 words/minute with 2s
interval, 0.65 word/minute with 3s interval. There’s negative
linear relationship between degree of severity and speed of
typing. People have an approximately average typing speed of
2.3 words/minute with 1 degree of severity, 1.5 words/minute
with 2-degree of severity, 0.7 word/minute with 3-degree of
severity.

TABLE III. TEST SENETNCES FOR TASK 3

Sentence Pinyin Meaning

谢谢 xie xie Thanks

没问题 Mei wen ti No problem

我在北京 Wo zai bei jing I’m in Beijing.

妈 妈 有 三
个 孩 子

Ma ma you san ge hai
zi

Mom has three children

欢迎使用这个系

统
Huan ying shi yong zhe
ge xi tong.

Welcome to use this
system

VI. DISCUSSION

From above data results section, it is proved that single touch
PD-Helper is effective for patients to access the four major daily
life utilities with more ease and accuracy via smart devices. The
reason was that touch interaction technique was based on user
experience and it was easy for the patients to adapt the one
touch interaction technique as they were already familiar with
it rather than learning novice and complex gestures. All patients
used the three flash speeds to complete the test irrespective of
their severity. During task 1 tremor patients showed more
accuracy 95% with 4s as compared to rigidity patients 91%.
During task 2 the lowest rate for accuracy was 77 % and 79 %
of tremor and rigidity respectively. That shows really good
acceptance especially in case of PD patients. It showed that
patients adapt only those features that are in accordance with
their capabilities. User’s questionnaire feedback shows that
IME is easy to use due to simple consonant vowel structure and
personalized features make it suitable for diverse severity
patients. The proposed system is best combination of
accessibility, accuracy and usability.

Accessibility: Different scanning speed level can be
adjustable according to patient physical condition, so patients
with diverse conditions can access PD-Helper without any
discomfort

Accuracy: large size icons, font size and color theme provide
more clarity and visibility to the patients. A fatigue of exact
target selection is also eliminated. To make selection of target
they can touch anywhere of the screen. It helped to increase the
accuracy for patients.

Usability: single tap selection along with large touch area
reduce their motoric interaction and hence physical fatigue for
them.

Fig.8 shows the user study performed with patients. This user
study has made major relevant contributions in minimizing the
motoric interaction for PD patients to access the smart devices.
The idea of PD-Helper via single tap interaction over smart

533

devices is introduced for the first time for PD patients that is
why the comparative study was not possible. All users
appreciate the idea and practical worth of this system

Figure 8. User Study with PD-Helper Patients in Xuan Wu Hospital

VII. CONCLUSION

Parkinson’s disease (PD) Patients with diverse physical
conditions exhibit challenges in interacting with smart devices
due to motor impairment. To enhance their interaction, and
accessibility with smart devices, PD-Helper is designed and
developed with single touch interaction as well as a large touch
pad area to improve tactile experience for intended audience.
Scanning technique is used to control input via single tap to
minimize the physical fatigue for patients. By virtue of
personalization features 40 participants (PD patients) were able
to access the web, multimedia content and input Chinese text
with more accuracy. The IME application, Web user controls,
video easy controls, and connectivity with health care staff
helps PD patient to improve their social connectivity via smart
devices. Further studies are in progress to attest the PD helper
potential, such as improving the quality of life of people with
other Neurological disorders. Current limitation of the system
is that it is developed for Chinese language. As a future work, a
multilingual PD-Helper solution will be offered to support the
patients around the globe.

ACKNOWLEDGEMENT

The project is supported by the Project: 61672017 of National
Science Foundation of China.

REFERENCES
[1] Carmien S., Manzanares A.G. (2014) Elders Using Smartphones – A Set

of Research Based Heuristic Guidelines for Designers. In: Stephanidis C.,
Antona M. (eds) Universal Access in Human-Computer Interaction.
Universal Access to Information and Knowledge. UAHCI 2014. Lecture
Notes in Computer Science, vol 8514. Springer, Cham

[2] Fisk, A.D., Rogers, W. A., Charness, N., Czaja, S. J., & Sharit, J. ,
Designing for Older Adults: Principles and Creative Human Factors
Approaches2004: CRC Press J Taylor&.Francis Croup

[3] Jacko JA, Barreto AB, Marrnet GJ, Chu JYM, Bautsch HS, Scott IU, Rosa
RH (2000) Low vision: the role of visual acuity in the efficiency of cursor
movement. In: Proceedings of ASSETS’00, Arlington, VA, November
2000. ACM Press, pp 1–8

[4] Strengers, J., Smartphone interface design requirements for seniors, in
Information Studies2012, University of Amsterdam: Amsterdam.

[5] Kurniawan, S. and P. Zaphiris, Research-derived web design guidelines
for older people, in Proceedings of the 7th international ACM
SIGACCESS conference on Computers and accessibility2005, ACM:
Baltimore, MD, USA. p. 129-135.

[6] Krpic, Andrej et al. “Telerehabilitation: remote multimedia-supported
assistance and mobile monitoring of balance training outcomes can
facilitate the clinical staff's effort.” International journal of rehabilitation
research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue
internationale de recherches de readaptation 36 2 (2013): 162-71 .

[7] Hong, Song Hee et al. “Health Care Applicability of a Patient-Centric
Web Portal for Patients’ Medication Experience.” Journal of medical
Internet research (2016).

[8] Francisco Nunes • Paula Alexandra Silva • Joa˜o Cevada • Ana Correia
Barros • Luı ´s Teixeira, User interface design guidelines for smartphone
applications for people with Parkinson’s disease, Univ Access Inf Soc
(2016) 15:659–679 DOI 10.1007/s10209-015-0440-1

[9] Hanson, Vicki L. and Susan Crayne. “Personalization of Web browsing:
adaptations to meet the needs of older adults.” Universal Access in the
Information Society 4 (2005): 46-58.

[10] Chisnell, D., Redish, J. Designing web sites for older adults: a review of
recent research. AARP.org/olderwiserwired, 2004.

[11] Bensch, Michael et al. “Nessi: An EEG-Controlled Web Browser for
Severely Paralyzed Patients.” Computational Intelligence and
Neuroscience 2007 (2007): 297 - 298.

[12] Minggang Yang and He Huang, Research on Interaction Design of
Intelligent Mobile Phone for the Elderly Based on the User Experience

[13] Rodrigues, Élvio, Micael Carreira, and Daniel Gonçalves. "Developing a
multimodal interface for the elderly." Procedia computer science 27
(2014): 359-368.

[14] Mark Dunlop, Andreas Komninos, Emma Nicol, and Iain Hamiliton.
2014. Shake 'n' Tap: a gesture enhanced keyboard for older adults. In
Proceedings of the 16th international conference on Human-computer
interaction with mobile devices & services (MobileHCI '14). ACM, New
York, NY, USA, 525-530.

[15] Hutchison, Elizabeth A et al. “Diversification of a protein kinase cascade:
IME-2 is involved in nonself recognition and programmed cell death in
Neurospora crassa” Genetics vol. 192,2 (2012): 467-82.

[16] Yin, Ying et al. “Making touchscreen keyboards adaptive to keys, hand
postures, and individuals: a hierarchical spatial backoff model approach.”
CHI (2013).

[17] Hsiao HC, Wu FG, Chen CH. Design and evaluation of small, linear
QWERTY keyboards. Appl Ergon. 2014 May;45(3):655-62. doi:
10.1016/j.apergo.2013.09.001. Epub 2013 Sep 26. PubMed PMID:
24075287.

[18] Antti Oulasvirta, Anna Reichel, Wenbin Li, Yan Zhang, Myroslav
Bachynskyi, Keith Vertanen, and Per Ola Kristensson. 2013. Improving
two-thumb text entry on touchscreen devices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI '13).
ACM, New York, NY, USA, 2765-2774.

[19] Sakkos, Panos et al. “Anima: Adaptive Personalized Software Keyboard.”
CoRR abs/1501.05696 (2015): n. pag.

[20] Bi, Xiaojun et al. “Multilingual Touchscreen Keyboard Design and
Optimization.” Human-Computer Interaction 27 (2012): 352-382.

[21] Bi, Xiaojun, Barton A. Smith and Shumin Zhai. “Quasi-qwerty soft
keyboard optimization.” CHI (2010)

[22] Ondrej Polacek1 • Adam J. Sporka1 • Pavel Slavik1, “Text input for
motor-impaired people”, Univ Access Inf Soc (2017) 16:51–72, DOI
10.1007/s10209-015-0433-0

[23] Jabeen, Farzana et al. “Mind interactive multimedia system for disabled
people.” 2017 10th International Congress on Image and Signal
Processing, BioMedical Engineering and Informatics (CISP-BMEI)
(2017): 1-6.

[24] Poulson, David and Colette Nicolle. “Making the Internet accessible for
people with cognitive and communication Impairments.” Universal
Access in the Information Society 3 (2003): 48-56.

[25] Jabeen, Farzana, Tao, Linmi, Wang, Xinyue, et al. C-SAK: Chinese
Scanning Ambiguous Keyboard for Parkinson's Disease Patients. In
: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure
Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th
Intl Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE,
2018. p. 792-799.

534

ACNET: Attention-based Convolution Network with
Additional Discriminative Features for DCM

Classification
Chao Luo

College of Computer Science
Chengdu University of
Information Technology

Chengdu, China
clchaoluo@163.com

Wang Xin
College of Computer Science

Chengdu University of
Information Technology

Chengdu, China
xinw@curacloudcorp.com

Xiaojie Li*
College of Computer Science

Chengdu University of
Information Technology

Chengdu, China
lixiaojie000000@163.com

Yucheng Chen*
West China Hospital

Sichuan University
Chengdu, China

chenyucheng2003@126.com

Jiliu Zhou
College of Computer Science

Chengdu University of
Information Technology

Chengdu, China
zhoujiliu@cuit.edu.cn

Kunlin Cao & Youbing Yin
CuraCloud Corporation

Seattle, USA
cao, yin@curacloudcorp.com

Qi Song
CuraCloud Corporation

Seattle, USA
song@curacloudcorp.com

Xi Wu
College of Computer Science

Chengdu University of
Information Technology

Chengdu, China
xi.wu@cuit.edu.cn

Abstract—For dilated cardiomyopathy (DCM) patients, imme-
diate emergency diagnosis and treatment are critical for life
saving and later recovery. T1 mapping is a non-invasive and
effective diagnostic imaging approach to detect DCM. However,
it is a demanding and time-consuming approach. In this paper,
we propose an attention-based network structure, which can
automatically identify DCM patients in a speedy manner to
prioritize their treatment. In the proposed method, we adopt
attention modules to generate attention-aware features. Inside
each attention module, a bottom-up top-down feed-forward
structure is used to unfold the feed-forward and feed-back
attention processes into a single feed-forward process. It allows
the network to focus more on determining useful information
about the current output that is significant in the input data.
Moreover, inspired by the residual network idea, we make
full use of the characteristics of the original data. Combined
residual block, we design down-residual modules for classification
tasks. It consists of seven convolution layers and three layers
of residual blocks. Our network achieves the most advanced
recognition performance on cardiac datasets. We evaluated our
approach on CMR(cardiac magnetic resonance) T1 mapping
images with lower PSNR(peak signal to noise ratio), and the
results demonstrate that our architecture outperforms previous
approaches.

Index Terms—medical image classification, attention, classifi-
cation, myocardial

* These authors are co-corresponding authors. This work was supported by
the National Natural Science Foundation of China (Grant No. 61602066) and
the Scientific Research Foundation (KYTZ201608) of CUIT and the major
Project of Education Department in Sichuan (17ZA0063 and 2017JQ0030),
and partially supported by the Sichuan international science and technology
cooperation and exchange research program (2016HH0018). DOI reference
number: 10.18293/SEKE2019-155

I. INTRODUCTION

Image classification is one of the most important tasks in
computer vision tasks [1], and it is also the basis of other high-
level visual tasks such as object tracking and behavior analysis
[2] [3]. Particularly in medical image tasks, medical image
classification is the key issue to determining whether medical
images can provide a reliable basis for clinical diagnosis
and treatment [4]. The development of medical classification
technology plays an extremely important role in biomedical
image analysis. In recent years, classification technology has
made significant progress because of the application of deep
learning algorithms in medical image classification. This is
more challenging than classification tasks on natural images.
The highly cluttered background and the particularity of med-
ical images pose major challenges to classification accuracy
[5] [6].

Dilated cardiomyopathy (DCM) is a common myocardial
disease [7] [8] [9]. The disease can lead to ventricular systolic
dysfunction, congestive heart failure and arrhythmia. The
disease is progressively aggravated, and death can occur at
any stage of the disease. Therefore, the use of DCM data as
a dataset is of great significance [10] [11] [12] [13].

At present, many methods use medical image classification,
such as, the SVM-based(Support Vector Machine) classifi-
cation method [14] [15]and texture-based method [16] [17].
However, on comparing various methods, the method based
on an artificial neural network achieves better results. It is
found that the artificial neural network has learning and recog-
nition abilities similar to the human brain. Moreover, it can
model human organs, and independently learn the determined

535

diagnostic information and diseased tissue. Additionally, it
can improve the reliability and effectiveness of diagnosing
a patient’s condition. Therefore, in this paper, we use an
attention-based neural network method to effectively classify
medical images.

Inspired by the residual attention network and recent ad-
vances in deep neural networks [18] [19], we propose a new
network based on attention. It is composed of two attention
modules that generate attention-aware features. Additionally,
we design the down-residual module. It is capable of extracting
the high-level features of the input data without causing a loss
of the original features. As the number of layers increases, the
attention-aware features from different modules are adaptively
changed.

In addition to the additional discriminating features acquired
by the attention module, our network has the following ad-
vantages: 1) Before the attention module, we design a down-
residual module, which enables the extraction of high-level
features of the input data without causing a loss of the original
features. 2) Because of the scalability of the attention module,
our network can be easily extended to hundreds of layers.
Our network outperforms state-of-the-art residual attention
networks. Experimental results show that the performance of
our proposed network is better than that of residual attention
network.

II. ATTENTION MODULE

The visual attention mechanism is a brain signal processing
mechanism that is unique to human vision [20] [21]. Human
vision scans the global image quickly to identify the focus
area, which is generally called the focus of attention, and
then invests a large amount of attention resources in this
area to obtain more details of the target and suppress other
useless information. The attention mechanism in deep learning
is essentially similar to the human selective visual attention
mechanism. The core goal is to also select more information
from the many information that is of vital importance to the
current mission objectives [22]. In recent years, the attention
model has been widely used in various types of deep learning
tasks, such as natural language processing, image recognition
and speech recognition [23] [24] [18]. It is a core technologies
that deserves the most attention and insight. In this paper,
the attention model used is based on the attention module of
residual attention network.

To improve the classification accuracy, Wang fei et al.
proposed a residual attention network [25]. Compared with
ResNet-200 [26], the residual attention net achieves 0.6%
top-1 accuracy improvement and has good robustness. Based
on the above advantages, we adopt an attention module in
a residual attention network. As shown in Figure 1, each
attention module is divided into two branches: the mask
branch and trunk branch. The trunk branch performs feature
processing and can be adapted to any state-of-the-art network
structure. For the mask, first, through a series of convolution
and pooling, it gradually extracts high-level features and
increases the receptive field of the model. Then the size of

the feature map is enlarged to the same size as the original
input by the same number of up samples. Thus, it maps the
area of attention to each pixel.

Given input x, T (x) denotes the trunk branch output, and
the mask branch uses a bottom-up top-down structure to learn
the same size of mask M(x) that softly weights output features
T (x). The output mask is used as control gate for neurons of
the trunk branch that are similar to the highway network. The
output of attention module H(x) is:

Hi,c(x) = (1 +Mi,c(x)) ∗ Ti,c(x), (1)

where i ranges over all spatial positions, c is the index of
the channel(c ∈ {1, · · · , c}), M(x) is the output of Soft Mask
Branch and T (x) is the output of the Trunk Branch. The entire
structure can be trained end-to-end. Each pixel value in the
attention map output by the mask branch is equivalent to the
weight of each pixel value in the original feature map, which
enhances meaningful features and suppresses meaningless
information. Therefore, the weighted attention map is obtained
by element-wise multiplication of the output of the mask
branch and the output of the trunk branch. However, this
weighted attention map cannot be directly input into the next
layer because the activation function of the mask branch is
sigmoid and the output value is in the range (0, 1), so the
author performs an element-wise operation on the weighted
attention map and the feature map of the trunk branch.

Fig. 1. Network structure of the attention module.

The attention module has the following advantages: 1) The
attention module is similar to the residual learning mode, so a
very deep model can be easily optimized and learned, and has
very good performance. 2) The forward attention mechanism
of bottom-up top-down. Other networks that use attention
often need to add a branch to the original network to extract
attention, and the author’s model can extract the attention of
the model in a forward process, thereby making the model
training easier.

536

III. METHOD

In this paper, we construct a down-residual module and
combine it with the attention module to construct an attention-
based convolution network(ACNet). The network combines
the advantages of the down-residual module with the advan-
tages of the attention module to deliver outstanding perfor-
mance and robustness.

A. Attention-based Network

We construct an attention-based convolution network based
on attention. The overall network architecture and hyperparam-
eter settings are shown in Figure 2. The network consists of
three modules: the first module consists of seven convolutional
layers and three residual blocks, and then two attention mod-
ules are connected. The former operation quickly collects the
global information of the entire image and the latter operation
extracts high-level distinguishable feature information.

From input x, convolution are firstly performed several
times to increase the receptive field rapidly. After achieving
the high-level features, they are used as input into the three
residual layers. The residual layer can fully extract the useful
advanced feature information and combine it with the input
information of the upper layer. The useful feature information
is fully used and missing useful feature information is avoided.
Finally, the features are put into two attention layers.

B. Loss Function

Cross entropy describes the distance between two probabil-
ity distributions. The smaller the cross entropy, the closer the
two are. It is often used for the classication loss function of
deep neural networks. In this paper, we use cross entropy as
the loss function of the myocardial classification.

H(y, y′) = −
n∑
i

y′ilogyi, (2)

where H is a representation of the loss value, y indicates the
predicted probability distribution, y′ denotes the true proba-
bility, and n suggests the number of samples. Furthermore,
the cross entropy loss function is put to a frequent use in
classification networks.

Learning rate strategy: We conducted several trials with
different learning rates, and the results showed that the learn-
ing rate of 0.001 was the most appropriate. If the learning rate
is too high, it will lead to over-fitting, and the network cannot
learn the feature information correctly. If the learning rate is
too low, the network fitting speed is very slow. Therefore we
set the learning rate to 0.001.

Experiment configurations: To ensure the consistency of
the experiment, we use accuracy as the quantization metric,
100 epochs are trained for each experiment (batch size =
3). All experiments are implemented in python2.7 by using
Tensorflow and Keras framework. We train the networks on
a NVIDIA Tesla M40 GPU and the model that performs the
best on test data set are saved for further analysis.

IV. EXPERIMENT AND RESULTS

A. Dataset, Pre-processing and Evaluation Metrics

CMR T1-mapping images of 485 myocardial sections from
the same hospital were both trained and tested. The ground
truth of the training and the testing samples of images with
the myocardial were manually annotated by an experienced
cardiologist. The pixel size of each CMR image amounts was
1.406×1.406 mm with a size ranging between 192×256 and
224×256. Considering the fact that the size of the myocardium
is small and surrounded by a substantial amount of noise, we
first resampled the resolution of the image to 1 × 1 × 1, and
each image was cut to a fixed image size of 128×128. Finally,
the intensity range of the T1-mapping images was normalized
to [0− 255].

To improve the classification performance of ACNet, three
groups of experiments were constructed. In experiment 1, we
increased the dataset size by using 485 images with a size of
128× 128(included 36 normal people and 449 patients), 388
training images, and 97 test images. In experiment 2, because
the ratio of the positive and negative samples of the above
dataset was very unbalanced (the negative sample contained
only 36 cases), the dataset may have caused the classification
performance to decrease. To solve this problem, we used data
enhancement methods such as image rotation and random
increase of noise to increase the number of samples of normal
people from 36 cases to 191 cases, a total of 640 datasets of
size 128× 128 [27]. A residual attention network, which is a
broadly applied state-of-the-art network structure, was used as
a baseline method. To conduct a fair comparison, we used most
of the settings same as Residual Attention Network paper. We
adopted the same weight initialization method as the previous
study and trained residual attention network using nesterov
SGD with a mini-batch size of 3.

We used four indicators to assess the performance of the
network, which includes accuracy, sensitivity and specificity.
The accuracy is the average of the accuracy of in each group of
experiments. In the medical field, sensitivity is the probability
of correctly predicting positive samples, and specificity is the
probability of correctly predicting negative samples. Sensitiv-
ity is computed using a closed-form formula:

sensitivity =
A

A+B
, (3)

where A is the number of positive samples that are correctly
predicted and B is the number of positive samples with
incorrect prediction results. Similarly, specificity is computed
using a closed-form formula:

specificity =
D

C +D
, (4)

where D is the number of negative samples that are correctly
predicted and C is the number of negative samples with
incorrect prediction results. Generally, the higher the above
four indicators, the better the performance of the experimental
method.

537

Fig. 2. The attention-based network structure proposed in this paper.

B. Results and Discussion

In this paper, we evaluated the performance of the residual
attention network, VGG16, ResNet50, ResNet101 and our
proposed network on the myocardial dataset. Two groups of
experiments were constructed, and each group experiment
was divided into two parts. In the first part, we used the
myocardial dataset to perform multiple experiments on the
residual attention network, VGG16, ResNet50 and ResNet101
to observe changes in the indicator. In the second part, we
performed multiple experiments on the proposed attention-
based network(ACNet) using the myocardial dataset to obtain
the values of each indicator. Finally, the accuracy, sensitivity
and specificity were compared to obtain the performance
difference between the two methods.

For experiment 1, as shown in Table I, in the case of the
same amount of myocardial data, the classification accuracy of
the residual attention network was only 0.4179, the accuracy
of VGG16 was only 0.8593, the accuracy of resnet50 is only
0.6251, and the accuracy of resnet101 is only 0.8347, however,
the accuracy of our proposed network can reached 0.9277. Our
approach is far superior to the other four comparison networks
in terms of accuracy. Additionally, for the two indicators of
sensitivity and specificity, our proposed network was also
superior to the residual attention network, VGG16, ResNet50
and ResNet101. Unfortunately, the sensitivity of all methods
in Table I was very low, whereas the specificity was close to
1. This phenomenon was caused by the imbalance between
the number of positive samples and the number of negative
samples. Therefore, to solve this problem in experiment 2, we
used the data enhancement method to increase the number of
negative samples, so that the difference between the positive
and negative samples was reduced.

Figure 3 shows the attention features of two different
samples in the residual attention network and ACNet. The
myocardial instance mask highlighting the area surrounding
of the myocardial. As can be observed from the figure, the
myocardial mask highlighted the area around the myocardium
and inhibited the middle area. The surrounding area of the
myocardium is just the main feature area for assessing whether
the heart muscle is normal. Therefore, we can know that the

TABLE I
EXPERIMENT 1 RESULTS FOR BOTH NETWORKS. IN THIS EXPERIMENT, A

5-FOLD CROSS-VALIDATION METHOD WAS USED. THE AVERAGE
ACCURACY WAS THE AVERAGE OF FIVE EXPERIMENTAL PRECISIONS. THE

SENSITIVITY AND SPECIFICITY WERE THE AVERAGE RESULTS OF FIVE
EXPERIMENTS.

Network Accuracy sensitivity specificity
Residual attention network 0.4179 0.1067 0.9571

VGG16 0.8593 0.3642 0.9142
ResNet50 0.6251 0.1753 0.8327
ResNet101 0.8347 0.3162 0.9059

Ours 0.9277 0.5305 0.9901

attention mechanism can highlighted useful feature informa-
tion while suppressing the useless feature information, thereby
improving the classification performance. Additionally, by
comparing the feature maps of the two methods, we can clearly
observe that ACNet’s ability to highlight useful information
and the ability to suppress useless information was stronger
than that of the residual attention network. It essentially shows
that ACNet outperformed the residual attention network.

For experiment 2, as shown in Table II, we used the
data enhancement method to increase the number of negative
samples. This method can reduce the difference in the number
of between positive and negative samples, the number of
positive samples and the number of negative samples remained
relatively balanced. From Table II, we can observe that AC-
Net’s three indicators were much higher than those of residual
attention network, VGG16, ResNet50 and ResNet101. This
result once again demonstrates that the performance of our
proposed method is the most outstanding.

Figure 4 shows the comparison of the accuracy results of
the residual attention network, VGG16, ResNet50, ResNet101
and ours ACNet. From the figure, we can clearly observe that,
in the case of the same DCM dataset, the ACNet classification
accuracy was always much higher than that of remaining four
networks. From Figure 5, we can observe that the specificity of
ACNet was much larger than that of remaining four networks,
indicating that ACNet’s ability to predict correct negative

538

Fig. 3. Example images illustrating that different features have different
corresponding attention masks in attention module. The myocardium instance
mask highlights high-level myocardium surrounding part features.

Fig. 4. Distribution of accuracy results in experiment 2.

samples was significantly higher than that of remaining four
networks. The difference in sensitivity results between the
residual attention network, VGG16, ResNet50, ResNet101 and
ACNet is shown in Figure 6. From the figure we can observe
that the sensitivity result of the residual attention network,
VGG16, ResNet50 and ResNet101 was much lower than that
of ACNet. This demonstrates that the ability of remaining four
comparison networks to predict correct positive samples was
far lower than that of ACNet.

In general, from a comprehensive analysis of the results of
the above methods, we can clearly observe that the advantages

Fig. 5. Distribution of specificity results in experiment 2.

Fig. 6. Distribution of sensitivity results in experiment 2.

of ACNet proposed in this paper were very prominent. Our
method is much higher than the four comparison methods
in terms of accuracy, sensitivity and specificity. From Fig-
ure 4 6 5, we can see that the three indicators of our method are
very stable. It can be seen that our method is very robust. In the
medical image classification task, the performance of ACNet
was far stronger than that of the residual attention network,
VGG16, ResNet50 and ResNet101. From the many experi-
mental results, we can observe that the experimental results
of ACNet were very prominent and stable, the robustness of
ACNet was also strong.

To summarize, in the two groups of experiments, the four
indicators of ACNet were much larger than those of the
remaining four comparison networks. Thus, we can clearly ob-
serve that ACNet outperformed the residual attention network,
VGG16, ResNet50 and ResNet101. Furthermore, the three
indicators of experiment 2 were much higher than those of
experiment 1, in particular, the results of ACNet in experiment

539

TABLE II
EXPERIMENT 2 RESULTS OF BOTH NETWORKS. IN THIS EXPERIMENT, THE

UP-SAMPLING METHOD WAS USED TO INCREASE THE NUMBER OF
NEGATIVE SAMPLES.

Network Accuracy Sensitivity Specificity
Residual attention network 0.4718 0.6890 0.3510

VGG16 0.9452 0.7891 0.9405
ResNet50 0.7859 0.7132 0.8327

ResNet101 0.9274 0.7672 0.9361
Ours 0.97152 0.9582 0.9761

2 were significantly higher than the results of experiment
1. Therefore, we found that after using the data enhance
method, performance was greatly improved. Similarly, in the
field of medical imaging, there are often problems such as
small datasets, and unbalanced proportions of positive and
negative samples. We can use the method of data enhance
to appropriately increase the number of samples, so that the
number of positive and negative samples is basically the same.
This can greatly improve the classification performance of the
network.

V. CONCLUSION

In this paper, we proposed an attention-based convolution
network. It combines attention module and down-residual
module designed that we designed. The down-residual module
can acquire high-level features without losing the original
features, and the attention module highlights useful features
and suppresses useless features. To prove the effectiveness
of our framework, we compared it with residual attention
network, VGG16, ResNet50 and ResNet101. We found that
the proposed method was superior to remaining four compar-
ison networks in terms of three indicators. The experimental
results show that this method is obviously superior to the most
advanced classification methods, with the highest accuracy,
sensitivity and specificity. Additionally, the framework that we
used is generally applicable to the classification tasks of other
medical images or natural images. We plan to conduct further
research in the future.

REFERENCES

[1] C. Tian, A Computer Vision-Based Classification Method for Pearl
Quality Assessment, 2009.

[2] N. Doulamis and A. Doulamis, “Semi-supervised deep learning for
object tracking and classification,” in IEEE International Conference
on Image Processing, 2015, pp. 848–852.

[3] S. Pang, J. J. D. Coz, Z. Yu, O. Luaces, and J. Dłez, Combining
Deep Learning and Preference Learning for Object Tracking. Springer
International Publishing, 2016.

[4] F. L. C. D. Santos, M. Paci, L. Nanni, S. Brahnam, and J. Hyttinen,
“Computer vision for virus image classification,” Biosystems Engineer-
ing, vol. 138, pp. 11–22, 2015.

[5] T. M. Lehmann, H. Schubert, D. Keysers, M. Kohnen, and B. B. Wein,
“The irma code for unique classification of medical images,” in Medical
Imaging, 2003.

[6] I. Buciu and A. Gacsadi, “Gabor wavelet based features for medical
image analysis and classification,” in International Symposium on Ap-
plied Sciences in Biomedical and Communication Technologies, 2009,
pp. 1–4.

[7] C. Grefkes, S. B. Eickhoff, D. A. Nowak, M. Dafotakis, and G. R. Fink,
“Dynamic intra- and interhemispheric interactions during unilateral and
bilateral hand movements assessed with fmri and dcm,” Neuroimage,
vol. 41, no. 4, pp. 1382–1394, 2008.

[8] N. K. Lakdawala, L. Dellefave, C. S. Redwood, E. Sparks, A. L.
Cirino, S. Depalma, S. D. Colan, B. Funke, R. S. Zimmerman, and
P. Robinson, “Familial dilated cardiomyopathy caused by an alpha-
tropomyosin mutation : The distinctive natural history of sarcomeric
dilated cardiomyopathy,” Journal of the American College of Cardiology,
vol. 55, no. 4, pp. 320–329, 2010.

[9] H. D. Theiss, D. Robert, M. G. Engelmann, B. Andreas, S. Klaus,
N. Michael, R. Bruno, S. Gerhard, and F. Wolfgang-M, “Circulation of
cd34+ progenitor cell populations in patients with idiopathic dilated and
ischaemic cardiomyopathy (dcm and icm),” European Heart Journal,
vol. 28, no. 10, p. 1258, 2007.

[10] X. Li, J. C. Lv, and Y. Zhang, “Manifold alignment based on sparse local
structures of more corresponding pairs,” in Twenty-Third International
Joint Conference on Artificial Intelligence, 2013.

[11] X. Li, J. Lv, and Z. Yi, “An efficient representation-based method for
boundary point and outlier detection,” IEEE transactions on neural
networks and learning systems, vol. 29, no. 1, pp. 51–62, 2018.

[12] ——, “Outlier detection using structural scores in a high-dimensional
space,” IEEE transactions on cybernetics, 2018.

[13] X. Li, J. Lv, X. Wu, and X. Yu, “A semi-supervised manifold alignment
algorithm and an evaluation method based on local structure preserva-
tion,” Neurocomputing, vol. 224, pp. 195–203, 2017.

[14] Y. Jiang, Z. Li, L. Zhang, and P. Sun, An Improved SVM Classifier for
Medical Image Classification. Springer Berlin Heidelberg, 2007.

[15] B. Li and Q. H. Meng, “Tumor ce image classification using svm-based
feature selection,” in Ieee/rsj International Conference on Intelligent
Robots and Systems, 2010, pp. 1322–1327.

[16] G. M. Foody and A. Mathur, “Toward intelligent training of supervised
image classifications: directing training data acquisition for svm classi-
fication,” Remote Sensing of Environment, vol. 93, no. 1, pp. 107–117,
2004.

[17] D. S. Deshpande, A. M. Rajurkar, and R. M. Manthalkar, “Medical
image analysis an attempt for mammogram classification using texture
based association rule mining,” in Computer Vision, Pattern Recognition,
Image Processing and Graphics, 2014, pp. 1–5.

[18] H. I. Kim and R. H. Park, “Residual lstm attention network for object
tracking,” IEEE Signal Processing Letters, vol. PP, no. 99, pp. 1–1, 2018.

[19] Y. Gao, Y. Chen, J. Wang, and H. Lu, “Reading scene text with attention
convolutional sequence modeling,” 2017.

[20] Y. Sun and R. Fisher, “Object-based visual attention for computer
vision,” Artificial Intelligence, vol. 146, no. 1, pp. 77–123, 2003.

[21] F. Wang and D. M. J. Tax, “Survey on the attention based rnn model
and its applications in computer vision,” 2016.

[22] F. Miau, C. S. Papageorgiou, and L. Itti, “Neuromorphic algorithms for
computer vision and attention,” in International Symposium on Optical
Science and Technology, 2001.

[23] M. M. Mahsuli and R. Safabakhsh, “English to persian transliteration
using attention-based approach in deep learning,” in Electrical Engi-
neering, 2017, pp. 174–178.

[24] H. Wang, S. Tang, Y. Zhang, T. Mei, Y. Zhuang, and F. Wu, “Learning
deep contextual attention network for narrative photo stream captioning,”
in on Thematic Workshops of ACM Multimedia, 2017, pp. 271–279.

[25] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang,
and X. Tang, “Residual attention network for image classification,” in
Computer Vision and Pattern Recognition, 2017, pp. 6450–6458.

[26] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
2016.

[27] D. Balasubramanian, M. C. Krishna, and R. Murugesan, “Convolution-
based interpolation kernels for reconstruction of high resolution emr
images from low sampled k-space data,” in International Conference on
Conference on Computational Intelligence and Multimedia Applications,
2007, pp. 308–313.

540

Discovering Indicators for Classifying Wikipedia Articles in a Domain
A Case Study on Software Languages

Marcel Heinz1 Ralf Lämmel1 Mathieu Acher2

1SoftLang Team, CS Faculty, University of Koblenz-Landau, Germany
2Univ Rennes, Inria, CNRS, IRISA, France

Abstract

Wikipedia is a rich source of information across many
knowledge domains. Yet, recovering articles relevant to a
specific domain is a difficult problem since such articles
may be rare and tend to cover multiple topics. Furthermore,
Wikipedia’s categories provide an ambiguous classification
of articles as they relate to all topics and thus are of limited
use. In this paper, we develop a new methodology to isolate
Wikipedia’s articles that describe a specific topic within the
scope of relevant categories; the methodology uses super-
vised machine learning to retrieve a decision tree classifier
based on articles’ features (URL patterns, summary text,
infoboxes, links from list articles). In a case study, we re-
trieve 3000+ articles that describe software (computer) lan-
guages. Available fragments of ground truths serve as an
essential part of the training set to detect relevant articles.
The results of the classification are thoroughly evaluated
through a survey, in which 31 domain experts participated.

1 INTRODUCTION

Wikipedia is a very large-scale, continuous community
effort to collect and organize (informal) knowledge in al-
most all domains. In general, the quality of the articles and
the mere principles of collection and organization challenge
automated procedures in the quest of extracting and struc-
turing Wikipedia knowledge [1–4]. Recovering articles de-
scribing topics in a certain domain is a reoccurring prob-
lem [5–7]. This paper presents a supervised machine learn-
ing approach for recovering Wikipedia articles relevant to
an ontological class.

We conduct a case study on software languages defined
as a set of digital artifacts, for which syntax, type system,
semantics, and pragmatics can be (in)formally defined, doc-
umented, and implemented [8]. For the purpose of this re-
search, we assume that Wikipedia’s notion of ”computer

DOI reference number: 10.18293/SEKE2019-126

language” – a notion that is used all across computer sci-
ence and beyond – is essentially equivalent to the notion of
”software language”; see also [9] for a discussion.

An important barrier is that, in a large number of cases, a
single Wikipedia article covers multiple subjects. Looking
at the very first sentences of the article about MATLAB (see
Figure 1), several topics are mixed together (e.g., user inter-
faces, numerical computing, and software languages). The
category graph is impacted as well (e.g., linear algebra and
array-programming languages are both mentioned). There
are also two infoboxes—one about MATLAB the language,
the other about MATLAB the software.

Moreover, Wikipedia’s category graph cannot be
directly used for classification within the domain [10];
categories serve purposes other than classification, for
example, collecting articles related to a common topic;
see https://en.wikipedia.org/wiki/Category:

Java_(programming_language). Wikipedia’s guide-
lines partly explain why multiple topics appear in an article:
there should not be a new article, when the description
benefits from explaining two or more subjects in the
context of an existing article1. Such rules and editing
practices, though reasonable, complicate classification,
i.e., automated identification of articles (instances) and
underlying categories (classifiers). For some domains, like
animals [5], categories that represent scientific classifica-
tion are consistently used and provide a decision ground for
still identifying relevant articles. In the domain of software
languages such crucial features do not exist for articles
or are used inconsistently. Alas, the recovery of relevant
articles becomes looking for needles in a hay stack.

Significance of the multiple-subject problem. We ini-
tially explored articles that link to (subcategories of) the cat-
egory ‘Computer languages’ and search for the top ten fre-
quent nouns (’NN’ tag recovered with part-of-speech tag-
ger). We noticed that nouns from the music and astron-
omy domain are dominant. Fig. 2 reports the number of
articles for the top ten most frequent nouns in the category

1https://en.wikipedia.org/wiki/Wikipedia:Notability#
Whether_to_create_standalone_pages

541

1 URL

Infoboxes3

2 Summary

4 Category Graph

Figure 1. General structure of a Wikipedia article and some indicators.

tree of ’Computer languages’ tree that we cut off at a depth
of seven. Within the category tree, we observed subjects
that belong to other domains, such as ’songs’, ’stars’, ’al-
bum’ and ’music’. Except for the minority that describes
domain specific languages in the respective domains, most
of the article are obviously irrelevant to software languages.
Fig. 2 also provides evidence that relatedness-based sub-
categorization connect to irrelevant subjects.

Figure 2. Top 10 most frequent nouns in arti-
cles below ’Formal languages’ category.

Research question and contributions. Overall, our
case study is an instance of the problem of extracting
domain-specific knowledge from Wikipedia [7, 10, 11]:
How can we classify Wikipedia articles by their relevance
to a given domain when relevant articles are rare and mul-
tiple main topics are covered by articles? Our objective is
essentially to detect members (here: Wikipedia articles) of
a certain class (here: software languages).

We develop a seed-based learning methodology for iden-
tifying articles relevant to a domain-specific class while
leveraging the available limited ground truth (based on

Github and TIOBE) and identifying indicators by inspect-
ing a learnt decision tree that include URL patterns, sum-
mary text, infoboxes, list articles and category graph. We
then present a case study which, in itself, results in the most
comprehensive corpus on software languages available to-
day. The results are evaluated by domain experts through a
survey.

2 SEED-BASED LEARNING

We now detail how we exploit fragments of ground truths
and instrument a decision tree classifier. The datasets in-
cluding plotted decision trees are available online2. Fig-
ure 3 provides an overview of our approach. i.) For train-
ing, we recover articles describing elements that appear in
trustworthy external resources. ii.) Based on such seed, we
define the scope in which we want to isolate relevant ar-
ticles and label 4000 randomly sampled articles from this
scope for additional training data. iii.) From the training
data, we build a feature matrix with categorical values that
state whether a structural feature, such as the programming
language infobox template, is present. iv.) We configure a
binary classifier that decides whether an article is relevant.

2.1 Seed Matching

As first step, we have identified and reused two trustwor-
thy external data sets: both act as seeds for recognizing rele-
vant articles. GitHub presents statistics on which languages

2https://github.com/softlang/wikionto/

542

Figure 3. The ingredients of the approach. The seed in the training data influences decisions.

are used for any repository. The complete list of languages
that are recognized can be extracted3. The TIOBE index
presents statistics on how often software languages (mainly
programming languages) are mentioned on the web. The
list includes variations of names4.

Identifying each language on Wikipedia from the lists
is challenging. We encountered favorable and problematic
cases. To our favor, most names can be matched with article
titles by leaving out annotations (e.g. ’(programming lan-
guage)’) or by using Wikipedia redirects. However, manual
reviewing remains crucial to make sure that languages are
matched correctly, e.g., ’Red’ is matched with ’Red (pro-
gramming language)’ and not with the color. In some cases,
we succeeded by varying the writing style for the name,
e.g., by unfolding acronyms, such as EBNF. In less favor-
able cases, we had to rely on Wikipedia’s search engine to
detect mentions in the text of existing articles. Only if the
existing article describes the seed language as its main topic
in the summary, we take it as the recalled article. To ensure
availability of the necessary features for classification, we
exclude stub articles from further analysis.

The resulting merged seed contains 327 recalled seed
languages where 110 overlap. 158 seed languages are only
casually mentioned in articles and 99 seed languages remain
unrecognized.

2.2 Category Scope Exploration

We narrow the scope of our analysis to articles that are
reachable by links to (subcategories of) chosen upper cate-
gories. Technically, we have manually identified common
upper categories so that the seed is linked to them. At first,
we hypothesized that all relevant languages link to ’Com-
puter languages’, but we found ’Augmented BackusNaur
form’ as a seed member that links to ’Formal languages’,
where ’Computer languages’ is a subcategory. Moreover,
for seed articles such as ’CSV’, we noticed the upper cate-
gory ’Computer file formats’ that is disconnected from ’For-
mal languages’. Such formats are categorized in a different
manner, but they do conform to the definition of software
language. Our experiments show that all seed articles are

3https://github.com/github/linguist/blob/master/lib/
linguist/languages.yml

4https://www.tiobe.com/tiobe-index/
programming-languages-definition/#instances

Table 1. Number of seed articles per depth.
0 1 2 3 4 5 6-8

Formal languages 2 6 85 136 70 16 7
Computer file formats 8 22 11 7 0 0 3

linked to (subcategories of) two disconnected roots in the
category tree at a maximum depth of eight. Table 1 illus-
trates at what depth from the chosen root categories seed
articles exist.

2.3 Feature Extraction

Next, we describe which features we extract from the
content types discussed in Section 1. To counter lack of
decisive features and to reduce dimensionality, we exclude
stub articles and only consider features that appear in at
least ten articles. For now, we also exclude articles at a
distance to the upper categories that is higher than 8. As
a resulting dataset, the extraction returns an article-feature
matrix with 104, 186 × 46, 173 entries with label ‘1’ for
present and ‘0’ otherwise. Then, the set of 4000 randomly
sampled articles and the seed form the training set. To avoid
memory issues and enable loading the whole article-feature
matrix, we use sparse matrices.

In the evaluation, we discuss that irrelevant articles in
the training set are actually members of many other domain
classes and have many different features. Hence, the result-
ing decision tree decides by features present in seed articles.
In fact, GitHub and TIOBE seeds have a more general in-
terest: Seed articles provide representative features for
recognizing relevant articles. We show which features of
seed articles provide a representative positive indication and
hence may be found in a fit decision tree.

Infobox Templates. In the scope, there exist 864 distinct
infobox template names. 263 seed articles use an infobox
template. We found the templates on ‘programming lan-
guage’ (215), ‘file format’ (32), ‘technology standard’ (3)
and ‘software license’ (1). Especially, the templates ’pro-
gramming language’ and ’file format’ provide a strong pos-
itive indication, but they do not exist for every relevant arti-
cle.

URL Pattern. We extract all words separately in braces
from every article’s title as they provide a semantic anno-

543

tation for disambiguation. Only around a third of the seed
articles has such an annotation. The words in braces ap-
pearing more than once with their frequency are: ’language’
(125), ’programming’ (114), ’software’ (6), ’stylesheet’ (3)
and ’markup’ (2). ’programming’ always appears together
with ’language’.

Lemmas in Summary. From the summary, we extract
all words, filter them by a stop word list and apply lemma-
tization on the remainder. We recovered 5449 lemmas from
seed articles while 457, 164 distinct lemmas can be recov-
ered from all articles. We enumerate the top five lem-
mas from the seed: ’language’ (301), ’programming’ (253),
’use’ (216), ’develop’ (120), ’design’ (117). Lemmas are
often used for topic models [12]. They are essential to dis-
tinguish the domain of software languages and co-occurring
topics in articles from other unrelated domains such as nat-
ural languages.

Dependency Pattern. Following [10], we identified
multiple kinds of relationships that can be extracted from
the first sentence. Hypernyms provide a reliable feature as
most articles on Wikipedia begin with a sentence containing
’is a’. Based on the dependency graph, we extract the hy-
pernym [13], if the sentence does not start with ’A’. This al-
lows us to ignore subset relationships as in ‘A programming
language is a formal language[...]’. To reach higher cover-
age, we infer instantiation from relationships such as part-
of as in ‘Perl 6 (also known as Raku[5]) is a member of the
Perl family of programming languages’, where ‘languages’
is the extracted hypernym. In the seed, we found ’language’
(235), ’format’ (16) and ’dialect’ (10) as the most frequent
hypernyms. The hypernym ’language’ and ’dialect’ are also
recovered when analyzing articles on natural languages.

Wikipedia List Entries. As an internal resource, we
consider Wikipedia lists of things [14]. Such lists collect
names of entities of a certain kind and optionally provide
additional information, e.g., ’List of dog breeds’. First, we
recover the list of lists by searching for ’list of’ in the title
of articles in the scope. Binary Features state in which lists
an article is linked. In the seed, we found 267 articles linked
in such lists, such as the ’List of programming languages’.

3 EVALUATION

We investigate the results from evaluating a classifier
based on labels by experts (RQ1). Since we chose to use
a decision tree classifier, we can present technical insights
on how decisions are made and explain the effects of using
a representative seed (RQ2). We conclude with presenting
how many software language articles and categories are es-
timated in the scope (RQ3).

3.1 Precision & Recall (RQ1)

We provide qualitative insights on How well does the
classifier perform beyond the seed?

To gain an evaluation set that is as objective as possible,
we conducted a survey in which 31 domain experts from
our research groups and external collaborators participated.
In each question in the survey, participants decided whether
a presented article explicitly describes a software language
as one primary topic. We received 990 articles labelled by
at least two experts. In order to gain additional insights on
problems with decision making, we emphasized the pos-
sibility of commenting on each question. For 43 articles,
experts did not agree. The articles present border cases, for
which experts are not sure. For example, articles do not di-
rectly refer to logic formulae as a software language, but
such formulae are often digitally encoded, follow a syntax,
well-formedness rules (thus, a type system) and have se-
mantics and pragmatics. For the future of SLEBOK [8],
such border cases can be used to further investigate on the
borders of the term software language. A refinement of def-
initions would then again lead to better expert labels to, for
now, problematic articles. Such refinement hopefully leads
to a better categorization on Wikipedia itself.

As long as experts cannot reliably decide for an article
whether a software language is described, a machine cannot
as well. As a consequence, we exclude these articles. Since
only ~4% is excluded, the threat to validity is reasonably
low. We took the remaining expert labels as the evaluation
set and explored several configurations with a k-best feature
selection and synthetic oversampling with SMOTE [15].
With k = 23, the learned classifer performs with an f1-
score of 0.7, balanced accuracy of 0.9, recall of 0.81 and
specificity of 0.99.

3.2 Indicator Discovery (RQ2)

For imbalanced datasets, a classifier usually over-
fits towards the major class unless countermeasures are
taken [15]. This problem is countered in two ways. i.)
By adding the seed as an addition to the random sample
to our training set, the rate of relevant articles in it is not
representative which can be seen as a form of manual over-
sampling. ii.) Actually, we isolate articles relevant to a sin-
gle class from articles relevant to many other classes (e.g.,
songs, stars, software). Feature selection based on Gini
index or entropy pick features according to their score in
discriminating classes, in our case relevant versus not rel-
evant. Consequently, the features frequently appearing in
seed articles are preferred, since the irrelevant articles have
a huge amount of different features and thus single features
recall a lesser percentage. At last, synthetic oversampling
with SMOTE further improves results. This peculiarity mo-

544

Table 2. How many articles and categories exist in total, identified by the seed, and classified as relevant.

Articles Categories
Total Seed Relevant Total Seed Relevant

Formal Languages 101641 301 2897 21822 353 1339
Computer File Formats 6116 46 745 235 18 79

tivates further inspection of the learned decision tree as an
answer to what features indicate articles on software lan-
guages.

The templates ’programming language’ and ’file format’
provide a strong positive indication, but they do not exist for
every relevant article. While the hypernym ‘language’ also
provides strong indication, it cannot be used alone. Oth-
erwise, natural language related articles are confused to be
relevant. Lemmas, lists and URL pattern help in discrimi-
nating relevant articles from articles with overlapping fea-
tures. Below, we list the most important indicators in the
decision tree categorized by their source (see Section 2.3).
Infobox Templates: file format, programming language;
URL Pattern: programming, language; Lemmas: syn-
tax, code, programming, compiler, design, general-purpose,
language, support, compile, object-oriented, use; Depen-
dency Pattern: language; Wikipedia List Entries: List
of programming languages, List of programming languages
by type, List of file formats, List of C-family programming
languages, List of object-oriented programming languages.

3.3 Article and Category Relevance (RQ3)

We give quantitative insights as an answer to the ques-
tion: How many articles and categories remain relevant
for the domain of software languages? Table 2 summa-
rizes the degree of the reduction per root category based on
the configuration from Section 3.1. Based on the predicted
reduction, we find 2797 more articles in the scope than
there are already in the seed. That is, we significantly
augment the identification of software languages.

For the root category ‘Computer file formats’, the clas-
sifier predicts a lot of irrelevant articles. When inspecting
infobox templates used in these articles, we observe a topic
mix with, for example, software, websites and companies.
Here, a threat remains that the articles do not directly ad-
dress formats in several articles in a recognizable way. In
comparison to ‘Formal languages’, a higher percentage of
categories is estimated as relevant. Accordingly, we observe
that the subcategory tree is more consistently maintained.

Inspecting single categories backs up subjective hy-
potheses based on manual inspection of the usefulness of
specific categories. For example, out of 22546 articles that
are (transitive) members ’Statistical data types’, only 52 are
classified as relevant. The number of articles indicated to be

relevant in a category becomes a more objective estimation
for its usefulness.

Table 2 provides a summary when inspecting all cate-
gories based on the assumption that the number of rele-
vant articles hints at the relevance of categories. Out of
21822 categories below ’Formal languages’, 353 categories
contain seed members and 1339 categories remain relevant.
Only 6% of transitive subcategories under ’Formal lan-
guages’ are estimated to be useful within the scope.

4 RELATED WORK

Previous attempt: In [16], the category graph is pruned by
manually excluding categories not serving for classification
of software languages in a common sense, subject to a small
suite of criteria. In contrast to our work, the approach relies
on manual selection of categories instead of automatically
classifying articles by combining several indicators.
Domain ontology: Wikipedia is a frequent target for
knowledge discovery. To the best of our knowledge, no ap-
proach tries to detect articles describing a class from an in-
consistently maintained domain, where relevant articles are
rare and require to combine multiple indicators. For de-
riving domain ontologies, various distinct approaches can
be found. The approaches range from supporting manual
crafting [17, 18] to unsupervised crafting from text [12].
Wang et al [5] extract a domain ontology for animals from
Wikipedia based on the category graph, article graph and
section structure in articles. For the animals domain, most
pages are maintained well and describe exactly one concept
in a consistent order. Mirylenka et al [10] extract subset,
membership, part-of, sub-topic and other relationships by
analyzing the varying nature of subcategorization. Dong et
al [6] learn subsumptions from articles describing domain
concepts based on Hearst pattern. In a related approach [7],
the concept set is learned by matching articles with Stack-
overflow tags. Based on the aricle- and category graph,
the concept set is expanded and further relationships are
learned. Related works discover knowledge from different
structural features, such as the title [10,19], text [13,20], an
article’s section structure [5], links to other articles [7, 20],
infoboxes [3], lists [14], etc.
External knowledge: The usefulness of WordNet varies
depending on the coverage of terms in a domain. While
WordNet is a known assistant in more common knowl-

545

edge domains, low coverage is reported in more specific
domains [2,5]. Our experience confirms it for software lan-
guages. Various knowledge graphs exist. DBpedia Live [21]
mirrors Wikipedia while refining it with more ontologi-
cal knowledge. YAGO [4] is a knowledge graph derived
from Wikipedia, WordNet and Geonames that explicitly fo-
cuses only on structured knowledge aspect that is then again
linked by Dbpedia as well. Wikidata [18] is widely manu-
ally crafted and tries to reach a clean knowledge graph from
scratch. A type encompassing the term software language
is not maintained by any of the mentioned resources.

5 CONCLUSION

In a domain where only a small set of positively labeled ar-
ticles can be used as a ground truth, we did find strong indi-
cators for classifying 3000+ articles as relevant for software
languages. We showed that a learned decision tree classifier
provides reasonably high recall and low false-positive-rate
and allows one to inspect isolated articles inside Wikipedia.
While learned random forests might provide higher accu-
racy, we are specifically interested in higher interpretability
of decision trees. 31 domain experts thoroughly evaluated
our classifier by labelling over 990 Wikipedia articles.

A natural follow up of this work is a collaborative en-
gagement with experts to further extract and improve fine-
grained classification knowledge into a high-quality domain
ontology that will help students and professional develop-
ers to better understand software languages. We are in the
process of repeating the experiments for the domain of soft-
ware (in a broad sense). The general problem is the same:
We are confident that our learning methodology can identify
the body of domain knowledge within Wikipedia. There are
also specific challenges ahead due to particularities of the
domains (for example, ’Computing platforms’ as a category
is disconnected from ‘Software’).

Acknowledgements. This research was partially funded
by the ANR-17-CE25-0010-01 VaryVary project.

References

[1] B. Stvilia, M. B. Twidale, L. C. Smith, and L. Gasser, “In-
formation quality work organization in wikipedia,” JASIST,
vol. 59, no. 6, pp. 983–1001, 2008.

[2] Q. X. Do and D. Roth, “Exploiting the wikipedia structure in
local and global classification of taxonomic relations,” Natu-
ral Language Engineering, vol. 18, no. 2, pp. 235–262, 2012.

[3] F. Wu and D. S. Weld, “Automatically refining the wikipedia
infobox ontology,” in Proc. WWW, 2008, pp. 635–644.

[4] T. Rebele, F. M. Suchanek, J. Hoffart, J. Biega, E. Kuzey, and
G. Weikum, “YAGO: A multilingual knowledge base from
wikipedia, wordnet, and geonames,” in Proc. ISWC 2016,
2016, pp. 177–185.

[5] H. Wang, X. Jiang, L. Chia, and A. Tan, “Wikipedia2Onto.
Building Concept Ontology Automatically, Experimenting
with Web Image Retrieval,” Informatica (Slovenia), vol. 34,
no. 3, pp. 297–306, 2010.

[6] X. Dong, K. Chen, J. Zhu, and B. Shen, “Learning to dis-
cover subsumptions between software engineering concepts
in wikipedia,” in Proc. SEKE 2016, 2016, pp. 147–152.

[7] K. Chen, X. Dong, J. Zhu, and B. Shen, “Building a do-
main knowledge base from wikipedia: a semi-supervised ap-
proach,” in Proc. SEKE 2016, 2016, pp. 191–196.

[8] B. Combemale, R. Lämmel, and E. V. Wyk, “SLEBOK: The
Software Language Engineering Body of Knowledge (DS
17342),” Dagstuhl Reports, vol. 7, no. 8, pp. 45–54, 2018.

[9] J. Favre, D. Gasevic, R. Lämmel, and A. Winter, “Guest Ed-
itors’ Introduction to the Special Section on Software Lan-
guage Engineering,” IEEE Trans. Software Eng., vol. 35,
no. 6, pp. 737–741, 2009.

[10] D. Mirylenka, A. Passerini, and L. Serafini, “Bootstrapping
domain ontologies from wikipedia: A uniform approach,” in
Proc. IJCAI 2015, 2015, pp. 1464–1470.

[11] M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-
López, “The neon methodology framework: A scenario-
based methodology for ontology development,” Applied On-
tology, vol. 10, no. 2, pp. 107–145, 2015.

[12] S. Sarencheh and A. Schiffauerova, “Automatic algorithm
for extracting an ontology for a specific domain name,” in
Proc. KEOD, 2017, pp. 49–56.

[13] T. Flati, D. Vannella, T. Pasini, and R. Navigli, “Two Is
Bigger (and Better) Than One: the Wikipedia Bitaxonomy
Project,” in Proc. ACL, 2014, pp. 945–955.

[14] P. Kuhn, S. Mischkewitz, N. Ring, and F. Windheuser, “Type
inference on wikipedia list pages,” in 46. Jahrestagung der
Gesellschaft für Informatik, 2016, pp. 2101–2111.

[15] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “SMOTE: synthetic minority over-sampling
technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, 2002.

[16] R. Lämmel, D. Mosen, and A. Varanovich, “Method and
Tool Support for Classifying Software Languages with
Wikipedia,” in Proc. SLE 2013, 2013, pp. 249–259.

[17] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and
R. Studer, “Semantic wikipedia,” in Proc. WWW, 2006.

[18] D. Vrandecic, “Wikidata: a new platform for collaborative
data collection,” in Proc. WWW, 2012, pp. 1063–1064.

[19] R. Zarrad, N. Doggaz, and E. Zagrouba, “Title-based ap-
proach to relation discovery from wikipedia,” in Proc.
KEOD, 2013, pp. 70–80.

[20] V. Presutti, S. Consoli, A. G. Nuzzolese, D. R. Recupero,
A. Gangemi, I. Bannour, and H. Zargayouna, “Uncovering
the Semantics of Wikipedia Pagelinks,” in Proc. EKAW 2014,
2014, pp. 413–428.

[21] M. Morsey, J. Lehmann, S. Auer, C. Stadler, and S. Hell-
mann, “Dbpedia and the live extraction of structured data
from wikipedia,” Program, vol. 46, no. 2, pp. 157–181, 2012.

546

Model View Controller in iOS mobile applications
development

Dragoş Dobrean and Laura Dioşan
Faculty of Mathematics and Computer Science, Babes Bolyai University

Cluj Napoca, Romania
{dobrean,lauras}@cs.ubbcluj.ro

Abstract—Due to the increased number of mobile applications
and their popularity, many software developers have begun to
focus on mobile platforms. While this focus has positive effects
(e.g. a larger developer community, new open source projects,
new tools), it also has a down side. With the migration of devel-
opers from different software development areas, where they have
used other programming paradigms or architectural approaches,
the topic of software architecture on mobile platforms become
more trending and hype in the mobile development communities.
Even though several new architectural solution were proposed
for solving some of the issues which arise from using the
classical architectural patterns popularised by the creators of
the mobile platforms, we want to emphasise the principles of
software architecture in mobile computing, why they have to
be respected and how their adoption impacts the development
process. Therefore, this paper focuses on showing that the Model
View Controller (MVC) — one of the most common classical
architectural patterns — can be used successfully for building
mobile applications and the problems which might arise are by
products of the wrong usage of the pattern rather than pattern
issues. We show that by analysing the most common architectural
misuses of the MVC pattern in both open-source and private
projects and offers solutions to those problems.

Index Terms—Apple’s Model View Controller (MVC), Mobile
Software Architecture, Architectural Smell, iOS.

I. INTRODUCTION

Mobile applications have become an important part in the
life of the modern man. The involved devices have become
indispensable companions in our lives. We use them for social
interactions as well as for business activities, for increasing
our productivity or for self improving and entertainment.
According to GSMA Intelligence two thirds of the world
are connected by mobile devices [1]. In order to be able to
sustain this high rate of adoption and popularity of the mobile
applications, many developers migrated from building other
types of software to building mobile applications.

This blend of domains has brought many new trends to
the mobile platforms (for instance, functional programming
which has become used in large mobile projects [2], [3]).
However, this union of domains has also had downsides: new
or inexperienced developers of those who have migrated from
other platforms did not understand fully how all the mobile
development concepts work, how are they supposed to be used,
and there were not many places in which they could learn how

DOI reference number: 10.18293/SEKE2019-048

to properly use those. Mobile software architecture has become
greatly affected by this phenomena [4]–[6].

It is an established fact that a good software architecture
and design could increase the system quality: performance,
evolvability, maintainability and reliability [7]. When weak
design decisions affect the software properties, the archi-
tecture is often subject to various problems (code smells,
design smells or architectural smells). Related work regarding
software architectural smells can be found in [8] where the
authors showcase 11 architectural smells grouped in 4 differ-
ent categories (Interface-Based Smells, Change-Based Smells,
Concern-Based Smells and Dependency-Based Smells). All of
issues can also apply to mobile platforms software applica-
tions. In [9] and [10] 4 of the architectural smells are analysed
in depth and shown on 2 industrial software systems. Other
work has been done in [11] where the authors have analysed
the architectural erosion of Open-Source Software projects.

Although the drawbacks of architectural erosion have been
already recognized [9], [10], [12], [13], the authors of these
studies have focused on classical systems, rather than mobile
ones: Velasco et al. [14] presented several architectural smells
that are relevant to MVC, while Aniche et al. [15] identified
six classes in the context of web applications constructed on
MVC pattern.

Our initial effort drives to identify the possible MVC
problems in the context of mobile applications, to characterise
them and to describe how they can be fixed. In this paper, we
aim to answer the following research questions:

• RQ1: What are the problems of MVC in the context of
mobile applications?

• RQ2: Is there a classification for the MVC architectural
problems?

• RQ3: How can the problems be fixed?
To the best of our knowledge, an MVC analysis in the iOS

context was not been performed until now. Previous works
[14], [15] are focused on web or classic flavours of MVC and
on the problems caused only by the violation of constraints
which MVC style defines between its components or layers. In
the mobile context, the weaknesses of Android’s design have
been analysed and a passive flavour of MVC was proposed in
[16].

The rest of the paper will focus on the iOS platform on
its architectural pattern encouraged by Apple, Model View
Controller (MVC) [17]. Architectural issues explained in this

547

Fig. 1. Apple’s Model-View-Controller architectural overview

paper also apply to other platforms which use MVC for build-
ing applications (macOS, Windows, etc.), while the naming
conventions might be different the concepts and issues are the
same. MVC was chosen as is one of the most know presenta-
tion architectural pattern while being present on all the mobile
applications platforms in various flavours. In addition, MVC
is highly versatile, having different flavours as Model-View-
View-Model (MVVM) [18], Model View Presenter (MVP)
[19], etc.

The following section talks about MVC and Apple’s flavour
of it. Section

II. APPLE’S MVC

Model View Controller is one of the most widespread pre-
sentational architectural patterns, being used to create desktop,
mobile and web applications [20]–[22]. The purpose of MVC
is to provide a simple separation of concerns for an application
that embeds a user interaction component. One of the most
important aspects of this pattern is that the application should
work, and fulfil all its requirements even if we remove the
View and Controller layers. The data manipulation and the
business logic should reside the Model and it should not be
affected in any way by those other layers.

Apple’s version of MVC [17] is different from the concep-
tual, generic one [23]. The classic MVC [23] was coined when
there did not exist the concept of mobile applications; in order
to compensate for this fact, Apple promoted a flavour of MVC,
which is better suited for mobile and desktop applications.

It is composed from the same three layers (Model, View,
Controllers) and the only thing changed is their way of inter-
action and the data flow. The layers are more decoupled and
it does not rely so heavily on the Observer/Delegate pattern;
it is still being used, but it is not as used as intensively as on
the classical pattern. In Apple’s flavour, the Observer/Delegate
pattern is more aimed to provide callbacks from one layer to
another than to observe Model layer properties.

The accent in the Apple’s flavour of MVC is on the
Controller, as can be seen in Fig.

This emphasis shift can also be seen in the way they have
named their framework components. At the centre of every
iOS application, we find the View Controllers which act as
bridges between the data of the application (Model) and the
user interfaces (View).

In Fig.
Advantages This flavour of MVC simplifies (from the

classic MVC) the data flow between the layers, making the
data flow clearer. In addition, it also reduces the coupling

between the layers; the link between the Model and The
View (from the classic MVC) no longer exits, making the
components more isolated.

Disadvantages The Controller layer becomes the central
piece of the architecture; it needs to ensure the proper com-
munication between the Model and the View layer and vice-
versa. This task makes the Controller layer to grow to be
quite complex, which can lead to architectural issues (massive
view controllers) as well as OOP issues (violation of single
responsibility principle).

III. ANALYSIS

As instances of poor design decision, the architectural
smells originate in the improper use of a design solution or
of software architecture-level abstractions. In what follows
we attempt to facilitate the identification of such problems
in the context of mobile applications involving the MVC
pattern. We provide a short description of each problem and its
causes (trying to answer RQ1), the architectural smell’s class
it belongs to (as answer to RQ2) and one or more possible
solutions (answer to RQ3).

In order to be able to answer those questions we needed to
inspect different sized codebases, we have chosen 5 codebases,
with different variations of MVC that added architectectural
layers from: MVVM [18], MVP [19] VIPER [24].

• Wikipedia – education and information app [25]
• Firefox – a mobile web-browser [26]
• Trust – cryptocurrency wallet [27]
• E-Commerce — private
• Game – private

TABLE I
CODEBASES SIZE

Application Blank Comment Code Source
Firefox 23392 18648 100111 open-source
Wikipedia 6933 1473 35640 open-source
Trust 4772 3809 23919 open-source
E-Commerce 7861 3169 20525 private
Game 839 331 2113 private

As can be seen in Table

A. Complexity

1) Issues: Mobile applications have grown to be complex
software systems where they do much more than just fetching
some data from a web service and displaying them on the
screen. While for a simple application the MVC pattern would
be sufficient, if we add extra complexity, such as working
with databases, caching, virtual reality, audio, photo or video
manipulation, we might ran into some issues.

Although using another presentational pattern (e.g. MVVM
[18] or MVP [19]) might solve some of the problems, if the
application becomes more complex, even these patterns will
not be sufficient to maintain it flexible to change, testable and
easy to be understood and worked on.

548

2) Solutions: MVC is an architecture to be used on small-
medium sized applications. If we talk about a complex appli-
cation then an architectural approach needs to be designed in
order to fulfil its use-case. MVC provides the basis for this new
architecture and its three degree of separation should definitely
be implemented. But, in addition and in order to make the
codebase maintainable, we might introduce additional layers,
such as Presenters from MVP, View - Models from MVVM
or Routing objects from VIPER [19], [24], [28], [29].

3) Findings: Trust, E-Commerce and the Game had the
clearest defined architecture. Analysing the codebase is easy
to get a grasp on how the app works and the codebases were
consistent in both naming and design pattern used. Firefox,
being the largest codebase and given its functionality, is a
more complex one and it is the hardest from the codebases
to understand and uses multiple layers. Wikipedia relies on
multiple open source libraries and internal UI libraries which
introduce extra obfuscation and makes the codebase harder to
comprehend.

B. Misunderstandings

1) Issues: Another common problem we encounter when
talking about MVC is that people usually have different
concepts of what MVC is and how should it be used. People
coming from ASP.net MVC [30] development might have
a total different idea of how the MVC components should
communicate from those who are developing mobile appli-
cations. As we have already seen, different companies have
different definitions for what MVC is and how it should be
used with their frameworks. This problem has a real impact
when developers migrate from one platform to another and try
to use the same MVC definitions on a new framework.

Almost all people with some knowledge about the MVC
agree that the Model should contain data useful for application
[31], the View is responsible with presenting the data to the
user and the Controller layer acts as a mediator of some sort
between the other two layers. Those are very vague definitions
of MVC and 2 people can disagree on what should be put in
the Model and what should reside in the View or Controller
layer.

Developers of MVC frameworks usually give their defini-
tion of what MVC meant for them or how should this be
used; however, those definitions usually are vague as well. The
reason of this ambiguity can be rooted in the generality of the
frameworks, which should adapt to many types of applications.
A constrained architecture, which would fulfil all potential
use-cases is not feasible and it is considered redundant for
applications that do not need a high level of architectural
complexity.

2) Solutions: The first step into ensuring that an archi-
tectural pattern is correctly implemented is to have clear
definitions of its elements and everyone involved in the project
to be well aware of. In order for this to happen, it is important
that the lead developer or the system architect to understand
clearly the scope of the product and to be able to draw
architectural guidelines which would fit the project.

3) Findings: From the analysed projects, Trust, Firefox and
the E-Commerce app were the ones in which there was a clear
defined architecture which could be inferred from the codebase
and it was consistently used. The Game app was the smallest
and its architecture didn’t require any specific guidelines given
its complexity. In the case of Wikipedia, the code was not
consistent, and the guidelines were not clear.

C. Model

1) Issues: Most of the problems which appear in this layer
are design pattern issues; the usage of too many singleton
objects and the violation of SOLID principles [32] are the
root cause of the problems which can appear at this level. The
result will be a damaged architecture at a micro level — high
coupling between items in the same layer.

Among the common mistakes in the model are the fact
that objects which interact with a database or a web backend
service have reference to the ones using those (usually View
Controllers). These references can create retain cycles —
Dependency-Based Smells [8] — and also impact the MVC
architecture by making the Model layer have knowledge about
the Controller layer.

The problems which appear at this level are usually from the
Interface-Based Smells category as defined in [8], [11]. Is not
uncommon to find Ambiguous Interfaces or Concern Overload
where a component performs a large amount of tasks and have
a scarce number of interfaces. For instance, the objects which
communicate with the backend for fetching data are most of
the time responsible for creating the connection, converting
the input parameters to what types of information does the
backend service expect, parsing of the response it receives
and mapping it to a codebase defined entity.

2) Solutions: This issue can be solved using the Ob-
server/Delegate pattern, where the Model layer provides call-
backs for its events and the Controller layer takes various
actions based on those events.

3) Findings: All the analysed codebases presented issue on
the Model layer as each one of them has wrong, direct depen-
dencies between the Model layer and the View or Controller
layer. The most problematic ones were the E-commerce and
Firefox. In all the codebases excepting the Game, we find the
Concern Overload and the Ambiguous Interfaces smells [8],
[11].

D. View

1) Issues: In large projects, which do not have major
architectural issues, the Controller objects configure the Views
by directly passing the Model item as an argument. This
common practice creates a dependency between the View and
the Model, which is not presented in the Apple’s way of
defining the MVC (Fig.

An example would be a list of new movies in a booking
application: the cell that is responsible for displaying a new
movie will usually receive from the Model, a Movie entity,
which contains much more data then what is needed to be
displayed (the ID from the database, a list of actors, number

549

of people who already booked it, etc.). This is an overlooked
issue with MVC and usually the developers accept it, even if
this is an architectural mistake nevertheless.

The mentioned problem belongs to Co-change Coupling
smells [11], an architectural issue which occurs frequently at
this level. The coupling is predominantly done between the
View and the Model layer. However, this can also appear in
the View and Controller layer.

2) Solutions: In order to overcome this difficulty, new ob-
jects can be defined for keeping the configuration of the view
(when the view needs a lot of configuration information from
the model), or this information can be passed as parameters
to the view using primitive types.

The new defined items for the configuration of the View rise
another problem: where should those items reside? They know
nothing about the View so is not in the View layer; however,
they are only used and have meaning in a context in which
those Views exist. An approach to solve this problem would be
to treat these items as belonging to the Model as they handle
the business logic display part, they can be seen as mappers
between entities and views or data transfer objects.

Another approach, if the developed application needs this
kind of complexity, is to use another architectural pattern
namely MVP [31], which inherits from MVC; basically, it is a
variation of MVC, where there is a new layer for configuration
objects, called Presenter. The Presenter, however, is a more
specialised object: besides configuration information, it also
contains information regarding the state of the View (selected,
unselected, highlighted, whether or not some of the fields
should be pre-filled etc.).

3) Findings: All the analysed codebases have shown Co-
change Coupling smells, the most severe ones was the E-
commerce one. The open-source apps also exhibited this issue,
however at a much lower degree.

E. Coordinating Controllers

1) Issues: Just like in the case of Apple’s MVC, there are
different flavours of MVC where there is a combination of
roles (View and Controller) into a single entity called View
Controller. This entity owns the View and it responds to its
events. The View Controller is responsible for responding to
input received from the View and for displaying and moving
those Views on the screen. Those kind of controlling objects
usually derive from a superclass. For instance, on the iOS
SDK, the superclass is UIViewController, on Android we have
the Activity superclass.

There are cases where the complexity of the application
requires another kind of controller objects — Coordinating
Controllers. Coordinating type of controllers are simple objects
that manage the application; they usually decide when a certain
action should happen and keep track of the state of the
application [33]. Those kinds of objects are responsible for
deciding on what state (flow) of the application to go next
(when a certain event occurred) based on the current state,
for setting up the initial state and managing the lifecycle of
contained objects.

By flow and state we mean what use case scenario is
presented on the screen at a certain moment in time; flow
is a broad term and in the context of this paper we are using
it to describe a use case (e.g. sign up), if we were to have a
higher granularity, the flow can be split in multiple sub-flows
(e.g. the forgot password of the sign up flow).

Therefore, the Controller layer can be split into two cat-
egories: View Controllers and Coordinating Controllers. The
View Controller objects have come to be generally accepted as
the Controller objects by most of the practitioners in this field.
However, this is not always the case and there is an important
distinction between Coordinating Controller objects and View
Controllers [17].

Unfortunately, this degree of separation in the context
of Controller layer is not so well understood on the iOS
platform. All these concepts appear in AppKit development
scene (desktop application for macOS), as this platform is
older and more evolved. Usually this form of separation within
the Controller layer is not needed, as the applications are not
complex enough to justify it. The problems start arising when
the application becomes complex and the people working have
a lack of architectural knowledge on how to scale it or the
architectural state in which they need to arrive is unknown or
insufficiently defined.

Frequently, the responsibilities of Coordinating Controllers
get stuffed in the View Controller objects increasing their
complexity and changing their purpose as now, they also
have to take care of knowing the state of the application and
correctly transitioning between the states in every possible
configuration. By taking this responsibility in other custom
objects (Coordinating Controllers), the View Controller object
become slimmer and they are no longer depending on each-
other.

This practice is fairly popular or familiar and is usually
implemented in applications where a clear architectural guide-
line is not defined or not sufficiently described and defined
for all the potential corner cases. A lighter common version
of this coordination is to have an object which all the View
Controllers inherit from, where all the common navigation
flows are stacked in.

This sort of behaviour (merging responsibilities) is common
for small applications where the UI is quite simple (one–
three screens), where the extra Coordinating Controller objects
would not provide real value, or for beginner developers. Most
of the applications which are fairly complex have multiple
flows (sign up, sing in, browse items, add to cart, checkout,
previous orders, feedback, settings, profile, etc.). These ap-
plications are the ones which suffer massively from the lack
of coordinating layer as their View Controller objects become
bloated with navigation and configuration logic. This kind of
complexity creates architectural issues especially when the
application needs to be changed because many components
fulfil the same functionality, for instance the correct navigation
from one screen to another (Scattered parasitic functionality
[8]).

550

Fig. 2. Firefox iOS application screenshot [26]

2) Solution: The solution to this problem (complex appli-
cation with multiple use-cases and flows) is to have mul-
tiple Coordinating Controller objects for every flow of the
application or for every sub-flow of the application; each
of these flows will have a single, well defined use case
(login in the user, uploading a picture, making a payment,
etc.). All the application’s flows and navigation will be then
expressed via those building blocks (Coordinating Controller
objects for certain flows or sub-flows). By using this approach,
we reduce the complexity of View Controller objects. They
become concerned only with displaying the data and mediating
between View and Model layers. All the navigation and
configuration logic now resides in the Coordinating Controller
objects. In addition, we can easily change the flows of the
application even at runtime, we can Unit Test the navigation
from one screen to another and the correct configuration of the
View Controller objects, which, in the case of massive view
controllers, is rather hard.

3) Findings: Firefox, Trust and the E-commerce apps were
the ones in which the Coordinating Controllers were correctly
used. Wikipedia was the worst analysed app from the Co-
ordinating controllers point of view, the Scattered parasitic
functionality [8] is predominantly present in the codebase.

F. View Controllers

1) Issues: Another issue which is overlooked is that de-
velopers usually use one view controller per screen (the UI
elements shown on the full size of the screen). While this is
the right approach for simple screens such as a ”Terms and
conditions” screens or even a ”Login” screen, if we talk about
complex UI interfaces (e.g. the browse screen from Firefox)
this is totally wrong.

The browse screen from the Firefox application (see Fig.
A large amount of the problems which we encounter in

the MVC approach on iOS deals with the View Controller.

In fact, it has access to both View and Model layers and
acts like a binder between them; an example would be if
the data obtained from the Model is not well formatted, the
View Controller will format it for the View and this is not
clearly its responsibility. A View Controller should only be
concerned with presentational aspects of a certain part of the
application and for handling the user input received from the
View. Obviously problems can appear at other levels, as well
on Coordinating Controllers or Model level, but these usually,
like in the case of View Controllers, have the root cause the
low granularity of the architectural components and can be
solved by increasing the granularity of the elements (splitting a
certain item in multiple others and use the Composition design
pattern).

In addition, the View Controller objects are also bloated
with handling View logic and states. By view logic and state
we mean keeping the internal state of the view which cannot be
inherited from the Model. For instance, knowing which items
were selected on the screen, what slider is enabled etc., before
applying these changes to the Model. This sort of logic should
be implemented in custom objects; most of the times the MVP
pattern is used for solving this issue, but as a workaround in
MVC, these can reside in subclasses of View components or
in custom objects defined in the Model layer.

At this level, the major architectural smell is Concern
Overloading [11], as like previously shown, the View Con-
troller object become bloated with an excessive amount of
responsibilities.

2) Solutions: The solution to this problem is to use multiple
view controllers for the UI elements; for instance, we could
have a View Controller object responsible for the turn by turn
navigation advices, we could have another one for the map
and so on. Furthermore, if these elements are complex by
their own, they could be split further in more View Controller
objects which should respect the single responsibility princi-
ple. By using this approach we would obtain view controllers
that respect the single principle responsibility ensures a good
separation of concerns, they contain less code, and they
become testable.

As in the case of Coordinating Controllers where we could
have Coordinating Controller objects, which depend on other
Coordinating Controller objects we can apply the same logic
to creating user interfaces and using multiple child View Con-
troller objects to construct a single screen of the application.
By using this approach, each View Controller object will have
single responsibility and purpose.

3) Findings: All the codebases shown signs of Concern
Overloading [11], the issues are however bigger as the code-
base increased. In the case of the apps which were using
Coordinating Controllers (E-Commerce, Trust, Firefox) the
issues were lower than in the case of Wikipedia where the
View Controller classes were way more complex as they also
had to handle navigation logic.

551

IV. CONCLUSIONS

By our study we have tried to provide interesting insights
about several common problems of MVC for both mobile
developers and scientific community which are commonly
found in open-source or private projects. We describe these
problems in detail as well as their corresponding architectural
smells. Furthermore, several solutions to those problems have
been proposed which shed some light on architectural corner
cases which were less explored by practitioners.

As we have shown previously in this paper, MVC can be
used as the presentational software architecture for a mobile
application. If the concepts are implemented correctly this
does not produce any of the popular issues, neither massive
view controllers nor the violation of the single responsibility
principle.

What is important to be understood is that based on the
complexity of the application the entities in the MVC ar-
chitecture should be more granular, in order to be flexible,
testable and maintainable. Based on this complexity, new types
of layers or sublayers can appear which are close related to
the requirements of the application.

Based on the observations made throughout many years of
developing commercially those kinds of applications, the pre-
sentational architectural concept used was never an issue for
the flexibility, extensibility and testability of the application;
the issue always came from its bad implementation, or the
misusage of programming language featurese

Our further work will continue on developing tools for
ensuring that a certain architectural pattern or certain archi-
tectural rules are respected with every commit made by a
developer. By following this direction we can educate devel-
opers regarding the architectural aspects of a mobile software
application, we will help them produce cheaper and cleaner
code.

REFERENCES

[1] GSMA. (2017) Global mobile trends. link.
[2] A. Cowkur. (2017) Functional programming for Android developers.

link.
[3] ObjC.io. (2016) Functional programming. link.
[4] E. Bessarabova. (2017) MVP vs MVC vs MVVM vs VIPER. What is

better for iOS development? link.
[5] K. Kocsis. (2018) Architectural patterns, MVC, MVVM: What is the

hype all about? link.
[6] E. Maxwell. (2017) MVC vs. MVP vs. MVVM on Android. link.
[7] H. Bagheri, J. Garcia, A. Sadeghi, S. Malek, and N. Medvidovic,

“Software architectural principles in contemporary mobile software:
from conception to practice,” Journal of Systems and Software, vol. 119,
pp. 31–44, 2016.

[8] D. M. Le, C. Carrillo, R. Capilla, and N. Medvidovic, “Relating
architectural decay and sustainability of software systems,” in Software
Architecture (WICSA), 2016 13th Working IEEE/IFIP Conference on.
IEEE, 2016, pp. 178–181.

[9] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying
architectural bad smells,” in Software Maintenance and Reengineering,
2009. CSMR’09. 13th European Conference on. IEEE, 2009, pp. 255–
258.

[10] ——, “Toward a catalogue of architectural bad smells,” in International
Conference on the Quality of Software Architectures. Springer, 2009,
pp. 146–162.

[11] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic, “An empirical
study of architectural decay in open-source software,” in 2018 IEEE
International Conference on Software Architecture (ICSA). IEEE, 2018,
pp. 176–17 609.

[12] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic, “Mapping architectural
decay instances to dependency models,” in Proceedings of the 4th
International Workshop on Managing Technical Debt. IEEE Press,
2013, pp. 39–46.

[13] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software engineering notes, vol. 17, no. 4,
pp. 40–52, 1992.

[14] P. Velasco-Elizondo, L. Castañeda-Calvillo, A. Garcı́a-Fernandez, and
S. Vazquez-Reyes, “Towards detecting MVC architectural smells,” in
International Conference on Software Process Improvement. Springer,
2017, pp. 251–260.

[15] M. Aniche, G. Bavota, C. Treude, A. Van Deursen, and M. A. Gerosa,
“A validated set of smells in Model-View-Controller architectures,” in
Software Maintenance and Evolution (ICSME), 2016 IEEE International
Conference on. IEEE, 2016, pp. 233–243.

[16] K. Sokolova, M. Lemercier, and L. Garcia, “Towards high quality mobile
applications: Android passive MVC architecture,” International Journal
On Advances in Software, vol. 7, no. 2, pp. 123–138, 2014.

[17] Apple. (2012) Model-View-Controller. link.
[18] A. Sinhal. (2017) MVC, MVP and MVVM design pattern. link.
[19] M. Potel, “MVP: Model-View-Presenter the taligent programming

model for C++ and Java,” Taligent Inc, p. 20, 1996.
[20] R. Eckstein. (2013) Java SE application design with MVC. link.
[21] D. Plakalovic and D. Simic, “Applying MVC and PAC patterns in mobile

applications,” arXiv preprint arXiv:1001.3489, 2010.
[22] M. J. Yuan, Enterprise J2ME: developing mobile Java applications.

Prentice Hall Professional, 2004.
[23] G. E. Krasner, S. T. Pope et al., “A description of the Model-View-

Controller user interface paradigm in the Smalltalk-80 system,” Journal
of object oriented programming, vol. 1, no. 3, pp. 26–49, 1988.

[24] S. M. Alam. (2017) VIPER design pattern for iOS application develop-
ment. link.

[25] Wikimedia. (2018) Wikipedia iOS application. link.
[26] Mozilla. (2018) Firefox iOS application. link.
[27] Trust. (2018) Trust wallet iOS application. link.
[28] R. Garofalo, Building enterprise applications with Windows Presentation

Foundation and the Model View View Model Pattern. Microsoft Press,
2011.

[29] ObjC.io. (2014) Architecting iOS apps with VIPER. link.
[30] Microsoft. (2013) ASP.NET MVC overview. link.
[31] M. Fowler. (2006) GUI architectures. link.
[32] R. C. Martin, “Design principles and design patterns,” Object Mentor,

vol. 1, no. 34, p. 597, 2000.
[33] Apple. (2012) Controller. link.

552

https://www.gsma.com/globalmobiletrends/
https://medium.freecodecamp.org/functional-programming-for-android-developers-part-1-a58d40d6e742
https://talk.objc.io/collections/functional-programming
https://themindstudios.com/blog/mvp-vs-mvc-vs-mvvm-vs-viper/
https://old.kristofk.com/mvc-mvvm-viper/
https://academy.realm.io/posts/eric-maxwell-mvc-mvp-and-mvvm-on-android/
https://developer.apple.com/library/archive/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://medium.com/@ankit.sinhal/mvc-mvp-and-mvvm-design-pattern-6e169567bbad
https://www.oracle.com/technetwork/articles/javase/mvc-136693.html
https://medium.com/@smalam119/viper-design-pattern-for-ios-application-development-7a9703902af6
https://github.com/wikimedia/wikipedia-ios/tree/master
https://github.com/mozilla-mobile/firefox-ios
https://github.com/TrustWallet/trust-wallet-ios
https://www.objc.io/issues/13-architecture/viper/
https://docs.microsoft.com/en-us/previous-versions/aspnet/dd381412(v=vs.108)
https://martinfowler.com/eaaDev/uiArchs.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/ControllerObject.html

An Empirical Study on Managing Energy and Accuracy Requirements of
Location Based Android Applications

Marimuthu C1 Sanjana Palisetti2 K. Chandrasekaran3

Department of Computer Science and Engineering,
National Institute of Technology Karnataka, Mangalore - 575 025, INDIA

E-mail: cs15fv08.muthu@nitk.edu.in1 , sanjana.palisetti@gmail.com2, kchnitk@ieee.org3

Abstract

The improper use of GPS and location-related APIs may
result in abnormal battery drain in Android applications.
Over the last few years, the developers’ discussions on im-
proving energy efficiency have been increased. In this pa-
per, we mine StackOverflow to analyze and summarize the
characteristics of developers’ discussions of managing en-
ergy and accuracy-related requirements of location-based
Android applications. We extracted 11,911 questions from
StackOverflow and filtered 320 relevant questions to answer
four research questions. We conducted a manual thematic
analysis on relevant questions. Our study shows that the
developers are concerned about energy consumption, but
are unclear about their preferences as energy and accuracy
evolved as conflicting requirements.

1 Introduction
In Location Based Applications (LBAs), the improper

use of location-related APIs may result in abnormal battery
drain [1]. There has been an increasing amount of research
efforts [2, 3] made by researchers to reduce the energy
consumption of location sensing in Android smartphones.
These studies have less information on the programming
knowledge required to manage the energy and accuracy-
related issues of LBAs. In recent years, mining StackOver-
flow [4, 5] to summarize the knowledge on energy con-
sumption of Android applications proved to be a success-
ful technique. However, these studies are not specifically
focusing on location-based Android applications. Hence, in
this paper, we aim to summarize the characteristics of devel-
opers’ discussion of managing energy and accuracy-related
requirements of location-based Android applications. More
specifically, this paper aims to explore and answer the fol-
lowing questions:

• RQ1: Do developers ask questions to improve energy
and accuracy requirements?

• RQ2: Which developer goal yield more successful an-
swers?

• RQ3: Which developer goal is popular among the de-
veloper community?

• RQ4: How have the developers’ goals changed over
time?

We followed the methodology suggested by Braun et
al. [6] to conduct a thematic analysis of the selected ques-
tions. We extracted 11, 911 questions from StackOverflow
and through semi-automated filtering and manual valida-
tion process, we identified 320 relevant questions for further
analysis. We identify 3 main categorizations, namely: Sta-
tus of question (successful, unsuccessful, ordinary), Goals
of developers (energy saving, improving accuracy, balanc-
ing both) and Type of question (implicit, explicit, fundamen-
tal). The important finding of this study is that the develop-
ers are facing problem in balancing energy and accuracy-
related requirements. In addition to this, the study found
that several developers are unclear about their preference
for selecting energy saving or improving accuracy as their
primary goal.

The rest of the paper is structured as follows: Section
2 presents related works, Section 3 describes the empirical
study methodology, Section 4 presents the answers to the
research questions, Section 5 briefs the validity threats and
Section 6 concludes the paper with possible future works.

2 Related Works

In recent years, there has been an increasing amount of
empirical studies on the energy consumption of Android ap-
plications [7, 8, 4, 5]. The first empirical study on catego-
rizing the energy-related issues of smartphones was pub-
lished by Pathak et al. [8] by mining four online forums
and presented a comprehensive study of energy-related is-
sues in smartphones. Pinto et al. [4] mined StackOverflow
for software energy consumption-related questions and an-
swers and identified seven causes for energy consumption
problems. Malik et al. [5] explored the quantitative and
qualitative aspects of energy-related questions specific to
the Android platform on StackOverflow. The authors have
summarized energy-related issues into four main categories
and explore the APIs that are significantly discussed in the
energy-related posts. Though there have been several stud-
ies on energy consumption in Android applications, none
of the studies have explicitly focused on location-based An-
droid applications. In this paper, we aim at summarizing
the developers’ discussion on energy and accuracy-related
issues of location-based Android applications.

DOI reference number: 10.18293/SEKE2019-179
553

3 Study Methodology
We collected the energy and accuracy-related questions

of location-based Android applications using suitable SQL
Queries on StackExchange Data Explorer1. We used the
keywords android, location, gps on the tag field of Stack-
Overflow questions. The SQL query returned a total of
11,911 questions in the form of .csv file. This file was our
raw data set which was used for the further filtering process.
The dataset contains information about Title, Body, Ac-
cepted Answer, Score, Views Count, Favorites Count, Cre-
ated Date and other relevant information. The second step
is a semi-automated method to filter the questions that are
specific to energy and accuracy-related issues of location-
based Android applications. During this filtering process,
we used keyword matching on the Body field of the ques-
tions and obtained 651 relevant questions2. We further cat-
egorized the questions under three different categories: suc-
cessful, ordinary and unsuccessful. The questions with neg-
ative and zero scores were removed from successful and
ordinary categories as they were insignificant to our study.
This reduced the dataset to 399 relevant questions. We man-
ually read the title and body fields of the questions to verify
its relevance to energy and accuracy-related requirements
during which 79 false positives were found and removed
resulting in 320 questions being considered for thematic
analysis. We followed the guidelines given by Braun et al.
[6], to conduct the thematic analysis. We defined three ma-
jor themes based on the codes that we created during our
reading. The first category of theme is about the type of
questions asked (Implicit, Explicit and Fundamental), the
second category of theme is based on the developers’ goal
(Energy Saving, Improving Accuracy and Balancing Both),
and the third category of theme is based on the status of the
question (Successful, Ordinary, Unsuccessful). Each ques-
tion’s title and body field was read and marked by the first
author and verified by the second and third author. Dur-
ing the discussion sessions, we resolved the conflicts in the
coding process. Due to space restriction, more details on
the data analysis have been discussed in Section 4.

4 Answers and Discussions
In this section, we describe the analysis method and an-

swers to the mentioned research questions.

4.1 RQ1: Do developers ask questions to improve en-
ergy and accuracy requirements?

The purpose of this research question is to know how
clear the developers are with energy and accuracy-related
requirements. We conducted a manual thematic analysis on
the title and body field of the relevant questions. We identi-
fied the following themes:

1https://data.stackexchange.com/
2https://bit.ly/2E1kbID

• Explicit: We categorized the questions under this cat-
egory, if the developers can clearly specify their re-
quirements in terms of energy, or accuracy, or balanc-
ing both. Ex: ”Battery dies quickly when GPS or Wi-Fi
is used. How can I save battery life? Is it right to re-
quest location updates every 5 seconds in the code?”
(PostID: 28407944).

• Implicit: We categorized questions under this cate-
gory if the developers are unsure about the solutions
and mentioned only the issue they are facing rather
than their specific requirements or goals. Ex: ”How to
keep an application running in the background? Keep
collecting data?” (PostID: 6291729)

• Fundamental: We categorize the questions under this
category if the developer wants to gain knowledge
about the topic. Ex: ”Does anyone know whether the
Android addProximityAlert on the LocationManager is
battery intensive” (PostID: 1113606).

As a result of quantitative analysis, we found 35% ques-
tions under Explicit category, 16% questions under Implicit
category, and 49% questions under fundamental category.
From the results, we can infer that the developers do ask
questions to improve energy and accuracy requirements.
To be more specific, 51% of the developers that ask ques-
tions about location-based Android applications strive to
improve energy and accuracy requirements. Among this
51% of questions, 35% are explicit about their require-
ments, whereas, the rest 16% are implicit or indirect. We
also infer that 49% of the developers asking fundamental
questions are unaware of the best practices related to energy
consumption and increasing accuracy.

4.2 RQ2: Which developer goal yield more successful
answers?

The purpose of this question is to summarize which de-
velopers goals get more preference and consequently get
more accepted answers. The fundamental questions (157)
which were identified from the previous thematic analysis
were removed as they were not contributing to either im-
proving energy-efficiency or accuracy. The remaining 163
questions related to developers goals category were con-
sidered for thematic analysis. We identified the following
themes: Energy saving, Improving accuracy and Balanc-
ing both. Table 1, describes the identified themes and few
examples from StackOverflow. Further, we classified these
163 questions based on their status. Under the status cate-
gory, we found the following themes: successful, ordinary
and unsuccessful. The questions are classified under suc-
cessful category if there is an accepted answer. The or-
dinary questions are categorized so if they have been an-
swered, but none of the answers were accepted by the de-
veloper who posted the question. The questions with no

554

Table 1: Identified themes under developers’ goals category and examples
Goal Description Percentage Example
Energy
Saving

Questions were categorized under this category, if they are
about reducing the battery usage by ignoring accuracy

58.89% ”How to receive driving start and stop activity with Android
in an energy efficient manner which works even offline?”
(PostID:45739938).

Improving
Accuracy

Questions were categorized under this category, if they are
about increasing the accuracy by ignoring battery draining
behaviour

28.83% ”How to get location updates while device is powered?”
(PostID:45204188).

Balancing
Both

Questions were categorized under this category, if they are
about balancing energy and accuracy related requirements

12.26% ”Android best way to get location repeatedly in background
considering battery as well?” (PostID:27313684).

Successful 53%

Ordinary 17%
Unsuccessful 30%

(a) Energy Saving

Successful 34%

Ordinary 19%

Unsuccessful 47%

(b) Improving Accuracy

Successful 45%

Ordinary 20%

Unsuccessful 35%

(c) Balancing Both

Figure 1: Developer goal versus Status of questions

answers are categorized as unsuccessful. The categorized
questions were grouped based on the status of the question
and the developer’s goal.

The result of thematic analysis is represented in Figure 1
where we observe that energy saving related questions yield
the most successful answers, closely followed by questions
related to balancing both. This shows that the develop-
ers are more interested in either energy saving or balanc-
ing both conflicting requirements (energy and accuracy).
On the other hand, improving accuracy alone has not been
given much preference as it yields 47% unsuccessful ques-
tions. This shows that improving accuracy by ignoring en-
ergy issues may not be feasible or not a best practice while
developing location based Android applications. Therefore,
to build a successful application we believe that balancing
between both the conflicting requirements is the essential
factor.

4.3 RQ3: Which developer goal is more popular
among the developer community?

We followed the method suggested by Pinto et al. [4] to
calculate the popularity of the questions. The formula for
calculating the popularity of the questions is as follows:

P = S + A + C + F + V (1)

Where, P is the calculated popularity of the question, S is
the score of the question, A is the number of answers, C
is the number of comments, F is the number of favoritiza-
tions, and V is the number of views. Here, we slightly devi-
ated from the guidelines suggested by Pinto et al. [4] with
respect to selecting StackOverflow views. Here, instead of
selecting overall StackOverflow views, we used the average
views of all questions related to location based android ap-
plications. Hence, the views of a question can be calculated

Table 2: Popularity of questions under each category

Developer Goal Median (V) Median (P)
Energy Saving 643.5 6.039
Improving Accuracy 373 5.047
Balancing Both 523 6.755

as follows:

V iews of question (Q)

Avg. views of all LBAs related questions
(2)

As shown in Table 2, it is clear that the theme of balanc-
ing both energy and accuracy has gained more popularity
than the rest. Although the number of questions related to
balancing both requirements is the least, this category has
scored the most popularity, reflecting the importance of giv-
ing equal priority to both types of requirements. Further,
energy saving is observed as the next most popular require-
ment. Activities such as continuous background location
updates and improper use of location APIs result in more
abnormal battery drain, making it a higher concern of the
developers to extend users battery life.

4.4 RQ4: How have the developers’ goals changed
over time?

The purpose of this question is to observe the trend in
developers preference towards energy saving, or improving
accuracy, or balancing both. The obtained information re-
lated to questions were grouped by the year and the occur-
rences of each goals category were tabulated. The data were
quantitatively analyzed and the trend over the years is de-
picted in Figure 2. As shown in Figure 2, we observe that
energy saving has been given a higher priority from the be-
ginning in 2010 with a ratio of 3:0:0 questions in each cat-
egory (EnergySaving:ImprovingAccuracy:BalancingBoth).
But as the years passed the priority of saving energy rela-

555

3 9 13 8 15 19 14 14 1

2 6 4 7 6 10 12

3 2 3 3 3 2 3 1
Balancing

Both

Energy
Saving

Improving
Accuracy

2010 2011 2012 2013 2014 2015 2016 2017 2018

Year

D
e
ve

lo
p

e
r

G
o
a

l

Figure 2: Developers goals over time.

tively decreased, changing the ratio to 1:12:1 in 2018. Till
2014, Android-native APIs were used, making it the task of
the developers to configure everything by themselves result-
ing in major energy consumption issues. However, in 2015,
the introduction of Google Location APIs had decreased the
energy consumption related issues, hence, decreasing the
requirement of the developers to find solutions for abnormal
energy consumption. In the perspective of accuracy-related
questions, developers have never shown much concern until
2016. However, in the years of 2017 and 2018, the inter-
est in accuracy-related questions drastically rose due to the
introduction of Doze mode in higher versions of Android.
Doze mode, in short, kills the background location updates
when a smartphone enters sleep mode. Users on Stack-
Overflow have complained about not being able to decrease
the time between consecutive background service updates
and receiving the following message, ”In an effort to re-
duce power consumption, Android 8.0 (API level 26) lim-
its how frequently background apps can retrieve the user’s
current location. Apps can receive location updates only
a few times each hour” (PostID: 47471600). This resulted
in lesser accuracy as continuous location updates were not
possible. Hence, developers were more interested in solving
accuracy-related issues in recent years. As shown in Figure
2, we also observe that the questions related to energy sav-
ing decrease drastically to 1 in 2018 from a maximum of
19 in 2015 while there was an increase in accuracy-related
questions. Hence, energy and accuracy evolve as two con-
flicting requirements, polarizing the interests of the devel-
opers.

5 Threats to Validity
This section presents the internal and external threats to

validity.
Internal: As the scope of the study is narrowed down to

location-based Android applications, we selected only 320
questions for thematic analysis. However, we believe that
these manually selected questions may be a better candi-
date set for summarizing the characteristics of developers
discussions. Second, the presence of false positives in the

dataset. To reduce the number of false-positives, we con-
ducted manual in-depth reading on all filtered questions and
carefully removed the false positives.

External: First, our results are only limited to Questions
and Answers on StackOverflow. Other online forums, on-
line surveys, and physical interviews have not been used to
obtain information. Second, the solutions and results pre-
sented cannot be generalized to other software, domains or
type of developers. They are only applicable to location-
based Android applications.

6 Conclusion and Future Works
In this paper, we present the results of an empirical study

summarizing the characteristics of developers’ discussions
on StackOverflow about energy and accuracy requirements
in location-based Android applications. We identify three
main categorizations, namely: Status of the question, Goals
of developers and Type of question. We applied quantita-
tive and thematic analysis to answer four research questions
based off 320 relevant StackOverflow questions. As a re-
sult of this study, we were able to infer that developers on
StackOverflow are facing both energy and accuracy-related
issues, however, are finding it difficult to balance both as
energy and accuracy requirements have evolved as conflict-
ing requirements. As future work, we aim to analyze the
answers of relevant questions to provide more qualitative
insights on balancing the energy and accuracy requirements
of location-based Android applications.

References
[1] N. Capurso, T. Song, W. Cheng, J. Yu, and X. Cheng, “An android-

based mechanism for energy efficient localization depending on in-
door/outdoor context,” IEEE Internet of Things Journal, vol. 4, no. 2,
pp. 299–307, 2017.

[2] D. Kim, S. Lee, and H. Bahn, “An adaptive location detection scheme
for energy-efficiency of smartphones,” Pervasive and Mobile Comput-
ing, vol. 31, pp. 67–78, 2016.

[3] T. Choi, Y. Chon, and H. Cha, “Energy-efficient wifi scanning for lo-
calization,” Pervasive and Mobile Computing, vol. 37, pp. 124–138,
2017.

[4] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software
energy consumption,” in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014, pp. 22–31.

[5] H. Malik, P. Zhao, and M. Godfrey, “Going green: An exploratory
analysis of energy-related questions,” in Proceedings of the 12th
Working Conference on Mining Software Repositories. IEEE Press,
2015, pp. 418–421.

[6] V. Braun and V. Clarke, Successful qualitative research: A practical
guide for beginners. sage, 2013.

[7] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do program-
mers know about software energy consumption?” IEEE Software,
vol. 33, no. 3, pp. 83–89, 2016.

[8] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging
on smartphones: a first look at energy bugs in mobile devices,” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks.
ACM, 2011, p. 5.

556

LAD: A Layout Anomaly Detector for Android
Applications

Cheng-Zen Yang, Chih-Ju Lai, Peng Lu, and Zhi-Jun You
Department of Computer Science and Engineering

Yuan Ze University
Chungli, Taiwan, R. O. C.

{czyang,cjl16,pl16,zjy19}@syslab.cse.yzu.edu.tw

Abstract— In recent years, Android has become one of the most
popular mobile operating systems. Software testing of Android
applications becomes a very important issue. In the past research,
many studies focus on functional testing. Recently, some studies
start to discuss the layout anomaly issue. However, these schemes
investigate few types of layout anomalies. Moreover, there may
exist underlying platform constraints. In this paper, a detection
tool LAD (Layout Anomaly Detector) is proposed. LAD considers
the anomaly types studied in the previous work with a newly
proposed anomaly type for scale maladaptation of components
and text. LAD also supports testing scripts. We have conducted
empirical experiments with four real apps. The experimental
results show that LAD can effectively detect the layout anomalies
of these apps.

Keywords-Android; layout anomaly; GUI layout testing;
automatic testing

I. INTRODUCTION
As shown in the statistics of AppBrain, the number of

Android apps has exceeded 2.59 million on Google Play in
March 2019 [1]. In the past, automatic Android software testing
has received many attentions, such as [2-5]. However, most of
the previous studies focus on functional testing. To our best
knowledge, the number of research studies on detecting layout
anomalies for Android apps is comparatively few [6-9]. Because
Android devices have the severe fragmentation problem, layout
anomalies become an important issue for user experience.

The layout anomaly problem occurs in an app if its layout
design does not consider the diversity of different screen
specifications. This problem can be very annoying for users and
app developers. For example, the layout anomalies such as UI
component overlap or cropped text may hamper the user
operations. As reported in [8], some UI components may even
disappear when the app is executed in a smaller screen size.

To tackle layout anomalies, app developers need to take a lot
of time to inspect the layouts for many screen specifications. As
illustrated in [8, 9], if there are m layouts in an app and n screen
specifications, the time complexity of the inspection work is
O(m×n). This workload is harmless if n is very small. However,
a survey of OpenSignal shows that over 150 different screen
sizes have existed for Android devices in 2014 [10]. If there are
100 different screen specifications to be inspected and the
inspection time is 5 minutes per layout, the total inspection time
will be 83 hours for an app of 10 layouts.

In recent years, studies have been conducted to deal with the
problem of layout anomaly detection. Several tools like Galen
Framework [6] and ITArray Automotion Framework [7] are
developed to perform visual testing for Android apps. Their
users need either to write scripts to specify the geometry
relationships or to import the customized Java code into the app
under testing (AUT). In 2017, Shih et al. proposed an automatic
detection tool called UI-Explorer to detect two types of layout
anomalies [8]. In UI-explorer, all layouts are traversed and
inspected automatically. However, UI-explorer provides only
click events to traverse the layouts. It lacks an approach to
handle user inputs. Hasellknippe and Li also proposed a tool
called the Layout Bug Hunter (LBH) to detect three different
types of layout anomalies [9]. LBH does not need any user
specification. However, LBH relies on the underlying Fuse
platform [11] to implement the GUI analytical work.

In this paper, we propose a layout anomaly detection tool
called LAD (Layout Anomaly Detector) to perform visual
testing on Android app layouts. LAD is designed to detect six
types of layout anomalies: components missing, cropped text,
component overlap, component overflow, component mis-
alignment, and component/text scale maladaptation. To
automate the detection process, a procedural script language is
devised to specify the navigation procedure and the detection
operations. LAD also supports two inspection modes: the
standalone mode and the comparative mode. In the comparative
mode, users specify a designated resolution to get gold standard
layouts (GSLs) as the inspection templates. LAD automatically
inspects all layouts under test (LUTs) in the testing resolutions
against the GSLs. In the standalone mode, LAD works only for
one testing resolution. To operate in a contiguous integration (CI)
testing process, LAD is designed as a native Java tool in a
modular design.

The rest of this paper is organized as follows. Section 2
briefly reviews the related research work on the layout anomaly
detection problem. Section 3 describes the layout anomalies
detected in LAD and the LAD design. Section 4 presents the
empirical study on LAD with four Android apps. Finally,
Section 5 concludes this paper.

II. RELATED WORK
The layout anomaly detection problem is an important issue

for traditional window-based interface design and Web
application design [12-14]. For automatically detecting layout

DOI reference number: 10.18293/SEKE2019-186

557

anomalies, the detection approaches can be mainly classified
into two categories: the image comparing approach [15, 16] and
the layout analysis approach [6-9].

The image comparing approach inspects the layout
anomalies by making comparisons between two captured
screenshots to find their pixel differences. Since there is no
layout structure information in the contrasting process, this
approach may suffer from the challenge to decide whether two
images presented in difference screen sizes/resolutions are
identical [9].

For the layout analysis approach, the layout information is
used to detect the anomalies. In Galen Framework [6], users can
program the test cases using Galen Specs Language to describe
the relationships between two objects. However, Galen is mainly
designed for Web apps. In ITArray Automotion Framework [7],
a library is supported to perform visual testing on web and
mobile pages. Users can describe the visual relationships using
the library calls. As pointed in [9], however, these tools require
users to provide detailed information about the placement of
GUI objects and the validation parameters. If the GUI layouts
are changed frequently, this scripting-in-detail approach may
incur high maintenance costs.

In 2017, Shih et al. proposed a tool called UI-Explorer to
automate the detection of layout anomalies [8]. UI-Explorer uses
a GUI ripping engine to extract the layout information of all GUI
components and automatically traverse all layouts under two
different screen specifications. With UI-Explorer, users do not
need to provide detailed visual information for testing. However,
UI-Explorer considers only two types of layout anomalies:
components missing and cropped text. Moreover, it provides
only click events to traverse the layouts.

Hasellknippe and Li proposed a tool called the Layout Bug
Hunter (LBH) for detecting three GUI layout anomalies:
component overlap, component overflow, and component
misalignment [9]. LBH employs a set of specified rules to detect
layout anomalies. Therefore, LBH does not require any script for
its visual testing. However, LBH does not consider the
comparative approach. As discussed in [9], an intentional
overlap design may be identified as an anomaly. Moreover, the
current LBH design relies on the underlying Fuse platform [11].

III. DESIGN OF LAYOUT ANOMALY DETECTION
MECHANISMS

This section first presents the layout anomalies considered in
LAD. The design of the LAD architecture is described thereafter.

A. Layout Anomalies
In addition to the layout anomaly types discussed in the

previous studies [8, 9], components missing, cropped text,
component overlap, component overflow, and component
misalignment, LAD considers one more type: component/text
scale maladaptation. LAD supports two inspection modes for
layout anomaly detection: the standalone mode and the
comparative mode. In the standalone mode, LAD uses the pre-
defined heuristic rules to decide the detection results. In the
comparative mode, the layouts in a user-designated resolution
are used as the inspection templates, which are the gold standard

layouts (GSLs). The layouts under test (LUTs) in different
screen sizes/resolutions will be investigated against the GSLs.

1) Component Missing
A component missing anomaly happens when some GUI

component disappears in a different LUT screen size/resolution.
Generally, this anomaly occurs when the screen size/resolution
becomes smaller. As shown in Figure 1, the gender symbol at
the bottom of the app in the 768×1280 GSL disappears in the
480×800 LUT.

To detect component missing anomalies, LAD first retrieves
the XML dumps of GSLs and LUTs. From the XML dumps,
LAD calculates the total numbers of components of each GSL
and the corresponding LUT. If these two numbers are not equal,
the LUT is regarded as having a component missing anomaly.

2) Cropped Text
The cropped text anomaly happens when some text string

correctly appears in the GSL, but it is cropped in the
corresponding LUT. Generally, this anomaly occurs because the
GUI components are squeezed in the LUT of a smaller screen
resolution. As shown in Figure 2, when the 768×1280 GSL
resolution is shrunk to the 480×800 LUT resolution, the text in
the red box of Figure 2(b) is cropped. In this case, the app user
cannot read the complete text.

(a) 768×1280, 320 dpi (b) 480×800, 240 dpi

Figure 1: Component missing anomaly

(a) 768×1280, 320 dpi (b) 480×800, 240 dpi

Figure 2: Cropped text anomaly.

558

LAD uses the same approach proposed in [8] to first obtain
the coordinates of the text component C1 in the GSL and invoke
OpenCV (a computer vision library) to get a screenshot S1 of C1.
LAD then invokes Tesseract (an OCR text recognizer) to
perform the OCR work and get the OCR text T1. Similarly, LAD
gets the OCR text T2 for the corresponding component C2 in the
LUT. For example, T1 in the red box of Figure 2(a) is recognized
as “Getlowermember-onlypricesinstantlywhenyousignin” and
T2 is recognized as “GetlowermemberonlypricesWMin-”.

Because the OCR results usually have errors, LAD calculates
the Levenshtein distance (Ed1) between T1 and the original string
C1.text. LAD also calculates Ed2 between T2 and C1.text.
Therefore, if | Ed1 - Ed2 | ≥ TED where TED is a predefined
threshold, the LUT is regarded as having a cropped text anomaly.

3) Component Overlap
The component overlap anomaly happens when one GUI

component covers a part of another GUI component. This may
occur when a smaller screen size/resolution is used for LUTs.
However, the original design may also contain this anomaly.
Therefore, LAD detects it in both inspection modes.

Figure 3 shows an example in which Figure 3(a) is a
correctly displayed GSL of a calculator app. In Figure 3(b), the
dashed button area overlaps the background text area in the LUT.
In this case, the app users cannot get the correct result.

To detect component overlap anomalies, LAD retrieves the
XML dumps of LUTs and obtains the coordinates of the upper
left corner and the lower right corner of each component Ci from
the XML dumps. Then LAD calculates the areas of two
components to see if these two areas are overlapped.

4) Component Overflow
When an app developer forgets to adjust the component size

according to the new LUT resolution, a component overflow
anomaly may occur in the LUT if the area of some component
exceeds the screen boundary. In the worst case, users may not be
able to correctly operate the component.

Figure 4 shows an example. In the 768×1280 GSL of Figure
4(a), both button components are completely displayed. In

Figure 4(b), however, the area of BUTTON1 exceeds the
boundary of the 480×800 LUT layout.

LAD also analyzes the XML dumps of LUTs to obtain the
coordinate (xi1, yi1) of the upper left corner of each component
Ci and its coordinate (xi2, yi2) of the lower right corner. LAD also
analyzes the component information to get the height Hi and the
width Wi. LAD compares these values with the screen height Sh
and the screen width Sw, respectively. If one of the following
inequalities is satisfied, the LUT is regarded as having a
component overflow anomaly.

• Horizontal boundary overflow

𝑥𝑥𝑖𝑖1 + 𝑊𝑊𝑖𝑖 > 𝑆𝑆𝑤𝑤 ∥ 𝑥𝑥𝑖𝑖2 < 𝑊𝑊𝑖𝑖 ∥ 𝑥𝑥𝑖𝑖2 > 𝑆𝑆𝑤𝑤

• Vertical boundary overflow

𝑦𝑦𝑖𝑖1 + 𝐻𝐻𝑖𝑖 > 𝑆𝑆ℎ ∥ 𝑦𝑦𝑖𝑖2 < 𝐻𝐻𝑖𝑖 ∥ 𝑦𝑦𝑖𝑖2 > 𝑆𝑆ℎ

5) Misalignment
When a programmer designs a layout, the components are

usually aligned in the layout. There are three kinds of vertical
alignment: Align Top, Align Middle, and Align Bottom. Similarly,
the horizontal alignment also has three kinds: Align Left, Align
Center, and Align Right. When the component position is not
properly adjusted with the resolution change, it is possible that a

(a) 768×1280, 320 dpi (b) 480×800, 240 dpi

Figure 3: Component overlap anomaly.

(a) 768×1280, 320 dpi (b) 480×800, 240 dpi

Figure 4: Component overflow anomaly.

(a) 768×1280, 320 dpi (b) 480×800, 240 dpi

Figure 5: Component misalignment anomaly.

559

component misalignment anomaly occurs in the LUT resolution.
For example, the 768×1280 GSL in Figure 5(a) illustrates that
the left sides of BUTTON3 and BUTTON4 are aligned with the
right side of BUTTON1 along with the red line. However, the
480×800 LUT in Figure 5(b) demonstrates that BUTTON1 is
not horizontally aligned with BUTTON3 and BUTTON4.

To detect component misalignment anomalies, LAD makes
comparisons for each pair of two components Ci and Cj using
their coordinates and centers. However, a strict alignment
judgement may incur many false alarms for two cases:

• Some very minor misalignments can be allowable
because it is very hard for users to find them by eyes.

• Some misalignments are intentionally designed.

Therefore, LAD has two thresholds DS and DL to control the
misalignment detection. DS is used to ignore the misalignments
that are not easily recognized by users. In the current LAD
design, the default value of DS is 2 pixels. DL is used to ignore
the misalignments that are intentionally designed. In LAD, the
default value of DL is 8 pixels. For example, if the left upper
corner of Ci is (xi1, yi1) and the left upper corner of Cj is (xj1, yj1),
the LUT is regarded as having a component misalignment
anomaly when the following condition is satisfied.

𝐷𝐷𝑆𝑆 < �𝑥𝑥𝑖𝑖1 − 𝑥𝑥𝑗𝑗1� < 𝐷𝐷𝐿𝐿

6) Component/Text Scale Maladaptation
As the resolution of the screen changes, the sizes of the

components and text characters may also change. If the size of a
component is excessively reduced, users will have difficulty
clicking the component or reading the text. The LUT is regarded
as having a component/text scale maladaptation anomaly. LAD
tackles this scale maladaptation problem separately for GUI
components and text strings.

For GUI components, the size of an interactive component
should be at least 44 pt × 44 pt according to the Apple User
Interface Design Guide [17]. In [18], however, Zea suggests that
the minimum target size of the component should be 5 mm × 5
mm = 30 px × 30 px. In the current LAD design, we use the size
suggested by Zea as the threshold to determine the scale
maladaptation anomaly for a component. If the size of a
component is smaller than this threshold, a scale maladaptation

anomaly occurs on the component. For example, Figure 6
illustrates that the dashed area is smaller than 5 mm × 5 mm in
the 768×1280 LUT.

For the text scale problem, Kahn and Lenk have pointed out
that the font sizes of 12 and 14 points allow the user to read
comfortably [19]. Tennant also points out that the 16-pixel font
size is approximately equal to the 12-point font size which is
suitable for reading [20]. Because the height of the 12-point font
is approximately 0.42 cm, LAD use this as a default threshold to
determine if the scale of a text string is maladapted in the LUT.

Figure 7 illustrates an example in which LAD first gets the
coordinates of the dashed box containing a string “Return date”
and then invokes OpenCV to get its screenshot. LAD then uses
a text edge detection algorithm [21] to obtain the height HT of
the string as shown in Figure 7(b). If HT < 0.42 cm, the LUT is
regarded as having a text scale maladaptation anomaly.

B. LAD Architecture
1) Script Language

To automate the visual testing, a script language is devised
in LAD for controlling the testing procedure. With the test
scripts, LAD can automatically enter text inputs into the

Figure 6: Component scale maladaptation anomaly in 768×1280 LUT.

(a) Small text in 768×1280 (b) Detected text height 𝐻𝐻𝑇𝑇 =

0.35 cm
Figure 7: Text scale maladaptation anomaly.

#0:decor_content_parent
#1:action_bar_container
#2:action_bar
#3:widget.TextView
#4:id_content
#5:widget.TextView
#6:editText
#7:textView
#8:editText2
#9:button
#10:id_statusBarBackground

(a) Component marking (b) Component list

Figure 8: Component marks and the list of their IDs.

560

components and navigate to different layouts. In order to let the
script writer know the component IDs of each layout, LAD has
a companion tool LADMark to extract the component IDs and
mark each component on the layout screenshot as shown in
Figure 8(a). Figure 8(b) is the component list.

Figure 9 shows a script example based on the list in Figure
8(b). A starting “#” is used to denote a comment. On the second
line, “LAD.input[@id='editText','User']” is used
to enter the text input “User” for the username. On line 4,
“LAD.input[@id='editText2','1234']” is used to
input the password “1234”. On line 5, LAD.testoverlap
instructs LAD to perform anomaly detection for component
overlap. On line 6, button.click tells LAD to click the
LOGIN button such that the app moves to the next layout.
Finally, LAD.testall instructs LAD to perform anomaly
detection for all kinds of anomalies.

2) Architecture Design
Figure 10 shows the architecture of the LAD. The system

reads the AUT, the LUT screen resolution, the GSL screen
resolution, and the testing scripts. Then, LAD analyzes the
testing scripts and automatically navigates the GSLs and LUTs
for testing.

Finally, LAD collects the testing results and generates the
detection report. To help the developer find the corresponding
places of the detected anomalies, the report contains the

screenshots, the detection results, and the XML information of
the problematic components. Figure 11 illustrates a report
example.

IV. EXPERIMENTS
To evaluate the effectiveness of the proposed anomaly

detection mechanism, we have conducted experiments with four
Android apps. This section describes the experimental results.

A. Experimental Environment
We have implemented a prototype for experiments. The

LAD prototype was executed on a PC running with 16 GB RAM
and an Intel i5-6500 3.20 GHz CPU. The operating system was
Ubuntu 16.04 64bit. The Android emulator was the built-in
emulator of Android Studio 3.1 emulating Google 7.0.0 API 24.
The resolutions of GSL and LUT were 768×1280 and 480×800,
respectively. Four investigated apps are as follows:

• MunchLife 1.4.4 (ML): This app is used to track the
character level for a card game Munchkin.

• Last Minute Flights Booking 2.0 (LMFB): This app
allows users to compare flight and hotel information
provided by airlines and travel agencies. Users can use
it to find the most suitable flights and hotels.

• Priceline 4.34.170 (PL): This app allows users to
quickly plan their travel itineraries, including booking
cheap flights, hotels and rental cars.

• MyAir365 1.06 (MA): This app allow users to easily
order low-cost airlines.

The main reason for choosing these four apps is that they all
have layout anomalies. Therefore, they can be used to
demonstrate the detection performance. In order to clearly
present the detection results, this paper shows the experimental
results using only the first page of each app.

B. Experimental Results
As shown in Table 1, the numbers are the anomalies detected

in the experiments. For anomalies of components missing,
cropped text, component overlap, component overflow, and
component misalignment, the results are obtained in the
comparative mode. For scale maladaptation anomalies, the
results are measured in the standalone mode with the 768×1280

1: #Username
2: LAD.input[@id='editText','User']
3: #Password
4: LAD.input[@id='editText2','1234']
5: LAD.testoverlap
6: button.click
7: LAD.testall

Figure 9: An example script.

Figure 10: Detection system architecture.

Layout
AnalysisLayout Data

Standalone/
Comparative

Analysis

Report

Anomaly Detection
- Component Missing
- Cropped Text
- Overlap
- Overflow
- Misalignment
- Scale Maladaptation

Script
Processing

Data
Collection

GSL LUT Testing
Scripts

Figure 11: A detection report example.

561

resolution. The manual inspections show that these detection
results can effectively discover many anomalies which may be
ignored by inspectors.

In the experiments, some false alarms were found in the
standalone mode because the default heuristic thresholds are not
appropriate for some apps and scree specifications. However,
these false alarms can be eliminated in the comparative mode
because the GSLs can filter out their detections in the LUTs.

V. CONCLUSION
Since Android has the severe fragmentation problem, visual

testing has received considerable attentions in recent research.
Traditionally, developers need to spend much time in manually
checking layouts with different screen resolutions. This manual
inspection process is time-consuming and error-prone.

In this paper, we present the design of an anomaly detection
tool LAD which can be used to detect six types of layout
anomalies. To automatically detect these anomalies in different
layouts, a procedural script language is devised to specify the
app navigation procedure and the detection operations. To
operate in a contiguous integration (CI) testing environment,
LAD is designed as a native Java tool in a modular design.
Moreover, LAD supports two inspection modes: the standalone
mode and the comparative mode. The comparative mode
facilitates the avoidance of false alarms in the detection results.

In our future work, we plan to conduct comprehensive
investigations with more apps to study the effectiveness of LAD.
Human inspectors will also involve the experiments to make
performance comparisons by measuring more metrics, such as
accuracy, precision, and recall. Moreover, the functionality of
LAD will be enhanced. The current design does not have a plug-
in interface. Therefore, it is inflexible for users who want to add
a new module for a new anomaly. The algorithms for anomaly
detection will be also improved further and the practical
applicability of the detection reports will be enhanced to help
developers quickly detect the layout anomalies and improve the
quality of Android apps.

ACKNOWLEDGEMENT
This work was supported in part by Ministry of Science and

Technology, Taiwan under grant MOST 107-2221-E-155-012.
The authors would also like to express many thanks to the
anonymous reviewers for their precious suggestions.

REFERENCES
[1] AppBrain, “Android apps on Google Play”,

https://www.appbrain.com/stats/number-of-android-apps, last accessed
on March 1, 2019.

[2] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M.
Memon, "Using GUI Ripping for Automated Testing of Android
Applications", in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2012), pp. 258-
261, 2012.

[3] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, "MobiGUITAR: Automated Model-Based Testing of Mobile
Apps", IEEE Software, vol. 32, no. 5, pp. 53-59, 2015.

[4] C. Hu, and I. Neamtiu, “Automating GUI Testing for Android
Applications”, in Proceedings of the 6th International Workshop on
Automation of Software Test (AST '11), pp. 77-83, 2011.

[5] H.-L. Wen, C.-H. Lin, T.-H. Hsieh, and C.-Z. Yang, “PATS: A Parallel
GUI Testing Framework for Android Applications”, in Proceedings of the
2015 IEEE 39th Annual Computer Software and Applications Conference
(COMPSAC 2015), pp. 210-215, 2015.

[6] Galen Framework, “Galen Framework”, 2019,
http://galenframework.com/, last accessed on March 1, 2019.

[7] D. Zaiats, “ITArray Automotion Framework”, 2019,
https://automotion.itarray.net/, last accessed on March 1, 2019.

[8] Y.-A. Shih, Y.-P. Chang, and C.-Z. Yang, “An Automated Detection
Framework for Testing Visual GUI Layouts of Android Applications”, in
Proceedings of the 7th International Workshop on Computer Science and
Engineering (WCSE 2017), pp. 544-548, 2017.

[9] K. F. Hasselknippe and J. Li, “A Novel Tool for Automatic GUI Layout
Testing”, in Proceedings of the 24th Asia-Pacific Software Engineering
Conference (APSEC 2017), pp. 695-700, 2017.

[10] OpenSignal, “Android Fragmentation Visualized (August 2014)”
https://opensignal.com/reports/2014/android-fragmentation/, 2014, last
accessed on December 20, 2017.

[11] Fusetools AS, “Fusetools - We Make Apps Easy,”
https://www.fusetools.com, 2019, last accessed on March 1, 2019.

[12] E. Ch'ng, and D. C. L. Ngo, “Screen Design: A Dynamic Symmetry Grid
Based Approach”, Displays, vol. 24, pp. 125-135, 2003.

[13] H. Song, H. Liu, and D. Chen, “An Automatic GUI Adjustment Method
for Mobile Computing”, in Proceedings of the 2011 IEEE International
Conference on Computer Science and Automation Engineering (CSAE
2011), pp. 206-210, 2011.

[14] S. Hallé, N. Bergeron, F. Guerin, G. L. Breton, and O. Beroual,
“Declarative Layout Constraints for Testing Web Applications”, Journal
of Logical and Algebraic Methods in Programming, vol. 85, no. 5, pp.
737-758, 2016.

[15] Applitools, “Applitools Eyes”, https://applitools.com/, 2019, last accessed
on March 1, 2019.

[16] J. Cryer, “PhantomCSS”, https://github.com/HuddleEng/PhantomCSS,
2019, last accessed on March 1, 2019.

[17] Apple Inc., “Human Interface Guidelines - Adaptivity and Layout,”
https://developer.apple.com/design/human-interface-
guidelines/ios/visual-design/adaptivity-and-layout/, 2019, last accessed
on March 1, 2019.

[18] R. Zea, “Mastering Responsive Web Design with HTML5 and CSS3”,
Packt Publishing Ltd., 2015.

[19] P. Kahn, and K. Lenk, “Design: Principles of Typography for User
Interface Design”, Interactions, vol. 5, no. 6, pp. 15-29, 1998.

[20] D. B. Tennant, “16 Pixels Font Size: For Body Copy. Anything Less Is A
Costly Mistake”, Smashing, 2011.
https://www.smashingmagazine.com/2011/10/16-pixels-body-copy-
anything-less-costly-mistake/

[21] C. Liu, C. Wang, and R. Dai, "Text Detection in Images Based on
Unsupervised Classification of Edge-based Features", in Proceedings of
the 2005 8th International Conference on Document Analysis and
Recognition (ICDAR '05), pp. 610-614, 2005.

TABLE I. DETECTION RESULTS OF LAD.

 ML LMFB PL MA
Comp. missing 1 0 0 0
Cropped text 0 3 4 0
Overlap 2 10 0 7
Overflow 0 0 0 0
Misalignment 0 6 0 11
Comp. scale maladapt. 0 5 8 8
Text scale maladapt. 5 10 8 3

562

Schedulability analysis for real-time mobile systems

Cong Chen∗,Yangyang Chen∗, Jian-Min Jiang∗†, Shi Zhang∗, Zhong Hong∗, Hongping Shu†, and Qiong Zeng†
∗College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350007, China

†College of Software Engineering, ChengDu University of Information Technology, Chengdu 610103, China

Abstract—Autonomous driving systems are complex real-time
mobile systems. To guarantee their safety and security, the mobile
objects (agents) in these systems must be isolated from each
other so that they do not collide with each other. Since isolation
means two or more mobile objects cannot be located in the same
area at the same time, a scheduling policy is required to control
the movement of these mobile objects. However, traditional
scheduling theories are based on task scheduling which is coarse-
grained and cannot be directly used for fine-grained isolation
controls. In this paper, we first propose an event-based formal
model called a time dependency structure which is used to model
and analyze real-time mobile systems. Then, an event-based
schedule is defined. Finally, we analyze the schedulability of
isolation—that is, checking whether a given schedule ensures the
isolation relationship among mobile objects or not.

Index Terms—mobility, isolation, scheduling policy, ambient.

I. INTRODUCTION

Autonomous driving systems are complex mobile systems,
which are a prominent subcategory of cyber-physical systems.
In these complex mobile systems, safety and security, especial-
ly the isolation of mobile objects (agents), has become crucial
issues. Isolation means two or more mobile objects cannot be
located in the same area at the same time. The mobile objects
in real-time mobile systems must be isolated from each other
so that they do not collide with each other. Thus, we should
have an effective mechanism for checking whether a given
scheduling policy can ensure the isolation of mobile objects
or not.

Existing scheduling theories, e.g, [2], [7], [8], [10]–[12],
focus on task scheduling. Task scheduling mainly consider
how to generate the optimal scheduling policies while the
objective of the schedulability analysis is to verify that there
are no violations of constraint conditions. However, as for
the inherent complexity of scheduling, existing work is far
from enough to solve these problems. Specifically, in the
practical mobile systems, mobile objects and environments
interact with each other, it is very difficult to separate a mobile
system into independent tasks. We cannot directly use existing
methods and techniques to obtain the scheduling policies for
the isolation of mobile objects.

To solve the problem, it is necessary for a new scheduling
policy to control the whole mobile system [1], [4]. Jiang et

Corresponding author: Jian-Min Jiang (jjm@fjnu.edu.cn). This work is
supported by National Natural Science Foundation of China (No. 61772004)
and the NSF of Fujian province (No. 2018J01777).

al. [4] have proposed more fine-grained event-based schedul-
ing instead of task scheduling. An event is generally the
occurrence of an action or activity. A task, process or com-
plex activity may consist of multiple events [6]. A complex
scheduling problem cannot be decomposed into independent
tasks, but it can be divided into sub-problems of event-based
scheduling. Though Jiang et al. [4] have discussed event-based
scheduling, such event-based scheduling does not consider
real-time scheduling controls, especially the scheduling in real-
time mobile systems.

To investigate the scheduling in real-time mobile systems,
we must model real-time mobile systems. We extend the
dependency structure model [4], [5] and add the time modeling
power to it. Such a model is called a time dependency struc-
ture, which can conveniently specify the timing constraints
and mobility of real-time mobile systems.

In this paper, we first introduce a time dependency structure.
Then, an event-based schedule is defined. Finally, we investi-
gate the schedulability analysis of isolation—that is, checking
whether a given schedule ensures the isolation relationship
among mobile objects or not in a real-time mobile system.

II. NOTATION AND RUNNING EXAMPLE

We will adopt the concept similar to the ambient calcu-
lus [3], where computation happens in an ambient that is a
closed and bounded place and a mobile object (agent) can
enter or exit an ambient.

Here, we first give some notations. Given a set X , the
notations 2X and |X| denote the power set and the size of
X , respectively. Time = [0,∞), the set of non-negative reals,
denotes the domain of time. A and M denote the sets of
ambients and mobile objects, respectively. The event of a
mobile object M∈M for entering an ambient A(A ∈ A) is
denoted by enM

A and the event ofM for exiting A is done by
exM

A . In fact, it is enough for us to only use the two movement
events (entering and exiting events) for specifying the mobility
in a mobile system. For more information, please refer to our
previous work [4].

We present a running example, which is a simple yet typical
mobile system where a passenger John needs to take a bus in
a road intersection area. It is assumed that all the vehicles
are equipped with Navigation Satellite System (GPS or BDS)
devices and have access to a digital map database, which pro-
vide them with critical information such as position, heading,
speed, road and lane details. The road area is represented as a

DOI reference number: 10.18293/SEKE2019-090 563

Fig. 1. A simple mobile system

grid which is divided into small cells in Figure 1.(a). Each cell
in the grid is associated with a unique identifier. The buses A
and B pass the intersection cell c7. John is located in the cell
c2. The bus A moves along the cells c11, c7, c3 and the bus
B does along the cells c8, c7, c6, c5.

John may enter the cell c6 and take the bus B. For
simplification, we give some notations. John is denoted as
J , and the event of John for entering the bus B (resp. the
cell c6) is denoted as enJ

B (resp. enJ
c6). If a bus X enters

a cell cx, the entering event is enX
cx. To simplify modeling

specification, we only consider the entering events because the
event of exiting one cell in fact means the event of entering
the next adjacent cell. Thus, there exist the following events:
enJ

c6, en
J
B , enA

c11, en
A
c7, en

A
c3, en

B
c8, en

B
c7, en

B
c6, en

B
c5.

Note that if there exist two or more vehicles in the same
cell, they will collide. To avoid collision, when the buses A
and B enter the cell c7, they must be scheduled so that they
pass through the cell c7 in sequence. Additionally, John should
enter the bus B in the cell c6 before B leaves.

Since a time dependency structure can represent a real-
time mobile system, it is used to denote such a real-time
mobile system. A real-time mobile system T DS may contains
multiple mobile objects and ambients. For convenience, the
notation T DSx @ T DS is used to denote that T DSx is a
mobile object or ambient of a real-time mobile system T DS.

III. SYSTEM MODEL

An event is a core concept here, which means an occurrence
of an activity or action. If an event occurs, such an event
is said to be available; otherwise it is unavailable. The
dependency structure model [4], [5] uses an event set (a set
of events) as a basic element. If all the events in an event
set are available, such an event set is said to be available;
otherwise it is said to be unavailable. We equip events and the
relationship among events with time attributes, and introduce
the time dependency structure.

Definition III.1 A time dependency structure (T DS) is a tuple
〈E , I,T, S,C,W,F, Ti, Te, Tt〉 with
–E , a finite set of events,
–I ⊆ 2E , the set of initially available event sets,
–T ⊆ 2E \ {∅}× 2E \ {∅}, the (asymmetric) transformation relation,
–S ⊆ 2E , the synchronism relation such that ∀A ∈ S : |A| > 1,
–C ⊆ 2E , the choice relation such that ∀A ∈ C : |A| > 1,
–W : E → {1, 2, 3, ...}, the capacity function,
–F ⊆ 2E , the set of finally available event sets,

–Ti :
⋃

X∈ I
X → Time, the initial time function,

–Te : E → Time, the event delay function, and
–Tt : T→ Time, the transformation delay function.

Here, for all A,B ∈ 2E , (A,B) ∈ T is called a transformation
dependency, denoted as A→ B, all read as B depending on A, and
A, B are called the pre- and post-dependency set of the dependency
(A,B), respectively. The events in A, B are called the pre- and
post-events of (A,B), respectively.

Transformation is a binary relation between event sets
where a transformation dependency (A,B) ∈ T is that the
occurrences of all the events in B depends on the occurrences
of all the events in A. A set A ∈ S and a set B ∈ C are
called a synchronism set and a choice set, respectively. The
capacity function W restricts the available number of events,
that is, if an event e may cause the occurrence of n events,
then the capacity of such an event is n (W(e) = n). The
capacity function is similar to the token capacity function of
places in a Petri net [9], which is used to control a loop.

To support multiple clock modeling, the initial time function
is introduced. Ti(e) refers to the initial clock valuation of
the initial available event e. The occurrence of an event may
go on for some time. Te(e) specifies the timing constraint
of the event e. A transformation dependency expresses the
dependency relationship between the two event sets and may
have a time delay constraint. If a transformation dependency
(A,B) has time delay t′, Tt((A,B)) = t′.

In our running example (see Figure 1(b)), we can assume
that it takes 1 time unit to enter an ambient and takes 2 time
units to cross a ambient for vehicle A and B. we assume that
the initial time of the vehicles A, B and passenger John are 3,
0, and 2, respectively. Therefore, the running example can be
modeled as T DSrun = 〈E , I,T,S,C,W,F, Ti, Te, Tt〉 where
E = {enA

c11, en
A
c7, en

A
c3, en

B
c8, en

B
c7, en

B
c6, en

B
c5, en

J
c6, en

J
B},

I = {{enA
c11}, {enB

c8}, {enJ
c6}},

T = {({enA
c11}, {enA

c7}), ({enA
c7}, {enA

c3}), ({enB
c8}, {enB

c7}),
({enB

c7}, {enB
c6}), ({enB

c6, en
J
c6}, {enJ

B}), ({enJ
B}, {enB

c5})},
S = {{enB

c6, en
J
c6}}, C = ∅, ∀e ∈ E ,W(e) = ∞, F =

{{enA
c3}, {enB

c5}}, and the timing constraints are as follows:
Ti(enA

c11) = 3, Ti(enB
c8) = 0, Ti(enJ

c6) = 2,
Te(enA

c11) = Te(enA
c7) = Te(enA

c3) = Te(enB
c8) = Te(enB

c7) =
Te(enB

c6) = Te(enB
c5) = Te(enJ

c6) = Te(enJ
B) = 1,

Tt(({enA
c11}, {enA

c7})) = Tt(({enA
c7}, {enA

c3})) =
Tt(({enB

c8}, {enB
c7})) = Tt(({enB

c7}, {enB
c6})) =

Tt(({enB
c6, en

J
c6}, {enJ

B})) = Tt(({enJ
B}, {enB

c6})) = 2.
A system can just run along the path formed by its

transformation dependencies. Synchronism, choice and timing
constraints only control the execution of such a system. While
a system runs, each of transformation dependencies may
lead to the change of its states. With the passage of time, a
transformation dependency may be activated. Only activated
transformation dependencies will be possibly executed. Thus,
a state includes the current possibly available events, the
number of possibly activating transformation dependencies,
the “absolute” time of the occurrence of every possibly
available event, and currently activated transformation
dependencies.

564

Definition III.2 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉
be a time dependency structure. A state of T DS is a tuple
S = 〈∆,z, ft,Γ〉 where ∆ ⊆ E is the set of possibly available
events, the availability function z : ∆ → Z∗ is a function
from ∆ to the set Z∗ of nonnegative integers, the time function
ft : ∆ → Time, and Γ ⊆ T is the set of activated transformation
dependencies satisfying for all dependencies (A,B) ∈ Γ⇒ A ⊆ ∆.
The initial state of T DS is defined as S0 = 〈∆0,z0, ft0,Γ0〉 such
that ∆0 =

⋃
X∈ I

X , ∀e ∈ ∆0 : z0(e) = |{(A,B) ∈ T | e ∈ A}|,

∀e ∈ ∆0 : ft0(e) = Ti(e) + Te(e), and Γ0 = {(A,B) | A ∈
I, (A,B) ∈ T}.

For example, the initial state of T DSrun is S0 =
〈∆0,z0, ft0,Γ0〉 where ∆0 = {{enA

c11}, {enB
c8}, {enJ

c6}},
z0(enA

c11) = z0(enB
c8) = z0(enJ

c6) = 1, ft0(enA
c11) =

4, ft0(enB
c8) = 1, ft0(enJ

c6) = 3 and Γ0 =
{(enA

c11, en
A
c7), (enB

c8, en
B
c7), ({enJ

c6, en
B
c6}, enJ

B)}.
For convenience, the state 〈∆,z, ft〉 is denoted as

{〈e,z(e), ft(e)〉 | e ∈ ∆}. The availability function z is
similar to the marking of Petri nets. Given an event e and
z(e) = n, n is called the availability value of e.

Given a synchronism set C, the latest available time
delay of the events in a synchronism set is denoted by
Max{ft(e) | e ∈ C}. Note that since the absolute time
of the occurrence of the events in a synchronism set is
computed from the initial state of a system, one cannot
directly determine which events occur in what order before
the system starts to run.

Definition III.3 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉 be a
time dependency structure and S1 = 〈∆1,z1, ft1,Γ1〉, S2 =
〈∆2,z2, ft2,Γ2〉 be two of its states.
S1 can evolve into S2 by executing a transformation dependency

(A,B), denoted by S1
(A,B)−→ S2, if the following conditions hold:

(1) (A,B) ∈ Γ1,
(2) @(E,F) ∈ Γ1 : Max{ft1(e) | e ∈ E} + Tt((E,F)) <

Max{ft1(e) | e ∈ A}+ Tt((A,B)),
(3) ∆2 = {e ∈ ∆1 | e 6∈ A∨(z1(e)−(1+x) > 0∧e ∈ A)}∪B,
(4) ∀e ∈ ∆2 : z2(e) ≤ W(e) ∧ z2(e) =

z1(e)− (1 + x) : e ∈ A \B
z1(e) : e ∈ (∆1 \ (A ∪B))

z1(e)− (1 + x) + y : e ∈ A ∩B
z1(e) + y : e ∈ (∆1 \A) ∩B

y : e ∈ B \∆1

where y = |{(X,Y) ∈ T | X ∩ B 6= ∅}| and x = |{(A,X) ∈ T |
∃e ∈ X, ∃e′ ∈ B,∃C ∈ C : e 6= e′ ∧ {e, e′} ∈ C}|,

(5) Γ2 = (Γ1\({(A,B)}∪BC))∪BT∪BS where BT = {(B,X) |
(B,X) ∈ T}, BS = {(X,Y) ∈ T | X ∈ S, X ⊆ ∆1 ∪ B,B ⊆
X,Y ⊆ E} and BC = {(W,X) ∈ T | W ⊆ E , ∃e ∈ X, ∃e′ ∈
B,∃C ∈ C : e 6= e′ ∧ {e, e′} ∈ C}, and

(6) ∀e ∈ ∆2 : ft2(e) = if e ∈ B then Max{ft1(e′) | e′ ∈
A}+ Tt((A,B)) + Te(e) else ft1(e).

According to the condition (2) of the preceding definition,

we have S0
(enB

c8,en
B
c7)−→ S1 in the running example,

and then we have ∆1 = {{enA
c11}, {enB

c7}, {enJ
c6}}

(by the condition (3)), z1(enA
c11) = z1(enB

c7) =
z1(enJ

c6) = 1 (by the condition (4)), and
Γ1 = {(enA

c11, en
A
c7), (enB

c7, en
B
c6), ({enJ

c6, en
B
c6}, enJ

B)}
(by the condition (5)). Thus, S1 = 〈∆1,z1, ft1,Γ1〉 where

ft1(enA
c11) = 4, ft1(enB

c7) = 4, and ft1(enJ
c6) = 3 (by the

condition (6)).
A time dependency structure can be used to reason about

the behavior and properties of a real-time system. We define
some properties of a time dependency structure here.

Definition III.4 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉 be a
time dependency structure and S0 be the initial state of T DS. Let
S,S ′ be two states of T DS. A state S is said to be reachable from
S ′, denoted as S ′ ∗→ S, if there exist the states S ′1, · · · ,S ′n−1 such

that S ′
d′1→ S ′1 · · · S ′n−1

d′n→ S (d′i ∈ T, i ∈ {1, · · · , n}). Sta(T DS)

denotes the set of all reachable states in T DS.

IV. SCHEDULING AND ISOLATION CONTROL

In the section, we will introduce the notion of a schedule
and analyze the isolation relationship of mobile objects in a
real-time mobile system in order to explore the isolation.

Definition IV.1 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉 be a
time dependency structure.

A sequence f = S0X1S1 · · ·XnSn is called a
full sequence of T DS iff S0 = 〈∆,z, ft,Γ〉,S1 =
〈∆1,z1, ft1,Γ1〉, · · · ,Sn = 〈∆n,zn, ftn,Γn〉 are states in T DS
and ∀i ∈ {0, 1, · · · , n}, Xi ⊆ E such that S0

∗→ S1
∗→ · · · ∗→ Sn

and ∀i ∈ {1, · · · , n}, ∀e1, e2 ∈ Xi : (Xi∩∆i = Xi)∧(fti−1(e1) =
fti−1(e2)). Here, the sequence s = X1 · · ·Xn is called a schedule
of T DS or is said to be schedulable in T DS. Sches(T DS)
denotes the set of all the schedules in T DS.

As the Definition IV.1, frun =
S0{enB

c8}S1{enA
c11, en

B
c7}S2{enA

c7, en
B
c6, en

J
c6}S3{enJ

B}S4
is a full sequence of T DSrun, and srun =
{enB

c8}{enA
c11, en

B
c7}{enA

c7, en
B
c6, en

J
c6}{enJ

B} is a schedule
of T DSrun.

A schedule is an ordered event set sequence, where the
events in the front event set occur prior to those in the back
event set. The scheduler of a system in fact is a controller
that restricts the behaviour of such a system so that given
scheduling requirements are met [1].

Definition IV.2 Let T DS be a time dependency structure and
s ∈ Sches(T DS). The restriction of T DS to the schedule s is
denoted by T DScs.

In this definition, T DScs means the time dependency structure
T DS whose behavior is restricted to the schedule s or the time
dependency structure T DS runs in terms of the control of the
schedule s.

Proposition IV.1 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉 be
a time dependency structure and let s be a schedule in T DS, then
Sta(T DScs) ⊆ Sta(T DS).

The proposition shows that the states of scheduled mobile
system are part of those of the original system, respectively.

Definition IV.3 Let T DS be a time dependency structure and
s = X1 · · ·Xn ∈ Sches(T DS). The restriction of A to the schedule
s is defined as A↑s= {A ∈ A | ∃M ∈M : enM

A ∈ X1∪· · ·∪Xn}.

In fact we use A ↑s to denote the set of all the ambients
that are involved in the schedule s.

Definition IV.4 Let T DS be a time dependency structure. Let Ms ⊆
M. Let A ∈ A, M1,M2 ∈Ms and A,M1,M2 @ T DS.

565

TABLE I
STATES OF THE TIME DEPENDENCY STRUCTURE OF THE RUNNING EXAMPLE SYSTEM

Source state 〈∆,z, ft〉 Γ ED Target state

S0
{< enA

c11, 1, 4 >,< enB
c8, 1, 1 >,

< enJ
c6, 1, 3 >}

{({enA
c11}, {enA

c7}), ({enB
c8}, {enB

c7})} ({enB
c8}, {enB

c7}) S1

S1
{< enA

c11, 1, 4 >,< enB
c7, 1, 4 >,

< enJ
c6, 1, 3 >}

{({enA
c11}, {enA

c7}), ({enB
c7}, {enB

c6})}
({enA

c11}, {enA
c7}),

({enB
c7}, {enB

c6})
S2

S2
{< enA

c7, 1, 7 >,< enB
c6, 1, 7 >,

< enJ
c6, 1, 3 >}

{({enA
c7}, {enA

c3}), ({enB
c6, en

J
c6}, {enJ

B})}
({enA

c7}, {enA
c3}),

({enB
c6, en

J
c6}, {enJ

B})
S3

S3 {< enA
c3, 0, 10 >,< enJ

B , 1, 10 > {({enJ
B}, {en

B
c5})} ({enJ

B}, {en
B
c5}) S4

S4 {< enA
c3, 0, 10 >,< enB

c5, 0, 13 >
Note that “ED” means currently executed transformation dependencies.

M1 is said to be isolated from M2 for A in T DS, denoted by
M1 ©AM2 in T DS, iff either ∀s ∈ Sches(T DS), A 6∈ A↑s,
or ∀s = B1 · · ·Bn ∈ Sches(T DS), (∃X ∈ A, @enM2

A ∈
B1 ∪ · · · ∪ Bn : enM1

A ∈ B1 ∧ enM1
X ∈ Bn) ∨ (∃Y ∈ A, @enM1

A ∈
B1 ∪ · · · ∪Bn : enM2

A ∈ B1 ∧ enM2
Y ∈ Bn).

Ms is the set of mobile objects which need to isolate in
order to avoid collision. For example, in the running example,
we let Ms = {A,B} because of vehicle A and B need to
isolate while John as a passenger and the vehicle B are not
isolated from each other in the ambient c6 so that John takes
the vehicle B.

This definition shows that if M1 is isolated from M2, this
means one of the following three cases holds: (1) M1 and
M2 do not enter A, (2) one of M1 and M2 enters A, and
(3) when the two mobile objects M1 and M2 both need to
enter A, one does not enter the ambient A until the other
exits A.

Theorem IV.1 Let T DS = 〈E , I,T, S,C,W,F, Ti, Te, Tt〉 be a time
dependency structure. Let Ms ⊆ M. Let A ∈ A, M1,M2 ∈
Ms, enM1

A , enM2
A ∈ E , and A,M1,M2 @ T DS. Let s =

X1X2 . . . Xn ∈ Sches(T DS).
If ∀s1 = XiXi+1 . . . Xj ∈ Sches(TDScs),∃x ∈ A:

x 6= A ∧ enM1
A ∈ Xi ∧ enM2

A ∈ Xj ∧ enM1
x ∈ Xi+1 ∪ · · · ∪Xj ,

then M1©AM2 in T DScs.

In the running example, because of srun = {enB
c8}{enA

c11,
enB

c7}{enA
c7, en

B
c6, en

J
c6}{enJ

B} ∈ Sches(TDS), we have
srun1 = {enA

c11, en
B
c7}{enA

c7, en
B
c6, en

J
c6} ∈ Sches(TDScsrun

).
Since enB

c7 ∈ {enA
c11, en

B
c7}, enA

c7 ∈ {enA
c7, en

B
c6, en

J
c6}, and

enB
c6 ∈ {enA

c11, en
B
c7, en

A
c7, en

B
c6, en

J
c6}, we have A©c7 B.

The theorem states that we can decide whether two mobile
objects are isolated from each other for a single ambient
under a given schedule.

Theorem IV.2 Let T DS be a time dependency structure. Let Ms ⊆
M.

If ∀M,N ∈ Ms,∀X ∈ A, ∀s ∈ Sches(T DS),
M is isolated from N for X in T DScs, then
∀M′,N ′ ∈Ms, ∀X ′ ∈ As :M′©X ′ N ′ in T DS.

Theorem IV.2 in fact shows that given the set of mobile
objects and the set of ambients, we can decide whether
multiple mobile objects are isolated from each other for
multiple ambients under a given schedule by checking the

available movement events of the states in a real-time mobile
system.

V. CONCLUSION

A time dependency structure has been introduced and
discussed. Based on the time dependency structure model,
we have presented an approach for modeling a real-time
mobile system. We have also defined a schedule for the
isolation of mobile objects and have investigated the isolation
schedulabilty analysis in a real-time mobile system. These
results may be used for intelligent transportation systems and
autonomous driving systems. In the future, we will further
explore the isolation control and scheduling policies of the
concurrent complex real-time mobile system. In practice, we
will develop the scheduling policy generation method and wish
it to be really used for autonomous driving.

REFERENCES

[1] Karine Altisen and et al. Scheduler modeling based on the controller
synthesis paradigm. Real-time Systems, 23(1):55–84, 2002.

[2] Neil C. Audsley and et al. Deadline monotonic scheduling theory and
application. Control Engineering Practice, 1(1):71–78, February 1993.

[3] Luca Cardelli and Andrew D Gordon. Mobile ambients. In FoSSaCS,
pages 140–155. Springer, 1998.

[4] Jian-Min Jiang and et al. Event-based mobility modeling and analysis.
TCPS, 1(2):9:1–9:32, February 2017.

[5] Jianmin Jiang and et al. Analyzing event-based scheduling in concurrent
reactive systems. ACM TECS, 14(4):86:1–86:27, 2015.

[6] Kyoung-Dae Kim and P. R. Kumar. Cyber-physical systems: A perspec-
tive at the centennial. Proceedings of the IEEE, 100(1):1287–1308, May
2012.

[7] Qiao Li and R. Negi. Maximal scheduling in wireless ad hoc networks
with hypergraph interference models. IEEE Trans. Vehicular Technology,
61(1):297–310, November 2012.

[8] Chung Laung Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the ACM,
20(1):46–61, November 1973.

[9] Tadao Murata. Petri nets: properties, analysis, and applications. Pro-
ceedings of the IEEE, 77(4):541–580, April 1989.

[10] John A. Stankovic and et al. Deadline scheduling for real-time systems-
EDF and related algorithms, volume 460. Springer, 1998.

[11] Qinghui Tang and et al. A unified methodology for scheduling in
distributed cyber-physical systems. ACM TECS, 11(S2), August 2012.

[12] Fumin Zhang and et al. Task scheduling for control oriented require-
ments for cyber-physical systems. In Proceedings of the RTSS, pages
47–56. IEEE, 2008.

566

*Corresponding author.
DOI reference number: 10.18293/SEKE2019-108

Combining VSM and BTM to Improve
Requirements Trace Links Generation

Bangchao Wang, Rong Peng*, Zhuo Wang, Yaxin Zhao

School of Computer Science, Wuhan University, Wuhan 430072, China

E-mail: {wangbc, rongpeng, wz2017, 2016301500098}@whu.edu.cn

Abstract—Trace links between software artifacts provide
available traceability information and in-depth insights for
different stakeholders. Unfortunately, establishing trace links
is a fallible, tedious, and labor-intensive task. To alleviate these
problems, many Information Retrieval (IR) methods, such as
Vector Space Model (VSM), Latent Semantic Indexing (LSI)
and their variants, have been proposed to establish trace links
automatically. In recent years, short-text artifacts (or even lack
of documentation) become a new trend as more and more
software systems are developed abiding by agile methodologies.
It makes the effects of traditional IR-based trace links
generation methods even worse. In this paper, Biterm Topic
Model (BTM), which is good at dealing with short text, is
introduced to solve the problem. A hybrid method combining
VSM and BTM is proposed to generate requirements trace
links. The empirical experiments conducted on three real and
frequently-used datasets indicate that the hybrid method can
achieve better performance, and the results can reach the
“acceptable level” directly.

Keywords—requirements traceability, information retrieval,
vector space model, biterm topic model, short-text artifacts

I. INTRODUCTION

Requirements traceability (RT) is defined as “the ability
to describe and follow the life of a requirement, in both a
forward and backward direction [1]. In other words, it can
provide visibility of the required aspects of the software and
system development process, which contributes to a better
understanding of the software system under development [2].
Thus, RT is one of the most important Requirements
Engineering (RE) activities. Practically, traceability
information has been proven vital to a wide variety software
engineering activities, such as requirements consistency
checking [3], change impact analysis [4], software reuse [5],
and verification and validation (V&V) [6].

In early research and practice, RT is often accomplished
by linking requirements to various software artifacts (e.g.,
design documents, source codes, and test cases) manually
through a requirements traceability matrix [7]. However, as
software systems evolve over time, RT activities are always
time-consuming, tedious, and fallible [8]. As described in our
previous work, determining how to improve the automatic
degree and efficiency of a consistent and effective tracing
process is an important challenge for both academia and
industry [9].

To overcome this challenge, Information Retrieval (IR)
techniques have been introduced and become the most
popular techniques in the area of trace links generation [9]. A
typical process of generating trace links by IR-based
techniques for natural language artifacts, generally consists
of the following steps: document preprocessing, candidate
link generating, analyzing and refining [5]. After
preprocessing, trace links can be automatically established
using IR-based models, such as Vector Space Model (VSM)

[10, 11, 12], Latent Semantic Indexing (LSI) [13, 14, 15],
and Probability Model(PM) [16, 17, 18].

In IR-based requirements tracing methods, requirements
documents and target artifacts are usually regarded as queries
and documents, respectively. And these methods aim to
match a query of keywords with a set of objects in the
software repository and rank the retrieved objects based on
how relevant they are to the query using a predefined
similarity measure [19, 20]. The tenet underlying IR-based
tracing methods is that artifacts having a high textual
similarity probably share several concepts, so they are likely
good candidates to be traced from one another [20, 21, 22].
This tenet bases on the assumption that consistent
terminologies have been used throughout the project’s
lifecycle.

 However, as projects evolve, new and inconsistent
terminologies gradually emerge into the systems, which
declines the performance of retrieval engines [20]. Besides,
short-text, low quality text, and different expression
preferences in different artifacts also negatively affect the
performance of IR-based methods. To deal with all the
problems, many strategies have been proposed to improve
IR-based tracing methods [9, 23]. In an empirical study [24],
the statistically analysis result shows several widely used IR-
based tracing methods, which include VSM, LSI, Jensen-
Shannon (JS), are almost equivalent. Meanwhile, another
study [25] also draws an important conclusion that Latent
Dirichlet Allocation (LDA) is able to capture some important
information missed by other exploited IR methods, while its
performance is lowest. These two conclusions indicate the
opportunity to improve performance through combining
different techniques, such as VSM and LDA, VSM and
Relational Topic Model (RTM) [26]. However, two
shortcomings still impede the combination techniques to get
good performance on short-text artifacts tracing: firstly, they
severely suffer from the severe data sparsity problem[27];
secondly, they cannot draw good results without enough
learning corpus.

The empirical results introduced above motivates our
work. A novel topic model which is good at dealing with
short texts and lack of learning corpus problem.

In this paper, (1) Biterm Topic Model (BTM), good at
dealing with short texts and lack of learning corpus, is
introduced to generate trace links for the first time; and (2) a
good-effect combination way—collection “union” operation
(∪)— is proposed to combine VSM and BTM to constitute
candidate links set.

The remainder of this study is organized as follows.
Section II provides background information, Section III
reports the process of our approach, and Section IV presents
the details of experiment. Experiment results are presented
and discussed in Section V. Finally, in Section Ⅵ, the
conclusions and future work are discussed.

567

II. BACKGROUND

A. Starting Point for Discussion

How to evaluate the quality and usability of RT
techniques is vital to propose new automatic RT techniques.
The paper [30] proposed an acceptable and practical one
according to their industrial practices, as shown in Table I.
The standard also shows that candidate link lists with high
recall and low precision are preferable to candidate link lists
with high precision and low recall [30], as human analysts
are much better in examining a given link list and
determining whether it belongs to the answer set than they
are in detecting whether the current set of links is sufficient.

TABLE I. STANDARDS FROM HAYES[30]

Measure Acceptable Good Excellent

Recall 60% — 69% 70% — 79% 80% — 100%

Precision 20% — 29% 30% — 49% 50% — 100%

Lag 3 — 4 2 — 3 0 — 2

The scalability of methods is another widely concerned

issue. In other word, requirements tracing methods are
expected to be able to achieve high quality for both “small”
and “large” datasets. According to [30], a “small” dataset
consists of 3000 combinatorial links or less. For example, a
dataset consisting of 27 use cases and 87 test cases would
have 27 ×87= 2349 combinatorial links. Conversely, any
dataset with more than 3000 combinatorial links is
considered large.

In this work, we refer the quality evaluation standard of
requirements tracing methods and the size boundary of
dataset presented by [30], which is a starting point for
discussion with researchers and practitioners.

B. Related works

In LDA, each document has a corresponding multinomial
distribution over T topics and each topic has a corresponding
multinomial distribution over the set of words in the
vocabulary of the corpus. In [25], LDA has been introduced
to generate trace links and capture some important
information missed by other exploited IR methods, while its
performance is low — the precision is less than 0.1. In [26],
another topic model named RTM has been used to
requirements traceability recovery. RTM is established with
a foundation on LDA. Specifically, the process of modeling
document-words distribution is identical to the LDA
generative process. In their work, they propose a two-steps
approach to combine similarity scores computed by two
different IR methods for trace links generation. Firstly, the
similarity scores of the two methods are mapped to a
standard normal distribution. Secondly, the normalized
scores are combined through a weighted sum. The value of
confidence parameters for two IR methods need to be
determined by users based on their experience. Since the
homologous of their principle, two common shortcomings
impede they generate trace links.

On the one hand, both LDA and RTM reveal the latent
topics within the text corpus by implicitly capturing the
document-level word co-occurrence patterns [28]. Since a lot
of software artifacts are short texts, directly applying either
LDA or RTM on this kind of artifacts will suffer from the
severe data sparsity problem[29]. On the other hand, lacking

enough learning corpus may be another threat to impede the
wide use of LDA and RTM. It is because insufficient
learning corpus may not lead to good results in two different
modeling processes.

Compared to these related works, our work introduce a
new topic model named BTM to generate trace links for the
first time. This model solve the severe data sparsity problem
on short texts and the bad learning results problem on
insufficient learning corpus. Besides, obtaining union (∪) is
proposed as a good-effect way to improve the candidate links
set. The details of our approach will be presented in the next
section.

III. OUR APPROACH

In this section, the overall process of our approach and
the details of combining VSM and BTM to generate trace
links will be presented.

A. Artifacts feature analysis

Generally, there are two kinds of text artifacts:
(1) Short text artifacts. This kind of artifacts only contain

several words, such as “One sentence” text artifacts. For
example, the requirement 103 in EBT only has one sentence:
“A user shall register as a subscriber”.

(2) Long text artifacts. This kind of artifacts contains
abundant contents to be traced on, such as structural text
artifacts. For example, an artifact “use case” always includes
use case name, summary, and description; and an artifact
“test case” usually consists of test case name and
pre/postconditions, as presented in TABLE II and III.

TABLE II. AN EXAMPLE OF USE CASE FROM EASYCLINIC

UC01
Use case name: input registry laboratory
Summary: The Operator has been recognized by system and

has all the data that characterize the the registry
of the laboratory.
The data in the S I O not be modified Success.
The registry of the laboratory is properly inserted
inside the S I O .

Description: 1.View the mask to enter information needed
2.Inserts data about the registry of laboratory
3.Confirm placement
4.Verify the data entered
5.Stores data
6.Notify operation it is finished with success
……

TABLE III. AN EXAMPLE OF TEST CASE FROM EBT

TC141
Test case name: Establish Trace (2.1.1)(2.2.1)
Preconditions&
Postconditions:

Preconditions: Subscriber is registered Steps
Subscriber establishes a trace between a UML
artifact and a requirement.
Postconditions: A trace is established between
the UML artifact and the requirement.

As VSM is good at analyzing long text artifacts and
BTM is good at analyzing short artifacts, different
preprocessing processes are adopted according to their
features.

B. BTM-based tracing method

As described in Section I, directly applying conventional
topic models (e.g. LDA and RTM) on short texts do not
work well as these models implicitly capture the document-
level word co-occurrence patterns to reveal topics, and thus
suffer from the severe data sparsity and lacking enough

568

learning corpus in short documents [28]. Thus, uncovering
the topics within short-text artifacts and their relevance
becomes a new challenge.

In [28], Yan propose a novel method for modeling topics
in short texts, referred as biterm topic model (BTM). The key
idea of BTM is to learn topics over short texts based on the
aggregated biterms, namely word pairs, in the whole corpus
to tackle the sparsity problem in single document. In other
word, any two distinct words in an artifact are firstly
extracted as a biterm. For example, in the short-text use case
“ The user can change password .”, if the stop words “The”
and “can” are ignored after preprocessing, there are three
biterms, i.e. “user change”, “user password”, and “change
password”.

As presented in [28], suppose α and β are the Dirichlet
priors. The specific generative process of the corpus in BTM
can be described as follows:

1. For each topic ݖ
(a) draw a topic-specific word distribution ∅௭ ～ Dir(β)
2. Draw a topic distribution θ ～ Dir(α) for the whole

collection
3. For each biterm ܾ in the biterm set ܤ
(a) draw a topic assignment ݖ ～ Multi(θ)
(b) draw two words: ݓ ݓ , ～ Multi (∅௭)
Figure 1 shows the biterm topic model, where θ is the

topic probability distribution in the BTM corpus; ߔ is the
topic-word pair probability distribution; ݖ is the serial
number of topic for corresponding word pair, T is the
number of topics; ݓ ݓ , are two words in the biterm; B is
the number of word pairs in the entire corpus; all the word
pairs shares the same topic distribution in corpus, each topic
corresponds to a polynomial distribution of several word
pairs and this Multinomial distribution is recorded as ߔ, each
word pair corresponds to a topic; α and β are the
hyperparameters of Dirichlet prior distribution.

α

θ

z

Φβ

T

B

Fig. 1. Biterm topic model

As shown in Fig.2, the BTM-based trace links generation
process can be divided into the following phases:

(1) Preprocessing. The preprocessing process is divided
into two kinds: for short text artifacts, the pre-processing
process contains stop words removal, part of speech tagging
and word stemming; for long text artifacts, the upper pre-
processing process is only executed on the most
representative part of the artifact. For example, only the
use/test case name is retained for the whole use/test case
described in Table II/III.

(2) Biterms Extracting. In this step, any two distinct
words got from the preprocessed source and target artifacts
(namely the document collection) are firstly extracted as a
biterm. And these biterms are used as the preprocessed
corpus to train BTM.

 (3) Biterm topic modeling. To use the preprocessed
corpus training BTM, three parameters, including T, α and β,
need to be set according to the experience related to the
dataset. The outputs of this phase are: 1) topic distribution; 2)
topic-word pairs distribution; and 3) document-topic
distribution.

 (4) Text similarity calculating. In this step, document-
topic vectors must be established firstly. Based on these
vectors, JS distance is used to represented the relevance
between source and target artifacts. Note, it is different from
cosine similarity since two texts are more similar when JS
distance is smaller. After that, links are ranked according to
JS distance.

(5) Candidate links generation. The generated links
with top N similarity scores are selected as the candidate
links.

Due to space limitations, we will not repeat the content
about the specific probability calculation formulas of step (3)
and JS distance calculation formulas of step (4). The details
can be found in [28], where the BTM is proposed for the first
time.

C. VSM-based tracing method

As shown in Fig.2, the VSM-based tracing method used
in our approach can be divided into the following phases:

(1) Preprocessing. Both short artifacts and long artifacts
are directly performed typical pre-processing steps: stop
words removal, part of speech tagging and word stemming.

(2) Documents’ vectors generation. A document ݀ in
the document collection is represented as a vector of
keyword weights ݀ = ,ଵݓ) ,ଶݓ … , ே), and the vocabularyݓ
of the entire collection is represented as (ݒଵ, ,ଶݒ … , ே). Theݒ
weight ݓଵ is calculated as the product of term frequency-
inverse document frequency model (TF-IDF). Similarly, the
query Q is also converted into a vector, represented as ݍ =
,ଵݍ) ,ଶݍ … , .(ேݍ

(3) Text similarity calculation. And then, the relevance
between document D and query Q is computed as the cosine
of the angle between the vectors ݀ and ݍ, as represented in
formula (1).

,݀)݉݅ݏ (ݍ = ,݀)ݏܿ (ݍ =
∑ ௪∙

ಿ
సభ

ට∑ ௪
మ∙∑

మಿ
సభ

ಿ
సభ

 (1)

(4) Candidate links generation. After computing the
cosine similarity, the retrieved objects are ranked based on
the similarity scores. The artifacts with high textual
similarity are likely good candidates to be traced from one
another. In our approach, taking top N is adopt to determine
the candidate links. In other words, the top N trace links with
the highest scores will be selected as candidate links.

D. The hybrid method

Since complementarity exists between the VSM and
BTM, “union” operation (∪) has a great chance to improve
the effect on combinations of precision and recall. The basic
idea behind the hybrid method is that two IR methods, VSM
and BTM, can be viewed as two experts who provide their
expertise to generate candidate trace links. Both experts
express judgments based on the textual similarity between
two artifacts. The specific method is as following:

Suppose 1) the space size of a dataset is N; 2) the dataset
consisting of L true links and the count of the final candidate

569

links is nL (n<N/L); 2) the select ratios of VSM and BTM are
λ and 1-λ, respectively. Then, top λnL candidate links
generated by VSM and top (1-λ)nL candidate links
generated by BTM are selected to construct the final trace
links set. Note, after duplicate links removal, the count of the
final trace links may be less than nL as some of the candidate
links generated by VSM and BTM are same.

Finally, the candidate links generated in our hybrid
method will be provided to analysts to obtain the final trace
links as shown in Figure 2.

Source Artifacts
Target Artifacts

Document vectors

Biterm Topic Modeling

Document-topic vectors
generating

Text similarity calculating
(JS distance)

Text similarity calculating
(Cosine similarity)

Document-topic vectors

Biterms extracting

Candidate links
I

Candidate links
II

Final candidate links

Union (∪)

VSM BTM

VSM+BTM

Stop words removal
Part of speech tagging

Word stemming

Selecting the
representative part

Stop words removal
Part of speech tagging

Word stemming

Long textShort text

Documents vectors
generating

Fig. 2. The hybrid trace links generation method

IV. Experiment

This section describes the empirical experiments carried
out on three real and frequently-used datasets to indicate that
(1) it is reasonable to use different preprocess steps for VSM
and BTM, (2) the hybrid method outperforms standard stand-
alone IR methods, namely VSM and BTM.

 It is note that the reason why LSI, JS and other similar
methods are not regarded as comparison targets in our
experiments is that VSM, LSI, JS and some similar methods
are almost equivalent [24].

A. Research Question

To identify rationality and usefulness of the proposed
hybrid method, the following two research questions need to
be answered:

RQ1: Is it reasonable to use different preprocess steps for
VSM and BTM?

RQ2: Does the hybrid method improve the quality of
trace links generation and to what extent can this method
achieve?

B. Datasets

Three datasets, WARC, EasyClinic, and EBT, are used to
conduct the experiments. They are able to be downloaded at:
http://www.coest.org/. The datasets are listed as following:

(1)WARC: This dataset includes 43 functional
requirements (FRS), 21 non-functional requirements (NFR),
89 software requirements specification (SRS).

(2)EasyClinic: It is a small student-created dataset in
English and Italian which contains diverse artifacts,
including 30 Use Cases (UCs), 63 Test Cases (TCs), 20
Interaction Diagrams (IDs) and 47 Code Class descriptions
(CCs). Note, only a subset of EasyClinic is chosen to
conduct the experiment, as shown in Table III.

(3)EBT: It is an Event-Based Traceability (EBT) system,
which contains 41 Requirements (Rqs), 25 Test Cases (TCs)
and 52 Code Classes (CCs). Similarly, a subset of EBT is
chosen to conduct the experiment, as shown in Table III.

Table Ⅳ shows the characteristics of each dataset used in
the following experiments. Aiming to improve the
availability of our method, the values of the parameters used
in experiments are listed in Table Ⅴ.

TABLE IV. DATASETS USED IN EXPERIMENTS

Dataset Source Target
Space

(N)

True links

(L)
Scale

WARC

43
FRS

89
SRS

3827 78 large

21
NFR

89
SRS

1869 58 small

EasyClinic
subset

30
UCs

63
TCs

1890 63 small

EBT
subset

41
Rqs

25
TCs

1025 51 small

Note: “Space” represents the maximum counts of trace links.

TABLE V. PARAMETERS USED IN EXPERIMENTS

Dataset T α β
WARC (FRS-SRS) 35 1.35 0.01
WARC (NFR-SRS) 35 1.35 0.01
EasyClinic (UC-TC) 20 1.25 0.01

EBT (Requirements-TC) 20 1.25 0.01
Note: λ = 0.7 is assigned to generate final trace links.

C. Quality Measures

Precision (P) and Recall (R)are the standard IR metrics to
assess the quality of different requirements tracing
techniques. Precision measures accuracy and recall measures
coverage [17]. The combinations of precision and recall are
used to evaluate the requirements tracing methods based on
Hayes’ standard described in Section Ⅱ.

V. RESULTS AND DISCUSSION

In the following section, the findings of the experiments
are clarified. After that, the potential threats are discussed.

A. Results

Before discussing and analyzing the results for RQ1 and
RQ2, some marks shown in Figure 3, 4, 5, 6 and 7 are
illustrated.

As shown in Table I, the “Acceptable”, “Good”, and
“Excellent” results must have a recall rate more than 60%
and a precision rate no less than 20%. Therefore, in Figure 3

570

to 7, three areas, distinguished by green, blue, and pink
dotted box, in the upper right corner of the coordinate axis
are used to represent these three types of results, which are
superimposed as “effective areas”.

For RQ1, experiments have been just performed in
EasyClinic and EBT, as the WARC has no long-text artifacts.
As Figure 3 shows, the quality of VSM on “long-text” (the
preprocessing step is following the first step described in
Section 3C) is obviously better than the quality of VSM on
short-text ((the preprocessing step is following the first step
described in Section 3B) in effective areas. However, BTM
is better at dealing with short-text, as shown in [28]. Thus, it
is reasonable to use different preprocess steps for VSM and
BTM.

Acceptable

Good

Excellent

Acceptable

Good

Excellent

Fig. 3. The precision/recall distributions of VSM in short and long-text.

For RQ2, as shown in Figure 4, 5, and 6, all the red
curves that fall in the effective area exceed the blue and
black curves. In Figure 7, although both red and black curves
can fall in the “Good” area, the quality of the red curve is
better than the black one, which shows the combined method
achieve the highest recall in the effective area.

Through the above analysis, the following conclusions
can be summarized:

(1) The hybrid method outperforms VSM and BTM in all
three datasets. In other words, the hybrid method improves
the quality of trace links generation;

(2) The results of the hybrid method achieve “Good”
level in EasyClinic, EBT and WARC (FRS-SRS) and
“Acceptable”level in WARC (NFR-SRS).

Acceptable

Good

Excellent

Fig. 4. The precision/recall curves of hybrid method and the standard
VSM, BTM method in WARC (FRS-SRS).

Acceptable

Good

Excellent

Fig. 5. The precision/recall curves of hybrid method and the standard
VSM, BTM method in WARC (NFR-SRS).

Acceptable

Good

Excellent

Fig. 6. The precision/recall curves of hybrid method and the standard
VSM, BTM method in EasyClinic subset (UC-TC).

Acceptable

Good

Excellent

Fig. 7. The precision/recall curves of hybrid method and the standard
VSM, BTM method in EBT subset (Requirements-TC).

B. Validity threats

This section aims to discuss the potential threats that
influence the findings of this work. The following two
aspects are discussed in this part.

Construct validity: (1) Since complementarity exists
between the VSM and BTM, “union” operation (∪) has a
great chance to improve the effect. Therefore, it is reasonable
to use these two methods to construct a hybrid tracing
method. (2) As the result of RQ1 shows, VSM is good at
analyzing long text artifacts and BTM is good at analyzing
short artifacts, different preprocessing processes are adopted

571

according to their features. It ensures better effect can be
obtained by the hybrid method. (3) The metrics used in our
evaluation are recall and precision, which have been widely
adopted for assessing the traceability accuracy of IR methods.
Thus, we believe that they can sufficiently quantify the
accuracy of three compared methods.

Conclusion validity: (1) In this work, experiment has
been conducted on three real and frequently-used datasets.
And, sufficient results and findings are summarized to
illustrate the improvement. It illustrates the validity of our
conclusions. (2) As the experiment results show, the hybrid
method is able to achieve “Good” effect on small datasets as
well as large datasets. The proposed hybrid method has a
great chance to be generalized and introduced to other
software systems and projects with various requirements and
subsequent artifacts. (3) The validity of our experiment can
also be affected by the chosen value of the parameter T, α,
and β in the employed biterm topic model. We choose the
value of three parameters based on our empirical evidence.
In the future, we will obtain the optimal values by using
some advanced techniques, such as optimization and
machine learning.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, Biterm Topic Model (BTM), which is good
at dealing with short texts and insufficient corpus, is
introduced to generate trace links for the first time. After that,
BTM is then combined with VSM to improve the effect of
the standard IR methods. The experiments conducted on
three real and frequently-used datasets in both large and
small scale indicate that our method outperforms standard
stand-alone IR methods, namely VSM and BTM.

In the future, we plan to perform detailed analysis about
why BTM can complement some trace links for VSM-based
tracing method. And then, some advanced parameter
configuration techniques will be proposed to reduce the
difficulty of using our method. Besides, all kinds of specific
applicable scenarios for our method will be presented to
improve the availability. Moreover, some refining strategies
may be introduced to further improve the quality level.

ACKNOWLEDGMENT

This work is supported by the National Key Research and
Development Plan of China under Grant No.
2017YFB0503702, 2016YFB0501801, National Natural
Science Foundation of China under Grant No. 61170026.

REFERENCES
[1] Gotel O, Finkelstein A (1994) An analysis of the requirements

traceability problem. In: International conference on requirements
engineering, pp 94–101

[2] Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A.,
Gru¨nbacher, P., Dekhtyar, A., Antoniol, G., Maletic, J., M¨ader, P.,
2012. Traceability fundamentals. In: Software and Systems
Traceability. Springer, pp. 3–22

[3] Sultanov H , Hayes J H , Kong W K . Application of swarm techniques
to requirements tracing[J]. Requirements Engineering, 2011,
16(3):209-226.

[4] von Knethen A (2002) Automatic change support based on a trace
model. In: International workshop on traceability in emerging forms
of software engineering

[5] Spanoudakis G, Zisman A (2004) Software traceability: a roadmap.
Handb Softw Eng Knowl Eng 3:395–428

[6] Huffman-Hayes J, Dekhtyar A, Sundaram S (2006) Advancing
candidate link generation for requirements tracing: the study of
methods. IEEE Trans Softw Eng 32(1):4–19

[7] Ramesh B, Jarke M (2001) Towards reference models for requirements
traceability. IEEE Trans Softw Eng 27(1):58–93

[8] Dekhtyar A, Huffman-Hayes J, Antoniol G (2007) Benchmarks for
traceability? In: International symposium on grand challenges in
traceability

[9] Bangchao Wang , Rong Peng , Yuanbang Li , Han Lai , Zhuo Wang,
Requirements traceability technologies and technology transfer
decision support: A systematic review, The Journal of Systems &
Software,146C (2018) pp.59-79.

[10] Niu, N. , & Mahmoud, A. . (2012). Enhancing candidate link
generation for requirements tracing: The cluster hypothesis revisited.
Requirements Engineering Conference (RE), 2012 20th IEEE
International. IEEE.

[11] Kong, W. K. , & Hayes, J. H. . (2011). Proximity-based traceability:
An empirical validation using ranked retrieval and set-based measures.
International Workshop on Empirical Requirements Engineering.
IEEE.

[12] Mahmoud, A. , & Niu, N. . (2013). Supporting requirements
traceability through refactoring. Requirements Engineering
Conference. IEEE.

[13] Lormans, M. , & Van Deursen, A. . (2006). Can LSI help
reconstructing requirements traceability in design and test?.
Conference on Software Maintenance & Reengineering. IEEE.

[14] Mcmillan, C. , Poshyvanyk, D. , & Revelle, M. . (2009). Combining
textual and structural analysis of software artifacts for traceability link
recovery. Workshop on Traceability in Emerging Forms of Software
Engineering. IEEE.

[15] Wang, X. , Lai, G. , & Liu, C. . (2009). Recovering Relationships
between Documentation and Source Code based on the
Characteristics of Software Engineering. Elsevier Science Publishers
B. V.

[16] Zou, X. , Settimi, R. , & Cleland-Huang, J. . (2010). Improving
automated requirements trace retrieval: a study of term-based
enhancement methods. Empirical Software Engineering, 15(2), 119-
146.

[17] Zou, X. , Settimi, R. , & Clelandhuang, J. . (2006). Phrasing in
Dynamic Requirements Trace Retrieva. International Computer
Software & Applications Conference. IEEE Computer Society.

[18] Zou, X. , Settimi, R. , & Cleland-Huang, J. . (2008). Evaluating the
Use of Project Glossaries in Automated Trace Retrieval. International
Conference on Software Engineering Research & Practice. DBLP.

[19] Grzywaczewski A, Iqbal R (2012) Task-specific information retrieval
systems for software engineers. J Comput Syst Sci 78(4):1204–1218

[20] Mahmoud, A., & Niu, N. . (2015). On the role of semantics in
automated requirements tracing. Requirements Engineering, 20(3),
281-300.

[21] Antoniol G, Caprile B, Potrich A, Tonella P (2000) Design-code
traceability for object-oriented systems. Ann Softw Eng 9(1–4):35–58

[22] De Lucia A, Fasano F, Oliveto R, Tortora G (2007) Recovering
traceability links in software artifact management systems using
information retrieval methods. ACM Trans Softw Eng Methodol
16(4):13–50

[23] Hu Chenghai,Peng Rong,Wang Bangchao. A survey of requirement
tracking method based on information retrieval. Computer
Applications and Software, 2017(10):26-34.

[24] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the
equivalence of information retrieval methods for automated
traceability link recovery,” in Proc. of ICPC, 2010.

[25] H. U. Asuncion, A. Asuncion, and R. N. Taylor, “Software traceability
with topic modeling,” in Proc. of ICSE, 2010.

[26] Gethers, Malcom , et al. "On integrating orthogonal information
retrieval methods to improve traceability recovery,” The College of
Williams and." IEEE International Conference on Software
Maintenance IEEE, 2011.

[27] L. Hong and B. Davison. Empirical study of topic modeling in twitter.
In Proceedings of the First Workshop on Social Media Analytics,
pages 80–88. ACM, 2010.

[28] X. Yan, J. Guo, Y. Lan, and X. Cheng, “A biterm topic model for short
texts,” in Proc. 22nd Int. Conf. World Wide Web, 2013, pp. 1445–
1456.

[29] J. Chang and D. M. Blei, “Hierarchical relational models for document
networks,” Annals of Applied Statistics, 2010.

[30] Hayes J H , Dekhtyar A , Sundaram S K . Advancing Candidate Link
Generation for Requirements Tracing: The Study of Methods.[M].
IEEE Press, 2006.

[31] Wohlin, C., Runeson, P., H¨ost, M., Ohlsson, M.C., Regnell, B.,
Wesslen, A. Experimentation in software engineering, Springer
Science & Business Media, 2012.

572

Themis: a tool for validating ontologies through requirements

Alba Fernández-Izquierdo
Ontology Engineering Group

Universidad Politécnica de Madrid
albafernandez@fi.upm.es

Raúl Garcı́a-Castro
Ontology Engineering Group

Universidad Politécnica de Madrid
rgarcia@fi.upm.es

Abstract— The validation of ontologies, whose aim is to check
whether an ontology matches the conceptualization it is meant
to specify, is a key activity for guaranteeing the quality of
ontologies. This work is focused on the validation through
requirements, with the aim of assuring, both the domain
experts and ontology developers, that the ontologies they are
building or using are complete regarding their needs. Inspired
by software engineering testing processes, this work proposes
a web-based tool called Themis, independent of any ontology
development environment, for validating ontologies by means
of the application of test expressions which, following lexico-
syntactic patterns, represent the desired behaviour that will
present an ontology if a requirement is satisfied.

I. INTRODUCTION

In software engineering it is inconceivable to deliver a
software product without its pertinent tests which guarantee
that it fulfills all its requirements. Besides, there are several
approaches integrated into the software development process
whose aim is to test the software. Unit testing [1], which
validates that each unit of the software performs as designed,
and behaviour-driven development [2], which focuses on
the behaviour the software product is implementing, are
examples of these approaches. Moreover, there are specific
syntaxes, such as Gherkin,1 which generate unambiguous
specifications of software to automate the testing process.

However, in ontology engineering there is a lack of clearly
defined testing processes in order to be able to ascertain
whether an ontology satisfies its functional requirements [3],
which state the particular knowledge that should be repre-
sented. Such ontological requirements used to be written
in form of competency questions [4] or natural language
sentences. The main issue when performing testing processes
in the ontology engineering field is the ambiguity of the
ontological requirements, which sometimes are difficult to
formalize into tests and to translate into axioms. Therefore,
inspired by software engineering and its specific syntax for
the definition of tests, we propose Themis,2 a tool which
provides a set of test expressions based on lexico-syntactic
patterns (LSPs) related to ontological requirements. These
LSPs allows to relate different types of requirements with
the axioms needed to implement them in an ontology, and
such implementations are used by Themis to identify whether
a requirement is satisfied.

DOI reference number: 10.18293/SEKE2019-171
1https://docs.cucumber.io/gherkin
2http://themis.linkeddata.es

Themis can be used by both domain experts and ontology
developers to validate ontologies regarding their functional
requirements. Other type of requirements, such as non-
functional ones (e.g., “the ontology URIs must be in En-
glish”) are not considered in this work as they cannot
be formalized into axioms and, therefore, they cannot be
automatically checked.3 Moreover, the proposed tool allows
to execute tests on multiple ontologies simultaneously, in
order to check ontological commitments between them.

The paper is organized as follows. Section 2 presents
the state of the art on ontology testing tools. Section 3
presents Themis and Section 4 describes a use case in
which Themis was integrated into a research project. Finally,
Section Section 5 presents the conclusions we obtained and
gives an overview of future work.

II. STATE OF THE ART

Currently, there are several methodologies and tools that
support executing tests on an ontology, in order to validate
that the ontology satisfies the pertinent requirements.

Regarding methodologies for testing ontologies, Vrandev-
cic and Gangemi [5] introduced the idea of testing ontologies
by borrowing ideas from software engineering, proposing
techniques such as testing with axioms and negations or
formalizing competency questions. Another work presented
by Peroni is SAMOD [6], an ontology development method-
ology that uses tests for validation. These two approaches are
focused on methodological aspects but do not mention how
to implement the tests or how to maintain traceability.

Another approach to implement testing is the one pre-
sented by Ren et al. [7]; in this work the authors use
natural language processing to analyse competency questions
written in controlled natural language from where they create
competency question patterns that could be automatically
tested in the ontology. Additionally, Keet and Lawrynowicz
proposed a test-driven development of ontologies [8] in
which the competency questions are formalized into axioms
and added to the ontology if they are not present.

Concerning testing tools, the OntologyTest tool [9] allows
a user to define and execute a set of tests to check the
functional requirements of an ontology; these tests are stored
in an XML file for future reuse. It is worth mentioning that

3For the sake of clarity, from now on we are going to refer to functional
requirements simply as requirements.

117

573

these tests are focused on the ontology data, rather than on
the ontology model itself.

Another work related to ontology testing tools is Scone,4

a tool for scenario-based ontology evaluation, which is based
on Cucumber5 and uses controlled natural language to define
ontology scenarios which create mock individuals. Addi-
tionally, Blomqvist et al. [10] presented an agile approach
and tool available as an Eclipse plugin. This tool supports
three types of test, namely: (1) verification example, (2)
inference verification and (3) error provocation. The first two
are concerned with verifying the correct implementation of a
requirement and the third is intended to expose faults. All the
tests are stored in a different OWL ontology with information
about the requirement, e.g., type of test or expected output.
By saving these test suites in an ontology it allows the
user to reuse them and to maintain traceability between the
requirements and all the associated information. However,
these tools neither explains how to implement these tests
nor how to use them.

To conclude, a more recent work on testing tools is the
TDDonto tool [11], proposed by Lawrynowicz and Keet,
which follows a test-driven development of ontologies ap-
proach [8] in which the competency questions are formalized
into axioms and added to the ontology if they are not present.
This tool, which is implemented as a Protégé6 plugin, allows
to check the presence of a particular axiom in the ontology.

Even if all these works proposed solutions for testing
through requirements, several of these works do not allow
the reuse of the tests, limiting the testing process only to
a single ontology. Moreover, there is a lack of information
about how to translate a requirement into a test.

III. THEMIS IN THE TESTING PROCESS

Themis is a web-based tool which implements the test-
ing process described in [12] which describe a framework
to validate an ontology regarding its requirements. Such
testing framework focuses on analysing the behaviour of
the ontology in different situations to verify that certain
knowledge is modelled in the ontology. This testing process
implemented by Themis is divided into three activities,
namely: (1) Test design, (2) Test implementation and (3)
Test execution. Figure 1 summarizes the inputs and outputs
of each step in the testing process; as shown in the figure,
Themis supports and automates the test implementation and
execution activities.

A. Test design

During the test design activity the desired behaviour of
each requirement, i.e., the expected knowledge that should
be added to the ontology, is manually extracted. This desired
behaviour is formalized into test expressions in a formal
language based on the OWL Manchester Syntax.7 These test
expressions do not include any URIs related to the ontology

4https://bitbucket.org/malefort/scone
5https://docs.cucumber.io
6https://protege.stanford.edu
7https://www.w3.org/TR/owl2-manchester-syntax

Fig. 1. Testing process proposed in [12] and Themis

in which the test cases are going to be executed. As an
example, if a developer wants to check the cardinality of
a relation between two concepts called Device and Service
in an ontology, the test expression should be “Device sub-
ClassOf Property hasService max 1 Service”. The absence of
URIs allows the reuse of the same test expressions in other
ontologies, or the reuse of tests in the same ontology even if
the naming changes, without being restricted to the ontology
from which the tests were generated.

Themis supports a list of possible tests expressions which
are extracted from LSPs and that can be executed on an
ontology. LSPs are understood as “formalized linguistic
schemas or constructions derived from regular expressions
in natural language that consist of certain linguistic and
paralinguistic elements, following a specific syntactic order,
and that permit to extract some conclusions about the mean-
ing they express” [13]. The LSPs used by Themis were
extracted from the CORAL corpus8 which, based on the
NeOn modelling components [14], analyses 834 ontology
requirements in order to identify LSPs based on the goal
that each requirement has regarding its implementation in an
ontology, e.g., a relation between two concepts. Therefore,
these LSPs indicate the implementation in the ontology
associated with a particular requirement template, which can
be use to generate the corresponding tests.

Moreover, some of these LSPs are related to one or more
ontology design patterns (ODPs) [15] which indicate how,
following good practices, the LSP should be implemented in
an ontology. Table I summarizes the list of test expressions
supported by Themis, together with the test expression
syntax, an example of a test expression and an example
of a requirement from which the test could be extracted.
More examples of test expressions with their associated
requirement templates are available in the Themis portal.9

In the Themis web user interface the user enters the
test expression or set of test expressions that represent the
desired behaviour of a requirement. Such translation between
requirements and test expressions should be done manually

8http://coralcorpus.linkeddata.es
9http://themis.linkeddata.es/examples.html

574

TABLE I
TEST EXPRESSION CATALOGUE

Test goal Test expression syntax Test expression example Example of requirement associated
T1 Equivalence A EquivalentTo B SecuritySchema equivalentTo Security Security schema is equivalent to security
T2 Subsumption A subClassOf B Sensor subClassOf Device A sensor is a type of device
T3 Disjointness A disjointWith B Sensor disjointWith Actuator A sensor cannot be an actuator
T4 Property between two con-
cepts

A subClassOf P some B Bird subClassOf build some Nest Birds build nests

T5 Universal restriction A subClassOf P only B User subClassOf interactsWith only Ap-
plication

A user can only interact with the sys-
tems by means of an application

T6 Multiple inheritance A subClassOf B and C Sensor subClassOf System and Device A sensor must be a system and a device
T7 Symmetry A Symmetric(P) B Partnership subClassOf symmetricProp-

erty(hasParntershipWith) some Organi-
zation

There is a partnership between two or-
ganizations

T8 Maximum cardinality A subClassOf P max [num] B Person subClassOf hasAddress max 1
Address

A person has at most 1 address

T9 Minimum cardinality A subClassOf P min [num] B Device subClassOf hasManufacturer
min 1 string

A device has at least 1 manufacturer

T10 Cardinality A subClassOf P max [num]B Device subClassOf hasManufacturer ex-
actly 1 Brand

A device has exactly 1 brand

T11 The ontology contains
the individual

I type A StriatedPardalote type Bird A Striated Pardalote is an example of
bird

T12 Subsumption and relation
between classes

A subClassOf [ClassB] that [PropertyP]
some C

Price subClassOf UnitOfMeasure that
isCharacterizedBy some Currency

The price, which is a type of unit of
measure, is characterized by a value
using currency

T13 Minimum cardinality and
relation between classes

A subClassOf [PropertyP] min [num]B
and B subClassOf [PropertyP] some C

Device subClassOf performs min 1
Function and Function subClassOf ac-
complish some Task

A device performs at least 1 function
and each function accomplishes some
task

T14 Minimum cardinaly and
universal restriction

A subClassOf [PropertyP] min [num]B
and B subClassOf [PropertyP] only C

Person subClassOf hasTask min 1 Task
and Task subClassOf hasGoal only Goal

A person performs at least one task and
each task has a goal

T15 Definition of a disjoint
set of classes

A subClassOf B and C subClassOf B that
disjointWith A

Carnivora subClassOf MarineMammals
and Sirenia subClassOf MarineMam-
mals that disjointWith Carinvora

Marine mammals are divided into two
different types: Carnivora and Sirenia

using the guidelines provided in Themis website.10 As an
example, the user can enter the test expression Event sub-
ClassOf InteractionPattern in order to check a subsumption
relation in the ontology expected from the requirement “An
event is a type of Interaction pattern”.

Additionally, Themis allows the users to export a set of
test expressions, i.e., a test suite, as an RDF file in order
to be able to reuse it. Listing 1 shows an example of the
test expressions Action subClassOf InteractionPattern and
Event subClassOf InteractionPattern in RDF syntax. Such
test expressions aims to check subsumption relations in the
ontology. This RDF file uses the ontology Verification Test
Case11 ontology to describe each test case.

This RDF file can be improved by adding the requirements
associated to the tests, in order to provide a link between the
test case and the requirements from which it is extracted.
Listing 1 shows the test expressions Action subClassOf
InteractionPattern and Event subClassOf InteractionPattern
with the URIs of requirements associated, together with the
description of the requirements which specifies what is an
action and what is an event.

Listing 1. Example of improved test suite in RDF file
@pref ix dc : <h t t p : / / p u r l . o rg / dc / t e r m s /> .
@pref ix v t c : <h t t p : / / w3id . o rg / d e f / v t c#> .
@pref ix xsd : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>.
@pref ix v i c i n i t y : <h t t p : / / v i c i n i t y . i o t . l i n k e d d a t a . e s / v i c i−

n i t y / r e q u i r e m e n t s / r e p o r t−wot . h tml#> .
@pref ix : <> .

: t e s t −case−3 a v t c : T e s t C a s e D e s i g n ;
v t c : i s R e l a t e d T o R e q u i r e m e n t v i c i n i t y : wot16 ;

10http://themis.linkeddata.es/tests-info.html
11http://w3id.org/def/vtc

dc : d e s c r i p t i o n ”What i s an a c t i o n ? The A c t io n i n t e r a c t i o n
p a t t e r n i s an i n t e r a c t i o n p a t t e r n t h a t t a r g e t s changes o r
p r o c e s s e s on a Thing t h a t t a k e a c e r t a i n t ime t o com−
p l e t e ”
v t c : d e s i r e d B e h a v i o u r ” A c t i on s u b C l a s s O f I n t e r a c t i o n −
P a t t e r n ” ˆ ˆ xsd : s t r i n g .

: t e s t −case−4 a v t c : T e s t C a s e D e s i g n ;
v t c : i s R e l a t e d T o R e q u i r e m e n t v i c i n i t y : wot17 ;
dc : d e s c r i p t i o n ”What i s an e v e n t ? The Event i n t e r a c t i o n
p a t t e r n i s an i n t e r a c t i o n p a t t e r n t h a t e n a b l e s a
mechanism t o be n o t i f i e d by a Thing on a c e r t a i n
c o n d i t i o n . ” ;
v t c : d e s i r e d B e h a v i o u r ” Event s u b C l a s s O f I n t e r a c t i o n −
P a t t e r n ” ˆ ˆ xsd : s t r i n g .

These RDF files can be also loaded in Themis, which will
extract the test expressions that in the ontology are stored
as desiredBehaviour data properties. The test suites can be
modified and adapted to a particular ontology by the user.
This functionality allows to reuse test suites already defined
and published on the Web, e.g., test suites already defined
for the ontology to be analysed, or test suites defined for
other ontologies that could be used to check alignment.

B. Test implementation

During the test implementation activity each test expres-
sion is formalized into a precondition, a set of auxiliary term
declarations and a set of assertions to check the behaviour.
The precondition is a SPARQL query which checks whether
the terms involved in the ontology requirement are defined
in the ontology. The axioms to declare auxiliary terms
are a set of temporary axioms added to the ontology to
declare the auxiliary terms needed to carry out the assertions.
Finally, the assertions to check the behaviour are a set of
pairs of axioms and expected results that represent different
ontology scenarios. For each pair, the axiom is temporary

575

added to the ontology to force a scenario, after which the
reasoner is executed. The expected result determines if the
ontology status (i.e., the ontology is inconsistent, there is
an unsatisfiable class or the ontology is consistent) after the
addition is the expected one in the case the requirement was
satisfied. If all the status concurs with the expected status,
then the requirement is satisfied. Figure 2 summarizes the
flow of this test implementation.

Fig. 2. Test implementation flow

Themis creates the implementation of each test expression
listed in Table I. Once the user enters the test expression to be
checked, Themis identifies the type of test and generates the
correct implementation. As an example, if the test expression
added by the user is Action subClassOf InteractionPattern,
Themis will identify that it is of type T2 Subsumption and
that the implementation includes12:

• Preconditions: Class Action and class InteractionPat-
tern exist

• Axioms to declare auxiliary terms: Declaration of
¬Action and ¬InteractionPattern

• Assertion 1:
– Axiom: Action’ v ¬Action u InteractionPattern
– Expected status after adding the axiom: Consistent

• Assertion 2:
– Axiom: Action’ v Action u ¬InteractionPattern
– Expected status after adding the axiom: Unsatisfi-

able class
• Assertion 3:

– Axiom: Action’ v Action u InteractionPattern
– Expected status after adding the axiom: Consistent

ontology

12This implementation is described by means of Description Logics
symbols.

C. Test execution
Finally, during the test execution activity, the

implementation of the test is executed in the ontology
to be tested. At this point, the ontology URI needs
to be indicated, as well as the URIs of each term
in the test expression in order to be able to execute
it, e.g., the terms Action and InteractionPattern in
the ontology with URI http://iot.linkeddata.es/def/wot#
will be http://iot.linkeddata.es/def/wot#Action and
http://iot.linkeddata.es/def/wot#InteractionPattern,
respectively. These terms URIs needs to be extracted
from the glossary of terms of the analysed ontology.

Themis proposes a glossary of terms where the terms are
extracted from the fragments of the URIs of each concept.
Table II shows an excerpt of a glossary of terms created by
Themis for the ontology VICINITY Web Of Things.13 This
preliminary glossary of terms can be modified by the users
if needed. Even though in this case the terms coincide with
the URIs’ fragments, that is not required.

TABLE II
EXCERPT OF GLOSSARY OF TERMS

Term URI
Event http://iot.linkeddata.es/def/wot#Event
Action http://iot.linkeddata.es/def/wot#Action
InteractionPattern http://iot.linkeddata.es/def/wot#InteractionPattern
CommunicationProtocol http://iot.linkeddata.es/def/wot#CommunicationProtocol
isProvidedOverProtocol http://iot.linkeddata.es/def/wot#isProvidedOverProtocol

The test execution activity consists of three parts: the
execution of the query which represents the preconditions,
the addition of the axioms which declare the auxiliary terms,
and the addition of the assertions. After the addition of
each axiom, the reasoner is executed to report the status
of the ontology. The addition of the auxiliary axioms needs
to always lead to a consistent ontology. In the case of the
assertions, the agreement between the reasoner status after
the addition of all the axioms and the status indicated in
the test implementation determines whether the ontology
satisfies the desired behaviour. All the results of each step are
stored in RDF files, in order to enable traceability between
them and the requirements.

Themis uses OWL API14 to load the ontologies and to
add axioms, and uses Pellet15 as the reasoner to check the
ontologies consistency. Themis can execute a test expression
on several ontologies simultaneously, allowing the users to
identify common knowledge and commitments between a
collection of ontologies regarding their requirements.

Four possible results can be returned for each test and each
ontology:

1) Undefined terms: if the ontology does not pass the
preconditions, i.e., the terms in the test expression are
not defined in the ontology to be analysed.

2) Passed: if the ontology passes the preconditions and the
results of the assertions are the expected ones.

13http://iot.linkeddata.es/def/wot
14http://owlapi.sourceforge.net/documentation.html
15https://www.w3.org/2001/sw/wiki/Pellet

576

3) Absent relation: if the ontology passes the preconditions
and the results of the assertion are not the expected ones
but there are no conflicts in the ontology.

4) Conflict: if the ontology passes the preconditions and
the results of the assertion are not the expected ones, and
the addition of the axioms related to the test expression
leads to a conflict in the ontology.

As an example, Themis can determine that the test ex-
pression Action subClassOf InteractionPattern is passed in
the VICINITY Web Of Things ontology16 but has undefined
terms in the oneM2M ontology17, due to the fact that the
latter ontology does not consider the modelling of such
concepts related to actions or interaction patterns.

IV. APPLICATION OF THEMIS

Themis has been used during the ontology development
process of the VICINITY European h2020 project,18 where
five ontologies are currently under development.

The five ontologies to be analysed in the project, i.e.,
the VICINITY Core (Core), the Web of Things (WoT),
the WoT mappings (Mappings), the VICINITY Adapters
(Adapters), and the Datatypes (Datatypes) ontologies, belong
to the VICINITY ontology network and aim to provide
interoperability in the IoT domain. The Core ontology repre-
sents the information needed to exchange IoT descriptor data
between peers through the VICINITY platform; this ontology
is being created by following a cross-domain approach and
implements requirements from different domain experts. The
WoT ontology aims to model the Web of Things domain
according to the W3C WoT Interest Group19 descriptions.
The Mappings ontology represents the mechanism for ac-
cessing the values provided by web things in the VICINITY
platform. The Adapters ontology aims to model all the
different types of devices and properties that can be defined
in the VICINITY platform. Finally, the Datatypes ontology
aims to model the required and provided datatypes that are
used in the interaction patterns of the platform.

Table III summarizes the number of requirements defined
for each ontology, as well as the number of test cases
extracted from them. These requirements represent the needs
asked by the domain experts in order to model the VICIN-
ITY platform. More information about these ontologies is
available in the VICINITY ontology network portal.20

The test cases were extracted by using the test expres-
sion catalogue provided in Table I. Each requirement is
translated to one or more test expressions, selecting the
most appropriate one from the test catalogue. Several test
cases can be related to the same requirement. The test suite
associated to each ontology, where all the test expressions
are stored, was exported to an RDF file and uploaded to the
VICINITY ontology portal,21 with the aim of reusing them in

16http://iot.linkeddata.es/def/wot
17https://git.onem2m.org/MAS/BaseOntology/raw/master/base ontology.owl
18https://vicinity2020.eu/vicinity/
19http://w3c.github.io/wot/
20http://vicinity.iot.linkeddata.es/
21http://vicinity.iot.linkeddata.es/vicinity/testing.html

future releases of the ontology to assure that all the previous
requirements are still satisfied.

TABLE III
DETAILS OF THE ONTOLOGIES

Ontology Numer of requirements Number of tests
Core ontology 50 50
WoT ontology 24 24
Mappings ontology 15 15
Adapters ontology 127 154
Dataypes ontology 11 12

Once all the tests were defined, Themis was executed
in order to identify if there are tests that are not passed
by the ontology. Figure IV summarizes the obtained results
of such execution. As the table shows, the majority of the
requirements are passed by the ontology. However, there are
several tests whose results are absent relation, which means
that the ontology passes the preconditions, the results of the
assertion are not the expected ones but there are no conflicts
in the ontology. These results warn the ontology developers
that there are some tests that, even though they do not cause
any conflict in the ontology, they are not implemented, at
least completely, in the ontology.

TABLE IV
TESTING RESULTS OF THE VICINITY ONTOLOGY NETWORK

Ontology Number
of tests

Undefined
terms Passed Absent

relation Conflict

Core 50 0 34 16 0
WoT 24 0 22 2 0
Mappings 15 0 13 2 0
Adapters 154 0 154 0 0
Dataypes 12 0 12 0 0

Additionally, the VICINITY ontology network should be
aligned with the requirements of several standards in the
IoT field in order to reuse concepts and patterns of well-
known resources, namely: (1) the ETSI SAREF ontology22

[16], the W3C SSN ontology23 , (3) OCF standards24, (4) the
oneM2M ontology [16] and (5) ISO/IEC 30141:2017 [17].
Therefore, the requirements related to these standards were
collected, and the associated tests were defined by using the
test expression catalogue. Table V summarizes the number
of requirements and test cases associated.

TABLE V
DETAILS OF THE EXTERNAL ONTOLOGIES

Ontology Number of requirements Number of tests
ETSI SAREF 70 70
W3C SSN 24 24
OCF 27 27
oneM2M 33 33
ISO/IEC 30141:2017 36 36

Themis was also used to check if the VICINITY ontology
network satisfies the test expressions defined for the require-
ments of these ontologies and standards. From the execution

22https://w3id.org/saref
23http://www.w3.org/ns/ssn/
24https://openconnectivity.org/

577

of Themis, it could be deduced that the VICINITY ontology
network satisfies several tests, but did not take into considera-
tion some concepts related to these ontologies and standards,
as the developers did not consider it necessary for the project
domain definition. However, it could also be concluded that
there were no conflicts between the VICINITY ontology
network and these ontologies and standards. Therefore, it can
be determined that the VICINITY ontologies, even though
they do not satisfy all the requirements related to the anlysed
IoT standards, are not incompatible with them. Table IV
summarizes the results obtained after Themis execution.
More information related to the results is available in the
VICINITY ontology portal.25

TABLE VI
TESTING RESULTS OF THE EXECUTION OF THE STANDARDS’

REQUIREMENTS IN VICINITY ONTOLOGY NETWORK

Standard Number
of tests

Undefined
terms Passed

Absent
rela-
tion

Conflict

ETSI SAREF 70 66 4 0 0
W3C SSN 24 9 13 0 0
OCF 27 21 6 0 0
oneM2M 33 31 2 0 0
ISO/IEC 30141:2017 36 22 14 0 0

V. CONCLUSIONS AND FUTURE WORK

In this work we present Themis, a web-based tool to
validate ontologies regarding their functional ontology re-
quirements. To validate an ontology, Themis supports a set
of different types of tests expressions, which are extracted
from a collection of lexico-syntactic patterns with the aim
of easing the formalization of requirements into tests cases.
These lexico-syntactic patterns link requirements templates
with possible implementations in an ontology and the test
expressions check that these implementations are satisfied
by a given ontology. Moreover, lexico-syntactic patterns use
ontology design patterns to identify possible implementa-
tions. Therefore, Themis can also check if an ontology is
satisfying a particular test following the ontology design
patterns associated to the lexico-syntactic pattern.

Additionally, Themis allows to execute tests on a col-
lection of ontologies simultaneously, which can be used
to analyse the overlap of ontological commitment between
them. This could be relevant if a developer requires to
analyse whether a particular ontology is compliant with a
given ontology or standard. The execution of tests on a
collection of ontologies can also be used to ease the reuse of
ontologies based on their requirements, due to the fact that
the user is able to check which ontology satisfies the set of
requirements he or she needs to cover.

As part of the continuous process of improving Themis,
new tests can be added to the tool if new types of require-
ments or lexico-syntactic patterns are found. Furthermore,
it is also planned to provide more types of results to the
users, in addition to the four types that are provided so far.

25http://vicinity.iot.linkeddata.es/vicinity/testing.html

This addition of possible results aims to help the users to
detect more accurately which is the problem when a test is
not passed and, therefore, to ease the repairing task. Future
work will be also directed to the development of a REST
service to be integrated in other ontology engineering tools,
such as OnToology.26

VI. ACKNOWLEDGMENTS.

This work is partially supported by the H2020 project
VICINITY: Open virtual neighbourhood network to connect
intelligent buildings and smart objects (H2020-688467) and
by a Predoctoral grant from the I+D+i program of the
Universidad Politécnica de Madrid.

REFERENCES

[1] P. Hamill, Unit test frameworks: tools for high-quality software
development. O’Reilly Media, Inc., 2004.

[2] M. Wynne, A. Hellesoy, and S. Tooke, The cucumber book: behaviour-
driven development for testers and developers. Pragmatic Bookshelf,
2017.

[3] M. C. Suárez-Figueroa, A. Gómez-Pérez, and B. Villazón-Terrazas,
“How to write and use the ontology requirements specification docu-
ment,” in Proceedings of the International Conference on On the Move
to Meaningful Internet Systems, 2009, pp. 966–982.

[4] M. Grüninger and M. S. Fox, “Methodology for the Design and
Evaluation of Ontologies,” 1995.

[5] D. Vrandečić and A. Gangemi, “Unit tests for ontologies,” in Pro-
ceedings of the 2006 International Conference on On the Move to
Meaningful Internet Systems, 2006, pp. 1012–1020.

[6] S. Peroni, “A simplified agile methodology for ontology development,”
in Proceedings of the OWL: Experiences and Directions Workshop and
OWL reasoner evaluation workshop, 2017, vol. 10161, p. 55.

[7] Y. Ren, A. Parvizi, C. Mellish, J. Z. Pan, K. Van Deemter, and
R. Stevens, “Towards competency question-driven ontology author-
ing,” in Proceedings of the European Semantic Web Conference, 2014,
pp. 752–767.

[8] C. M. Keet and A. Ławrynowicz, “Test-Driven Development of ontolo-
gies,” in Proceedings of the International Semantic Web Conference,
2016, pp. 642–657.

[9] S. Garcı́a-Ramos, A. Otero, and M. Fernández-López, “OntologyTest:
A tool to evaluate ontologies through tests defined by the user,” in
Proceedings of the International Work-Conference on Artificial Neural
Networks 2009, 2009, pp. 91–98.

[10] E. Blomqvist, A. S. Sepour, and V. Presutti, “Ontology testing-
methodology and tool,” in Proceedings of the Knowledge Engineering
and Knowledge Management, 2012, pp. 216–226.

[11] A. Lawrynowicz and C. M. Keet, “The TDDonto Tool for Test-Driven
Development of DL Knowledge bases.” in Description Logics, 2016.

[12] A. Fernández-Izquierdo and R. Garcı́a-Castro, “Requirements be-
haviour analysis for ontology testing,” in International Conference
on Knowledge Engineering and Knowledge Management. Springer,
2018, pp. 114–130.

[13] G. Aguado De Cea, A. Gómez-Pérez, E. Montiel-Ponsoda, and M. C.
Suárez-Figueroa, “Natural language-based approach for helping in
the reuse of ontology design patterns,” in International Conference
on Knowledge Engineering and Knowledge Management. Springer,
2008, pp. 32–47.

[14] M. C. Suárez-Figueroa, S. Brockmans, A. Gangemi, A. Gómez-Pérez,
J. Lehmann, H. Lewen, V. Presutti, and M. Sabou, “NeOn D5. 1.1:
NeOn Modelling Components,” 2007.

[15] A. Gangemi and V. Presutti, “Ontology design patterns,” in Handbook
on ontologies, 2009, pp. 221–243.

[16] SmartM2M, “SAREF extension investigation Technical Report (TR
103 411).”

[17] “ISO/IEC 30141:2017:Internet of Things (IoT) - Reference
Architectures.” International Organization for Standardization,
Geneva, Switzerland, 2017. [Online]. Available: https://www.iso.
org/standard/65695.html

26http://ontoology.linkeddata.es

578

Communication on Requirements Elicitation and
Interaction Design through SPIDe

Jean C. S. Rosaα,β , Beatriz B. do Rêgoα, Filipe A. Garridoα,
Pedro D. Valenteβ,γ , Nuno Nunesβ,δ, and Ecivaldo Matosα

αDepartment of Computer Science, Federal University of Bahia – UFBA, Salvador, Brazil
βITI/LARSyS, M-ITI, Funchal, Portugal

γUniversity of Madeira – UMa, Funchal, Portugal
δTecnico, University of Lisbon – ULisbon, Lisboa, Portugal

{jean.rosa, beatrizbr, filipe.garrido}@ufba.br, pvalente@uma.pt, nunojnunes@me.com, and ecivaldo@ufba.br

Abstract—Participatory Design has a large number of tech-
niques that can be used for requirements elicitation and inter-
action design. However, choosing a technique (or set of them)
suitable for both processes can be challenging. In this sense,
in this paper, we present a semio-participatory methodological
process – SPIDe – for requirements elicitation integrated with
interaction design, by means of a case study, with the objective of
investigate if the results of SPIDe application satisfies the needs
and desires of users, and how communication process occurs
during SPIDe application. This paper contributes to the use of
Semiotics and Participatory Design for requirements engineering
and interaction design, to the integration of both areas, and to
the SPIDe application.

Index Terms—User participation, human factors, Semiotic
Engineering

I. INTRODUCTION

Several human factors influence software conception and
development. Some of these factors are research topics in Soft-
ware Engineering and Human-Computer Interaction (HCI),
as for example gender, ethnicity, personality, culture, and
social environment [2]. Communication is also one of these
factors [2], and one of the current challenges of Requirements
Engineering (RE).

Communication is a cultural process and is a study object of
Semiotics, which is realized through signs [3]. De Souza [3]
argues that the user interface (UI) is a channel of communica-
tion in human-computer interaction. But for the UI conception
it is necessary to know users’1 needs, desires, and constraints
for a solution, in order words, it is necessary to know the
requirements.

A requirement is therefore an attribute which is defined in
order to solve a given problem according the users’ needs,
desires, and constraints [1]. For requirements to be elicited,
there must be communication between users and requirements

DOI reference number: 10.18293/SEKE2019-200
1We assume as “problem owners”, the customers, subject-interested, (po-

tential) end users, or stakeholders. The term user will always indicate this
group.

engineers2. Communication is the key of RE and must be
effective [4]. However, for this effectiveness to take place, it
is not enough to simply put the engineer in contact with users,
but also to use techniques that facilitate communication [4].

From this perspective, Rosa and Matos [13] consider that the
users’ effective participation, in the role of design partners, can
facilitate communication between designers, engineers, and
users, during requirements elicitation and interaction design,
which in turn can also facilitate interaction/communication
between users and software.

In this paper, we present SPIDe [10]–[13] (a semio-
participatory methodological process), and an investigation
about if the results of SPIDe application satisfies the needs
and desires of users, and how communication process occurs
during SPIDe application. For this, a case study was carried
out and the data was analyzed using open and axial codings
of Grounded Theory. This paper contributes to the use of
Semiotic and Participatory Design to integrate requirement
elicitation and interaction design.

This paper is organized in 5 sections as follows: SPIDe is
presented and detailed in the next section. In turn, the research
methodology is described in Section 3; the research results and
the conclusions are presented in Sections 4 and 5, respectively.

II. SPIDE

To facilitate the communication between the designer and
users through the UI, Rosa and Matos [13] suggest that users
become interaction co-authors using the semio-participatory
process. Thus, Rosa and Matos [13] developed a process
for interaction (re)design called SPIDe. SPIDe is (currently)
composed of five PD techniques (contextual inquiry, sto-
rytelling, brainstorming, braindraw, and think-aloud) and is
based on communication-centered design (CCD) [10], as
shown in Figure 1. CCD is an interaction design practice based
on Semiotic Engineering [13]. Starting from the interaction
concept as a communication between the designer and the

2In this paper, when considering the engineer, we take into account subjects
that practice the Requirements Engineering and all other professionals who
work in the software conception and development, such as system developers
and analysts.

579

users through the UI (as defined by Semiotic Engineering) [3],
the interaction design for the CCD is a process of messages
construction/manipulation sent from designers to users [13].

Fig. 1. SPIDe process [10], [13].

1st stage: Contextual Analysis
The first stage is the contextual analysis, which has three PD

techniques: contextual inquiry, storytelling, and brainstorm.
The contextual analysis stage aims to get to know the users,
identify their contexts, characteristics, problems, desires, needs
and understand how it is possible to resolve their problem. In
addition, it is at this point that the engineer must understand
the impact that the solution will produce on users and their
environment. This is because the designer is in direct contact
with users and their everyday contexts, either by observing the
activities carried out by the users through contextual inquiry or
listening to their stories through storytelling. At that moment
the engineer also knows the socio-cultural context of the users,
either through the words told (storytelling) or by immersion in
the daily work (contextual inquiry), and together with users,
think the problems and possible solutions (brainstorm).

2nd stage: Interface Engineering
The next stage is the interface engineering. This stage

has the objective of producing prototypes for the solution
envisioned in the previous step. For this, Rosa and Matos
suggested the use of braindraw [13]. Braindraw is a technique
where users draw the software UI in a collaborative way [9],
[13]. The users must be divided into groups of at least 2 and
at most 8 participants [9]. Color and graphite pencils, pens,
erasers are available and each user receives a sheet of paper.
Users should draw their ideas of the software UI and at a set
time (e.g. 2 minutes) re-pass the paper to those on the left
until each paper was drawn twice by each participant.

Through braindraw, users use their signification systems and
previous knowledge to draw an UI considered appropriate for
use and containing the problem’ solution. Developing it in a
collaborative way leads to a fusion of ideas, in which all partic-
ipants are contributors i.e. the drawing contains characteristics
of signification systems of their participants/users [9].

3rd stage: Evaluation
Finally, the evaluation stage aims to evaluate the produced

prototype. At this time, users use their signification systems
to interact with the solution that they have designed, with
designer mediation. This stage is composed of the think-aloud
technique.

For the application of this technique, the designer must de-
sign a protocol where the users must follow while interacting
with the prototype. During the interaction, the user should
speak aloud, as the technique name suggests, about their
thoughts, wishes, difficulties, criticisms, suggestions, feelings,
and emotions [13]. The interaction should be recorded for
further analysis. With think-aloud results, it is possible to
identify positive and negative experiences, as well as to
identify communication noises that must be repaired before
the final version is developed.

A. Researches around SPIDe

The researches presented by Rosa and Matos [13], and Pita
et al. [10] specifically deal with interaction design, where
communication between designer and user is restricted to the
UI (i.e. to HCI). Investigating the communication message
composition presented by de Souza [3], Rosa et al. [11], [12]
identified that there is a relationship between the message
conception and the requirements elicitation process. In this
sense, the researchers initiated a project in order to identify if
it is possible to elicit requirements through SPIDe.

Initially, a systematic literature review (SLR) was carried
out to identify previous research reports that use SPIDe’s
techniques applied to requirements elicitation [12]. With the
SLR, it was identified that only storytelling and brainstorm
techniques have already been applied to requirement elicita-
tion; leaving a research gap on the application of other SPIDe
techniques, separately or together. In turn, an experimental
study was conducted to identify if it is possible to elicit
requirements through SPIDe. With the experimental study,
the researchers had a positive conclusion [11]. However, this
study limits the requirements elicitation, and the researchers
did not address how semio-participatory can favor require-
ments elicitation integrated with interaction design and how
the communication happens between designer, engineer, and
users. To investigate this gap, in the next section, we present
the research methodology.

III. METHODOLOGY

In order to investigate if the results of SPIDe application
satisfies the needs and desires of users, and how communi-
cation process occurs during SPIDe application, we carried
out an exploratory case study [7], [14]. Data was collected
using a logbook [6], a semi-structured interview [7], [14], and
Technology Acceptance Model Questionnaire (TAM) [5]. The
data analysis was done through the open and axial codings
of Grounded Theory [15]. The research was based on the
construction of software for a music band in which seven
subjects, four users and three specialists, participated. This
section details the research planning and execution.

A. Research Planning

1) Research Questions: To guide the research, the research
question is: is SPIDe effective to make communication feasible
for requirements elicitation and interaction design?

580

2) Case Study: The case study of this research is the
software conception for the music band of the Assembly of
God church of Ondina, in Salvador/Brazil. The case study was
chosen by convenience. The band leader asked the researchers
to create a smartphone app to help the band’s musicians
to perform their activities. The researchers considered that
the project was adequate to apply SPIDe and to execute
the research, given that in order to construct the demanded
solution it was necessary to elicit requirements and also to
design the interaction. Complementary, the band members
(three subjects) and church pastor3, agreed to participate.

3) Participants and Roles: Seven subjects participated in
the study4, and these were divided into two teams: (a) users
and (b) specialists.

All members (three) of the band, Anderson (vocalist and
bandleader), Diego (guitarist), and Erick (drummer) and the
church pastor (João). The specialists’ team was formed by
one master and two doctoral students with proven experience
in their roles in the software industry. The specialists assumed
three roles, namely: SPIDe applicator, requirements engineer,
and interaction designer.

4) Data Collection Procedures and Artifacts: Three proce-
dures and artifacts were used to collect data. These procedures
are widely used in empirical studies of Software Engineering
and HCI. The procedures and artifacts are detailed below.

(a) Logbook [6] – The logbook is an artifact where all
participants (specialists and users) can take notes, sketches,
calculations and describes feelings, ideas, criticisms, sugges-
tions, observations and other information in support of the
research.

(b) Semi-structured interview [7], [14] – The semi-
structured interview was performed individually, only with
the users, after all SPIDe steps were performed, at a moment
agreed between users and researchers.

(c) Technology Acceptance Model Questionnaire (TAM)
[5] – The TAM aims the identification of the perception
about the usefulness and ease of use of SPIDe. The TAM
was applied only to the specialists, who answered objective
questions on a four-point scale, between totally agreeing and
totally disagreeing. Subjective questions were added in order
to evaluate negative and positive aspects of SPIDe; aspects
of requirements elicitation and interaction design were not
contemplated; and the benefit of SPIDe for requirements
elicitation and for interaction design in an effective way.

5) Analysis Procedures: The data collected through the
procedures and artifacts presented previously was analyzed
by means of two phases (of the three) of the Grounded
Theory [15]. Since the objective of this research is to construct
knowledge about how communication occurs through SPIDe,
we only used the open and axial codings. Open coding (1st
phase) has the objective of creating codes through abstractions

3The pastor was invited to participate as he was considered an important
stakeholder by the band members and the researchers.

4All subjects signed a consent form to participate in the research. The
participants also authorized their names publication, except the pastor, who
received a fictitious name.

related to the collected data. In turn, in axial coding (2nd
phase) the codes created in the open coding are analyzed, and
relations between them are established, in order to evidence
and discover concepts about the research object [15].

B. Execution

We conducted SPIDe in 4 non-consecutive days of October
2018. In this application, the researchers, in agreement with
SPIDe applicator, it was decided not to apply the contextual
inquiry, because, in order to apply the technique, the specialists
should participate in the band practicing and in church ser-
vices, which could cause discomfort for both teams, specialists
and users.

Initially, it was planned that each stage of the SPIDe would
be applied in one day, thus accounting for three days, non-
consecutive. However, on the first day of the research, in
which the storytelling and brainstorm would be applied, only
Anderson and Diego appeared, and in turn, on the second
day, João and Erick attended. Faced with the difference of
users who attended the first and second days SPIDe applicator
decided to reapply storytelling and brainstorm. This impacted
on adding one more day to the SPIDe application. In this days
the logbook was also distributed. The third day was dedicated
to braindraw and the fourth day to thinking-aloud.

Following the thinking-aloud application, the specialists’
team answered the TAM and returned their logbook to the
researchers. Subsequently, the researchers contacted the users
to conduct the interviews. Nevertheless, the researchers were
only able to interview users Anderson, Diego, and Erick,
because João did not attend the scheduled meetings. The
researchers collected the users’ logbook, but due to the lack
of contact, it was not possible to collect João’s. In turn, Erick
did not write in his logbook.

IV. RESULTS ANALYSIS

After data collection, this was analyzed using the open
and axial codings of the Grounded Theory [15]. We analyze
the data collected through logbook, TAM and semi-structured
interviews together, to provide a unified view of the users’
team and the specialists’ team.

Initially, we showed that the communication between the
users was effective since they actively participated in the
software conception process because they had “[...] time and
freedom to speak”. According to Anderson, “the fact that
we had plenty of time was what helped us [the users’ team]
to express everything we had to say”. The analysis results
indicate that users expressed themselves naturally and “[...]
funny way, helping both design and requirements”.

Users also pointed out that after applying storytelling they
recognized their problem with the help of the SPIDe applica-
tor. While they wrote their ideas in brainstorm’s post-its, it was
noted by the specialists’ team, that users could not describe an
exact solution. But when they discussed the ideas together with
the specialists’ team, the solution was clarified and created
together, collaboratively. This expresses that through SPIDe
it is possible to build mutual knowledge (between users and

581

specialists) on the problem and solution like is provided by
the PD ideology [8].

In addition to speaking and writing (which corresponded
to the data analysis associated with the context analysis),
the users’ team could also have signs that they consider
appropriate to the UI and also use their previous knowledge.
This is demonstrated in braindraw sketchings. Through the
interview, Diego pointed out that he had put a button on the
UI to have a preview of the song they would play. To do this,
he was inspired by the music streaming application Spotify®.
Another use of previous knowledge was to have the heart to
signify that music is a favorite and stars to rank in notes.
Both are signs that are already used in other software, are part
of the users’ signification systems and are built from their
relationship with the culture and society they live.

According to the interaction designer, in interface engi-
neering, the users’ creativity “[...] has reached significant
levels”. According to Diego, “the creation of the application
was based on our ideas”. But it was not just the sheet and
drawing. With sheet rotation for all participants, as indicated
by braindraw [9], it was possible for everyone to draw a part of
the UI. Users elected “the best [UI] design” democratically,
in accordance with what is determined in the PD ideology [8].

After the interface engineering, the specialists turned the
drawings into mid-fi prototypes and the users were invited to
evaluate it. The specialists have reported that evaluation by
think-aloud for some users is not satisfactory. The interaction
designer and the SPIDe applicator associated the evaluation
with Semiotic Engineering and described signification and
communicability problems. In her notes, the SPIDe applicator
mentioned that the way in which think-aloud is performed is
similar to Communicability Evaluation Method and suggested
a change in techniques.

Through the analysis of the collected data, it was still pos-
sible to identify that the users consider themselves co-authors
of the software. This is because everything has been built
collaboratively, between the users and the specialists’ team.
Thus, according to the research participants, SPIDe reflects
what Rosa and Matos [13] thought about the interaction co-
design, and goes to a collaborative requirement elicitation.
According to the specialists through TAM, the co-authoring
provided by SPIDe enables effective communication.

Therefore, SPIDe enables users, their activities, needs, de-
sires, and environments to be (re)cognized (through the use
of storytelling and brainstorming) collaboratively; from this, a
solution is defined (by means of brainstorm), and also drawn
(by braindraw) in a collaborative way. And from the knowl-
edge built in the previous step and with their signification
systems, users then interacted with the prototype and evaluated
it (through think-aloud).

V. CONCLUSIONS

This paper presented a semio-participatory methodological
process SPIDe; and a case study, with analysis via Grounded
Theory, to investigate if the results of SPIDe application sat-

isfies the needs and desires of users, and how communication
process occurs during SPIDe application.

We concluded that through SPIDe, it is possible for special-
ists to understand the users desires, needs, and socio-cultural
context, given that software conception comes together and
initializes from the ideas of its future users. In turn, the
problems and solutions that come from the users are clarified
as techniques are applied. The specialists’ participation is
not limited to the observation or techniques application, but
these also act in the mediation of communication, to facilitate
the mutual construction of knowledge. In this sense, we can
conclude that there is evidence in this case study that it is
possible to establish effective communication through SPIDe,
and achieve satisfactory UI design results, in which users
are co-authors. The refinement of SPIDe, as well as the
comparison with other processes, are themes for future work.

ACKNOWLEDGMENT

We would like to thank each of the participants of our
research, and LARSyS (UID/EEA/50009/2019). This work is
supported by the CAPES-DS (Grant #1673896); and CAPES-
PDSE (Grant #88881.189073/2018-01).

REFERENCES

[1] P. Bourque and R. E. Fairley, Guide to the Software Engineering - Body
of Knowledge. IEEE Computer Society, 2014.

[2] A. B. Cunha, A. G. Canen, and M. A. M, Capretz, “Personalities,
cultures and software modeling: Questions, scenarios and research
directions,” in: Proceedings of ICSE Workshop on Cooperative and
Human Aspects on Software Engineering, pp. 23-31, 2009.

[3] C. S. de Souza, The Semiotic Engineering of Human-Computer Inter-
action. MIT Press, 2005.

[4] V. V. Das, “Involvement of users in software requirement engineering,”
in: Proceedings - 10th International Conference on Information Tech-
nology, pp. 230-233, 2007.

[5] F. Davis, “Perceived usefulness, perceived ease of use, and user accep-
tance of information technology,” MIS Quarterly 13, 3: 319-340, 1989.

[6] H. McAlpine, P. Cash, and B. Hicks, “The role of logbooks as mediators
of engineering design work,” Design Studies 48: 1-29, 2017.

[7] J. Lazar, J. H. Feng, and H. Hochheiser, Research Methods in Human-
Computer Interaction. Cambridge: Morgan Kaufmann, 2017.

[8] R. Luck, “Dialogue in participatory design,” Design Studies 24, 6: pp.
523-535, 2003.

[9] M. J. Muller, J. H. Haslwanter, and T. Dayton, “Participatory Practices in
the Software Lifecycle,” in Handbook of Human-Computer Interaction
(2nd ed.), M. G. Helander, T. K. Landauer and P. V. Prabhu (eds.),
Amsterdam: Elsevier, pp. 256-269, 1997.

[10] G. L. Pita, D. Zabot, J. C. S. Rosa, and E. Matos, “Adapting the SPIDe to
Include Visually Impaired Users in Interaction Design,” in Proceedings
of the XVI Brazilian Symposium on Human Factors in Computing
Systems - IHC 2017, pp. 1-4, 2017.

[11] J. C. S. Rosa, E. Matos, F. S. Silva, and G. J. F. Silva, “Experimentando
o SPIDe aplicado à Elicitação de Requisitos,” in Proceedings of 21st
Workshop on Requirements Engineering, pp. 1-14, 2018.

[12] J. C. S. Rosa, F. S. Silva, G. J. F. Silva, and E. Matos, “Applying SPIDe’s
Techniques in Requirements Engineering: a systematic review”. Systems
and Computing Journal 7, 2: pp. 290-303, 2017.

[13] J. C. S. Rosa and E. Matos, “Semio-Participatory Framework for
Interaction Design of Educational Software,” in Proceedings of the 15th
Brazilian Symposium on Human Factors in Computer Systems - IHC
16, pp. 1-10, 2016.

[14] F. Shull, J. Singer, and D. I. K. Sjberg, Guide to Advanced Empirical
Software Engineering. London: Springer, 2008.

[15] A. Strauss and J. Corbin, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. London: SAGE Pub-
lications, 1998.

582

Impact of Agile Practices Adoption on
Organizational Learning: a Survey in Brazil

Florindo Silote Neto
LAIS

FUMEC University
Belo Horizonte, Brazil

florindosiloti@gmail.com

Bruno Rafael
de Oliveira Rodrigues

LAIS
FUMEC University

Belo Horizonte, Brazil
bruno.rodrigues@prodemge.gov.br

Renata de Souza França
Fabrı́cio Ziviani

KM INOVA
FUMEC University

Belo Horizonte, Brazil
profrenatafranca@gmail.com

fabricio.ziviani@fumec.br

Fernando Silva Parreiras
LAIS

FUMEC University
Belo Horizonte, Brazil

fernando.parreiras@fumec.br

Abstract—Agile software development is a particularly intense
knowledge activity in which the success depends greatly on the
experience of the professionals involved in the process. Knowledge
Management Strategies play an important role in assisting
knowledge acquisition and sharing among Agile teams. In this
scenario, this paper answer the following research question: What
is the impact caused by the use of Agile practices in the process
of organizational knowledge acquisition at software development
companies? The objective is to analyze strategies for Knowledge
Management among teams and evaluate the impact caused by
the adoption of Agile practices on the Organizational Learning
process. For this, we proposed a model which it was possible
evaluate this impact. Thus, a survey was conducted with 455
respondents in order to validate the proposed model. The data
collected in this research was processed and analyzed using Struc-
tural Equation Modeling. The results corroborates the impact
of software development practices on Knowledge Management
Strategies and Organizational Learning. Additionally, this study
provides mechanisms for software engineering professionals to
implement strategies that contribute to the knowledge acquisition
and sharing in their teams.

Index Terms—Agile, organizational learning, SEM, agile tai-
loring

I. INTRODUCTION

Software development teams adopt different approaches for
Knowledge Management with the objective of broadening the
understanding of individuals, maximizing the productivity of
teams and promoting improvements of quality indexes of the
projects [1], [2]. In addition, it generates competitive advan-
tage for the company from the application of the available
knowledge [3].

Over the last two decades, Agile methods have gained focus
in the software engineering research area [4], [5]. Different
organizations have changed their processes of software devel-
opment and adopted Agile practices. However, Agile methods
depend on communication and interaction among individuals
so that knowledge sharing takes place [6]–[8] and the strategy
used is based on customization [9]. In the other words, in
practice, Agile methodologies can be combined with tradi-
tional approaches, which organizations adopt and customizes
the approaches according to their need, using a hybrid software

DOI reference number: 10.18293/SEKE2019-059

development approach [10]. In spite of providing a simpler and
less bureaucratic process, the Agile methods face difficulties
such as the sharing and management of the knowledge the
teams had [1], which impact the process of Organizational
Learning (OL) at software companies.

So, the present study was guided by the following re-
search question: What is the impact caused by the use of
Agile practices in the process of organizational knowledge
acquisition at software development companies? The aims of
this study are: (1) to investigate which Agile practices are
more frequently used by software development teams; (2) to
investigate which Knowledge Management Strategies are the
most diffused among software development teams that adopt
Agile practices; and (3) to propose an empirical model capable
of measuring the impact caused by the adoption of Agile
practices in the Organizational Learning.

To achieve these goals, this research conducted a survey
with 455 professionals from software development companies
that utilize Agile methods and practices. The data was col-
lected by using a questionnaire and analyzing it applied to
structural equations modeling (SEM). The results demonstrate
the possibility of identifying that Agile practices have mean-
ingful influence over the strategies used by the teams in order
to share knowledge and affect significantly the Organizational
Learning in IT companies. As contribution of this study, we
emphasize the importance of Agile practice in the learning
process of individuals and organizations. Furthermore, the
proposed model represents a breakthrough in literature that
lacks empirical studies for Agile methods adoption [11]. We
also highlight that the research instrument as well as the
parameters used in our research may be reproduced in order to
enlarge the comprehension of how Knowledge Management
and software engineering correlate, especially when using
Agile methods.

The rest of the paper was organized as follows: Section II
shows the proposed model. Section III discusses the research
method adopted. Section IV presents the results of the study
and the Section V presents the threats to validity. The conclu-
sions and future work are presented in Section VI.

583

II. PROPOSED MODEL

The proposed model in this paper suggests that the adoption
of Agile methods affects both Knowledge Management Strate-
gies and the Organizational Learning process. This relationship
is justified by the fact that Agile methods are based on
learning processes [12]. The use of these methods requires
a constant learning stream from teams [13] and Knowledge
Management practices are embedded in Agile practices [1],
[14]. In this respect, in literature we found the following
constructs that compose the model: (a) Agile Adoption, (b)
Knowledge Management Strategies and (c) Organizational
Learning (OL).

After researching the literature, the construct related to
Agile methods adoption was subdivided into two constructs
that classify Agile practices into ”Project Management Prac-
tices” (PMP) and ”Software Development Practices” (SDP).
We choose this subdivision because agile methods tailoring
is a reality in companies that adopt agile methods [15] and
the utilization of agile methods as constructs maybe not be
suitable for our objectives. This subdivision is based on the
justification that methods such as Scrum are more focused on
management practices while XP provides more development
practices [16], [17]. Moreover, this division provides a method
to verify how each proposed Agile practice group impacts the
Organizational Learning.

Concerning the ”Knowledge Management Strategies” (KM
Strategies) construct, the variables used are the strategies that
show how organizations promote knowledge sharing [18],
[19] and therefore influence the Organizational Learning pro-
cess [20], [21].

The last construct of this model is the ”Organizational
Learning” and it has variables of the constructs considering the
levels that learning occurs in the organizational environment.
[22]. The Figure 1 shows the variables that compose the
constructs proposed in this model.

A. Research hypotheses

From the proposed model to conduct this study, 5 hypothe-
ses were drawn up in order to respond to the proposed research
question. The proposed hypothetical model:

• H1: The adoption of Agile practices for project manage-
ment has direct influence over the Knowledge Manage-
ment Strategies used by the teams.

• H2: The adoption of Agile practices for project manage-
ment has direct influence over the process of Organiza-
tional Learning.

• H3: The adoption of Agile practices for software devel-
opment has direct influence over the Knowledge Man-
agement Strategies used by the teams.

• H4: The adoption of Agile practices for software devel-
opment has direct influence over the process of Organi-
zational Learning.

• H5: The adoption of Knowledge Management Strategies
influence directly the Organizational Learning process.

The proposed hypothesis H1 and H3 claim that Agile
practices adoption by software development teams signifi-
cantly affect the KM strategies they use. Even though the
organizations to where these teams perform have no set
Knowledge Management processes, the Agile methods are
based on learning processes [12] and the use of these practices
contributes to the production and knowledge sharing among
team members, since the practices of Knowledge Management
are incorporated into Agile practices [1], [14]. In addition to
that, software development activities require constant learning
and sharing of information as well as cooperation among
individuals is crucial for the success of software projects [2].

As for H2 and H4, the model proposed in this study presents
a direct influence on Organizational Learning processes when
using Agile practices. OL is considered a change that occurs in
organizations due to acquired knowledge and experience [22].
This change is identified from the moment individuals in the
organization gain new knowledge, new products and services
are proposed and also work routines are improved, meaning
an alteration in the behaviour of the company [3], [22]. The
OL process starts by the production and sharing of knowledge
which are activities related to the individual [23]. Once shared,
this knowledge produces a common understanding that spreads
among the work group [21] and this allows the production and
modification of products, services and company routines [3],
[22].

In this respect, the adoption of Agile practices encourages
the knowledge sharing among individuals [24], [25], meaning
experience and knowledge being acquired and shared. More-
over, the adoption of Agile practices and methods require a
culture prone to cooperation and knowledge sharing from the
organization [4], [24], [25], since a culture led by knowledge
sharing is an essential prerequisite for OL to happen [1].

At last, the H5 hypothesis claims that Knowledge Manage-
ment Strategies directly impact the Organizational Learning
process. KM is a process in which the objective is to protect
the knowledge resources of an organization [23] and enhance
the productivity by means of strategies to knowledge acqui-
sition and sharing [20]. In addition, effective strategies for
Knowledge Management provide mechanisms for the produc-
tion of new knowledge, so that the existing knowledge may be
shared among individuals of the organization and the available
knowledge turns into a competitive advantage [1], [3]. As
a result, knowledge is created by means of Organizational
Learning processes managed by Knowledge Management
Strategies [21]–[23].

III. METHOD

In order to evaluate the proposed model, a survey ques-
tionnaire was performed. A survey questionnaire is suitable
for a standardized data collection and allows the researcher
to gather relevant information in order to get answers for the
research hypotheses [26].

The proposed questionnaire was composed of 38 items
subdivided in 4 parts: (1) respondent characterization,
(2) use of Knowledge Management Strategies, (3)

584

Fig. 1. Research model with constructs and variables.

Organizational Learning and (4) use of Agile practices.
Hence, five queries were used to characterize the sample,
which include the following item: the individual‘s job
position at the company, schooling, experience with
agile methods, level of agile methods knowledge and
company stature. The questionnaire was composed by
items related to Knowledge Management Strategies,
Organizational Learning Agile Practices and it can be seen
by link: https://www.dropbox.com/s/htr6z8ibx1a5pux/sbsi-
2019.pdf?dl=0

IV. RESULTS

This section presents the analyzed results obtained from the
data collected utilized for this research.

A. Descriptive analysis of the sample
The survey questionnaire was answered by 455 valid re-

spondents. Among them 52.75% act on the development team
as programmers, testers, designers. 30.99% are professionals
in management and leadership position such as Scrum Masters
and project managers. As for the education, 40.88% of respon-
dents hold graduate degree and 44.62% postgraduate degree
or an MBA. 5.05% of individuals mentioned are students in
the process of graduating. 11.2% have knowledge on Agile
methods, adopt practices on their daily routine but never
effectively used these methods in projects. However, most
participants are currently embracing Agile methods on projects
for their companies, meaning that 20.2% have worked with
Agile methods for less than a year and 30.33% have around
1 to 3 years of experience in Agile methods and practices.
Emphasizing that 44.62% of respondents consider themselves
professionals that have intermediate knowledge on the subject
and 26.59% claim to have advanced knowledge on Agile
methods. Another highlight is on the fact that 59.12% of
individuals work for big companies.

B. Structural Model
To verify the quality of adjustments, the R2 was used to

represent in a scale from 0% to 100% how much the inde-
pendent constructs explain the dependent ones. Therefore, the
values below 25% represent a weak explanatory capacity, the
ones between 25% and 50% indicate a moderate explanatory
capacity and the values above 50% highlight a substantial
explanatory capacity [27].

The Gof value [28] was also used to obtain a geometric
average of AVE in all constructs and R2 from the model. Such
measure also ranges from 0% to 100%. It is worth emphasizing
that when the PLS approach is used, Gof has no capacity to
differentiate the valid models from the invalid ones and must
not be applied on models with formative constructs [29]. In
this case, Gof allows only a roundup of AVEs and R2 of
the model in one statistics, which could be useful for future
adherence comparisons of different samples of the model.

Table I presents the endogenous, which are constructs influ-
enced by other constructs and also introduces the exogenous
which are constructs capable of influencing the endogenous
ones. Table I shows the values found for the structural model,
meaning β value, the standard error for β (S.E.(β)), the
Confidence Interval (CI), p-value and R2. Highlighting that
the proposed model has a Gof of 37.85%. In addition to that,
the Confidence Interval was aligned with the results found by
p-value, which points out the validity of these results.

TABLE I
STRUCTURAL MODEL EVALUATION

Endogenous Exogenous β S.E.(β) C.I. - 95% p-value R2

Knowledge Management
Strategies

Project Management Practices 0.11 0,06 [0.00 ; 0.24] 0.058 26.5%Software Development Practices 0.43 0.06 [0.32 ; 0.55] 0.000

Organizational
Learning

Project Management Practices 0.01 0.06 [-0.11 ; 0.13] 0.859
31.3%Software Development Practices 0.16 0.06 [0.04 ; 0.28] 0.007

Knowledge Management Strategies 0.45 0.05 [0.35 ; 0.55] 0.000

Through the analysis of the construct “Knowledge Man-

585

https://www.dropbox.com/s/htr6z8ibx1a5pux/sbsi-2019.pdf?dl=0
https://www.dropbox.com/s/htr6z8ibx1a5pux/sbsi-2019.pdf?dl=0

agement Strategies”, the results indicated a soft (p-value =
0.058) and positive (β=0.11; [0.00; 0.24]) influence of the
construct ”Project Management Practices” (PMP) over the
construct “Knowledge Management Strategies”. In this case, it
means that the higher the usage of Agile practices for project
management, the higher the usage of strategies for Knowledge
Management will be. Moreover, there was a meaningful (p-
value = 0.000) and positive (β=0.43; [0.32; 0.55]) influence
of the construct ”Software Development Practices” (SDP) over
the construct “Knowledge Management Strategies”. This in-
fluence is directly proportional, which means the higher Agile
practices to software engineering or software development
ones are, the higher the Knowledge Management Strategies
will be. Thus, the constructs “Project Management Practices”
and ”Software Development Practices” were capable of ex-
plaining 26.50% of the variability of the construct “Knowledge
Management Strategies”, which means that there is a moderate
explanatory capacity. These data are presented on Figure 2
describing the structural model of this analysis.

Fig. 2. Structural Model Presentation.

Regarding the construct “Organizational Learning”, there
was no meaningful influence of the “Project Management
Practices” (β=0.01; [-0.11; 0.13]). On the contrary, the results
demonstrated meaningful and positive influence (p-value =
0.007) of the construct “Software Development Practices”
(β=0.16; [0.04; 0.28]) over the “Organizational Learning”.
Hence, having high SDP affects directly the Organizational
Learning which tends to be high as well. A meaningful and
positive influence (p-value = 0.000) of construct “Knowledge
Management Strategies” (β=0.45 [0.35; 0.55]) was also iden-
tified over the construct “Organizational Learning”. Conse-
quently, the growth of “Knowledge Management Strategies”
imply the growth of “Organizational Learning”. The PMP,
SDP and KM Strategies were able to explain 31.30% of the
variability in “Organizational Learning”, which indicates a
moderate explanatory capacity. These data are presented in
Figure 2.

C. Analysis of hypothesis

In this section, the proposed hypothesis is discussed and
the results are confronted with the literature presented in the
introduction of this work.

As presented on Section IV-B, the hypotheses H1 and H3
referring to the influence of the Agile practices adoption
over Knowledge Management Strategies, were confirmed. The
marginally significant and positive influence between con-
structs “Project Management Practices” and “KM Strategies”
confirm the hypothesis 1. Furthermore, the meaningful and
positive result found between constructs “Software Develop-
ment Practices” and “KM Strategies” confirm hypothesis 3.

Thus, it is possible to state that Knowledge Management
Strategies used by teams that adopt agile methods have direct
influence due to the set of Agile practices employed by
these teams. It is worth mentioning that the results of the
study showed that Agile practices such as “practices for
software development” [16], [30] present a higher influence
over Knowledge Management Strategies. The practices in
this group also present further alignment with social aspects
concerning KM and provide mechanisms aimed at individual
learning [5], [16].

By assessing the results from the H1 and H3 hypotheses,
it is possible to relate them with the results obtained in
others researches [14], [31]. The hypotheses H2 and H4
refer to the influence of Agile practices in the Organiza-
tional Learning process. The results obtained through the
questionnaire confirmed only the H4 hypothesis, which points
to a meaningful influence of the construct “SDP” over the
construct “Organizational Learning”. In this respect, the use of
Agile practices for software development has direct influence
over the process of Organizational Learning although such
influence was not confirmed for Agile practices for project
management (H2). The confirmation of the H4 hypothesis may
be for the reason that the Software Development Pratice (SDP)
encourage the knowledge sharing among individuals [24], [25]
and provide a set of practices aligned with the social aspects of
learning [5]. Additionally, Agile practices and methods require
a change in the culture of the organization, that is, it must be
guided by learning and constant update [16].

The non-confirmation of the H2 hypothesis diverges from
the results reported by authors that consider practices for
project management, such as daily meetings and retrospec-
tives, as efficient mechanisms for the process of Organizational
Learning [32]. Schwaber and Beedle [31] state that knowledge
sharing takes place by four Agile practices of project man-
agement (sprint planning, daily meeting, sprint reviews and
retrospectives). However, Hoda, Babb and Nørbjerg [13] em-
phasize that in an environment under pressure for results and
deliveries compromise learning due to the lack of ceremonies
and Agile practices related to learning.

The confirmation of these hypotheses (H1, H3 and H4)
converges with the discussion regarding the nature of Agile
methods and practices, which means that agile methods are
based on learning processes [12] and Knowledge Management

586

practices are incorporated into agile practices [1]. Furthermore,
software development activities demand that teams constantly
produce new knowledge [13] and share it so that success
is achieved in software projects [2], contributing for product
construction and improvement of the processes kept by orga-
nizations.

Finally, the last hypothesis proposed by the hypothetical
model (H5) establishes that the use of strategies for Knowledge
Management influence directly the process of Organizational
Learning. The results from this study lead to a meaningful
influence of construct “KM Strategies” over the construct
“Organizational Learning”, which confirms the hypothesis
5. The application of appropriated Knowledge Management
Strategies provide mechanisms for Organizational Learning
to take place, meaning that new knowledge is produced and
shared among individuals [1], [3]. This process produces a
suitable environment for the development of new products and
services, and besides that provides means for the improvement
of the routines of the organization [21], [22].

D. Discussion

From the results, it was possible to identify the goals of
this research. First, (1) to investigate which Agile practices
are more frequently used by software development teams, it
was verified the frequency in which professionals use practices
described as “Agile practices for project management”. As for
practices described as “agile practices for software develop-
ment”, the results indicated that they are not often used. Only
the practices “Unit Testing”, “Taskboard”, “Single Team”,
“Continuous Integration”, “Collective Code Ownership” and
“Coding Standards” were described as usual practices in the
daily work of teams. Even though this result demonstrates that
most Agile practices of software development are rarely used
by the teams, the results from the present study converge with
other researches done by companies from the IT area [30].
This outcome helps us reach the first goal of this paper, which
consists of identifying the frequency on which Agile practices
are used by teams.

Second, (2) to investigate which Knowledge Management
Strategies are the most diffused among software development
teams that adopt. The data collected in this research demon-
strated the Knowledge Management Strategies described as
System, Engineering, Organizational and Spatial are present
in companies that adopt these methods. Only the use of
strategies from Cartographic school [20] got impartial values
for the respondents, which demonstrates that the companies
do not map the competencies of employees. Even though
the participants of this research identified and agreed to most
KM strategies, we also identified strategies established by the
Behavioral school (Spatial and Organizational) with bigger
indexes of concordance than the ones from the Technocratic
schools (System and Engineering). These results are justified
by the characteristic of the sample obtained through the ques-
tionnaire, which was composed by professionals who work in
teams that have adopted Agile practices and methods. These
results are in conformity with the results of other authors who

showed the strategies predicted by Behavioral schools as the
most used ones in Agile environments [18], [19], [33], while
Technocratic strategies are more present in organizations that
use the traditional methods [19].

The last objective, (3) to propose an empirical model capa-
ble of measuring the impact caused by the adoption of Agile
practices in the Organizational Learning. The fulfillment of
this objective allows to answer the proposed research question.
From the analysis of the collected data, it was concluded that
these practices for project management do not influence signif-
icantly the Organizational Learning process. However, the re-
sults show that Agile practices for software development have
positive and meaningful influence on Organizational Learning.
It was also possible to identify that the use of KM strategies
have meaningful and positive influence on Organizational
Learning. Therefore, agile practices and Knowledge Manage-
ment Strategies enable to explain the 31.3% of variability in
Organizational Learning in software companies. In addition,
highlighting that Agile practices (for project management and
software development) have meaningful influence on strategies
used by Agile teams to Knowledge Management and sharing.
The use of Agile practices makes it possible to explain 26.5%
of the variability in Knowledge Management Strategies used
by the teams.

V. THREATS TO VALIDITY

In this paper, some threats to validity have been identified
and some measures have been adopted to mitigate them. The
first, the data collection instrument used for this study. There
was the possibility that the participants of the research could
find difficulties to understand or fill in the questionnaire. In
order to prevent this from happening, a previous test was made
with the individuals in the same parameters from the original
research. From this test, it was possible to measure the average
time spent on answering the questions as well as identifying
and discussing points for improvement. The items indicated
by the individuals taking part in the test were adjusted in the
data collection instrument.

The second, the possibility of professionals who were not
aware about Agile methods and practices to answer the ques-
tionnaire and compromise the data collected. In order to mit-
igate this, five questions were included in the data collection
instrument to characterize the sample. Thus, it was possible to
remove from the research database the questionnaires in which
participants affirmed having no knowledge concerning Agile
methods and practices.

A hypothetical model was proposed seeking to validate it
from an empirical research that allows for the generalization
of the results obtained. For this reason, the regional character
of the data collection was an issue to the research, since
the obtained results could express the characteristics of one
region of the country instead of the whole software production
sector. To prevent this, other than the snowball technique,
data collection has been made in three different events in two
capitals. Even though data about the work place has not been
asked from participants, the events chosen for data collection

587

have national expression and receive audience from all over
the country, especially the Agile Trends event that took place
in São Paulo at the occasion of the data collection.

VI. CONCLUSION

In this study, we proposed a hypothetical model composed
by four constructs and conducted a survey with 455 respon-
dents to enable the validation of the the proposed model. The
data collected was analyzed from the technique of Structural
Equations Modeling (SEM). Thus, with the results of this
work it’s possible verify that Agile practices have positive and
meaningful influence on OL, KM strategies have meaningful
and positive influence on Organizational Learning and the
Agile practices have meaningful influence on strategies used
by Agile teams to Knowledge Management and sharing.

As future work, we suggest the validation of the proposed
model, collecting data in companies previously chosen and
case studies in these organizations in order to engage in quali-
tative evaluation when interviewing experienced professionals
in Agile methods and practices. Thus, the results obtained
in this work may be confronted with the reports of the
professionals interviewed. Nevertheless, we can not generate
the findings of this study, because the present research was
conducted in a specific country, Brazil. Therefore, replication
of this survey in others countries is also recommended.

REFERENCES

[1] R. Kavitha and M. Irfan Ahmed, “A Knowledge Management Frame-
work for Agile Software Development Teams,” in Process Automation,
Control and Computing (PACC), 2011 International Conference on, Jul.
2011, pp. 1–5.

[2] N. Porrawatpreyakorn, W. Chutimaskul, G. Quirchmayr, and M. Sodanil,
“A Knowledge Transfer Framework for Supporting the Transition to
Agile Development of Web Application in the Thai Telecommunications
Industry,” in Proceedings of International Conference on Information
Integration and Web-based Applications & Services. New York, NY,
USA: ACM, 2013, pp. 140:140–140:148.

[3] P. Zappa and G. Robins, “Organizational learning across multi-level
networks,” Social Networks, vol. 44, pp. 295–306, Jan. 2016.

[4] R. T. Nishijima and J. G. Dos Santos, the Challenge of Implementing
Scrum Agile Methodology in a Traditional Development Environment.
Council for Innovative Research, 2013.

[5] F. S. Santos and H. P. Moura, “Analyzing the Intertwining of Social and
Technical Aspects in Agile Methods,” in Social Informatics (SocialIn-
formatics), 2012 International Conference on, Dec. 2012, pp. 320–327.

[6] S. Ryan and R. V. O’Connor, “Acquiring and sharing tacit knowledge
in software development teams: An empirical study,” Information and
Software Technology, vol. 55, no. 9, pp. 1614–1624, Sep. 2013.

[7] H. Holz and J. Schafer, “Collaborative, task-specific information deliv-
ery for agile processes,” in Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth
IEEE International Workshops on. IEEE, 2003, pp. 320–325.

[8] C. Loftus and M. Ratcliffe, “Extreme Programming Promotes Extreme
Learning?” in Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education. New York,
NY, USA: ACM, 2005, pp. 311–315.

[9] M. T. Hansen, N. Nohria, and T. Tierney, “What’s your strategy for
managing knowledge?” Harvard Business Review, vol. 77, no. 2, pp.
106–116, 187, Apr. 1999.

[10] M. Kuhrmann, P. Diebold, J. Münch, P. Tell, V. Garousi, M. Felderer,
K. Trektere, F. McCaffery, O. Linssen, E. Hanser, and C. R. Prause,
“Hybrid software and system development in practice: Waterfall,
scrum, and beyond,” in Proceedings of the 2017 International
Conference on Software and System Process, ser. ICSSP 2017.
New York, NY, USA: ACM, 2017, pp. 30–39. [Online]. Available:
http://doi.acm.org/10.1145/3084100.3084104

[11] K. Kuusinen, P. Gregory, H. Sharp, L. Barroca, K. Taylor, and L. Wood,
“Knowledge sharing in a large agile organisation: A survey study,” in
Agile Processes in Software Engineering and Extreme Programming,
H. Baumeister, H. Lichter, and M. Riebisch, Eds. Cham: Springer
International Publishing, 2017, pp. 135–150.

[12] S. Kizaki, Y. Tahara, and A. Ohsuga, “Software Development PBL
Focusing on Communication Using Scrum,” in Advanced Applied In-
formatics (IIAIAAI), 2014 IIAI 3rd International Conference on, Aug.
2014, pp. 662–669.

[13] R. Hoda, J. Babb, and J. Nørbjerg, “Toward Learning Teams,” Software,
IEEE, vol. 30, no. 4, pp. 95–98, Aug. 2013.

[14] A. Singh, K. Singh, and N. Sharma, “Agile knowledge management:
a survey of Indian perceptions,” Innovations in Systems and Software
Engineering, vol. 10, no. 4, pp. 297–315, 2014.

[15] A. S. Campanelli and F. S. Parreiras, “Agile methods tailoring – A
systematic literature review,” Journal of Systems and Software, vol. 110,
pp. 85–100, Dec. 2015.

[16] S. Lee and H. Yong, “Agile Software Development Framework in a
Small Project Environment,” Journal of Information Processing Systems,
vol. 9, no. 1, pp. 69–88, Mar. 2013.

[17] A. R. Y. Cabral, M. B. Ribeiro, and R. P. Noll, “Knowledge management
in agile software projects: A systematic review,” Journal of Information
& Knowledge Management, vol. 13, no. 1, 2014.

[18] M. A. Razzak and D. Smite, “Knowledge Management in Globally
Distributed Agile Projects – Lesson Learned,” in Global Software
Engineering (ICGSE), 2015 IEEE 10th International Conference on, Jul.
2015, pp. 81–89.

[19] T. Dingsøyr, F. Bjørnson, and F. Shull, “What Do We Know about
Knowledge Management? Practical Implications for Software Engineer-
ing,” IEEE Software, vol. 26, no. 3, pp. 100–103, May 2009.

[20] M. Earl, “Knowledge management strategies: Toward a taxonomy,”
Journal of Management Information Systems, vol. 18, no. 1, pp. 215–
233, 2001.

[21] G. P. Huber, “Organizational learning: The contributing processes and
the literatures,” Organizational learning, pp. 124–162, 1996.

[22] L. Argote, Organizational learning creating, retaining and transferring
knowledge. Boston, MA: Springer US : Imprint: Springer, 2013.

[23] L. Iebra Aizpurúa, P. E. Zegarra Saldaña, and A. Zegarra Saldaña,
“Learning for sharing: an empirical analysis of organizational learning
and knowledge sharing,” International Entrepreneurship and Manage-
ment Journal, vol. 7, no. 4, pp. 509–518, Dec. 2011.

[24] K. Beck and C. Andres, Extreme programming explained: embrace
change, 2nd ed. Boston, MA: Addison-Wesley, 2005.

[25] K. Schwaber and J. Sutherland, “The definitive guide to scrum: The
rules of the game,” http://www.scrumguides.org/docs/scrumguide/v1/
scrum-guide-us.pdf, 2013, accessed: 2016-04-21.

[26] J. F. Hair, R. L. Tatham, R. E. Anderson, and W. Black, Multivariate
data analysis. Pearson Prentice Hall Upper Saddle River, NJ, 2006,
vol. 6.

[27] J. F. Hair, G. T. M. Hult, C. Ringle, and M. Sarstedt, A Primer on Partial
Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed. CA,
USA: Sage Publications, 2016.

[28] M. Tenenhaus, S. Amato, and V. E. Vinzi, “A global goodness-of-fit
index for pls structural equation modelling,” in In Proceedings of the
XLII SIS scientific meeting, vol. 1, 2004, pp. 739–742.

[29] J. Henseler and M. Sarstedt, “Goodness-of-fit indices for partial least
squares path modeling,” Computational Statistics, vol. 28, no. 2, pp.
565–580, 2012.

[30] VersionOne, “The 11th annual state of agile report,” http://stateofagile.
versionone.com, 2017, accessed: 2017-06-03.

[31] S. Dorairaj, J. Noble, and P. Malik, “Knowledge Management in
Distributed Agile Software Development,” in Agile Conference (AGILE),
2012, Aug. 2012, pp. 64–73.

[32] M. A. Razzak and R. Ahmed, “Knowledge sharing in distributed agile
projects: Techniques, strategies and challenges,” in Computer Science
and Information Systems (FedCSIS), 2014 Federated Conference on,
Sep. 2014, pp. 1431–1440.

[33] F. O. Bjørnson and T. Dingsøyr, “Knowledge management in software
engineering: A systematic review of studied concepts, findings and
research methods used,” Information and Software Technology, vol. 50,
no. 11, pp. 1055–1068, Oct. 2008.

588

http://doi.acm.org/10.1145/3084100.3084104
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://stateofagile.versionone.com
http://stateofagile.versionone.com

Towards a customizable Student Information System
integrating MDD and SPL

Vale, A., Fernandes, S., Magalhães, A. P.
Post-Graduation Program in Systems and Computing (PPGCOMP) Salvador University (UNIFACS)

Salvador, Bahia, Brazil
andersoncunh@gmail.com, sergiomfernandes63@gmail.com, anapatriciamagalhaes@gmail.com

Abstract – Student evaluation criteria is a non-trivial variation

point in a Student Information System software product line. It

can vary significantly in different institutions, or even in different

areas of a specific institution, and also over time. This paper

presents a highly flexible model-driven development solution to

incorporate and change one or many different evaluation criteria

in each specific product of the line, where a domain expert should

be able to model each set of student evaluation criteria, and

automatically transform it into software code, without

involvement of software engineers. For this purpose, we created a

domain-specific modeling language DSCHOLAR and a model-to-

code transformation dscholar2Code to model and automatically

implement such a software component. They were both validated

using a case study and proof of concept, respectively.

Keywords – Domain-Specific Modeling Language; MDD;

Academic Application; Student Evaluation Criteria, Student

Information System.

I. INTRODUCTION
Around the world, the evaluation criteria of higher-level

education institutions students vary significantly among
countries, institutions, different areas of the same institution,
and over time.

External factors can impact an institution’s evaluation
criteria. In some places, the government applies country wide
student evaluations to measure the quality of its institutions. The
institutions may respond by performing internal simulations of
the government evaluation, and the results of these simulations
are sometimes factored, in some way, into the grade students get
for each individual subject they are taking. Each institution will
use some specific strategy to do this, in ways that stimulate
students to improve their performance in government
evaluations.

Internal factors can also impact the institution evaluation
criteria. In one university, for instance, some courses (but not
all of them) have an entrepreneurship project whose evaluation
must be factored into the students’ regular classes grades – in
different ways depending on the semester the student is in.

Another factor is the dissemination of distance learning
under graduate courses, where, typically, the flexibility of
evaluation criteria is more pronounced.

DOI reference number: 10.18293/SEKE2019-089

Also, some institutions have the same rules for all its
students, while others have rules for each specific course or
even rules defined by each teacher individually.

The context for this work is the design and development of a
Student Information System (SIS) for the management of
academic and support functions of higher-level educational
institutions. It is designed to be a software product family (SPL)
[1] for deployment in many institutions, with many common
functionalities, but also significant non trivial variability points,
such as the evaluation criteria. Therefore, each product of the
family can be adapted for the specific needs of the educational
institution and can also easily evolve.

This paper focuses specifically on the solution created for
one specific variability point of the product line: student
evaluation criteria in higher-level educational institutions.

Many approaches deal with variability in product families.
We used a model-driven development (MDD) approach [2] to
model the evaluation criteria component of our SPL, according
to the institution’s needs, and to generate its code automatically.
In order to support it, a small domain-specific modeling
language (DSML) was developed specifically for the domain of
evaluation criteria of educational institutions, and a model-to-
code transformation was developed to automatically translate
the models produced in this DSML into C# language software
code.

The MDD / DSML software tool selected for this project was
Microsoft DSL Tools [7], a set of plugins hosted by Microsoft
Visual Studio that comprises a wizard and a graphical
environment for DSML creation and editing; a DSML
validation engine; and a transformation generator that creates
transformations that translate DSML models into high-level
programming language code.

The rest of the paper is organized as follows: section II
briefly introduces SPL and MDD approach as well as the
technology used in the project; section III discusses some related
works; section IV describe the DSML and its validation
respectively; section V details the transformation; section VI
presents the solution validation; and section VII presents the
conclusions and future works.

589

mailto:andersoncunh@gmail.com

II. BACKGROUND
Among the approaches proposed to increase the productivity

of development processes and the quality of software products,
SPL and MDD stand out particularly in a context of an
information system that needs non-trivial and extensive
customization for each specific customer as it evolves.

A. Software Product Lines and Model-Driven Development

An SPL is a set of software products with similar features
that share a common infrastructure and the parameterization of
differences among the products [3]. The features of an SPL are
usually classified as mandatory or optional and can be used to
specify variabilities and commonalities among software
products. The development of software using SPL is based on a
set of core assets, defined according to the commonalities and
variabilities of a specific domain, used to derive new products
of the line.

MDD is a software development approach based on higher
abstraction level models, and (semi) automatic transformation
of these models into other lower abstraction level models, and
frequently, in the end, into source code [4]. These models are
typically expressed as UML diagrams or by using DSMLs.
Therefore, the use of MDD requires the definition/adoption of
a modeling language as well as transformations to convert
models, instances of the modeling language, into other models
and code.

Those who propose DSML-based variants of MDD typically
argue that software representation through DSMLs is more
expressive and more straightforward than using general-
purpose modeling languages, such as UML, and can be used by
a broader universe of professionals, particularly domain
experts, not just experts in UML modeling.

B. SIS product family

A SIS “consists of several basic functional modules to

support features such as system setup (e.g. managing users,
roles, countries, buildings, rooms, faculties, and departments),
academic setup (e.g. managing courses, course sections, and
study plans), admissions, student record management (e.g.
managing personal information, scholarships, schedules,
grades, transcripts, major transfers, etc.), registration (i.e.
adding and dropping courses), final exam scheduling, grade
processing (i.e. entering grades, computing Grade Point
Averages (GPA), and viewing transcripts), graduation, and
reporting” [5].

A SIS can be best understood as a product family because
different institutions will have many similar software needs but
also many typically non-trivial specificities.

III. RELATED WORKS
MDD has been used to develop the variable parts of a

product in an SPL for more than ten years, usually in
telecommunications, banking, embedded systems and
automotive domains [8].

Many authors propose development approaches based on
SPL integrated with MDD through which models are generated

using DSMLs. Among them, [9] propose the use of DSMLs to
configure instances of product families. [10] argue that building
a language and framework for a narrow domain makes more
economic sense in the context of a software product family.
Multiple DSMLs are required to describe a business
application. [11] propose the use of DSMLs to deal with both
product family variability and that of a single product over time.
[1] claim that DSMLs are useful to define the specific
configuration of a particular member of a family of systems.
They also consider that, in general, it is necessary to define
several different DSMLs for a complete application. [12] argues
that libraries or frameworks are alternatives to building a
DSML and that a DSML should only be developed when there
is sufficient domain knowledge and conventional programming
techniques fail to provide adequate abstraction mechanisms.

Regarding specific case studies that integrate SPL and MDD,
[13] propose FArM (Feature-Architecture Mapping) method,
which is based on a series of transformations that generate
architectural components that encapsulate the business logic of
each transformed feature, and the interfaces directly reflect the
interactions of the feature. [14] presents a case study in the
automotive domain, comprising guidelines for the development
of architectural transformations on a model that represents
different points of view of a system. [15] performed a case study
in the health domain to illustrate the transformation process for
product generation of an SPL. They used DSMLs to model the
architecture and the application. Then they modeled points of
variability according to the needs of some users who used the
application and automatically transformed those models into
products with the requirements requested by the users.

In the same way as the works mentioned above, we integrate
SPL and MDD. However, we apply this strategy to support the
development of systems in the education domain, where, to the
best of our knowledge, it has not been used before.

IV. DSCHOLAR DSML
This section presents the DSML defined to support the

development components for evaluation criteria using MDD.

DSCHOLAR is a domain-specific modeling language
defined as part of our MDD solution to represent the domain of
student evaluation criteria used in the SIS product line. To create
the DSCHOLAR metamodel, we used the process proposed by
[16]. It is bottom-up, iterative and incremental, where we start
with examples, define one version of the metamodel based on
those examples, and iterate through other examples, and so on.

DSCHOLAR’s abstract syntax is presented in figure 1,
where a model that represents a specific evaluation criterion
comprises one Entity and many Evaluations

An Entity represents the area to which the same evaluation
criteria applies, such as a university or department of a university
– or even a single class of an academic subject. An Evaluation
represents the specification of an evaluation that is applied by
the Entity, in each academic period. Each Evaluation has four
attributes: name, weight (the relative weight of one evaluation
relative to the others), description and sequence (the sequence in
time of each evaluation). The relationship between an Entity and

590

their corresponding Evaluation is defined through the
association EntityReferencesEvaluation.

In DSCHOLAR, Evaluation is a general concept, specialized
by five other concepts: Mandatory Evaluation, which must
applied; Optional Evaluation, which is part of the evaluation
criteria but that may be applied at the teacher’s discretion;
Various Evaluations, that applies when teachers are free to
define a number of evaluations not predefined by the evaluation
criteria; Extra Evaluation, which is a special evaluation whose
grade is to be added to that of another evaluation grade; and
FinalEvaluation, which is applied only when the student does
not reach the Entity average.

There is a composition relationship between an Evaluation
and itself. This means that the grade of a student in a particular
evaluation may be a composition of grades of sub-evaluations,
each with its own specific weight.

Some OCL constraints (not showed here due to a lack of
space) were specified in order to guarantee model integrity, e.g.
to ensure that the sum of the weights of sub evaluations
corresponds to the weight of the super evaluation.

 Figure 1 - Abstract Syntax of DSCHOLAR

Figure 2 shows an example of a model defined for a specific
university. As can be seen, there is one Entity, named Private
Institution and three Evaluations, named Evaluation1,
Evaluation2 and Evaluation3, with their respective relative
weights (30, 40, 30). In this example, all the courses at the
Private Institution adopt the same evaluation criteria. The round-
cornered rectangle of the first two evaluations as well as the
Boolean values (true) at the bottom of them is the concrete
syntax used to specify that all of them are mandatory
evaluations. The third evaluation is an optional one, which is
depicted by a rectangle in a different color.

Regarding the number of Optional Evaluations in a model,
there are two different modeling options. If the quantity of
optional evaluations is already defined for an Entity, each one of
these evaluations is represented by an instance of an Optional

Evaluation modeling element in the respective model. Or, each
teacher can define their quantity so that the model will have only
one instance of VariousEvaluations and an attribute quantity is
used to define the upper boundary of this quantity.

In Figure 2 the grade of Evaluation 2 is a composition of Test
Evaluation, Arhte Evaluation and AIC Evaluation, each with
their respective weight. The Arhte Evaluation is an extra one
(with a different color and small icon), which means that its
grade will be added to the grade calculated by the weighted mean
of the other sub-evaluations of Evaluation 2. For example: if the
weighted mean of Test Evaluation and AIC Evaluation is 8 for a
student, and the grade of Arhte Evaluation is 1 for the same
student, the student’s final grade in Evaluation 2 will be 9.

Figure 2 - Evaluation criteria model for a private University

V. CODE GENERATOR
This section presents the transformation, named

dscholar2Code, developed to support code generation of the
component Evaluation Criteria of the SIS. The transformation
receives as input a DSCHOLAR model specifying the
evaluation criteria of a specific institution or one of its units and
generates as output the correspondent code in C# language.

A five stages process was defined to specify the
transformation dscholar2Code. The first stage, named Product
Design. concerns the architecture and design definition. The
MVC (Model-View-Controller) architectural pattern [18] was
used because it is well suited for a web information system. For
the component Evaluation Criteria, the Model layer was
specified using the DSCHOLAR metamodel as input.

The second stage, Implementation Strategy Definition, deals
with the identification, in the class structure modeled by the
previous step, of the elements of each class which are variable
or static. The variable elements must be dynamically generated,
and the static ones are generated manually. Based on this, for
each class, the code snippets which should be generated
automatically, and which snippets should be static are
determined.

For the component Evaluation Criteria, the templates defined
for the View layer are also dynamically customized using the
DSCHOLAR model as input. The Control layer is manually
generated as it does not vary according to the evaluation criteria.
The Model layer comprises dynamically and statically generated
code. The code to be statically generated was the structural part
of the class Entity and the declaration of its attributes, such as

591

entityName, meanGrade, lowestGrade and finalMeanGrade.
The part to be dynamically generated was the methods
loadEntity() and generateEvaluationsList() because they contain
information that varies according to the student evaluation
criteria of the input model.

At stage 3, Transformation Rules Definition, transformation
rules must be specified. They map the elements of DSCHOLAR
and the bits of code that are dynamically processed by the
transformation dscholar2Code. The transformation code reads a
model and manipulates its elements through tags in order to
dynamically generate code that is inserted in the respective
template source code. Therefore, in order to specify
transformation rules, we map each relevant element of
DSCHOLAR metamodel into a tag in the transformation code.

Stage four is called Transformation Implementation. The
language used to implement the transformation code is based on
templates, where a predefined template contains the code parts
which are static as well as the specific points where the dynamic
code must be inserted when generated.

A loop-like programming structure was used, which reads a
model (like the one shown in Figure 3) in search of instances of
the Entity and Evaluations elements as well as their attributes in
the input model. Figure 4 shows the implementation of the
method generateEvaluationsList ().

Public void loadEntity(){
<# foreach(Entity ent in this.Dscholar.Entity){ #>

this.entityName = "<#= ent.name #>";
this.meanGrade = <#= ent.meanGrade #>;
this.lowestGrade = <#= ent.lowestGrade #>;
this.finalMeanGrade = <#= ent.finalMeanGrade #>;

<# } #>
}

Figure 3 - Part of the code of the method loadEntity()

The method loadEntity() assigns a value to each attribute of
each object of the Entity class existing in the input model. The
code in Figure 3 illustrates the search for an instance of type
Entity in a DSCHOLAR model, and the storing of its attributes
entityName, meanGrade, lowestGrade and finalMeanGrade in
the instance of the C# Entity class being generated.

public void generateEvaluationList(){
<# foreach (Evaluation av in this.Dscholar.evaluations){ #>
 <# if (av.Targets.Count == 0){#>
 <# if (av.GetType().GetProperty("mandatory") !=

null){#>
 this.evaluations.Add(new Evaluation("<#= av.name

#>",<#= av.weight #>,"<#= av.description #>",<#= av.sequence
#>, 1));

<# } } }#>
}

Figure 4 - Code of the method generateEvaluationList()

The code of the method generateEvaluationList() (Figure 4)
is dynamically generated based on the list of evaluations that are
part of each entity in the input model. As a result, it will fulfill a
list in the C# code (named evaluations) which contains all the
corresponding evaluations of the input model. When this
generated code is executed it scrolls the list instantiating each
one of the evaluations.

Once the transformation is implemented, it is tested

(Validation Transformation, stage 5 in our method). This is
described in the next session.

VI. PROPOSAL EVALUATION
In order to evaluate our proposal we performed a case study,

to evaluate the expressiveness of DSCHOLAR in specifying
evaluation criteria in different scenarios, and a proof of concept,
to evaluate the correctness of the code generated by the
transformation dscholar2Code.

The case study consisted of the specification of different
evaluation criteria at four universities. To assist the validation,
we followed the metamodel design method proposed by [16] and
the guidelines for software engineering experimentation
presented in [17]. The questions underlying the validation are:
Q1. Do the language constructors sufficiently specify all the
needs of a university evaluation criteria? Q2. Is it necessary to
add new constructors in the DSML to enable the specification of
different evaluation criteria scenarios?

Data collection was done using a direct method, through the
application of a questionnaire during the execution of the study;
and an independent method, through the analysis of the
documentation produced by the participants, i.e. a model, written
in our DSML. The metric used to evaluate the study was DSML
coverage, which was measured two indicators: #UC (used
constructors) and #MC (missing concepts). #UC measures the
number of DSML constructors used in a model, collected from
the model produced by the teaching staff; #MC measures the
number of concepts present in the university academic
evaluation criteria that could not be modeled by our DSML,
collected in the questionnaire answered by participants. #UC is
used to identify how many constructors as well as which of them
has been validated through the study. #MC is used to improve
the DSML. The goal is that after some validations, the #MC
becomes zero, indicating that the metamodel covers the
definition of many kinds of evaluation criteria.

As we iteratively validated and modified the DSML during
this study, at the end of the fourth validation, we observed that
all the concepts defined in our DSML were used in the models
produced, i.e. #UC=100%. Therefore, we can say that it covers
the necessary constructors to instantiate the models (related to
Q1). Moreover, the missing concepts identified during the
process were included and are now part of the language (related
to Q2). We know that the study results are limited and do not
provide statistical evidence to support general conclusions.
However, we believe that it can be considered an initial step in
planning future case studies. The validation reached its goal, i.e.
the DSML has enough expressiveness to specify evaluation
criteria at different universities.

The transformation dscholar2Code was validated using a
proof of concept, to evaluate the coherence of the generated code
in relation to the model input model specified using
DSCHOLAR. To guide the transformation evaluation, the
following research questions (RQ) were defined: RQ1: are all
the evaluations specified in the model present in the component
code? RQ2: are the evaluation criteria defined in the input model
included in the component code? RQ3: are the mean grades
correctly calculated? In RQ1 we want to know if all the
evaluations were considered when generating the code and in

592

RQ2 we want to evaluate if the evaluation details (e.g. weight)
were all mapped to code.

The validation was performed using models of three
different universities. These models were specified in the case
study carried out to validate the DSCHOLAR modeling
language. At the end of the tests we observed that: (i) the code
generator produced the code corresponding to the models in all
the cases tested (related to RQ1); (ii) the grades calculated in our
system were equal to the ones calculated in the university
systems (related to RQ2 and RQ3). Based on these results, we
conclude that, for the examples used, the transformation has
covered all the evaluation criteria of the three universities, and
is therefore satisfactory for the established purpose.

VII. CONCLUSIONS
In this project, we improved the development of Student

Information Systems providing them with flexibility and
productivity in modifying and evolving student evaluation
criteria. The integration of SPL and MDD approaches was
decisive in this improvement. In order to support it, we defined
a small DSML, typical for each sufficiently complex variation
point; the source code is partially manually generated using
software frameworks, and partially automatically generated
through transformations that generate code that integrates with
the frameworks.

Our strategy is to evolve our SIS line iteratively, i.e. analyze
variability points and, when adequate, provide them an MDD
solution to improve development, as we did with the evaluation
criteria component.

The solution allows a domain expert to model the evaluation
criteria, using the small, easy to use DSML DSCHOLAR. Some
training may be necessary for teachers or other non-IT
professionals to use it, but the language has very few modeling
elements and relationships types, which should facilitate its use.

 Automatic code generation was achieved with the
dscholar2Code transformation, but only to the point where C#
source code is automatically generated. To achieve full
automation, a mechanism that compiles and deploys the code in
the production environment must be created and integrated with
a configuration management mechanism that appropriately
stores and selects the right binary code in each situation.

DSCHOLAR provides a way to identify each set of specific
evaluation criteria, by identifying the Entity that uses these
evaluation criteria. As a result, each professional authorized to
define and to apply the evaluation criteria must be associated to
a specific Entity. The Entity can be as encompassing as an entire
University or as granular as a single teacher or class.

DSCHOLAR and dscholar2Code have been tested in case
studies and a proof of concept and, although it has been
demonstrated to be satisfactory, it has limitations. We are,
however, working on a case study with professionals from
several other universities to more accurately assess the solution
and reach more generalized conclusions.

This project will evolve to cover other variation points of the
SIS product family and to implement the build/deploy/configure
mechanisms outlined in this section.

REFERENCES
[1] K. Czarnecki and U. W. Eisenecker, Generative Programming:

Methods, Tools, and Applications, Addison-Wesley Professional, 2000.

[2] M. Brambilla, J. Cabot and M. Wimmer, Model-Driven Software
Engineering in Practice, Morgan & Claypool, 2012.

[3] E. S. Almeida, C.R.U.I.S.E: Component Reuse in Software
Engineering, 1st ed., C.E.S.A.R e-book, 2007.

[4] . A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model
Driven Architecture : Practice and Promise, Addison Wesley, 2003.

[5] F. Al-Hawari, A. Alufeishat, M. Alshawabkeh, H. Barham and M.
Habahbeh, “The Software Engineering of a Three-Tier Web-Based
Student Information System (MyGJU),” Computer Applications in

Engineering Education, vol. 25, nº 2, pp. 242-263, March 2017.

[6] Z. Molnár, D. Balasubramanian and Á. Lédeczi, “An Introduction to the

Generic Modeling Environment,” em Model-Driven Development Tool

Implementers Forum, 2007.

[7] Microsoft Corporation, “Overview of Domain-Specific Language
Tools,” 2016.

[8] J.-P. Tolvanen and S. Kelly, “Model-Driven Development Challenges
and Solutions - Experiences with Domain-Specific Modelling in
Industry,” 2016 4th International Conference on Model-Driven

Engineering and Software Development (MODELSWARD), pp. 711-
719, 2016.

[9] C. Consel and R. Marlet, “Architecture Software Using A Methodology

for Language Development,” em Principles of Declarative

Programming, 10th International Symposium, PLILP'98 Held Jointly

with the 7th International Conference, ALP'98, Pisa, 1998.

[10] J. Greenfield , K. Short, S. Cook and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and
Tools, Wiley, 2004.

[11] S. Cook, G. Jones, K. Stuart and A. C. Wills, Domain-Specific
Development with Visual Studio DSL Tools, Addison-Wesley
Professional, 2007.

[12] E. Visser, “WebDSL: A Case Study in Domain-Specific Language
Engineering,” em Generative and Transformational Techniques in

Software Engineering II. GTTSE, Berlin, 2007.

[13] P. Sochos, M. Riebisch and I. Philippow, “The Feature-Architecture
Mapping (FArM) Method for Feature-Oriented Development of
Software Product Lines,” 2006.

[14] J. González-Huerta, E. Insfran, S. Abrahão and J. McGregor,
“Architecture derivation in product line development through model

transformations,” 2014.

[15] N. Lahiani and D. Bennouar, “On the use of model transformation for

the automation of product derivation process in SPL,” 8 2018. [Online].

Available:
https://www.researchgate.net/publication/327269080_On_the_use_of_
model_transformation_for_the_automation_of_product_derivation_pr
ocess_in_SPL.

[16] A. P. Magalhães, R. S. P. Maciel and A. M. Andrade, “Towards a

Metamodel Design Methodology: Experiences from a model
transformation metamodel design.,” 27th International Conference on

Software Engineering and Knowledge Engineering, pp. 625-630, 2015.

[17] C. Wohlin and A. Aurum, “Towards a decision-making structure for
selecting a research design in empirical software Engineering,”

Empirical Software Engineering - Springer, 2014.

[18] F. Buschmann, R. Meunier, . H. Rohnert, P. Sommerlad and M. Stal,
Pattern-Oriented Software Architecture Volume 1: A System of
Patterns, 1st ed., Wiley, 1996.

593

Towards Detecting and Managing Information
Anxiety in the ICT Industry

Mark Micallef
Department of Computer Science

University of Malta
mark.micallef@um.edu.mt

Chris Porter
Department of Computer Information Systems

University of Malta
chris.porter@um.edu.mt

Abstract—Information Anxiety is defined as “stress caused by
the inability to access, understand, or make use of information
necessary for employees to do their job”. Even though it is in
itself an intangible phenomenon, it is widely acknowledged and
has been linked to impaired decision-making ability, information
withdrawal, information avoidance, burnout and other health
issues. The ICT industry is acknowledged to be a fully fledged
knowledge industry. That is to say that its workers are mainly
tasked with creating, understanding, applying and distributing
knowledge as part of their day-to-day job. The industry is also
characterised by disruptive innovations, continuously changing
technologies and customers who constantly change their mind
about what they want systems to do.

In this paper, we present the results of a study which tracked
18 participants for a period of one month in order to investigate
the presence of information anxiety in the Maltese ICT industry.
Our results indicate that information anxiety is present in non-
trivial levels amongst our cohort of participants, with information
overload being the predominant cause. Also, participants working
in a quality assurance (QA) function are more exposed to the
phenomenon as well as being exposed to a wider variety of
sources of anxiety than developers. Experience is also shown
to be a factor with participants being less prone to symptoms of
information overload as they gain more experience in the field.

Index Terms—Information Anxiety, Software Engineering,
Empirical Study

I. INTRODUCTION

In 1956, white-collar workers outnumbered blue-collar
workers for the first time in US History [1]. Since then, a sub-
stantial portion of the commercial world (especially in west-
ern economies) has transitioned to the so-called “knowledge
economy”. Even though balance sheets list bank balances and
material assets, it is widely acknowledged that knowledge is
now the primary commodity and knowledge flows are regarded
as the most important factors in the economy [2]. Knowledge
workers are employees who deliver value to an organisation
through the creation, storage, retrieval, dissemination and most
importantly, application of knowledge. Yet, where as manual
labourers tend to have very well defined and routine jobs with
known inputs and specific outputs, knowledge workers have a
more dynamic and less tangible context to deal with.

The ICT industry is a prime example of a knowledge
industry, composed exclusively of knowledge workers. A

DOI reference number: 10.18293/SEKE2019-095

typical software engineer is expected to possess up-to-date
in-depth technical knowledge as well as intimate knowledge
of whatever domain she happens to be working in, so as to
be able to deliver technical solutions in that domain. These
technical solutions tend to be highly complex in nature
and constantly evolve so as to (1) help customers remain
competitive in dynamic markets; and (2) remain current
with latest developments and best practices in technology.
In the course of a working day, a software engineer will
participate in several knowledge-centred activities. These
include attending meetings in which status updates are
communicated, discussing solutions to technical problems
with peers, implementing technical solutions, responding to
customer and management queries, fixing issues, mentoring
peers, and so on. This can become overwhelming. Misra
and Stokols [3] lament the rapid growth and transmission
of information in the digital age and argue that this poses
new challenges for individuals dealing with the onslaught
of communications from multiple sources. Unless properly
managed, these challenges can lead to anxiety and burnout,
which in turn leads to employees loosing interest, exhibiting
lower activity and feeling powerless [4]. This is where the
phenomenon of information anxiety becomes more tangible.

Wurman [5] defined Information Anxiety as being the “stress
caused by the inability to access, understand, or make use
of information necessary for employees to do their job”.
Considering the contribution that the ICT industry makes to
national economies [6], as well as its key role in helping other
industries to grow and flourish [7], we argue that the industry
needs to be aware of information anxiety, be able to detect it,
and subsequently manage it.

A. Research Questions

Whilst talk of employees burning out and leaving
companies can be heard around many water coolers and in
the halls of conference coffee breaks, to date and to the
best of our knowledge, there has been no empirical study
that demonstrates the presence of information anxiety in the
ICT industry. In this paper, we begin to bridge this gap by
following 18 ICT professionals in Malta for a period of one
month in order to investigate the following research questions:

594

RQ1: To what extent is information anxiety exhibited by
employees in the Maltese ICT Industry?

RQ2: What insights can be gained regarding the sources of
information anxiety in the Maltese ICT industry?

II. INFORMATION ANXIETY

The term information anxiety was first coined by Wurman
three decades ago, and was defined as “stress caused by the
inability to access, understand, or make use of information
necessary for employees to do their job” [5]. Since then,
information anxiety has been studied in a number of contexts
and from a variety of points of view. A substantial portion
of the literature equates information anxiety with information
overload. Hartog [8] sets out a whole set of lingo that has
evolved around the concept including terms such as info-glut,
techno-stress, and information addiction. Burkhardt et al. [9]
define information anxiety as “a feeling of being overwhelmed
that comes when confronting a large information task”. Using
more visual language, McCarthy [10] defines it as “a kind of
stupor, a feeling that we simply can’t keep up, can’t read fast
enough, don’t know how to locate the information we need,
don’t have time to sort through or think about all the data
surrounding us”.

A. Sources of Information Anxiety

Whilst the tendency in the literature is to equate information
anxiety with information overload, we argue that knowledge
needs in the ICT are so complex that it is worth considering
Wurman’s [5] wider definition and his explanation about the
causes of the phenomenon. Wurman states that information
anxiety can be caused by one or more of five possible causes:
(1) an individual’s inability to understand the information
required to carry out a task; (2) feeling overwhelmed by the
amount of information that needs to be understood in order
to complete a task (information overload); (3) someone not
knowing whether the information required to complete a task
exists or not; (4) knowing that information exists but not
knowing where to find it; and finally (5) knowing where the
information is but not having access to it.

B. Effects of Information Anxiety

Several studies have been carried out with the intent of
uncovering the effect of information anxiety on employees.
The three most common themes to emerge are (1) an impact
on job performance; (2) psychological impact; and (3) a
detrimental effect on the health of individuals.

1) Impact on Job Performance: After studying managers
in a cross-national survey, Waddington [11] reports that 43%
of managers claimed that information anxiety impaired their
decision-making ability. A decade later, Williams [12] reported
similar findings on impaired judgement in a similar study.
Bawden and Robinson [13] claim that damage-limitation
strategies resorted to by employees who were exposed to
information anxiety tend to reduce their effectiveness and
result in a negative impact on their employing organisation.
Misra and Stokols [3] studied 484 undergraduate students

and found that those exposed to high levels of information
anxiety devoted less time to contemplative activities. In the
context of a knowledge organisation, this would result in
employees not investing the time in innovation that is essential
for maintaining a competitive edge.

2) Psychological Impact: Katopol reports that individuals
exposed to information anxiety can have any combination of
sensations including feeling overwhelmed, intimidated, fearful,
lost, threatened, stressed, uncomfortable and/or timid [14]. Fox
reports that the phenomenon leaves employees feeling a sense
of loss of control [15] whilst Waddington [11] found a link to
tension and reduced job satisfaction.

C. Detrimental effect on Health

In more severe and prolonged cases, information anxiety has
been observed to affect individual’s physical health. Misra and
Stokols [3] positively correlated higher levels of perceived in-
formation anxiety with incidences of physical health problems.
Waddington [11] also reports that 42% of managers in his
study believe that information overload affects their physical
health. Similar conclusions were reached by Ifijeh [16], as well
as Bawden and Robinson [13].

D. Measuring Information Anxiety

The main stumbling block with addressing information
anxiety is the fact that it is difficult to detect before it
reaches harmful levels. A review of the literature revealed two
alternatives for measuring the levels of information anxiety in
individuals.

Based on the argument in health research communities
that the impact of objectively stressful events depends largely
on one’s perception of their stressfulness [17], Cohen et al.
[18] propose their Perceived Stress Scale (PSS). The method
involves asking participants to answer 14 questions with one
of never, almost never, sometimes, fairly often or very often.
The answers are assigned numerical values of 0 through 4
for questions with a negative bias1 and 4 through 0 for
questions with a positive bias2. The PSS score is calculated
by summing the scores of all 14 questions and through three
case studies, Cohen et al. showed the measure to be a reliable
and sound predictor of various psychological indicators such
as depressive symptomatology and social anxiety.

In order to assess information anxiety in the Canadian Air
Force, Girard and Allison [19] used Wurman’s [5] five causes
of information anxiety as a starting point. Participants in their
three studies rated their agreement with statements on a scale
of 1 (strongly disagree) to 5 (strongly agree). The statements
were as follows:

1) I would not understand the data required to complete
this task.

2) I would feel overwhelmed by the amount of data to be
understood to complete this task.

1Example: In the last month, how often have you felt nervous or stressed?
2Example: In the last month, how often have you felt the you were on top

of things?

595

Fig. 1. An overview of the research protocol adopted for this study.

3) I would not know if certain data necessary for this task
exists.

4) I would not know where to find data necessary for this
task.

5) I would know exactly where to find the data, but I would
not have the key to access it.

By summing up the ratings of individual components,
Girard and Allison were able to measure the overall level of
information anxiety experienced by an individual at a partic-
ular point in time. Although simple in nature, the measure
is expressive both in terms of overall information anxiety, as
well as in terms of the contribution of individual sources of
anxiety.

III. METHODOLOGY

The research protocol was designed with the goal of regu-
larly collecting empirical data from participants over a period
of one month whilst minimising disruption to participants’
daily routines. When considering the two alternatives for mea-
suring information anxiety discussed in Section II-D, Cohen et
al.’s approach [18] was ruled out because requiring participants
to answer 14 questions on a regular basis would be disruptive.
Instead, a modified version of Girard and Allison’s [19] survey
instrument was adopted. The method was aligned to the
requirements of this study such that only one of the questions
was asked to each participant every day. This reduced the
disruption caused to participants whilst also collecting multiple
data points as we followed individuals over a period of one
month.

A survey mechanism utilising SMS technology was de-
signed and implemented. As depicted in Figure 1, the study
was partitioned into three phases. In the first phase, partic-
ipants were recruited by means of adverts in social media
groups that directed interested people to a sign-up form that
collected some basic demographic information. They were
later asked to confirm their participation via SMS so as to
ensure that we were able to communicate with them over that
medium.

The second phase consisted of data collection. Every work-
ing day for a month, participants received one question via

Fig. 2. A typical question sent to participants via SMS, including a link to
the personal reflection form.

text message similar to the one shown in Figure 2 every day
at 11am. The choice of question was randomised but once
a question was asked, it would not be asked again before
all other questions had been asked to the same participant.
The time that questions were sent to participants was chosen
deliberately so as to maximise the chance that participants have
arrived at work, gone through their morning rituals and have
started working. In order to minimise disruption, candidates
were required to reply to each question by a text message
containing a number between 1 (strongly disagree) and 5
(strongly agree). Participants were also provided with a link
to a personal reflection form whereby they could optionally

596

provide further insight.
Finally, after the data collection period was over, the data

was collated, analysed and interpreted.

IV. RESULTS

In this section, we present a digest of the key observations
we gained from analysing the data collected during the study.

A. Participant Demographics

Eighteen participants signed up and participated in the study.
Four demographic attributes were collected as information
about participants: role, industry, experience and level of
education. There was a relatively uniform distribution in all
attributes except for education in which 11% of participants
were educated to post-secondary level, 78% to undergraduate
level and 11% to postgraduate levels. Participants were highly
responsive during the study when it came to SMS responses,
with a mean response rate of 79%. However, no participants
availed themselves of the online reflection form to provide
more unstructured information.

B. Initial Analysis

An initial analysis of the data revealed that when one anal-
yses the cohort as a whole, only 17% of responses indicated
levels of information anxiety. This was interesting to us as it
went contrary to our initial hypothesis that information anxiety
is significant problem in the industry. However, as we dissected
the data further to consider participant demographics and indi-
vidual sources of information anxiety, a more comprehensive
picture emerged.

When one considers individual sources of information anx-
iety, it turns out that eight participants (44%) had a mean
rating higher than three for at least one source. All eight of
these participants indicated that information overload was the
main cause of anxiety, with five participants indicating at least
one more cause.

C. The influence of job role

Figure 3 plots a box chart showing the distribution of
ratings provided by participants for each source of information
anxiety, as well as the combined ratings of all sources, split
by job role. One can immediately notice that job role seems to
have a determining influence on the overall levels of anxiety
registered by individuals. When considering all five sources
of anxiety collectively, QA analysts registered comparatively
high levels of anxiety with a median value of 2.5 and an
upper quartile rating of 4. This contrasts with an upper quartile
rating of 2 and 3 for software engineers and project leaders
respectively.

Software engineers exhibited arguably neglible ratings
across all sources of information anxiety except for informa-
tion overload. The median of 2.5 and upper quartile value
of 4 here indicates that there is a significant perception
amongst software engineers in our cohort that they have too
much information to process and feel overwhelmed by it.
Furthermore, both QA analysts and project leaders exhibit

higher levels of anxiety as a result of information overload
with over 50% of ratings from QA analysts being at or above
3.

Consistent with the other two roles, the QA Analyst co-
hort exhibited was mostly affected by information overload.
However, the same cohort also has significant complaints
of participants struggling with understanding, being unable
to locate information and not having access to information.
Project leaders have exposure to a wider range of anxiety
sources than developers but the levels of complaints for the
upper quartile only ever go beyond 3 for information overload.

D. The influence of experience

The most inexperienced participants reported the least prob-
lems related to being unable to understand information related
to do their job. The highest problem in this area surfaced
amongst participants with 6-10 years of experience in the
industry. Conversely, participants with 3-5 years of experience
reported the highest levels of information anxiety with 39%
of information overload ratings for this cohort being 4 or 5.
The data indicates that as participants gain experienced, they
suffer less from information overload.

E. The influence of industry

We also analysed data from the point of view of industries in
which participants worked. However, except for a marginally
higher level of anxiety being reported by participants in the
Gaming industry, the data indicates that the domain in which
participants work does not have an obvious influence on the
levels of information anxiety experienced.

F. Threats to Validity

The study suffers from two main threats to validity. Firstly,
the sample size of 18 is not necessarily representative of the
industry as a whole. Secondly, the duration of the study (1
month) when compared to the lifetime of a typical project.
Having said that, the study is, to the best of our knowledge,
the first of its kind to shed light on the levels of information
anxiety in the ICT industry and lessons learned here will be
taken forward to larger and more longitutional studies that are
being planned by the authors.

V. DISCUSSION

In this section we discuss the results of the exercise in the
context of the research questions specified in Section I-A.

A. Presence of Information Anxiety in the ICT Industry

Although the data does not indicate an outright epidemic
when it comes to information anxiety amongst our participants,
it does indicate that there is cause for concern. This can be
better appreciated when one considers that results obtained
using Girrard and Allison’s [19] formula for calculating infor-
mation anxiety can be misleading if one does not consider that
it is an aggregating formula. This is because, our data shows
that an individual is most likely to be exposed to one source
of information anxiety. There were cases were individuals
were exposed to two or at most three sources at any point

597

Fig. 3. Distribution of ratings for sources of information anxiety for Software Engineers (black), QA Analysts (dark grey) and Project Leaders (light gray).

in time but these were very rare. It is therefore likely that
Girrard and Allison’s formula will even out to a mean, as
evidenced by their own studies where the mean value for
anxiety readings hovered around 2.5. However, this does not
mean that no information anxiety is present. Rather, we argue
that a prolonged high rating for even one source of anxiety
on one participant should be cause for concern and trigger an
investigation to understand the circumstances leading to this.

Whilst it was out of scope for this particular study, indi-
vidual employees ratings should also be examined over time
to look for patterns that might be detrimental to employees
psychological health. For example, regular short bursts of
high anxiety would produce low average scores but employees
could still have significantly negative experiences as a result.

Notwithstanding the small sample of participants, in answer
to RQ1, the data collected for this study suggests that in-
formation anxiety is sufficiently present in the Maltese ICT
industry to cause employers to devise ways of detecting it and
measuring it.

B. Insights regarding the sources of Information Anxiety

The results from this study lead us to make three conclu-
sions when it comes to the sources of information anxiety.

1) The predominance of Information Overload: Informa-
tion overload was consistently shown to be the predominant
cause of anxiety amongst our participants when compare
to the other four sources regardless of job role, experience
level or industry. This indicates that the literature’s focus
on information overload is well founded but not complete.
For example, QA analysts demonstrated elevated levels of
anxiety across multiple sources of anxiety. In such cases,
whilst employees are still being suffering from anxiety the
required solutions would be different to those required when
the root cause is information overload.

2) QA Analysts have an anxiety-inducing job: The indi-
cation that QA Analysts suffer from higher levels of anxiety
than other job roles is further explained when one examines the
individual sub-components of information anxiety as experi-
enced by people in this role. QA analysts tend to act as bridge
communicators between the technical side of an organisation

(software engineers) and the so called product side of the
business. The need to straddle two different worlds in which
people often speak different languages and dialects. That is to
say that whilst a software engineer might speak in terms of
concepts such as algorithms, efficiency, load balancing and so
on, a product-side employee would speak in terms of features,
customers and other domain-specific concepts. QA analysts are
responsible for ensuring that the technical side of the business
delivers the right artefacts to the product side of the business
and it is this straddling of two worlds that likely leads to
elevated levels of anxiety.

3) Experience is a factor: One of the finding of the study
is that symptoms of information overload decrease amongst
participants with more experience. This is probably due to
experienced individuals being able to develop soft skills for
setting up barriers against information overload. For example,
the simple act of saying No, I cannot deliver this extra feature
in the next 2 weeks. has the effect of shielding an individual
against any anxiety that might have resulted from committing
to the extra task and setting himself up for failure. Individuals
who have been around for longer are more capable of gauging
the effect that a task might have of them and are more
comfortable refuting that work.

VI. RELATED WORK

As discussed in Section I, to date and to the best of our
knowledge, there has been no empirical study that demon-
strates the presence of information anxiety in the ICT industry.
The work the came closest to this is that of work that Mäntylä
et al. [4], who did not explicitly discuss information anxiety
but did discuss the ICT sector and highlight a number of
related concepts and symptoms.

Mäntylä et al. claim that employees in the ICT sector are
susceptible to “psychological diseases such as burnout, which
lead developers to lose interest, exhibit lower activity and/or
feel powerless” [4]. They propose a set of metrics called the
VAD metrics, named after the first letter of three attributes
which they measure: (V)alence, the level of enjoyment exhib-
ited by individuals carrying out a task; (A)rousal, the level of
alertness and readiness to act; and (D)ominance, the level to

598

which individuals are in control of their task. Using a database
of 13,915 manually rated English words as created by Warriner
[20], Mäntylä et al. calculated VAD scores on 700,000 Jira3

tickets containing over 2,000,000 comments. This resulted in
a number of interesting conclusions regarding how valence,
arousal and dominance in individuals varies based on how
long a ticket remains open, how its priority changes and when
it is eventually resolved. For example, their results indicate
that burnout (low valence, low dominance and high arousal)
is more likely when working on high priority issues that take
a long time to resolve. Whilst Mäntylä et al. do not make
the link with information anxiety, as discussed in Section I,
software engineering is a knowledge-intensive activity and a
prolonged unsolved issue is likely to be caused by a lack
of understanding, information overload or issues with finding
and/or accessing relevant information.

VII. CONCLUSION AND FUTURE WORK

In this paper we discussed the methodology and results
of a study that was designed and executed to shed light on
the presence of information anxiety in the ICT industry. By
tracking anxiety levels amongst 18 participants on a daily
basis for one month, we discovered that information anxiety is
indeed present at non-trivial levels with information overload
being the predominant cause. We also discovered that QA
Analysts are more likely to suffer from the phenomenon, as are
less experienced individuals. Finally, we discovered that the
domain in which employees work does not have a significant
bearing on anxiety levels.

A. Recommendations

This study contributes a non-intrusive data collection pro-
tocol that can help companies shed light on levels of in-
formation anxiety amongst their employees. Implementing a
similar mechanism which collects data at possibly less regular
intervals using company’s intranet or time-sheet system would
provide managers with valuable empirical data. This data can
subsequently be analysed and tracked such that any emerging
problems with information anxiety can be investigated and
addressed before they cause substantial harm. Furthermore,
the knowledge that employees in certain job roles are more
susceptible to the phenomenon should lead to a review how
these roles could be restructured in order to lessen the likeli-
hood of information anxiety emerging.

B. Future Work

Having taken the first step towards investigating information
anxiety in the ICT industry, we plan continuing this work
across two prongs of research. number of related projects in
the near future. Firstly, we would like to set up a longitudinal
study which spans a longer period, ideally a year or more.
This would allow us to gain insights into how and why
anxiety levels change over time. We anticipate that the main

3Jira is a commonly used tool in the ICT industry which enables stakehold-
ers to report issues with software (or request new features) and track work
and discussions by developers whilst development progresses.

problem with such a study would be maintaining participant
engagement, and to this end we are currently investigating the
possibility of utilising gamification to achieve this.

Secondly, we would like to investigate the sources of anxiety
in more detail. In particular, we are interested in understanding
if there are any relationships between specific components and
whether these are amplified in particular contexts. Insights
gained in this area could lead future studies with a more refined
focus on specific contexts or sources of anxiety.

REFERENCES

[1] J. Kenway, E. Bullen, J. Fahey, and S. Robb, Haunting the knowledge
economy. Routledge, 2006, vol. 6.

[2] L. Chinho and T. Shu-Mei, “The implementation gaps for the
knowledge management system,” Industrial Management & Data
Systems, vol. 105, no. 2, pp. 208–222, February 2005. [Online].
Available: http://dx.doi.org/10.1108/02635570510583334

[3] S. Misra and D. Stokols, “Psychological and health outcomes of per-
ceived information overload,” Environment and behavior, vol. 44, no. 6,
pp. 737–759, 2012.

[4] M. Mäntylä, B. Adams, G. Destefanis, D. Graziotin, and M. Ortu,
“Mining valence, arousal, and dominance: possibilities for detecting
burnout and productivity?” in Proceedings of the 13th International
Conference on Mining Software Repositories. ACM, 2016, pp. 247–
258.

[5] R. S. Wurman, Information Anxiety. Doubleday, 1989. [Online].
Available: http://books.google.com/books?id=f8ZoAAAAIAAJ

[6] M. K. Sein and G. Harindranath, “Conceptualizing the ict artifact:
Toward understanding the role of ict in national development,” The
Information Society, vol. 20, no. 1, pp. 15–24, 2004.

[7] D. Pilat and A. Wölfl, “Ict production and ict use: What role in aggre-
gate productivity growth?” The Economic impact of ICT-measurement,
evidence, and implications, pp. 85–104, 2004.

[8] P. Hartog, “A generation of information anxiety: Refinements and
recommendations,” The Christian Librarian, vol. 60, no. 1, p. 8, 2017.

[9] J. M. Burkhardt, M. C. MacDonald, and A. J. Rathemacher, Teaching
information literacy: 50 standards-based exercises for college students.
American Library Association, 2010.

[10] M. McCarthy, “Mastering the information age,” Los Angeles: Jeremy P.
Tarcher, 1991.

[11] P. Waddington, “Dying for information? a report on the effects of
information overload in the uk and worldwide,” British library research
and innovation report, pp. 49–52, 1997.

[12] C. J. Williams, Reassessing the role of anxiety in information seeking.
University of North Texas, 2008.

[13] D. Bawden and L. Robinson, “The dark side of information: overload,
anxiety and other paradoxes and pathologies,” Journal of information
science, vol. 35, no. 2, pp. 180–191, 2009.

[14] P. F. Katopol, “Information anxiety and african-american students in a
graduate education program.” Education Libraries, vol. 35, pp. 5–14,
2012.

[15] J. Fox, “Conquering information anxiety. relief from your
data glut starts here,” 1998. [Online]. Available: http://www.ibt-
pep.com/articles/dataglutrelief.doc

[16] G. Ifijeh, “Information explosion and university libraries: Current trends
and strategies for intervention,” Chinese Librarianship: an International
Electronic Journal, 2010.

[17] R. S. Lazarus, “Psychological stress and coping in adaptation and
illness,” The International journal of psychiatry in medicine, vol. 5,
no. 4, pp. 321–333, 1974.

[18] S. Cohen, T. Kamarck, and R. Mermelstein, “A global measure of
perceived stress,” Journal of health and social behavior, pp. 385–396,
1983.

[19] J. Girard and M. Allison, “Information anxiety: Fact, fable or fallacy,”
Electronic Journal of Knowledge Management, vol. 6, no. 2, pp. 111–
124, 2008.

[20] A. B. Warriner, V. Kuperman, and M. Brysbaert, “Norms of valence,
arousal, and dominance for 13,915 english lemmas,” Behavior research
methods, vol. 45, no. 4, pp. 1191–1207, 2013.

599

DOI reference number: 10.18293/SEKE2019-098

A Case Study of a Software Development Process

Model for SIS-ASTROS

Camila Hübner Brondani, Otávio da Cruz Mello, Lisandra Manzoni Fontoura
Departamento de Computação Aplicada – DCOM

Universidade Federal de Santa Maria – UFSM

Santa Maria, Brazil

{chbrondani, odmello, lisandra}@inf.ufsm.br

Abstract — Context: technological innovation projects,

developed in universities in partnership with companies and/or

the government need processes that can handle the

characteristics of the institutions involved. The academic

environment is often used to dynamic methods, but contracts

require plan-driven processes. Goal: the goal of this research is

to understand the needs of the parties involved (university and

government/enterprise) and provide an adapted software

process to satisfy those necessities. Method: a case study

considering a project between the Federal University of Santa

Maria (UFSM) and the Brazilian Army (BA) for the

development of an Integrated Simulation System was

conducted. Initially, problems in the development were

detected and a process was defined. It was then evaluated and

improved over the iterations, through team meetings. Results:

the experience acquired in the project was consolidated as

lessons that could be used to assist the process definition of

projects with similar characteristics. Conclusion: innovation

projects involving the collaboration of universities, government

and/or companies are successful if an adequate process is

established to treat specificities of the academy, not only in

relation to characteristics of the work but also the team.

Keywords—process, triple helix, ASTROS, case study.

I. INTRODUCTION

The university today, besides the academic activities and

the pure research, promotes the development of applied

research aiming to generate innovation solutions from issues

presented by governmental institutions and enterprises. The

triple helix thesis states that universities are distancing

themselves from having a secondary social role, although

important, of providing higher education and research, and

is taking a primary role equivalent to the industry and the

government, generating new industries and companies [1].

In this context, the Federal University of Santa Maria
(UFSM) started a project to develop an Integrated Simulation
System for the Brazilian Army (BA) in 2015. One of the
initial challenges of the project was defining an adequate
process model. Since there was an agreement between the
BA and the UFSM with predetermined goals and deadlines, a
plan-driven process model would be more satisfactory. On
the other hand, the research needed for the system
development could not be predictable, requiring
investigation, prototype development and evaluation. The set
of requirements was vague; the team was formed of high-
skilled workers with autonomy. Based on these aspects, agile
methodologies could be considered more proper.

Understanding the peculiarities of a project involving the
university and government is crucial to choose an adequate
process model that can satisfy the needs of both parties.

In this article, we will describe the lessons learned during
four years of a research project between the UFSM and the
BA and the process model that was used in this development,
adapted over the iterations. Our goal is that the lessons
learned and the process model can assist the definition and/or
adaptation of models that are used in projects involving
universities and governmental institutions or private
companies.

The project in question proposes the development of a
Tactical Virtual Simulator aiming the military training in
tactical operations related to the use of an ASTROS battery
(Artillery Saturation Rocket System).

Some important characteristics of the project are: need of
meeting semi-annual goals pre-defined at the start of the
project, difficulty of defining requirements due to the
system’s complexity, the unfamiliarity of the development
team with the area of application, high-skilled workers, and
constant need of innovative solutions research.

Those attributes led the definition of the software
process. An evolutionary and iterative life cycle was defined,
where intermediary versions of the software are generated
and evaluated constantly by the client, easing the definition
of new requirements for the next iteration. Besides that,
milestones were defined with the purpose to satisfy
contractual obligations. The process was evaluated and
improved over the course of the project and the experience
acquired was consolidated as learned lessons to be used in
the development of other similar software projects.

This article is organized as follows: in Section II,
important concepts to the comprehension of this work are
introduced. In Section III, related works are discussed. In
Section IV the context of the case study is described. In
Section V, we define the proposed process. In Section VI,
discussion and analysis are presented. At last, in Section VII
we discuss our final considerations and comment on future
works.

II. BACKGROUND

Modeling of software process has been a very
challenging problem and constantly debated in the software
development community in the past 30+ years, largely due to
the complex nature of the software development process that
involves not only the technical knowledge and skills but also

600

many other factors, such as human, management, quality
assessment, and cost [2]. The modeling of business processes
aids in the comprehension and optimization of existing
business processes, and also in the conception of new
business processes to make organizations more competitive
and efficient [3].

Software development strategies have gradually shifted
from the traditional waterfall model to more dynamic and
responsive iterative, multi-cycle strategies. The reason
usually cited is the need to minimize risk in the process [4].

Traditional iterative software development efforts such as
spiral development or iterative enhancement can be
considered adaptations of the waterfall software life cycle
[5]. This is because these methods generally assume that the
entire documentation required by the waterfall method will
still be produced, but will be rewritten and updated during
each cycle rather than once for the entire software process
[5].

Agile processes are different from traditional software
processes in that the time per cycle is very short and many
fewer formal methods are employed. They focused on
repeated lightweight practices for rapid and continuous
delivery of software in small chunks with close collaboration
from the customer as well as among members of the
development teams.

No rigid plan or requirement is determined in advance, as
these can change during the development process. Being
flexible and adaptive to changes are in the DNA of agile
methods while still achieve the ultimate goal of producing
customer satisfied software within the time and cost
framework [5]. Extreme Programming and Scrum are two
software development processes that fit this description [5].

Many software development methodologies fall in
between plan-driven development and agile development,
and exhibit several of the characteristics of agile
development. Examples include incremental development,
prototyping, and DSDM (Dynamic Systems Development
Method) [6].

To mitigate the impacts of abrupt paradigm changes and
support organizations that don’t want to stop following all
traditional practices some proposals were developed for
hybrid processes that incorporate principles of agile and
traditional paradigms [7].

III. RELATED WORK

The study from Cotugno and Messina [8] presents an
overview of the development process, focusing on the Scrum
methodology adopted by the Italian Army for the
development of software systems using open code
technologies.

Benedicenti et al. [9] relate the experience of an agile
application in the defense sector They describe the
experience of creating a control and command system for the
Italian Army. The delivery of the project happened after 13
sprints of five weeks, meeting all the needs of the users and
satisfying the regulatory requirements of the army. Acquiring
this positive result demanded collective effort to change the
development culture, since there was natural resistance to
change, and the need of highest possible support level to

guarantee the continuity of the selected process. The article
presents the positive results quantified.

As well as this article, the work from Cotugno and
Messina [8] and Benedicenti et al. [9] describe
methodologies and techniques used in the software
development in an military environment. The main
difference is that both are only focused on agile methods.

The work from Jenkis [10] describes the implementation
experience of PRO-SOFTWARE, a software quality project
involving the government, industry and academy (the triple
helix). The goal was strengthening the software industry in
Costa Rica, assisting organizations in improving their
software processes. Therefore, Jenkis [10] proposes a
methodology based on the quality improvement using the
Capability Maturity Model (CMM) as base.

IV. CASE STUDY DESIGN

In order to address the research objective, we designed an
exploratory case study, which involved a real-world software
project. We define a software process based on identified
process and analyze this process over several iterations. This
section describes the design of the case study.

A. Project Context

The SIS-ASTROS project started in 2015, and is
predicted to end in 2020. The main goal of the project is the
development of an integrated simulation system to support
the teaching of doctrines related to the use of a rocket
artillery battery. The development team is formed of 7 doctor
professors, 3 researchers, 4 developers, 7 master’s degree
students and 13 undergraduate students.

In addition, the requirement of the projects were
described in high level of abstraction, the UFSM’s team did
not have the knowledge of the domain and the project
required some innovative solutions, mainly related to the
simulator’s integrity, 3D scenarios generation and
autonomous navigation. It is predicted to transfer the
technology to the BA at the end of the project.

On the other side, the professors and researchers have
long experience in the research field, developing researches
to provide innovative solutions in different areas of computer
science.

B. Methodology

At the beginning of the development, there was not a
process model clearly defined in the project, so the artifacts
were not standardized and the flow of activities did not
follow a pre-defined roadmap. This scenario brought
difficulties in the project management and fomented the
definition and elaboration of a software process for the
project. Therefore, from this necessity, this research project
was initiated. The methodology used by the team to conduct
the case study was composed of the four phases described
below.

Diagnosis: identification of the problems happening on
the project and possible solutions. In this stage, many
problems related to the inexistence of a defined software
process were found. The discovery of the problems occurred
through meetings with the partied involved in the project.

601

Planning: from the problems identified in the last stage, a
process model to be used in the project was proposed, aiming
to solve these problems and satisfy the characteristics and
necessities of the project and the team at the same time.

Implementation and Evaluation: during the three
following years, the process was implemented and
improvements were incorporated to it, intending to adapt the
project to current needs.

Analysis: the results obtained over the course of the
project are presented and the acquired experience is
described as lessons learned.

C. Problems Diagnosis

The issues found during the Diagnosis phase can be
summarized as follows.

Unfamiliarity with the application domain

The UFSM team did not have knowledge about military
doctrines neither terminologies of the field. The manuals
were rich in details and very extensive, making it difficult for
the team to understand and learn.

Difficulties related to requirements definition

Being an innovative software, the set of requirements
was not defined. There were a lot of concerns and doubts
about how the simulation system would work and which
features would be necessary.

Complexity of solutions

Complex and innovative computational solutions were
required to solve the technical issues found during the
development.

Rework

The team project was composed of workers with different
skill levels, the professors and the researches were high
skilled, master’s degree students possessed an average level
of skill and undergraduate students were low skilled. Since
there was a large number of trainees, many problems in the
source code were found, like defects, lines that were hard to
comprehend and maintain, and issues related to class
structuring.

Communication difficulties

Due to the hierarchic communication structure with the
client, the information goes through several levels until the

decision taking. This communication flow causes problems
like developmental delay, when for example, the team needs
to wait for an answer to a doubt.

High team turnover

The students remain in the project while they are taking
their graduation or master’s degree course, on average two
years. Therefore, we have high turnover.

Requirements instability/Changing Requirements

Constant changes in requirements, mainly during the test
phases. Many changes occur because of divergent opinions,
often due to lack of vision of the whole.

V. PROPOSED PROCESS OVERVIEW

In the planning phase, a software process was developed
with intent of proposing solutions to the issues identified
during the diagnosis phase while meeting the needs and
peculiarities of the government and the academy. On one
side, we have a stakeholder that gives priority to software
documentation, rigid definition of iterations and deadlines,
while on the other side, we have a self-managing team that is
focused on development and coding.

The process initially defined was constantly evaluated
through the phases and iterations (Implementation and
Evaluation phase). The evaluations were performed during
meetings, when the parties involved would discuss which
practices gave positive results and which should be reviewed,
and with this feedback, the process was improved.

The current process is described in Figure 1 (life cycle
vision), Figure 2 (iteration activities) and Figure 3 (change
management sub-process activities).

Some considerations about the process are described in
the following section.

A. Process Life Cycle

Aiming to include the formal deliveries, foreseen in the
contract, the life cycle was organized in phases and
iterations, as depicted in Figure 1. Two phases are planned:
initiation and construction, finished with a major milestone.

The initiation phase only happens once and is responsible
for defining an overview (abstract) of the system in
development and giving a clear comprehension of the
business domain that is related to this system.

Fig. 1. Life Cycle Vision

602

The construction phase, on the other hand, is responsible
for the execution of the technical activities that will generate
a new version of the software. A project can have as many
construction phases as needed, and each one can have
multiple iterations. Both phases must respect contractual
obligations, for this reason, they are finished with a major
milestone that indicates a formal delivery to the client.

Since the phases usually refer to bigger time spans
(semesters, years), it was chosen to break them in many
iterations with the purpose of speeding up the process. Each
iteration has its complete development cycle, from
requirements definition to version evaluation (Figure 2). The
software versions developed in the iteration are always
delivered when the phase ends (major milestone). The
number of phases and the amount of iterations in each of
these phases depend on the project and can be adjusted.

Fig. 2. Iteration Activities

At the end of the iteration, meetings with the client are
held to present the intermediary version of the software, in
which possible improvements, changes and evolutions are
discussed. These meetings are important to track the current
progress of the development team.

B. Activities and Artifacts

The initiation phase is composed of four main tasks that
happen at the same time: define business rules, model

business diagrams, define business glossary and develop
vision. These tasks generate the artifacts business rules,
business diagrams, business glossary and vision document,
which are formally evaluated by the client. Before the
construction phase starts, it is extremely important that the
artifacts generated during the initiation phase have been
approved by all the stakeholders (task validate documents).
When the respective documents are finished and approved,
successive iterations start in each phase. Each one has a set
of tasks that generate an intermediary version of the
software. In the first task, the stakeholders meet to define the
requirements that must be implemented in the cycle.

After the requirements of that iteration are defined and
prioritized, the specification and detailing tasks start.
Diagrams and requirements specification documents are
created to assist the team members during the development
and the technology transfer process. All the artifacts created
in this phase are managed in a requirements management
tool.

The tasks identify research-related problems and perform
additional research are executed simultaneously, due to
constant innovative solutions research. These are
incorporated in the simulator in the next iteration.

Once the modeling ends, the team can finally start
implementing and testing. If there are issues with a feature
that cannot be fixed during the defined cycle, or the
programmers are late in the development, an artifact is
generated reporting the features that could not be finished, so
they can be implemented in the next cycle. As soon as the
iteration finishes, the client validates the intermediary
version of the software, defining additions or changes that
should take place. These are documented and serve as input
for the next iteration’s requirements definition.

Change requests can be submitted at any time, either to
include or modify a requirement that was previously defined.
In the main process, the procedure of submitting a change
request is seen as a sub-process (Figure 3).

Fig. 3. Change Management Sub-process Activities

603

This sub-process is basically a flow of activities to
manage the changes in the project. First, a stakeholder
submits a change request, which is reviewed by a committee
and, if the request is relevant, the change is incorporated in
the version of the software. However, there are times when
no requests are submitted in an iteration, so the change
management process will not necessarily occur in the flow,
therefore, being optional.

C. Roles

The project team was organized in levels: researcher
professors (part time), professionals and researchers (full
time), master’s degree students and trainees (part time). The
researcher professors guide the students in solving research
problems and developing their academic works.

Professors are also responsible for the project
management. Professionals and researchers are in charge of
planning the tasks to be assigned to each member of the
team, communicating obstacles to the management and
organizing the daily routine of the team. Master’s degree
students are responsible for guiding the undergraduate
students in their activities, helping solving issues regarding
tasks assigned to them. The product owner is responsible for
the communication between the development team and the
client; all the requests from the team are centered on this
person, which will track them until they are complete.

The team is collaborative, all the workers are assigned to
close workrooms and there is constant exchange of
knowledge between the team members.

VI. DISCUSSION AND ANALYSIS

The plan-driven approach served as foundation to the
process definition. Using the basic principles: analysis,
design, construction and verification, we have the basis for
the flow of activities, supporting development of specific
documents related to each phase of the project. The
contractual aspect of the project, that demands deliveries on
a timeframe, is contemplated with milestones at the end of
each phase. The documents submitted are important for the
requirement of technologic transference at the end of the
project.

Allied to traditional models, we’ve decided to apply
some characteristics of agile methodologies to the process as
well, in order to emphasize the collaborative and
communicative principles of the team and the final user,
allowing incremental deliveries and also supporting the
constant change requests without affecting or causing time
and/or financial damage to the project [11].

Therefore, the method used in the creation of the process
was defined as a hybrid between plan-driven and agile
models, using the most advantageous characteristics, aligned
with the goals of the project. In addition, for each issue
found, actions were taken in the software process, aiming to
solve or minimize them. They are described below.

Unfamiliarity with the application domain

The solution found was including some tasks at the start
of the process with the purpose of comprehending the
application domain. Diagrams that represented the domain
were elaborated in collaboration with the stakeholders.
Besides that, glossaries were also created, that are being

maintained through the course of the project. The BA team
has been formally validating these documents.

Difficulties related to requirements definition

It was decided to work on intermediary versions of the
software that were evaluated periodically by the BA team.
When all the parties approved the prototype, a new set of
requirements for the next iteration would be defined.

Complexity of solutions

It required applied research and development of master’s
essays and final papers exploring necessary solutions for the
development of the simulator guided by a researcher in the
field.

Rework

The solution was the constant refactoring of the source
code, especially at the beginning of the project. Before the
formal deliveries, there were periods intended for the code
refactoring, with the purpose of improving legibility and
documentation, as well as removing unnecessary code lines.
We now focus on continuous source-code reviewing.
Additionally, there is an internal hierarchy where
experienced members assist new ones, helping them
developing high-quality artifacts.

Communication difficulties

A formal communication flow was defined so that the
parties involved track the information requests.

High team turnover

Some experienced professionals (researchers and
programmers) were hired full time. Teamwork is encouraged
and constant experience exchange between trainees and
experienced members happen, thus, the team shares the
knowledge of the system.

Requirements instability/Changing Requirements

Usage of incremental and iterative development, focused
on periodic presentations of the intermediary version of the
software. A formal change request process was also created.

Based on the results obtained by the execution of the
process and the continuous monitoring of the team and the
client since the beginning of the project up until now, it was
possible to define some of the best practices and adopted
decisions that reflected positively on the quality and progress
of the project. It is believed that these practices can be
applied in software development projects that involve
academy and government and/or industry.

Client’s periodic homologation

Iterative development allows the team to deliver a
functional product to the client at the end of each iteration or
cycle. The client can use this prototype over a period of time
and provide feedback for the developers in terms of
definition of new requirements, change requests and issue
reporting. Usually, changes are incorporated into the
requirements baseline to be implemented in the next
iteration.

Use of diagrams to represent the business domain

Business diagrams helped the team to comprehend the
business domain, making future communications more fluid.
These diagrams were also used by the client to communicate

604

with other parties involved in the project. It was possible to
represent the BA doctrines fully and clearly, preventing the
team from reading manuals that are complex and difficult to
understand.

Cooperative work

Team members can learn from each other. The more
experienced guide the less experienced. Additionally, each
team member knows what the others are developing, and can
exchange information. The development of a particular
activity becomes priority of the group as a whole, and not
property of a certain team member only. The master’s degree
students mentor undergraduate students in research, that way,
team members develop a common sense of responsibility
that brings them closer.

Effective communication

The agile processes support the idea of face-to-face
communication as the most effective and efficient method of
transmitting information in the development team. The
UFSM team is allocated in a sole environment. However,
since the client team is located in another state, face-to-face
communication is not possible. Therefore, to build an
efficient communication method, it was necessary to center
the communication on the Product Owner. This person is
responsible for bringing the military vision to the project and
evaluating, along with the team, the enhancements or
changes that should take place to ensure that the software
fulfill the needs of the BA. Bimestrial face-to-face meetings
are scheduled.

Definition of a change management process

The change management process helped to monitor
change requests and limited the number of unnecessary
requests without the global comprehension of the system.

In the SIS-ASTROS project, we have defined one
initiation phase and five construction phases, with duration
of six months each. In each construction phase, three
bimestrial iterations were established, since there are many
part-time workers in the project that need to conciliate their
work in the project with their academic obligations, teaching,
in the case of professors, and classes and university
assignments, in the case of students.

During this time, we managed to meet the goals defined
in the project within the time and budget. The BA is satisfied
with the results obtained and future projects are being
discussed. The formal change request process reduced
rework, and the amount of defects in the software has been
dropping over time at the same pace performance (response
time) has been increasing.

VII. CONCLUDING REMARKS

Projects involving the collaboration between universities
and government and/or industry are successful if suitable
procedures to handle the needs and peculiarities of the parties
involved are established. In the described case study, hybrid
process types proved to be satisfactory because they explore
plan-driven characteristics – based in contracts, at the same
time agile methods are suitable for innovative projects,
which involve high-skilled professionals.

It was possible to experience practices from both
investigated process in this project, reflecting positively in
the developmental quality and progress, solving issues
previously detected and establishing a set of learned lessons
that can be used in other similar software development
projects.

As future work, the main idea is to review the process
periodically along with the team, continuously verifying the
relevance of the activities and artifacts. As the process is
thoroughly used, it may be possible to optimize some
activities, thereby making the process less bureaucratic.

The fact that this approach was only applied in one
project, even if in successive iterations during three years,
was a limitation associated with this article.

ACKNOWLEDGMENT

We thank the Brazilian Army for the financial support
through the SIS-ASTROS Project (813782/2014), developed
in the context of the PEE-ASTROS 2020.

REFERENCES

[1] H. Etzkowitz and C. Zhou, “Hélice Tríplice: inovação e

empreendedorismo universidade-indústria-governo,” Estudos

Avançados, vol. 31, no. 90, pp. 23–48, 2017.

[2] R. A. Haraty and G. Hu, “Software Process Models: A Review and

Analysis,” International Journal of Engineering & Technology, vol.

7, pp. 325–331, 2018.

[3] K. C. Laudon and C. G. Traver, Management Information Systems,

12th ed. Sao Paulo: Prentice Hall, 2011.

[4] H. M. Olague, L. H. Etzkorn, W. Li, and G. Cox, “Assessing Design

Instability in Iterative (agile) Object-Oriented Projects,” Journal of

Software Maintenance and Evolution: Research and Practice, pp.

237–266, 2006.

[5] B. Ramesh, L. Cao, and R. Baskerville, “Agile Requirements

Engineering Practices and Challenges: An Empirical Study,”

Information Systems Journal, vol. 20, no. 5, pp. 449–480, 2010.

[6] G. Van Waardenburg and H. Van Vliet, “When agile meets the

enterprise,” Information and Software Technology, vol. 55, no. 12,

pp. 2154–2171, 2013.

[7] W. Chaves, D. S. Carvalho, P. F. Rosa, S. Soares, M. Antonio, and

L. C. Buiatte, “A comparative Analysis of the Agile and Traditional

Software Development Processes Productivity,” 30th International

Conference of the Chilean Computer Science Society, IEEE, pp. 74–

82, 2012.

[8] F. Cotugno and A. Messina, “Adapting SCRUM to the Italian

Army : Methods and (Open) Tools,” IFIP International Federation

for Information Processing, 2016.

[9] L. Benedicenti, A. Messina, and A. Sillitti, “iAgile: Mission Critical

Military Software Development,” International Conference on High

Performance Computing & Simulation iAgile:, pp. 545–552, 2017.

[10] M. Jenkins, “PRO-SOFTWARE: A Government-Industry-Academia

Partnership that Worked,” 17th Conference on Software Engineering

Education and Training (CSEET’04), 2004.

[11] I. Sommerville, Engenharia de Software, 9th ed. São Paulo: Pearson

Prentice Hall, 2011.

605

DOI reference number: 10.18293/SEKE2019-111

Experiences on applying SPL Engineering Techniques to
Design a (Re) usable Ontology in the Energy Domain

Javier Cuenca, Felix Larrinaga
Electronics and Computing Department

Mondragon University/Faculty of Engineering
Mondragon, Spain

jcuenca@mondragon.edu, flarrinaga@mondragon.edu

Edward Curry
Insight Centre For Data Analytics

National University of Ireland
Galway, Ireland

edward.curry@insight-centre.org

Abstract—Global ontologies must provide a balance of reusability-

usability to minimize the ontology reuse effort in different

applications. To achieve this balance, ontology design methods

focus on designing layered ontologies that classify into abstraction

layers the common domain knowledge (reused by most

applications) and the variant domain knowledge (reused by

specific application types). This classification is performed from

scratch by domain experts and ontology engineers. Hence, the

design of reusable and usable ontologies that represent complex

domains takes a lot of effort. Considering how common and

variant software features are classified when designing Software

Product Lines (SPLs), we argue that SPL engineering techniques

can facilitate the domain knowledge classification taking as

reference existing ontologies. In this paper, we show the

experiences of applying SPL and ontology design techniques in

combination to design a reusable and usable global ontology for

the energy domain. Domain experts and ontology engineers

evaluated the proposed method. The results show that SPL

engineering techniques enable a systematic and accurate domain

knowledge classification, thus saving ontology design effort.

Keywords-ontology design; ontology reusability; ontology

usability; Software Product Line; energy domain.

I. INTRODUCTION
Ontologies are formal vocabularies that represent a data

domain as a set of concepts and relations. The main ontology
elements are classes (to represent entities, i.e., device,
appliance), instances (individuals that belong to a certain class,
i.e., MU_fridge, MU_building_11) and properties (relations that
relate classes and individuals, i.e., isA, isIn) (Fig. 1). With these
elements, ontologies enable to create a generic knowledge that
can be shared across different software applications [1].

Among the different ontology types, global ontologies
include common vocabularies to provide a common domain
knowledge representation (i.e., Soupa [2]). The knowledge of
global ontologies is a reference to develop ontologies for
specific applications (application ontologies) [3]. This common
knowledge representation overcomes the vocabulary differences
and the heterogeneity of ontologies in the domain concerned to
enable interoperability between ontology-based applications [3].

A global ontology must represent abstract knowledge to
support different applications: it must be reusable [4]. However,
if the ontology is too abstract, the effort of adapting it to satisfy

Figure 1: Ontology example

specific knowledge requirements would be high. Therefore, a
global ontology must be as specific as possible to minimize the
ontology reuse effort when it is reused to develop application
ontologies: it must be usable [4]. Both reusability and usability
are objectives in “in natural conflict” [4]. Hence, a global
ontology must achieve a balance of reusability-usability so that
it is reused in different applications with moderate effort.

To date, layered ontologies have been applied to achieve a
balance of reusability-usability (i.e., OntoCape ontology [4]).
They separate and classify into abstraction layers the common
domain knowledge (reused by most applications) and the variant
domain knowledge (reused by specific application types). We
consider an application type a family of applications that
perform similar tasks. In addition, the knowledge of each layer
is divided into ontology modules, which represent the
knowledge of a particular topic of the represented domain (each
module imports the modules whose knowledge it requires or
extends) [5]. Layered ontologies enable ontology developers to
reuse only the necessary knowledge at the proper level of
abstraction to develop application ontologies, thus reducing the
ontology reuse effort in different applications [6].

Current methods applied to design reusable and usable
ontologies [4], [7], [8] provide guidelines to define the ontology
layers and the knowledge they include. However, they do not
provide systematic guidelines to decide whether the domain
knowledge is common or variant and in which layer it is placed.
Domain experts and ontology engineers define and classify from
scratch the common and variant domain knowledge. Ontologies
are usually developed in complex domains (i.e., energy) [7].
Hence, a significant effort is required to classify the ontology
knowledge from scratch by applying existing methodologies
when designing reusable and usable ontologies.

Layered ontologies are quite similar in concept to Software

606

mailto:jcuenca@mondragon.edu

Product Lines (SPLs), software families that contain common
reusable parts and variable parts that depend on specific
customer needs [9]. To design SPLs, software features for a set
of applications are analyzed and classified into common features
(common to most applications) and variant features
(implemented by specific applications) [9]. This process is
known as commonality and variability analysis (CVA) [8]. This
analysis is usually performed systematically taking as reference
the software feature similarities and differences of legacy
applications to complement domain experts’ and software
engineers’ expertise [8]. This approach avoids classifying the
software features from scratch, thus reducing the SPL design
effort [10]. In addition, the software features reused by few
applications are identified and the accuracy of the software
feature classification is maximized [10].

After several decades of ontology development, many
ontologies are available and developed to support certain
application types. Hence, the CVA applied to design SPLs can
be replicated in the ontology engineering field to design reusable
and usable ontologies. The similarities and differences of the
knowledge represented by existing ontologies can be analyzed.
This analysis would complement domain experts and ontology
engineers’ expertise and prevent them from classifying the
domain knowledge from scratch. In addition, the variant domain
knowledge reused by specific applications could be identified,
thus leading to an accurate domain knowledge classification.

In this paper, we show the experiences of applying SPL
engineering techniques and ontology design principles in
combination to design a reusable and usable global ontology for
the energy domain. We discuss how applicable are SPL
engineering techniques to design reusable and usable ontologies
and the benefits they bring to the ontology design process.

The paper is structured as follows. Section 2 motivates the
application of SPL engineering techniques to design a reusable
and usable global energy ontology. Section 3 positions the
proposed method with current ontology and SPL design
methodologies. Section 4 describes the process we followed to
design a global energy ontology by applying SPL engineering
and ontology design techniques in combination. In Section 5,
domain experts and ontology engineers evaluate the proposed
method and Section 6 summarizes the learnt lessons. Section 7
summarizes the conclusions of the study and the future work.

II. MOTIVATIONAL SCENARIO
From the beginning of the current decade, ontologies that

represent the knowledge from different energy domains have
been developed. These ontologies support energy management
applications focused on improving the current grid sustainability
to make the Smart Grid vision a reality [11]. These applications
can be classified into different types according to the Smart Grid
scenario/infrastructure where they are deployed, i.e., Smart
Home or building energy management applications. We define
these application types as Smart Grid scenarios. Each Smart
Grid scenario encompasses more specific application types. For
instance, within Smart Home energy management applications,
there are applications focused on home energy assessment or
appliance Demand Response (DR) management. To see in more
detail this classification we refer the reader to [12].

Energy ontologies are heterogeneous, since they represent
the same energy domains (i.e., energy equipment data) with
different vocabularies [12]. The energy management in real
scenarios will require the knowledge exchange among
applications that operate in different scenarios. This knowledge
exchange is hampered by the heterogeneity of energy ontologies.
Hence, there is the need to create a global ontology that provides
a common energy domain representation [12]. It should support
different energy management applications and provide balance
of reusability-usability to minimize the ontology reuse effort in
each application. Since the energy domains are complex, the
application of existing reusable and usable ontology design
methodologies would require a great effort. Since there are many
developed energy ontologies, their knowledge
similarities/differences can be analyzed to save ontology design
effort.

III. RELATED WORK
The first knowledge classification proposals correspond to

frameworks that classify ontologies according to their
generality/specificity level. Guarino [13] presented the first
ontology classification framework, which was refined by
Gomez-Perez [14]. Layered ontologies (introduced in Section 1)
are based on the aforementioned frameworks and they are the
main approach to design ontologies that provide a balance of
reusability-usability. In the last decade, several reusable and
usable ontology design methodologies (based on the layered
ontology approach) have been proposed. Spyns et al. [8]
presented the DOGMA methodology, which specifies how to
represent and separate the common and variant domain
knowledge to design ontologies that provide a balance of
reusability-usability. Thakker et al. [7] set out a methodology to
develop reusable and usable ontologies for complex domains.
Morbach et al. [4] developed the OntoCape ontology, a reusable
and usable ontology for the chemical process engineering
domain. In these methodologies, the classification of the domain
knowledge is performed from scratch based on domain experts’
and ontology engineers’ expertise. They analyze the knowledge
requirements of the application types that will be supported by
the ontology (in collaboration with stakeholders). In contrast, in
the method presented in this paper the common and variant
domain knowledge is identified and classified through a CVA of
existing ontologies conducted by applying SPL engineering
techniques. Apart from this differential aspect, the proposed
method applies the ontology design principles applied by current
methodologies.

Regarding SPL design approaches, Pohl et al. [9] provide
guidelines and enumerate the techniques to conduct a CVA. The
proposed method follows these guidelines. In addition, several
works have combined techniques from ontology and SPL
engineering. Most of these works consist on the use of
ontologies to improve the representation of common and variant
software features of SPLs [15], [16]. In other works, ontologies
and SPLs have been applied in combination, i.e., to manage
cloud service configurations [17]. The proposed method also
combines ontology and SPL techniques. In this case, SPL
engineering techniques are applied to improve the ontology
design process.

607

Figure 2: DABGEO design steps

IV. PROPOSED METHOD
This section explains the process we followed to design a

global energy ontology: the DABGEO ontology. DABGEO
provides a common energy domain representation and classifies
the domain knowledge into abstraction layers to provide a
balance of reusability-usability. DABGEO and its
documentation are published online 1 , so that ontology
developers can understand its structure and reuse it. The
DABGEO design and development team included energy
domain experts and ontology engineers. DABGEO was
designed by applying SPL engineering and ontology design
techniques in combination. The design process followed four
steps (Fig. 2), described in the following subsections.

A. Step 1: Ontology Structure Definition

In this step, the DABGEO structure was defined by the

domain experts based on the layers proposed by the methods
reviewed in Section 3. DABGEO includes three layers (Fig. 3).
The common-domain layer represents the knowledge common
to the Smart Grid scenarios. Variant domain knowledge still
common to more than one Smart Grid scenario is included in the
variant-domain layer. The domain-task layer includes the
knowledge reused in specific Smart Grid scenarios and is
divided into the Smart Grid scenario and the application type
sublayers. The former represents the knowledge reused by a
certain Smart Grid scenario and the later represents the
knowledge reused by a certain application type of a Smart Grid
scenario. The lower the layer, the more specific the knowledge
it represents. Hence, the modules from low-level layers will
import the modules from upper layers. For more information
about the ontology structure, we refer the reader to the ontology
publication page1.

B. Step 2: Domain Knowledge Hierarchy Definition

In this step, domain experts and ontology engineers defined

and structured DABGEO knowledge. The knowledge was
defined as a knowledge hierarchy where the represented
domains were divided into specific knowledge pieces. This
knowledge hierarchy enabled (1) to separate the abstract
knowledge that is likely to be reused in most of applications
from the specific knowledge and (2) to classify of the defined
knowledge pieces into the layers of the ontology structure
(performed in Step 3). Fig. 4 shows part of DABGEO
knowledge hierarchy, which includes three elements:

 Domains: the domains represented by the ontology are
located in the first level of the hierarchy. For instance,

1 http://www.purl.org/dabgeo

Figure 3: DABGEO ontology structure

the energy equipment domain encompasses the
knowledge about energy devices and their operation.

 Subdomains: they cover the knowledge of an important
part of the domain and are located in the second level of
the hierarchy. For instance, the energy equipment
domain encompasses the energy consumption systems
and device operation subdomains, which represent the
knowledge about energy consumption devices and
device functional features respectively.

 Knowledge Areas (KAs): in the third level of the
hierarchy, consider a KA as a potential module of the
designed ontology that encompasses the knowledge of a
specific topic of a subdomain. For instance, within the
energy consumption systems subdomain the appliances
KA represents the knowledge about appliance types. KA
can be divided into “child” sub-KAs that represent more
specific knowledge. For example, the appliances KA
includes the white goods and brown goods KAs, which
represent the knowledge about white and brown goods
types respectively. Hence, a sub-KA extends the
knowledge of a “parent” KA. Finally, some KAs may
require the knowledge from other KAs to represent the
knowledge they encompass. For instance, the energy
consumption systems operation KA describes the states
and functionalities of energy consumption systems. It
requires the knowledge of device state and device
functionality KAs, which represent the knowledge about
device states and functionalities respectively.

The proposed method classifies the ontology domain
knowledge based on a CVA of existing energy ontologies. Thus,
the knowledge hierarchy includes the knowledge represented by
existing ontologies. The domain experts and ontology engineers
collaborated to perform a manual analysis of the elements of
existing ontologies in the Protégé ontology editor2 to identify the
domains they represent and to divide them into KAs. The
identified domains were divided into subdomains, which were
divided into KAs taking as reference the Competency Questions
(CQs) answered by existing ontologies. CQs are the queries that
ontologies should answer to ontology-based applications, and
they are used to define the ontology functional

2 https://protege.stanford.edu/

608

Figure 4: Part of the knowledge hierarchy of DABGEO

requirements [18]. To answer each CQ the ontology must
include a specific part of the represented knowledge [18]. Thus,
CQs are a natural guide for splitting the ontology knowledge
into KAs [19]. CQs offer an abstract method to divide the
knowledge represented by existing ontologies regardless of
their heterogeneity. However, the CQs defined to develop
ontologies are not always available [19].

Therefore, ontology engineers manually analyzed the
elements of existing energy ontologies (classes and properties)
to identify and extract the CQs they answer. This strategy is also
followed when designing SPL taking as reference existing
applications [20]. For instance, the exiting energy ontologies
include the consumesEnergy, actuallyConsumesEnergy and
maxConsumesEnergy properties to answer the What is the

energy consumption of a device?, How much energy is a device
consuming? and What is the maximum energy consumption of

a device? CQs respectively. To avoid an unmanageable number
of KAs, the CQs covering similar topics were grouped by
domain experts to define a KA that encompasses all the
knowledge required to answer grouped CQs. For instance, the
aforementioned CQs describe knowledge about device energy
consumption. They were grouped into the device energy

consumption KA (it also includes CQs answered by other
energy ontologies), which encompasses the knowledge that
answers these CQs. The defined KAs were classified into
domains and subdomains according to the knowledge they
represent and into a hierarchy level according to the knowledge
they require or extend.

Finally, the domain experts provided a complete description of
each KA and the knowledge it encompasses.

C. Step 3: Knowledge Classification

In this step, the ontology engineers classified each defined

KA into one layer by applying SPL engineering techniques.
First, the existing energy ontologies were analysed manually
with Protégé to determine whether they represent each defined
KA. If the ontology contained classes or properties related with
the knowledge encompassed by the KA, the KA was considered
as represented. The domain experts collaborated with ontology
engineers to give additional explanations about the knowledge
encompassed by KAs. It is worth mentioning that if a “child”

KA was represented by the ontology, the “parent” KA that

represents more abstract knowledge was also considered as
represented.

Second, a CVA of existing ontologies was conducted to
determine whether the KAs were common to Smart Grid
scenarios. In particular, the application-requirements matrix
technique proposed by Pohl et al. [9] was applied (taking as
reference application-requirements matrix applied by Moon et
al. [21]) to determine whether the KAs are common to Smart
Grid scenarios depending on how many ontologies represent
them. One application-requirements matrix was created to
classify the KAs of each subdomain. As an example, Table 1
shows the application-requirements matrix of a set of KAs of
the energy consumption systems and device operation

subdomains (34 KAs were defined in total for these
subdomains). The left column contains the KAs of the
subdomain. The top rows list the Smart Grid scenarios and the
energy ontologies classified by the Smart Grid scenarios they
support (this classification can be consulted at [12]). To
simplify the matrix, we have omitted a couple of ontologies.
The matrix indicates if an ontology represents a KA (‘X’) or not

(‘-‘). With this information, we could deduce which Smart Grid
scenarios reuse each KA. We considered that a Smart Grid
scenario reuses a KA if the KA is represented by at least one
ontology developed to support the Smart Grid scenario. KAs
were classified into common and variant according to their
commonality ratio (CV ratio) (right column in Table 1): the
ratio of the number of Smart Grid scenarios that reuse the KA
to the total number of Smart Grid scenarios. In particular, 75%
was used as the threshold value of the CV ratio to classify the
KAs. The KAs equal or above the threshold were considered as

 Smart Grid scenarios

Smart Home energy

management
Building/district/city
energy management

Organization energy
management

Smart Grid Demand

Response
management

Ontologies

Knowledge areas

ThinkHome

ontology

EnergyUse

ontology

SAREF4EE

ontology

SEMANCO

ontology

BOnSAI

ontology

DEFRAM

project

ontology

DERI

Linked

dataspace

ProSGV3

ontology

Commonality

ratio

Appliances X X X X - X - X 100%

Brown goods X X - - X - X X 100%

White goods X X X X - - - X 75%

Refrigeration devices X X - - - - - X 50%

Device energy consumption X X X - X - X X 100%

Energy consumption
systems operation

X X - - - - - - 25%

Appliance working mode - - X - - - - - 25%

TABLE 1: APPLICATION-REQUIREMENTS MATRIX

609

common, while the rest were considered as variant.

Third, each KA was classified into one layer according to
the CVA results. The common KAs were placed in the common-

domain layer. Variant KAs reused in more than one Smart Grid
scenario were assigned to the variant-domain layer. The KAs
reused only in one Smart Grid scenario were assigned to one of
the sublayers of the domain-task layer according to a CVA at
the application type level. The KAs reused by more than one
application type of a Smart Grid scenario are likely to be reused
in more application types of that scenario and were placed in
the Smart Grid scenario sublayer. The KAs reused only by one
application type were assigned to the application type sublayer.
Following the sample CVA of Table 1, the energy consumption

systems operation and the appliance working mode KAs were
reused only by Smart Home energy management applications.
Thus, they were included in the CVA at application type level
(Table 2). The energy consumption systems operation KA was
reused by more than one Smart Home energy management
application type. Hence, it was placed in the Smart Grid

scenario sublayer. The appliance working mode KA was reused
only by one Smart Home energy management applications and
placed in the application type sublayer.

D. Step 4: Definition of the Ontology Modular Structure

In this step, the ontology engineers structured the

knowledge of each layer into ontology modules to complete the
ontology design. This step was performed taking as reference
the ontology modularization principles applied by the main
reusable and usable ontology design methods: loosely coupling
and self-containment [5]. One module was defined for each KA
and placed in one ontology layer/sublayer according to the
CVA results. The modules were related according to the
knowledge dependencies defined in Step 2. The modules of the
Smart Grid scenario and application type sublayers were
classified into the Smart Grid scenario/application types where
the KAs they represent are reused.

V. EVALUATION
The ontology design method presented in Section 4 was

evaluated by domain experts and ontology engineers. A group
of domain experts and ontology engineers conducted Steps 1
and 2 and different ontology engineers (eight in total) conducted
Steps 3 and 4 to design parts of DABGEO. Each ontology
engineer performed Steps 3 and 4 individually in a blind

process. A survey was performed to capture the knowledge
classification obtained by each ontology engineer. The survey
also included a questionnaire to identify the main advantages
and improvement aspects of the proposed method. This
questionnaire can be found online in the appendix:
https://innoweb.mondragon.edu/innoweb/questionnai

re_SPL_ontology_method.pdf.

Fig. 5 shows the number of modules defined by each
engineer for each ontology layer. It also shows the number of
modules of the domain-task layer that were classified into each
energy management application type. It is worth mentioning
that the designed ontology parts were limited to support three
application types (shown in Fig. 5). In general terms, the
number of modules defined by each ontology engineer was
similar in all layers. This similarity is due to the high degree of

consensus with which the ontology engineers classified the
defined KAs into layers. We understand by degree of consensus
of a KA the percentage of ontology engineers that classified the
KA into the same layer. The average degree of consensus of the
KAs was 76%. Therefore, there was a high consensus when
classifying the common and variant domain knowledge. In
addition, 81% of the KAs that were classified into one
application type within the domain-task layer by most of
ontology engineers, were not classified into other application
types by other ontology engineers. Hence, the knowledge
reused only by specific application types was identified.

Regarding the questionnaire, we received eight responses
from participants of the proposed method evaluation. 100%
respondents considered that the application of SPL engineering
techniques was useful and 80% would recommend the proposed
method to design reusable and usable ontologies in other
domains apart from the Energy. According to the respondents,
the main benefits of the proposed method are the following: (1)
it provides clear and mechanical steps to classify the ontology
domain knowledge taking as reference existing ontologies and
(2) the CVA of existing ontologies provides a detailed
classification of the knowledge reused by specific application
types, while keeping separate the knowledge reused by most
applications. On the other hand, the main improvement aspect
deals with the required manual effort. Although the proposed
method prevented from classifying the domain knowledge from
scratch, it required a significant manual analysis effort to check
whether each KA is represented by existing ontologies.

VI. LESSONS LEARNT
Considering the similar knowledge classifications obtained

in Section 5, domain experts and ontology engineers could
apply the steps of the proposed method to (1) perform a CVA
of existing ontologies and (2) classify the domain knowledge
into different layers. The evaluation participants did not need to
perform an analysis of the requirements of each application type
to classify the common and variant domain knowledge of
DABGEO from scratch. In addition, they considered the
proposed method useful and easy to follow. Hence, we can state
that the CVA of existing ontologies complements domain
experts and ontology engineers’ expertise when designing

 Smart Home energy management

Home

energy
assessment

Home

energy
saving advice

Home appliances

 Demand Response
management

Ontologies

Knowledge areas

ThinkHome

ontology

EnergyUse

ontology

SAREF4EE

 ontology

Energy consumptions

systems operation
X X -

Appliance working

mode
- - X

TABLE 2: CVA AT APPLICATION TYPE LEVEL

610

https://innoweb.mondragon.edu/innoweb/questionnaire_SPL_ontology_method.pdf
https://innoweb.mondragon.edu/innoweb/questionnaire_SPL_ontology_method.pdf

Figure 5: Ontology modules of each layer

reusable and usable ontologies in complex domains, thus saving
ontology design effort. In addition, the ontology engineers
identified the variant domain knowledge reused in specific
applications. Thus, we can state that the CVA of existing
ontologies enables an accurate domain knowledge
classification. Bearing in mind these benefits, ontology
developers should consider applying SPL engineering
techniques when designing ontologies that (1) will be reused in
different applications and (2) represent complex domains. In
particular, existing ontologies should be identified and their
knowledge should be divided and classified into different
abstraction levels. Then, the ontologies should be analyzed to
classify the domain knowledge based on their knowledge
similarities and differences through a CVA.

Despite of these promising results, the CVA should be
conducted with tool support to automate the process of
checking whether certain KAs are represented by existing
ontologies. In particular, tools that check (semi)automatically if
a set of CQs are answered by ontologies should be developed.
These tools can take as input the CQs encompassed each KA to
check whether existing ontologies represent the KAs [18].

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown the experiences of applying

SPL engineering and ontology design techniques in combination
to design DABGEO, a reusable and usable global energy
ontology. The proposed method analyses the knowledge
similarities and differences of existing ontologies to classify the
common and variant domain knowledge into different layers.
The method was applied by domain experts and ontology
engineers to design part of DABGEO. The results show that that
the application of SPL engineering techniques enables a
systematic and accurate domain knowledge classification that
complements domain experts and ontology engineers’ expertise.
Hence, ontology design effort of reusable and usable ontologies
is saved. Bearing in mind these benefits, the proposed approach
should be applied to design ontologies that will be reused in
different applications and represent complex domains.

Our current work is focused on defining a methodology based
on the proposed method, so that it can be applied and replicated
in other complex domains apart from the Energy. We are
working on describing in detail and generalizing each step. The
medium-term work will focus on incorporating tool support to
reduce the manual ontology analysis effort.

REFERENCES
[1] T. Gruber, Ontology. Springer, 2009.
[2] H. Chen, F. Perich, T. Finin, and A. Joshi, “Soupa: Standard ontology

for ubiquitous and pervasive applications,” in Mobile and Ubiquitous
Systems: Networking and Services, 2004. MOBIQUITOUS 2004. The

First Annual International Conference on, 2004, pp. 258–267.
[3] H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H.

Neumann, and S. Hübner, “Ontology-based integration of information-
a survey of existing approaches,” in IJCAI-01 workshop: ontologies

and information sharing, 2001, vol. 2001, pp. 108–117.
[4] J. Morbach, A. Wiesner, and W. Marquardt, “OntoCAPE—A (re)

usable ontology for computer-aided process engineering,” Computers

& Chemical Engineering, vol. 33, no. 10, pp. 1546–1556, 2009.
[5] M. d Aquin, “Modularizing ontologies,” in Ontology Engineering in a

Networked World, Springer, 2012, pp. 213–233.
[6] J. Morbach, A. Yang, and W. Marquardt, “OntoCAPE:A large-scale

ontology for chemical process engineering,” Engineering applications
of artificial intelligence, vol. 20, no. 2, pp. 147–161, 2007.

[7] D. Thakker, V. Dimitrova, L. Lau, R. Denaux, S. Karanasios, and F.
Yang-Turner, “A priori ontology modularisation in ill-defined
domains,” in Proceedings of the 7th International Conference on

Semantic Systems, 2011, pp. 167–170.
[8] P. Spyns, Y. Tang, and R. Meersman, “An ontology engineering

methodology for DOGMA,” Applied Ontology, vol. 3, no. 1–2, pp. 13–

39, 2008.
[9] K. Pohl, G. Böckle, and F. J. van Der Linden, Software product line

engineering: foundations, principles and techniques. Springer Science
& Business Media, 2005.

[10] A. Fantechi, S. Gnesi, I. John, G. Lami, and J. Dörr, “Elicitation of use

cases for product lines,” in International Workshop on Software

Product-Family Engineering, 2003, pp. 152–167.
[11] E. Curry, W. Derguech, S. Hasan, C. Kouroupetroglou, and U. ul

Hassan, “A Real-time Linked Dataspace for the Internet of Things:
Enabling ‘Pay-As-You-Go’ Data Management in Smart

Environments,” Future Generation Computer Systems, vol. 90, pp.
405–422, 2019.

[12] J. Cuenca, F. Larrinaga, L. Eciolaza, and E. Curry, “Towards Cognitive

Cities in the Energy Domain,” in Designing Cognitive Cities, Springer,
2019, pp. 155–183.

[13] N. Guarino, “Semantic matching: Formal ontological distinctions for

information organization, extraction, and integration,” in Information

Extraction A Multidisciplinary Approach to an Emerging Information
Technology, Springer, 1997, pp. 139–170.

[14] A. Gomez-Perez, M. Fernández-López, and O. Corcho, Ontological
Engineering: with examples from the areas of Knowledge

Management, e-Commerce and the Semantic Web. Springer Science &
Business Media, 2006.

[15] K. Czarnecki, C. Hwan, P. Kim, and K. Kalleberg, “Feature models

are views on ontologies,” in 10th International Software Product Line
Conference (SPLC’06), 2006, pp. 41–51.

[16] T. Asikainen, T. Männistö, and T. Soininen, “Kumbang: A domain

ontology for modelling variability in software product families,”

Advanced Engineering Informatics , vol. 21, no. 1, pp. 23–40, 2007.
[17] C. Quinton, N. Haderer, R. Rouvoy, and L. Duchien, “Towards multi-

cloud configurations using feature models and ontologies,” in

Proceedings of the 2013 international workshop on Multi-cloud

applications and federated clouds, 2013, pp. 21–26.
[18] M. C. Suárez-Figueroa, “NeOn Methodology for building ontology

networks: specification, scheduling and reuse,” Informatica, 2010.
[19] F. B. Ruy, G. Guizzardi, R. A. Falbo, C. C. Reginato, and V. A. Santos,

“From reference ontologies to ontology patterns and back,” Data &

Knowledge Engineering, 2017.
[20] A. Harhurin and J. Hartmann, “Service-oriented commonality analysis

across existing systems,” in 2008 12th International Software Product
Line Conference, 2008, pp. 255–264.

[21] M. Moon, K. Yeom, and H. S. Chae, “An approach to developing

domain requirements as a core asset based on commonality and
variability analysis in a product line,” IEEE transactions on software

engineering, vol. 31, no. 7, pp. 551–569, 2005.

611

Identify MVC architectural pattern based on ontology

Qiang Yin, Lulu Wang, Bixin Li
School of Computer Science and Engineering

Southeast University
Nanjing, China

{220163720, wanglulu, bx.li}@seu.edu.cn

 Abstract—MVC architectural pattern is widely used in

software architecture design. It helps decouple the processing and

the visualization of system data. Identified MVC architectural

pattern helps understand how the software is actually

implemented based on MVC architectural pattern, and further

improve the consistency between design and source code. This

paper proposes an ontology-based MVC architectural pattern

identification method. Firstly, we use the combination of design

patterns to describe the structure of MVC architectural pattern,

so as to construct the MVC ontology of concept layer. Then we

construct a program dependency graph by extracting the

dependencies between entities in the target system, and build the

ontology of instance layer. Finally, the MVC architectural

pattern ontology of the specific target system is inferred by

ontology reasoner in order to obtained MVC architectural

pattern and the pattern elements included in each component.

We use open source projects as the benchmark, and the

experimental results show that our method effectively identify the

MVC architectural pattern and the pattern elements in software

system.

Keywords-MVC; Architectural Pattern; Pattern identification；

Observer Pattern; Strategy pattern; Ontology

I. INTRODUCTION
Architectural style is often used to describe the architecture

[1], the architectural style is also known as the software
architectural pattern. MVC is a software architectural pattern
that widely used in desktop applications and Web information
systems [3], which greatly improved the speed and stability of
the system, also makes the software easy to maintain and easy
expansion. But with the evolution of software, software design
changes and the loss of software documentation make it
difficult for developers to understand the architectural pattern
of software. Such software is often difficult to maintain.
Understanding the architectural pattern of the system is very
helpful for the maintenance work. Bass et al. mention that some
80% of all costs in software development are related to
maintenance activities [2]. Therefore, it is very meaningful to
research the MVC software architectural pattern identification.

This paper studies the identification of MVC architectural
pattern. At present, there is no set of theory and technology at
home and abroad to support MVC architectural pattern
identification. But there are some studies on the identification
of architectural pattern. J. Paakki et al. regarded the problem
that mining pattern form UML diagrams as a constraint
satisfaction problem in 2000 [4]. J. Peters proposed an
architectural pattern matching method based on Semantically
Rich Modular Architecture [5], using genetic algorithm to match

DOI reference number: 10.18293/SEKE2019-163

pattern instance. M. Lungu proposes an architectural pattern
identification method that uses a source code structure as a
pattern and builds on a lower-level pattern extracted from
source code, iteratively and interactively produces a more
advanced view [6]. H. Yan introduced the tool DiscoTect, which
identify the architecture pattern of the runtime object-oriented
system [7]. Mavridou Anastasia pointed out that architecture can
be represented by logic, and architectural style can be described
by configurations [8]. Thomas Haitzer proposed a semi-
automated architectural pattern identification method based on
architecture primitives [9]. The Service-oriented Architecture
pattern identification method based on model checking was
proposed by Penta and Sandonep in 2007[10].

From the above related works, it can be concluded that the
identification of architectural pattern requires two aspects of
work: describing the architectural pattern and matching the
description of the architectural pattern with the source code.
However, the related work still has the following shortcomings.

⚫ Lack of automation, the above methods are not highly
automated, which makes it difficult to implement.

⚫ Existing research does not identify specific pattern
elements in the software system and does not provide a
more detailed reference for developers and maintenance
personnel. Pattern element is the pattern-related class in
software system.

This paper proposes an ontology-based MVC architectural
pattern identification method, which can automatically identify
the MVC pattern instances in a specific target system, the
pattern instances include the MVC architectural pattern and
the pattern elements. The contributions of this paper mainly
include the following three points. Firstly, the observer design
pattern and the strategy design pattern are used to represent the
MVC architectural pattern composition principle, and the
ontology formally describes the MVC architectural pattern, the
observer pattern and the strategy pattern. Secondly, the
ontology inference engine is used to match the formal
description of the MVC architectural pattern with the specific
target system. The ontology inference engine can automate this
process. Finally, read the source code and documentation of
target system manually is used to verify the correctness of the
identification result and effectiveness of the method. The recall
rate, the precision and the F1-measure of the MVC
architectural pattern and pattern elements are calculated to
measure the effectiveness of the method.

This paper is structured as follow: In the section 2, the
MVC architectural pattern and ontology are introduced. In the

612

Fig. 1. MVC architectural pattern [17]

section 3, the research method of this paper is introduced. In
the section 4, the experiment and evolution is introduced.
Section 5 contains conclusion and future work.

II. BACKGROUND

A. MVC architectural pattern

The Model-View-Controller(MVC) architectural pattern
divides an interactive application into three components [11].
First created by Trygve R and implemented in the Smalltalk-80
environment. The model contains core functions and data; the
view displays information to user; the controller processes
user’s input. Both the view and controller form the user
interface, and the change propagation mechanism ensures
consistency between the user interface and the model.

MVC decouples views and models by establishing a
subscribe/notify protocol between them [12]. A view must
ensure that its appearance reflects the state of the model.
Whenever the model's data changes, the model notifies views
that depend on it. In response, each view gets an opportunity to
update itself. So, the model-view relationship is an example of
the Observer design pattern. The View-Controller relationship
is an example of the Strategy design pattern. Encapsulate the
response mechanism in the Controller object. To implement
different response strategies, simply replace them with different
kinds of Controller instances. Fig.1 shows MVC architectural
pattern.

B. Ontology

In computer science, ontology refers to "a formal, clear and
detailed description of a shared conceptual system" [13].
Ontology is used to express related concepts, entities and
formal relationships between specific domains. The ontology
can effectively describe the abstract relationships between
specific domain concepts, and ontology can also reason in
order to excavate the implicit relationship between abstract
concepts. Ontologies generally use ontology language for
related expression work. Currently, description logic (DL) and
framework logic (FL) [15] are generally used to define ontology.
In this paper, since the description logic is used to define the
ontology, the DL is introduced below.

DL is a formal language used for the description of
ontology, the relationship between the concepts of ontology
and the relationship between individuals of concepts.
Description logic has excellent expressive ability and logic-
based inference ability, and the description logic has clear

inference algorithms [14]. The W3C international standard OWL
and RDF language is based on the DL. The description logic
system contains three parts: concept, role and individual. The
assertion between concepts is called TBOX, and the assertion
between individuals is called ABOX.

1) TBOX

TBOX is a set of axioms in description logic, which
contains the connotation knowledge of the application domain,
and uses the terminological axioms to describe the assertions
between concepts. The general term axiom has two forms:
inclusion and equality.

2) ABOX

ABOX is a set of description logic used to describe the
relationship between individuals. It is an extension of the
concept in the application domain to instantiate assertions
axiom of individual and facts between individuals. Generally,
there are two forms of instantiation axioms: concept assertion
and role assertion.

The ontology of concept layer in this paper is to express
through the OWL language, and the ontology of instance layer
is to express through the RDF language, in order to build the
ontology of MVC architectural pattern for a specific target
system.

III. METHODOLOGY
The ontology-based MVC architectural pattern

identification method proposed in this paper aims to identify
the MVC architectural pattern and pattern elements in open
source software. The method is mainly for the project that
developed by JAVA. The method is mainly divided into three
steps. Fig. 2 shows the overall process of the method.

⚫ The first step is to represent the MVC architectural
pattern as the observer pattern and the strategy pattern,
and then describe the MVC architectural pattern formally
by using the DL in order to form the MVC architectural
pattern ontology of conceptual layer, the ontology of
conceptual layer is also the Tbox in DL that mentioned in
the second chapter.

⚫ The second step is to use the code parsing tool to extract
the dependencies between the entities in the source code,
and use the RDF language to represent the dependencies
of the entities in the source code into triples to form
ontology of instance layer, the ontology of instance layer
is also the Abox in DL that mentioned in the second
chapter. Then, combining the MVC architectural pattern
ontology of concept layer with the ontology of instance
layer to form the MVC architectural pattern ontology of
specific target system;

⚫ The third step is to derive the expected result from the
MVC architectural pattern ontology of the specific target
system using the ontology inference engine, including
whether the MVC architectural pattern is applied and the
MVC architectural pattern elements in the target system.

ControllerView

Model

Subscribe

Notify

Request
Select View

Change Status

Method Invoke Event

613

Description
of MVC

Ontology
of Concept

Layer

Combine
Ontology

Construct
Individual and
Relationship

Ontology
of Instance

Layer

Ontology
of Specific

System
Inference

MVC
Pattern

Instance

Legend

Document Process Data
Source
Code

Fig. 2. The process of our method

A. Ontology of concept layer

The MVC pattern consists of three components: model,
view, and controller. The pattern separates the model and view
through the Observer pattern. The view is the observer in the
Observer pattern. The model is the subject in the Observer
pattern. Once the model data changes, the model will inform
the relevant view. MVC controller is a component that accepts
user input and responds to user input. The Strategy pattern is
implemented, the view is the Context in the Strategy pattern,
and the controller is the strategy in the Strategy pattern. On the
other hand, most Java GUI applications use the Swing toolkit
or the AWT toolkit, so the classes in View must inherit the
base classes in JavaSwing and AWT. According to this feature,
you can identify the specific class of the view in MVC.

The identification of the MVC pattern is transformed into
the identification of the design pattern. The ontology of
constructing the MVC architectural pattern is to construct a
combination of two design pattern ontology and transform the
abstract architectural pattern into a specific design pattern,
thereby mapping the relationship between the pattern
components to specific source code. Table I shows the DL of
the main part of the ontology of concept layer.

B. Ontology of specific target system

Building the MVC architectural pattern ontology of a
specific target system is mainly divided into two steps. Step
one is to extract information for the target system. The purpose
of information extraction is to extract the dependencies
between entities in the target system in order to construct
Program Dependence Graph (PDG). The entity includes
methods and classes; in step two, the PDG is converted into an
RDF triples, and the individual in the DL is added to the MVC
architectural pattern ontology of concept layer to form an MVC
architectural pattern ontology of the specific target system.

1) extract information

This paper is mainly for the Java open source project, using
JAVA Development Tool(JDT) to complete the information
extraction work. The main flow of JDT extraction is to first
generate the Abstract Syntax Tree (AST) of the source code,
and then construct the PDG according to the information on the
AST.

The construction of program dependency graphs is to
obtain the dependencies between classes and methods by
traversing the AST. Constructing a PDG for the method of this
paper requires extracting the following information, as shown
in Table II.

TABLE I. DL OF THE ONTOLOGY

DL of MVC pattern:

MVCPattern ≡ ∃containsElement.Model
∩ ∃containsElement.View
∩ ∃containsElement.Controller

DL of Observer pattern:

ObserverPattern ≡ ∃containsElement.AbstractSubject
∩ ∃containsElement.ConcreteSubject
∩ ∃containsElement.AbstractObserver
∩ ∃containsElement.ConcreteObserver
AbstractSubject ≡ Interface
∩∃containsElement.AbstractNotify
ConcreteSubject≡ NomalClass
∩∃ containsElement.ConcreteNotify
AbstractObserver≡ Interface
∩∃containsElement.AbstractUpdate
ConcreteObserver≡ NomalClass
∩∃ containsElement.ConcreteUpdate

DL of Strategy pattern:

StrategyPattern ≡ ∃containsElement.AbstractStrategy
∩containsElement.ConcreteStrategy
∩containsElement.Context
AbstractStrategy ≡ Interface
∩∃containsElement.AbstractAlgorithm
ConcreteStrategy ≡ NomalClass
∩∃ containsElement.ConcreteAlgorithm

TABLE II. TYPE OF DEPENDENCY

Dependency Edge Master Slave
extend Class Class

implement Class Class
composite Class Class

invoke Method Method
instantiation Method Class
aggregation Class Class

2) Building ontology

Firstly, convert PDG to RDF triples, RDF (Resource
Description Framework) uses the triples to represent the
relationship between entities, which is divided into three parts:
subject, predicate and object. It effectively describes the
relationship between classes, methods and other entities in the
source code, the RDF triples can be regarded as ABOX in the
DL. The subject indicates that the vertex of master in the graph,
the predicate indicates the dependency in the PDG, and the
object indicates the vertex of slave in the PDG; then, add the
RDF triples to the ontology of the MVC architectural pattern
concept layer, where the subject and object of the RDF triples
are regarded as the individual in the DL, the predicate of the
RDF triple corresponds to the role in DL. After adding RDF
triples, the MVC architectural pattern ontology of the specific
target system is formed.

614

C. Inference the MVC architectural pattern

Inference is essentially the process of drawing conclusions
from existing facts according to certain rules [16]. The inference
process is mainly applied to the ontology inference machine.
The inference engine mainly has two functions: ontology
conflict detection and acquisition of implicit knowledge.
Ontology conflict detection is to ensure the logical consistency
between classes and individuals in the ontology. Obtaining
implicit knowledge is that inference unknown knowledge
according the established rule. The current inference engines
are mainly divided into two categories, one is the inference
engine based on the traditional description logic. The
representatives of such inference engines are RACER, FaCT++,
Pellet, et al. Others the inference engine are based on inference
rules. Representatives are Jena, Jess. The inference engine
mainly used in this paper is the Jena inference engine.

Inferring the MVC architectural pattern ontology of specific
target system is to infer the existence of the pattern instances in
the ontology through the inference rule. The key step of
inference is to write the reason rules. The inference rules are
written according to the MVC architectural pattern composition
principle. The main process is to derive the unknown facts
defined in the MVC concept layer ontology based on known
facts such as individual and object attributes. Individuals are
classified into classes defined by the concept layer of MVC
architectural pattern.

According to the MVC architectural pattern concept layer
ontology, we can divide the inference rules into five parts. The
first part of the inference rules is written by JavaSwing
inheritance rules, the purpose is to identify the classes related to
GUI. The second part of the inference rules use the
composition principle of observer pattern in order to identify
View and Model. The third part of the inference rule is written
by the principle of strategy pattern, which is to identify View
and Controller. The fourth part of the inference rule is based on
the inference results of the previous three steps to infer the
MVC architectural pattern and the pattern elements. The fifth
part of the inference rule is common rules. As shown in Table
III, it is the inference rule of the observer pattern.

TABLE III. RULES OF OBSERVER PATTERN

Rules of Observer pattern:

[observer_rule:(?observer rdf:type JAVA:NormalClass),
(?observer JAVA:isA ?Aobserver),
(?Aobserver JAVA:contain ?Aupdate),
(?observer JAVA:contain ?update),
(?update JAVA:override ?Aupdate),
(?subject JAVA:isA ?Asubject),
(?subject rdf:type JAVA:NormalClass),
(?subject JAVA:aggregation ?Aobserver),
(?Asubject JAVA:contain ?Anotify),
(?subject JAVA:contain ?notify),
(?notify JAVA:override ?Anotify),
(?notify JAVA:invoke ?Aupdate)
->
(?observer rdf:type OB:ConcreteObserver),
(?Aobserver rdf:type OB:AbstractObserver),
(?subject rdf:type OB:ConcreteSubject),
(?Asubject rdf:type OB:AbstractSubject)]

IV. EXPRIMENT AND EVALUATION

A. Purpose and metrics

The purpose of experiment is to verify the effectiveness of
our pattern identification method, we evaluate the
effectiveness of our research method through three metrics:
Precision, Recall, and F1-measure. Finally, analyzing the
advantages and disadvantages of the method through
experimental data. The calculation formula for the three
metrics is as follows:

⚫ Precision=(TP) /(TP + FP)

⚫ Recall= TP / (TP+ FN)

⚫ F1-measure=2*Precision*Recall / (Precision + Recall)

B. Exprimental setup

The method of this paper is implemented in Java language.
The operating system is macOS 10.12.6, the JDK version is
1.8.0_121, and the development platform is Eclipse neon.2.
The MVC architectural pattern ontology is constructed by
Protégé, the information extraction tool is JDT, the specific
target system MVC architectural pattern ontology is
constructed by Jena, and the ontology inference is completed
by Jena inference engine.

C. Result of Overrall

In this section, we identify 20 popular open source
projects, and then verify the correctness of the identification
results and the effectiveness of the pattern identification
method by analyzing the official documents and source code
of 20 projects. Determine whether the project adopts the MVC
architectural pattern by reading source code and official
documentation. Finally, experimental data is obtained by
comparing the recognition results with the verification results.

The results of the identification of 20 excellent open
source projects are shown in the table IV. The first column of
the table indicates the project name, the second column
indicates the identification result, √ indicates that the
identification result is MVC, × indicates that the identification
result is not MVC, and the third column indicates that actual
pattern of the project, √indicates that the project adopts the
MVC architectural pattern, and × indicates that the project
does not adopt the MVC architectural pattern.

Through the results in the table V, the statistical data is
shown in table V.

According to the calculation formula of Precision, Recall,
and F1-measure, the following results can be calculated：

⚫ Precision=(TP) /(TP + FP) = 0.75

⚫ Recall= TP / (TP+ FN) =1.00

⚫ F1-measure=2*Precision*Recall / (Precision + Recall)
=0.86

According to the above results, the Precision is 0.75 and
the Recall is 1.00, which indicates that the method in this
paper can effectively identify whether the MVC architectural

615

TABLE IV. IDENTIFY RESULTS OF TWENTY PROJECTS

Project Name Identify Result Validation Result
clone √ √

filezilla × ×
freecol √ √
terrier √ √

mockito × ×
lionengine × ×
symphony × ×

vert.x × ×
okhttp √ ×

mybatis × ×
jnativehook × ×

jadx √ ×
jfinal-master × ×

overlap2d × ×
StormPlane √ √

jenkins-master × ×
shiro × ×

pinpoint × ×
latexdraw √ √
MARIO √ √

TABLE V. DATA OF IDENTIFY RESULTS

TP FP TN FN
6 2 11 0

pattern is used in the software system, but there are still false
positives.

D. Result of Part

In this section, we present three open source projects that
use the MVC architectural pattern to verify the correctness of
the pattern elements and the effectiveness of the method. The
three open source projects are Clone, Mario, and Terrier.
Firstly, it introduces the overall situation of three project. Then
it gives the identification result of the three project. The
identification result is the class related to the MVC pattern in
the project, which is the pattern element. Then the paper
understands the three projects by manually reading the source
code, and classifies the classes related to MVC pattern in three
projects. Finally, experimental data is obtained by comparing
the identification results with the verification results.

Clone is a strategic game based on the MVC architectural
pattern, which developed by Java. Mario is a popular
adventure game developed in Java, similar to the Super Mario
developed by Nintendo. Terrier is a highly flexible, efficient,
and effective open source search engine, readily deployable on
large-scale collections of documents. The basic information of
the source code of three projects is shown in Table VI.

For the above three projects, due to the limitations of the
paper length, we only give the identification results of Clone.
The identification results of Clone are shown in Table VII.

In Table VII, classes in bold indicate false positives. The
statistics of the identification results of the three projects are
shown in Table VIII.

E. Analysis and Conclusions

By counting the identification results of 20 projects, we
calculated that Precision is 0.75, Recall is 1.00, F1-measure is
0.86. The F1-measure is relatively high. Therefore, we can
draw the conclusion that the method in this paper can
effectively identify whether the MVC architectural pattern is

TABLE VI. BASIC INFORMATION ABOUT THREE PROJECTS

Project Name Language Files Code Line
Clone Java 91 10830
Mario Java 282 32859
Terrier Java 561 49823

TABLE VII. IDENTIFY RESULTS OF CLONE

Component Pattern Element

Model

model.BoardModel;
boardobject.Firildak;physics.GeometryReference;

boardobject.Ball; physics.GeometryInterface;
physics.SimpleGeometry;model.Player;
boardobject.Cezerye; boardobject.LeftTokat;
boardobject.RightTokat; boardobject.Gizmo;
physics.GeometryCompare;
boardobject.Cezmi; boardobject.Observable;
physics.GeometryImpl; boardobject.Takoz;
boardobject.TriangleTakoz; boardobject.Tokat;
boardobject.SquareTakoz;

View

physics.GeometryImpl; observer.CezmiObserver;
gui.ClickHandler; gui.BeginningPanel;
gui.GameWindow;physics.GeometryInterface;
observer.GizmoObserver; observer.PlayerObserver;
gui.BoardPanel; gui.BuildingPanel;
physics.SimpleGeometry;observer.BallObserver;
observer.CezeryeObserver; physics.GeometryReference;

observer.WinPanelObserver;
physics.GeometryCompare;

Controller

controller.DeleteGizmoController;
controller.AddGizmoController;
controller.RotateGizmoController;
controller.QuitController; controller.SaveController;
controller.PauseController;
controller.MoveGizmoController;
controller.ResumeController; controller.LoadController;
controller.Controller;controller.PlayController;

TABLE VIII. DATA OF IDENTIFY RESULTS

Project
Name TP FP FN Precision Recall F1-measure

Clone 39 7 0 0.85 1.00 0.92
Mario 128 54 21 0.70 0.86 0.77
Terrier 412 123 82 0.77 0.83 0.8

used in the software system. But there are still false positives,
the reasons for false positives are as follows:

⚫ There is a false positive because the method uses a rigid
rule to infer whether there is an MVC architectural
pattern in the software system. It does not rule out that
some software systems have dependencies that satisfy the
inference rules, but not the MVC architectural pattern.

By counting the identification results of three projects, we
can see that the F-measure of each project is higher than 0.7,
and the value of recall is higher than precision. Therefore, we
can draw the conclusion that the method of this paper can
effectively identify the class related to the pattern in the
software, which we call the pattern element. The main reason
for the false positives is that some classes that satisfy the
inference rules but are not related to the pattern are also
identified. The main reason for the false negative is that some
classes have the characteristics of the pattern elements, but
these features are not implemented according to the standard
of MVC architectural pattern.

616

F. Threats to validity

There are potential threats to validity of our results. The
first threat to validity is the method has only been validated for
projects developed in the Java language, and has not been
validated for projects developed using other object-oriented
languages.

The second threat to validity is the method only validates
20 popular open source projects, and the code size of these 20
projects is less than 500k. Sample data is not very
comprehensive.

V. CONCLUSION AND FUTURE WORK
This paper proposes an ontology-based MVC architectural

pattern identification method, which can automatically
identify the architectural patterns and pattern elements of
MVC in software. By combining the MVC architectural
pattern ontology of concept layer and the ontology of instance
layer, the MVC architectural pattern ontology of the specific
target system is formed, and then the ontology is inferred to
obtain the MVC architectural pattern and the pattern elements.
Through the statistics and analysis of experimental data, we
analyzed the causes of false negatives and false positives, and
summarized the advantages and disadvantages of the methods.
The novelty of this method is as follows:

⚫ Applying the design pattern to the identification of the
architectural pattern makes the description of the MVC
architectural pattern closer to the source code and easier
to understand.

⚫ The method also identifies the pattern elements in the
software and provides developers and maintenance
personnel with a more detailed reference.

⚫ The automatic identification of the MVC architectural
pattern is realized, because the method can reuse the
same set of MVC architectural pattern ontology of
concept layer for different systems, needn’t to generate a
different set of descriptions for each specific target
system, and the ontology inference engine can
automatically complete the architectural pattern
matching process.

In the future work, firstly, we must improve the
identification precision and recall of the MVC architectural
pattern and pattern elements. The components and pattern
elements of the MVC architectural pattern are closely related
to the functionality of the software. We should consider the
functional information of the class in the process of
identification, so that the process is no longer limited to rigid
rules; in addition, the identification of variants of the MVC
architectural pattern is also worth doing, such as MVP(Model-
View-Presenter) architectural pattern, which are widely used
in Android, MVVM(Model-View-ViewModel) pattern using
WPF technology.

ACKNOWLEDGEMENT
This work is supported in part by the National Key R&D

Program of China under Grant 2018YFB1003902, in part by
the Cooperation Project with Huawei Technologies Co., Ltd.,
under Grant YBN2016020009, and in part by National Natural
Science Foundation of China under Grant 61872078, Grant
61572126, Grant 61402103, and Grant 61572008. Special
thanks to Dr. Renhao Xiong in ISEU and anonymous
reviewers.

REFERENCES
[1] G. Abowd, R. Allen, D. Garlan.Using Style to Understand Descriptions

of Software  Architecture[C]. ACM SIGSOFT symposium on
Foundations of software engineering. ACM,  1993: 9-20.  .

[2] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice[M].
Boston, Massachusetts, USA: Addison-Wesley, 2012.

[3] CAO Shuang, Su-ling Jia. Apply MVC Architecture Pattern to C/S
System[J]. Computer Knowledge and Technology, 2007-10: 946-959.

[4] J.Paakki,A.Karhinen,J.Gustafsson,etal.Softwaremetricsbyarchitecturalpa
tternmining[C].  Proceedings of the International Conference on
Software: Theory and Practice. Beijing, China:  Kluwer, 2000: 325-332.

[5] J. Peter, v. d. Werf. A genetic approach to architectural pattern
discovery[C]. Proccedings of the European Conference on Software
Architecture. Copenhagen, Denmark: ACM, 2016: 17.

[6] M. Lungu, M. Lanza, T. Girba. Package patterns for visual architecture
recovery[C]. Conference on Software Maintenance & Reengineering,
Los Alamitos CA: IEEE, 2006 : 185-196.

[7] H. Yan, D. Garlan, B.Schmerl, et al. DiscoTect: a system for discovering
architectures from running systems[C]. In: Proceedings of the 26th
International Conference on Software Engineering. IEEE Computer
Society. Washington, DC, USA: IEEE, 2004: 470–479.

[8] A. Mavridou, E. Baranov, S. Bliudze, et al. Configuration logics:
Modeling architecture styles[J]. Journal of Logical and Algebraic
Methods in Programming, 2017, 86(1): 2-29.

[9] T. Haitzer, U. Zdun. Semi-automatic architectural pattern identification
and documentation using architectural primitives[J]. The Journal of
Systems and Software, 2015, 102,: 35–57.

[10] M. D. Penta, A. Santone, M. L. Villani. Discovery of SOA Patterns via
Model Checking[C]. In: 2nd International Workshop on Service
Oriented Software Engineering: In Conjunction with the  6th
ESEC/FSE Joint Meeting. New York, USA: ACM, 2007. 8–14.

[11] F. Buschmann, R. Meunier, H. Rohnert, et al. Pattern-Oriented Software
ArchitectureVolume 1: A System of Patterns[M]. USA: Wiley, 1996.

[12] E. Gamma, R. Helm, R. Johnson, et al. Design Patterns: elements of
reusable object-oriented software[M]. USA: Wiley, 1995.

[13] T. R. Gruber. A translation approach to portable ontology
specifications[J]. Knowledge Acquisition - Special issue: Current issues
in knowledge modeling, 1993, 5(2): 199-220.

[14] F. Baader, D. Calvanese, D. McGuinnes, et al. The Description Logic
Handbook: Theory, Implementation and Applications[M]. UK,
Cambridge: Cambridge University Press, 2003.

[15] L. Farinas, A. Herzig. Interference logic= conditionallogic + frame
axiom[J]. International Journal of Intelligent Systems, 1994, 9(1): 119-
130.

[16] C. Pan, H. Gu. Ontology Reasoner and Its Application[J]. Computer
Systems & Applications, 2010-09.

[17] Z. F. Ren, H. Zhang, M. S. YAN, et al. Overview of the research in
model-view-controller pattern[J]. Application Research of Computers,
2004, 10: 1-4.

617

Grouping Semantically Related Change-Sets to
Enhance Identification of Logical Coupling

Neeraj Mathur, Sai Anirudh Karre, Y. Raghu Reddy
Software Engineering Research Center

IIIT Hyderabad, Telangana, India
neeraj.mathur, saianirudh.karri{@research.iiit.ac.in}, raghu.reddy@iiit.ac.in

Abstract—Identifying dependency between various artifacts in
a large scale software system is a non-trivial task. As the software
evolves, multiple artifacts like files, docs, classes, database scripts,
etc., are likely to undergo change concurrently. Such artifacts
tend to have a dependency between them, otherwise referred to
as logical coupling. Researchers have used Support and Confi-
dence as an association rule based measurement to predict the
levels of logical coupling among the software artifacts. However,
employing a single change on a software artifact can span across
various closely related changes when many code contributors
are working on the same change. Thus it is important to pre-
process and group these semantically related change-sets before
identifying logical coupling. In this paper, we propose a method
to identify logical coupling and group semantically related change
sets. We evaluate our method on real-world git repositories and
document our observations.

Index Terms—Cosine similarity, dependency, logical coupling,
repository mining, software evaluation, software maintenance,
reverse engineering

I. INTRODUCTION

Large Software systems invariably comprise of artifacts
written in different programming languages integrated by di-
verse technologies using a variety of implementation methods.
Identifying the dependency between artifacts written in two
different programming languages is a non-trivial task. For
example, a JavaScript method may depend on a web service
written in C#. Tracking such dependencies gets increasingly
difficult over a period of time and as they tend to become the
origins of defects in an overall software project.

Heuristically, identifying dependencies from code-revision
history is considered to be lightweight than conducting a
structural analysis of the entire artifact. In the case of code-
revision history, a small amount of information is required
to be analyzed in order to understand the dependency. Such
information is typically stored via the log files of version
control system like GIT, SubVersion, TFS etc. Almost in all
cases, such dependencies are primarily documented in the form
of a free-text comment. Thus, dependency analysis can be
performed between two or more artifacts written in different
languages without having trouble in parsing and analyzing
the content of the artifacts. Logical coupling is one such
implicit dependency observed between two or more software
artifacts. It has been found that artifacts that are considered
to be logically coupled artifacts when they change together

DOI reference number:10.18293/SEKE2019-166

frequently during the evolution of a system [9]. It can reveal
dependencies that are not structural and therefore are not
present in the code or in the documentation.

The reliability of all the existing studies on logical depen-
dencies is inherently connected to the accuracy of the approach
used to identify such dependencies [14]. Version Control
Systems (VCS), that are atomic-featured in their nature have a
change-set - which is comprised of mutually checked-in files
that result in a single commit. In general, software practitioners
often rely on the existence of the atomic commit feature and
consider the change-set as the actual set of files that were
changed together by a code-developer while working on a
given code-based task. In the case of multiple developers
implementing the same change, such code-change can span
across a series of consecutively connected and closely related
individual change-sets. Therefore, by simply inspecting the
change-sets in isolation may lead to incomplete or incorrect
results with respect to the association of logical coupling.

In the past, researchers have proposed approaches to un-
derstand logical coupling. Grouping commits with the same
authors using sliding time window concept was widely used
[14]. However, semantic relationships between the artifacts -
like the same work item or issue number, cosine similarity
of two revision comments, etc. have not been explored by
researchers. Cosine similarity is a popular measure in Infor-
mation retrieval and Data Mining areas. It can be used to
measure the similarity between two documents with respect
to their textual content [11]. In this paper, we present our
preliminary work by utilizing such techniques to identify the
logical dependency between artifacts leading to an increase in
change-set identification and accuracy. In this paper, we:

• suggest an approach to improve logical coupling detection
using semantic relations drawn from the revision com-
ments and cosine similarity.

• perform a preliminary evaluation of the proposed ap-
proach for grouping semantically related change-sets.

The rest of the paper is organized as follows. In Section 2,
we introduce the cosine similarity and grouping semantically
related change-sets. In Section 3, we present the results of our
preliminary evaluation. In Section 4, we present some related
work. Finally, in Section 5, we state our conclusions and future
work.

618

TABLE I
TERM FREQUENCIES WEIGHT(S)

Term SaS PaP WH
1. Term Frequencies Count

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

2. Log Frequency Weight
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58
3. Weight After Length Normalization
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

II. GROUPING CHANGE-SETS

Software Practitioners tend to work on code usually spread
across multiple change-sets, with multiple developers working
on it at the same time. To group these change-sets, the seman-
tic relations of the change-sets’ comments can be utilized. For
large scale software projects, the following can be observed
as grouping criteria for change-sets (i) if and only if two
comments have higher semantic similarity (or) (ii) if and only
if two comments have same referencing work item or an issue
number mentioned in it.

A. Cosine similarity

Cosine similarity is considered as a common measure for
similarity computation [6]. Cosine similarity is used to fetch
the similarity of words with respect to input query in regards
to the text documents queried. To perform this computation,
both the input query and the documents are converted into
their respective unit vector of words (~xi,~yi). We use the below
equation 1 to compute the cosine similarity here, where xi, yi
are the term frequency (tf) weight of a unit vector (term) in
the revision comment x, y. Term frequency is the number of
times a term occurs in a revision comment.

sim(x, y) = cos(~x, ~y) = ~x · ~y =

|V |∑
i=1

xiyi (1)

Let’s look at the case where we wish to calculate cosine
similarity of the books: Sense and Sensibility (SaS), Pride and
Prejudice (PaP) and Wuthering Heights (WH). Table I lists the
Term Frequencies in each of the documents, Log Frequency
Weight (calculated by formula “w = 1 + log 10(tf)”) and
Length Normalized Weight. A vector can be length-normalized
by dividing each of its components by its length. We use Level-
2 normalization (commonly referred as Euclidean norm) as
defined in equation 2:

‖~x‖ =
√∑

i

x2i (2)

Finally we compute cosine similarity of documents as listed
below:
• cos(SaS, PaP) ≈ 0.789×0.832+0.515×0.555+0.335×
0.0 + 0.0× 0.0 ≈ 0.94

• cos(SaS,WH) ≈ 0.79

The resultant values can be used to assess the extent of
similarity based on a predefined threshold values. In equation
3, we used ’0.8’ as a threshold to measure semantic similarity.
We have conducted a preliminary data analysis using the
available datasets and have considered 80% as a reasonable
threshold for desirable similarity values. This value can be
provided by the developers assessing the similarity. However,
reducing the threshold can result in poor precision, where as
increasing the threshold may result in poor recall. So, it is
required for developers to follow the standard threshold which
is widely accepted to avoid poor precision and poor recall.

x
GC
! y

def
=

{
1 if sim(x, y) ≥ 0.8 & datediff(x, y) < α
0 otherwise

(3)
However, in some cases relying on the cosine similarity index
can result in false positives. For example, in some project like
SignalR project [4] developers tend to put generic comments
like “addressed code review comments , fixed formatting, made
changes as per code review feedback” for ongoing activities.
As part of our study, we exclude these kind of change-
sets from grouping. Also, we compare the time difference of
change-sets before grouping them i.e. if the time difference is
more than a few months then we consider such changes as not
related.

B. Hash tags

Another technique for grouping change-sets is based on the
hashtags associated with the commits of co-changed artifacts.
For instance, if we consider the instances of commits from
Table II of two large scale open source projects like SignalR
[4] and NopCommerce [2] hosted on GitHub and Codeplex,
we see that in the example-1, commits ‘203cafc’ and
‘5ad051a’ have similar comments. In case of example-2, the
developers tend to associate work item or issue number in the
comment for future references, like in Git repository, the hash
tags #2376) are associated with the comments.

We group change-sets having same hash tag values based
on the mathematical formulae given in equation 4.

x
GC
! y

def
=
{

1 if HashTags(x) ∩HashTags(y) 6= ∅
0 otherwise

(4)

C. Our Approach

The proposed approach is described in Algorithm 1.
As shown in the algorithm, the initial steps required to
build a postings list [6] for each revision so as to help in
identifying the change-sets having same tokens. Once the
posting list is built using Algorithm 2, the entire revision
history is looped through (shown in line numbers 6-12) to
get semantically related change-sets and group them in a

619

https://github.com/SignalR/SignalR/issues/2376

TABLE II
MOTIVATING EXAMPLES

Example 1
Commit: 203cafc
DumpingDisconnect.Net
Comment: Removing handling Disconnect message
in the .NET Client as the server no longer
sends Disconnect messages.
Commit: 5ad051a
DumpingDisconnect.JS
Comment: Removing handling Disconnect message
in the .JS client as the server no longer
sends Disconnect messages.
Example 2
Commit:9c762c4
#2376 Reject failed invocation with a single JS object
representing HubExce...
Commit:f9bfbe3
#2376 Tests verifying HubException
details are sent to clients
Commit: 35cfccb
#2376 Flow HubExceptions
which to clients even with detailed errors disabled

list. The ‘getRelatedChangeSets’ subroutine returns
semantically related change sets for the current iteration of the
revision based equation (3, 4). The change-sets are then added
to a dictionary of the list of semantically grouped change-sets.

Algorithm 1: Change set grouping algorithm
Result: Grouped Change Sets List

1 procedure group_changeset
2 revisionLists← git.GetRevisionListIterator();
3 while rev in revisionLists do
4 addToPostingList(rev.Id,rev.Comment);
5 end
6 Map(groupId, revisionList) changeSetGroups;
7 int groupId ← 1;
8 while revision rev in revisionLists do
9 revList ← getRelatedChangeSets(rev.comment);

10 changeSetGroup.Add(groupId,revList);
11 groupId++;
12 end
13 end procedure

Algorithm 2 describes the subroutine used to create Postings
List Index. The revision id and the associated comment are
passed as input parameters to this routine. The parameters are
further processed to remove all characters except ‘[0-9a-b]w’
using regular expression match thereby tokenizing the string
with words and their occurrences in the comments. Each token
with its revision id to the Postings List Index is added to the
postings list. The sample posting list is listed in Table III.

TABLE III
SAMPLE POSTING LIST

Token Postings List
commerce doc1, 4; doc2, 5;
tokenize doc1, 50; doc3, 23;

Algorithm 2: Postings list builder subroutine
Result: Generate Postings List
Input: RevId and Comment

1 Procedure addToPostingsList
2 // get hashmap of terms with frequency count
3 tokensList← getTokens(comment);
4 while token in tokensList do
5 if postingsList.get(token.key) then
6 postingsList.Get(token.key).Add(token);
7 else
8 postingsList.Add(token.Key, token);
9 end

10 end
11 End Procedure

Algorithm 3 describes the subroutine responsible for re-
turning semantically related change-sets. It accepts revision
‘comment’ as a parameter. It converts the comments to tokens
and queries the postings list dictionary for these tokens to fetch
the posting list. Each posting list returned is reviewed against
the criteria mentioned in the equation to return the related
change-set list.

Algorithm 3: Fetch semanticaly related change-set
Result: Generate Postings List
Input: Comment

1 procedure getRelatedChangeSets
2 tokens← getTokensList(comment);
3 postingsList← getPostingsList(tokens);
4 List < revID,Comment > revisionList = null;
5 while post in postingsList do
6 bool isRelevant ← false
7 if hasSameHashTag(comment,post) then
8 isRelevant← true;
9 end

10 if cosine(comment,post.comment) > 0.8 then
11 isRelevant← true;
12 end
13 if isRelevant then
14 revisionList.Add(post.revID,post.Comment);
15 end
16 end
17 end procedure

III. PRELIMINARY EVALUATION

In this section, we provide details of our preliminary evalu-
ation using our proposed approach to group change-sets in
few C# programs. we used NGit [1] to traverse the Git
repository change-sets. We used two open source projects
(SignalR and NopCommerce) that had substantial revision
history to evaluate our approach. SignalR is an ASP.Net
library that provides real-time communication support to a
web application and NopCommerce is an ASP.Net based e-
commerce web system.

620

https://github.com/neerajmathur/SignalR/commit/203cafc
https://github.com/neerajmathur/SignalR/commit/5ad051a
https://github.com/neerajmathur/SignalR/commit/9c762c4
https://github.com/SignalR/SignalR/issues/2376
https://github.com/neerajmathur/SignalR/commit/f9bfbe3
https://github.com/SignalR/SignalR/issues/2376
https://github.com/neerajmathur/SignalR/commit/35cfccb
https://github.com/SignalR/SignalR/issues/2376

TABLE IV
MANUAL EVALUATION OF IDENTIFIED GROUPING

NopCommerce SignalR
Appropriate? Commits & Notes Appropriate? Commits & Notes

1 Yes
8bacf936baf4, efc731eeecb6, fd4ab9f67cce
Enhancement for store owner to search
unpublished and published products

Yes ae9d5f7d57db, 8a2245b17d41
Modification for Forever Frame JS client

2 Yes
e6ec8e0b83ee, 782d3b87a6e3, c87537559940,
d2792ada31c8 : Changes for product search and
user friendly product name

Yes
0611ce61abe9, 261bb48fbca8
Changed the logic of addQs question mark query
string detection

3 Yes d40a89b56610, d0c04fc618d4
Modification related to custom validation No 7996107ffbea, 877bcd59c454

Different instances of ‘Removed unused code’

4 Yes c5fe44ff76b8, 74e4a8e6c154, 28fb664d5c5f
Modifications related to Shipping Address Yes 240f6c58a5c3, de40de96a6b0, ff0bc98c2d34

Fix to ensure connection with LongPolling client

5 Yes
5e559b08a9ea, 050ddf2133e2
Enhancement related to filter shipments
and Orders by warehouse

Yes 0b71d56, a60d923, 9c762c4, f9bfbe3e, 35cfccb
Modifications related to HubExceptions

6 Maybe

305d4c1268b9, 3bf134f2c758, 9cdd0b2699b3
First two commits are related to store mapping
to setting and third is related to store mapping
to categories

Yes
8dc620093097, dd39b641bc27, 94ff30dd5821
Updates to crank for automation, and more
Stress metrics

7 Yes 7a62bbdc9b24, c55d3897bf68
Localization changes for hard coded string Yes 4148ea70f62d, 43aac84329b7

Handling of security errors in websockets

8 Yes f020e98231f5, 95263d99979f
Enhancement for friendly name of Affiliates MayBe a596aeb43c55, 5b47f9ba24a8

Updated self host sample.

9 No
188f4243ba1d, 8330d952235e
First is the Fluent library update and second is
the Entity Framework library update

Yes
143aa036367b, 7be649699e1d
Changed Web Socket implementation to
not send an empty frame at the end

10 Yes 57b7c7fdc445, 410eae6cd1f8
Modification for manufacturer store mapping Yes

f81f6c2, 1118b15, cdaaa33,3 5b65d0
Ensure JS SSE & WS transports will attempt
reconnecting multiple times

11 Yes
d2f341323abc, fbd49df6f2dd, f02244dc5fae
Enhancement for shipping rate computation for
‘FedEx’, ‘UPS’ and ‘by weight’

Yes
4cf7d2b, 730aa53, c6ffb08, 41317c9, 56e4002,
8dc3ac4 :Exception handling unresolved endpoints
in ServiceBus scale-out

12 No
bcecd04eb644, 5cfc2977138, b559ca0aa2e4
Author forgot a file to checkin in previous commit,
but comments were same in all the commits

Yes 5ad051a9822b, 203cafcd1cbe
Handling of disconnect message in JS and .Net

13 Yes
c3782eef4eba, b80d4cdecfa1
Added "Order paid" message template sent to
a customer

Yes

1162f9163ba8, 47c7084ec3a4, ccdade4488ef
added checks for null and empty values in the
send and group methods in hub
and persistent connection

14 - - Yes

bddcb70, 7dfa876, 13f2ffe, 9ff238e, 61c0c5c, 212fb4e
Modification as per the static code analysis tool
‘FxCop’, Usually these are not related changes as
FxCop is used to check naming conventions

We calculated the basic descriptive statistics for the number
of commits grouped together. As listed in Table V, in case
of NopCommerce project, 357 change-set groups were created
with 1017 commits which are 19.44% of the actual commits
with a maximum of 11 revisions and an average of 2.85
commits per change-set. In SingnalR project, 301 change-
set groups were created with 969 commits which are 21.49%
of the actual commits with a maximum of 22 revisions and
an average of 3.21. The figure 1 displays a Scatter Plot
view of length versus number of change-set groups created
for NopCommerce and SignalR projects respectively. Overall,
there is a little dispersion in the values as evident by the
standard deviation.

To corroborate the results of our algorithm, we have made
attempts to conduct an inspection of a few random samples [3]

TABLE V
CHANGESET GROUP STATISTICS

Project NopCommerce SignalR
Total commits 5229 4509
Active Since 2009 2011
of groups 357 301
of commits grouped 1017 969
% of commits grouped 19.44 21.49
Max 11 22
Avg 2.85 3.21
StDev 1.48 2.7

from the 658 change-set groups identified by our algorithm.
We inspected 13 samples from each NopCommerce and Sig-
nalR to verify whether the revisions were grouped to a single

621

https://nopcommerce.codeplex.com/SourceControl/changeset/8bacf936baf4

01020 50 100 150 200
0
2
5

10

20

30

40

50

Number of change-set groups

L
en

gt
h

SignalR
NopCommerce

Fig. 1. Scatter plot of length versus change set groups

purpose or not. By verifying the revision files, comments, and
diff code - we were able to judge whether the grouping made
sense. We have used a statistical random sample size calculator
[3], which enabled us to generalize our results with a margin
of an error of 20% and confidence level of 80%. The results
of our inspection are listed in Table IV.

In ‘NopCommerce’, out of 13 samples 11 were seman-
tically related. In two samples which were not semantically
related, ‘Sample 6’ had two revisions ‘305d4c1268b9,
3bf134f2c758’ related to ‘store mapping changes
for settings’ but its third revision ‘9cdd0b2699b3’
was related to ‘store mapping for categories’.
Additionally, their comments appeared to be semantically re-
lated but as per the code paths, it seemed that they were not ac-
tually related to each other. In the other ‘Sample 12’,the first
revision ‘188f4243ba1d’ was related to the latest update of
‘fluent’ library and the second revision ‘8330d952235e’
was related to the latest update of ‘EntityFramework’
library and hence they were not semantically related.

In ‘SignalR’, out of 14 samples, 11 were semantically
related. In three samples that were not semantically related,
‘Sample 8’ had two revisions related to self-host changes
as per the comments but post analyzing the changed code a
semantic relation could not be established in both the revision
changes, hence we marked it as ‘MayBe’. In ‘Sample 3’,
the revisions were done to remove unused code in multiple
places but the author provided the same comments for both
of them which resulted in high cosine similarity responsible
for their grouping. In ‘Sample 14’, it had the fixes of the
naming conventions identified by the static analysis tool named
‘FxCop’.

We have observed that our approach is able to semantically
group change-sets which has the potential to enhance the
identification of logical dependency with a margin of 20%
error in detection. As per our sample analysis, we did not
notice any instance of grouping by HashTag that is not
semantically related, however the groups which were created

by semantic (cosine) similarity had few instances that were
not related.

IV. RELATED WORK

Gall et al. are the first to introduce the concept of logical
coupling [9] by analyzing the dependencies in 20 different
product releases of a telecommunications switching system.
D’Ambros et al. have made attempts to visualize logical
coupling using an interactive visualization approach called
Evolution Radar [7]. This approach was not composite and
extensive enough for large software systems. Graves et al. [10]
have shown that the future occurrence of faults can be easily
predicted by the past revision histories of the software system.
However, this reliability of this prediction can be questioned as
it was never evaluated against a real-world evolving software
product. Logical coupling has also been employed to predict
changes in the software product [15] and was used to infer
code decay [8]. There are many such use-cases which are
introduced and practiced by software researchers. Mockus et
al. [12] have found that the rate of widespread of a change
over sub-systems and its related artifacts is a strong indicator
for a presence of defects in a respective change. However, it
requires a strong empirical validation on a real-world data set.

Ambros et al. [5] have reverse engineered a software system
using an interactive visualization technique called the Evolu-
tion Radar, which can effectively break down the amount and
complexity of the logical coupling information. Manishankar
et al. [13] proposed new measurement for improving detection
accuracy of evolutionary coupling by blending the concept
location in a code-base to determine whether the changes to
the co-changed entities are corresponding in nature and are
thus related. Gustavo Ansaldi Oliva et al. [14] have proposed
an approach to group timely-close and semantically-related
change-sets containing the same author and commit message
by using a sliding time window concept. In spite of such
significant research being brought out by a variety of software
practitioners, the semantic relationship between the artifacts
was never made by linking the approach to detect logical cou-
pling. The existing approaches are built under the assumptions
that the developer will check-in all the related files in a single
commit, whereas this is not a practical scenario. In contrast to
existing state-of-art approaches, our approach is considerably
different as it considers grouping of change-sets semantically
in order to enhance the detection of logical coupling.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a simple approach to group
semantically related change-sets in atomic-commit featured
Version Control Systems before performing logical coupling
identification. We used Cosine Similarity and work item hash-
tag match to group various change-sets. We were able to
group almost 20% of the revisions. As part of our validation,
we implemented the proposed algorithms in our approach to
group various change-sets and presented preliminary evalua-
tion results for the same. Our evaluation revealed promising
results with a margin of error 20% in ‘Cosine Similarity’

622

grouping of change-sets. Whereas in ‘HashTag’ evaluation, we
found that almost all the samples were semantically related.
Intuitively, the results could easily be interpreted to conclude
that ‘HashTag’ grouping provided a high degree of accuracy
in grouping the change-sets, whereas ‘Cosine Similarity’ had
few instances of false positives.

As part of our future work, we plan to detect hashtags by
using pattern recognition techniques using a new algorithm
that can reduce the possible HashTag patterns from the revision
comments. We also plan to develop a technique to filter
semantically unrelated files and exclude false positives. We
observed that most of the false positive are related to ongoing
design tasks “like refactoring, merge of branches”. Therefore
we will plan to develop a filtering rule to exclude such change-
sets as part of our future data sets. In regards to our present
analysis, we have only targeted the main/trunk branch for
detecting change-set groups. In the future, we would explore
the possibilities to work with multiple branches. In regards to
existing approaches, we ought to conduct an empirical study
to understand the efficiency of our approach against the rest.
We will be working further to enhance the effectiveness of our
approach by evaluating it against large code-base.

REFERENCES

[1] ngit. www.github.com/mono/ngit.
[2] nopcommerce - asp.net open-source e-commerce shopping cart solution.

www.nopcommerce.com.

[3] Random sample calculator. www.raosoft.com/samplesize.html.
[4] Signalr - incredibly simple real-time web for .net. www.signalr.net.
[5] M. D. Ambros and M. Lanza. Reverse engineering with logical coupling.

In Reverse Engineering, 2006. WCRE’06. 13th Working Conference on,
pages 189–198. IEEE, 2006.

[6] H. S. Christopher Manning, Prabhakar Raghavan. Introduction to
Information Retrieval. Camebridge University Press, 2008.

[7] M. D’Ambros, M. Lanza, and M. Lungu. Visualizing co-change
information with the evolution radar. 35(5):720–735, 2009.

[8] S. Eick, T. Graves, A. Karr, A. Mockus, and P. Schuster. Visualizing
software changes. 28(4):396–412, 2002.

[9] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based
on product release history. In Software Maintenance, 1998. Proceedings.,
International Conference on, pages 190–198, 1998.

[10] T. Graves, A. Karr, J. Marron, and H. Siy. Predicting fault incidence
using software change history. 26(7):653–661, 2000.

[11] A. Kumar. Modern information retrieval: A brief overview. Bulliten
of IEEE Computer Society Technical Committee on Data Engineering,
4(24):35–43, November 2001.

[12] A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell
Labs Technical Journal, 5(2):169–180, 2000.

[13] M. Mondal, C. K. Roy, K. Schneider, et al. Improving the detection accu-
racy of evolutionary coupling by measuring change correspondence. In
Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014 Software Evolution Week-IEEE Conference on, pages
358–362. IEEE, 2014.

[14] G. A. Oliva, F. Santana, M. Gerosa, and C. de Souza. Preprocessing
change-sets to improve logical dependencies identification. In Pro-
ceedings of the 6th International Workshop on Software Quality and
Maintainability, 2012.

[15] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining version
histories to guide software changes. 31(6):429–445, 2005.

623

www.github.com/mono/ngit
www.nopcommerce.com
www.raosoft.com/samplesize.html
www.signalr.net

A Robust Visual Tracker Based on DCF Algorithm

Menglei Jin, Weibin Liu*
Institute of Information Science

Beijing Jiaotong University
Beijing 100044, China

E-mail: wbliu@bjtu.edu.cn

Weiwei Xing
School of Software Engineering

Beijing Jiaotong University
Beijing 100044, China

Abstract— Since Correlation Filter appeared in the field of

video object tracking, it is great popular due to its excellent

performance. The Correlation Filter based tracking algorithms

are very competitive in terms of accuracy and speed as well as

robustness. However, there are still some fields for

improvement in the Correlation Filter based tracking

algorithms. First, during the training of the classifier, the

background information that can be utilized is very limited.

Moreover, the introduction of the cosine window further

reduces the background information. These reasons reduce the

discriminating power of the classifier. This paper introduces

more global background information on the basis of the DCF

tracker to improve the discriminating ability of the classifier.

Then, in some complex scenes, tracking loss is easy to occur. At

this point, the tracker will be treated the background

information as the object. To solve this problem, this paper

proposes a novel re-detection component. Finally, the current

Correlation Filter based tracking algorithms use the linear

interpolation model update method, which cannot adapt to the

object changes in time. This paper proposes an adaptive model

update strategy to improve the robustness of the tracker.

Keywords-visual tracking; Correlation Filter; background

modeling; re-detection and re-search; model update

I. INTRODUCTION

Video object tracking is a very important and popular study
in the field of computer vision. It has applications in many areas,
such as precision guidance in the military field, intelligent
transportation and autonomous driving, and human-computer
interaction. At present, more and more research results have
been achieved in this field. Both tracking accuracy and speed
have been greatly improved. However, it still faces many
challenges, especially complex scenes such as lighting changes,
motion blur, and occlusion [1]-[2].

We focus on single object tracking in this paper. At present,
there are two types of methods in the field of object tracking.
One is the generative approach, the other is the discriminative
approach. It's not unfamiliar to generative models, such as
classic mean-shift, particle filtering, kalman filtering and so on.
Unlike the generative model, the discriminative model trains a
classifier which can effectively distinguish between the object
and the background. As far as the current research progress is
concerned, the discriminative model is superior to the generation
model.

The latest research progress of discriminative approach is
Correlation Filter based algorithms. Correlation Filter is simply
referred to as CF. Correlation is a concept in the field of signal
processing. In real life, many problems can be solved with
Correlation functions. It measures the degree of similarity of two
signals at a time. Therefore, the more similar the two signals are,
the larger the correlation value is. Been inspired by this idea, the
MOSSE (Minimum Output Sum of Squared Error) tracker
skillfully applies Correlation Filter to video object tracking [3].
Specifically, during the tracking process, we need to train a
Correlation Filter template based on the object image block and
desired output. When this template is applied to the candidate
image blocks, the image block with the largest response value is
regarded as the object. Why are Correlation Filter based
algorithms capable of achieving so high speeds? This is mainly
due to cyclic shift and Fourier transform, which can greatly
reduce the computational complexity.

Nevertheless, there are still some problems to be solved in
Correlation Filter based algorithms. (1) The problem of
insufficient background information. It is well known that
negative samples are very important in the training of classifier.
However, in order to reduce the boundary effect caused by cyclic
shift, the algorithm uses the operation of adding cosine window.
This operation not only reduces the proportion of real samples,
but also further reduces the background information. (2) The
problem of tracking loss and model drift. In complex scenarios,
tracking loss often occurs in the process of tracking. Traditional
algorithms do not take measures to deal with this situation. (3)
The problem of model updating cannot adapt to object changes.
Classical algorithms often use fixed update rate to update the
model linearly. This updating method has a great defect, it
cannot reflect the change of the target in time. It can seriously
affect tracking accuracy.

To solve these problems, this paper makes the following
contributions. The proposed algorithm is based on DCF tracker.
In order to improve the discriminant performance of the
classifier, we combine the framework in CACF [4] with the DCF
framework. Then, we add the operation of re-detection and re-
search on the basis of the original algorithm flow. Here, re-
detection depends on tracking confidence index. Finally, we
introduce an adaptive model updating strategy, which can adapt
to the appearance changes of the object in time. Experiments
show that these measures are effective.

II. Related Work

Blome et al. first applied Correlation Filter to video object
tracking. The MOSSE tracker uses an objective function with a
minimum mean square error. Due to the full utilization of the

{Correspending author: Weibin Liu, wbliu@bjtu.edu.cn}
DOI reference number: 10.18293/SEKE2019-149

624

Fourier transform, the tracking speed of the algorithm is very
fast. Its accuracy rate is 43.1% while maintaining 615fps. The
disadvantage of the MOSSE tracker is that the feature
representation is relatively simple, which greatly affects the
tracking accuracy. The CSK (Circulant Structure with Kernels)
tracker proposed by Henriques et al. solves the tracking problem
from the perspective of machine learning [5]. It uses a cyclic
shift sampling strategy to solve the problem of insufficient
training samples that always exist in object tracking field.
However, the shortcoming of the feature representation is still
unresolved. Later, the KCF/DCF tracker was proposed [6]. It
extends the feature representation of the image from the single
channel gray features to multichannel HOG (Histogram of
Oriented Gradients) feature. Compared with the CSK tracker,
the tracking accuracy has increased from 54.4% to 73.2%.
Among them, the difference between KCF (Kernelized
Correlation Filter) and DCF (Discriminative Correlation Filter)
is use of nuclear techniques. Similarly, the CN (Color Name)
tracker extends the feature representation from gray features to
color attributes [7]. The CN feature subdivides the RGB color
into 11 common color in life [8]-[9]. To avoid high
computational complexity, the algorithm uses the PCA method
to process features. Later, Danelljan M et al. proposed the DSST
(Discriminative Scale Space Tracker), which solves the multi-
scale problem in object tracking [10]. During the tracking
process, the algorithm designs two independent Correlation
Filters to estimate the scale and the position of object. Another
tracker that can solve multi-scale problem is SAMF (Scale
Adaptive Filter with Feature Integration), which was proposed
by Yang L. This algorithm combines the FHOG feature with the
CN feature for the first time. It adopts a multi-scale detection
algorithm in the field of object detection. Unlike the DSST
tracker, the SAMF tracker [11] can simultaneously estimate the
location and scale of the object.

 At present, there are already some tracking algorithms that
have done work on re-detection. The MOSSE tracker proposes
a PSR indicator to measure tracking confidence. Then, LCT
(Long-term Correlation Filter Tracker) introduces an additional
Correlation Filter in the base of the DSST that can be used to
detect object confidence [12]. If the tracking confidence factor
does not meet the requirements, the algorithm initiates a re-
search component. The algorithm uses the SVM classification
algorithm to relocate. In terms of model updating, the LMCF
(Large margin tracking method with circulant feature maps)
tracker proposes a robust model updating strategy [13]. The
model is updated only when the tracking confidence coefficient
reaches the historical mean. Otherwise, the model is not updated.
In addition, the ECO tracker uses another more efficient way to
perform model updates. The tracking model is updated every
few frames [14].

III. OUR METHOD

In this section, we detail our proposed object tracking
algorithm. Because the algorithm is based on the DCF tracker,
we first introduced the basic tracker. Then, we introduced the
core of this paper: global background modeling, re-detection
component and adaptive model update strategy.

A. The Base Method：DCF tracker

The introduction of a large number of negative samples can
improve the discriminative performance of the classifier during
the tracking process. Many tracking algorithms determine the
negative samples based on the distance of the object in the two
frames. The overlap rate of these negative samples is actually
very high. Therefore, the DCF tracker constructs training
samples by cyclic shifting of the tracking object. As shown in
Equation 1, the DCF tracker uses the regularized least squares
classification algorithm to train the classifier.

 𝑚𝑖𝑛𝑤 ∑(𝑓(𝑥𝑖) − 𝑦𝑖)
2

𝑖

+ 𝜆‖𝑤‖2 (1)

Where 𝑓 denotes a classification function, 𝑥𝑖 and 𝑦𝑖 represent
training samples and expected outputs, respectively, 𝑊
represents the weight of the classifier, and 𝜆 is a regularization
parameter to prevent overfitting. Then we write it in the form of
a matrix.

 𝑚𝑖𝑛𝑤 ∑(𝑋𝑊 − 𝑦)2

𝑖

+ 𝜆‖𝑤‖2 (2)

In formula 2, 𝑋 and 𝑦 represent the matrix form of 𝑥𝑖 and 𝑦𝑖 ,
respectively. To minimize the objective function, we take
advantage of the nature of the cyclic matrix. The solution can be
obtained by setting the derivative to 0.

 �̂� =
�̂�∗ ⊙ �̂�

�̂�∗ ⊙ �̂� + 𝜆
 (3)

Then, we introduce a kernel function to solve the problem of
insufficient discriminant performance of the linear classifier.
The kernel function maps the input data to a nonlinear feature
space. Through the mapping, we can get the following
expression:

 𝑤 = 𝑚𝑖𝑛
𝑤

‖𝜙(𝑋)𝑤 − 𝑦‖2 + 𝜆‖𝑤‖2 (4)
Here, 𝑤 satisfies 𝑤 = ∑ 𝛼𝑖𝜙(𝑥𝑖)𝑖 . Therefore, the above formula
can be expressed as:

 𝛼 = 𝑚𝑖𝑛
𝛼

‖𝜙(𝑋)𝜙(𝑋)𝑇𝛼 − 𝑦‖2 + 𝜆‖𝑤‖2 (5)
Through a series of derivations, the solution can be expressed as:

 𝛼 = 𝐹−1 (
�̂�

�̂�𝑥𝑥 + 𝜆
) (6)

Where 𝑘𝑥𝑥 is the first row of the kernel matrix 𝑘. The matrix 𝑘
satisfies 𝑘 = 𝜙(𝑋)𝜙(𝑋)𝑇. In order to locate the tracking object
in each subsequent frame, the DCF tracker also uses the cyclic
shift to build the samples.

 𝑓(𝑧𝑗) = 𝑤𝑇𝜑(𝑧𝑗) (7)
𝑧𝑗 in Equation 7 represents a sample obtained by cyclically
shifting the image block 𝑧, which satisfies 𝑧𝑗 = 𝑝𝑗𝑧. We can
estimate the position of the object by calculating the detection
values of all samples by the following formula.

 𝑓(𝑧) = (𝑘𝑧)𝑇𝛼 (8)
Through the diagonalization operation, the above formula can be
converted into:

 𝑓(𝑧) = �̂�𝑥𝑧 ⊙ �̂� (9)
Where 𝑘𝑥𝑧 is the nuclear correlation of 𝑥 and 𝑧 . Repeat this
process and the tracking process is complete.

625

B. Global background modeling

In the tracking process of the KCF/DCF tracker, the search
range is usually 1.5 times the size of the object. However, the
operation of the cyclic shift is used in the construction of the
sample, which brings the boundary effect. To alleviate the
boundary effect, the DCF tracker adds a cosine window.
However, the cosine window reduces not only the search range,
but also the available background information available during
the tracking process. In this paper, we combine the DCF
framework with the framework in CACF to increase global
context information.

During the training of the Correlation Filter, we sampled
around the object. We train the ridge regression classifier using
the object and the background image block. To get the closed
solution, we regress the expected value of the global background
image block to zeros. The objective function is:

 𝑚𝑖𝑛
𝑤

‖𝐴0𝑤 − 𝑦‖2
2 + 𝜆1‖𝑤‖2

2 +𝜆2 ∑‖𝐴𝑖𝑤‖2
2

𝑘

𝑖=1

 (10)

Where 𝐴0 represents the cyclic matrix formed by the object
image block, 𝐴𝑖 represents the cyclic matrix constructed by the
global background image block, and 𝜆1 and 𝜆2 are
regularization parameters. In the objective function, the
expected output value of the object image block is y. We
recombine the object image block and the background image
block to form a new matrix. This formula can be rewritten as:

 𝑓𝑝(𝑤, 𝐵) = ‖𝐵𝑤 − �̅�‖2
2 + 𝜆1‖𝑤‖2

2 (11)
Here, 𝐵 denotes a new matrix formed by combining the global
background image block and the object, and �̅� denotes a label
vector obtained by expanding the label 𝑦 with 0. 𝐵 and �̅�, satisfy,

 𝐵 =

[

𝐴0

√𝜆2𝐴1

⋮

√𝜆2𝐴𝑘]

 𝑎𝑛𝑑 �̅� =

[

𝑦
0

⋮
0]

 (12)

Since 𝑓𝑝(𝑤, 𝐵) is a convex function, by deriving the objective
function and setting the derivative to 0, a closed solution for w
can be obtained:

 𝑤 = (𝐵𝑇𝐵 + 𝜆1𝐼)
−1𝐵𝑇�̅� (13)

Using the property of the cyclic matrix, the above formula can
eventually be converted to:

 𝑤 = [𝐹𝑑𝑖𝑎𝑔(�̂�0
∗ ⊙ �̂�0 + 𝜆1 + 𝜆2 ∑ �̂�𝑖

∗ ⊙𝑘
𝑖=1

 �̂�𝑖)𝐹
𝐻]

−1
𝐹𝑑𝑖𝑎𝑔(�̂�0

∗ ⊙ �̂�) (14)

By performing a Fourier transform on 𝑤, we can get:

 �̂� =
�̂�0

∗ ⊙ �̂�

�̂�0
∗ ⊙ �̂�0 + 𝜆1 + 𝜆2 ∑ �̂�𝑖

∗ ⊙ �̂�𝑖
𝑘
𝑖=1

 (15)

The next step is object detection. The response map can be
obtained by convoluting the learned filter with the image block
𝑧 (search window) in the next frame. Much like the DCF tracker,
the detection formula for solving the response map can be
expressed as:

 �̂�𝑑 = �̂� ⊙ �̂�0
∗ ⊙ �̂�0 + √𝜆2 ∑ �̂� ⊙ �̂�𝑖

∗ ⊙ �̂�𝑖

𝑘

𝑖=1

 (16)

C. Re-detection and re-search components

In the traditional Correlation Filter tracking algorithms, the
principle of tracking is to apply the Correlation Filter template
to the detect image blocks, and regard the position of the peak
in the response map as the position of the object. However, there
is a drawback in such a detection method which the position
with the largest response value does not always track the actual
position of the object, especially in some complicated scenarios.
Therefore, it is likely to bring about model pollution with using
this method for position estimation directly, which affects the
accuracy of the tracking algorithm. In this paper, we introduce
a re-detection and re-search operation to improve this problem.
We used the APCE indicator to determine the tracking
performance of the current frame [13]. The APCE calculation
method is as follows:

 𝐴𝑃𝐶𝐸 =
|𝑚𝑎𝑥(𝜙(𝑡)) − 𝑚𝑖𝑛(𝜙(𝑡))|

2

𝑚𝑒𝑎𝑛 (∑ (𝑔𝑚,𝑛 − 𝑚𝑖𝑛 (𝜙(𝑡))
2

𝑚,𝑛)
 (17)

Where 𝜙(𝑡) represents the response map of the t-th frame.
When the APCE indicator does not reach the historical average,
the re-detection component is turned on. We re-search for the
object at the position corresponding to the other peaks of the
response map. Then, the response maps obtained by the
correlation filter template at all candidate image blocks are
respectively calculated. Finally, we determine the image block
with the largest response value as the object.

D. Adaptive model update strategy

During the tracking process, the object often undergoes
various changes. Therefore, the tracking algorithm needs to
update the model in time to adapt to this change to improve the
robustness of the tracking algorithm. This is very challenging. In
the classic Correlation Filter based tracking algorithms, both
KCF and DSST tracker use the following linear interpolation
update method.

 �̂�𝑛 = (1 − 𝛾)�̂�𝑛−1 + 𝛾�̂� (18)

 �̂�𝑛 = (1 − 𝛾)�̂�𝑛−1 + 𝛾�̂� (19)
Where 𝑛 is the sequence number of the current frame, �̂� is the
target representation model represented by the predicted position
image block, and �̂� is the classifier parameter, 𝛾 represents the
model update rate. Currently, the model update rate is
determined by empirical values and is constant. The larger the
value of 𝛾 , the faster the model update rate. Conversely, the
smaller the value of 𝛾, the slower the model update rate. When
a large change occurs in the object, such as posture change and
in-plane rotation, etc., 𝛾 should be selected as a larger value.
When the tracking environment changes greatly and the tracking
object does not change much, 𝛾 should be selected as a smaller
value. However, when 𝛾 is too large, the update rate is too fast
and it is easy to cause model drift. In summary, setting the model
update rate to a fixed value is not appropriate because it does not
accurately reflect changes in the object. Moreover, this update
method easily leads to over-fitting of the model to several frames

626

of images. For example, the updated model is particularly
sensitive to occlusion and deformation. In this paper, we propose
an adaptive model update strategy. Here, we introduce a penalty
coefficient 𝜉 to control the model update rate. 𝜉 is determined by
the following formula.

 𝜉 =
𝑚𝑎𝑥 (𝜙(𝑡))

𝑚𝑎𝑥 ({𝜙(1), 𝜙(2), 𝜙(3),⋯𝜙(𝑡 − 1)})
 (20)

IV. EXPERIMENT RESULTS

A. Dataset and evaluation index

In order to test the performance of the algorithm, this paper
uses the OTB-2013 and OTB-2015 datasets, which are very
popular in the field of video object tracking. Prior to the advent
of OTB-2013, there was no recognized database here, so the
tracking performance of the algorithm could not be accurately
tested and compared. The significance of OTB-2013 is profound,
which greatly promotes the development of tracking algorithms.
OTB-2013 includes a total of 50 video sequences, while OTB-
2015 extends it from 50 video sequences to 100 video sequences.
The datasets contain 11 tracking difficulties: illumination
changes, scale changes, occlusion, deformation, motion blur,
fast motion, in-plane rotation, out-of-plane rotation, out-of-field,
background clutter, low resolution. There are 26 gray sequences
and 74 color sequences in 100 video sequences. The tracking
targets that appear in OTB-2015 dataset include 36 entities, 26
faces/headers, and a total of 58897 frames. The length of the
video sequence includes short-term and long-term, and the
longest video sequence has more than 3,000 frames.

The OTB-2013 and OTB-2015 datasets provide two
evaluation indicators: precision and success rate. Precision is an
indicator used to measure the center pixel position deviation. As
shown in Figure 1, the estimated tracking frame of the algorithm
is 𝑆′, and its central pixel position is (𝑥′, 𝑦′). The actual tracking
frame is 𝑆 , and its center pixel position is (𝑥, 𝑦) . Use the
Euclidean distance when calculating the center pixel deviation.
Typically, the center pixel deviation threshold is set to 20 pixels.
The success rate is calculated as follows:

 ∅ =
𝑆 ⋂ 𝑆′

𝑆 ⋃ 𝑆′
 (21)

Figure 2. Ground truth and actual tracking results comparison chart

B. Parameter setting and algorithm flow chart

In practice, we implemented the proposed algorithm using
the MATLAB language. In this paper, the kernel function type
is set to a linear kernel, the image block padding is set to 2, 𝜆1 is
set to 1e-4, 𝜆2 is set to 26, and the linear interpolation factor for
adaptation is set to 0.012. When calculating the HOG feature,
the cellSize is set to 4 and the orientation is set to 9.

Figure 2. Algorithm flow chart

 Figure 2 shows in detail the flow chart of the tracking
algorithm proposed in this paper. Compared with the traditional
Correlation Filter based algorithms, our proposed DCF_BM
tracker has improved the training process of the Correlation
Filter. On the negative samples of the training, not only the
image blocks after the object cyclic shift are used, but also the
image blocks around the object are also taken into consideration.
In addition, an adaptive model update strategy is proposed in this
paper to better adapt to object changes. Additionally, the re-
detection and relocation components are also used in the
DCF_BM tracker.

C. Performance testing and analysis

In this section, we compare the proposed algorithm with
some of the Correlation Filter based trackers that have appeared
in recent years. Because the KCF tracker has been significantly
better than traditional trackers including Struck [15], TLD [16]
and MEEM [17], we only compared algorithms include CSK,
KCF, SAMF, DSST and Staple tracker [18].

(a)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE

DCF_BM [0.830]

Staple [0.793]

SAMF [0.785]

KCF [0.740]

DSST [0.740]

CSK [0.545]

(x',y')

(x,y)

S

S'

frame(n) background modeling

feature representation

 FFT

frame(n+1)

cyclic
shift

feature representation

 detection
re-detection

Correlation Filter

 FFT
desired output

627

(b)

(c)

(d)

Figure 3. Experimental results on OTB-2013 and OTB-2015
 The experimental results of these algorithms on the OTB-

2013 dataset are shown in (a) and (b) of the Figure 3. It can be
seen that the DCF_BM tracker proposed in this paper has
obtained the optimal tracking result on the OTB_2013 dataset.
The precision is 83.0% and the success rate is 61.3%. Compared
to the baseline tracker, it achieves significant improvements in
accuracy and success rate (both 9%). The experimental results
on the OTB-2015 dataset are shown in Figures (c) and (d) of the
Fig. 3. We can find that the DCF_BM tracker proposed in this
chapter still achieves the best performance. It has an accuracy of
80.7% and a success rate of 59.3%. Compared with the classic
KCF tracker, it has increased by 11.0% and 16.0% respectively
in terms of accuracy and success rate. From these comparisons,
one can conclude that the work done in this paper is effective
and can improve tracking performance.

 In addition, by comparing the experimental results, the
Staple tracker ranks second in each result graph. This is mainly
because the tracker combines HOG features and statistical color
histograms. The response map is linearly weighted to obtain the
final response map. The boundary effect is inherently a defect in
the Correlation Filter based tracking framework, while the pixel-
level color probability features are not affected by this factor. So,
from this perspective, the DAT [19] in the Staple tracker

mitigates the boundary effect. However, the Staple tracker
roughly uses the linear weighting method in the specific
implementation. The Correlation Filter response occupies a
weight of 0.7, which plays a major role, while the color
probability response occupies a weight of 0.3, which plays a
supporting role. However, this simple weighting method has an
obvious disadvantage in that it cannot adaptively determine the
weights of the correlation filter response and the color
probability response.

 In order to further verify the performance of the DCF_BM
tracker proposed in this paper under different challenges, the
attribute analysis on the OTB-2015 dataset was also carried out.
The tracking performance of our proposed tracker and several
other advanced trackers is shown in Tab. 1 and Tab. 2. It can be
seen that the DCF_BM tracker proposed in this paper achieves
the best performance in almost all attributes, in terms of
precision or success rate, except LR (low resolution). In addition,
the performance of the DCF_BM tracker is improved under
various attributes compared to the standard KCF tracker, which
is due to the use of background modeling.

Especially in occlusion (precision 73.8% vs. 65.1%) and fast
motion (precision 74.7% vs. 62.1%) scenes, there are significant
improvements in tracker's performance. It is mainly due to the
application of re-detection and re-search components. When
there is an abnormality in the response map, such as in fast
motion and occlusion scenarios, we can try to expand the search
area and re-detect the tracking object.

V. CONCLUSION

In this paper, a tracking framework based on DCF tracker is
proposed. The introduction of global background information
solves the problem that the background information in the
traditional Correlation Filter framework is very limited, thereby
improving the discriminating ability of the classifier. The DCF
tracker adopts the model updating method of linear interpolation,
which is difficult to adapt to the change of the object. The
DCF_BM tracker proposed in this paper introduces a penalty
coefficient that controls the update rate of the model, which
significantly improves this shortcoming.

TABLE I. AVERAGE PRECISION SCORE ON OTB-2015 DATASET

attribute DCF_BM Staple DSST KCF SAMF
IV(38) 0.817 0.791 0.721 0.719 0.715
OPR(63) 0.762 0.738 0.644 0.677 0.739
SV(64) 0.757 0.727 0.638 0.633 0.705
OCC(49) 0.738 0.726 0.597 0.630 0.726
DEF(44) 0.779 0.748 0.542 0.617 0.686
MB(29) 0.738 0.707 0.567 0.601 0.655
FM(39) 0.747 0.697 0.552 0.621 0.654
IPR(51) 0.799 0.770 0.691 0.701 0.721
OV(14) 0.708 0.661 0.481 0.501 0.628
BC(31) 0.785 0.766 0.704 0.713 0.689
LR(9) 0.638 0.631 0.567 0.560 0.685

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE

DCF_BM [0.613]

Staple [0.600]

SAMF [0.579]

DSST [0.554]

KCF [0.514]

CSK [0.398]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
si

o
n

Precision plots of OPE

DCF_BM [0.807]

Staple [0.784]

SAMF [0.751]

KCF [0.696]

DSST [0.680]

CSK [0.519]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
cc

e
ss

 r
a
te

Success plots of OPE

DCF_BM [0.593]

Staple [0.581]

SAMF [0.553]

DSST [0.513]

KCF [0.477]

CSK [0.382]

628

TABLE II. AVERAGE SUCCESS SCORE ON OTB-2015 DATASET

attribute DCF_BM Staple DSST KCF SAMF
IV(38) 0.615 0.598 0.558 0.479 0.534
OPR(63) 0.549 0.534 0.470 0.453 0.536
SV(64) 0.537 0.525 0.468 0.394 0.495
OCC(49) 0.560 0.548 0.453 0.443 0.540
DEF(44) 0.566 0.554 0.420 0.436 0.509
MB(29) 0.567 0.546 0.469 0.459 0.525
FM(39) 0.571 0.537 0.447 0.459 0.507
IPR(51) 0.564 0.552 0.502 0.469 0.519
OV(14) 0.515 0.481 0.386 0.393 0.480
BC(31) 0.585 0.574 0.523 0.498 0.525
LR(9) 0.417 0.418 0.383 0.307 0.430

ACKNOWLEDGMENT
This research is partially supported by National Natural

Science Foundation of China (No.61876018).

REFERENCES
[1] Wu Y, Lim J, Yang M H. Object Tracking Benchmark[J]. IEEE

Transactions on Pattern Analysis & Machine Intelligence, 2015,
37(9):1834-1848.

[2] Wu Y, Lim J, Yang M H. Online Object Tracking: A Benchmark[C]//
Computer Vision and Pattern Recognition. IEEE, 2013:2411-2418.

[3] Bolme D S , Beveridge J R , Draper B A , et al. Visual object tracking
using adaptive correlation filters[J]. 2010.

[4] Mueller M, Smith N, Ghanem B, et al. Context-Aware Correlation Filter
Tracking[C]// Computer Vision and Pattern Recognition. IEEE, 2017:
1387-1395.

[5] João F. Henriques, Caseiro R , Martins P , et al. Exploiting the Circulant
Structure of Tracking-by-Detection with Kernels[M]// Computer Vision
– ECCV 2012. Springer Berlin Heidelberg, 2012.

[6] Henriques J F , Caseiro R , Martins P , et al. High-Speed Tracking with
Kernelized Correlation Filters[J]. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2015, 37(3):583-596.

[7] Danelljan M , Khan F S , Felsberg M , et al. Adaptive Color Attributes for
Real-Time Visual Tracking[C]// 2014 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2014.

[8] Weijer J V D , Schmid C , Verbeek J . Learning Color Names from Real-
World Images[C]// 2007 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society, 2007.

[9] Van d W J , Schmid C , Verbeek J , et al. Learning Color Names for Real-
World Applications[J]. IEEE Transactions on Image Processing, 2009,
18(7):1512-1523.

[10] Danelljan M, Häger G, Khan F, et al. Accurate scale estimation for robust
visual tracking[C]//British Machine Vision Conference, Nottingham,
September 1-5, 2014. BMVA Press, 2014.

[11] Li Y , Zhu J . A Scale Adaptive Kernel Correlation Filter Tracker with
Feature Integration[J]. 2014.

[12] Ma C, Yang X, Zhang C, et al. Long-term correlation tracking[C]//
Computer Vision and Pattern Recognition., 2015: 5388-5396.

[13] Wang M, Liu Y, Huang Z. Large Margin Object Tracking with Circulant
Feature Maps[J]. 2017:4800-4808.

[14] Danelljan M , Bhat G , Khan F S , et al. ECO: Efficient Convolution
Operators for Tracking[J]. 2016.

[15] Hare S , Saffari A , Torr P H S . Struck: Structured output tracking with
kernels[J]. 2011.

[16] Kalal Z, Mikolajczyk K, Matas J. Tracking-Learning-Detection.[J]. IEEE
Trans Pattern Anal Mach Intell, 2012, 34(7):1409-1422.

[17] Zhang J, Ma S, Sclaroff S. MEEM: Robust Tracking via Multiple Experts
Using Entropy Minimization[M]// Computer Vision – ECCV 2014.
Springer International Publishing, 2014:188-203.

[18] Bertinetto L, Valmadre J, Golodetz S, et al. Staple: Complementary
learners for real-time tracking[C]//Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2016: 1401-1409.

[19] Possegger H , Mauthner T , Bischof H . In defense of color-based model-
free tracking[C]// Computer Vision and Pattern Recognition. IEEE
Computer Society, 2015.

629

A Novel Algorithm for Exemplar-based

Image Inpainting
Yaru Cheng, Weibin Liu *

 Institute of Information Science
 Beijing Jiaotong University

 Beijing 100044, China
Corresponding author: Weibin Liu, wbliu@bjtu.edu.cn

Weiwei Xing
 School of Software Engineering

 Beijing Jiaotong University
 Beijing 100044, China

 Abstract—In traditional exemplar-based image inpainting

algorithm, the confidence value will rapidly decrease to zero as the

inpainting process progresses. As a consequence, it will lead to

unreliable result of the priority calculation and wrong direction of the

process. In addition, traditional methods usually use the sum of

squared differences (SSD) criterion to search the optimal matching

block. Since the matching criterion is single and the precision is limited,

the process is easy to produce mismatch. In order to solve the above

problems, an improved algorithm has been proposed in this paper.

First, we proposed a new confidence update algorithm through

replacing the previous linear function form by using a logarithmic

function form, which can suppress the phenomenon that the confidence

attenuation is too fast and improve the accuracy of guiding and

inpainting direction. Then, we combine the physical distance between

blocks and traditional SSD matching criterion to improve matching

accuracy. The experimental results show that the algorithm overcomes

the shortcomings of the traditional algorithm and provides higher

quality image restoration effects and better visual effects.

Keywords-Exemplar; image inpainting; matching accuracy;

Confidence term update

I. INTRODUCTION
Digital image inpainting technology has broad application

prospects and is a prerequisite for image compression, image
enhancement, image recognition and other technologies [1].
First, it need to research and solve how to better detect the
damaged part of the image. Then, image inpainting algorithm
can automatically inpaint the image according to the known
information around the damaged area. Therefore, the research
and exploration of image inpainting technology is a subject
including both theoretical and practical value [2]. In the time, the
requirements for images and video quality around us become
higher and higher [3]. Therefore, it is particularly important to
research on digital image inpainting.

Recently, many researchers have proposed effective image
inpainting models. According to the inpainting theories, they can
be devided into two categories: geometry based approaches and
exemplar-based approaches [5]. Image inpainting techniques
based on non-texture structures are often used to inpaint images
with small damaged areas, such as scratch repair and text
contamination repair [6]. In 2000, Bertalmio et.al proposed
BSCB model based on partial differential equation image
inpainting [7]. The main idea of this model is to extending the
isophote line of the damaged region’s boundary and propagating

it into the damaged area. Although the BSCB model has a good
inpainting result, it is based on the diffusion and transmission of
the inpainting process. Objectively, it is very difficult to carry
out mathematical analysis. Chan and Shen proposed the total
variational model (TV model) [8] and the curvature-driven
diffusion model (CDD model) [9] based on the BSCS model.
Then, Telea proposed a fast matching algorithm (FMM) [10].

In 2004, Criminisi proposed the exemplar-based inpainting
algorithm, which is on patch level [11]-[12]. Then, many
exemplar-based image inpainting methods have emerged [13]
and they have been widely used. In [14], Barnes proposed a new
image editing algorithm PatchMatch to find approximate
nearest-neighbor patches from image patches. This interactive
technique has been used by Adobe photoshop because of the
flexibility, convenience and simplicity. In [15], Liu used
multiscale graph cuts in the process. In [16], Komodakis used
MRF-based global optimization method to solve the inpainting
problem, which is known as priority belief propagation (p-BP).
There are some other researchers do some work based on priority
belief propagation [17]-[18]. Then, Ruzic introduced context-
aware patch-based image inpainting, where candidate patches
are searched over the entire source region based on contextual
similarity [19]. The author found a new priority calculation in
[20] and make up for the shortcomings in Criminisi method. In
[21], they used Pixel Inhomogeneity Factor (PIF) to replace the
data term. In [22], Huang use the planar structure guidance to
solve the inpainting problems. In [23], Deng separated the
confidence term and data term, then he proposed an automatic
algorithm to estimate steps of the new priority definition.

This paper proposed a novel algorithm for exemplar-based
inpainting method. The main improvement is to change the
matching criteria and confidence update function. First, we
propose an improved confidence update function to maximize
the accuracy of the guided inpainting direction. Then, we
combine the physical distance between blocks and traditional
SSD matching criterion to search the best matching patch. Novel
method overcomes the drawback of Criminisi algorithm in
visual inconsistency. We compare the method with two methods
in some structure and texture pictures.

II. RELATED WORK
In this section, we mainly introduce the exemplar based

inpainting method [12]. First, the image is divided into two parts:
the target region is defined as the area which is to be inpainted,

{Correspending author: Weibin Liu, wbliu@bjtu.edu.cn}
DOI reference number: 10.18293/SEKE2019-152 .

630

using Ω to represent. The left area is called source region Φ.
Additionally, δΩ represents the boundary of the target region.
The inpainting task is to fill in the target region Ω using the
image information from the source region Φ. The inpainting
process is shown in Fig.1.

A. Deciding the filling order

This step is mainly aimed to determine the filling order of
the patch in the target region. For each pixel 𝑝 along the target
region’s boundary, we set a square patch 𝜑𝑝 which is centered
on the pixel. In our paper, we set the patch size with 9×9 pixels
throughout the process. After computing the priorities of all
pixels along the boundary, we choose the pixel 𝑝 with the
highest priority as the center pixel, then the patch 𝜑𝑝 will be the
target patch to be inpainted.

In Criminisi method [12], the filling priority is defined as
follows:

 𝑃(𝑝) = 𝐶(𝑝)𝐷(𝑝) (1)
Where 𝐶(𝑝) represents the confidence term and 𝐷(𝑝) represents
the data term and theyare calculated by the following equations:

𝐶(𝑝) =
∑ 𝐶(𝑞)𝑞𝜖𝜑𝑝∩Ω̅

|𝜑𝑝|
, 0 ≤ 𝐶(𝑝) ≤ 1 (2)

𝐷(𝑝) =
|∇𝐼𝑝

⊥∙𝑛𝑝|

𝛼
, 0 ≤ 𝐷(𝑝) ≤ 1 (3)

In equation (2), Ω̅ denotes the complementary set of target
region Ω , |𝜑𝑝| represents the aere of the patch 𝜑𝑝 . During
initialization, the function 𝐶(𝑝) is set to

 𝐶(𝑝) = 0, ∀𝑝 ∈ Ω (4)
𝐶(𝑝) = 1, ∀𝑝 ∈ Ω̅ (5)

For each pixel 𝑝 on the boundary of target region, the
confidence term 𝐶(𝑝) equals to the ratio between the sum of
pixels confidence in 𝜑𝑝 ∩ Ω̅ and the total number of nonzero
elements in 𝜑𝑝. The higher of 𝐶(𝑝), the more reliable information
surrounding 𝑝. The intention is that we can inpaint the patch
with more reliable information firstly.

Similarly, 𝑛𝑝 is the unit vector orthogonal to the front δΩ in
the pixel 𝑝 and ∇𝐼𝑝

⊥ is the isophote vector (where ⊥ denotes the
orthogonal operator). 𝐷(𝑝) represents the strength of isophotes
hitting the front δΩ at each iteration. Wherever, α is the

normalization factor. Data term guarantees that the picture is
inpainted following by the isophotes, which will make sure the
linear structure is first filling. Fig. 2 show the details of 𝐷(𝑝).

B. Select the best matching patch

This step mainly does searching work whose aim is to find
the best matching patch 𝜑�̂� in the source region for the target
patch 𝜑𝑝 whose priority is the highest. Equation (6) is the
mearsurement of the similarity between each patch 𝜑𝑞 in the
source region and the target patch 𝜑𝑝 :

𝜑�̂� = 𝑎𝑟𝑔 min
𝜑𝑞∩Φ

d(𝜑𝑝, 𝜑𝑞) (6)

𝑑𝑆𝑆𝐷(𝜑𝑝, 𝜑𝑞) = ∑ [
(𝑅𝜑𝑝

− 𝑅𝜑𝑞
)

2

+

(𝐺𝜑𝑝
− 𝐺𝜑𝑞

)
2

+ (𝐵𝜑𝑝
− 𝐵𝜑𝑞

)
2] (7)

The distance d(𝜑𝑝, 𝜑𝑞) is defined as the sum of squared
differences (SSD) of the known pixels in the two patches. The
details is shown in equation (7) where R, G and B represents the
value of intensity of each color channel.

C. Inpaint the unknown area and update the confidence term

In this step, the algorithm fills the unknown area by putting
the best matching patch 𝜑�̂� to the target patch 𝜑𝑝 in the
corresponding region. After that, we need to renew the boundary
of the target region δΩ and update the confidence term using the
following equation:

𝐶(𝑞) = 𝐶(𝑝), ∀𝑞 ∈ 𝜑𝑝 ∩ Ω (8)

Then, just continue to run the above steps until the unknown
region is fully inpainted.

III. PROPOSED METHOD
In this section, the new update function for confident term

and a new searching method are proposed.

A. Confidence term updating

Updating confidence term is an important step in Criminisi
algorithm. Once the patch 𝜑𝑝 is filled, the unknown pixel
becomes a known point which will result the confidence value
changing. Criminisi algorithm simply uses the best matching
patch to inpaingting 𝜑𝑝 , and replace confidence term of the
center pixel 𝑝 with the corresponding pixel’s confidence. It is
equivalent to using the function 𝑓(𝑥) = 𝑥, 𝑥 ∈ [0,1] to update
the confidence value. Along with the iterative process progresses,
the confidence value will rapidly decrease and tend to zero,
which may result in an incorrect inpainting direction.

In order to suppress the decay of confidence term in
traditional methods, this paper proposes a new confidence
update function. We suppose the function ℎ(𝑥) as the following:

 ℎ(𝑥) = log2(𝑥 + 1) (9)
Using the improved confidence function, the update equation

used in the confidence update phase will be the following:

𝐶(𝑞) = ℎ(𝐶(𝑝)) = log2(𝐶(𝑝) + 1) (10)
Where ∀q ∈ 𝜑𝑝 ∩ Ω.

Fig. 2 The iron of 𝑛𝑝 and ∇𝐼𝑝

⊥

(a) (b) (c) (d)

Fig.1 Inpainting process by Criminisi Method [12]

631

B. The new matching method

The Criminisi algorithm uses SSD criteria in the matching
processing to determine the similarity between sample blocks.
Just calculate the sum of the squares difference of all known
pixels in the block, and then select a target with the smallest error
from the current repaired sample block as the best match in the
source region. The matching formula is

𝜑�̂� = 𝑎𝑟𝑔 min
𝜑𝑞∩Φ

d(𝜑𝑝, 𝜑𝑞) (11)

Since the matching principle is too singular, and only the
color feature is considered. When adopt the global search
method, multiple optimal sample blocks may appear at a
distance from the area to be repaired. Then the algorithm
randomly selects one as the matching patch. Because the
algorithm is a serial repair, the error copy of a patch will affect
the subsequent match, which is easy to cause error accumulation
and the quality of repair is degraded.

In an image, it can be divided into several regions according
to different structural features. For a general candidate to be
matched, the matching block should appear in the same or
similar region as its own structure. And the probability that the
matching block appears in other regions is small. Sometimes
even if such a situation occurs, it may be a mismatch. This is
because the information of the adjacent space is highly
correlated, and the pixels that are far apart are less correlated, so
the probability that the matching patch appears in the
neighborhood is the largest. In order to minimize the probability
of mismatching, we proposes an improved patch matching
principle that incorporates the distance between the candidate
patch center point and the target patch center point into the
original similarity measure function.

When searching for matching patchs, we still choose global
search. Because global search can overcome the shortcomings
of local search’s greedy character. So it can select the better
matching patch to the greatest extent, and the target block inpaint
can achieve global optimization. In the global search, we
combine the SSD and physical distance for the calculation. The
new matching formula is as follows:

𝑑𝑛𝑒𝑤(𝜑𝑝, 𝜑𝑞) = 𝑑𝑆𝑆𝐷(𝜑𝑝, 𝜑𝑞) ∗ 𝑒𝑑𝑖𝑠(𝑝,𝑞) (12)

In our new calculation method, we combine SSD and
physical distance to find the optimal matching block. In order to
avoid that the physical distance is zero, we use the exponential
form of the physical distance to calculate. The experimental
results show that the new matching criterion significantly
reduces the false matching rate, and the repair results are more
in line with the visual connectivity of the human eye.

IV. EXPERIMENT AND ANALYSIS
In the section, we test the proposed method on a few images

with various background. Compared with the classical and state-
of-art methods mentioned above, there are some improvements
that can be seen from our results. Furth ermore, we set the same
size for the square patch 𝜑𝑝 in the experiments for Criminisi’s

method, Deng’s method and the proposed method for the
fairness.

Fig. 3 is the repair of a sky image. Obviously, a short line is
emerged on the upper side of the curve in the result of
Criminisi’s method. Both Deng's algorithm and our algorithm
avoid such mis-inpainting, and the results are more in line with
real-life performance and human vision. The details of the
inpainting results are shown in Fig. 4, which is more vivid to
observation. In detail of the results, our method is much
smoother than Deng’s in terms of visual effects.

Fig. 5 is the image used in the Criminisi’s paper. As can be
seen from the results, the algorithm proposed by us has been
greatly improved. Both competitive in terms of structure and
texture. At the same time, we can see the effectiveness of the
new algorithm in the subsequent of PSNR value. Fig. 6 is a target
object removal for an image. The results are not clearly
distinguishable. For this, we can use PSNR to judge. In the
PSNR comparison in Table 1, we can observe that their values
have not much difference, but there are still some. It can be seen
that our algorithm is relatively better.

 (a) (b) (c) (d) (e)
Fig. 3 Sky with a curve (a) original image (b) region need to inpainting (c)result
made by[12] (d)result made by [23] (e) result made by proposed method

(a) (b) (c)

Fig. 4 Inpainting details of Fig. 3 (a)result made by[12] (b)result made by [23]
(c)result made by proposed method

(a) (b) (c) (d) (e)

Fig. 5 Remove the girl(a) original image (b) region need to inpainting
(c)result made by[12] (d)result made by [23] (e) result made by proposed
method

 (c) (d) (e)
Fig. 6 Remove the Paragliding (a) original image (b) region need to inpainting
(c)result made by[12] (d)result made by [23] (e) result made by proposed method

 （c） (d) (e)
Fig. 7 Inpaint the red area in the sea(a) original image (b) region need to inpainting
(c)result made by[12] (d)result made by [23] (e) result made by proposed method

632

Fig. 7 is a representation of a seaside picture of a selected
area. As can be seen from the results, the method we proposed
on the repair of the coast is the best, and the results of the other
two methods have spit out. Our results look smoother and more
in line with real-life coastal conditions. Our method did not show
particularly good results in the inpaint of the reef in the middle
of the sea. In addition, in the three inpaint results, we are very
clear to see the occurrence of fault phenomenon. This shows that
we still have a lot of research space to solve the problem.

PSNR (peak signal-to-noise ratio) is an objective standard
widely used for evaluating the quality of image processing. In
order to evaluate the effect of the inpainted image, the PSNR
value is usually used to measure the inpainting performance of
the algorithm. The larger the PSNR value is, the smaller the
degree of image distortion. Thus, the better the algorithm
inpainting performance. PSNR is calculated as：

PSNR = 10 log {
2552

1
𝑀 × 𝑁

∑ ∑ [𝑓(𝑖, 𝑗) − �̂�(𝑖. 𝑗)]
2𝑁

𝑗=1
𝑀
𝑖=1

} (12)

This paper also uses the PSNR to evaluate the effect of
inpainting performance. Some PSNR values are shown in Table
1. It can be seen from Table 1 that the image inpainting methods
proposed in this paper can obtain better results for images of
different demaged regions. Since the structure and texture of the
area to be repaired in Fig. 7 are relatively simple, the PSNR
values of their results are similar regardless of the method. For
images with more complex textures, as shown in Fig 6 and 8, the
difference in PSNR values will be larger. Criminisi algorithm
has difficulty in determining the confidence in the priority
calculation and it is difficult to search for the best matching
block, so that the PSNR value of the algorithm result is the
lowest. Although Deng’s algorithm improves the priority
calculation, there is still problems in selection of the best
matching block, which makes the PSNR value of the algorithm's
result middle. Our method not only improves the confidence
update, the selection of the best matching patch is strengthened.
So, the PSNR value of our method gets the highest.

V. CONCLUSION
This paper proposes a new confidence update function and

the new matching method. The new confidence update function
can effectively reduce the phenomenon that the confidence
attenuation is too fast, and improve the accuracy of the image
guidance repair direction. At the same time, combining the
physical distance between blocks and traditional SSD matching
criterion as the new matching method effectively improves the
matching accuracy. The proposed method obtains competitive
results when handle pictures with strong structure or texture
compared with other state-of-the-art inpainting methods.
Nevertheless, our method performed not so well when the
picture including both strong structure and texture.

ACKNOWLEDGMENT
This research is partially supported by National Natural

Science Foundation of China (No.61876018).

REFERENCES
[1] P. Buyssens, M. Daisy, D. Tschumperle, and O. Lezoray. Exemplar-based

inpainting: Technical review and new heuristics for better geometric
reconstructions. IEEE Trans. Image Processing (TIP), 24(6), 2015

[2] C. Guillemot and O. Le Meur, “Image inpainting: Overview and recent
advances,” IEEE Signal Process. Mag., pp. 127–144, Jan. 2014

[3] Chan T.F, Shen J. Mathematical models for local nontexture inpainting.
SIAM Journal of Applied Mathematics. 2002; 62:1019–1043.

[4] Freeman W.T, Jones T.R, Pasztor E.C. Exemplar-based super-resolution.
IEEE Computer Graphics and Applications. 2002; 22:56–65.

[5] Liang L, Liu C, Xu Y, Guo B, Shum H.Y. Real-time texture synthesis
using patch-based sampling. ACM Trans on Graphics. 2001; 20:127–150.

[6] A. Efros and T. Leung, “Texture synthesis by non-parametric sampling,”
in Proc. Int. Conf. Computer Vision (ICCV), Sept. 1999, pp. 1033–1038.

[7] Bertalmio M, Sapiro G, Caselles V, Ballester C. Image inpainting. Proc
ACM SIGGRAPH Computer Graphics (SIGGRAPH). 2000; p. 417–424.

[8] Chan T, Shen J (2001) Local inpainting models and tv inpainting. SIAM
J Appl Math 62(3):1019–1043.

[9] Chan T, Shen J (2001) Non-texture inpainting by curvature-driven
diffusions. J Vis Commun Image Represent 4(12):436–449.

[10] Telea A (2004) An image in-painting technique based on the fast
marching method. J Graph Tools 9(1):23–34

[11] Criminisi A, Perez P, Toyama K. Object removal by exemplar-based
image inpainting. Proc IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2003; p. 721–728.

[12] Criminisi A, Perez P, Toyama K. Region filling and object removal by
exemplar-based image inpainting. IEEE Trans Image Processing. 2004;
13:1200–1212

[13] Qian Fan, Lifeng Zhang. A novel patch matching algorithm for exemplar-
based image inpainting. Multimed Tools Appl(2017)

[14] Xu Z, Sun J. Image inpainting by patch propagation using patch sparsity.
IEEE Trans Image Processing. 2010; 19:1153–1165

[15] Liu and V. Caselles, “Exemplar-based image inpainting using multiscale
graph cuts,” IEEE Trans. Image Process., vol. 22, no. 5,pp. 1699–1711.

[16] N. Komodakis and G. Tziritas, “Image completion using efficient belief
propagation via priority scheduling and dynamic pruning,” IEEE Trans.
Image Process., vol. 16, no. 11, pp. 2649–2661, Nov. 2007.

[17] J. Mukherjee, and S. K. D. Mandal, “Image inpainting through metric
labeling via guided patch mixing,” IEEE Trans. Image Process., vol. 25,
no. 11, pp. 5212–5226, Nov. 2016.

[18] Barnes C, Shechtman E, Finkelstein A, Goldman D.B. PatchMatch: a
randomized correspondence algorithm for structural image editing. ACM
Transactions on Graphics (TOG). 2009; 28

[19] T. Ruzic and A. Pizurica, “Context-aware patch-based image inpainting
using Markov random field modeling,” IEEE Trans. Image Process., vol.
24, no. 1, pp. 444–456, Jan. 2015.

[20] W.H. Cheng, et al., Robust algorithm for exemplar-based image
inpainting, The International Conference on Computer Graphics, Imaging
and Vision(CGIV 2005), 2005, pp. , 64–69

[21] Q Fan, H Liu, Z Fu, X Li, Exemplar-Based Image Inpainting Based on
Pixel Inhomogeneity Factor; Proceedings of APSIPA Annual Summit and
Conference 2017, 12 - 15 December 2017, Malaysia

[22] J. Huang, S. Kang, N. Ahuja, J. Kopf, Image completion using planar
structure guidance, ACM Trans. Graphics 33 (4) (2014) 129.
github.com/jbhuang0604/StructCompletion

[23] Deng L-J, Huang T-Z, Zhao X-L (2015), “Exemplar-Based Image
Inpainting Using a Modified Priority Definition.” PLoS ONE 10(10):
e014119

TABLE I. Comparison of PSNR Value for different methods
 Criminisi Deng ours

Sky 44.6362 46.9447 47.6480
Girl 13.8362 13.9845 14.0606

Paragliding 17.1514 17.1829 17.1924
Sea 25.7422 24.2435 26.9701

633

Trajectory Similarity Computation based on
Interpolation and Integration

Zengwei Zheng
School of computing and Computational Science

Zhejiang University City College
Hangzhou, China

zhengzw@zucc.edu.cn

Wenwang Chen
School of Computer Science and Technology

Zhejiang University
Hangzhou, China

wwchen@zju.edu.cn

Yuanyi Chen
School of computing and Computational Science

Dan Chen
School of computing and Computational Science

Zhejiang University City College
Hangzhou, China

chenyuanyi@zucc.edu.cn

Zhejiang University City College
Hangzhou, China
chend@zucc.edu.cn

Abstract—Trajectory similarity computation is one of the most
fundamental functionality, which is applied in many fields, such
as trip trajectory mining to find the most popular routes and
similar ones, and identify the routes of animal migration and
even the stock trends. There are two different kinds of search
thoughts, the advanced deep learning method and traditional
points matching methods. However, the exiting methods are not
totally perfect to solve the trajectory similarity computation
problem. The deep- learning method has original problem that it
needs a large size of dataset resulting in the requirement of the
training time much more than we expected. While the traditional
points matching method often suffer from noise and non-uniform
sampling rates, because points matching often treats it as two
different sequences when the unequal points turn up. In other
word, it is often sensitive to the noise which lowers the correct
rate of the similarity computation. Based of the statement upon,
we propose a new method — applying the interpolation and
deformed integration to similarity computation. Experiments
shows that our method is robust to the noise and non-uniform
sampling rate.

Keywords-interpolation; deformed integration; robust; simila-
rity computing; self-similarity;

I. INTRODUCTION
With the development of the GPS-enabled devices,

trajectory data is being collected over time. In other word, the
way we get trajectory data is more and more accessible.
Generally, a trajectory is often represented by a sequence of
discrete points or locations. And we can map it to a spatial
domain, e.g., 2D Euclidean space, which leads to much many
of the trajectory similarity computation methods. Computing
similarity between two trajectories is fundamental function-
ality for many applications, such as the migration patterns of
animals, identifying hot routes in cities to avoid traffic jam,
recommending popular trip routes for travelers and trajectory
clustering. As a classic computation problem, a large amount of

traditional methods have been proposed, such as longest
common sub-sequence (LCSS) [2], edit distance on real sequ-
ences (EDR) [4], and dynamic time warping (DTW) [1].
Besides, recently, as the deep learning develops, a method
related--t2vec [6], inspired by word2vec, had been proposed.

In most situation, the traditional methods are trying to make
points pair match to minimize their distance. But such
operation would suffer from some problems, such as the non-
uniform sampling rates and noise. For example, due to the
devices’ inherent limitation, it may fail to grasp the exact
location information. What’s more, when bypassing the rough
area, it is hard for the devices to locate the accurate position.
They all cause the generation of the noise. And the devices may
lower the frequency of recording out of energy consideration,
which leads to the non-uniform and low sampling rates. To
cope with the situation, deep-learning-based method had been
proposed and achieved remarkable improvement. However,
deep learning itself has inherent defect. It needs a large size of
dataset. And the training time and the running time is often
required much more than our expectation. 1To deal with the
problems of non-uniform sampling rates, noise and low
efficiency, we propose a new method — applying interpolation
and deformed integration to trajectory similarity computation.
Other than the points matching method, we choose the curve
fitting to further research the similarity of different trajectories.
The experiment shows us that our method is full of vitality, and
it makes noteworthy improvement in both accuracy and
efficiency. Overall, the paper makes following contributions:

1) We proposed a trajectory similarity computation model
based on the curve fitting. And our method is robust to the non-
uniform sampling rates and noise, and computes the similarity
in linear time (we will discuss it in the later part).

2) We conduct extensive experiments to verify our method
outperforming the traditional points matching method in both
accuracy and efficiency.

3) We also compare our method with the traditional ones
under different proportions of test set and label set.

DOI reference number: 10.18293/SEKE2019-124

634

Fig. 1: Framework of proposed method

II. RELATED WORK

We briefly review the related work on the trajectory
similarity computation. Computing the similarity, or say, the
distance between two different trajectories is fundamental
functionality in many computing tasks. And it is obvious that
the accuracy and the efficiency is what we spot on. DTW [1]
was first attempt at tackling the local time shift issue for
computing trajectory similarity. T2vec [6] exploits deep repre-
sentation learning to learn a vector inputted to the encoder-
decoder framework to get a trained deep learning model. It
highly increased the accuracy of the trajectory similarity
computation, but being weak in the efficiency, which is left to
be solved. In fact, not only t2vec method, almost every deep
learning methods such as vRNN[8] share the same inherent
defect. They need a large amount of data to train a model,
which inevitably results in the long running time. And in some
time, the loss of efficiency is unaffordable. APM[7] is another
deep learning method. Despite the training time, it is worth
mentioning that it solves the issue by learning transition
patterns of anchor points from historical trajectories. EDR [4]
was proposed to further deal with the problems of the spatial
semantics in trajectories. Z. Chen et al. [15] proposed a kind of
improved Frechet Distance to deal with the problem of the
spatial sequences similarity computation to identify the most
popular routes. To improve the robust to the variation in the
sampling rates, EDwP[10] was proposed. What’s more, EDwP
uses the linear interpolation to compute the least loss of the
insertion operation, which makes this method identical and
inspires our computing measure. And ERP[3] and the model-
driven approach MA[18] were proposed to better capture the
spatial features in trajectories. They present different models

to speed the proceeding of capturing compared to other
methods separately. Wang et al. [13] researched the effect of
these similarity computation methods according to their robus-
tness to noise and varying sampling rates.

Moreover, most of the aforementioned existing traditional
measures for trajectory similarity computation has time
complexity O(n^2), while our method has the linear time
complexity O(n+v), where v represents the average length of
trajectories, to measure the similarity, which reflects on the
experiment -- our method is much more faster than others.

III. PROPOSED METHOD
In this part, we discuss the fundamentals of the proposed

method. And then, we will prepare the preliminaries for the
experiments. The method’s framework is seen in Fig. 1.

A. Interpolation
Interpolation is a kind of curve fitting method to find a poly-

nomial curve to best fit the discrete points. The definition of
the interpolation: in an interval],[ba , given n discrete points

),(kk yx , nk ,...,2,1 , for every x , we need to find the
corresponding y .)(xf is defined in],[ba , and

)1(,...,2,1)(nkyxf kk
And now, what we need to do is to find)(xg , for the n

discrete points ,

nkxfxg kk ,...,2,1)()(
We call)(xg an interpolation of)(xf in],[ba . In

most cases, polynomial curve is applied when the fitting
operation happens. Because for the given discrete points, the
polynomial curve is much more convenient to conduct. And the
sine-like polynomial curve is more stable because it usually
approaches the reality than other fitting methods.
There are some reasons we adopt the interpolation instead of

other fitting methods. According to the definition, we can get
that the interpolation would absorb all the given discrete points
without abandoning any of them. In our experiments, the most
of trajectories in the dataset are collections of only dozens of
latitude/longitude coordinates. For a complete route, each of
them is needed. What’s more, one of later operations is to
distort some of the points of a trajectory (we will talk about it
in detail lately) to simulate the noise in reality. That means it
may destroy the simulated environment, or make the excessive
operation to desert some points for the fitting.
So in this paper, we adopt Lagrange Interpolation, i.e., a sort

of polynomial interpolation. In mathematics, Lagrange interp-
olation finds a polynomial that happens to take the observed
values at each observed point. That means, it can provide a
polynomial function that happens to cross all the given points
in a two-dimensional plane.

Theorem Polynomials that satisfy the interpolation condition
(1) and whose degree does not exceed n exist and unique.

The theorem can be proved in the establishment procedure of
the Lagrange polynomial. Let set nD be the collection of
angular coordinates of the points),(kk yx ,

635

nk ,...,2,1 , },...,2,1{ nDn , there are n polynomials
nj Djxp),(, nDk ,

kBi ik

i
k xx

xxxp)(

Where },|{ nk DikiiB . And it is obvious the
degree of)(xpk is n-1. Finally, we’ll get the Lagrange inter-
polation:

)2()()(
1

xpyxL j

n

j
jn

As the operation above, the Lagrange Interpolation has
been conducted and the theorem has been proved. In the later
experiments, this interpolation is our important tool to do the
fitting operation.

B. Similarity computation
After the above operation, we have got the fitting poly-

nomial curve on the given several discrete points. Imagine that
there are two trajectories, the target T and the compared one, S,
represented by several latitude/longitude points individually.
Using Lagrange Interpolation, we transform the trajectories
into two fitting polynomial curves. And now, the problem
transforms to how to measure the similarity of this two curves.
In this paper, we are trying to apply a deformed integration to
compute the similarity.

Conventionally, it is natural to integrate the difference
between the two curves. Suppose that this two curves are

)(xT and)(xS . And the compared trajectory S is recorded
from point a to point b,

)3(|)()x(|
a

b

dxxST

Equation (3) roughly measures the similarity of the two
trajectories. Intuitively, the more similar T and S are, the
smaller (3) is. It is based on the start and end point of the
compared trajectory. Logically, we want to find a trajectory
similar to the target. As our experiments set, the compared
trajectory is often shorter than the target one.

However, the experiments show that the results of the
method above is not very acceptable and fails our original exp-
ectation at least. So we go about improving the integration.

There are some abuse in (3). It imports many meaningless
features. As we operated before, we applied Lagrange Inter-
polation to transform the discrete points into the fitting curve.
But when we get this step, we actually input countless points
irrelevant to the trajectory into the 2-D Euclidean space. And
once we adopt (3) as the similarity computation, we just add
some meaningless number to the final result, which is proved
to influence the result much. Not only in the accuracy, this
integration also does not distinct the traditional trajectory
similarity computation methods in the efficiency. We need to
find the most similar trajectory for the target trajectory in a

label set. This integration requires to compute the similarity
between the target and the undetermined trajectory dynamically
as most the traditional method would do, which leads to time
complexity O(n^2). We need a more efficient method.

Our improvement is as follow. We just consider every
single trajectory. And we reserve the Lagrange Interpolation to
transform a trajectory T to a fitting curve)(xT . To avoid
importing other meaningless features, get the span of this
trajectory from the start point to the end point and divide it into
m parts (1000 as our experiments set), calculate the value
corresponding to the interval point on)(xT and sum them all
finally. Abstractly, we can regard the sum as the inherent
“similarity property” of its corresponding trajectories. And the
similarity measure of two trajectories is the absolute value of
difference of the respective so-called similarity property, which
leads to time complexity O(n+v), where v represents the
average length of the trajectories.

Suppose that there are a number of discrete points repr-
esenting trajectory T in the interval],[qp , and its similarity
property is:

)4()(
1

0i

m

i
m
pqpT

For each trajectory, we can get (4) as the property is
inherent. And measuring the similarity depends on the absolute
value of the difference of (4). The algorithm is shown in
Algorithm 1.

Algorithm 1:

Input: The original trajectory points sequence T,
corresponding fitting curve)(xT ,
interval m
similarity property P’s set D of the label set

Output: The rank of T’s true label
1 for u in m do
2 P ← P + T (u) according to equation (4)
3 end for
3 sort D
4 rank ← 0
5 for i in D do
6 rank ← rank + 1
7 if P < D(i) do
8 break
9 end if
10 end for
11 return rank

C. Map trajectory to larger space
We get the complete measure of the trajectory similarity

computation. But for the latitude/longitude space, the prepare is
not enough for our experiments.

636

In order to pursue the accuracy and efficiency, we lose the
stability of the results to some extent. Though such sacrifice is
worthy and acceptable, we still want to debauch the loss and
enhance the stability as much as possible.

And in this part, we propose an improved method which is
to enlarge the space. For the latitude/longitude space, the points
representing the trajectories are so intensive as 1 longitude
difference is more than 100 km, that when we adopt the Lagr-
ange Interpolation, the fitting curve would flog as the interpola-
tion needs to cross all the discrete points. Flogging makes
distortion. To make the fitting curve more smooth, we choose
to enlarge the space.

The core rule is to reserve the relative distance between
points but to enlarge the absolute distance. For simplicity,
select a constant α and α times the distance between the
points by fixing the start point of the trajectory. After such
operation, we have enlarged the space.

And the experiments show that after enlarging the space,
the result is more steady.

D. Noise and varying sampling rates
In fact, noise is common in the collected trajectory data.

To simulate the actual situation, we need to add the noise to
the collected trajectories. Firstly, we confirm a distorting rate
1r and randomly select a fraction of the points (indicated by
1r) and then, distort them by adding a Gaussian noise with a
radius 30 (meters). Suppose that a point),(yx is distorted,

)5(
)1,0(~,30
)1,0(~,30

Gaussiondydyyy
Gaussiondxdxxx

We now have the environment with noise. And another
problem -- non-uniform sampling rate is left to cope with.

Due to the reality, such as the devices’ inherent flaw and
energy concern, we can not always obtain the regular lattice of
trajectory points sequence. Likewise, we set the sampling rates.

Before we talk about the sampling rates, suppose that we
have a points sequence T, n

i
iT 1
)(}{ , where n is the length of

the points sequence T, and we regard it the real route. Then,
we create a sample from T by randomly dropping some points
with the sampling rates 2r . For reality concern, we reserve the
start point and the end point to avoid changing the underlying
route of the sampled trajectory. In our experiments, the
sampling rates varies from 0.2 to 0.6, and we compared with
other traditional methods on the basis.

IV. EXPERIMENTS

We aim to verify the accuracy and efficiency of our
proposed method on a taxi dataset. Compared to other three
trajectory similarity computation methods which had been
proved validly, we want to find our method outperforming in
both accuracy and efficiency.

A. Experiment setup
Dataset: Our experiments are conducted on a real-world taxi
dataset (http://www.geolink.pt/ecmlpkdd2015-challenge). It’s collected
in the city of Porto, Portugal. It contains over 1.7 million

trajectories. Each taxi reports its location at 15 second intervals.
So each record consists of a series latitude/longitude points
representing the trajectory. To reduce the contingency, we
remove the trajectories which are less than 30 points. And there
are about 1.2 million trajectories left.

Fig. 2: Mean rank versus distorting rate

Benchmarking Methods: We compare our method with three
other traditional methods in accuracy and efficiency, namely
DTW[1], LCSS[2], EDR[4]. The above three methods are
applied in trajectory similarity computation in most cases. To
analyze the performance of our method and other methods in
the round, we set many contrast experiments. We fix the
sampling rate in 0.6, and vary the distorting rate in [0.20, 0.25,
0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60]. Then, we fix the
distorting rate in 0.4 and vary the sampling rate in [0.20, 0.25,
0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60]. In every same
parameter setting, we try to make our method outstanding.

LCSS and EDR are two of the most widely adopted
trajectory measures in spatiotemporal data analyses. LCSS
adopts the length of the longest common sub-sequence as the
measure of the trajectory similarity computation, while EDR
adopts the edit distance. To a certain extent, this two methods
are based on the point-to-point match. They seek the as much
as more matched points pairs. And obviously, they both
abandon the regularity of the points sequence in the x axis,
leading to the inaccuracy. And DTW measures the similarity
by warping the sequence to best achieve “feature to feature”
aligned. But in the trajectory similarity computation, the
warping operation may distort the original features of the
points sequence, which would also result in the inaccuracy.

Our method proposes a different thinking relative to above
three traditional methods. A mixture of the interpolation and
“deformed integration” helps to keep the original features and
avoid bringing in too many redundant ones.
Evaluation Platform: Our method is implemented in Python
running in Windows 10 with an Intel Core i7-7700 CPU.

B. Performance evaluation
The trajectory dataset we adopt in our experiments is

consist of points sequences representing trajectories, which
means that the dataset lacks the ground-truth that makes it hard
to evaluate the performance of our method and other compared
methods in accuracy and efficiency.

637

TABLE Ⅰ: Four methods’ mean rank versus sampling rate and distorting rate under 6:4 (a), 7:3 (b) and 8:2 (c)
proportions of test set and label set

We adopt a method called self-similarity[6] to perform the
evaluation for our experiments. We randomly choose 10,000
trajectories from the dataset and for every sequence in the
chosen trajectories, we down-sample and distort them to
generate the sub-sequence due to the current sampling rate and
distorting rate. And we get the label set of 10,000 trajectories.

And for every trajectory T from another 10,000 trajectories
of the dataset, we can also get its sub-sequence S according to
the current sampling rate and distorting rate. We call S the
label of T. Now we get the point pair (T, S) and we regard T
as the true route in reality, and S as the sampled data collected
by the devices. Then we can say that S is the best match for T.

Fig. 3: Mean rank versus sampling rate

A good performance evaluation should keep stable regard-
less of the sampling or distorting strategy. And the self-
similarity satisfies the requirement. So the next operation is to
hide S in the label set. We try to find the k-nearest neighbors
and figure out where the best match S ranks in the whole label

set. And we compare the mean-rank of our method to the other
three ones.

C. Experiment in accuracy
As shown in Fig. 2, when the distorting rate is increasing,

every method’s mean rank augments generally, which corresp-
onds to reality. The more distort, the more unmatched it gets.
Likewise, in Fig. 3, as the sampling rate increases, the mean
rank lowers by and large, which means the matching result is
getting worse.

The above experiments show that the performance evalua-
tion we adopt -- self-similarity is of stability and it is well
adapted in our experiments proceeding. Self-similarity depicts
the trend well as the distorting/sampling rate varies and the
difference of all the compared methods under the same condi-
tion, which all render certain to the self-similarity for experi-
ments.

And our experiments totally satisfy our previous thought.
In every distorting rate and sampling rate, our method’s mean
rank is lower than other three ones, which means our method
stands out. To achieve high accuracy, we pay the price of
stability to some extent as the Fig shows. And we “enlarge the
space” to minimize the cost as we originally wish to. It does
work well in our experiments. The curve of our method increa-
ses/decreases steadily due to the “enlarge” operation, where we
overcome the inherent defect to a large extent. The cost of the
stability to enhance the accuracy is worthy.

The above experiments is conducted on basis of 5:5
proportion of the test set and label set. To explore further, we
conduct experiments of 6:4, 7:3 and 8:2 proportions, seen in
TABLE Ⅰ, sampling rate denoted as S. rate and distorting rate
denoted as D. rate. Due to interpolation, our method performs
ordinarily while sampling rate gets low and the fitting curve
distorts much, but stands out in most other situations.

OURS
LCSS
DTW
EDR

0.2 0.4 0.6

0.2
77.20
46.84
122.56
45.16

18.73
43.41
76.84
31.86

9.89
42.94
66.31
16.54

0.4
100.42
47.16
123.36
45.78

26.56
45.60
75.10
31.65

10.28
43.69
67.57
16.38

0.6
98.96
45.85
125.23
46.67

30.25
45.24
78.59
31.92

11.70
44.06
68.69
16.40

OURS
LCSS
DTW
EDR

0.2 0.4 0.6

0.2
30.12
33.09
81.48
31.68

18.06
31.63
49.69
20.65

11.12
30.18
44.12
18.15

0.4
43.92
34.19
85.68
32.54

19.58
31.28
51.92
21.38

15.41
31.09
44.98
19.35

0.6
55.06
33.94
86.70
32.43

22.08
32.37
52.66
24.87

15.68
32.01
45.79
20.63

OURS
LCSS
DTW
EDR

0.2 0.4 0.6

0.2
109.30
69.70
148.23
62.98

28.72
64.28
97.41
46.40

10.08
61.75
87.27
23.80

0.4
112.01
71.64
149.96
63.88

30.65
66.79
100.35
44.98

10.93
62.13
88.46
23.61

0.6
136.77
71.90
151.80
62.48

31.84
66.62
101.56
45.19

18.71
59.67
90.10
24.25

S.
r
a
t
e

S.
r
a
t
e

S.
r
a
t
eD. rate D.rateD.rate

(a) (b) (c)

638

D. Experiment in efficiency
Our method aims to stand out in efficiency, too. In the

previous method analysis, our method involves “similarity
property” in every trajectory, which reduces the time compl-
exity. And we have recorded the running time of the compared
methods, seen in Fig. 4.

Fig. 4: Comparison of running time

We recorded the running time of our method compared to
the traditional methods. And we can get that our method is
outperforming in efficiency.

E. Time complexity
In this part, we discuss the time complexity of our method

compared to other traditional trajectory similarity computation
methods.

Our method does not dynamically compute the similarity
of trajectories. Instead, we introduce a concept of similarity
property. And for every single trajectory, we just compute its
similarity property. Then, all the trajectories has their own
similarity property. So we just need to compare the similarity
property to each other and we get the final results. As we
analyse before, it is evident that our method’s time complexity
is O(n+v), where v represents the average length of trajectories.

Our method decreases the time complexity by almost one
order of magnitude. But as sacrifice, we lose a little stability to
some extent which we view worthwhile.

Ⅴ. CONCLUTION AND FUTURE WORK
In this paper, we propose a trajectory similarity compu-

tation method -- a mixture of Lagrange Interpolation and a
kind of deformed integration and we compare our method to
the traditional similarity computation methods in accuracy and
efficiency.

And we set the contrast experiments, which then shows our
method stands out in both accuracy and efficiency compared to
other methods at the price of stability to some extent. Then, we
minimize the sacrifice in stability by the operation of “enlarge”
the longitude/latitude space, which also achieves great result.

To evaluate the performance of our method compared to
others, we exploit self-similarity, which meets the need of
evaluation in performance analysis, such as stability and
intuition.

There are some problems remained. On the basis of
keeping the satisfactory time complexity, we can explore other
measures to compute the similarity property. And we can also
change the mean-rank evaluation and the distribution of top-k
trajectories.

FUNDING

This work is supported by the Young Scientists Fund of
the National Natural Science Foundation of China (Grant
No. 61802343), Zhejiang Provincial Natural Science
Foundation of China (Grant No. LGF19F020019).

REFERENCE

[1] B.-K. Yi, H. Jagadish, and C. Faloutsos, “Efficient retrieval of similar time
sequences under time warping,” in ICDE, 1998, pp. 201–208.

[2] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar
multidimensional trajectories,” in ICDE, 2002, pp. 673–684.

[3] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,” in
PVLDB, 2004, pp. 792–803.

[4] L. Chen, M. T. Ozsu, and V. Oria, “Robust and fast similarity search for
moving object trajectories,” in SIGMOD, 2005, pp. 491–502.

[5] S. Ranu, P. Deepak, A. D. Telang, P. Deshpande, and S.
Raghavan,”Indexing and matching trajectories under inconsistent
sampling rates,” in ICDE, 2015, pp. 999–1010.

[6] X. Li, K. Zhao, G. Cong, Jensen. C and W. Wei, “Deep Representation
Learning for Trajectory Similarity Computation,” in ICDE, 2018.

[7] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou, “Calibrating
trajectory data for similarity-based analysis,” in SIGMOD, 2013, pp.
833–844.

[8] D. Williams and G. Hinton, “Learning representations by backpropagating
errors,” Nature, vol. 323, no. 6088, pp. 533–538, 1986.

[9] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen, “Discovery
of convoys in trajectory databases,” PVLDB, vol. 1, no. 1, pp. 1068–
1080, 2008.

[10] S. Ranu, P. Deepak, A. D. Telang, P. Deshpande, and S. Raghavan,
“Indexing and matching trajectories under inconsistent sampling rates,” in
ICDE, 2015, pp. 999–1010.

[11] E. Frentzos, K. Gratsias, and Y. Theodoridis, “Index-based most similar
trajectory search,” in ICDE, 2007, pp. 816–825.

[12] S. Sankararaman, P. K. Agarwal, T. Mølhave, J. Pan, and A. P.
Boedihardjo, “Model-driven matching and segm-entation of trajectories,”
in SIGSPATIAL, 2013, pp. 234–243.

[13] H. Wang, H. Su Datab, K. Zheng, S. Sadiq, and X. Zhou, “An
effectiveness study on trajectory similarity mea-sures,” in Aliaustranase
Conference, 2013, pp. 13–22.

[14] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[15] Z. Chen, H. T. Shen, and X. Zhou, “Discovering popular routes from
trajectories,” in ICDE, 2011, pp. 900–911.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in NIPS, 2013, pp. 3111–3119.

[17] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[18] S. Sankararaman, P. K. Agarwal, T. Mølhave, J. Pan, and A. P.
Boedihardjo, “Model-driven matching and segmentation of trajectories,”
in SIGSPATIAL, 2013, pp. 234–243.

[19] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, ¨H.
Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[20] S. Jean, K. Cho, R. Memisevic, and Y. Bengio, “On using very large
target vocabulary for neural machine translation,” arXiv preprint
arXiv:1412.2007, 2014.

639

Clustering algorithms performance analysis applied
to patent database

Cinthia M. Souza
Institute of Mathematical Sciences and Informatics

Pontifical Catholic University of Minas Gerais

Belo Horizonte, Brazil
cinthia.mikaela@sga.pucminas.br

Magali R. G. Meireles
Institute of Mathematical Sciences and Informatics

Pontifical Catholic University of Minas Gerais

Belo Horizonte, Brazil
magali@pucminas.br

Paulo E. M. Almeida
Intelligent Systems Laboratory

Federal Center for Technological Education of Minas Gerais

Belo Horizonte, Brazil
pema@lsi.cefetmg.br

Abstract—The granularity of large patent classification sys-
tems hampers the reclassification process in which patent cat-
egories are broken down into smaller ones, suggesting new
categories. As these groups belong to a constricted domain
of knowledge, keywords and subject descriptors tend to be
similar and therefore insufficient to differentiate documents. In
this context, the identification of common cited references can
be useful to define semantic relationship among patents. This
work compares citation analysis based results obtained by three
clustering algorithms, SOM networks, K-Means and Multi-SOM.
An empirical experiment was conducted using a patent database
from the United States Patent and Trademark Office with all
patents of four subgroups classified by the Cooperative Patent
Classification system. Practical results evaluated by statistical
inference techniques showed that SOM performs better than
the other algorithms to cluster that database. This study can
contribute with the reclassification process for a subgroup level
of current patent classification systems, demonstrating how
citation analysis can be an alternative attribute to the automatic
clustering process.

Index Terms—Clustering algorithms, Computational intelli-
gence, Knowledge representation, Patent database, Statistical
inference

I. INTRODUCTION

A patent is a public concession, whereby the government, in
exchange for full disclosure of an invention, grants the inventor
the right to exclude others for a limited time from making,
using or selling this invention [1]. Patents are organized into
classification systems according to their technical application
and structural characteristics to aid the patenting and retrieval
processes.

With the growth of digital patent collections, the number
of patents at all levels of classification systems has been
increasing and some groups need to be dismantled in order
to generate new groups and facilitate access to information.
Considering the patents subgroups, which are subsets in an
equal knowledge area and have a lot of similar words in their

DOI reference number: 10.18293/SEKE2019-101

abstracts, it is a challenge to identify common characteristics
using words as attributes of the clustering process.

The main objective of this work is to evaluate the per-
formance of some algorithms of patents clustering using
citations as attributes. For this, three clustering algorithms
will be used on a United States Patent and Trademark Office
(USPTO) patent database. This work was divided into five
sections. Section II presents a description of the implemented
algorithms and some related works. Section III presents the
database and proposed methodology, while Sections IV and V
show the results and final considerations.

II. THEORETICAL BACKGROUND

SOM networks are maps of artificial neurons developed
by Teuvo Kohonen in the 1980s. These structures, based on
topological maps present in the cerebral cortex, are responsible
for the execution of the grouping process. Each input neuron
is connected to an output neuron by its respective association
weight. This network uses unsupervised learning. From the
instant the network identifies the regularity between the input
data, it generates internal representations to encode the input
characteristics and automatically create new groups. These
networks have the capacity for self-organization and are more
similar to neurobiological structures than supervised networks.
Many of the experiments reported in the literature describe the
use of SOM in grouping documents so to organize them as an
alternative format for information retrieval [2].

The Multi-SOM algorithm is an extension of the SOM
algorithm. This algorithm uses simultaneously several maps
of SOM to cluster input patterns. The amount of simultaneous
maps is defined by the user. For the initial map, data training
is performed using the SOM algorithm. For the generation of
the next maps, the algorithm realizes the superposition and the
communication between the previous and the current maps. To
carry out the transition from one map to another, it is necessary
to define the new nodes. These nodes are defined by using the

640

mean square composition of the four neighbors, directly from
the lower level [3], [4].

Performing this procedure preserves the original neighbor-
hood at the higher levels and also the topographical properties
of the maps [3], [4]. The Multi-SOM algorithm used in this
work was implemented using an R library called “multisom”
[5] available for R language. This algorithm not only performs
grouping of data but also estimates the optimum number of
clusters. At the end, it returns the best result obtained for the
input data.

K-Means is an unsupervised data clustering algorithm. The
main idea of this algorithm is to define k centroids, one
for each cluster. After defining the centroids, the algorithm
associates the centroid with the closest data. Then the centroids
are recalculated and the previous steps are repeated for the
new centroids until the centroids no longer move or the stop
criterion is met [6].

Meireles, Cendón and Almeida [7] presented a comparison
of document clustering process using keywords and citations.
The experiments were performed using a test database with
200 articles from a restricted knowledge domain. The first
experiment used the keywords of the articles in the test
database as attributes for the clustering process. The second
experiment was carried out using the citations of the articles as
attributes. Both tests were performed using a SOM network.
The experimental results showed that, in a domain of restricted
knowledge with a great similarity between documents, the use
of keywords was not very efficient. On the other hand, the use
of citations can be considered an important alternative.

Lai and Wu [8] proposed an approach to create a new
patent classification system, to assist patent managers in
evaluating the basic patents for a specific industry. Li, Chen,
Zhang and Li [9] considered the structure of patent citation
networks for patent classification. They adopted a Kernel-
based approach to capture content information and citation-
related information in patents, and their proposal outperformed
Kernel’s which did not use citation network structures. Liu
and Shih [10] combined content-based, citation-based and
metadata-based classification methods to develop a hybrid-
classification approach using a modified K-Nearest Neighbor
(KNN) algorithm.

III. PROPOSED APPROACH

The database used in the experiment was extracted from
USPTO. The Cooperative Patent Classification (CPC) system,
which is used by USPTO, classifies patents into sections,
classes, subclasses, groups, and subgroups. Figure 1 illustrates
the organization of this patent database and it was highlighted
the low level hierarchies subgroups used in this work.

Fig. 1. Organization of the Database

In order to validate the proposed clustering process, two
databases were created. Each database is composed by four
subgroups randomly chosen in two distinct sections of the
CPC system. In the hierarchy defined by CPC, the subgroups
represent patent groups contextualized in the same area of
knowledge. The first base is composed of subgroups G06K
7/1443, G06K 7/1447, G06K 7/1452 and G06K 7/1456 of
the G06K subclass, named “recognition of data, presentation
of data, record carriers, handling record carriers”, shown in
Figure 1 only with their suffix 43, 47, 52 and 56. The second
base is composed of subgroups H01M 2/361, H01M 2/362,
H01M 2/364 and H01M 2/365 of the subclass H01M, named
“processes or means, e.g. batteries, for the direct conversion of
chemical energy, into electrical energy” represented in Figure
1 only with their suffix 1, 2, 4 and 5. Some patents of the
subgroups are classified into more than one subgroup. In this
work, only the first classification is considered and, therefore,
the number of patents available is different from the number
of patents selected for the database. Table I shows the name of
the subgroups in the CPC system and the number of patents
selected.

TABLE I
DATABASE

Sections Codes CPC Number of
patents available

Number of
patents selected

G

G06K 7/1443 505 452
G06K 7/1447 302 263
G06K 7/1452 93 78
G06K 7/1456 227 117

H

H01M 2/361 213 185
H01M 2/362 126 101
H01M 2/364 33 28
H01M 2/365 139 59

The methodology used to cluster the documents was divided
into three execution steps and one analysis phase. In the first
step, the citations of the patents contained in the selected
subgroups were extracted. These citations were taken from
the section of documents referenced by the patent. From
this process, two binary citation matrices per document were

641

generated, one for each database, which inform the occurrence
of a certain citation in each document. In these matrices, the
digit 0 represents the absence of a citation in the document
and the digit 1 represents the existence of a citation in the
document. According to Borgman and Furner [11], the analy-
sis of citations allows for the identification of relationships
documents, regardless of the presence of equal terms. In
this work, the occurrence of common quotes among patent
documents is used as a mechanism to define the semantic
relations between them.

In the second step, those matrices were used as inputs for
each one of the three algorithms discussed in Section II. For
each algorithm, the experiments were repeated for 30 times, to
account for statistical validation. For the SOM network and K-
Means, the number of clusters k was defined as 4, which was
the number of subgroups of the database used for validation.
The Multi-SOM does not need to receive as input the number
of clusters. However, it is necessary to define the dimensions
of the first map. Thus, the first map dimension was defined as
6 x 6.

In the third step, an algorithm was implemented to evaluate
the correspondence between the groups generated by SOM,
Multi-SOM and K-Means algorithms and the original CPC
subgroups presented in Table I. Finally, in the analysis phase,
an objective comparison was performed using statistical infer-
ence, by hypothesis tests. In this test, the hypothesis tested
(H0) was the equality of average between the number of
patents identified in step 3 and the number of patents selected
in each subgroup. In this test, a categorization algorithm will
be considered more efficient when the average is closer to zero.
At the end, it was possible to infer if some of the algorithms
were better or worse than the others, to solve that clustering
problem. The alternative hypothesis (H1) used for the Kruskal-
Wallis H test and boxplot was the average difference in the
number of patents clustered (ADPC) by each algorithm in
the clusters, i.e. the difference between the number of patents
identified, for example in group G1, and the number of patents
selected in the corresponding original CPC subgroup. A low
ADPC informs that the associated clustering algorithm groups
together a number of patents similar to those of the original
CPC subgroups.

IV. EXPERIMENTS

The experiments were divided into two phases. In the
first phase, the tests were carried out with the database
composed by the patents of section G. A total of 10,148
citations were extracted from the 910 patent documents. The
matrices generated in this process were used for the clustering
process. Fig. 2 shows the distribution of patents in the four
groups generated by SOM algorithm, refered here as G G1 S,
G G2 S, G G3 S and G G4 S. Kruskal-Wallis H test was
performed to compare those samples from each of the groups
generated, the test suggested that there were statistical differ-
ences between the three samples (with p0 = 5.31 ⇥10�18 for
the group G G1 and with p0 = 3.08 ⇥10�18 for the group
G G2). To find the difference of samples, a comparison was

performed by means of boxplot representations. This resulted
in the plots of Fig. 3 and Fig. 4. It is possible to infer, with
95% of confidence, that SOM algorithm performs better than
K-Means and Multi-SOM to cluster patents of this database
by means of citations, as SOM averaged differences between
number of patents identified on step 3 and patents selected
in each subgroup (H1) could not be rejected. Therefore, it is
clear from this analysis that SOM performed much better than
K-Means and Multi-SOM, as their ADPC is smaller than those
by its conterparts.

To the groups identified by K-Means algorithm, it was added
the termination KM (G G1 KM , G G2 KM) and to those
identified by Multi-SOM, it was added the termination MS
(G G1 MS, G G2 MS).

Fig. 2. Typical result of the clustering process using a SOM network

Fig. 3. Boxplot representation of results for G G1

642

Fig. 4. Boxplot representation of results for G G2

From the four groups created in the experiments, it was
possible to identify two of them, which had a majority of
patents, one from G06K 7/1443 and the other from the G06K
7/1447 subgroup. The other two groups had patents from the
four used subgroups. Analyzing the first one created by SOM,
named G G1 S, with 696 averaged patents, 62.75% belonged
to G06K 7/1443 subgroup of the documents database. K-
Means and Multi-SOM created a big group with averages of
844.6 and 886 patents, respectively. From these, 58.60% and
54.85% in average were from the G06K 7/1443 subgroup. This
indicates that K-Means and Multi-SOM algorithms failed to
identify differences between documents from their citations,
keeping the vast majority of patents in a single group.

The second group analyzed, created by SOM, named
G G2 S, had 133 patents in average. A total of 100%
belonged to the G06K 7/1447 subgroup of the documents
database. K-Means and Multi-SOM algorithms kept, in av-
erage, 100% and 28.57% of the patents from the G06K
7/1447 subgroup in G G2 KM and G G2 MS. But, while
SOM was able to keep an average of 133 patents on
G G2 S, K-Means and Multi-SOM clustered only 35 patents
in G G2 KM and 14 patents in G G2 MS respectively, in
average. Table II presents the results obtained.

TABLE II
RESULT OF THE FIRST PHASE OF THE CLUSTERING PROCESS

Groups Average cluster
size

Average hit
percentage

G G1 S 696 62.75%
G G2 S 133 100%

G G1 KM 845 58.6%
G G2 KM 35 100%
G G1 MS 886 54.85%
G G2 MS 14 28.57%

In the second phase, the tests were performed with the
database composed of patents of section H. A total of 2,755
citations were extracted from the 373 patent documents.
Fig. 5 shows the distribution of patents in the four groups
generated by SOM algorithm, refered here as H G1 S,
H G2 S, H G3 S and H G4 S. The Kruskal-Wallis H test
suggested that there were statistical differences between the
three samples of the three groups generated (with p0 = 1.26
⇥10�18 for the group H G1, p0 = 8.99 ⇥10�19 for the group

H G2 and p0 = 6.05 ⇥10�17 for the group H G3). To find
the difference of samples, a comparison was performed by
means of boxplot representations. The Fig. 6, 7 and 8 present
a boxplot representation of the results in terms of ADPC.
It is possible to infer, with 95% of confidence, that SOM
algorithm performs better than K-Means and Multi-SOM to
cluster patents of this database by means of citations, as SOM
averaged differences between number of patents identified on
step 3 and patents selected in each subgroup (H1) could not be
rejected. Again, it is clear that SOM’s ADPC is significantly
smaller than ADPC obtained by K-Means and Multi-SOM.

Fig. 5. Typical result of the clustering process using a SOM network

Fig. 6. Boxplot representation of results for H G1

Fig. 7. Boxplot representation of results for H G2

643

Fig. 8. Boxplot representation of results for H G3

From the four groups created by the algorithms, it was
possible to identify three with more similarity to the subgroups
created by the specialists. These are equivalents to subgroups
H01M 2/361, H01M 2/362 and H01M 2/365. These groups
were named as H G1, H G2 and H G3, respectively. The
H G1 S group created by SOM contains 247 patents in
average, of which 57.82% were correctly grouped. K-Means
and Multi-SOM have created the group H G1 KM with 367
and H G1 MS with 357 patents in average. From these,
57.17% and 56.58% were correctly grouped.

Analyzing the groups H G2 S and H G3 S it was iden-
tified that only SOM managed to create groups of a relevant
size. The H G2 S group created by SOM contains 48 patents
in average, of which 78.30% were correctly grouped. The
H G3 S group created by SOM contains 45 patents in aver-
age, of which 57.41% were correctly grouped. Therefore, it is
possible to state that the SOM has a more satisfactory result
than K-Means and Multi-SOM, since it can better identify the
differences between patent documents. K-Means and Multi-
SOM clustered the vast majority of patents into a single
group. These algorithms were not able, in these experiments, to
identify differences between the documents that allowed them
to be clustered in different groups. We believe that SOM could
perform better than Multi-SOM to solve a given problem, even
being nothing but a special case of Multi-SOM, because SOM
can be more specific and specialized than Multi-SOM, thus
being more precise. On the other hand, Multi-SOM is more
general, and perhaps capable of dealing better with different
instances of the problem. The percentage of patents correctly
grouped by algorithms is very close, in some cases, this is
due to the fact that the number of patents in the generated
groups is very small. Table III shows the groups created, the
average size of each cluster and the average percentage of
patents correctly classified.

TABLE III
RESULT OF THE SECOND PHASE OF THE CLUSTERING PROCESS

Groups Average cluster
size

Average hit
percentage

H G1 S 247 57.82%
H G2 S 48 78.30%
H G3 S 45 57.41%

H G1 KM 367 57.17%
H G2 KM 3 58.70%
H G3 KM 1 36.06%
H G1 MS 357 56.58%
H G2 MS 3 68.67%
H G3 MS 2 50%

V. CONCLUSION

With the increasing number of patents and the development
of new technologies, the classification systems employed by
patent offices should be constantly reviewed to avoid accu-
mulation of documents on certain subgroups. In a restricted
domain of knowledge such as the subgroups of CPC system, it
is difficult to use words as units of knowledge representation in
an automatic clustering process because the subject descriptors
and the words tend to be similar.

The main contribution of this work is to evaluate the perfor-
mance of three clustering algorithms on a restricted knowledge
domain, based on CPC sub-groups. The experiments brought
the theory of citation analysis to a practical application of
interest to the academic and industry communities. For the
given scenarios, SOM networks showed superior performances
compared with K-Means algorithm and Multi-SOM networks.
Most of patent offices professionals and researchers in the
domain of information retrieval and applied machine learning
deal with the upper levels of classification hierarchies (class
and subclass levels) and only some have tracked the problem
on a more fine-grained classification (group and subgroup
levels), as done in this work. For future work, it is expected to
perform the comparison of the clustering process in a larger
scale, using the upper hierarchy of the CPC system.

ACKNOWLEDGEMENTS

The authors would like to thank the financial support of the
Pontifical Catholic University of Minas Gerais (PUC Minas),
the Federal Center for Technological Education of Minas
Gerais (CEFET-MG), the National Council for Scientific and
Technological Development (CNPq, grant 429144/2016-4) and
the Foundation for Research Support of the State of Minas
Gerais (FAPEMIG, grant APQ 01454-17).

REFERENCES

[1] T. Hufker and F. AlpertL, “Patents: a Managerial Perspective”, Journal
of Product and Brand Management, vol. 3, pp. 44-54, 1994.

[2] X. Luo, A. N. Zincir-Heywood, “A comparison of som based docu-
ment categorization systems”, in: Proceedings of the International Joint
Conference on Neural Networks, vol. 3, pp. 1786-1791, 2003.

[3] X. Polanco, C. François, and J-C. Lamirel, “Using artificial neural net-
works for mapping of science and technology: A multi-self-organizing-
maps approach”, Scientometrics, vol. 51, pp. 267-292, 2001.

[4] I. Khanchouch, M. Charrad, and M. Limam, “A Comparative Study of
Multi-SOM Algorithms for Determining the Optimal Number of Clus-
ters”, International Journal of Future Computer and Communication, vol.
4, pp. 198-202, 2015.

644

[5] S. Chair, M. Charrad, and N. Ghazzali, “A new r package for multi-som
clustering”, in Conférences Conjointes Francophones sur la Sciences des
Données AAFD & SFC, 2016.

[6] D. Xu, Y. Tian, “A comprehensive survey of clustering algorithms”,
Annals of Data Science, vol. 2, pp. 165-193, 2015.

[7] M. R. G. Meireles, B. V. Cendón and P. E. M. Almeida, “Comparação
do processo de categorização de documentos utilizando palavras-chave
e citações em um domı́nio de conhecimento restrito”, Transinformação,
Campinas, vol. 28, pp. 87-96, 2016 (in portuguese).

[8] K-K. Lai and S-J. WU, “Using the patent co-citation approach to
establish a new patent classification system”. Information processing
& management, Elsevier, vol. 41, pp. 313-330, 2005.

[9] X. Li, H. Chen and Z. Zhang and J. Li, “Automatic patent classification
using citation network information: an experimental study in nanotech-
nology”, in Proceedings of the 7th ACM/IEEE-CS joint conference on
Digital libraries (JCDL ’07), pp. 419-427, 2007.

[10] D-R. Liu and M-J. Shis, “Hybrid-patent classification based on patent-
network analysis”, Journal of the Associationfor Information Science
and Technology, Wiley OnlineLibrary, vol. 62, pp. 246-256, 2011.

[11] C. L. Borgman and J. Furner, “ Scholarly communication and biblio-
metrics”, Annual review of information science and technology, v. 36,
n. 1, p. 2-72, 2002.

645

Automatic Calibration of Performance Indicators for
Performance Analysis in Software Development

Mushtaq Raza
INESC TEC, Porto, Portugal/ Department of Computer Science

Abdul Wali Khan University Mardan
Mardan, Pakistan

mushtaq.raza@fe.up.pt

João Pascoal Faria
INESC TEC/ Faculty of Engineering, University of Porto

Rua Dr. Roberto Frias
Porto, Portugal

jpf@fe.up.pt

Abstract—ProcessPAIR is a novel method and tool for automat-
ing the performance analysis in software development. Based on
performance models structured by process experts and calibrated
from the performance data of many developers, it automatically
identifies and ranks potential performance problems and root
causes of individual developers. However, the current calibration
method is not fully automatic, because, in the case of performance
indicators that affect other indicators in a conflicting way, the
process expert has to manually calibrate the optimal value in
a way that balances those impacts. In this paper we propose a
novel method to automate this step, taking advantage of training
data sets. We demonstrate the feasibility of the method with
an example related with the Code Review Rate indicator, with
conflicting impacts on Productivity and Quality.

Index Terms—automatic performance analysis, personal soft-
ware process, Performance analysis tool

I. INTRODUCTION

Process and product data produced in software development
projects can be periodically analyzed to identify performance
problems, determine their root causes and devise improve-
ment actions. However, conducting the analysis manually is
challenging because of the potentially large amount of data
to analyze, the effort and expertise required, and the lack of
benchmarks for comparison.

ProcessPAIR is a novel method and tool for automated
performance analysis and improvement recommendation in
software development [8]. Based on performance models de-
fined by process experts and calibrated from the performance
data of many projects, it automatically identifies and ranks
potential performance problems and root causes of individual
entities (developers, teams or organizations), so that subse-
quent manual analysis for the identification of deeper causes
and improvement actions can be properly focused. Process-
PAIR was successfully applied in education and training envi-
ronments [9]. ProcessPAIR is also of interest to high-maturity
organizations (CMMI maturity levels 4 and 5), because it fa-
cilitates the implementation of practices of the Organizational
Process Performance (ML4) and Organizational Performance
Management (ML5) process areas [3].

However, the current calibration method used by Process-
PAIR is not fully automatic, because the optimal value of each

DOI reference number: 10.18293/SEKE2019-188

performance indicator must be provided by the process expert.
In many cases, the optimal value follows directly from the
definition and is located in one extreme of the scale (minimum
or maximum). But in the case of performance indicators that
affect other indicators in a conflicting way, an intermediate
optimal value that balances those impacts need to be manually
calibrated by the process expert. An example is the Code
Review Rate (size unit reviewed per time unit). If code reviews
are performed too fast, quality of reviews (Code Review Yield)
is negatively affected, but if they are performed too slow,
Productivity is negatively affected, and it is not easy to choose
a review rate that balances these two conflicting impacts.

In this paper we propose a novel method to automate this
step, and hence fully automate the model calibration process,
taking advantage of training data sets. We show the feasibility
of the method with a data set that includes Code Review Rate,
Productivity and Code Review Yield data.

The article is organized as follows. Section II presents
background information about ProcessPAIR. Related work
is presented briefly in Section III. Section IV presents the
proposed method and feasibility study. Section V concludes
the article and points directions for future work.

II. BACKGROUND

A. The ProcessPAIR Approach

The ProcessPAIR approach involves three main steps (see
Figure 1):

1) Define: Process experts define the structure of a perfor-
mance model (PM) suited for the development process
under consideration. In our approach, a PM comprises a
set of top-level and child performance indicators (PIs),
organized hierarchically by cause-effect relationships
[7].

2) Calibrate (or Learn): The PM is automatically calibrated
by ProcessPAIR based on the performance data of many
process users. The statistical distribution of each PI
and statistical relations between PIs are computed from
the training dataset, taking advantage of statistical and
machine learning techniques [7].

3) Analyze: Once a PM is defined and calibrated, the per-
formance data of individual entities can be automatically

646

 act Process v iew

P
ro

c
e

s
s

P
A

IR
P

ro
c

e
s

s
 e

x
p

e
rt

1. Define performance
model structure

2. Calibrate performance
model

3. Analyze dev eloper
performance data

Performance model structure

Performance indicators (PIs)
Relationships between PIs

Calibrated performance model

Statistical distribution of PIs
Statistical relationships between PIs

Performance analysis and
recommendation report

Performance problems
Ranked root causes

Performance data
of a single
dev eloper

Performance data
from many
dev elopers

Fig. 1. UML activity diagram depicting the main activities and artifacts in
the ProcessPAIR method.

analyzed by ProcessPAIR, to identify performance prob-
lems (in top-levels PIs), identify potential root causes
(related with child PIs), and rank those potential root
causes.

The ProcessPAIR approach is supported by the Proces-
sPAIR tool, freely downloadable from https://blogs.fe.up.pt/
processpair/. The tool is implemented as a standalone Java
application, in order to protect the users data. It has a core
framework and extensions for the processes of interest. An
extension for the Personal Software Process (PSP), containing
the definition of performance models for the PSP and data
loaders from the most relevant project management tools used
by PSP developers, was developed for education and training
environments, but other extensions can be easily developed for
other processes and contexts.

Further details about each step are given next.

B. Model Definition

The first step in our approach is the definition of the
following elements of the PM:

• list of relevant PIs, including formulas for their computa-
tion from base measures, and the definition of the optimal
value of each PI;

• subset of top-level PIs;
• cause-effect relationships between PIs, determined by a

formula or statistical evidence;
• sensitivity coefficients [10] between PIs related by a

formula (needed for ranking the identified root causes
in the performance analysis step).

C. Model Calibration
The PM is automatically calibrated by ProcessPAIR from

training data sets, generating the following data:
• approximate statistical distribution (cumulative distribu-

tion function) of each PI in the training data set;
• recommended performance ranges for each PI, needed

for classifying values of each PI of a subject under
analysis into three semaphores: green - no performance
problem; yellow - a possible performance problem; red -
a clear performance problem. Such ranges are calibrated
automatically from the training data, so that there is an
approximately even distribution of data points by the
semaphores. In particular, the green range corresponds
to the 1/3 data points closest to the optimal value, and
the red range corresponds to the 1/3 data points farthest
to the optimal value;

• regression models and sensitivity coefficients between PIs
not related by a formula. Sensitivity coefficients between
PIs not related by a formula are computed by first deter-
mining a regression model from the calibration dataset (a
piecewise linear model organized as a regression tree [1]),
and subsequently computing the corresponding sensitivity
coefficient.

Some results of model calibration can be consulted in Figure
2. The example refers to the Code Review Rate, here named as
Code Review Productivity. The approximate statistical distri-
bution (cumulative distribution function) of this performance
indicator, calibrated automatically by ProcessPAIR based on a
training data set, is shown on the bottom left side. The ’green’
and ’yellow’ performance ranges are shown on the right; these
ranges are calibrated automatically by ProcessPAIR, based on
the commutative distribution function and the optimal value
(calibrated manually by the process expert). The data points
in the chart on the right show the values of this performance
indicator for a series of projects under analysis. Different
performance indicators defined in the performance model can
be consulted in the tree view on the top left side. The Code
Review Productivity has a green semaphore because its values
lie mostly inside the green range.

D. Performance Analysis
Having defined and calibrated the PM, the performance data

of individual entities (developers, teams or organizations) can
be automatically analyzed by ProcessPAIR, to identify and
rank performance problems and potential causes [7].

To rank the identified causes (child PIs) of performance
problems in top-level PIs, it is used a ranking coefficient, that
combines a sensitivity coefficient (measuring the impact of
improving child PIs on top-level PIs) and a so-called percentile
coefficient (measuring the difficulty of improving the child
PIs).

The percentile coefficient is computed based on the distance
of the observed values to the optimal value of each PI.

Hence the choice of optimal value has impact on both
problem identification and root cause identification and pri-
oritisation.

647

https://blogs.fe.up.pt/processpair/
https://blogs.fe.up.pt/processpair/

Fig. 2. ProcessPAIR user interface.

III. RELATED WORK

A. Optimal Code Review Rate

According to [4] [12], the time spent in reviewing a work
product in relation to its size (review rate) is a leading indicator
of the review yield (percentage of defects found).

In a published study [5], the recommended review rate of
200 lines of code (LOC) per hour or less was found to be an
effective rate, identifying nearly two-thirds of the defects in
design reviews and more than half in code reviews.

A team using the Team Software Process (TSP) obtained a
process performance model (PPM) for establishing a target
code review rate (number of lines of code reviewed per
hour), based on the predicted impact on the code review yield
(percentage of defects found in reviews), characterized as [12]:

• Regression equation: CodeReviewY ield = 146 −
0.364× CodeReviewRate

• R2 = 94.1%, p− value = 0.000

According to this regression equation, the smaller the code
review rate, the higher is the predicted code review yield (that,
anyway, by definition, cannot exceed 100).

However, the quantitative impact on overall productivity
was not analysed in those studies.

B. Productivity Measurement

Software development productivity is usually measured in
function points per time unit or lines of code (LOC) per time
unit [13] [6] [11]. However, both productivity measurement
techniques have some limitations. On one hand, the mea-
surement of function points remains subjective even after the
completion of the software development project. On the other
hand, productivity measures based on LOC have limitations
due to the lack of counting standards and the dependence on
the programming language [2].

In the data set we will explore for automatic calibration
of the optimal value, there is no information about function

points, only size and time. The training data set contains
data from more than 3000 individuals that developed the 10
projects of the standard PSP training (the same projects for all
individuals, but with varying programming languages). Hence,
we will take the average effort per project as a proxy for
the functional complexity of each project, and calculate the
individual productivity as the ratio between the functional
complexity of the projects and the actual time (hours) spent
by that individual.

IV. PROPOSED METHOD AND RESULTS

A. Method

Let us assume that a child PI X (such as the Code Review
Rate) has conflicting impacts on two or more parent PIs Y1,
Y2, ..., Yn (such as the Code Review Yield and Productivity).

The first step is to analyse the impact of the child PI X on
a parent PI Yi at a time, represented as a function fi from X
to Yi. In order to arrive at a smooth function, we derive that
function as follows: for each candidate optimal value x of X ,
we compute the mean value of Y in the data points that have
the value of X within the green range corresponding to x.

Formally, denoting by S the training data set, p a data point
in S, Yi(p) the value of Yi in p, X(p) the value of X in p, F
the cumulative distribution function of X in S, and F−1 the
inverse of F ,

fi(x) , mean{Yi(p)|p ∈ S ·X(p) ∈ Green(x)}

with

Green(x) = [F−1(
2

3
F (x)), F−1(

2

3
F (x) +

1

3
)]

In the second step, we compute a combined impact function
fc, as a normalized average of the previous functions:

fc(x) , mean{ fi(x)

max(fi)
|i = 1, ..., n}

The values of this function are adimensional values in the
0-1 scale.

Finally, we choose the value x of X that maximizes fc(x).
All the filtering procedures and calculations can be fully

automated.
We implemented the calculations in a prototype tool taking

advantage of evolutionary algorithms (genetic algorithms) to
solve the optimization problem in a way that can scale to large
data sets.

B. Results

In this study, for automatic calibration, we used a PSP
data set available from the Software Engineering referring
to 31,140 projects concluded by 3,114 engineers during 295
classes of the classic PSP for Engineers I/II training courses
running between 1994 and 2005. In this training course,
targeting professional developers, each engineer develops 10
small projects, following increasingly sophisticated process

648

Fig. 3. Impact of CRR on CRY

Fig. 4. Impact of CRR on Productivity

variants (PSP0, PSP1, etc.). Since code reviews are introduced
only in the third project, we excluded the data points with zero
time spent in Code Reviews. Since the Code Review Yield
is undefined in case of 0 defects entering the Code Review
phase, we also excluded data points with undefined Code
Review Yield. In the end, we selected 9,650 data points (each
corresponding to a project developed by a developer). Based
on the selected data points, we computed the impact functions
for the case of Code Review Rate, impacting Productivity
and Code Review Yield. The resulting curves are presented
in Figures 3, 4 and 5.

Figure 3 shows that, as expected, higher values of Code
Review Rate are associated with lower values of Code Re-

Fig. 5. Combined impact of CRR on CRY and Productivity

view Yield, which declines more significantly in the 200-500
LOC/hour range.

Figure 4 shows that, as expected, higher values of Code
Review Rate are associated with higher values of Productivity,
with a more significant increase in the 100-600 LOC/hour
range.

Figure 5 shows the combined impact of Code Review Rate
on Code Review Yield and Productivity. The combined curve
has some oscillations due to the close symmetry of the two
component curves, with a peak value at 270 LOC/hour.

Hence, the computed optimal value is 270 LOC/hour. This
value is a bit higher than the literature recommendation of
200 LOC/hour, but perhaps closer to common practice when
productivity impact is also important.

V. CONCLUSIONS

The method proposed in this paper worked successfully for
the case study presented, allowing the automatic calibration
of the optimal value and range of a PI (Code Review Rate)
with conflicting impacts on other PIs (Code Review Yield and
Productivity). The derived optimal value (270 LOC/hour) is a
bit higher than the literature recommendation (200 LOC/hour),
which is justified by the fact that we are quantitatively ana-
lyzing not only the impact on review effectiveness (yield), but
also on productivity.

As future work, we intend to implement the calibration
method in the ProcessPAIR tool in order to automatically
calibrate all the PIs with conflicting impacts on high-level PIs.

REFERENCES

[1] L. Breiman. Classification and Regression Trees. The Wadsworth
statistics/probability series. Wadsworth International Group, 1984.

[2] David N Card. The challenge of productivity measurement. In Pacific
Northwest Software Quality Conference, pages 1–10, 2006.

[3] Mary Beth Chrissis, Mike Konrad, and Sandra Shrum. CMMI for de-
velopment: guidelines for process integration and product improvement.
Pearson Education, 2011.

[4] Watts S Humphrey. Psp (sm): a self-improvement process for software
engineers. Addison-Wesley Professional, 2005.

[5] Chris F Kemerer and Mark C Paulk. The impact of design and code
reviews on software quality: An empirical study based on psp data. IEEE
transactions on software engineering, 35(4):534–550, 2009.

[6] Katrina D Maxwell and Pekka Forselius. Benchmarking software
development productivity. Ieee Software, 17(1):80–88, 2000.

[7] M. Raza and J. P. Faria. A model for analyzing performance problems
and root causes in the personal software process. J. Softw. Evol. Process,
28(4):254–271, April 2016.

[8] Mushtaq Raza and João Pascoal Faria. Processpair: A tool for automated
performance analysis and improvement recommendation in software
development. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2016, pages 798–
803, New York, NY, USA, 2016. ACM.

[9] Mushtaq Raza, João Pascoal Faria, and Rafael Salazar. Assisting
software engineering students in analyzing their performance in software
development. Software Quality Journal, pages 1–29, 2019.

[10] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jes-
sica Cariboni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola.
Global sensitivity analysis: the primer. John Wiley & Sons, 2008.

[11] Goparaju Purna Sudhakar, Ayesha Farooq, and Sanghamitra Patnaik.
Measuring productivity of software development teams. 2012.

[12] Shurei Tamura. Integrating cmmi and tsp/psp: using tsp data to create
process performance models. Technical report, Carnegie-Mellon Univ
Pittsburgh Pa Software Engineering Inst, 2009.

[13] Stefan Wagner and Melanie Ruhe. A systematic review of productivity
factors in software development. language, 1989, 1980.

649

Knowledge Engineering Research Topic Mining
Based on Co-word Analysis

Xiumin Liu
National Science Library

Chinese Academy of Sciences
Beijing, China

liuxiumin@mail.las.ac.cn

Zheng Liu
National Science Library

Chinese Academy of Sciences
Beijing, China

liuz@mail.las.ac.cn

Abstract—This paper collects research papers on knowledge

engineering 2009-2018 from the internationally-authoritative

citation database Web of Science and uses the co-word analysis

method to analyze these contents of literature. By statistical

analysis of keyword frequency, the paper compiles the co-word

table of the high-frequency words, uses statistical analysis

software to make hierarchical clustering, and summarizes hot

research topics in the knowledge engineering area.

Keywords-knowledge engineering; co-word analysis; topic

research; data process

I. INTRODUCTION
In 1977, Professor B.A. Feigenbaum, a computer scientist

at Stanford University in the United States, presented a new
concept of knowledge engineering at the 5th International
Conference on Artificial Intelligence. He believes that
"knowledge engineering is the principle and method of
artificial intelligence, providing a means to solve problems that
require expert knowledge to solve. The proper use of the
knowledge acquisition, expression and reasoning process
composition and interpretation is based on knowledge. An
important technical issue of the system.” This type of
knowledge-based system is an expert system built through
intelligent software.

The method of co-word analysis was first described in
detail in the mid to late 1970s by French biometrician. Co-
word analysis is a content analysis technique that uses patterns
of co-occurrent of pair of items (i.e., words or noun phrases) in
a corpus of texts to identify the relationships between ideas
within the subject areas presented in these texts [1].

Based on the co-occurrence frequency of pairs of words or
phrases, co-word analysis has proved to be a powerful tool for
knowledge discovery in databases. Word clustering has also
been profitably used in the automatic classification of
documents, see [2]. The underlying assumption is that words
that typically appear together should be associated with
similar concepts.

II. DATA SOURCE
This paper uses the international authoritative citation

database Web of Science published by the American Institute
of Scientific Information (ISI) as the source of literature
information. The paper intends to analysis the knowledge
engineering research topics, so that the search criteria are
“topic or search keyword is knowledge engineering”, the
search scope is 2009-2018, and the search time was February
12 2019 in the web of science database. The database has the
added categories for each topic for more e. In the “knowledge
engineering” subject, the “computer science interdisciplinary
applications” or “computer science artificial intelligence”
categories have been chosen for the limitation of the papers’
content. A total of 1550 related articles were retrieved. Each
article record contains multiple fields, such as title, author
keywords, citations, publication date, etc.

III. RESEARCH METHOD
This paper uses the methods of bibliometrics and content

analysis to quantitatively and qualitatively analyze the data.
The Bibliometric Method is a quantitative analysis method that
uses mathematical statistics to study the external features of
the literature. Content Analysis Method is an in-depth analysis
of the content of the research object [3].

There are two types of keywords in the research papers.
One is author keyword (DE field), the other is a supplementary
keyword (ID field) ISI keyword which is extracted by ISI
according to the title of the paper. In order to fully reflect the
topic of research in the field of knowledge engineering in the
past ten years, using the author keywords.

After the DE field is split with punctuation “;” the list of
keywords is formed. In the former similar papers directly used
the form co-occurrence to establish a co-word matrix, this
article will further summarize the word forms differently.
Lemmatization rules apply to the keywords list.
Lemmatization is a process of assigning a to each word form
in a corpus using an automatic tool called a lemmatizer [4].
Lemmatization reduces inflected forms of a word to their
lexical root. With lemmatization turned on, a keyword is
reduced to its "lemma". As a result, lemmatization can reduce
or eliminate the variant spellings of a word express the same 10.18293/SEKE2019-047

650

https://www.sketchengine.co.uk/my_keywords/word-form/

concept. For example: citing 、cites、cited and citation are the
inflected forms of the cite. Lemmatization makes the mapping
between cite and its each inflected form. In this paper,
stemming rules also apply to the keywords processing. With
stemming, words are reduced to their word stems. A word
stem need not be the same root as a dictionary-based
morphological root, it just is an equal to or smaller form of the
word [5]. Stemming removes suffixes such as -ing and -es
from keyword in order to cluster relevant keywords. For
example, with stemming rules the keywords “vinyl
recording” will be same as vinyl record. Stemming and
lemmatization are closely related. The difference is that
stemming merely drops suffixes such as -ing and -es, while
lemmatization makes use of dictionaries that define pairs and
clusters (e.g., defense, defenses) of words with the same
meaning or with a shared morphological structure. Both
lemmatization and stemming apply only to English language
search terms. After the prototyping process, calculate the
keyword frequency. Get the lemma keywords list with
frequency.

From the literature of 1550 articles, the author keywords
were merged through prototyping and stemming, and more
than 4,000 concepts were obtained. On the basis of high-
frequency word statistics, a co-occurrence matrix as TABLE I
is established according to the frequency selection high-
frequency keywords which frequency is greater than or equal
to 10.

In the construction of the author's key common word
matrix, this paper uses the Python program to prototype and
stem the author keywords to establish a 203*203 matrix. The
matrix is a symmetric matrix in which the data on the main
diagonal is defined as the conceptual frequency, and the data
on the non-main diagonal represents the number of times the
two concepts appear together in the same paper. The concept
here can be composed of multiple forms.

IV. BIBLIOMETRIC ANALYSIS

A. Published Time Distribution

The change in the number of academic papers is an
important indicator for measuring the development trend of a
field for a period of time. It is of great significance for
evaluating the stage of the field and the development trend and
forecasting future trends. The author makes diachronic
systematic statistics on the distribution of 1550 documents, and

makes a distribution curve scatter plot, as shown in Fig. 1.

It can be seen from the figure that the number of
publications in knowledge engineering research has been
growing steadily in the past decade, especially in 2012 and
2018, respectively, with two small peaks, 179 and 195. It
shows that the industry has always attached great importance
to the research of knowledge engineering, and knowledge
engineering is still the current research hotspot.

B. Publications

Through statistical analysis, it is concluded that the top
24 journals published the most published papers accounted for
50% of the total papers in the entire knowledge engineering
field. The journals of papers amount distribution as Fig.2.
Providing high-quality academic papers for researchers in the

TABLE I. PART OF KEYWORD CORRELATION MATRIX

 Ontology Knowledge

engineering

Knowledge

management

Ontology

engineering

Knowledge

representation

Knowledge-

based

engineering

Ontology 124 16 10 6 12 1
Knowledge engineering 16 88 3 1 10 1
Knowledge management 10 3 51 5 2 3

Ontology engineering 6 1 5 45 5 1
Knowledge representation 12 10 2 5 43 1

Knowledge-based engineering 1 1 3 1 1 30

Figure 2. journal distribution

Figure 1. knowledge engineering published literature quantitative

statistics

651

field of knowledge engineering, researchers would publish
their fresh and novel related papers or find fresh topic content.

C. Analysis of highly cited papers

In descending order of the order in which the documents
are cited, select top10 as shown in the following TABLE II.
According to the content of the article, the authors try to
analysis the distribution of research topics in the field.

As can be seen from TABLE II, the most cited is Natural
Language Processing (Almost) from Scratch [6] written by
Professor Collobert, R et al, cited as 1010 times. This paper is
one of the most classic papers of neural network language
model and word embedding. Its core goal is to train good
word embedding to complete tasks such as part-of-speech
tagging, phrase recognition, named entity recognition and
semantic role tagging. This paper provides a good idea for the
future use of neural networks for specific natural language
processing tasks. NLP technology can be used for text mining,
analysis of natural language texts, discovery of conceptual
relationships between knowledge points and knowledge points,
and assisting in knowledge acquisition for large-scale
knowledge engineering. Use NLP technology as a tool to
practice knowledge engineering.

In August 1977, Edward Feigenbaum proposed the
concept of knowledge engineering for the first time. Since
then, knowledge engineering has been a foundation of expert
systems (also known as knowledge-based system) [7]. Since
the beginning of the 21th century, the knowledge
engineering’s evolution has been focused on big data. A vast
amount of data is generated and processed every day, and
accessible content on the Internet is far beyond the
exploration capabilities of data consumers, who usually can’t

locate the relevant information within an acceptable time
frame. To cope with the challenges brought by the big data
phrase of knowledge engineering’s evolution, BigKE
(Knowledge engineering with Big Data) [8] uses its frame
work to offer several advantages over conventional
knowledge engineering.

V. ANALYSIS OF MAINSTREAM RESEARCH TOPIC
Knowledge engineering is an applied science with its rich

research fields. Topic analysis is a method of content analysis
that understands the internal state of development of a
discipline. The author intends to use high-frequency keywords
to co-occurrence matrix and analyze several mainstream
subject areas of knowledge engineering research, and to study
knowledge engineering from a vertical direction.

TABLE II. MOST CITED PAPER TOP TEN

Author name Title Publication Name Cited_ Times Year_Published

Collobert, R; Weston,
J; et al.

Natural Language Processing (Almost)
from Scratch

JOURNAL OF MACHINE LEARNING
RESEARCH

1010 2011

Wu, XD; Zhu, XQ; et
al.

Data Mining with Big Data IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA
ENGINEERING

700 2014

Margaryan, A;
Littlejohn, A; Vojt, G

Are digital natives a myth or reality?
University students' use of digital
technologies

COMPUTERS & EDUCATION 256 2011

Hwang, GJ; Chang,
HF

A formative assessment-based mobile
learning approach to improving the
learning attitudes and achievements of
students

COMPUTERS & EDUCATION 235 2011

Rendle, S Factorization Machines with libFM ACM TRANSACTIONS ON
INTELLIGENT SYSTEMS AND
TECHNOLOGY

210 2012

Demirkan, H; Delen,
D

Leveraging the capabilities of service-
oriented decision support systems:
Putting analytics and big data in cloud

DECISION SUPPORT SYSTEMS 181 2013

Barnaghi, P; Wang,
W; et al.

Semantics for the Internet of Things:
Early Progress and Back to the Future

INTERNATIONAL JOURNAL ON
SEMANTIC WEB AND
INFORMATION SYSTEMS

164 2012

Chu, HC; Hwang, GJ;
Tsai, CC

A knowledge engineering approach to
developing mindtools for context-aware
ubiquitous learning

COMPUTERS & EDUCATION 154 2010

Li, JZ; Tang, J; Li, Y;
Luo, Q

RiMOM: A Dynamic Multistrategy
Ontology Alignment Framework

IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA
ENGINEERING

138 2009

Lu, JW; Liong, VE; et
al.

Learning Compact Binary Face
Descriptor for Face Recognition

IEEE TRANSACTIONS ON
PATTERN ANALYSIS AND
MACHINE INTELLIGENCE

135 2015

652

Since the frequency of occurrence of each keyword itself
is different, in order to eliminate the influence of the
difference on the analysis below, the co-occurrence matrix is
converted into the correlation matrix by Ochiia coefficients,
as show in TABLE III (part).The formula for calculating the
Ochiia coefficient is as follows: the Ochiia coefficient of
keywords K1 and K2 equals the number of co-occurrence of
K1 and K2 is divided by A, and A is equal to the square of the
product of the frequency of K1 and K2. According to the
formula, the transformation of the co-occurrence matrix and
the correlation matrix conduct.

The data in the correlation matrix is similar data, and its
numerical value indicates the distance and similarity between
the two keywords, that is, the larger the value, the closer the
distance between the two keywords, the better the similarity
[10]. In order to reduce the larger error caused by too many 0
values in the correlation matrix, the matrix is further
transformed into a similar matrix, the larger the value, the
closer the two keywords.

On the basis of the correlation matrix, get the hierarchical
clustering. Euclidean Square Distance have been selected the
measured range the in the process cluster analysis. The
Average Linkage have been used for the distance of the
clusters through the agglomerative hierarchical clustering
technique. The result as Fig. 3 as below. According the
research, the list of keywords frequency and the semantic
relations between the keywords, the cluster tree divided into
four sections: Smart learning and education, Knowledge
acquisition, Knowledge basic algorithms and Knowledge
engineering technology application.

A. Smart Learning and Education
Knowledge grid realizes the orderly organization and

knowledge discovery of domain knowledge, which is the ideal
environment for learning. The knowledge grid adopts ontology
modeling based on description logic, which can realize
reasoning and has great application prospects for satisfying
individualized learning and guiding learning process [11]. The
current far-reaching application of information technology in
the field of education is about the study of educational

TABLE III. PART OF KEYWORD CORRELATION MATRIX

 Ontology Knowledge

engineering

Knowledge

management

Ontology

engineering

Knowledge

representation

Knowledge-based

engineering

Ontology 1 0.15316792 0.125749 0.080322 0.164337 0.016396

Knowledge engineering 0.153168 1 0.044781 0.015891 0.162564 0.019462

Knowledge management 0.125749 0.04478111 1 0.104371 0.042708 0.076696

Ontology engineering 0.080322 0.01589104 0.104371 1 0.113666 0.027217

Knowledge representation 0.164337 0.16256402 0.042708 0.113666 1 0.027842

Knowledge-based engineering 0.016396 0.01946247 0.076696 0.027217 0.027842 1

Expert system 0.016396 0.11677484 0 0 0.055685 0

Machine learning 0.032791 0.07784989 0 0 0.027842 0

Knowledge acquisition 0.016676 0.09897595 0.078008 0.083045 0.056637 0.067806

Knowledge-based systems 0.050913 0.12087344 0.026463 0.028172 0.057639 0.034503

Figure 3. Keywords Hierarchical cluster tree

653

metadata, such as the Dublin Education Metadata Standard
DC-Education and the IEEE-LOM Learning Object Model.

B. The Key Techniques of Knowledge Acquisition

"Technology" is the foundation for the application and
innovation of knowledge engineering to realize its knowledge.
This means. In the modern era of rapid development of
modern information technology, key techniques of knowledge
engineering are constantly innovating and advancing.
"Knowledge Acquisition (KA)" is the process of extracting
various expertise for problem solving from knowledge
sources and transforming it into executable code on a
computer [12]. Emerging knowledge acquisition techniques
have Data mining, Web mining, text mining, etc., these
techniques will help knowledge extraction in knowledge
engineering and promote knowledge engineering to a deeper
level.

C. Basic knowledge algorithms

Any calculation that follows the laws of nature can be
called Computational Intelligence, sometimes called Soft
Computing. It mainly includes three contents: fuzzy
computing, which is introduced by human processing, fuzzy
computing, which is based on the working rules of biological
neural networks, and genetic algorithms and evolutionary
calculations that mimic the "survival of the fittest" rule in the
biological world (Evolution computing).

Machine learning processes can be effectively integrated
into knowledge engineering pipelines using commonly
available software frameworks that incorporate the
mathematics and algorithms needed to perform deeper
analysis than was possible before. Machine learning
approaches fall into two broad classes: supervised learning
and unsupervised learning. The supervised algorithms are
given labelled training data, whereas unsupervised learning
algorithms find structure within the input data. The
construction of a knowledge engineering pipeline will
typically need to leverage algorithms from both classes.

D. Knowledge Engineering Technology Application

Data science and technology have received widespread
attention. Data-centric research methods and techniques in
information, energy, medicine, sociology, etc. Various subject
areas have been widely applied and recognized. Driven by the
wave of urban informatization and the rise of data science,
smart cities have become the new ideas and new practices of
the next generation of urbanization on a global scale. "Smart
City is built on the basic framework of digital cities. It is
connected to the real city through the ubiquitous sensor
network. The massive data storage, calculation, analysis and
decision-making are handled by the cloud computing platform,
and the results of the analysis decision are Automated control
of various facilities" [13]. The information system as a smart
city must have powerful computing power, sensing ability and
data application capability, which will become the research
field of knowledge engineering.

VI. CONCLUSION
With the help of the co-word analysis method, this paper

analyzes the research topic in the field of knowledge
engineering more intuitively and scientifically, and has made
in-depth discussion, which has certain practical significance.
Through the analysis of the authors, the following conclusions
were obtained.

Starting from the analysis of the research topic based on
co-word method. The word distribution of each document is
used to establish a co-word matrix with lemmatization. After
transforming it into a correlation matrix, it is hierarchically
clustered by SPSS, and finally four subject groups are selected.
In-depth content analysis, sorted out their main research
content and hotspots.

ACKNOWLEDGMENT
This article has been helped, reviewed, and guided by Dr.

Zheng Liu. I would like to express my heartfelt gratitude and
sincere respect to her. The perseverance of the spirit of Dr. Liu,
the profound knowledge, the work attitude of the facts, the
generosity and the spirit of selfless dedication have always
inspired me to constantly learn knowledge and pursue the
realm of life. Thanks Dr. Haibo Li for his suggestion to modify
the content of the article. There are too many people who have
helped me, sincerely thank all those who care and help me,
thank them for giving me the power to overcome myself,
transcend myself, and constantly pursue, thank you all.

REFERENCES
[1] Qin H. Knowledge Discovery Through co-cord Analysis[J].Library

Trends,1999,48(1):pp.133-159.
[2] L. D. Baker and A. McCallum. Distributional clustering of words for

text classification. In ACM SIGIR, 1998, pp. 96-103.
[3] Wang Yuefen. Comprehensive study of bibliometrics and content

analysis[D]. Wuhan: Wuhan University, 2007.
[4] https://www.sketchengine.eu/my_keywords/lemmatization/.
[5] https://towardsdatascience.com/stemming-lemmatization-what-

ba782b7c0bd8.
[6] Collobert R , Weston J , Bottou L , et al. Natural Language Processing

(Almost) from Scratch[J]. Journal of Machine Learning Research, 2011.
[7] R. Studer, V.R. Benjamins, and D. Fensel, “Knowledge Engineering:

Principles and Methods,” Data & Knowledge Eng., vol. 25, no. 1, 1998,
pp. 161–197

[8] Wu X D, Chen H H, Wu G Q, et al. Knowledge engineering with
big data[J]. IEEE Intelligent Systems, 2015, 30(5):46-55.

[9] Xiao Zhixiong, Gu Jing. Analysis of hotspots in domestic collaborative
research based on co-word analysis [J]. Intelligence Exploration,2015(5):
pp.6-14.

[10] Key Technologies of Knowledge Measurement, Reasoning and Fusion
in Knowledge Engineering Research [D]. Shanghai: Fudan University,
2004.

[11] https://towardsdatascience.com/stemming-lemmatization-what-
ba782b7c0bd8.

[12] Ma Chuangxin. On Knowledge Representation [J]. Modern Intelligence,
2014, 34(3): pp.21-28.

[13] Li Deren, Shan Jie, Shao Zhenfeng, et al. Geomatics for Smart Cities-
Concept, Key Techniques, and Applications[J]. Geospatial Information
Science, 2013, 16(3): pp.13-24.

654

Finding Erroneous Components from Change
Coupled Relations at Fix-inducing Changes

Ali Zafar Sadiq, Ahmedul Kabir and Kazi Sakib
Institute of Information Technology, University of Dhaka

Email: zafarsadiq120@gmail.com, kabir@iit.du.ac.bd, sakib@iit.du.ac.bd

Abstract—During the gradual process of software evolution,
errors appear in different components of a software system. These
errors are later on fixed by developers as part of corrective
maintenance activities. However, if errors appear continuously
from a particular component, that may indicate design flaws
or code smells. Maintenance cost will greatly reduce if design
flaws are treated as early as possible. To find out such flaws
it may require time-consuming manual inspections. This paper
tries to find out such components using the information of
change coupled cluster of files or Java classes at fix-inducing
changes. In this proposed approach, information (like class,
method, parameter of method and variable names) from change
coupled relation of a class at Fix-Inducing Changes (FICs) are
used to provide information about erroneous components. Then
the error history, of software components, is found by using
cosine similarity of information from change coupled cluster of
classes found in FICs to see with the architectural information
found from authenticated sources. Finally, the error history of
components is shown as the percentage of change coupled cluster
of a class found in FICs of each 100 commits in the version control
system.

Index Terms—Fix-Inducing Change, Software Quality Assur-
ance, Software Change, Software Maintenance, Change Coupling

I. INTRODUCTION

Change is an inevitable part of the evolution of software.
Frequently co-changing software artifacts form change cou-
pled relation. Any change in an artifact will influence change
in other artifacts which are change coupled with the former.
This relation can also be considered to form a cluster of
artifacts with respect to a file or class, which may be affected
depending on the change of that class. So any class and its co-
changing artifacts can be considered to be a part of a module or
component which shows close interactions among themselves.

Changes are done to introduce new features into the system
or to fix existing errors and any changes can introduce errors,
flaws or failures in the system. Various works identified these
erroneous changes [1] and analyze their impact [2]. The
reasons behind these changes may be improper coding or
careless implementation of algorithms. For analyzing these
changes, various properties of change like files affected, time,
experience of developer and many others taken into con-
sideration [3] [4] [5] [6]. However, none of those explored
the architectural components of a software system is affected
by those erroneous changes during the process of software
development and maintenance.

Continuous appearance of errors from a particular compo-
nent indicates that either that part has design flaws or it needs

redesigning. To find out such components, manual inspection
of files from source repository and bugs from bug repository
is required. Moreover, the bug repositories will only provide
information about reported bugs whereas many unreported
bugs fixed by developers will remain hidden. So considering
bug repository may give less information than the actual
situation.

Various works tried analyze the quality of software sys-
tems and condition of architectural components [7] [8] [9].
Evolution radar used change coupling relation to show the
condition of software components [7]. This work did not
consider the erroneous changes and only focuses on design
flaws based on change couple relation. Using the comments
from the version control system, sticky notes are seen to
provide useful information [8] but the concept of error is
not seen there. Furthermore, the relationship between the
evolution of software artifacts and the way they are affected
by problems is visualized by D’Ambros et al but it did not
consider component based analysis using commit history [9].
To the best of author’s knowledge, none of the existing works
explored by combining the information of change coupling
relation and Fix-Inducing Changes of source repositories to
find software components error history.

To find the erroneous components, firstly the fix-inducing
changes are found by tracking the modified and deleted of
error fixing changes. Then the entire history is traversed using
a commit window of 100 commits. In every 100 commits, the
classes (only Java classes are considered in this work) found
in the FICs are noted. Then for each of those classes, that class
itself and the cluster of other classes forming change coupled
relation with that class are considered. Then for each of these
cluster classes, information about class, method, method’s
parameter, and variable names are collected. Using the cosine
similarity of the information obtained from each cluster with
the architectural information from the authenticated source,
the most probable component for each cluster is found. Then
of the total clusters, what percentage of clusters belongs to
which component is graphically represented. So, the main
contribution of this paper is to propose a methodology to
generate the error history of software components for the entire
lifetime of any source repository.

II. METHODOLOGY

This work tried to utilize the change coupling information
of classes found in fix-inducing change. Unlike [7] [8] [9],

DOI reference number: 10.18293/SEKE2019-087
655

this work focuses on components error history. Analyzing this
history might play an important role in the fields of software
architecture, evolution, decay, and similar others.

The entire process of the proposed methodology consists of
three steps. Firstly, fix-inducing changes are extracted by using
historical information. Then clusters of change coupled classes
are identified by observing their changing relation. Lastly, the
error history is analyzed by using cosine similarity between
obtained change coupled cluster of classes and architectural
information.

A. Finding Fix-Inducing Changes (FIC):

Bugs are errors of the system that causes the system to
behave in unintended ways. The origin of the bugs are FICs
which introduce errors in the software system. These are also
known as bug introducing change, Figure 1 explains the entire
process of finding fix-inducing changes. This process starts
with finding fixing commits which are mainly committed in
the version control system by developers with a comment
containing keywords like “Fix”, “Bug”, “Patch” or their past
and gerund form. Any number with hashtags indicating bug
number along with those keywords were also considered to
represent fixing commits. These commits contain the change
to correct errors. This change is done by modifying or deleting
some lines of code that is present in the immediate commit
parent to a fixing commit. To obtain those lines that were
modified or deleted, Diffj tool’s [10] source code is used after
modifying it according to our need. Since Diffj ignores white
space and other format changes, so it ignores the possibility
of finding false FICs as mentioned by [11].

Figure 1: Finding Fix-Inducing Changes.

To track the origin of those lines in the parent commit of
fixing change, Git blame command 1 is used [12]. The commits
which were found are the FICs or changes introducing errors
in the system. All FICs of the repository are found in this way.

1git -c core.abbrev=40 blame -L(line number),+1 (FCParentHash) ˆ –
(filename)

B. Finding Cluster of Change Coupled (CC) classes:

CC classes are found by constructing a co-change matrix
[13]. In this symmetric matrix, any cell, [A, B] and A 6=B,
represents of total changes of artifacts A or B, how many those
changed together. Besides, in the cell [A, A] keeps track of
how many times artifact A changed. Using appropriate support
and confidence, the change coupled relation can be found
among Java classes. Support represents how many times a
class changed and confidence represents the likelihood, which
means if there are 2 coupled artifacts, if one artifact changes,
the probability that another artifact is going to change or not.
In co-change matrix [A, A] represents support and confidence
are represented by following Equation 1.

In Figure 2, there are 2 classes I and J. Among 5 changes of
A and 3 changes of B, both of the co-changed 3 times. So the
probability that if class A changes then class B will change
or that confidence is obtained from equation 1 as 3

5 or 60%.
But if B changes then the confidence that A will change is 3

3
or 100%.

CC classes were found by using different support and confi-
dence in different works. Zimmermann et al used the support
greater than 1 and confidence level 0.5 in their work [14].
However, Bavota et al considered elements that co-changing in
at least 2% of the commits along with a confidence level of 0.8
[15]. Since, 0.8 confidence is high, in this paper 0.7 confidence
level is used along with support 2 or more is considered. So
in the considered 70% confidence and according to Figure 2,
class J will have change coupled relation with I but not the
opposite. This relationship is considered for classes found in
FICs and the time period is taken from the 1st commit to the
FIC. The source of finding this relationship, the co-change
matrix is constructed by considering a n x n array, where
n is the number of files or classes and co-changes of Java
classes within the considered period is stored in that array.
Then for each Java class, the change coupled relation with
others are found based on considered support and confidence.
Those other Java classes that have change coupled relation
with a Java class is considered to form a cluster.

Confidence(A → B) =
support(A → B)

support(A)

=
support(A ∪B)

support(A)

(1)

C. Commit History Analysis:

In this work, fixing changes are found by searching com-
ments which later on leads to fix-inducing changes. Then using
a commit window of 100 commits the entire commit history of
source repository is traversed. However, the initial 20 commits
were omitted for repository setup issues. After that commit
window is used to traverse commits, i.e i.e 20-120, 120-220
and so on. For 100 commits in each window, FICs are analyzed
for their contents. Figure 3 shows the entire process. After
getting all FICs, these are sorted. Then traversing with commit

656

Figure 2: Example of Co-Change Matrix and Commit Timeline

frame of 100 commits, all FICs that falls within the frame can
be found out.

Figure 3: Commit History Analysis process to show the
erroneous components.

In the contents of those FICs, firstly files with .java exten-
sion were searched. Then those files or classes were taken. For
each of those class, cluster of classes found from the change
coupled relation (with at least 2 support and 70% confidence)
formed from 1st commit to that FIC are taken. Then that
class in FIC along with its classes in change couple cluster
are explored for their class, variable and method names. Then
architectural information are taken from authenticated source
and those information were first cleared of their stop words
and then by applying the porter stemming algorithm their root
words are taken. After that cosine similarity between those
architectural information of different components and change
coupled cluster information is taken to find out the most
probable component for the cluster. After getting names for

each of these clusters, what percentage of total cluster belongs
to which cluster can be easily known. Frequent appearance of
the same component in commit history found by traversing
with a commit window of 100 commits means that component
is vulnerable to errors and responsible for costly corrective
maintenance of the software system.

III. EXPERIMENTATION

This experiment is carried out in a virtual machine where
operating system is Ubuntu 18.04 with 64 GB memory and
16 core CPU. For this experiment, among the popular Java
repositories, 2 java repositories are selected for the study.
These are as follows:

Repository
Name Source Total

Commits
Commits
Analyzed

Number
of
Java
classes

Lines of
Code

Google
Guava [16] Github 4798 4020 3170 768858

jEdit [17] Github 8000 8000 600 196194

TABLE I: General description of repositories.

Of the used 2 repositories, Google Guava is a source
repository of library classes maintained by Google developers.
This provides more functionalities than existing java collection
framework and contains other features like hashing, graph,
range etc. The commits of this repository started from June
2009 to the last commit updated in August 2018. In the case of
jEdit, it is a text editor written in Java. In its source repository,
commits started in 2001 and the last one is a patch commit
in August 2019. By looking at commit history it can be said
that the gradual development and maintenance is very slow in
recent times.

Using the above mentioned repositories, the experiment
is methodologically conducted. Firstly, Fixing changes were
found by analyzing commit comments. After that, diffj [10]
is used to find the lines that were modified or deleted from
FCs parent commit. Since diffj ignores cosmetic and format
changes, possibilities of finding false FICs are thus reduced.
Then those identified lines are tracked by using Git Blame
command to find the FIC commits where the last modifications
are made. The total number of FCs and FICs that are found
in both repositories are showed in Table II.

Repository
Name

Fixing
Commits

Fix-Inducing
Commits

Google
Guava 597 486

jEdit 2752 2270

TABLE II: Total Fix-Inducing Commits and Fixing Commits
of each repository

The FICs are then sorted to find according to commit
timeline. Then using a commit window of 100 commits, the
entire history is traversed. For each FICs within the commit
window, the .java files or classes are being collected. For each

657

class in FIC, a cluster of CC formed through the gradual
development of the Change Couple relation throughout the
lifespan of a project was analyzed. From the CC cluster of
class in FIC and that class, information about classes, methods,
and variables were collected. These are used to find cosine
similarity with the description of components available from
authenticated sources. Then of total clusters what percent
belongs to a particular component for a particular 100 commit
is found out.

Architectural information for google guava is collected from
authenticated sources like in GitHub or their main website.
In the case of jEdit, their main website is used to collect
information about components. The obtained result mainly
depends on this architectural information as cosine similarity
is performed on this information.

IV. RESULT ANALYSIS

The results are obtained by conducting an experiment on
the first 4000 commits of Google guava and 8000 commits
of commits of jEdit. From the experiment, the name of
components of google guava repository is obtained from [16]
and that of jEdit is obtained from [17]. Table III and IV
contains the name of the components considered.

Components Description

Basic utilities
Deals with nulls, preconditions, com-
mon object methods, ordering, and
throwables

Collections

It is an extension of JDK’s collection
system. It deals with immutable col-
lections, new collection types, powerful
collection utilities, and throwables.

Graphs It mainly represents a graph, network
and has structured data.

Caches Local caching and support a wide vari-
ety of behaviors

Functional idioms It is used to simplify the code greatly.

Concurrency It contains powerful abstractions to
write correct code.

Strings It has useful string operations like join-
ing, splitting and padding.

Primitives
It contains operations on primitives like
int or char which is not provided by
JDK

Ranges
It is an API to deal with both continu-
ous and discrete ranges on comparable
types.

I/O
It contains simplified I/O operations
which specifically deals with I/O
streams or files.

Hashing It deals with hashing problems.

EventBus It deals with publish-subscribe-style
communication between components.

Math
It contains more optimized and tested
math utilities, not provided by the JDK.

Reflection
It contains guava utilities for Java’s
reflective capabilities.

TABLE III: Information about components of Google Guava
repository from github [16].

Components Description

General
General features of the jEdit text editor
providing writing and correcting facili-
ties.

Source Code Editing Dealing with source codes of different
programming language.

Search and Replace Different functionalities dealing with
search.

File Management
It consists of everything related to files,
like opening, editing, renaming and
other such actions.

Customization
It consists of configurations to deal with
users preference like customizable key-
board shortcuts etc.

Extensibility
Various plugins can extend the current
abilities of jEdit to provide more func-
tionalities.

TABLE IV: Information about components of jEdit repository
from github [17].

The name of the components are the features or modules
found from the architectural information of corresponding
sources. In Figure 4a the x-axis represents the commit number
and y-axis represents the percentage of clusters obtained from
FICs within the commit window of 100 commits. In Figure 4a,
it is clearly visible that the file management part contributed
a dominant portion to introduce errors into the software
system. After it is found that file management, SourceEdit,
and extensibility related classes are responsible for introducing
errors into the system. jEdit being a text editor, surely works
on file management will be more and it is expected to produce
more errors. Next comes doing programming using jEdit,
classes which manage it was producing more errors in the
earlier phase of development which later on is replaced by
extensibility. This might be because works on extensibility
feature increased in later phase.

From Figure 4b, it is seen that seen that different compo-
nents of the software system are affected at different times.
However dominant top three are related to Math, Ranges,
and Primitives. This may be associated with the nature of the
project which is a library project. So mainly fixing occurs in
classes when there are problems with continuous or discrete
ranges, primitives with float or int values and calculations
related to math.

Through Figure 4a and 4b, any developer can understand
classes of which components are producing more errors and
thus can try to identify design flaws or code smells so that
these can be addressed to improve the quality of software.

V. THREATS TO VALIDITY

The main factors for which construct validity might be
threatened are described here. Firstly, only commit comments
are searched to identify fixing changes without linking those to
bug repositories. To create a link between fixing changes with
bug report of the bug repository becomes a problem when the
bug ids are not available. So for those cases linking with fixing
changes might lead to unfair situation [18]. Besides, the main
goal of this study is to find erroneous components. Secondly,

658

(a) Error History of components in jEdit Repository (b) Error History of components in Google Guava Repository

Figure 4: Error History of components

there can be varying behavior in the contents of commits.
Unrelated classes in bug fix can lead to wrong fix-inducing
changes. But it is found that related works are committed
together and 15% of all bug fixes to consist of multiple tangled
changes [19]. Thirdly, all fixes may not be actually corrective
maintenance [20]. However, using 10 random searches in FCs,
only bug fixes are found. The main purpose of those FCs was
corrective maintenance,

This work only considers java classes as Diffj, which is
used for differencing modified and deleted source code lines
between files of two commit version, can work only in java
repositories. In the future extension, different types of project
in different languages will be analyzed. Again, rather than
error history, fixing history can also be obtained by considering
the fixing changes. All of this information will be used to
conduct further research in the fields of software architecture,
decay and quality assurance.

VI. RELATED WORK

Evolution of software cannot be explained solely by struc-
tural dependency [21]. It is found that rather than structural
dependency, change coupling plays a more effective role
in fault proneness and are more relevant [22]. Historical
information about CC classes can be used to predict further
changes based on CC relation [23]. Similarly, based on CC
relation, Zhou et al used Bayesian Network to predict changes
[24]. Furthermore, Fluri et al used tree edit operations in
AST to classify changes depending on how the change is
made [25]. Rather than considering static measures, Arisholm
et al proposed dynamic coupling measures by taking into
account inheritance, polymorphism, and dynamic binding [26].
Moreover, whether or not frequent code changes represent
code smell or design issues was investigated by Ratzinger et
al and it is found that those changing software parts may be
candidates for refactoring [27].

Frequent changes indicate unstable situations as changes do
not satisfy the requirements and correctness expected from the

software system. Due to these frequent changes errors may be
introduced in the system which is shown by DAmbros et al
[28] as change coupling measures have a strong relationship
with software defects. These erroneous changes which intro-
duced a bug or error in the system are called Fix-Inducing
Change by Sliwerski et al [29]. Moreover, information of FICs
and Fixing changes can be used for bug prediction [30] [31],
localization [32] as well as to find out affected parts [33].

Very few works considered combining information from
both change coupling and Bug/Errors. It is found that the
change coupling relationship in recent commits is more corre-
lated with recent FICs compared to commits from origin [34].
Furthermore, works of D’Ambros [7] [9] focused on analyzing
software evolution and quality, and did not use the combined
information to understand the error or maintenance history of
software components.

VII. CONCLUSION

The main achievement of this work is to propose a
methodology to analyze the erroneous components by using
the change coupled relation at fix-inducing changes. Having
knowledge of this information will help the software devel-
opers to find out which part of the system is continuously
responsible for change and producing bugs. To do this, if sep-
arate information about architectural components is available
then cosine similarity can be used. Otherwise, Latent Dirichlet
Allocation can be used to find topics or probable components.
However, in that case, manual labeling is required. From the
obtained information, error-prone components can be easily
identified. Then quality can be further enhanced by refactoring
and re-engineering these error-prone components.

ACKNOWLEDGMENT

This research is supported by the fellowship from ICT Divi-
sion, Ministry of Posts, Telecommunications and Information
Technology, Bangladesh. No- 56.00.0000.028.33.002.19.3;
Dated 09.01.2019. The virtual machine facilities used in this

659

research is provided by Bangladesh Research and Education
Network (BdREN).

REFERENCES

[1] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?” ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 4, pp. 1–5, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1082983.1083147

[2] G. Antoniol, V. F. Rollo, and G. Venturi, “Detecting groups of
co-changing files in CVS repositories,” in 8th International Workshop
on Principles of Software Evolution (IWPSE 2005), 5-7 September
2005, Lisbon, Portugal, 2005, pp. 23–32. [Online]. Available:
https://doi.org/10.1109/IWPSE.2005.11

[3] S. Levin and A. Yehudai, “Boosting automatic commit classification
into maintenance activities by utilizing source code changes,” in
Proceedings of the 13th International Conference on Predictive Models
and Data Analytics in Software Engineering, PROMISE 2017, Toronto,
Canada, November 8, 2017, 2017, pp. 97–106. [Online]. Available:
http://doi.acm.org/10.1145/3127005.3127016

[4] S. Kim, E. J. W. Jr., and Y. Zhang, “Classifying software changes: Clean
or buggy?” IEEE Trans. Software Eng., vol. 34, no. 2, pp. 181–196,
2008. [Online]. Available: https://doi.org/10.1109/TSE.2007.70773

[5] T. Menzies, J. Greenwald, and A. Frank, “Data mining static
code attributes to learn defect predictors,” IEEE Trans. Software
Eng., vol. 33, no. 1, pp. 2–13, 2007. [Online]. Available:
https://doi.org/10.1109/TSE.2007.256941

[6] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and
N. Ubayashi, “An empirical study of just-in-time defect prediction
using cross-project models,” in 11th Working Conference on Mining
Software Repositories, MSR 2014, Proceedings, May 31 - June 1,
2014, Hyderabad, India, 2014, pp. 172–181. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597075

[7] M. D’Ambros, M. Lanza, and M. Lungu, “Visualizing co-change in-
formation with the evolution radar,” IEEE Transactions on Software
Engineering, vol. 35, no. 5, pp. 720–735, 2009.

[8] A. E. Hassan and R. C. Holt, “Using development history sticky
notes to understand software architecture,” in Proceedings. 12th IEEE
International Workshop on Program Comprehension, 2004. IEEE,
2004, pp. 183–192.

[9] M. D’Ambros and M. Lanza, “Software bugs and evolution: A visual
approach to uncover their relationship,” in Conference on Software
Maintenance and Reengineering (CSMR’06). IEEE, 2006, pp. 10–pp.

[10] Diffj. [Online]. Available: https://github.com/jpace/diffj
[11] S. Kim, T. Zimmermann, K. Pan, and E. J. W. Jr., “Automatic

identification of bug-introducing changes,” in 21st IEEE/ACM
International Conference on Automated Software Engineering (ASE
2006), 18-22 September 2006, Tokyo, Japan, 2006, pp. 81–90. [Online].
Available: https://doi.org/10.1109/ASE.2006.23

[12] Z. Fabk, “Learn more about the history of a line with git blame,”
https://zsoltfabok.com/blog/2012/02/git-blame-line-history/, February
2012. [Online]. Available: https://zsoltfabok.com/blog/2012/02/git-
blame-line-history/

[13] T. Menzies, L. L. Minku, and F. Peters, “The art and science of
analyzing software data; quantitative methods,” in 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 2, 2015, pp. 959–960.
[Online]. Available: https://doi.org/10.1109/ICSE.2015.306

[14] T. Zimmermann, S. Diehl, and A. Zeller, “How history justifies system
architecture (or not),” in Software Evolution, 2003. Proceedings. Sixth
International Workshop on Principles of. IEEE, 2003, pp. 73–83.

[15] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “An empirical study on the developers’ perception of
software coupling,” in Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press, 2013, pp. 692–701.

[16] Guava architectural information. [Online]. Available:
https://github.com/google/guava/wiki

[17] jedit features. [Online]. Available:
http://www.jedit.org/index.php?page=features

[18] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced?: bias in bug-fix datasets,” in
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2009, pp. 121–130.

[19] K. Herzig and A. Zeller, “The impact of tangled code changes,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories. IEEE Press, 2013, pp. 121–130.

[20] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in Proceedings of the 2008 conference of the center for
advanced studies on collaborative research: meeting of minds. ACM,
2008, p. 23.

[21] M. M. Geipel and F. Schweitzer, “The link between dependency and
cochange: Empirical evidence,” IEEE Transactions on Software Engi-
neering, vol. 38, no. 6, pp. 1432–1444, 2012.

[22] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software
dependencies, work dependencies, and their impact on failures,” IEEE
Transactions on Software Engineering, vol. 35, no. 6, pp. 864–878, 2009.

[23] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” IEEE Trans. Software
Eng., vol. 31, no. 6, pp. 429–445, 2005. [Online]. Available:
https://doi.org/10.1109/TSE.2005.72

[24] Y. Zhou, M. Würsch, E. Giger, H. C. Gall, and J. Lu, “A bayesian
network based approach for change coupling prediction,” in WCRE
2008, Proceedings of the 15th Working Conference on Reverse
Engineering, Antwerp, Belgium, October 15-18, 2008, 2008, pp. 27–36.
[Online]. Available: https://doi.org/10.1109/WCRE.2008.39

[25] B. Fluri and H. C. Gall, “Classifying change types for qualifying
change couplings,” in 14th International Conference on Program Com-
prehension (ICPC 2006), pages = 35–45, year = 2006, crossref =
DBLP:conf/iwpc/2006, url = https://doi.org/10.1109/ICPC.2006.16, doi
= 10.1109/ICPC.2006.16, timestamp = Mon, 22 May 2017 17:11:18
+0200, biburl = https://dblp.org/rec/bib/conf/iwpc/FluriG06, bibsource
= dblp computer science bibliography, https://dblp.org.

[26] E. Arisholm, L. C. Briand, and A. Foyen, “Dynamic coupling mea-
surement for object-oriented software,” IEEE Transactions on software
engineering, vol. 30, no. 8, pp. 491–506, 2004.

[27] J. Ratzinger, M. Fischer, and H. C. Gall, “Improving
evolvability through refactoring,” ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 4, pp. 1–5, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1082983.1083155

[28] M. D’Ambros, M. Lanza, and R. Robbes, “On the relationship
between change coupling and software defects,” in 16th Working
Conference on Reverse Engineering, WCRE 2009, 13-16 October
2009, Lille, France, 2009, pp. 135–144. [Online]. Available:
https://doi.org/10.1109/WCRE.2009.19

[29] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?” ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 4, pp. 1–5, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1082983.1083147

[30] D. D. Nucci, F. Palomba, G. D. Rosa, G. Bavota, R. Oliveto, and
A. D. Lucia, “A developer centered bug prediction model,” IEEE Trans.
Software Eng., vol. 44, no. 1, pp. 5–24, 2018. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2659747

[31] S. Shivaji, E. J. W. Jr., R. Akella, and S. Kim, “Reducing features
to improve code change-based bug prediction,” IEEE Trans. Software
Eng., vol. 39, no. 4, pp. 552–569, 2013. [Online]. Available:
https://doi.org/10.1109/TSE.2012.43

[32] M. Wen, R. Wu, and S. Cheung, “Locus: locating bugs from
software changes,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016, 2016, pp. 262–273. [Online]. Available:
http://doi.acm.org/10.1145/2970276.2970359

[33] A. T. Misirli, E. Shihab, and Y. Kamei, “Studying high impact fix-
inducing changes,” Empirical Software Engineering, vol. 21, no. 2, pp.
605–641, 2016.

[34] A. Z. Sadiq, M. J. I. Mostafa, and K. Sakib, “On the evolutionary
relationship between change coupling and fix-inducing changes,” in 15th
International Conference on Evalution of Novel Approaches to Software
Engineering, ENSAE 2019, in press.

660

DOI reference number: 10.18293/SEKE2019-032

Artifact Quality Assessment Plans Generation from

Tailored Processes

Camila Hübner Brondani, Gelson Bertuol, Lisandra Manzoni Fontoura
Departamento de Computação Aplicada – DCOM

Universidade Federal de Santa Maria – UFSM

Santa Maria, Brazil

{chbrondani, gelson.bertuol, lisandramf}@gmail.com

Abstract— The production of quality software is a basic and

essential Software Engineering goal. A software product

quality assessment should be started at the early stages of a

development process, to detect and correct problems before

they propagate, making their correction more expensive. For

that to be possible, it is necessary to assess the quality of each

artifact generated during the development process, to allow the

production of defect-free artifacts improving the final product

quality. In this work, we propose an approach for the

generation of quality plans during the tailoring of software

process. When the user selects the quality practices to be used

in a project, a set of activities satisfying those practices are

inserted in the project’s software process, along with their

associated artifacts. Our goal is to define the quality assessment

plans for these artifacts. The approach was validated through

case studies of real projects in different companies, involving

experts with large software development experience. The

interviewees analyzed the approach and considered the

proposal of this work as positive because it facilitates the

definition of assessment plans, the plans are adequate to the

selected criteria and that quality control during the process

decreases rework.

Keywords— Software Quality; Software Artifacts; Process

Tailoring; Quality Practices.

I. INTRODUCTION

It is consensual that software quality is highly influenced
by the adoption of a software development process, this is
mainly due to the management practices and the continuous
pursuit for higher quality brought in by the processes, leading
to software with fewer defects. The quality assurance
activities aim to evaluate artifacts quality at each
development stage, avoiding error propagation. Al-Kilidar et
al. [1] state that, instead of trying to measure the quality of a
software system as a whole, one should try to evaluate each
intermediate software development product which, when
combined, may provide for a broad idea about the whole
system quality. However, even though quality is a recurrent
issue in Software Engineering, most organization lack
experts capable of defining their product’s desired quality
features. Furthermore, quality features definition and
classification alone are not sufficient without a discussion
about the means to reach those features and the relevant roles
involved [2].

In this paper, it proposes a systematic approach for
defining a quality assessment framework for artifacts
generated or transformed by the activities that make up an
tailored software process. The framework is composed by a
metamodel, a knowledge base based upon the CMMI quality
model [3], an assessment process and a supporting tool.

Briefly, the process engineer selects a set of quality
practices that should be satisfied by the project. Practices are
associated with activities that are recovered from the
knowledge base and inserted in the project-specific process.
For each activity, a set of artifacts is described, which are
then evaluated regarding their quality elements using the
ISO/IEC 9126 [4]. These, in turn, are described in a
metamodel that links the assessment process to artifacts
characteristics such as their purposes, their stakeholders, their
corresponding methods and metrics. The final result is the
definition of quality assessment plans for the artifacts
described in the tailored software process.

These plans are based on the idea that a software product
quality assessment may be started at the first stages of a
software process [5]. Besides, they help the process engineers
who need to customize the process for specific projects,
allowing an organization to implement a set of quality
practices from a stored knowledges base.

This paper is divided as follows: Section 2 presents the
proposed framework, which includes: a) a metamodel, b) a
knowledge base, c) an artifacts quality plan implementation
process and d) a support tool. Section 3 shows the case
studies. Finally, Section 4 presents our thoughts, conclusions
and future work perspective.

II. THE DEFINITION OF AN ARTIFACT QUALITY ASSESSMENT

PLAN

In this work, quality plans to assist evaluators, engineers
and other stakeholders in the validation of software artifacts,
are generated as a result of a process tailoring. For this, a set
of tasks was proposed, as shown in Figure 1.

Initially, it is necessary to inform the characteristics of the
process (task 1) and the process architecture that will be used
in the adaptation (task 2). The next step is to select quality
practices (task 3). Based on this information, a set of
activities that meet the reported criteria will be retrieved from
the knowledge base (task 4). The process engineer should
select the activities that he wishes to include in the tailored
process (task 5). When selecting the activities, the tailored
process is created (task 6). In the next task, quality
assessment plans for the artifacts are generated (task 7).

The tailoring is based on a process framework that
integrates the necessary elements to instantiate tailored
processes and to define quality plans. This framework is
composed by a metamodel that presents the set of elements
considered relevant for software artifacts quality assessment
(described in section A), a knowledge base (described in
section B), an assessment process (described in section C)
and a supporting tool (described in section D).

661

Fig. 1. Modeling Software Process Tailoring Approach to Quality Assessment of Artifacts

A. The Metamodel

The Quality Assessment of Artifacts in Process
metamodel (QAPro-M) aims to provide and structure both
the processes elements and the quality elements to be used in
the assessments, helping the stakeholders to achieve a
common vision of the quality requirements of a given
project. It also allows for a structured decomposition of the
elements, concepts and relationships necessary for this
vision. The metamodel definition was based upon three basic
requirements proposed by Trendowicz et al. [6]: flexibility,
reusability and transparency.

The flexibility is associated to the software quality
dependence on the context. The assessment model must be
flexible enough to adapt to the different approaches resulting
from each software project’s organizational environment. For
the present work, flexibility also refers to the differences
among the very artifacts produced during a software
development project phases. The documents, UML models,
source code and other artifacts, each have their own
particular characteristics. The assessment framework must
then allow the evaluators to identify those characteristics and
define which assessment proposals are best for each of them.

At the same time, reusability is associated to the
preservation of knowledge from past experiences and its use
on future projects, with a direct impact on development time
and cost and, consequently, on the projects profitability.
Naturally, reusability in an assessment project depends on
projects similarity. Nevertheless, reuse may also refer to the
measured data and to quality features and their relationships.
Reuse also allows for model refinement, making it more
precise and efficient.

Finally, an assessment model must provide a rational and
transparent analysis about the relationships between quality
features and sub-features, and about how they affect each
other. For instance, the development team must be able to
see how a class diagram modularization – that will later be
used to define the database tables – allows for a better
understanding of the software structure. However, it is a
known fact that over-normalization may impair database
performance, affecting the whole system. One solution to
circumvent the transparency issues is to allow the interested
parties themselves to define, consensually, the most relevant
assessment metrics and methods, the ones that better
represent each artifact, using the metamodel to reduce or
eliminate any ambiguities and redundancies.

The QAPro-M, depicted in Figure 2, is composed by 23
classes. The metamodel central class is the activity. A set of
activities from the same area is a discipline. Disciplines are
distributed along interactive phases that sum up to form the
development process lifecycle. An activity is composed by
tasks, each task containing one or mode roles. A role is a
function or job carried out by a person in a project. The
project class represents the projects defined for an
organization. An organization may then have many projects,
and each project may have many processes. This way, if a
process does not fulfill the organization expectations, it may
be evolved, the process new version being created based on
the current one. When creating a new project or activity, it is
possible to define a situational context for them. For project
contextualization we used the Octopus Model that describes
the following contextual factors: size, stable architecture,
business model, team distribution, rate of change, system
age, criticality and governance [7].

The process tailoring takes the activities and the tailoring
criterions into account. Each activity has one or more
tailoring criteria, whose function is to define which
requirements may be satisfied by that activity instantiation,
retrieving from the database the activities satisfying those
criteria.

As a quality model, we chose to use CMMI, each
organization can use the most appropriate model for their
needs. Then, each maturity level is composed by a set of
process areas. These, in turn, are composed by specific
goals. Each specific goal is composed by a set of specific
practices.

Fig. 2. Quality Assessment of Artifacts in Process - Metamodel (QAPro-M)

662

The artifact class represents the tasks outcomes.
Artifacts are linked to a purpose, which identifies the
artifact’s intention and purpose inside the lifecycle, as well
as the reasons why that artifact should be assessed.

The quality plan, on its turn, comprises the set of
elements responsible for the artifact’s assessment. The plans
are related to the quality goal class. A quality goal
represents an artifact’s quality features or attributes of
interest from a specific stakeholder. The metamodel allows
for the quality goals to be identified by a quality type.
ISO/IEC 9126 is an instance of a quality type, having 6
features, each feature subdivided into quality subgoals. The
evaluation method identifies how a certain quality subgoal
should be evaluated. These methods are generalized to allow
for a specific methods and metric. Also, each metric defines
a limit value as its acceptable value.

B. Knowledge Base

The first step towards defining the quality plan was to
populate the knowledge base. Data was gathered from
scientific literature, and included specific models and
researches. The knowledge base is expandable, and may be
grown based on the expert’s experience from past projects.

In order to include quality-focused tailoring
requirements, the CMMI quality model practices were
incorporated to our approach. This way, the processes
engineer may choose the desired organizational maturity
level to be attained, the process area, the specific goal and,
finally, the CMMI practices related to the goal to be reached
by the process. Then the activities needed to satisfy the
chosen practices are retrieved from the knowledge base in
order to build the tailored process.

We started by analyzing the Requirements Management
and Configuration Management process areas. We chose
Requirements Management, since a project without well-
defined and managed requirements has a far less probability
of reaching its goals. Therefore, ensure the management of
requirements is paramount to a project success. Likewise,
Configuration Management is essential in order to produce
quality software, since changes during development are
inevitable. The practices described by CMMI were
connected to activities and artifacts capable of satisfying
each practice.

In order to organize the activities stored in the knowledge
base in software processes, we used process architectures.
Architectures are composed by the elements used to define a
software process. They define the "skeleton" that a process
must have, establishing the main elements and how they
relate to each other [8]. In Figure 3, the architecture defined
for the Requirements and Configuration and Change
Management discipline can be viewed.

For each component, one or more activities are retrieved.
The activities are prioritized using multi-criteria techniques
such as AHP (Analytic Hierarchy Process), TODIM (an
acronym in Portuguese for the Brazilian developed Iterative
and Multi-criteria Decision Making Method) and TOPSIS
(Technique for Order of Preference by Similarity to Ideal
Solution), taking into account the activity and the project’s
situational context.

Afterwards, a specific process for the project is
composed by retrieving elements previously included in the

process architectures. So, using architecture allows for the
retrieval of a set of activities prioritized accordingly to the
project context and tailoring requirements. From the process
architecture previously defined and the activities retrieved,
prioritized and selected using the mathematical methods, it is
possible to create the tailored process.

In previous work [9] we describe the process tailoring
approach in detail. In this work, we extend this approach to
incorporate process tailoring using quality criteria and to
generate quality plans for assessing software artifacts.

Fig. 3. Architecture for the Requirements and Configuration & Change

Management discipline

C. Quality Plans Elaboration Process

The artifacts quality assessment process was build based
on the ISO/IEC 14598 [10]. This standard was chosen both
for its compatibility with the concepts laid out by the quality
models and because it describes an assessment process for
the quality features described by the ISO/IEC 9126 [4].
Some ISO/IEC 14598 sub-processes were adapted to reflect
specific aspects of the software artifacts assessment.

The assessment process proceeds through the following
steps: a) define the assessment requirements (defining what
should be assessed); b) specify the assessment (selecting the
goals or quality features related to the assessed object
detailing assessment methods, metrics, limits and practices
for each artifact); c) design the assessment (producing the
assessment plan including the documentation of the
procedures previously defined that will be used later to
define the selected artifacts quality).

ISO/IEC 14598 last phase is the assessment execution,
consisting of the products and its components inspection,
measuring and testing, according to the assessment plan. As
this is an execution-dependent task, not related to the process
definition, it falls beyond the scope of this paper.

At the end of phase 3, the data describing the quality
plans defined during the specific project assessment process

663

may be stored for use as a reference for future projects
assessments.

As an example of the quality plan creation and the
proposed approach workings, let us consider the user
selected the CMMI practice “Obtain Commitment for the
Requirements”. This practice belongs to the “Manage
Requirements” Specific Goal, which in turn is part of the
“Requirements Management” Process Area described in
CMMI maturity level 2. The Typical Working Product for
this practice is the “Documented commitments to
requirements and requirements changes”.

Once this CMMI practice is selected, the knowledge base
is searched for the activities that satisfy the practice. For
instance, the “Manage Change Requests” and the “Manage
Requirements Changes” activities from the RUP [11]
disciplines “Configuration and Change Management” and
“Requirements” will be retrieved and prioritized. After the
activity’s prioritization, if this activity is selected to compose
a tailored process, the goal would then be the generation of
execution plans for the artifacts and process activities quality
assessment.

Each activity has one or more input and output artifacts
linked to a quality plan, describing how to assess them
considering specially its features, objectives, stakeholders,
assessment methods and metrics, in order to improve the
final product’s quality. Figure 4 shows the metamodel
instantiation for the “Change Request” artifact from the
“Manage Change Requests” RUP activity assessment. This
artifact’s objective is to document and follow the product’s
change requests. The main quality goal is maintainability,
based on the ISO/IEC 9126-proposed internal quality. From
there the analyzability and changeability sub-goals may be
explored. These goals and sub-goals may be assessed by
specific methods and quantified by related metrics.

The quality plans main task if to organize the data
structured by the metamodel, so the evaluators have a solid,
clear and understandable reference when assessing the
project’s artifacts, based on the quality goals they think are
the most relevant for the final product.

D. QAPro System Support Tool

The Quality Assessment of Artifacts in Process (QAPro
System) tool was developed from as extension of the MfTPt
tool [9]. For the quality plans to be generated, instances of
quality elements (described in QAPro-M) must have been
defined and stored in the knowledge base.

The first activity of the systematic is the
contextualization, for this we used the Octopus Model,
allowing for the definition of values for each of its eight
factors in the project (Figure 5-A). After that, it is necessary
to define the desired architecture for the process tailoring.

The selection of requirements to be considered in the
tailoring process are the Specific Practices of the
Requirements Management e Configuration Management
CMMI process area, shown in Figure 5-B.

Figure 5-C shows the architecture activities retrieval and
prioritization according to the project context and the
tailoring requirements, using the AHP, TODIM and TOPSIS
methods. The process engineer selects the activities.

Finally, the last task consists in the generation of the plan
to assess the created process artifacts. This step proceeds as
follows: for each activity in the created process, a task is
selected and then the artifact for which the quality
assessment plan is to be obtained. The assessment
specification for each selected artifact is then shown, with its
objective, its quality goals and sub-goals, the quality type,
the assessment method as well as the metric and the eventual
limit value used for this artifact assessment (Figure 5-D).

This documentation will be used later by the quality
analyst to define the selected artifacts quality. The idea
behind the plan is to present quality elements in a clear and
understandable way, to allow it to serve as a guide for
evaluators during the process artifacts quality assessment.

However, the evaluators are free to modify any quality
element according to the artifacts quality assessment needs.
Thus, the flexibility and transparency requirements are kept
during the assessment process.

Fig. 4. Instance of the QAPro-M

664

Fig. 5. Quality Assessment of Artifacts in Process (QAPro System)

III. CASE STUDY

 In order to validate this proposal, we carried out five case
studies involving different real software projects from
different companies. The case studies were carried out by
three project managers, a compliance analyst and a systems
analyst, so we could obtain a point of view from
professionals in the field.

A. Case Study Configuration

The case studies were carried out in projects with
different business domain. Each case study was divided in
three phases:

Data collection: the participant (project member) filled a
form identifying your profile, the project context and the
tailoring requirements to be satisfied by the process.

Tailored process creation and quality plans generation:
with the data informed and using the QAPro System support
tool, the process was defined to meet the project’s
requirements and quality plans were generated for each
artifact selected for the process. The results were sent to the
participant for evaluation.

Interview and analysis: the participant experts were
interviewed to evaluate the generated process and plans. The
interview had 15 questions divided in 3 topics: software
process, software quality and artifacts quality plans. Each
interview lasted approximately 40 minutes, depending on the
expert. After that, the results of the case studies were
analyzed aiming to evaluate the applicability of the work.

B. Case Study – ASTROS Integrated Simulation System

To illustrate the validation process, this case study is
described in detail. This project aims at the research and
development of a virtual tactical simulator for military
training. The interviewee was the project manager.

The project was characterized by the following attributes:
a) Size (Medium); b) Team Distribution (Collocated); c)
Criticality (Comfort Loss); d) Stable Architecture (New); e)
Rate of Change (Less than 10); f) Governance (Simple
rules); g) Business Model (In house) e h) Age of System
(New development). The specific CMMI practices chosen
were: Understand Requirements, Obtain Commitment to
Requirements, Manage Requirements Changes, Identify
Configuration Items, Establish a Configuration Management
System, Create or Release Baselines, Establish Configuration
Management Records, Perform Configuration Audits.

After the prioritization methods results analysis, the
following activities were selected to compose the process:
Plan project configuration & change control, Understand
stakeholder needs, Define the system, Change and deliver
configuration items, Monitor & report configuration status,
Manage change requests, Manage baselines & releases.

Quality plans were suggested for the following artifacts:
Configuration Management Plan, Stakeholder Request,
Software Requirements Specification, Supplementary
Specification, Workspace, Configuration Audit Findings,
Change Request, Test Results, Test Log and Work Order.

These quality plans along with the tailored SPrL were
analyzed by the participant before the interview. The
interviews results are discussed jointly in the next section.

C. Case Studies Discussion

The interview first part concerned the software
development processes, centered around the following
topics: presence of a well-defined process in the company,
process tailoring use, agile or planned process use and
software artifacts.

It was found that only one of the five projects has a
development process with well-defined activities and
artifacts, with a planning phase where the process
compliance team analyses the project to verify its adherence

665

(or its lack of adherence) to agile practices. This is carried
out through the use of checklist that evaluates, among other
things, the project size, projected duration, team size,
definitions and architecture patterns.

The goal of the interview second part, about software
quality, was to discover if the organization uses any quality
model, if a defective artifact can delay the project or raise its
cost and if, by selecting CMMI practices as proposed here,
there were improvements in the software process. The
answers about quality models were unanimous, no project
use them. All the participants stressed the difficult to
adequate the model to the project’s reality. As for defective
artifacts, some participants mentioned cases from their own
organizations showing that they may indeed delay and make
projects more expensive.

As for the CMMI practices selection by the experts, all
found it beneficial, as the foreknowledge of the practices to
be followed allows for a better planning of the artifacts that
would allow these practices to be attained. They found it a
simple way to use the CMMI, with an intuitive approach that
facilitates process creation. Also, the automated activities
generation also saves effort and time, by replacing the need
for a deeper model analysis.

The third topic goal was to understand the importance of
the software artifacts quality assessment, which teams found
the quality plans more efficient and if the artifact quality
assessment plans format was satisfactory. This topic results
analysis show that the proposed plans may be used by both
large and small teams, with the adequate metrics varying
according to the team and the project. One participant felt
that the plans may be more important for large and
distributed development teams, as the importance of
documentation tends to grow, as well as the need for better
artifacts.

All experts said that the proposed quality assessment
plans allow for an artifact’s assessment. They found the
plans well-organized and easy to understand, and appreciated
the plans clear separation of CMMI data, RUP data and
artifact assessment.

IV. CONCLUSIONS AND FUTURE WORK

The benefits of developing quality software products are
diverse, widespread and well known. However, the
importance of evaluating the quality of these products goes
beyond commercial or security issues, because it aims to
provide qualitative and quantitative results on the quality of
the software produced. In addition, provide the necessary
feedback for the improvement of the software processes. But
to be effective, these results must be understandable,
trustworthy, and in keeping with the environment
surrounding evaluations.

This work showed a framework for quality assessment of
artifacts created or changed by activities forming a tailoring
software process. For each process component, different
activities may be selected, sharing a similar situational
context and covering the desired quality practices to be used
by the tailored process. These activities have artifacts, which
in turn are associated to the quality plans defined here. The
artifact assessment plan is elaborated taking into account the
set of artifacts selected for the tailored process and reusing

instances of the quality metamodel. It should be noted that
the generated quality plan serves as reference for the process
engineers, who can, however, modify the plan if necessary.
Besides that, the quality plans should evolve through time,
along with the organization’s maturity.

The approach validation was carried out using case
studies. The participants agreed that the proposed approach
to assess the software development generated artifacts is
valid and relevant.

Future work includes the use of quality plans in real
projects by monitoring quality throughout the project. To
address one of the limitations observed, namely the use of
activities found in planned processes, we also suggest the
association of the quality practices to other groups of
activities, such as the ones found in agile practices and
methods. So it would be possible to create quality assessment
plans with agile methods metrics, such as progress and
productivity.

ACKNOWLEDGMENT

 We thank the Fapergs (Fundação de Amparo à Pesquisa
do Rio Grande do Sul) and the Brazilian Army for the
financial support through the SIS-ASTROS Project
(813782/2014), developed in the context of the PEE-
ASTROS 2020.

REFERENCES

[1] H. Al-Kilidar, K. Cox, and B. Kitchenham, “The Use and Usefulness

of the ISO/IEC 9126 Quality Standard,” International Symposium on

Empirical Software Engineering, pp. 126–132, 2005.

[2] P. Mohagheghi, V. Dehlen, and T. Neple, “Towards a Tool-

Supported Quality Model for Model-Driven Engineering,”

Proceedings of the 3rd International Workshop on Quality in

Modeling, 2008.

[3] SEI, “CMMI® for Development, Version 1.3,” 2010.

[4] ISO/IEC 9126, “Software Engineering - Product Quality,” 2003.

[5] T. L. Dubielewicz L, Hnatkowska B., Huzar Z., “Software Quality

Metamodel for Requirement, Evaluation and Assessment,” ISIM’06

Conference, pp. 115–122, 2006.

[6] A. Trendowicz and T. Punter, “Quality Modeling for Software

Product Lines,” 7th Workshop on Quantitative Approach in Object-

Oriented Software Engineering, 2003.

[7] P. Kruchten, “Contextualizing Agile Software Development,”

Journal of Software: Evolution and Process, vol. 25, no. 4, pp. 351–

361, 2013.

[8] A. S. Barreto, L. G. P. Murta, and A. R. C. da Rocha, “Software

Process Definition: A Reuse-Based Approach,” Journal of Universal

Computer Science, vol. 17, no. 13, pp. 1765–1799, 2011.

[9] W. G. Lorenz, M. B. Brasil, L. M. Fontoura, and G. V. Pereira,

“Activity-based Software Process Lines Tailoring,” International

Journal of Software Engineering and Knowledge Engineering, vol.

24, no. 9, pp. 1357–1381, 2014.

[10] ISO/IEC 14598, “Information Technology - Software Product

Evaluation,” 1999.

[11] IBM Rational, “Rational Unified Process: Version 7.2,” 2003.

666

Improve Language Modelling for Code Completion
through Learning General Token Repetition of

Source Code
Yixiao Yang

School of Software
Tsinghua University

Beijing, China
yangyixiaofirst@163.com

Xiang Chen
Beijing, China

kuailezhish@gmail.com

Jiaguang Sun
School of Software
Tsinghua University

Beijing, China

Abstract—In last few years, to solve the problem of code
completion, using a language model such as LSTM to learn code
token sequences is the state-of-art method. However, tokens in
source code are more repetitive than words in natural languages.
For example, once a variable is declared in a program, it may
be used many times. Other elements such as generic types in
templates also occur repeatedly. It is important to capture token
repetition of code. For example, if usage patterns of variables
are not captured, there is little chance for a model trained
on one project to predict the name of an unseen variable in
another project correctly. Capturing token repetition of source
code is challenging because not only the repeated token but
also the place at where the repetition should happen must be
both decided at the same time. Hence, we propose a novel deep
neural model named REP to capture the general token repetition
of source code. The repetitions of code tokens are modeled as
edges connecting between repeated tokens on a graph. The REP
model is essentially a deep neural graph generation model. The
experiments indicate that the proposed model outperforms state-
of-arts in code completion.

Index Terms—language model, code completion, code recom-
mendation, code token repetition, deep neural graph generation

I. INTRODUCTION

In the past few years, language models have attracted the
attentions of researchers and achieved a great progress in
natural language processing tasks, such as machine translation
[1] and text generation [2]. A statistical language model is
a probability distribution over sequences of linguistic units
such as characters or words. With the rapid growth of open-
source code and the high-speed development of artificial
intelligence, applying natural language processing techniques
to source code has become a research direction. The problem
of code completion is difficult and attracts a lot of attentions
of researchers in the field of software engineering. Based
on the already written code, the system of code completion
can recommend the suitable code automatically for software
developers to improve the efficiency of software development.
Different from code synthesis based on natural languages [3],
[4] which requires an explicit intention of code described

DOI reference number: 10.18293/SEKE2019-056

in natural languages, code completion is aimed at mining
and learning the hidden intention of code to recommend
suitable code automatically. Due to the predictability [5] of
source code, taking source code as natural languages to build
language models (n-gram, RNN or LSTM) to suggest code
has made great progress in the field of code completion
[6]–[11]. Among the previous works, deep learning models
such as RNN or LSTM have been proved to be effective.
In more subdivided fields of code completion, API usage
pattern learning also attracts attention of a large amount of
researchers [12], [13]. There are many differences between
natural languages and source code. Source code is more
regular than natural languages. There exist elements which
may occur more than once in one fragment of source code, for
example, variables or generic types in templates. Thus, taking
source code as natural languages directly is not enough.

Based on the observation that elements of source code are
highly repetitive, a new direction has been opened to capture
the token repetition of source code to improve the performance
of code completion. When predicting code, if an variable is
unseen before, there is little chance to predict that variable
correctly. If the usage pattern of an variable has been learned,
the place at where the variable will be occurred next time
can be decided. Then at next time, the name of that unseen
variable can be predicted correctly by copying the name of that
previously existed variable at the right place. Other elements
such as templates also have the property of token repetition.
For example, in Java languages, it is a common scenario to
get the element from ArrayList〈T 〉 and the following code:
ArrayList〈T 〉 arr = ...initialization...; T t = arr.get(0);
is common in many programs. Note that T could be the name
of any class. In a new project, if some strange class name
such as UnseenStrange is in placed of T and ArrayList〈T 〉
becomes ArrayList〈UnseenStrange〉, through learning the
repetitive patterns of source code, the right code:
UnseenStrange t = arr.get(0); can be generated.

It is difficult to learn the token repetition of source code.
There are two main challenges. The first challenge is that when
predicting next token, we need to judge whether the next token

667

should be the repetition of some previously existed token. The
second challenge is that if the next token is decided to be
the repetition of some previously existed token, we need to
decide which previously existed token should be repeated. If
a program is huge and contains a large amount of tokens, it
is hard to decide which token should be repeated. To address
the two challenges, we propose a novel REP model to learn
the token repetition of source code. The source code is parsed
into a token sequence. This token sequence can be viewed as
a linear graph as every token has an hidden incoming edge
from its previous token. If two tokens in a token sequence are
same, an edge is added between the repeated tokens. Then, a
complex graph can be generated based on a token sequence.
The extra added edge indicates the repetition of tokens. The
task of REP model is to learn the edge connection on the
generated graph. The experiments show that the proposed
model outperforms state-of-art baselines. In summary, the
contributions of this paper include:

1) A novel REP model is proposed to capture the general
token repetition of source code;

2) Evaluations on four data sets (total 29.15MB) indicate
that the proposed model outperforms the state-of-arts.

II. RELATED WORK

Models for code completion. The statistical language models
have been widely used in capturing patterns of source code to
solve the problem of code completion. In [5], source code was
parsed into lexical tokens and the n-gram model was applied
directly to suggest the next lexical token. In [14], a large
scale experiments was conducted by using n-gram model and
a visualization tool was provided to inspect the performance
of the language model for the task of code completion. In
SLAMC [6], based on basic n-gram model, associating code
lexical tokens with roles, data types and topics was one way to
improve the prediction accuracy. Cacheca [7] improved n-gram
model by caching the recently encountered tokens in local files
to improve the performance of basic n-gram model. Decision
tree learning was applied to code suggestion, based on this,
a decision tree model which integrates the basic n-gram [10]
was proposed for source code. The work [15] abstracted source
code into DSL and kept sampling and validating on that
specially designed DSL until the good code suggestion was
obtained. Deep learning techniques such as RNN, LSTM were
applied to code generation model [8] [9] [11] to achieve a
higher prediction accuracy. The work in [11] confirmed that
LSTM significantly outperforms other models for doing token-
level code suggestion. Given large amount of unstructured
code, deep language models such as LSTM or its variants are
the state-of-art solutions to the problem of code completion.
All works described above are trying to solve the general
code completion problem in which every token of code should
be predicted and completed based on the context in a fixed
or changeable length. There are also a lot of works paying
attention to the API completion problem. Common sequences
of API calls were captured with per-object n-grams in [12].
In [13], API usages was trained on graphs. Naive-Bayes was

integrated into n-gram model to suggest API patterns. The
migrations of API are studied in [16]. The completion of API
full qualified name is studied in [17].
Models for code synthesis. Another important research field
to use language models is code synthesis. In recent years,
translating text description into source code have achieved a
great success. Seq2Seq [18], Seq2Tree [19] and Tree2Tree
[20] models are proposed to handle the problem of code
synthesis. The models for code synthesis are all based on
the framework of neural machine translation. There are two
modules named encoding module and decoding module in
the framework of neural machine translation models. The
encoding module encodes source sentences (trees) into fixed
size vector. The decoding module decodes the fixed size vector
generated by encoding module into sequences or trees. As
discussed in [21], intuitively, Seq2Tree takes grammar of code
into consideration but is still based on the framework of
Seq2Seq. Although there are big differences between neural
code translation and code completion, the aim of the decoding
module in code synthesis is same as that of the language
model. Both the aims are to generate the suitable code. So
it is fair to compare our model with the decoding module in
code synthesis model. Traditional decoding module of neural
machine translation model uses standard LSTM directly, so
there is no need to compare. But the recently proposed tree
decoding module in Seq2Tree or Tree2Tree models deserves
to be investigated for the code completion task. The decoding
module in Tree2Tree model in most recent work [22] are
extracted and compared with our REP model. There exists
repetitiveness in the synthesized code. Our REP model could
be taken as the decoding module for all code synthesis models
directly. We will further investigate the performance of taking
REP model as the decoding module in code synthesis tasks
in the future work. On top of general code synthesis problems,
API synthesis is also studied in [3], [4]. In the research
fields of natural language processing, text summarization [23]
is an important problem which is related to synthesis. One
application of text summarization is to automatically generate
the title of an article based on the content of that article. In
source code processing, there is a similar problem: how to
generate the name of a function according to the content of that
function. This problem of function name generation has been
addressed by extreme summarization of source code based on
deep neural attention network in [24].
Models for code classification. For the problem of code
classification or the problem of identifying code similarity,
TreeNN [25], [26], TreeCNN [27], EQNET [28] or GNN
(Graph Neural Network) [29] have been proposed. There exists
huge differences between code classification problems and the
code generation problems.
Models for robustness. To make the language model more
robust, instead of improving the model structure directly, an-
other research direction is to use different sampling schedules
[30] or to generate adversarial examples [31] based on the
training data to improve the robustness of the model.
Models for capturing token repetition of code. By com-

668

paring the related works mentioned all above, as far as we
know, the REP model is the first deep neural model based
on graph to capture the general token repetition of source code
to help improve the solution to the problem of token-level code
completion. The newly proposed model is also the first model
to address problems of learning usage patterns of variables,
templates and cloned code when doing code completion.

III. PROBLEM FORMULATION

Traditional language model processes tokens (words) one
by one. The processing is based on a linear chain to handle
each token in a token sequence. The data (token sequence)
can be converted to the directed acyclic graph (DAG). Each
node in the graph has only one incoming edge from its
corresponding previous node. Such edge indicates the order
of occurrence of tokens in a token sequence and we give that
kind of edge a name CommonEdge. For example, if tokenn

has one incoming edge from tokenn−1, then tokenn should
occur instantly after tokenn−1. Then any token sequence
could be represented by a simple graph. Follow this idea,
to represent the repetition of tokens, we add an edge named
RepetitionEdge between the repeated two tokens. For exam-
ple, in a token sequence, if tokenm is same as tokenn where
m < n, the special designed directed edge RepetitionEdge is
added from tokenm to tokenn. To see whether a token tokenn

is repeated or not in a token sequence is just to see whether
there is an edge linked to token tokenn from some previously
existed token. Then, the problem of learning the general token
repetition of source code reduces to the problem of learning the
edge connection in a graph. The problem of code generation
(code completion) reduces to the graph generation problem. In
traditional language modelling, the edges between tokens do
not need to be explicitly modeled. In our setting, the patterns
of edge connections between tokens need to be explicitly
modeled and learned. An example is shown in Figure 1. The

Fig. 1: Graph for Code and its Token Repetition

circle in Figure 1 represents the token. The edges marked as
solid arrow (CommonEdge) show the order in which tokens
are processed in a token sequence. The repeated tokens are
connected by dashed arrow (RepetitionEdge). The REP
model is still based on the framework of language model
and can be taken as a complement to the language model.
Tokens in a token sequence are predicted one by one. For each
token, REP model additionally judge whether the currently
predicted token should be the repetition of some previously
existed token. As the language model may predict wrong
content (wrong variable names or wrong templates), REP
model could help correct the prediction through mixing the
patterns of code repetitiveness together. In this setting, the
REP model is designed to predict correctly the incoming
RepetitionEdge of each token.

Fig. 2: Complex Graph for Code and its Token Repetition

Note that, one token may have more than one incoming
edge if there exist two or more previous tokens with same
content as current token in a token sequence. This complex
situation is shown in Figure 2. Among all incoming edges
(RepetitionEdge), if one edge could be predicted correctly,
the prediction about the token repetition is right. So it is
absolutely unnecessary to predict correctly all edges of kind
RepetitionEdge. Learning to predict correctly one among
all edges of kind RepetitionEdge is enough. To make the
learning procedure easier, we could retain and learn only one
incoming RepetitionEdge. In fact, considering only one of
the all possible edges of RepetitionEdge not only meets the
needs about deciding the token repetition but also makes the
whole problem easier. Therefore, only the nearest two repeated
tokens are connected by an edge (RepetitionEdge). Formally,
for nth token tokenn, only the kth token tokenk connects to
tokenn where k is determined by

k = max{ i | tokeni == tokenn, i < n } (1)

The simplified graph corresponding to the graph in Figure 2
is shown in Figure 3. In Figure 3, only the edges connecting
between the nearest two repeated tokens are retained. By
removing unnecessary edges, now, every node has at most
one incoming RepetitionEdge making the problem concise.
When predicting next token, the whole problem of learning
token repetition of source code is further divided into two
sub-problems: 1. deciding whether there is a RepetitionEdge
connected to next token; 2. if it is determined that there must
be a RepetitionEdge connected to the next token, deciding
which token is the source token of that RepetitionEdge (the
next token should be same as the source token, in another
word, the source token is the token to be repeated). In addition

Fig. 3: Simplified Graph for Code and its Token Repetition

to the basic language model, learning the repetitiveness of
source code (learning extra edge connections between tokens)
can extract features of token repetition of source code to
recommend code. The ability to learn token repetition can help
us identify the usage patterns of variables, templates or cloned
code. Details will be described in next section.

669

Fig. 4: Overall Architecture

IV. PROPOSED METHOD

Given the token sequences parsed from source code, our
goal is to learn the general repetitiveness of tokens of source
code to improve the performance of existing state-of-art lan-
guage model. To accomplish this task, we design a novel
REP model to learn the repetitiveness of source code tokens.
Figure 4 demonstrates the overall architecture of our model.
The basic part of REP model is the LSTM model. The LSTM
model in REP generates the hidden feature vector (cell, h) for
each token. When predicting the edge connection for tokenn,
the Edge Recognizer takes the hidden feature vector (cell,
h) of tokenn and the hidden feature vector (cell, h) of each
previously existed token to compute the probability for each
possible incoming edge of tokenn. The higher the probability,
the more likely the edge should be added to the graph. For
tokenn, any edge of kind RepetitionEdge connecting from
one of the previous tokens to tokenn is the candidate incoming
RepetitionEdge of tokenn. All possible candidate incoming
edges (RepetitionEdge) of tokenn consist of edges of kind
RepetitionEdge connecting from all the previous tokens to
tokenn. For example, for token3, all candidate edges consists
of two edges: 1. RepetitionEdge connecting from token1

to token3; 2. RepetitionEdge connecting from token2 to
token3. The number of candidate edges (RepetitionEdge) is
n − 1 for tokenn. The Decision Maker is aimed at deciding
whether the most likely edge predicted by Edge Recognizer
should be really added or not. If the Decision Maker decides
that there should be no edges (RepetitionEdge) connecting to
the token being predicted, in this situation, the token predicted
by the algorithm of the traditional language model will be
taken as the final prediction result. If the Decision Maker
decides that the next code token should be the one previously
existed, in this situation, the source node (token) of the most
likely edge will be thought to repeat at the position currently
being predicted. So the token of the source of the recognized
most likely edge will be taken as the final prediction result.
To learn the general repetitiveness of source code tokens,
when predicting a token, we need to take all previously
existed tokens into consideration to decide whether or not
one of the previously existed tokens should be repeated. The
task becomes more and more challenging as the quantity of
already predicted tokens becomes larger and larger. Traditional
methods such as n-gram can only take limited quantity of
tokens into consideration. There is little chance for those
methods to discover the repetition of two tokens due to large

amount of other tokens between them. Deep learning methods
scale well to high dimensional domains and have strong
representational power. With the introducing of the deep neural
networks, learning the general repetitiveness over a long token
sequence becomes possible. In this subsection, we introduce
our REP model which is based on the deep neural network.

A. LSTM in REP Model
The REP model is based on the LSTM model. LSTM

model is applied to generate the state (cell and h) for every to-
ken in a sequence. Formally, the state generated for predicting
tokenn by LSTM is referred to as staten (celln and hn). In
rest of this section, the symbol statei (celli, hi) refers to the
state generated for predicting ith token tokeni by the LSTM.
Traditional language model based on LSTM model uses hn

to compute the probability distribution of all candidate tokens
to select the most likely token for tokenn. The LSTM and
its usage in traditional language model are omitted in this
section. Please refer to [32] for the details of the algorithm of
the traditional language model about how to use hn which is
generated by LSTM to compute the most likely token when
predicting tokenn. When predicting the edge connection for
tokenn, hn, hn−1 .. h1 are used for computing the probability
distribution of all candidate incoming edges of tokenn. Details
are shown in the following section.

B. Edge Recognizer in REP Model
Edge Recognizer is responsible for computing the prob-

ability distribution of all candidate incoming edges. Formal
definition is as follows. The edge connecting from tokenm to
tokenn where m < n is referred to as edge(m,n). In rest of
this paper, edge(x,y) refers to the RepetitionEdge connecting
from xth token tokenx to yth token tokeny . The probability
of edge(m,n) is computed by:

P (edge(m,n)) =
hT
m W hn

Z
(2)

In Equation 2, Z is the normalization factor computed by:

Z =

n−1∑
m=1

hT
m W hn (3)

The hm is in the statem (cellm, hm) generated for mth token
by LSTM. The hn is in the staten (celln, hn) generated for
nth token by LSTM. In rest of this section, hi is in the statei
(celli, hi) generated for ith token by LSTM. In Equation 2 and

670

3, W is the model parameter, hT
m is the transposition of hm.

The training and predicting are all based on the probability of
each candidate RepetitionEdge computed by Equation 2.

Training of Edge Recognizer. Remember that, in the
section of Problem Formulation, each code will be converted
into a token sequence, if tokenn is the repetition of some
previously existed token, there must be an incoming edge
of kind RepetitionEdge connecting to tokenn. The source
of that edge is the nearest previous token which is same as
tokenn. For tokenn, we use the symbol: nearn to refer to
the position of that nearest token which is same as tokenn.
In another word, what we mean is that the nearest token
(same as tokenn) is the nearnth token in the token sequence
(tokennearn). According to the position of the source and
the target, the incoming RepetitionEdge connecting from
nearnth token to nth token is referred to as edge(nearn,n).
For tokenn, we define a symbol en ∈ {0, 1} which indicates
whether there is an incoming RepetitionEdge connecting to
tokenn. If en is 1, this indicates that there is an incoming
RepetitionEdge for tokenn. If en is 0, this indicates that
there is no incoming RepetitionEdge for tokenn. If there
is an incoming RepetitionEdge for tokenn in training ex-
amples, the source (token) of that incoming RepetitionEdge
is referred to as tokennearn which is the nearnth token in
the token sequence. The symbol nearn refers to the position
of the previously existed token which is nearest to tokenn

and is same as tokenn. To learn the edge connections in
training examples, we follow the framework of Maximum
Likelihood Estimation approaches: the probabilities of actually
existed edges of kind RepetitionEdge in training examples
should be as high as possible. Thus, the probability of the
incoming RepetitionEdge: edge(nearn,n) (if there is one) for
tokenn in training examples should be as high as possible.
This is equivalent to minimize the following loss function.
If there is no incoming RepetitionEdge for tokenn, then
nearn, edge(nearn,n) and P(edge(nearn,n)) will be default
meaningless values. This form avoids the using of condition
judgment such as if-else to judge whether the incoming edge
is existed or not and takes advantage of the high performance
of GPU. With the probability of each edge, the loss function
could be defined as (assuming that the quantity of code nodes
in a data set is N):

LER =

N∑
n=1

−log(P (edge(nearn,n))) ∗ en (4)

The symbol en indicates whether tokenn has an incoming
RepetitionEdge. If there is no incoming RepetitionEdge,
en is 0 and the final loss will exclude the loss for non-
existent edges. The training objective of Edge Recognizer is
to minimize the loss function 4.

Usage of Edge Recognizer in Prediction Phase. The edges
with highest probabilities computed by Equation 2 are most
likely to be added to the graph. In another word, the source
of the edge with high probability has a high chance to be
repeated. When predicting tokenn, for the candidate incoming

RepetitionEdge with the kth largest probability, we use the
symbol: srck to refer to the position of the source of that kth
most likely edge. In another word, the source of the kth most
likely RepetitionEdge when predicting tokenn is the srckth
token (tokensrck). If k = 1, we can offer another formal
definition of src1 when predicting tokenn:

src1 = argmax
i

P (edge(i,n)) (5)

When predicting tokenn, if Decision Maker (described in
the following subsection) decides that the tokenn should be
the repetition of some previously existed token and top-k
candidates are needed, tokensrc1 (the source token of the edge
with highest probability), tokensrc2 (the source token of the
edge with the second highest probability), ... and tokensrck

(the source token of the edge with kth highest probability) will
be taken as the final recommendation. The top-k accuracy is
computed by judging whether the desired tokenn exists in the
candidates: tokensrc1 , tokensrc2 , ... and tokensrck .

C. Decision Maker in REP Model
The task of Decision Maker is to decide whether the

edge with the highest probability computed by Edge Rec-
ognizer should be really added to the graph or not. When
predicting tokenn, Decision Maker is to decide whether there
should be an edge of kind RepetitionEdge connecting to
tokenn. In the phase of predicting, the available information
about RepetitionEdge is the probability of each candidate
RepetitionEdge computed by Edge Recognizer for tokenn.
The probability that tokenn has an incoming RepetitionEdge
(tokenn is the repetition of some previously existed token) is
computed by:

P (tokenn is repeated) =
hT
src1 V1 hn

hT
src1 V1 hn + hT

src1 V2 hn
(6)

In the above equation, hsrc1 is the h in state (cell, h)
generated for the token at the position src1 (src1th token)
and hT

src1 is the transposition of hsrc1 . The src1 is defined in
Equation 5. V1 and V2 are model parameters.

Training of Decision Maker. If there is an incoming
edge in training example for tokenn, P (tokenn is repeated)
defined in Equation 6 should be maximized. Otherwise, the
value: 1−P (tokenn is repeated) should be maximized. This
corresponds to minimize the following loss. The loss function
of Decision Maker is defined as:

LDM =

N∑
n=1

(−log(P (tokenn is repeated) ∗ en

−log(1− P (tokenn is repeated)) ∗ (1− en)))

(7)

The training objective of Decision Maker is to minimize the
loss function 7. The final loss L = LER + LDM . To minimize
the final loss L is equivalent to minimize LER and LDM

separately.
Usage of Decision Maker in Prediction Phase. When

predicting tokenn, if P(tokenn is repeated) is greater or
equal to 0.5, the recommendation result generated by Edge

671

Recognizer (described in the previous subsection) should be
taken as the final result. Otherwise, if P(tokenn is repeated)
is less than 0.5, the prediction result generated by the algorithm
[32] of the traditional language model will be taken as the final
prediction result.

D. Advanced REP Model

In previous subsections, there is only one LSTM model
described in REP . To improve the expressiveness of the REP
model, we could use two LSTM models, one for computing
probabilities of edges in REP , one for computing the predic-
tion result of the standard language model. In another word,
the LSTM used for computing the prediction result of standard
language model is the LSTM isolated from the LSTM model
described in REP . Also, the embeddings of tokens involved in
those two LSTM models could be isolated. In conclusion, we
use one LSTM model as the standard language model and use
another LSTM model to compute the probabilities of edges in
REP . By doing so, the parameters have doubled in size and
the performance of the REP model could be further improved.
Actually, the REP model used in experiments is the advanced
version just described in this subsection.

V. IMPLEMENTATION

Source code [33] which contains all data sets and all
implementations of all models mentioned in experiments has
been public. The implementation of the model is based on the
deep learning platform TensorFlow. Apart from the parameters
of the LSTM used in REP model, the other parameters of
REP model are W in equation 2 and V1, V2 in equation
6. Adam optimizer in TensorFlow is used to automatically
decide learning rate and momentum in training phase. The
gradient is clipped by global norm. Parameters about clipping
norm are set to default values offered by TensorFlow. The
representation size (alias as embedding size or feature size)
for one token is 128. Once the embedding size for one token
is decided, sizes of all other parameters which participate in
the calculation with the embedding of tokens can be decided
successively. All models keep training until the accuracy on
validation set does not exceed the optimal value for 50 epochs.
All the training examples are trained one by one. The models
are running on the computer with the setting: Windows 10 64
bit OS, Intel i7-6850k CPU, 32G memory and one Geforce
GTX 1080 Ti GPU. Every function in source code will be
extracted and tested. The code completion system will start
at the beginning of a function to try to complete each token
of the function one by one. The accuracy is the average of
the prediction accuracy of each token of each function in test
set. To generate tokens for the source code, some works [5]
parse the code into lexical units through splitting the code by
white space or other predefined separators such as +, (, : or ;.
The implementation of such parser may vary greatly. Different
separators in use lead to different token sequence of source
code. Thus, to make the token generation for code unified, the
token sequence is generated in the following steps. The code is
parsed into the abstract syntax tree (AST) through Eclipse JDT

at first. Then, the AST is traversed in pre-order. The content
of each encountered node is pushed back onto a sequence.
Now, the token sequence has been generated. Token repetition
learning is also based on the token sequence generated in this
way. Generating token sequence based on AST could also
make it fair to compare the sequential model such as LSTM
with tree models such as Tree2Tree model as the contents to
be predicted are same in this setting.

VI. EXPERIMENT

Without loss of generality, the most widely used program-
ming language: Java is chosen to conduct experiments. Four
data sets are provided for evaluations. For each data set,
the source code in that data set is divided into training set,
validation set and test set in the proportions 60%, 15%, 25%.
Follow the one billion word benchmark [34], similarly, the
0.15% least frequently occurred code tokens in our training
set, all unseen tokens in validation set and test set are marked
as UNK.

Data Sets. Famous open-source projects are used in exper-
iments. As there are small functions which contain only one
or two statements in those projects, we do some filtering to
the code. The filtering steps are as follows: 1. Give each Java
file a score (to get the score, divide the number of all tokens
in all functions in the java file by the number of all functions
in that java file); 2. Sort Java files according to the score from
large to small and extract the first 85% Java files to blend into
a data set. Details are shown in Table I. The fourth column
headed by Vocabulary in Table I means the total number of
unique tokens on the data set. The symbol DS refers to data
set. For example, the DS1 refers to data set 1. The original
size of Apache Lucene is 98.8MB and is too huge, so only
the core module and analysis-common module are extracted
into the data set.

TABLE I: Data Sets

From Project Size Vocabulary
DS1 Log4J 1.76MB 6455
DS2 Maven 3.25MB 10516
DS3 FindBugs (GitHub version) 8.54MB 27573
DS4 Lucene (core & analysis-common) 15.6MB 55244

Research Questions. To demonstrate the ability of the
proposed model, one research question is answered:

RQ1: Could REP model achieves better prediction accu-
racy than other state-of-art methods under all the data sets?

To evaluate the performance of our model, the state-of-art
baselines: LSTM and tree decoding module in Tree2Tree [22]
are compared with the REP model. The tree decoding module
in other Tree2Tree models [35] is just LSTM model with
silghtly changes (one LSTM for decoding content of node, one
LSTM for decoding the tree structure of node) and is irrelevant
to this research because we only care about predicting the
content of node in this research. Table II shows the prediction
accuracy of different models evaluated on the test set of
each data set. The top-k accuracy (value is in percentage,
% is omitted to save the space) is computed for evaluating

672

TABLE II: Evaluation Result

LSTM Tree2Tree REP
top1 top3 top6 top10 mrr enpy top1 top3 top6 top10 mrr enpy top1 top3 top6 top10 mrr enpy

DS1 45.4 59.3 63.7 66.3 0.53 6.7 34.7 54.3 61.5 64.7 0.45 5.9 48.6 63.0 68.1 70.9 0.57 2.8
DS2 48.0 60.7 65.2 67.7 0.55 6.8 36.7 54.4 59.8 63.0 0.46 5.8 52.6 66.3 71.2 73.8 0.60 3.3
DS3 34.5 49.2 55.2 58.6 0.43 7.7 31.8 50.0 56.4 59.2 0.39 6.9 44.7 59.9 66.3 69.9 0.53 5.8
DS4 48.9 63.7 69.8 73.3 0.57 3.6 40.0 58.0 65.1 69.3 0.50 4.0 53.9 69.1 75.3 78.6 0.62 1.7

the model performance. When predicting next node, we rank
all candidate tokens according to probabilities (computed by
model) from large to small. The token with higher probability
has smaller rank. The token with the highest probability has
rank 1. The value in column headed with mrr is the average
of the reciprocal of rank of the token. This metric indicts the
overall prediction performance of the model. The larger the
mrr, the better the performance of the model. The enpy headed
column shows the entropy (log value of the perplexity) of the
model. The smaller the entropy, the better is the model.

As can be seen from the data, the REP model outperforms
all other state-of-art models in all 4 data sets. Especially for
the top-1 accuracy, REP model achieves averagely 17.2%
improvement compared to LSTM, achieves averagely 39.7%
improvement compared to Tree2Tree. From the result, we can
conclude that capturing the token repetition of source code can
improve existing LSTM model which has solved the problem
of gradient vanishing and gradient exploding to capture the
long term memory. Source code is diverse. After randomly
checking files in test set and training set, we have discovered
that there is little chance for the exact same code appears in
both the training set and test set. As argued in [30], if some
sub-sequences or patterns in the context are unseen in training
data, the discrepancy between training and inference could
cause the system fail to predict the right result. This problem
is named as exponential bias and REP model could solve
that problem to some extent.

The tree decoding module in Tree2Tree [22] performs worse
than LSTM. From this experiment, tree decoding module in
Tree2Tree is strongly dependent on the attention mechanism
used in its encoding module. Without the cooperation from
the encoding module, the performance of a single decoding
module is worse than standard LSTM. The reason has been
carefully analyzed. In Tree2Tree model [22], trees need to
be converted into binary trees. Converting a general tree to
a binary tree needs to add more nodes makes the prediction
task more difficult. The decoding module decodes the binary
tree in the way that the left child node and right child node
of one node will be predicted at the same time. This decoding
procedure indicates that the right child is predicted without
the information of the left child and vice versa. In the mean
while, LSTM model predicts one by one meaning that the
right child is predicted with the information of the left child
(according to pre-order traversal of tree). The less use of the
context information causes the lower prediction accuracy of
tree decoding module in Tree2Tree [22]. On the other hand, the
less use of the context could reduce the impact of the unseen
data in context. When encountering a large amount of unseen

data, Tree2Tree could gain good generalization ability. That is
why Tree2Tree performs better than LSTM in entropy on the
first three data sets. Even so, Tree2Tree still performs worse
than REP in entropy. As can be seen from the entropy (log
value of the perplexity), REP achieves nearly half the entropy
compared to that of other models. This experimental result is
dramatically encouraging. Thus, by taking all conditions into
account, REP outperforms other models.

RQ2: In which scenarios can REP model achieve better
results than other models and what features of scenarios bring
REP model to the better performance?

In the investigation of the prediction result of the exper-
iment, we discover that REP model is good at predicting
unseen data especially for unseen variable names or unseen
type names. In our setting, unseen token in validation set
or test set will be replaced with UNK. Both LSTM model
and Tree2Tree model perform badly in distinguishing between
UNK and other tokens when the number of tokens is huge.
In REP model, by recognizing the hidden relationships of
token repetition, another point of view could be offered to
us to decide which is the most likely token for the next.
If the model can confirm that the next token should be the
repetition of some previously existed token, we could take the
previously existed token as the final prediction result no matter
the previously existed token is UNK or other tokens. Note that,
for a token sequence of which the length is often less than
1000, the number of the previously existed tokens is at most
1000. In this setting, the REP model only needs to distinguish
between at most 1000 tokens to decide the token repetition. In
the meanwhile, for large projects, the number of total tokens
is often greater than 6000, which means that the standard
LSTM-based language model needs to distinguish between at
least 6000 tokens to decide which is the most likely token for
the next. Obviously, the task of recognizing token repetition
is much easier than the task of the standard LSTM-based
language model. That is the one factor why REP model could
perform better than standard LSTM-based language model.

Limitation and Future Work. In experiments, only four
Java projects are used, more projects could make the results
of experiments more solid. In all projects of different sizes,
the proposed model has achieved better results than all other
models, which can prove the effectiveness of the model to
a certain extent. The proposed method is not limited to the
Java language and can be extended to other languages such
as Python and C++. The extra work needed to do is to
design Python parser or C++ parser to parse the code into
the corresponding token sequence. The proposed model could
be applied to the generated token sequence. In the future,

673

the performance of the proposed model could be further
investigated on different languages such as Python or C++.
If the code corpus is large, there would be a lot of tokens.
The existence of a large number of tokens can cause trouble
to apply this technique to industrial scenarios. The techniques
which are designed to minimize the number of tokens could
be applied to further reduce the total tokens to improve the
model performance.

VII. CONCLUSION

In this paper, a novel REP model is proposed to capture the
general token repetition of source code to improve the predic-
tion accuracy of standard language model. The experimental
results on huge data sets confirm that capturing the general
token repetition of source code by REP model successfully
improves current methods and makes a step forward for the
problem of code completion.

REFERENCES

[1] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” Computer Science, 2014.

[2] D. Pawade, A. Sakhapara, M. Jain, N. Jain, and K. Gada, “Story
scrambler–automatic text generation using word level rnn-lstm,” In-
ternational Journal of Information Technology and Computer Science
(IJITCS), vol. 10, no. 6, pp. 44–53, 2018.

[3] T. Nguyen, P. C. Rigby, A. T. Nguyen, M. Karanfil, and T. N. Nguyen,
“T2api: synthesizing api code usage templates from english texts with
statistical translation,” in ACM Sigsoft International Symposium on
Foundations of Software Engineering, 2016, pp. 1013–1017.

[4] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,”
in Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA,
USA, November 13-18, 2016, 2016, pp. 631–642. [Online]. Available:
https://doi.org/10.1145/2950290.2950334

[5] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu,
“On the naturalness of software,” in ICSE 2012, June 2-9,
2012, Zurich, Switzerland, 2012, pp. 837–847. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2012.6227135

[6] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N.
Nguyen, “A statistical semantic language model for source
code,” in ESEC/FSE’13, Saint Petersburg, Russian Federation,
August 18-26, 2013, 2013, pp. 532–542. [Online]. Available:
http://doi.acm.org/10.1145/2491411.2491458

[7] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in The
ACM Sigsoft International Symposium, 2014, pp. 269–280.

[8] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Ieee/acm Working
Conference on Mining Software Repositories, 2015, pp. 334–345.

[9] H. K. Dam, T. Tran, and T. T. M. Pham, “A deep language model for
software code,” in FSE 2016: Proceedings of the Foundations Software
Engineering International Symposium. [The Conference], 2016, pp.
1–4.

[10] V. Raychev, P. Bielik, and M. T. Vechev, “Probabilistic model
for code with decision trees,” in OOPSLA 2016, part of
SPLASH 2016, Amsterdam, The Netherlands, October 30 -
November 4, 2016, 2016, pp. 731–747. [Online]. Available:
http://doi.acm.org/10.1145/2983990.2984041

[11] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Joint Meeting on Foundations of
Software Engineering, 2017, pp. 763–773.

[12] V. Raychev, M. T. Vechev, and E. Yahav, “Code completion
with statistical language models,” in PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, 2014, p. 44. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594321

[13] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in ICSE 2015, Florence, Italy, May 16-
24, 2015, Volume 1, 2015, pp. 858–868. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2015.336

[14] M. Allamanis and C. A. Sutton, “Mining source code repositories at
massive scale using language modeling,” in MSR ’13, San Francisco,
CA, USA, May 18-19, 2013, 2013, pp. 207–216. [Online]. Available:
http://dx.doi.org/10.1109/MSR.2013.6624029

[15] V. Raychev, P. Bielik, M. T. Vechev, and A. Krause, “Learning
programs from noisy data,” in POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, 2016, pp. 761–774. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837671

[16] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen, “Ex-
ploring api embedding for api usages and applications,” in IEEE/ACM
International Conference on Software Engineering, 2017.

[17] H. Phan, H. Nguyen, N. Tran, L. Truong, A. Nguyen, and T. Nguyen,
“Statistical learning of api fully qualified names in code snippets of
online forums,” in 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE). IEEE, 2018, pp. 632–642.

[18] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Mapping language
to code in programmatic context,” arXiv preprint arXiv:1808.09588,
2018.

[19] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” arXiv preprint arXiv:1704.01696, 2017.

[20] M. Drissi, O. Watkins, A. Khant, V. Ojha, P. Sandoval, R. Segev,
E. Weiner, and R. Keller, “Program language translation using a
grammar-driven tree-to-tree model,” arXiv preprint arXiv:1807.01784,
2018.

[21] J. Sedoc, D. Foster, and L. Ungar, “Neural tree transducers for tree to
tree learning,” 2018.

[22] X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for program
translation,” arXiv preprint arXiv:1802.03691, 2018.

[23] J.-g. Yao, X. Wan, and J. Xiao, “Recent advances in document sum-
marization,” Knowledge and Information Systems, vol. 53, no. 2, pp.
297–336, 2017.

[24] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in International
Conference on Machine Learning, 2016, pp. 2091–2100.

[25] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng, “Semantic com-
positionality through recursive matrix-vector spaces,” in Proceedings of
the 2012 joint conference on empirical methods in natural language
processing and computational natural language learning. Association
for Computational Linguistics, 2012, pp. 1201–1211.

[26] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the 2013 conference on empirical
methods in natural language processing, 2013, pp. 1631–1642.

[27] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 1287–
1293.

[28] M. Allamanis, P. Chanthirasegaran, P. Kohli, and C. Sutton, “Learning
continuous semantic representations of symbolic expressions,” in Pro-
ceedings of the 34th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, D. Precup and Y. W.
Teh, Eds., vol. 70. International Convention Centre, Sydney, Australia:
PMLR, 06–11 Aug 2017, pp. 80–88.

[29] X. Xu, L. Chang, F. Qian, H. Yin, S. Le, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” 2017.

[30] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” 2015.

[31] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient.” in AAAI, 2017, pp. 2852–2858.

[32] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for
language modeling,” in Thirteenth annual conference of the international
speech communication association, 2012.

[33] “The source code of models in the experiments and all data sets,”
https://www.dropbox.com/s/28p8j44zdc78ob4/REP.zip.

[34] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and
T. Robinson, “One billion word benchmark for measuring progress in
statistical language modeling,” arXiv preprint arXiv:1312.3005, 2013.

[35] D. Alvarez-Melis and T. S. Jaakkola, “Tree-structured decoding with
doubly-recurrent neural networks,” 2016.

674

Improve Language Modelling for Code Completion
by Tree Language Model with Tree Encoding of

Context
Yixiao Yang

School of Software
Tsinghua University

Beijing, China
yangyixiaofirst@163.com

Xiang Chen
Beijing, China

kuailezhish@gmail.com

Jiaguang Sun
School of Software
Tsinghua University

Beijing, China

Abstract—In last few years, using a language model such
as LSTM to train code token sequences is the state-of-art to
get a code generation model. However, source code can be
viewed not only as a token sequence but also as a syntax
tree. Treating all source code tokens equally will lose valuable
structural information. Recently, in code synthesis tasks, tree
models such as Seq2Tree and Tree2Tree have been proposed
to generate code and those models perform better than LSTM-
based seq2seq methods. In those models, encoding model encodes
user-provided information such as the description of the code,
and decoding model decodes code based on the encoding results
of user-provided information. When applying decoding model to
decode code, current models pay little attention to the context
of the already decoded code. According to experiments, using
tree models to encode the already decoded code and predicting
next code based on tree representations of the already decoded
code can improve the decoding performance. Thus, in this paper,
we propose a novel tree language model (TLM) which predicts
code based on a novel tree encoding of the already decoded code
(context). The experiments indicate that the proposed method
outperforms state-of-arts in code completion.

Index Terms—code completion, tree language model, tree
encoding of context

I. INTRODUCTION

Taking highly repetitive and predictable [1] source code
as natural languages to build language models (n-gram, n-
gram with Bayes or decision tree, RNN, LSTM) to suggest
code fragments has made great progress [2]–[9]. However,
sequential models does not explicitly model the tree structure.
In the meanwhile, tree classification models such as TreeNN
[10] and TBCNN [11] have more powerful ability in capturing
the characteristics of trees. The works in [10] have confirmed
that tree models perform better than sequential models in
classification tasks. On the other hand, it is hard to adapt the
code classification models as the code generation models. This
paper addresses this challenging problem and demonstrates the
special property of the proposed model.

In code synthesis models, encoding module is used for
encoding the user-provided information, decoding module is
used for decoding the desired code from the encoding of

DOI reference number: 10.18293/SEKE2019-057

the provided information. In decoding module, we creatively
use encoding model to encode the already decoded code to
improve the performance of the decoding model. A novel
tree decoding model (tree language model) which consists of
Encoding model and Decoding model is proposed. In the rest
of this paper, the term encoding model refers to the model
which is used for encoding the already decoded code (context)
in decoding procedure, not the one used for encoding the
provided information in code synthesis tasks. Encoding model
is responsible for generating the representation for a tree or
a sub-tree. Decoding model is designed to traverse the syntax
tree to accumulate encoding of encountered sub-trees to pre-
dict the next code. We propose a novel encoding model based
on two-dimensional LSTM to generate better representations
for trees. The experiments indicate that the proposed model
outperforms state-of-arts. In summary, the contributions of this
paper include: 1) A framework is proposed to predict next
code based on the accumulated representations of sub-trees in
an AST. 2) A new encoding model based on two-dimensional
LSTM is designed to generate representations for trees.

Related Work: The statistical n-gram language model has
been widely used in capturing patterns of source code. The
n-gram model was applied to lexical code tokens in [1]. In
SLAMC [2], they improved n-gram by associating code tokens
with topics. In cacheca [4], they improved n-gram with caching
recently appeared tokens in local files to improve prediction
performance. In [12], source code was abstracted into DSL and
had been sampled and validated until the good code suggestion
was obtained. Deep learning techniques such as RNN, LSTM
were applied to code generation model [6] [8] [9] to achieve
a higher prediction accuracy. Decision tree was applied to
code suggestion relying on a hybrid language model presented
by [7]. In [5], code was trained on graphs. Naive-Bayes was
integrated into n-gram model to suggest API usages. Seq2Seq
[13], Seq2Tree [14] models were proposed to translate text
description into the abstract syntax tree (AST) to handle the
problem of code synthesis. The work [15] used basic Seq2Seq
model to synthesize the API usage patterns based on natural
languages. The aims of language model and the decoding

675

module in code synthesis models are similar: to generate the
most likely next code. Thus, we compare these methods in the
experiments. In the problem of program translation, Tree2Tree
[16] model is proposed.

II. TREE LANGUAGE MODEL

A. Preliminary

AST(Abstract Syntax Tree): Figure 1 shows an example
of an expression and its corresponding AST. In this figure,
the tree is placed horizontally: the root is on the left and
the leaves are on the right. In rest of this paper, all trees are
placed horizontally.

Fig. 1. an example of AST

Concepts on AST: For the abstract syntax tree of source
code, some concepts need to be given.

• τn: the content (token) of node n is τn
• Sibling nodes: If two nodes have the same parent, they

are siblings. For example, in Figure 1, node a and node b
are sibling nodes, node + and node − are sibling nodes.

• Previous sibling node: If node m appears prior to node n
and m and n are sibling nodes, m is called the previous
sibling of n. For example, in Figure 1, node a is located
above node b, so a is the previous sibling of b.

• Previous adjacent sibling node: If node m is the previous
sibling of node n and m, n are adjacent, node m is called
the previous adjacent sibling of node n. For example, in
Figure 4, n is the previous adjacent sibling of o.

• Sibling trees: If roots of two sub-trees are siblings, these
two sub-trees are called sibling trees. For example, in
Figure 4, the sub-tree rooted at m and the sub-tree rooted
at n are sibling trees, sub-tree rooted at node m and the
sub-tree rooted at node o are sibling trees.

• Previous sibling tree: If the root of tree T1 is the previous
sibling of the root of tree T2, tree T1 is the previous
sibling tree of tree T2. For example, in Figure 4, the tree
rooted at node m is the previous sibling tree of the tree
rooted at node n.

LSTM: In this paper, the main logics of LSTM and two-
dimensional LSTM (2DLSTM) will be expressed as two func-
tions: LSTM and 2DLSTM. These two functions are shown in
Figure 2. Function LSTM(x, cell, h) takes three inputs while
the function 2DLSTM(x, cell, h, cell2, h2) takes five inputs.
The outputs for this two functions are same: cellnew, hnew.
In this paper, parameter x is the embedding of node token

on abstract syntax tree of source code. In LSTM, cell, h pair
is taken as accumulated information from one direction, and
2DLSTM receives accumulated information: cell, h; cell2, h2
from two directions. Please consult [17] for more information
about LSTM and two-dimensional LSTM.

Fig. 2. LSTM and two-dimensional LSTM

TreeNN: Given a tree T , TreeNN [10] generates vector
representation of a tree. TreeNN is defined in Algorithm 1.
In Algorithm 1, the symbols: c1, c2, ..., ck represent all k
children of node n, [·, ·] is the vector concatenation operator,
σ is the activation function such as tanh.

Algorithm 1 TreeNN(node n)
Require: node n
Ensure: representation of tree rooted at node n

if n is a leaf then
h = embedding of τn

else
h = σ(Wτn · [TreeNN(c1), ...,TreeNN(ck)])

end if
return h

Additional Functions Other functions used are defined here.
• GetLastChildOfNode(n): returns the last child of tree

node n. If n does not have any child, function returns
null. In Figure 1, node c is the last child of node −,
GetLastChildOfNode(−) returns c.

• GetPrevAdjacentSiblingOfNode(n): returns previous ad-
jacent sibling of node n, if n does not have a previous
sibling (n is the first child of its parent), returns null. In
Figure 1, node + is the previous adjacent sibling of node
−, then GetPrevAdjacentSiblingOfNode(−) returns +.

• Parent(n): returns the parent node of node n in AST.

B. Encoding model

Encoding model such as TreeNN generates the repre-
sentation for a tree through visiting the tree in post-order
traversal. Figure 3 gives an illustration of the execution flow
of encoding model. We propose the novel encoding model
based on two-dimensional LSTM: AccuredTreeGen model.
AccuredTreeGen model is the one used in Decoding model
of Tree Language Model. The aim of AccuredTreeGen(n) is
to generate the representation for a set of trees: the tree T
rooted at node n and all previous sibling trees of tree T . Unlike

676

Fig. 3. data flow of encoding

traditional tree encoding model which generates encoding for
a tree, The AccuredTreeGen model generates encoding for
a set of trees. Figure 4 illustrates the difference of trees

Fig. 4. An illustration of TreeNN and AccuredTreeGen

handled by TreeNN(n) and AccuredTreeGen(n). The black
circles are nodes in trees to be processed. TreeNN(n) only
handles the tree rooted at node n while AccuredTreeGen(n)
extraly handles all previous sibling trees of the tree handled
by TreeNN(n).

Algorithm 2 AccuredTreeGen(node n)
Require: node n
Ensure: representation of tree with previous sibling trees

if n == null then
return cellzero, hzero

end if
embedτn = embedding of τn
siblingprev = GetPrevAdjacentSiblingOfNode(n)
childlast = GetLastChildOfNode(n)
cell, h = AccuredTreeGen(siblingprev)
cell2, h2 = AccuredTreeGen(childlast)
cellnew, hnew = 2DLSTM(embedτn , cell, h, cell2, h2)
return cellnew, hnew

The algorithm of AccuredTreeGen is defined in Al-
gorithm 2. AccuredTreeGen is a recursive model. For
a node n, apart from the embedding of node n, the
result of AccuredTreeGen(n) depends on the result of
AccuredTreeGen(previous adjacent sibling of n) and
the result of AccuredTreeGen(last child of n). Recur-
sively, For the last child: childlast of node n, the re-
sult of AccuredTreeGen(childlast) depends on the result of
AccuredTreeGen(previous adjacent sibling of childlast)
and the result of AccuredTreeGen(last child of childlast).
Keep computing the dependency recursively, we will find

that the result of AccuredTreeGen(n) is the accumulated
information of all nodes on a set of trees: tree T rooted at
node n and all previous sibling trees of tree T . If node n is
null, AccuredTreeGen(n) will return cellzero and hzero which
are fixed default zero values. This is also the termination for
the recursive AccuredTreeGen model. The gates used in two-
dimensional LSTM make the model less troubled by vanishing
gradient problem than TreeNN.

C. Decoding model

Decoding model traverses from the root to the leaves on
a tree in pre-order to predict the token of each node. Figure

Fig. 5. data flow of decoding

5 illustrates the execution flow of the Decoding model. The
Decoding model contains two sub-models: DecodeFirstChild
model and DecodeNextSibling model. When we are visiting
node n in pre-order traversal, DecodeFirstChild(n) generates
prediction information for predicting the first child of node
n. DecodeNextSibling(n) generates prediction information for
predicting the next sibling of node n. The information gen-
erated by DecodeFirstChild or DecodeNextSibling consists of
two vectors (cell, h). Every node except the root is either the
first child or the next sibling of some node. So each node
except the root can receive the prediction information from its
parent or its previous adjacent sibling. The root node receives
the fixed default values. The function FetchPrediction(node
n) is defined to get the prediction information generated for
predicting node n. The definition is in Algorithm 3.

Algorithm 3 FetchPrediction(node n)
Require: node n
Ensure: (cell, h) for predicting node n

if n is root of AST then
return cellzero, hzero

end if
parentn = Parent(n)
if n is the first child of parentn then
cell, h = DecodeFirstChild(parentn)

else
siblingprev = GetPrevAdjacentSiblingOfNode(n)
cell, h = DecodeNextSibling(siblingprev)

end if
return cell, h

In Algorithm 3, if node n is the root of AST which means
node n does not have parent or previous siblings, the default
zero values: cellzero and hzero are returned. If node n is
the first child of node parentn, DecodeFirstChild(parentn)

677

generates prediction information (cell, h) for predicting the
content of node n, as shown in the then branch of the if-
statement in Algorithm 3. If node n is not the first child
of parent parentn, in this case, node n must have previous
adjacent sibling: siblingprev, DecodeNextSibling(siblingprev)
generates prediction information (cell, h) for n, as shown in
the else branch of the if-statement in Algorithm 3. In sum-
mary, FetchPrediction(n) just fetches prediction information
from the parent of n or the previous sibling of n according
to the position of n in AST. Assume that n is the first
child of parentn, then, the information (cell, h) returned by
FetchPrediction(n) is just the information (cell, h) returned by
DecodeFirstChild(parentn). Note that the prediction (cell, h)
for node n returned by FetchPrediction(n) can be taken as the
accumulated information of nodes visited before n.

The algorithm of DecodeFirstChild model is defined in
algorithm 4. The embedding of node n and the accumulated

Algorithm 4 DecodeFirstChild(node n)
Require: node n
Ensure: (cellout, hout) for first child of node n
cell, h = FetchPrediction(n)
embedτn = embedding of τn
cellout, hout = LSTM(embedτn , cell, h)
return cellout, hout

information of nodes visited before n (cell, h returned by
FetchPrediction(n)) are fed into LSTM to predict the first
child of node n. The FetchPrediction, DecodeFirstChild and
DecodeNextSibling (described in the following) functions call
each other and form a recursive neural model. To predict
the sibling of a node n, the algorithm of DecodeNextSibling
model is in Algorithm 5. If childlast is the last child of
node n, AccuredTreeGen(childlast) generates the representa-
tion (cell2, h2) for a set of trees: tree Tlastchild rooted at
node childlast and all previous sibling trees of tree Tlastchild.
The nodes in tree Tlastchild and all previous sibling trees
of Tlastchild constitute all the descendants of node n. The
embedding of node n, the accumulated information of nodes
visited before n (cell, h returned by FetchPrediction(n))
and the representation (cell2, h2) for all descendants of
node n are fed into two-dimensional LSTM to predict next
sibling of node n. For a node n, DecodeForFirstChild(n)

Algorithm 5 DecodeNextSibling(node n)
Require: node n
Ensure: (cellout, hout) for next sibling of node n
cell, h = FetchPrediction(n)
childlast = GetLastChildOfNode(n)
cell2, h2 = AccuredTreeGen(childlast)
embedτn = embedding of τn
cellout, hout = 2DLSTM(embedτn , cell, h, cell2, h2)
return cellout, hout

and DecodeForNextSibling(n) both use the embedding of
node n. The difference between DecodeForFirstChild(n) and

DecodeForNextSibling(n) is whether or not to take all descen-
dants of node n into consideration. When predicting the first
child of node n, we do not need to take descendants of node
n into consideration because no descendant of node n has
been visited in pre-order traversal of AST. When predicting
the sibling of node n, all descendants of this node have been
visited (predicted) and we use AccuredTreeGen to explicitly
encode the already visited (predicted) sub-trees. Given a tree,
starting with the root of that tree, all nodes can be predicted by
keeping inferring the first child of a node and the next sibling
of a node. Figure 6 gives an illustration about the data flow of
encoding model and decoding model to show how decoding
model interacts with encoding model. In Figure 6, solid arrow
means the data flow of encoding while dotted arrow means the
data flow of decoding. In Figure 6, we use the content of a
node to refer to that node. As shown in the figure, the nodes (),
> and + are the first child of their parents. DecodeFirstChild
model is used to generate prediction information for those
nodes. To predict node − which is the next sibling of node
+, the embedding of token +, the prediction for node + (the
data flow is marked with dotted arrow), the representation for
all descendants of node + (the data flow is marked with solid
arrow) will be fed into two-dimensional LSTM to generate a
new cell, h.

Fig. 6. an example of decoding combined with encoding

Tree Language Model is also a generalized framework in
which the encoding model can be replaced with existing tree
classification models. Take TreeNN as an example. If we want
to use TreeNN in Tree Language Model, DecodeNextSib-
ling model should be replaced with DecodeNextSiblingUs-
ingTreeNN model. The definition of DecodeNextSiblingUs-

Algorithm 6 DecodeNextSiblingUsingTreeNN(node n)
Require: node n
Ensure: (cellout, hout) for next sibling of node n
cell, h = FetchPrediction(n)
encodingtree = TreeNN(n)
cellout, hout = LSTM(encodingtree, cell, h)
return cellout, hout

ingTreeNN is in Algorithm 6. The difference between De-
codeNextSibling and DecodeNextSiblingUsingTreeNN is that
DecodeNextSiblingUsingTreeNN uses TreeNN to encode the
root node n and all its descendants into one vector instead of
taking apart them. LSTM instead of two-dimensional LSTM is
applied. It is a pioneering work to adapt the tree classification
model as a language model. Other tree models such as TBCNN
and EQNET can be adapted in a similar way.

678

D. Predicting and Training

For every node n, the prediction result (cell ∈ Rd, h ∈ Rd)
for node n returned by FetchPrediction(n) is used to compute
the probability distribution of all tokens. The Algorithm 7
is the definition of function Predict. In Algorithm 7, W1 ∈
Rt×d and bias ∈ Rt are model parameters, t represents the
total number of unique tokens in data set, d is the length
of the embedding vector for one token. The probs is the
probability distribution for all tokens. The top k elements with
the highest probabilities will be the final complement result.
Top-k accuracy is computed in the way that if the desired
token appears in the top k recommended tokens, the prediction
is right, otherwise, the prediction is wrong.

Algorithm 7 Predict(node n)
cell, h = FetchPrediction(n)
logits = tanh(W1 · h+ bias)
probs = softmax(logits)
return probs

For every node n, training is to maximize the probability
of n. This is achieved by minimize the loss of node n which
is computed by function ComputeLoss. The Algorithm 8 is
the definition of function ComputeLoss. In Algorithm 8, the
probs is the probability distribution for all tokens returned
by Predict(n). The probs[τn] means choosing the probability
of τn (the actual content of node n) from probs. The final

Algorithm 8 ComputeLoss(node n)
probs = Predict(n)
loss = −log(probs[τn])
return loss

loss is the summation of loss computed by ComputeLoss for
each node in each AST. The training of the whole model is
to minimize the final loss.

III. IMPLEMENTATION

Source code [18] of all models along with all data sets
has been public. The source code is parsed into AST through
Eclipse JDT. The implementation is based on Deep learn-
ing platform: TensorFlow. The model parameters consists of
parameters in LSTM, parameters in 2DLSTM and W1,W2

in Algorithm 7. Because TensorFlow does not offer the im-
plementation of two-dimensional LSTM, the logic of two-
dimensional LSTM is implemented by ourselves. The physical
environment is the computer with Windows 10 64 bit OS, Intel
i7-6850k CPU, 32G memory and one Geforce GTX 1080 Ti
GPU. The learning rate and the momentum are automatically
decided by Adam optimizer in TensorFlow. Global norm is
used to clip the gradient. Examples are trained or tested one
by one. The representation size (alias as embedding size or
feature size) for one token is 128. We will keep training the
model until the prediction accuracy on the validation set does
not exceed the optimal value for 50 epochs.

IV. EXPERIMENT

Without loss of generality, one of the most widely used
programming language Java is chosen to conduct experiments.
Java projects with high number of stars on GitHub are ex-
tracted and filtered into different data sets. Source code in
each data set is divided into training set, validation set and
test set in the proportions 60%, 15%, 25%. Every function
declared in Java files will be parsed into an abstract syntax tree
and every tree node in AST will be predicted to compute the
prediction accuracy. The tree will be flattened into a sequence
to apply sequential models such as LSTM. The sequence is
generated by traversing the tree in pre-order and appending the
encountered node back to the sequence. We mark the 0.15%
least frequently occurred code tokens in training set and all
unseen tokens in validation set or test set as UNK.

Date Sets: Three data sets: Dataset A, Dataset B, Dataset
C are collected to conduct experiments to examine the perfor-
mance of models. Details are shown in the following Table.
Dataset A consists of all java files in project apache commons

From Projects Size Vocabulary
Dataset A apache commons io 2.0MB 5807
Dataset B google guava 7.7MB 7538

Dataset C Activiti & ESPlorer & AbFab3D
& JComicDownloader 8.2MB 39886

io on Github. The project google guava is a Java project
marked with 26554 stars on Github. Dataset B consists of Java
files whose size is larger than 8K Bytes in the main module of
google guava. Dataset C are Java files whose size is larger than
40K bytes in projects Activiti (3909 stars), JComicDownloader
(188 stars), ESPlorer (733 stars). and AbFab3D (59 stars). The
evaluation results on Dataset C may truly reflect the ability of
each model because abstract syntax trees from Dataset C are
huge. The fourth column headed by Vocabulary in Table IV
means the quantity of unique tokens (the content of node on
AST) on the data set.

Evaluation: In this section, Tree Language Model using
the newly proposed encoding model: AccuredTreeGen model
(based on two-dimensional LSTM) is abbreviated into TLM.
Tree language model using TreeNN as the encoding model is
abbreviated into TLM-TNN. LSTM and the decoding module
in Tree2Tree [16] are also included in the baselines. The top-
k accuracy (value is in percentage, % is omitted to save the
space) is computed on every node in tree and the final top-
k accuracy is the average of top-k accuracy of all nodes in
all trees. When predicting next node, the model computes the
probabilities for all candidate tokens. If we rank all tokens
according to probabilities from large to small. For example,
the token with the highest probability ranks 1, the token with
the second highest probability ranks 2. The value in column
headed with mrr means the average of the reciprocal of the
rank for each token in a data set. This metric indicts the overall
prediction performance of the model. The larger the mrr, the
better the model. The column headed with enpy shows the
entropy (log2 value of the perplexity). The smaller the entropy,
the better the model.

679

Table I is the evaluation result of different models on test
set. On small data sets: DS1, TLM achieves 22.2%, 9.3%
higher top-1 prediction accuracy than tree decoding module in
Tree2Tree and LSTM. The performance of TLM and TLM-
TNN is similar, for top-1 accuracy and mrr, TLM performs
better. On large data set: DS2, Tree2Tree performs much
worse than other three models. TLM performs the best in
all measurements. As can be shown, if the models used for
code synthesis are directly applied to code completion tasks,
the performance is bad. The reason will be described later.
On large data set DS3, TLM achieves 40.3%, 13.8% higher
top-1 accuracy than tree decoding module in Tree2Tree and
LSTM. The performance of TLM and TLM-TNN is similar,
for top-1 accuracy, TLM performs better. For top-k accuracy,
as k becomes larger, performances of all models tend to be
closer to each other. For top-10 accuracy, performances of all
models are close. This indicates that for the top-k accuracy,
the smaller the k, the more effective is the top-k accuracy to
illustrate performances of different models. As can be seen,
both TLM and TLM-TNN performs better than the rest non-
TLM models. This demonstrates the advantages of the newly
proposed Tree Language Model framework which uses tree
encodings to encode the context to help predict code. In
future work, we may adopt other measurements to investigate
different models. By considering all conditions, on all 3 data
sets, Tree Language Model framework performs better than
other models. TLM performs the best on top-1 accuracy.

TABLE I
PREDICTION ACCURACY ON TEST SET

A

top-1 top-3 top-6 top-10 mrr enpy
Tree2Tree 38.6 57.4 63.7 67.6 0.49 4.3
TLM-TNN 46.1 61.4 66.5 69.3 0.54 4.0

LSTM 43.2 57.5 63.7 66.7 0.51 4.2
TLM 47.2 61.4 66.3 68.9 0.55 4.1

B

top-1 top-3 top-6 top-10 mrr enpy
Tree2Tree 39.3 60.8 70.3 75.6 0.52 3.5
TLM-TNN 68.6 81.3 85.8 87.9 0.76 2.6

LSTM 70.1 80.7 84.6.8 86.6 0.76 3.0
TLM 72.1 82.1 86.0 87.8 0.78 2.4

C

top-1 top-3 top-6 top-10 mrr enpy
Tree2Tree 34.7 54.0 61.7 66.1 0.46 6.2
TLM-TNN 46.2 60.5 65.9 68.0 0.53 5.8

LSTM 42.9 57.9 63.8 67.1 0.51 5.9
TLM 48.8 60.8 65.2 67.5 0.53 5.8

The reason for better performance of Tree Language Model
framework is adopting tree encoding model to capture the
characteristics of encountered trees or sub-trees. In Tree2Tree,
a tree must be converted to a binary tree. This step introduces
extra nodes. The extra introduced nodes make predicting more
difficult. When standing at a node, two LSTM models are
used for predicting the left child node and right child node of
that node separately at the same time. Predicting left without
using information of right (vice versa) causes the performance
declining. Current synthesis models pay much attention to
predicting code based on user-provided information but pay
little attention to predicting next code based on the already
decoded code (context). This paper investigates this problem.

V. CONCLUSION

This paper proposed a novel tree language model consisting
of decoding model and encoding model. Two-dimensional
LSTM is adopted to deal with the structural characteristics of
trees. The experiments demonstrate that tree language model
(TLM) achieves better top-1 prediction accuracy on large data
set compared to state-of-art models.

REFERENCES

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu,
“On the naturalness of software,” in ICSE 2012, June 2-9,
2012, Zurich, Switzerland, 2012, pp. 837–847. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2012.6227135

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N.
Nguyen, “A statistical semantic language model for source
code,” in ESEC/FSE’13, Saint Petersburg, Russian Federation,
August 18-26, 2013, 2013, pp. 532–542. [Online]. Available:
http://doi.acm.org/10.1145/2491411.2491458

[3] V. Raychev, M. T. Vechev, and E. Yahav, “Code completion
with statistical language models,” in PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, 2014, p. 44. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594321

[4] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in The
ACM Sigsoft International Symposium, 2014, pp. 269–280.

[5] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in ICSE 2015, Florence, Italy, May 16-
24, 2015, Volume 1, 2015, pp. 858–868. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2015.336

[6] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Ieee/acm Working
Conference on Mining Software Repositories, 2015, pp. 334–345.

[7] V. Raychev, P. Bielik, and M. T. Vechev, “Probabilistic model
for code with decision trees,” in OOPSLA 2016, part of
SPLASH 2016, Amsterdam, The Netherlands, October 30 -
November 4, 2016, 2016, pp. 731–747. [Online]. Available:
http://doi.acm.org/10.1145/2983990.2984041

[8] H. K. Dam, T. Tran, and T. T. M. Pham, “A deep language model for
software code,” in FSE 2016: Proceedings of the Foundations Software
Engineering International Symposium. [The Conference], 2016, pp.
1–4.

[9] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Joint Meeting on Foundations of
Software Engineering, 2017, pp. 763–773.

[10] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the 2013 conference on empirical
methods in natural language processing, 2013, pp. 1631–1642.

[11] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 1287–
1293.

[12] V. Raychev, P. Bielik, M. T. Vechev, and A. Krause, “Learning
programs from noisy data,” in POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, 2016, pp. 761–774. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837671

[13] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Mapping language
to code in programmatic context,” arXiv preprint arXiv:1808.09588,
2018.

[14] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” arXiv preprint arXiv:1704.01696, 2017.

[15] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,”
in Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA,
USA, November 13-18, 2016, 2016, pp. 631–642. [Online]. Available:
https://doi.org/10.1145/2950290.2950334

[16] X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for program
translation,” arXiv preprint arXiv:1802.03691, 2018.

[17] A. Graves, Supervised Sequence Labelling with Recurrent Neural Net-
works. Springer Berlin Heidelberg, 2012.

[18] “The source code of models in the experiments and all data sets,”
https://www.dropbox.com/s/8typta3a81htclr/TLM.zip.

680

Fast Exhaustive Search Algorithm for Discovering
Relevant Association Rules
Hend Amraoui∗, Faouzi Mhamdi†, Mourad Elloumi‡

∗†‡ Laboratory of Technologies of Information and Communication and Electrical Engineering (LaTICE),
National Higher School of Engineers of Tunis (ENSIT), University of Tunis, Tunisia

∗Faculty of Science of Tunis, University of Tunis el Manar, Tunis, Tunisia
† Higher Institute of Applied Languages and Computer Science of Beja,University of Jendouba, Tunisia

∗amraoui.hend@yahoo.fr, †faouzi.mhamdi@ensi.rnu.tn, ‡Mourad.Elloumi@gmail.com

Abstract—Association Rules Mining (ARM) is one of the most
important tasks of Data mining. The purpose of ARM is to dis-
cover relationships having an interest between attributes/patterns
stored in very large databases. Nowadays several efficient algo-
rithms have been developed by the researchers for the discovery
of relevant Association Rules (ARs). These latter are responsible
for decision making in several domains, such as medicine, finance,
marketing and many other fields. In this paper, we propose a
new algorithm based on exhaustive search to find relevant AR
to make the decision and to predict the chance of occurring
the Diabetes Mellitus (DM). We develop an algorithm to mine
data in less time and less complexity without losing information.
Finally, we test our approach using a real database to evaluate
the efficiency of our algorithm compared to Apriori algorithm.

Index Terms—Association Rules, Fast Exhaustive Search Al-
gorithm, Support, Confidence, Fitness

I. INTRODUCTION

The task of ARM was introduced for the first time by
Agrawal et al., [1] to discover relationships among attributes
in databases. From these association rules, several decisions
will be taken. The formal notations of ARM were introduced
by Agrawal et al., [1].
Let I = I1, I2, . . . , Im be a set of m different attributes, T
be the transaction that comprises a set of items such that
T ⊆ I,D be a database with different transactions Ts. An
association rule is an insinuation in the form of X ⇒ Y , where
X,Y ⊂ I are sets of items termed itemsets, and X∩Y = ∅. X
is named antecedent, Y is called consequent. The rule means
X implies Y .
ARM goes through two steps: The first one is to identify
the frequent items using minimum support threshold s and
the second one is to generate the relevant rules from these
frequent items using minimum confidence threshold c. Since
the database is large and users concern about only those
frequently purchased items, usually thresholds of support and
confidence are predefined by users to drop those rules that
are not so interesting or useful. The two thresholds can be
specified by the users [2]. Support of an association rule is
defined as the percentage/fraction of records that contain X∩Y
to the total number of records in the database [2].

Support(XY) =
Support count of XY

Total number of transaction in D
(1)

DOI reference number: 10.18293/SEKE2019-157

Confidence of an association rule is defined as the percent-
age/fraction of the number of transactions that contain X ∩Y
to the total number of records that contain X, where if the
percentage exceeds the threshold of confidence, an interesting
association rule X ⇒ Y can be generated [2].

Confidence(X|Y) =
Support(XY)

Support(X)
(2)

The generation of all the frequent elements is a time consum-
ing task when the number of items is large [3]. For this purpose
we developed an algorithm generating association rules in a
direct way by maximizing the support/confidence of the rules
skipping the frequent itemset generation step. Our approach
is then to treat the problem of ARM as a multi-objective
optimization problem where the goal is to find ARs while
optimizing a fitness function (described below) i.e., it is a
function for evaluating rules [4], it shows if an association
rule is a good solution or not.
The remainder of the paper is as follows : Section II introduces
some previous work on ARM, section III explains problem
and technical solutions, section IV describes the proposed
algorithm, the different improvements and its performance, in
section V experimental results are presented and finally, the
paper is concluded in Section VI.

II. LITERATURE REVIEW

A large number of previous studies have been focused on
the problem of ARM. Agrawal et al., [5] developed Apriori
algorithm. It first generates the set of elements from the
previous element sets, then, a pruning step was applied on
these candidates. Finally, ARs are deduced from the frequent
candidates generated in the first step. Apriori algorithm is easy
to execute and very simple but suffers from inefficiencies:
scanning the database frequently; generating a large number
of candidate sets [6] and demanding huge data storage [7].
Zaki [8] developed Eclat algorithm for discovering the set
of frequent attributes. Zaki represented the database with
a vertical representation to avoid the repeated traverse of
the database. He decomposed the original search space into
smaller pieces which can be processed independently in main-
memory, and proposed three new search strategies for enumer-
ating the frequent itemsets such as bottom-up search, top-down
search, and hybrid search.

681

Han et al., [9] introduced Frequent Pattern Growth (FP-
Growth) algorithm. Han et al., used three techniques: The first
one was to compress the base as much as possible developing
an FP-tree to avoid scanning it several times, the second one
was to adopt a pattern fragment growth method to avoid
the costly generation of a large number of candidate sets,
and finally used divide-and-conquer method to decompose the
mining task and reduce the search space.
Uno et al., [10] proposed Linear time Closed item set Miner
(LCM) algorithm. They constructed tree-shaped transversal
routes composed of only frequent closed item sets. LCM
algorithm founded all frequent closed item sets in polynomial
time per item set, without storing previously obtained closed
item sets in memory.
Yuan [6] proposed an improved Apriori algorithm as a re-
medial to the previous defects. Yuan used a new database
mapping way, pruned more candidate elements and used
overlap strategy to count support. The improved Apriori
algorithm achieves excellent performance by reducing the
time consumed in transaction scanning for the generation of
candidate itemsets and by reducing the number of transaction
to be scanned.
Sheng et al., [11] proposed a novel method by combining the
Apriori algorithm and probabilistic graphical model. Sheng
et al. avoided the disadvantage that whenever the frequent
items are searched the whole data items have to be scanned
cyclically. The effectiveness and feasibility of the proposed
method in ARM has been proved.
Liu et al. [12] proposed a fast Apriori algorithm, called
ECTPPI-Apriori, for processing large datasets. The algorithm
uses a parallel mechanism in the ECPI tissue-like P system.
The time complexity of ECTPPI-Apriori is improved to O(t)
compared to other parallel Apriori algorithms.
Fu et al. [13] have developed a parallelization algorithm based
on the Hadoop framework and the Map Reduce model. The
algorithm proved its efficiency in extracting frequent elements
and generating ARs from large transactional databases.

III. MATERIAL AND METHODS

A. Data Collection

For experimental evaluation, a bench mark dataset has been
selected as input data https://www.kaggle.com/uciml/pima-
indians-diabetes-database. The studied population is PIMA
Indian population near Phoenix, Arizona, it is known to
be one of the communities with the highest percentage of
diabetes in the world. Diabetes is a multifactorial disease
where multiple rare genetic, environmental and even behav-
ioral variants influence collectively the expression and the
prevalence of traits and diseases [14]. That population has been
under continuous study since 1965 by the National Institute of
Diabetes and Digestive and Kidney Diseases [15]. The dataset
is composed of 768 patients, and two classes. The variables are
medical measurements of the patient plus age and pregnancy
information. The classes are : C0, indicates True Diabetic Test
(268) and C1, indicates False Diabetic Test (500) [16].

Amoung the factors, Diabetes Pedigree Function (DPF)
was developed by Smith et al. [15], This function takes into
consideration genetic factors inherited from ascendants.

DPF =

∑
iKi(88−ADMi) + 20∑
j Kj(ALCj − 14) + 50

(3)

1) i ranges over all relatives, who had developed diabetes
by the subject’s examination date;

2) j ranges over all relatives, who had not developed
diabetes by the subject’s examination date;

3) Kx is the percent of genes shared by the relative;
4) ADMi is the age in years of relative, when diabetes was

diagnosed;
5) ALCj is the age in years of relative j at the last non-

diabetic examination (prior to the subject’s examination
date);

6) The constants 88 and 14 represent, the maximum and
minimum ages at which relatives of the subjects in this
study have developed diabetes;

7) The constants 20 and 50 were chosen such that:
• A subject with no relatives would have a DPF

value slightly lower than average.
• The DPF value would decrease relatively slowly as

young relatives free of diabetes joined the database.
• The DPF value would increase relatively quickly

as known relatives developed diabetes.
Table I illustrates an excerpt of data representing medical

measures and observations collected after studying a set of
(768) patients. The first column contains an ordering number
for the patients. The eight next columns represent measures
for medical factor:
• Number of times pregnant :p,
• Plasma Glucose Concentration at 2 Hours in an Oral

Glucose Tolerance Test :g,
• Diastolic Blood Pressure (mm Hg) :b,
• Triceps Skin Fold Thickness (mm) :s,
• 2-Hour Serum Insulin (Uh/ml) :i,
• Body Mass Index ((Weight in kg)/(Weight in m)2) :B,
• Diabetes Pedigree Function :d,
• Age (years) :a.

The last column describes the fact whether the corresponding
patient is actually sick (C1) or not (C0).

TABLE I: Medical Measures

p g b s i B d a Out
1 0 100 70 26 50 30.8 0.597 21 C0
2 0 100 88 60 110 46.8 0.962 31 C0
3 0 101 62 0 0 21.9 0.336 25 C0
. .
768 9 184 85 15 0 30 1.213 49 C1

B. Discretization of Numeric Attributes (Factors)

In our database, the range of each numeric attribute is very
wide. To overcome this problem it was decided to turn numeric
attributes into discrete ones. Table II illustrates an excerpt for

682

different distinguished ranges for each measured criterion. For
example, measures for the criterion Age (last line) may range
over {21, 24} or {25, 30} (in fact also over {31, 40}, {41, 55}
or {56,−} which are not represented in the excerpt).

When an interval ends with −, then it admits no upper
bound. An interval suffixed by ∗ is the one to be picked up by
default when the measured value does not fit into any interval.

The database in Table I can then be discretized by replacing
each measured value for a given criterion by the identifier of
the interval it fits into. The result is illustrated in Table III.

TABLE II: Medical Measures Ranges

C R1 R2 . . . R6
p {0, 2} {3, 6} . . .
g {0, 89.1} {89.2, 107.1} . . . {165.2,−}
b {0, 0}∗ {1, 76.1} . . . {98.2,−}
.
a {21, 24}∗ {25, 30} . . .

We note that the factor 10 has been chosen to obtain distinct
interval ids. This is true in our example because for all factor,
the number of intervals never exceeds 9. In the general case,
this factor can be chosen as the closest power of 10 to the
maximum number of intervals for factor to ensure interval’s
id uniqueness.

Uniqueness is needed here to obtain different items rep-
resenting different factor ranges. This may be useful when
considering sets of such items in the algorithms we present in
this paper.

TABLE III: Discretized Medical Measures

p g b s i B d a Out
1 11 22 32 43 52 63 73 81 91
2 11 22 33 44 52 65 74 83 91
3 11 22 32 41 51 61 72 82 91
. .
768 13 26 33 42 51 63 75 84 92

C. Problem Description

Given the representation in Table III of the patients’
database it is interesting to analyze which combination of
factor ranges implies the most sickness (or no sickness). We
may consider combination taking into account all or only
subsets of the factor. To represent a given combination of
factor ranges and the associated desired outcome (sickness or
not) we are using an Association Rule, defined below.

definition 1: Given A a set of integers and c an integer, we
define the corresponding Association Rule (or simply Rule),
γ, denoted by A ⇒ c. A is called the antecedent of γ (and
denoted by A(γ)) and c its consequence (and denoted by
C(γ)). The size of γ (denoted by S(γ)) is the size of its
antecedent: A(γ).

An association rule A(γ) represents the logical implication:
"if items in A are all observed on medical measures for a
patient then the outcome for that patient is c".

definition 2: Given an association rule γ, a projection of γ
is a rule γ′, such that A(γ′) is a non-empty subset of A(γ).
When γ′ is a projection of γ we also say γ is an enrichment
of γ′.

We note that the encoded database of Table III can be
represented by a sequence (array or list) of association rules.
Given definitions 1,2 we can now state the problem we propose
to investigate.

problem 1: Given:
• a sequence of association rules P = [Ap ⇒ cp]p∈I , with

the same size d, called population,
• an objective function f mapping each projection of an

association rule in P to a real value in [0, 1],
• and an integer s between 1 and d.

Compute all the projections of size s of associations rules in
P that maximizes the objective function f .

We propose to solve the Problem 1 for all possible sizes
of association rules. As objective function we will use the
so-called fitness, defined below.

definition 3: Given two strictly positive real values α and β,
and a set P of association rules, the fitness function (denoted
fit) maps each projection γ of elements in P to a positive
real value fit(γ) as described below:

fit(γ) =
α× supp(γ) + β × conf(γ)

α+ β
(4)

where :

• the support of γ denoted by supp(γ) is y(γ)

P ,
• the confidence of γ denoted by conf(γ) is y(γ)

x(γ) ,
• x(γ) is the number of enrichments of γ in P ,
• and y(γ) is the number of enrichments of γ in P , having

the same consequence as γ.
We note that for a given association rule γ, supp(γ) mea-

sures the probability of occurrence of items in A(γ) together
with consequence C(γ) in the population, while conf(γ)
measures the probability of occurrence of the consequence
C(γ) having all items in A(γ) appearing in the rules of the
population.

IV. FAST EXHAUSTIVE SEARCH FOR ASSOCIATION RULE
MINING ALGORITHM (FES-ARM)

To solve Problem 1 we propose the following exhaustive
search algorithm. We notice that Algorithm 2 may be called
by Algorithm 1 many times for the same rule. This is due
to the fact that different rules can have common projections.
We note that running Algorithm 2 with a rule that already
have been treated does not bring more results. The proposed
enhancement consists of using a setRulesDone which will
hold all the already analyzed rules, and recursion in Algorithm
2 will only be initiated for rules that are not in RulesDone.
There is also a second improvement: It tackes a costly part of
the treatment : the computation of the fitness function itself.
We propose to keep track for all computed fitnesses for all
analyzed rules. This is efficient since fitness is likely to be
computed many times for the same rule.

683

A. FES-ARM Algorithm

To solve Problem 1 we propose the following FES-ARM
algorithm.

1) Compute all projections of rules in the population and
keep only those having maximum fitness.

2) Projections of a given rule γ, are recursively computed
by removing at each recursion step only one item from
A(γ).

Algorithm 1: MAIN FES-ARM Algorithm
Input: P and c
Output: OptRules, OptF its and RulesDone

1 Initialize OptRules with ∅ and OptF its with 0.0 for all
rule sizes;

2 for γ ∈ P do
3 SOLVE_FOR_RULE(γ, c, OptRules, OptF its,

RulesDone);
4 end

Algorithm 2: SOLVE_FOR_RULE

Input: γ, c, OptRules, OptF its and RulesDone
Output: OptRules, OptF its

1 if γ /∈ RulesDone then
2 RulesDone.add(γ);
3 CurrentF itness← fit(γ);
4 if CurrentF itness > OptF its.get(S(γ)) then
5 OptF its.put(S(γ), CurrentF itness);
6 OptRules.put(S(γ), ∅);
7 OptRules.get(S(γ)).add(γ);
8 end
9 else

10 if CurrentF itness = OptF its.get(S(γ)) then
11 OptRules.get(S(γ)).add(γ);
12 end
13 end
14 if S(γ) > 1 then
15 for item ∈ A(γ) do
16 A(γ′)← A(γ) \ {item};
17 C(γ′)← c;
18 SOLVE_FOR_RULE(γ′, c, OptRules,

OptF its, RulesDone);
19 end
20 end
21 end

Algorithm 1 takes as input the population P , the considered
consequence c and returns a mapping OptRules : i → Γi
associating to each possible rule size i the set of rules realizing
maximum fitness and a mapping OptF its : i→ fi associating
to each possible rule size the actual maximum fitness. It uses
a set RulesDone that will contain all analyzed rules (for
optimization purpose).

We note that Algorithm 1, solves several instances of
Problem 1 at a time, i.e., for all rules sizes.

B. Complexity

Complexity of Algorithm 1 (using Algorithm 2) will obvi-
ously depend on concrete used implementations of mappings
and sets data structure.

We propose to use Java HashMap (resp. HashSet) to im-
plement mappings (resp. sets). These classes offer constant-
time complexity for regular operations: add, remove and
membership test (∈).

This means that all instructions in Algorithm 2 (the recursive
call being omitted) are constant-time complexity, except for
line 3 where a fitness is computed. Computing the fitness of
a rule γ means running through the hole population of rules
and testing whether A(γ) is a subset of the antecedent of
the population member. Testing that a set A is a subset of
another set B runs in O(min(A,B)). This means computing
the fitness of γ is O(S(γ)× P).

Algorithm 2 will be called for all projections of all rules in
the initial population P . There may be redundancy in those
generated projections, since two rules can share projections.
We note that the if test in line 1 of Algorithm 2 will be
executed for all generated projections, with redundancy, while
all the other instruction of this algorithm will be executed
only once for each distinct generated projection. Each call to
Algorithm 2 with rule γ and where the if test in line 1 will
be positive, will cost O(S(γ)).

Let Ns
Γ be the number of all computed projections of

size s with redundancy and Ns
Γ,d the number of all the

latter projections without redundancy. We can safely infer that
complexity of Algorithm 1 is

O(
∑
s∈[1,d]

Ns
Γ + n×

∑
s∈[1,d]

Ns
Γ,d × s)

.
We recall that d is the maximal rule size (in our example it

is 8) and we note that Ns
Γ,d and Ns

Γ are likely to be exponential
in d and P in the worst case.

C. Fitness Computation Enhancement

Computing the fitness for a given rule is a costly task.
Indeed we explained in previous sections that it has O(s×n)
complexity, where s is the rule’s size and n the population
size. We propose to reduce the fitness computation complexity
using the following enhancements:

1) Provided that we already have computed a mapping
TransactionsByItems
, that sends every item item to the set of the transactions
(rules in P) Γ(item) where this item appears. We can
compute then compute:

x(γ) =
⋂

item∈A(γ)

TransactionsByItems(item) (5)

684

If we extend the definition of TransactionsByItems
to the consequences, we can also compute, for a given
sequence c:

xy(γ) =
⋂

item∈A(γ)∪{c}

TransactionsByItems(item)

(6)
Since the complexity of computing the intersection of
two sets A and B runs in O(min(A,B)). We can infer
that the complexity of computing every intersection is
O(s×Minitem∈A(γ)∪{c}(TransactionsByItems(item)))
and that reduces drastically the fitness computation
(time) complexity. We note that pre-computing the map-
ping TransactionsByItems does not introduce too
much cost, since it can be done while parsing rules from
the database file.

2) We can also keep track of all computed fitnesses so far,
using a mapping ComputedF itnesses that sends each
already analyzed rule to its fitness value.

V. EXPERIMENTAL RESULTS

We propose in this section to discuss results obtained
when applying the algorithm presented in this paper compared
to Apriori Algorithm. We used databases containing 768,
7680 and 76800 entries, with antecedents of size 8 and 2
consequences, and executed 10 times.
• N: Number of iterations.
• C: The considered consequence.
• A.E.T : Average Execution Time
All times are measured in milliseconds (ms) except when

a different unit is explicitly specified.

TABLE IV: Comparative table of Average Execution Time
(A.E.T) provided by our Algorithm and Apriori Algorithm

n C A.E.T Apriori A.E.T FES-ARM

768
91 667035 2120
92 852392 2766

7680
91

> 48h

12855
92 13342

76800
91 145355
92 143346

Discussion: In this work we introduce an efficient al-
gorithm to identify relevant ARs. Our experimental evalua-
tion shows that comlexity goes from exponential complex-
ity O(2n) to polynomial complexity O(

∑
s∈[1,d]N

s
Γ + n ×∑

s∈[1,d]N
s
Γ,d × s) in comparison with Apriori Algorithm

(worst case) and in response time (mentioned in table IV).
Compared to Apriori Algorithm, our approach proved the same
efficiency in quality of generated rules with maximizing the
fitness function, proving that we have not lost the quality
of information as well even with the increased size of the
database. These results are due to three improvements. The
first one consists of using a setRulesDone which will hold
all the already analyzed rules, to avoid analyzing the same rule
several times (We propose mining specific to general).

The second one is computing the fitness of each transaction
by pre-computing the mapping TransactionsByItems while
parsing rules from the database file. The third one (It tackes a
costly part of the treatment) consists of keeping track for all
computed fitnesses for all analyzed rules. This was efficient
since fitness was likely to be computed many times for the
same rule.

VI. CONCLUSION

This paper presents a new Fast Exhaustive Search algorithm
FES-ARM for discovering efficient ARs to predict the chance
of occurring the Diabetes Mellitus (DM). The proposed algo-
rithm produces in a correct way relevant association rules (The
same rules produced by Apriori algorithm) while optimizing
the average execution time in the worst case to 314,64%.
FES-ARM is tested on real databases containing 768, 7680
and 76800 entries, with antecedents of size 8 and 2 conse-
quences, and executed 10 times. The complexity of FES-ARM
Algorithm is improved from O(2n) to O(

∑
s∈[1,d]N

s
Γ + n×∑

s∈[1,d]N
s
Γ,d×s) in comparison with Apriori Algorithm. Our

ambition for the future works, dealing with large transactional
databases, is to develop new metaheuristics approaches to
solve association rules mining as a combinatorial optimization
problem.

REFERENCES

[1] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Acm sigmod record, vol. 22,
no. 2. ACM, 1993, pp. 207–216.

[2] Q. Zhao and S. S. Bhowmick, “Association rule mining: A survey,”
Nanyang Technological University, Singapore, 2003.

[3] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C. Coello,
“Survey of multiobjective evolutionary algorithms for data mining: Part
ii,” IEEE Transactions on Evolutionary Computation, vol. 18, no. 1, pp.
20–35, 2014.

[4] H. R. Qodmanan, M. Nasiri, and B. Minaei-Bidgoli, “Multi objective
association rule mining with genetic algorithm without specifying min-
imum support and minimum confidence,” Expert Systems with applica-
tions, vol. 38, no. 1, pp. 288–298, 2011.

[5] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
1994, pp. 487–499.

[6] X. Yuan, “An improved apriori algorithm for mining association rules,”
in AIP Conference Proceedings, vol. 1820, no. 1. AIP Publishing, 2017,
p. 080005.

[7] B. Wang, D. Chen, B. Shi, J. Zhang, Y. Duan, J. Chen, and R. Hu,
“Comprehensive association rules mining of health examination data
with an extended fp-growth method,” Mobile Networks and Applications,
vol. 22, no. 2, pp. 267–274, 2017.

[8] M. J. Zaki, “Scalable algorithms for association mining,” IEEE transac-
tions on knowledge and data engineering, vol. 12, no. 3, pp. 372–390,
2000.

[9] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in ACM sigmod record, vol. 29, no. 2. ACM, 2000, pp.
1–12.

[10] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “Lcm: An efficient
algorithm for enumerating frequent closed item sets.” in Fimi, vol. 90.
Citeseer, 2003.

[11] G. Sheng, H. Hou, X. Jiang, and Y. Chen, “A novel association rule
mining method of big data for power transformers state parameters based
on probabilistic graph model,” IEEE Transactions on Smart Grid, vol. 9,
no. 2, pp. 695–702, 2018.

[12] X. Liu, Y. Zhao, and M. Sun, “An improved apriori algorithm based
on an evolution-communication tissue-like p system with promoters and
inhibitors,” Discrete Dynamics in Nature and Society, vol. 2017, 2017.

685

[13] C. Fu, X. Wang, L. Zhang, and L. Qiao, “Mining algorithm for
association rules in big data based on hadoop,” in AIP Conference
Proceedings, vol. 1955, no. 1. AIP Publishing, 2018, p. 040035.

[14] H. Amraoui, F. Mhamdi, and M. Elloumi, “Survey of metaheuristics and
statistical methods for multifactorial diseases analyses,” AIMS Med Sci,
vol. 4, pp. 291–331, 2017.

[15] J. W. Smith, J. Everhart, W. Dickson, W. Knowler, and R. Johannes,
“Using the adap learning algorithm to forecast the onset of diabetes
mellitus,” in Proceedings of the Annual Symposium on Computer Appli-
cation in Medical Care. American Medical Informatics Association,
1988, p. 261.

[16] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

686

Collecting Data from Continuous Practices: an
Infrastructure to Support Team Development

Ana Filipa Nogueira∗†, Emilien Sergeant†, José C. B. Ribeiro‡,
Mário A. Zenha-Rela∗ and Antoine Craske†

∗ CISUC, University of Coimbra, Portugal
† DOSI, La Redoute S.A., France

‡ CIIC, Polytechnic Institute of Leiria, Portugal

Abstract—Through software analytics, raw data with low value
originates information that is valuable and able to provide
insights, enabling the support of claims that would otherwise
not be possible to verify. The software development ecosystem
has plenty of sources that can help understanding the quality of
processes and products but, to reach that goal, it is necessary to
collect and store the data. This paper describes an infrastructure
to allow the collection, storage and analysis of data from software
repositories. The scope of the research is an industrial case
study, which encompasses several specificities: tools and work
methodology. The current solution is able to collect information
from the continuous delivery & deployment pipeline, which
includes data sources such as the source code repository (SVN),
the static analysis tool (SonarQube), the continuous integration
server (from Jenkins jobs) and the continuous testing tool (an
in-house tool called Cerberus). Future work also includes the
implementation of components that will allow the collection of
unstructured data from the bug-tracking system and incident
management tool. As stated in the literature, correlating the
history of issues and incidents will allow the team to address,
or at least identify, areas of improvement.

Index Terms—CI/CD Pipeline, Mining Software Repositories,
Machine Learning, Software Analytics, Software Quality

I. INTRODUCTION

Software Analytics as a means to predict or gather infor-
mation about software development activities is an engaging
research field that aims to provide insights and solutions, not
only for the technical topics, but also for organizational issues.
In general, one’s aspiration is to guide teams to enhance
the quality of the products being developed and processes
being executed ([1], [2], [3], [4]). In the scope of software
development, the ability to perform change impact analysis is
especially relevant since team members will be able to receive
direct feedback from their work and at the same time forecast
or identify support for other tasks such as test-case selection
and prioritization [5].

Mining Software Repositories (MSR) is among the new
techniques used to perform change impact analysis [6]; this
technique makes use of historical data available in software
repositories, such as issue tracking systems and source
code repositories. Menzies and Zimmermann write about the
common vision shared in the literature [4]: “data from software

DOI reference number: 10.18293/SEKE2019-192

projects contains useful information that can be found by
data-mining algorithms”. As such, commit messages and
bug-reports are examples of artifacts from which knowledge
related to change impacts can be extracted. For instance,
Ying et al. [7] claim that a developer may benefit from
patterns in the history change of a system while performing
maintenance tasks. Therefore, well-known applications
scope include recommendation systems, and effort and
defects predictors for software development. New fields
of research include: detectors for unexpected or bug-prone
code, indicators for developer’s mood by applying sentiment
analysis to comments, and explorers for complex spaces. As
for data science in the industry, what was seen in the past as
cutting-edge research is now part of daily operations of IT
companies [4], [8].

With the current shift concerning automated delivery and
deployment, and when moving from manual and bureaucratic
processes to almost full automation, all those tools pose as data
sources. Nowadays, delivery and deployment are continuous
practices supported by tools [9], and the capture of events is
more straightforward. In addition to mine source repositories
and bug tracker systems, the spectrum of sources may include:
code review tools [10], Continuous Integration/Continuous De-
livery (CI/CD) tools or automated tools for continuous testing.
Even though there are principles and practices transversal to
companies that implement continuous practices, a company’s
specific characteristics influence how these practices are im-
plemented [11], including the business domain, the type of
product being developed, or the impact on the customers (e.g.,
some companies report that frequent releases may lead to an
increase on customer churn rate).

In order to gain visibility of all the events generated by
continuous practices it is necessary to implement an in-
frastructure to support the data collection and storage. This
paper reports on a real case study, implemented for the IT
department of La Redoute1, which is an e-commerce company.
The infrastructure presented aims to collect data from several
data sources available in the continuous pipeline: source code
repository, static analysis tool, CI/CD server and continuous
testing tool. The paper is the continuation of previous work

1https://www.laredoute.fr/

687

[12]; it described the ongoing research and motivation to
apply machine learning techniques to improve the quality
of processes and products developed in La Redoute’s IT
department. A particularity of the architecture presented in
this paper is that it is emerging during the digital transfor-
mation of the company, i.e., new projects moving to micro-
services cloud-based architecture, in opposition to monolithic
solutions implemented in the past. The infrastructure being
developed is also supported by this new technological stack
which includes components such as Kafka2, Kubernetes3,
ElasticSearch, Logstash and Kibana (from the Elastic stack4).
Considering some the advantages of software analytics and
MSR, this infrastructure will support the team’s need to
anticipate issues (“Is this commit considered problematic?”)
and to understand the best and worst practices in place, both
technical and social (“Do people on my team need training?”).

The rest of paper is organised as follows: Section II
overviews relevant literature; Section III describes the main
requirements and the architecture being implemented, and
finally, IV concludes this paper while identifying future di-
rections.

II. RELATED WORK

This section overviews literature that takes advantage of
repositories mining in order to find patterns and to extract
knowledge about the aspects influencing the software devel-
opment and evolution.

Ball et al. [13] proposed a framework to delve into the
relationships between several components of the software
development process: requirements, technological stack, soft-
ware development and the development’s team organizational
characteristics. In the scope of C++ case studies, the authors
derived a VCS-related metric: connection strength determined
with basis on how probable it is that two classes are modified
together. Additionally, Ball et al. highlighted the existence
of valuable contextual information that could be leveraged
to understand how a component evolved from one release to
another; examples include code modified, date and time of
modification, and the author. The assumption is that automated
analysis can also be applied to contextual data.

Hipikat tool [14] was conceived by C̆ubranić and Murphy
as a means to aid newcomers to an open-source project, which
don’t have the same support net when compared to traditional
in-house teams. The authors use the concept of implicit group
memory that infers links between archived artifacts produced
in the source repository, issue-tracking systems, communica-
tion channels and online documentation. The implicit group
memory is then used to recommend artifacts, from the archives,
possibly relevant to the task assigned to the newcomer.

Zimmermann et al. [15] present the tool ROSE – a plugin
for Eclipse IDE5 – that guides the programmer. An association
rule mining algorithm was employed to mine the version

2https://kafka.apache.org/documentation/
3https://kubernetes.io/
4https://www.elastic.co/
5https://www.eclipse.org/ide/

histories providing the developer means to: i) “suggest and
predict likely changes”; ii) “prevent errors due to incomplete
changes”; and iii) “detect coupling undetectable by program
analysis”. As the tool is based on the files’ version history,
it is possible to observe another type of coupling that is not
code-based: coupling between items that are not applications
or programs.

Canfora and Cerulo [16] proposed a method to infer the
list of impacted source files that will be impacted by a
change request. The method makes use of information from the
source repository and the changes requests (Bugzilla6) and via
information retrieval algorithms, the technique makes the link
between the new change request and the historical revisions
impacted by similar requests. The evaluation of the method
was implemented in four open source projects, and the positive
results range from 30% to 78%. The prediction of the effort
required to test is another possible application pointed by the
authors that will help both developers and project managers.

Ren et al. developed Chianti [17], a tool to support change
impact analysis of Java programs, integrated in the context
of Eclipse IDE. For this tool in particular, regression and
unit tests, and corresponding executions, are the artefacts of
interest, i.e., the tool reports on how tests’ behaviour are
influenced by changes. For each change on a test’s behaviour,
the tool also determines the “affecting changes”.

Ying et al. [7] developed an approach that relies on data
mining techniques to identify patterns on the change history of
the base code; specifically, the approach searches for patterns
among the changes observed on the set of files that commonly
change together. Based on their approach, the authors report
that history change patterns support recommendation systems
that indicate additional code that should be modified when a
developer is doing a modification of the source code. This
work is aligned with work done by Zimmermann et al. [15]
even if applying different algorithms.

Zanjani, Swartzendruber and Kagdi [6] also presented an
approach called InComIA to understand the change impacts
of an incoming request. They aim for connections between
historical data, provided in task management applications
(Mylyn7), and histories and contextual information available
in commits (via source code repositories). A corpus of source
code entities – methods and files – was created by applying
several techniques: information retrieval, machine learning and
source code analysis. For an incoming request, its text is used
to query the corpus and as a result, the tool returns a list of
the most prone to change entities.

TARMAQ is an algorithm developed by Rolfsnes et al. [5]
for mining evolutionary coupling (a driver for change impact
analysis); it was empirically validated on six projects – 2
industrial and 4 open source – and the authors claim better
results when compared with ROSE tool [15], as it worked
better for heterogeneous systems. Evolutionary coupling aims
to understand how systems evolved during their lifecycle,

6https://www.bugzilla.org/
7https://www.eclipse.org/mylyn/

688

the goal is to pick data that changed “together” and mine
the connections between the entities that were modified. The
authors focused at connections between files, although several
granularity levels would be possible (methods or variables).

Chatley et Jones [18] presented a tool called Diggit which is
able to generate code review comments in an automated fash-
ion; the authors used historical changes from a Git repository,
using a mining algorithm to pinpoint directions on eventual
changes. The tool was integrated in a development team inside
an industrial case study, and the authors also reflected on the
impacts of adapting an academic research into the real world
to be used by developers. The authors pinpoint potential both
for commercial and open-source projects (which may include
a higher number of developers and number of commits during
the time). Motivation for their work encompasses not only the
assurance of commits’ quality but also the support to improve
developers’ competences.

Following a different perspective, Mens and Goeminne [19]
studied the social component applied on the open-source com-
munity: work methodologies, cooperation, communication and
information sharing. The main motivation was to understand
how communities impact the evolution of a software product,
some of the events that were analysed by authors are also
true for industrial case studies, examples, departure of a key
developer or the handover of a project to another team.

Murgia et al. [20] also adopted a more social approach by
mining issue reports to gather emotional information about
the software development. The authors focused on the issue
tracking system of Apache Software Foundation8 and were
able to observe emotions such as sadness, joy and gratitude,
through a human observation of the reports. The motivation
for analysing this type of information is on the fact that
the lack of happiness or safety may lead developers to fall
behind. Moreover, to support the importance of context in
the quality, Bird et al. [21] report about the impacts of
organizational aspects, which are seen as strong indicators of
quality, refuting that geographically teams are producing worst
products. Menzies and Zimmermann [4] also agree that social
factors are promising quality predictors.

Another level of repositories mining is to mine repositories
of repositories (RoRs). For instance, Sowe et al. [22] studied
the types of projects being developed in the open source com-
munity, for that purpose the authors used metadata available
in the RoRs FLOSSmole9.

Our research addresses a industrial case study, i.e., the scope
include projects developed by an IT department composed by
almost 110 people from Development and Operations. The
underlying motivation for the implementation of the infrastruc-
ture described in this document is to have means to support and
improve products, processes and competences. Even though
there are a few studies reporting about industrial case studies,
the majority of the aforementioned research focuses on open-
source case studies. Nevertheless, those are a representative

8https://www.apache.org/
9https://flossmole.org/

sample of complex projects both in the technical and social
perspectives.

III. ARCHITECTURE

A. Continuous Delivery & Deployment Pipeline

Figure 1 depicts a general view of the delivery & deploy-
ment pipeline implemented by the IT team; it is supported
mainly by Jenkins10, integrated with the other tools so as
to allow the build, static analysis, deploy and testing of the
components being delivered and deployed.

The pipeline is triggered immediately upon a commit on the
version control system, SVN11. Jenkins listens for modifica-
tions on the code repository and initiates the build of the com-
ponent after each new commit. In the same job instance, after
the build, the component is submitted to SonarQube 12, which,
in turn, executes the static analysis (reports about technical
debt, test coverage, complexity) and enforces quality rules that
should be respected. If the build and quality rules are valid, the
project is deployed in a first non-production environment QA
– Quality Assurance, so that developers can perform their first
tests in a machine other than theirs. A successful deployment
triggers a functional test campaign, ensuring non-regression,
implemented through an in-house tool named Cerberus [23].
The global output of the test campaign – OK or KO – is
used to decide if the component should be installed in the
following environments in the pipeline. After QA, the team
can move their components to the next environments – UAT
and PROD. UAT or User Acceptance Tests is a pre-production
environment allowing to perform more tests in a confined
environment.After the deploy of a component in the UAT
environment, the corresponding automated test campaigns will
be triggered as well. For Production, it is also possible to
execute automated tests.

B. Architecture

Altogether, the proposed architecture (Figure 2) collects
structured data about: the commits, the Jenkins jobs status
for build, deployment and test campaigns; SonarQube mea-
surements and the summary for test campaigns executions.

As mentioned in the Introduction, the architecture described
in this paper is implemented in a Kubernetes cluster, which is
an “open-source system for automating deployment, scaling,
and management of containerized applications”. This type of
infrastructure eliminates most of the manual work required to
set up and modify an infrastructure, in opposition to traditional
Virtual Machines. Thence, if necessary, a new resource for
data collection, treatment or analysis can be easily set up and
integrated in the infrastructure.

The entry or starting point of the data collection process is
the Kafka component – identified as “Data pipeline”. Kafka
is a distributed streaming platform that allows, among other
features, to implement the streaming of data pipelines in real-
time. For this specific architecture, the jobs in the Jenkins

10https://jenkins.io/
11https://subversion.apache.org/
12https://www.sonarqube.org/

689

Fig. 1. Overview of development pipeline supported by Jenkins, SVN, SonarQube and Cerberus.

pipeline send data to a specific Kafka topic called “jenkins”.
A topic defines a stream that holds specific types of events
or messages. An advantage is that any consumer can pick
a message or event in a topic and treat it according to
their specific use case. The potential of streaming the events
triggered in the continuous pipeline is huge, for instance, the
“jenkins” topic is also supporting some release engineering
tasks, since the team is able to extract statistics about the
team’s velocity and the time necessary to reach production
environments.

In this architecture, the consumer of the “jenkins” topic
is referred as “Data filter”, which is a Logstash service that
reads the messages and extract the meaningful data for this
research. Logstash is an Extract, Transform, and Load (ETL)
component. The “Data filter” will parse and load the useful
data into a component implemented in Java, which in turn is
responsible for correlating the data received with metrics from:
i) the code quality analysis and ii) the result of the functional
test campaign. This step will promote the construction of a
complete data set that will serve the purpose of the system. The
data will then be stored inside a special component, the “Data
Repository”, which is an ElasticSearch engine that stores data
as JSON documents. ElasticSearch allows quick searches and
integrates very well with other technologies simplifying both
data analysis and visualization tasks.

The second half of the architecture (“Decision Making
Process”), represents the components that can consume data
from the “Data repository”. It is expected to use Machine
Learning techniques to predict the severity level of the events
happening in the continuous pipeline. For that purpose, a
first TensorFlow13 component is being implemented in the
Kubernetes cluster. Additionally, it is important to provide
means to visualize the data, and for that purpose we expect
to implement useful dashboards. To begin, Kibana is also
available in the cluster, facilitating the access and visualization
of the data available in “Data Repository”.

With basis on this architecture, the next step is to implement
all the processes and components that will analyse the data

13https://www.tensorflow.org/

and provide valuable insights to users, either developers or
managers. For that purpose, future work will need to ensure
some basic requirements [24] [18]:

• Short execution times: if the analysis takes too long,
developers will feel tempted to abort it and to move on.

• Short number of false positives: a high number of false
positives may lead to the abandonment of the framework.

C. Other data sources

Other data sources included in the “Data repository”, but
that are currently being manually loaded include:

• Developers experience: the different developer categories
are used as input. Developer’s data needs to be managed
carefully to avoid exposing personal details. Future work
may include information about the managers and team
organization in order to understand the organizational
impacts.

• Impact of the project: currently being loaded from an ex-
cel file; however, there is an ongoing project to implement
a database repository which will ease the management
of this type of information. Also, it is necessary to
ensure that the owners of each software component share
accurate information about the impacts and severity for
the business.

A next step for this architecture includes the development
of specific connectors to gather non-structured data from: i)
Mantis – the bug tracking system for non-production issues;
ii) iTop – system used to report issues detected in PROD
environment; and iii) logs – any type of execution logs.

D. Early Observations

Even though is to soon to comment on the data collected
and the insights that are possible to infer, it is interesting to
report a curious observation. Linear regression was applied to
two variables: i) the result of the Jenkins build job, and ii)
the time of the day that a commit was done. An unexpected
high number of build jobs, which are triggered by the commit,
failed in the hour after the lunch break. A possible research

690

Fig. 2. Architecture to collect data from the CI/CD pipeline.

direction: What are the impacts of interrupting the “thinking
flow” of a developer?

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Even though software analytics opens several possibilities
for “discovering, verifying, and monitoring the factors that
affect software development”, there are several underlying
issues [4]. The following paragraphs describe how those issues
relate to the work described in this paper.

Even though the described architecture is prepared to collect
data from several sources in the pipeline, there are factors that
are not visible in those components nor collected in an auto-
mated manner. For that purpose, two surveys were conducted
to obtain information that is not available in the tools used,
but that is more related to the social component and team’s
characteristics. This type of activity is time-consuming, but the
surveys results are expected to uncover not only the points of
improvement, but also the good practices implemented by the
company.

The context may be another issue, as it may differ among
projects, even when handled by the same team. Currently, we
are restricting the research scope to new projects that have a
high-level of readiness to integrate a micro-services architec-
ture. Nevertheless, the legacy code, which is distributed across
a panoply of projects using different technological stacks,
represents a big part of the scope, and it may hinder bad
practices that are propagated and need to be addressed by
the team. This is a topic that needs to be monitored closely
in order to understand how can we transfer the knowledge
acquired from a project – that fits the standards of the new
architecture – to a legacy project.

A frequent goal of this type of research, which focuses on
the software development data, is to have actionable insights,
i.e., how can we use the information available to take some
real and concrete actions. This work is expected to provide
information that can help teams reduce the overhead of manual
tasks, raise automatic alerts in case of need, and also identify

potential needs in terms of training. These actionable actions
will impact the continuous practices and drive business value,
as an increase on the quality of processes and products is
foreseen.

REFERENCES

[1] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution,” J. Softw. Maint. Evol., vol. 19, pp. 77–131, Mar. 2007.

[2] T. Menzies and T. Zimmermann, “Software analytics: So what?,” IEEE
Softw., vol. 30, pp. 31–37, July 2013.

[3] M. A. de F. Farias, R. Novais, M. C. Júnior, L. P. da Silva Carvalho,
M. Mendonça, and R. O. Spı́nola, “A systematic mapping study on
mining software repositories,” in Proceedings of the 31st Annual ACM
Symposium on Applied Computing, SAC ’16, (New York, NY, USA),
pp. 1472–1479, ACM, 2016.

[4] T. Menzies and T. Zimmermann, “Software analytics: Whats next?,”
IEEE Software, vol. 35, pp. 64–70, Sep. 2018.

[5] T. Rolfsnes, S. D. Alesio, R. Behjati, L. Moonen, and D. W. Bink-
ley, “Generalizing the analysis of evolutionary coupling for software
change impact analysis,” in 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 1,
pp. 201–212, March 2016.

[6] M. B. Zanjani, G. Swartzendruber, and H. Kagdi, “Impact analysis
of change requests on source code based on interaction and commit
histories,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, (New York, NY, USA), pp. 162–171,
ACM, 2014.

[7] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predicting
source code changes by mining change history,” IEEE Trans. Softw. Eng.,
vol. 30, pp. 574–586, Sept. 2004.

[8] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The emerging
role of data scientists on software development teams,” in Proceedings
of the 38th International Conference on Software Engineering, ICSE
’16, (New York, NY, USA), pp. 96–107, ACM, 2016.

[9] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous Integration, De-
livery and Deployment: A Systematic Review on Approaches, Tools,
Challenges and Practices,” IEEE Access, vol. 5, no. Ci, pp. 3909–3943,
2017.

[10] X. Yang, R. G. Kula, N. Yoshida, and H. Iida, “Mining the modern code
review repositories,” Proceedings of the 13th International Workshop on
Mining Software Repositories - MSR ’16, pp. 460–463, 2016.

[11] M. Leppnen, S. Mkinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. Mntyl,
and T. Mnnist, “The highways and country roads to continuous deploy-
ment.,” IEEE Software, vol. 32, no. 2, pp. 64–72, 2015.

691

[12] A. F. Nogueira, J. C. B. Ribeiro, M. Z. Rela, and A. Craske, “Improving
la redoute’s CI/CD pipeline and devops processes by applying machine
learning techniques,” in 11th International Conference on the Quality of
Information and Communications Technology, QUATIC 2018, Coimbra,
Portugal, September 4-7, 2018, pp. 282–286, 2018.

[13] T. Ball, J.-M. K. Porter, and H. P. Siy, “If Your Version Control System
Could Talk ...,” in ICSE Workshop on Process Modeling and Empirical
Studies of Software Engineering, 1997.

[14] D. Cubranic and G. Murphy, “Hipikat: recommending pertinent soft-
ware development artifacts,” 25th International Conference on Software
Engineering, 2003. Proceedings., vol. 6, pp. 408–418, 2004.

[15] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” in Proceedings of the 26th Inter-
national Conference on Software Engineering, ICSE ’04, (Washington,
DC, USA), pp. 563–572, IEEE Computer Society, 2004.

[16] G. Canfora and L. Cerulo, “Impact analysis by mining software and
change request repositories,” Proceedings - International Software Met-
rics Symposium, vol. 2005, no. Metrics, pp. 261–269, 2005.

[17] Xiaoxia Ren, B. Ryder, M. Stoerzer, and F. Tip, “Chianti: a change
impact analysis tool for Java programs,” Proceedings. 27th International
Conference on Software Engineering, 2005. ICSE 2005., pp. 664–665,
2005.

[18] R. Chatley and L. Jones, “Diggit: Automated code review via software
repository mining,” 25th IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2018 - Proceedings,
vol. 2018-March, pp. 567–571, 2018.

[19] T. Mens and M. Goeminne, “Analysing the evolution of social aspects
of open source software ecosystems,” CEUR Workshop Proceedings,
vol. 746, no. January 2011, pp. 1–14, 2011.

[20] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel
emotions? an exploratory analysis of emotions in software artifacts,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, (New York, NY, USA), pp. 262–271, ACM,
2014.

[21] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does
distributed development affect software quality? an empirical case study
of windows vista,” in Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, (Washington, DC, USA), pp. 518–
528, IEEE Computer Society, 2009.

[22] S. K. Sowe, L. Angelis, I. Stamelos, and Y. Manolopoulos, “Using
repository of repositories (rors) to study the growth of F/OSS projects:
A meta-analysis research approach,” in Open Source Development,
Adoption and Innovation, IFIP Working Group 2.13 on Open Source
Software, June 11-14, 2007, Limerick, Ireland, pp. 147–160, 2007.

[23] Cerberus 2011-2019, “An open source, user friendly, automated testing
tool.” https://www.cerberus-testing.org/index.php/en/. Online; accessed
01 March 2019.

[24] C. Calcagno and D. Distefano, “Infer: An automatic program verifier for
memory safety of c programs,” in Proceedings of the Third International
Conference on NASA Formal Methods, NFM’11, (Berlin, Heidelberg),
pp. 459–465, Springer-Verlag, 2011.

692

Software Engineering Risks from Technical Debt

in the Representation of Product/ion Knowledge

Stefan Biffl1, Lukas Kathrein1,3
1Inst. for Information Systems Eng.

Faculty of Informatics

TU Wien, Vienna, Austria

[first].[last]@tuwien.ac.at

Arndt Lüder2
2Inst. of Ergonomics

Manufacturing Sys. and Automation

OvG U. Magdeburg, Germany

arndt.lueder@ovgu.de

K. Meixner1,3, M. Sabou1,3,

L. Waltersdorfer1,3 D. Winkler1,3
3Christian Doppler Lab SQI (sqi.at)

TU Wien, Vienna, Austria

[first].[last]@tuwien.ac.at

Abstract—In the multi-disciplinary production systems engineering

(PSE) process, software engineers depend on requirements and de-

sign rationales coming from product and production process

planning, summarized as product/ion knowledge. Unfortunately,

the engineering artifacts coming from product/ion planning often

represent important product/ion knowledge incompletely and not

well integrated, leading to risks regarding software engineering

quality. In this paper, we report on a case study at a large indus-

trial PSE organization, investigating Technical Debt (TD) effects,

items, and causes in PSE process documentation and configuration

management according to the VDI guideline 3695 Part 2. We focus

on requirements for and issues in the representation of product/ion

knowledge in the engineering data provided to software engineers.

Based on data elicited from PSE domain experts, we model TD

concepts based on the Quality Function Deployment method as

foundation for TD analysis and risk management. The initial vali-

dation with domain experts revealed how software engineers could

benefit from improved product/ion knowledge modeling as foun-

dation for better understanding the rationale of engineering design

decisions.

Keywords—Multi-Disciplinary Production Systems Engineering,

Product/ion Knowledge, Product-Process-Resource (PPR) Model,

Process Management, Technical Debt

I. INTRODUCTION

In production systems engineering (PSE) organizations,
many different engineering disciplines work together, such as
basic system and process planners, detailed automation engi-
neers and production optimizers, for fulfilling customer require-
ments towards the Industrie 4.0 vision [1] regarding, for exam-
ple, production system throughput and quality. In a typical PSE
process, the domain experts work in parallel in discipline-spe-
cific workgroups that exchange engineering artifacts for iterative
improvement. For making informed design decisions, industrial
automation and software engineers depend on the high quality
of input artifacts that contain software requirements as well as
results and rationale of system design decisions [4][5].

Unfortunately, the quality of software engineering (SE) re-
sults, such as software code governing the transportation system
of a production plant, is subject to risks due to the missing or
incorrect representation of product/ion knowledge, i.e.,
knowledge on characteristics of the product, produced by the
plant or characteristics of the industrial production process and
their relationships to characteristics of the production system
[13].

DOI reference number: 10.18293/SEKE2019-037

An example for such a relation is a fragile product that im-
poses limitations on the maximal acceleration during the
transport between production system components. If a software
engineer sets the transport speed high to maximize the system
throughput, the product quality may suffer, leading to the costly
redesign of the overall system. Limited awareness of domain ex-
perts on the knowledge requirements of partner roles in the pro-
ject may lead to insufficient descriptions of relevant engineering
data and knowledge. Risks from decisions based on insufficient
and often incomplete information or from unplanned effort due
to unreliable communication between basic and detailed plan-
ners could be better managed with adequate knowledge repre-
sentations of product/ion knowledge throughout the process.
Kathrein et al. point in [13] out that engineering organizations
(EOs), as defined in the VDI 3695 [28], tend to focus on disci-
pline-specific outcomes rather than on the collaboration of do-
main experts. The domain experts suffer from low quality of col-
laboration artifacts, but do not, in general, have the knowledge
or the budget to improve the collaboration process.

In this paper, we investigate Technical Debt (TD) in the rep-
resentation of product/ion knowledge in engineering artifacts ex-
changed between PSE workgroups as foundation for analyzing
and managing risks from TD effects, items, and causes in a PSE
organization. An example for TD is a missing or incomplete en-
gineering process description, which makes it hard to manage
projects across several domains and work groups. In this paper
we adapt the definition of TD by Li et al. [16] according to en-
gineering artifacts and the collaboration process: TD are viola-
tions in engineering artifacts compared to best practices of en-
gineering process documentation and configuration for collab-
orative workgroups in the PSE domain. Main goal is to identify
TD throughout the engineering process, for better PSE process
management, in particular, SE risks.

We report on results from a case study at a large industrial
PSE organization on TD regarding process documentation ac-
cording to the PSE domain VDI Guideline 3695 Part 2 [28] con-
cerning the procedure model for project activities and configu-
ration management in an engineering organization. We focus
on eliciting requirements for and in the representation of prod-
uct/ion knowledge supporting software engineers in their deci-
sion-making process. In the case study, we identified TD items,
where one TD item is a unit bearing quality risk [16], on insuf-
ficient description of engineering process and information in the
data exchange process and insufficient representation of prod-
uct/ion knowledge. Based on collected data samples, we relate
TD concepts to each other and investigate their relationships

693

based on the Quality Function Deployment (QFD) [19] method.
The QFD method allows analyzing and prioritizing customer re-
quirements together with solution options. We use the QFD
method for analyzing TD repayment options [19], e.g., which
TD items should be addressed to reduce system design cost. Bet-
ter understanding TD relationships is the foundation for ad-
vanced analyses of TD risks and TD repayment options.

The remainder of this paper is structured as follows: Section
II summarizes related work on PSE, on knowledge representa-
tion in PSE, and on concepts of TD in PSE knowledge. Section
III introduces the research questions and approach. Section IV
reports case study findings regarding TD effects, items, and
causes, and relates these TD concepts in a preliminary QFD style
model. Section V discusses results and limitations of the re-
search. Section VI concludes and provides an outlook on future
research.

II. RELATED WORK

This section summarizes related work on production systems
engineering (PSE), on knowledge representation in PSE, and on
concepts of technical debt in PSE knowledge.

A. Production Systems Engineering (PSE)

The engineering of production systems is a multi-discipli-
nary task involving various disciplines, such as mechanical,
electrical, and software engineering [3]. The disciplines conduct
a network of engineering activities where engineering decisions
are taken and engineering data are created by engineers. The en-
gineers use appropriate input data and engineering tools opti-
mized for the discipline. One role, the automation engineering
designs and implements the hardware and software of the pro-
duction system control, a main software engineering task in PSE
[27].

Within PSE, the importance of digital models is increasing.
New activities related to the development and use of life cycle
crossing digital shadows of complete production systems and
their components are envisioned to enable the Industrie 4.0 vi-
sion [17]. These models shall contain all relevant data and
knowledge on production systems aspects. This includes the de-
scription of the involved production system components, the
production processes they execute, and the product resulting
from the production process. Schleipen et al. [24] calls this PPR
knowledge and Kathrein et al. [13] use the term product/ion
knowledge. In this paper, we build on the PPR concept to iden-
tify shortcomings regarding knowledge representation that intro-
duce risks to SE activities.

B. Knowledge Representation in PSE

Engineering knowledge is a specific kind of knowledge, ori-
ented towards the production of artifacts, and, as such, requires
knowledge modeling and representation approaches that differ
from other types of knowledge, such as taxonomical knowledge
characteristic for the life sciences domain [25]. Ontologies are

1 OntoCAPE: https://www.avt.rwth-aachen.de/AVT/index.php?id=730
2 SSN Ontology: www.w3.org/2005/Incubator/ssn/ssnx/ssn.owl
3 https://www.w3.org/

information artefacts that have been used extensively to explic-
itly represent such engineering knowledge. This is for example
investigated by Ekaputra et al. [7] highlighting different ontol-
ogy-based data integration strategies, possible objectives an en-
gineering organization has, as well as data source types used.

Sabou et al. [23] provide an overview of such ontologies and
classify them in terms of the aspects of the PPR process that they
cover. For example, OntoCAPE1 [20] is an ontology for support-
ing computer-aided process engineering (CAPE) focusing on
describing production process information. The Semantic Sensor
Network (SSN)2 ontology, developed at W3C3, is well suited to
describe process states and their observability, as well as re-
source states. The Automation Ontology (AO) captures
knowledge about industrial plants and their automation systems
to support engineering simulation models [21]. AO concerns
mechatronic concepts to support simulation model design and
integration.

The explicit modeling of PSE knowledge is characterized by
the need to address recurring modeling needs specific for this
domain, including: Modeling Part-whole relations. Legat et al.
[14] observe that containment hierarchies are a well-accepted
and frequently occurring organizational paradigm from model-
ing part-whole relations in (mechatronic) engineering settings.
Modeling connections between components. Legat et al. [14] ob-
serve that interface-based composition describes the capabilities
expected from an interface to enable reasoning tasks about the
correctness of a system’s structure.

The modeling of recurring knowledge structures can be well
addressed by the reuse of Ontology Design Patterns (ODPs) that
model best practices applicable to typical conceptualization sce-
narios [10]. Indeed, ODPs exist to support the conceptual mod-
eling of (variations) of the engineering-specific modeling sce-
narios mentioned above. For example, modeling Part-whole re-
lations can be achieved by reusing the PartOf ODP4, which al-
lows modeling part-whole relations in a transitive fashion. The
Componency ODP5 is a specialization of the PartOf ODP for
modeling part-whole relations distinguishing between direct and
indirect (i.e., transitively-assessed) parts of an object. While
there are several approaches for knowledge representation in
PSE they are often not used and lead thus to TD, which is ad-
dressed in this paper.

C. Technical Debt in PSE Knowledge

Avgeriou et al. [2] compare Technical Debt (TD) to friction
in mechanical devices, requiring increasingly more energy to
achieve the same results as parts deteriorate. This is also true for
software engineering (SE), as short-term gains create friction
over the lifetime of a software-intensive system that require ex-
tra effort and cost to address or to repay. To deal with TD, Avge-
riou et al. [2] propose to analyze TD repayment options and to
investigate TD from different viewpoints. TD in a system con-
sists of TD items that are measurable in an SE artifact. Li et al.
[16] identify ten different TD types, with effects ranging from

4 PartOf ODP: http://ontologydesignpatterns.org/wiki/Submissions:PartOf
5 Componency ODP: http://ontologydesignpatterns.org/wiki/Submis-

sions:Componency

694

inconveniences to crippling whole software systems, making fu-
ture maintenance costly [2]. Martini et al. [18] point out that
large SE companies invest a quarter of the development time in
managing TD to continue providing their SE functions.

Dong and Vogel-Heuser [6] draw a comparison, based on re-
sults from two case studies, between TD in PSE and in SE, as
similar effects, such as short-term cost savings or lack of expe-
rience, occur in both domains. Causes of TD manifest in various
dimensions, for example mechanical, electrical, or software en-
gineering [6]. As process improvement and data exchange pro-
cesses are success-critical processes in engineering organiza-
tions (EOs), they identify crucial TD in design and architecture,
knowledge distribution and documentation [6].

Martini et al. [18] show how architectural TD accumulates
during development in a project until reaching a crisis point that
makes refactoring inevitable, increasing business value as the
short-term sins are repaid adequately. Case studies by Biffl et al.
[4][5] and Kathrein et al. [12][13] investigated engineering pro-
cesses of EOs with a focus on the structure of collaborations be-
tween workgroups [13] and how data is exchanged [4][5]. These
works represent building blocks for this paper, as they define a
coherent context with basic concepts needed for TD investiga-
tions. The research highlights multiple use cases with different
levels of TD, and points out missing product/ion-aware (PPR)
knowledge as a limitation.

III. RESEARCH QUESTIONS AND APPROACH

This section introduces the research questions (RQs) follow-
ing the design science method [29], and presents an illustrating
use case to investigate TD in the representation of product/ion
knowledge. Similarly, as in [26], we investigate TD as a form of
software engineering risks, with effects and possible causes.

RQ1: What risks to software engineering results and activi-
ties are related to technical debt in the representation of prod-
uct/ion knowledge in engineering artifacts exchanged between
workgroups in production systems engineering? From the high-
level RQ1, we derive the following sub-RQs.

RQ1a: What are effects of TD related to software engineer-
ing risks in PSE? We identify TD effects in the PSE process in
interviews with domain experts. These TD effects can be defined
as process management issues, i.e., deviations from the planned
engineering process, and the process executed by individual do-
main experts. The identification of TD effects allows highlight-
ing risks known to SE, but not to domain experts in PSE.

RQ1b: What are TD items regarding the VDI Guideline 3695
Part 2 in engineering artifacts exchanged between workgroups
in PSE? The VDI Guideline 3695 Part 2 [28] provides valuable
insights in describing engineering organizations (EOs) and po-
tential improvement steps. The guideline provides a set of best
practices that should be followed in an EO and allows analyses
similar to code reviews in SE. Therefore, we define TD items in
the PSE process by comparing selected target states in the VDI
3695 to the as-is engineering process.

RQ1c: What are causes regarding elicited TD items? As
foundation for managing TD, we elicit in the case study candi-
date TD causes in the engineering organization. TD causes

strengthen the deviation between the as-is and VDI 3695 defined
process and are important to address TD items and SE risks.

RQ2: How do TD concepts in the data exchange process re-
late to each other? After identifying TD concepts, we model
their relationships as foundation for analyzing the impact of TD
causes on TD items and effects, with a focus on SE concepts.

RQ2a: How do TD effects and TD items relate to each other?
Main outcome of this RQ is a table based on the QFD method
[19], developed with quality managers, who are responsible for
defining an ideal PSE process across all involved disciplines and
for possible improvement steps. The QFD method facilitates pri-
oritizing relationships between TD effects and TD items that are
relevant to reduce SE risks.

RQ2b: How do TD items and causes relate to each other?
There are many and diverse TD cause candidates that can have
different impacts on TD items. This RQ investigates most rele-
vant TD causes to influence the TD items and effects. Main out-
come is a table depicting relationships of TD causes and items
based on the QFD method [19], created with quality managers.

To answer the RQs, we followed a case study design [22] by
adhering to the following case study plan. [Objective] Exploring
an existing engineering process [Case] in a large PSE organiza-
tion. [Theory] Following the design science cycle according to
Wieringa [29] in a holistic case study, [Goal] we identify com-
mon concepts at collaboration interfaces between PSE work-
groups, and identify information bottlenecks regarding TD ef-
fects. [Method] Through seven semi-structured interviews (in a
funnel approach) [22], [Selection] we elicit representative data
from domain experts and investigate TD effects, items, and
causes.

According to the design science cycle [29], this paper fo-
cuses on workshops and interviews regarding TD effects,
causes, items, and the types and strengths of the relationships
between the TD concepts. We discuss likely causes for the TD
items found. Based on Matook and Indulska [19], we adapt the
QFD method to focus in this paper on two dimensions of the
QFD House of Quality (see Section V). In cooperation with qual-
ity managers, responsible for improving the PSE process, we de-
sign tables based on the QFD method [19] for investigating TD
cause candidates. Finally, we present a conceptual evaluation,
discussing presented repayment options to address SE-relevant
TD in the multi-disciplinary engineering process.

Kathrein et al. [12][13] elicited the illustrating use case in
Fig. 1 for data exchange in the PSE process. In this paper, the
use case frames the election of TD concepts in the case study. In
the beginning, the system planner (SP) receives product specifi-
cations from the customer (1) and aims at providing a competi-
tive offer and at deriving specific knowledge on the production
system for later use. This process is similar to software architec-
ture design [14]. Output of this step (lilac arrow) are resource
documents regarding the plant layout, calculations, and assem-
bly sequences, delivered to the process planner (PP) (2).

Upon receiving the artifacts, the PP investigates these arti-
facts with a common schema that domain experts have devel-
oped over decades. For example, the first column always is the
module identifier followed by the module name and a reference
to an existing CAD drawing if possible. Main goal is to derive

695

basic variations of the previously offered production system for
detailing mechanical aspects. However, if important product as-
pects and design decisions are not documented, the PP has to
call back the SP, e.g., via e-mail or telephone (3). Final output
of this step are detailed descriptions of the production system as
foundation for production optimization and PLC software engi-
neering in the form of automation tasks (4).

Process Planner (PP)

Production Optimizer (PO)

Automation Engineer

(AE)

System Planner (SP)

PUSH-based Artifact
Exchange

PULL-based Artifact
Exchange

Engineering
Artifact

Customer

1

2

3

4

4

6
5

5

Figure 1. Use case depicting the AS-IS data exchange process.

The production optimizer (PO) receives all basic plans and
tries to minimize the cycle times of the plant. However, this
work requires different product/ion knowledge aspects and may
cause many calls back to the SP and PP (5). The PO collaborates
with the automation engineer (AE) (6), who is responsible for
PLC software engineering tasks. From basic plans (4), the AE
derives specific PLC software code. Goal of the AE is to trace
design decisions as foundation for making informed design var-
iations, such as the parameterization of the software and systems
that execute production processes, e.g., the speed and accelera-
tion of transport processes. In the next section we investigate this
case study regarding TD effects, items and causes.

IV. CASE STUDY RESULTS AND TECHNICAL DEBT MODEL

This section reports on findings from the case study regard-
ing TD effects, items, and causes, and relates these TD concepts
in a preliminary QFD model for the case study context.

A. Case Study results on TD effects (RQ1a)

TD effects. Regarding the use case, data exchange process,
the following TD effects came up frequently in workshop ses-
sions.

TD-E1 High effort for tracing design decisions. High un-
planned effort in SE activities to collect information on the ra-
tionale of design decisions to sufficiently understand what
changes in the system design make sense in the production pro-
cess context.

TD-E2 Data quality risks in engineering artifacts. Low qual-
ity of engineering artifacts may limit the production system ca-
pabilities and reduce reuse opportunities of system components.

TD-E3 Risk of economic project failure due to cost for un-
planned effort for collecting information and due to risk of lim-
ited production system quality and capabilities.

B. Case Study results on TD items (RQ1b)

The TD item description contains the following sections:
name and acronym of the TD item; motivation of the typical con-
text and short-term benefits of the TD item; definition of the TD
item as a violation of the VDI Guideline 3695 Part 2 [28], (see
Section II.A); measurement definition on the presence of the TD
item; relationships to effects including long-term impact from
the presence of the TD item; and hypothetical relationships to
causes, including technical decisions or postponed best-practice
activities. Based on the TD item description, we identified the
following TD items.

Engineering process description insufficient (TD1Proc)
Motivation. The requirements for the engineering process de-
pend on the project and on the specific engineers conducting the
engineering tasks. Therefore, engineering process models may
exist on an abstract level, but do not cover engineering infor-
mation exchange in sufficient detail. The domain experts focus
on engineering production systems and rather than on formally
defining the engineering process in detail, with the short-term
benefit of starting quickly, following a method they prefer to use.
The engineering process models are not maintained and often
diverge from actual project practice. Similar TD concepts in SE
are missing documentation of application program interfaces
(APIs) and software engineering processes in general.

Definition. The VDI Guideline 3695 Part 2 [28], procedure
model for project activities, defines the target state A as “the staff
knows the procedure model and can explain how they use it in
the project.” However, in the case study context, the domain ex-
perts referred to only experience-based informal processes, with
limited awareness of the impact of actions in the process, in par-
ticular data exchange with process partners, beyond the immedi-
ate workgroup of the domain expert, such as extra effort and risk
of engineering data consumers.

Measurement. There is no formal description of discipline-
specific engineering process steps and of the collaboration pro-
cesses between the disciplines involved in the engineering pro-
cess. The staff does not know about their engineering process
description including the impact of exchanged information and
the required data maturity.

Relationships to effects. TD-E1, TD-E3 (see Table I in Sec-
tion IV.C). TD symptoms include high effort for communication
and rework due to shortcomings in data exchange, in particular
for SE, as the SE activities depend in inputs from several disci-
plines that may be incomplete or even contradicting (see Fig. 1).

Relationships to causes. See Table II, in Section IV.C. In the
case study, main causes came from insufficient means that hin-
der the description of the engineering process.

Information description insufficient (TD2Inf) (in ex-
changed engineering data). Motivation. In the case study con-
text, the domain experts focus only on the data relevant to their
own discipline and do not consider dependencies to related dis-
ciplines. They often use tool-specific data exports, such as com-
ponent lists or CAD drawings, and Excel as a general-purpose
information exchange artifact. Short-term benefits include sav-
ing effort for the data provider and flexible choice of means for
the provider when collecting the engineering data to exchange.

696

Similar TD concepts in SE are missing documentation of inter-
faces, code, and implementation details.

Definition. The VDI Guideline 3695 Part 2 [28], configura-
tion management, defines the target state A as “… there are dis-
cipline-specific procedures for configuration identification, con-
figuration monitoring, […] Within a discipline, all employees
follow common guidelines.” However, in the case study, domain
experts found artifacts not to be managed, but simply to evolve
over time according to engineering personnel experience, with-
out specific consideration for dependencies between engineering
artifacts in different disciplines, which poses risks for SE activi-
ties that depend on consistent and complete inputs (see Fig. 1).

Measurement. There is no formal description of engineering
artifacts and data, including dependencies between engineering
disciplines, such as product, process, and system design. There
is no configuration history for backtracking design decisions.

Relationships to effects. See Table I, in Section IV.C. TD
symptoms include high effort and risk for propagating changes
to systems design across disciplines, in particular for SE, when
receiving inputs from several engineering disciplines.

Relationships to causes. See Table II, in Section IV.C.

Product/ion (PPR) knowledge representation insufficient
(TD3PPR) (in exchanged engineering data). Motivation. Do-
main experts in production process design have product/ion
(PPR) knowledge that would be, in many cases, important to en-
gineers in later stages of PSE and optimization, in particular, for
SE activities. However, the process designer tends to provide her
engineering partners with hard-coded production system param-
eters rather than PPR knowledge as there is no dedicated tool or
modeling language to allow the effective and efficient represen-
tation of PPR knowledge. Short-term benefit for the process de-
signer is saving effort for modeling the PPR knowledge. Similar
TD concept in SE would be missing information on non-func-
tional requirements for a software system.

Definition. The VDI Guideline 3695 Part 2 [28], configura-
tion management, defines the target state D as “system-assisted
cross-discipline” configuration management to enable “con-
sistency check […] at an early stage”. However, without suffi-
cient PPR knowledge representation, consistency checks be-
tween production process design and production system design
are difficult, error-prone, and take considerable expert effort.

Measurement. The engineering data model misses represen-
tations for expressing PPR knowledge and rationale to trace de-
sign decisions, such as production system temperature settings
to the welding temperature and force of a metal joining process.

Relationships to effects. See Table I, in Section IV.C. TD
symptoms include in SE activities considerable costs of errors
from changes and effort for preventing defects after changes.

Relationships to causes. See Table II, in Section IV.C. In the
case study context, main cause candidates include workgroup-
specific optimization of the engineering organization and insuf-
ficient means to express PPR knowledge.

C. Case Study results on TD cause candidates (RQ1c)

Cause candidates linked to context in the engineering or-
ganization, often for economic and historic reasons in the EO.

A1. Workgroup-related profit centers lead to the local opti-
mization of workgroups with limited concerns for the optimiza-
tion of projects across workgroups, often at the expense of SE.

A2. Engineering habit trained by discipline-specific educa-
tion leads to engineers focusing on good results in their
workgroup. Engineers are, in general, not aware about work
tasks, dependencies, and problems in other workgroups, unless
a partner asks them for an improvement.

A3. Unclear responsibilities of domain experts in data ex-
change process lead to ad-hoc procedures and data definitions.

A4. Limited collaboration effort across work groups without
a dedicated role for coordinating the work across workgroups.

Cause candidates from engineering process description

B1. Engineering process modelled as an artifact-based
workflow, not as a data-related workflow makes it hard to de-
scribe dependencies between SE and other disciplines, such as
consistency rules that relate to the data model, not to artifacts.

B2. Engineering process defined, but not useful. There is a
workflow definition for a process. However, the definition may
be abstract and lack important description of content dependen-
cies, such as relationships between the product and resource de-
sign, tainting the usefulness of the definition.

B3. Engineering process defined, but not operational. There
is a process description. However, missing technical founda-
tions, such as adequate process description concepts or tool sup-
port, make it hard or impossible to conduct the process.

B4. Engineering process defined, but not known to stake-
holders. There is a process description somewhere in a manual.
However, the relevant actors in the project are not aware of the
process description for their daily work.

Cause candidates linked to information description

C1. Description of complex dependencies required due to a
large number of disciplines (often 15 or more) in a PSE project.
Complex descriptions of processes and artifacts and their de-
pendencies in an engineering organization (EO) lead to a very
complex network (consider Fig. 1, scaled up).

C2. Industry-dependent information description. The de-
scription of information depends on the industry and has to be
adapted accordingly. There is no general standard that could be
applied directly. There is no general EO model as the industry
domains require a variety of EO structures and behavior

C3. Tool-driven process without product/ion (PPR) infor-
mation description. Often, the process is defined based on a spe-
cific tool chain. Therefore, the functional and data export capa-
bilities of the tool determine the exchanged information. The
process is not aware of PPR as the discipline-specific tools only
know the PPR knowledge that is relevant within the discipline.

697

D. TD effect and item relationships (RQ2a)

Following an adaptation of the QFD method according to
Matook and Indulska [19], we create a House of Quality (HoQ).
Our HoQ provides insights into the relationships between TD
effects and items horizontally (representing customer require-
ments in the original HoQ) and TD items and causes in the ver-
tical axis (representing engineering requirements). For these two
QFD dimensions, we design two tables expressing likely corre-
lations and relationships. We elicited and aggregated likely rela-
tionships from a workshop with domain experts in the explora-
tory case study context [12][13]. As relationship types differ, we
indicate the following types and strengths. DS indicates a direct
and strong relationship (the stronger the item, the stronger the
effect). DW indicates a direct weak relationship (a stronger item
correlates moderately to a stronger effect), and IW expresses an
indirect weak relationship (stronger cause leads to a lower TD
item). No indicates that the TD item is not related to an effect,
such as (TD1proc) -> (II. Data Quality Risk).

RQ2a. Table I presents the relationships between TD effects
(see Section IV.A) and TD items (see Section IV.B), similar to
the HoQ analysis [19] matrix, TD effects horizontally and TD
items in the vertical axis. The relationships are of the form TD
item relates to TD effect, (TD item) -> (TD effect), expressing
how a TD item relates to an effect.

Table I. Relationships between TD effects and TD items.

TD Effect/

TD Item

TD-E1

High

Effort

TD-E2

Data

Quality Risk

TD-E3

Economic

Failure

TD1Proc DS No DS

TD2Inf DS DS DW

TD3PPR DS DW DW

Legend: Relationships: DS: direct strong; DW: direct weak.

In Table I, all three TD items, relate strongly to the TD effect
TD-E1 High Effort for SE. This is due to unclear descriptions of
the process and information as well as missing product/ion
knowledge, which all lead to high effort for tracing design deci-
sions. An insufficient information description relates strongly to
high risks in data quality, as artifacts are not built on common
concepts or data models and thus lack any formal description.
Missing product/ion knowledge is also related to the second TD
effect (TD-E2), however not so strongly. All three TD items
have a relation to the TD-E3 Economic Failure, as missing in-
formation in the engineering process leads to high rework and
communication overheads.

E. TD item and cause relationships (RQ2b)

Table II represents the relationship between TD items (see
Section IV.B) and TD cause candidates (see Section IV.C), (TD
cause) -> (TD item). Cause candidates coming from the context
of the EO (A1 – A4), and from the engineering process descrip-
tion (B1 – B4) have a strong direct relationship to the engineer-
ing process description (TD1Proc). For example, unclear rela-
tionships and descriptions which are not useful, make it very
hard to describe the engineering process sufficiently to facilitate
collaboration and coordination across multiple workgroups.

All three cause groups A, B, and C relate to the insufficient
description of the engineering data exchange model (TD2Inf).
Note the inverse relationships of a stronger focus on engineering

habits (intra process improvements) and descriptions of the en-
gineering process as artifacts. This does not directly impact the
TD item.

Table II. Relationships between TD items and TD causes.

TD Item ->

TD Cause (see Sect. IV.C)
TD1

Proc
TD2

Inf
TD3

PPR

A1.Profit Center DW DS DS

A2.Engineering Habits DW IW DS

A3.Unclear responsibility DS DW DS

A4.Limited collaboration DW DS DS

B1.Eng. Proc. descr. as artifact No IW DS

B2. Eng. Proc. descr. not useful DS DW No

B3. Eng. Proc. not operational DS DW No

B4. Eng. Proc. unknown DS No No

C1.Inform. description. complex DS DW No

C2. Inf. desc. Industry. depend. No DS DW

C3.Tools w/o PPR No DW DS

Legend: DS: direct strong; DW: direct weak; IW: indirect weak.

Insufficient descriptions of the engineering process make it
impossible to successfully represent product/ion-aware
knowledge (causes Ax) -> (TD3PPR). Causes regarding the in-
formation and data exchange description do not impact prod-
uct/ion knowledge representations, as a major precondition for
knowledge representation is the clarification of (a) the responsi-
bility for each part of product/ion knowledge and (b) a suitable
represented approach throughout an engineering process.

F. Preliminary validation in the exploratory case study

Throughout the domain expert interviews, we collected rep-
resentative data samples from engineering artifacts. We derived
tables I and II from analyzing these artifacts. As the tables pre-
sent vital pieces of information regarding possible correlations,
we initially elicited the relationships from domain experts. We
discussed the relationship candidates in detail with quality man-
agers, who are responsible for improving the engineering pro-
cess and are knowledgeable in the overall process and work
group habits, including SE. We resolved divergences between
the views of the domain experts and the quality managers in a
common discussion. Overall, the domain experts and quality
managers found the preliminary TD concepts and analysis
method useful and usable for identifying and addressing high-
priority TD effects, items, and causes regarding SE activities.

V. DISCUSSION

This paper investigates risks for software engineering (SE)
in activities related to the engineering process in a PSE organi-
zation (RQ1) and possible relationship between certain risks
(RQ2). In this context, risks are TD effects for SE that occur in
a PSE context with measurable probability and costs. To deal
with these risks, da Luz et al. [26] presented a management tool
for analyzing causes and effects. Similar to our work, Luz et al.
[26] propose an approach to identify risks through selection, de-
scription and analyzation. However, the presented approach gen-
eralizes risks in a late phase, whereas we focus on organization
specific TD effects and investigate these. In the exploratory case
study context, SE activities depend on the requirements and de-
sign rationale from early engineering phases and often have to
deal with locally optimizing workgroups, low awareness on col-
laboration processes, and missing understanding of requirements
between work groups.

698

For software engineers, the high effort comes from risks re-
garding rework efforts due to frequent and late changes coming
from earlier phases. As software engineers highly depend on
weakly documented design decisions from early phases, a repay-
ment option for TD is better knowledge representation of prod-
uct/ion knowledge throughout the engineering process. The low
data exchange quality impacts software engineers, who are
made responsible for low quality system output, even if they
write high quality code, but based on weakly communicated
early design decisions. TD repayment for reducing the SE risk
should focus on improving the documentation and communica-
tion of design decisions that are directly related to high-quality
SE results. Finally, issues regarding unplanned efforts for re-
works in the software design due to low system quality decisions
may exceed the budget available to SE, leading to local eco-
nomic failure.

The VDI Guideline 3695 Part 2 [28] was used to investigate
TD items (RQ1b). This guideline can be seen similar to best
practices for SE code development, and our analysis is equiva-
lent to a code review. An unclear engineering process descrip-
tion makes it hard for software engineers to reliably configure
production systems, as input from several disciplines may be
contradicting. The missing collaboration in PSE forces software
engineers to take the risky decision on which inputs to consider
or ignore. Further, the information description is not sufficient.
This makes it unclear for software engineers where to look for
reliable information, as data syntax and semantics may change
frequently, making it hard to validate input data and to automate
the data exchange process. Software engineers thus often work
based on risky assumptions. Finally, missing product/ion aware
knowledge makes it hard in SE to take informed decisions for
adapting the software system design if the preferred system de-
sign option is not feasible.

In RQ1c, we investigated possible causes regarding elicited
TD items. Causes linked to the context of production systems
engineering cannot be directly influenced by SE actors, but re-
quire the insight of PSE managers. We discussed the preliminary
results at the case study EO with quality managers, who found
the analysis useful for considering and prioritizing improvement
options. Cause candidates linked to the engineering process de-
scription clearly motivate the need for better means of PPR
knowledge representation as a foundation for process descrip-
tions, considering conceptual, language, and usability aspects.
This is similar to the need for proper software architecture de-
scriptions identified by Guessi et al. [11]. The last group we
identified are cause candidates linked to the information descrip-
tion. For example, it is challenging to combine methods for data
integration [7] with domain-specific standards, such as Automa-
tionML [7] or ontologies [23].

A repayment option to address TD items related to weak col-
laboration of workgroups is a new role, the data curator, simi-
larly as presented in [9]. This role would be responsible for con-
solidating a common data exchange model and describe the en-
gineering process adequately. This new role should needs to un-
derstand the requirements and limitations of the involved
workgroups, in particular SE activities. As TD effects, items and
causes are related to each other, we used the Quality Function
Deployment [19] method to investigate relationships between
TD effects, items and causes (RQ2).

In RQ2a we investigated how TD effects and TD items relate
to each other. The TD-E1 High Effort is strongly and directly
connected to all three TD items. This is obvious as reworks are
often needed to compensate missing descriptions or information
bottlenecks where especially software engineers are affected. In-
teresting is, that the TD-E2 Data Quality Risk is only weakly
connected to PPR knowledge representation, even though this is
an important information exchange concept. For SE this means
that design decisions from early phases do not impact the code
development so much as the overall information description, this
could be for example the selection of an easily changeable com-
ponent in the user interface.

RQ2b investigated how TD items and causes are related.
Nearly all causes regarding the information description strongly
impact the process description. This clearly motivates the need
for better knowledge representation approaches, as the current
engineering process is either not described, or the description is
not useful or unknown to domain experts. As there are currently
no tools that support the expression of PPR knowledge, software
engineers could address this open issue to improve product/ion-
aware knowledge representation and further allow a backflow of
SE knowledge into early engineering phases as foundation for
designing better reusable system parts.

Limitations. The research of this paper followed a case
study in an engineering organization. However, the case study
focused on only one company, which may not be representative
for all EOs in general. While the domain experts in the study
were very knowledgeable, their number was limited due to re-
source limitations of the available experts besides their daily
business obligations. We found that the engineering process de-
scription may highly depend on the context, domain, and organ-
ization, thus future case studies should consider these variation
points. While the domain experts found the preliminary list of
TD effects, items, and causes, and their relationships useful for
reflecting on TD repayment options in the case study context,
these results require validation and discussion on comparable
context for strengthening the external validity of the results.

VI. CONCLUSION AND FUTURE WORK

In engineering organizations, software engineers join the
PSE process in a late phase and are concerned with detailing SE
aspects of the software-intensive system. However, software en-
gineers often only receive poorly described design decisions in
form of engineering artifacts making it hard for them to derive
adequate new (software) engineering knowledge or tracing the
earlier design decisions. These shortcomings lead to risks re-
garding the SE quality and impact the project effort negatively,
endangering project success. In this paper, we reported on a case
study at a large industrial engineering organization with the fo-
cus of investigating technical debt (TD) effects, items, and
causes as risks for software engineers. Results highlight that TD
can slow down engineering organizations, making it hard to
manage processes where multiple domains are involved. Main
insight for addressing the found challenges is the introduction of
a new role, the data curator, to facilitate the collaboration across
workgroups. The results highlight requirements for the represen-
tation of product/ion knowledge in the engineering data pro-
vided to software engineers. Engineering data is heterogeneous
and there are no guidelines for basic planners, leading to a large

699

number of individual and local data models, and making the data
exchange hard to manage, often resulting in extra effort to main-
tain high software quality.

The relations between TD effects, items, and causes high-
lighted the need for better representations for product/ion
knowledge as inadequate context and artifact descriptions lead
to high efforts, in particular, for software engineers, and might
result in economic project failure. The research findings provide
domain experts, such as project managers or software engineers
with insights into the engineering process. The presented model
serves as a foundation for better understanding the rationale of
engineering design decisions. This leads to better SE code due
to (a) better understanding of design decisions, (b) more explicit
representation of system limits that relate to product characteris-
tics, and (c) better knowledge representation for tool support.

Future work. The results of the exploratory case study
should be validated with empirical data from comparable engi-
neering companies. We focused in this paper on product/ion-
aware exchange of engineering artifacts. Future research should
investigate the impact of knowledge representation options on
selected SE. Finally, the more comprehensive representation of
integrated PSE knowledge requires improved information secu-
rity. The comprehensive and well-integrated knowledge is a
prime target for attackers regarding corporate espionage and re-
garding the intentional change of artifacts for reducing the qual-
ity of the production system or the production process. Thus, fu-
ture work should investigate security auditing aspects that con-
sider the issues and repayment options identified in this paper.

ACKNOWLEDGMENT

The financial support by the Christian Doppler Research As-
sociation, the Austrian Federal Ministry for Digital & Economic
Affairs and the National Foundation for Research, Technology
and Development is gratefully acknowledged.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, and C. Seaman,
“Reducing friction in software development,” IEEE Software, vol. 33, no.
1, pp. 66–73, 2016.

[3] S. Biffl, A. Lüder, and D. Gerhard, Multi-Disciplinary Engineering for
Cyber-Physical Production Systems: Data Models and Software Solutions
for Handling Complex Engineering Projects. Springer, 2017.

[4] S. Biffl, A. Lueder, F. Rinker, L. Waltersdorfer, and D. Winkler,
“Introducing engineering data logistics for production systems
engineering,” Technical Report CDL-SQI-2018-10, TU Wien;
http://qse.ifs.tuwien.ac.at/wp-content/uploads/CDL-SQI-2018-10.pdf.

[5] S. Biffl, A. Lueder, F. Rinker, L. Waltersdorfer, and D. Winkler,
“Efficient Engineering Data Exchange in Multi-Disciplinary Systems
Engineering,” in Proc. Int. Conf. on Advanced Information Systems
Engineering (Caise). IEEE, 2019, in press.

[6] Q. H. Dong and B. Vogel-Heuser, “Cross-disciplinary and cross-life-
cycle-phase technical debt in automated production systems: two
industrial case studies and a survey,” IFAC-PapersOnLine, vol. 51, no.
11, pp. 1192–1199, 2018.

[7] R. Drath, A. Luder, J. Peschke, and L. Hundt, “Automationml the
glue for seamless automation engineering,” in 2008 IEEE International
Conference on Emerging Technologies and Factory Automation. IEEE,
pp. 616–623, 2008.

[8] F. J. Ekaputra, M. Sabou, E. Serral, E. Kiesling, and S. Biffl, “Ontology-
based data integration in multi-disciplinary engineering environments: A
review,” Open Journal of Information Systems (OJIS), vol. 4, no. 1, pp.
1–26, 2017.

[9] A. Fay, U. Löwen, A. Schertl, S. Runde, M. Schleipen, and F. El Sakka,
“Zusätzliche wertschöpfung mit digitalem modell,” atp magazin, vol. 60,
no. 06-07, pp. 58–69, 2018.

[10] A. Gangemi and V. Presutti, “Ontology design patterns,” in Handbook on
ontologies. Springer, pp. 221–243, 2009

[11] M. Guessi, F. Oquendo, and E. Y. Nakagawa, “An approach for capturing
and documenting architectural decisions of reference architectures.” in
Proc. SEKE, pp. 162–167, 2014

[12] L. Kathrein, A. Lueder, K. Meixner, D. Winkler, and S. Biffl,
“Process analysis for communicating systems engineering
workgroups,” Technical Report CDL-SQI-2018-11, TU Wien;
http://qse.ifs.tuwien.ac.at/wp-content/uploads/CDL-SQI-2018-11.pdf

[13] L. Kathrein, A. Lüder, K. Meixner, D. Winkler, and S. Biffl "Product/ion-
Aware Analysis of Multi-Disciplinary Systems Engineering Processes",
presented at 21st Int.l Conf. on Enterprise Information Systems,
Heraklion, Greece, May 2019 (in press).

[14] C. Legat, C. Seitz, S. Lamparter, and S. Feldmann, “Semantics to the shop
floor: towards ontology modularization and reuse in the automation
domain,” IFAC Proce. Volumes, vol. 47, no. 3, pp. 3444–3449, 2014.

[15] X. F. Liu, N. Chanda, and E. C. Barnes, “Software architecture rationale
capture through intelligent argumentation.” in SEKE, pp. 156–161, 2014

[16] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” Journal of Systems and Software,
vol. 101, pp. 193–220, 2015.

[17] U. Loewen, A. Schertl, S. Runde, M. Schleipen, F. El Sakka, and A. Fay,
“Additional value with a digital plant model-new roles over a plant’s
lifecycle,” ATP EDITION, no. 6-7, pp. 58–68, 2018.

[18] A. Martini, T. Besker, and J. Bosch, “Technical debt tracking: Current
state of practice: A survey and multiple case study in 15 large
organizations,” Science of Computer Prog., vol. 163, pp. 42–61, 2018.

[19] S. Matook and M. Indulska, “Improving the quality of process reference
models: A quality function deployment-based approach,” Decision
Support Systems, vol. 47, no. 1, pp. 60–71, 2009.

[20] J. Morbach, A. Wiesner, and W. Marquardt, “Ontocapea (re) usable
ontology for computer-aided process engineering,” Computers &
Chemical Engineering, vol. 33, no. 10, pp. 1546–1556, 2009.

[21] P. Novák, E. Serral, R. Mordinyi, and R. Sindelár, “Integrating
heterogeneous engineering knowledge and tools for efficient industrial
simulationmodel support,”Advanced Engineering Informatics, vol. 29,
no. 3, pp. 575–590, 2015.

[22] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, p. 131, 2009.

[23] M. Sabou, O. Kovalenko, and P. Novák, “Semantic modeling and
acquisition of engineering knowledge,” in Semantic Web Technologies
for Intelligent Engineering Applications. Springer, pp. 105–136, 2016.

[24] M. Schleipen, A. Lüder, O. Sauer, H. Flatt, and J. Jasperneite,
“Requirements and concept for plug-and-work,” at-
Automatisierungstechnik, vol. 63, no. 10, pp. 801–820, 2015.

[25] M.-a. Sicilia, E. Garćia-Barriocanal, S.Sánchez-Alonso, and D.
Rodríguez-García, “Ontologies of engineering knowledge:
Generalstructure and the case of software engineering,” The Knowledge
Engineering Review, vol. 24, no. 3, pp. 309–326, 2009.

[26] D. da Luz Siqueira, L. M. Fontoura, R. H. Bordini, and L. A. L. Silva, “A
knowledge engineering process for the development of argumentation
schemes for risk management in software projects.” in Proc. SEKE, pp.
36–41, 2017.

[27] A. Strahilov and H. Hämmerle, “Engineering workflow and software tool
chains of automated production systems,” in Multi-Disciplinary Eng. for
Cyber-Physical Production Systems. Springer, pp. 207–234, 2017.

[28] VDI 3695: Engineering of industrial Plants, Evaluation and Optimization,
Beuth Verlag Std., 2009.

[29] R. J. Wieringa, Design science methodology for information systems and
software engineering. Springer, 2014.

700

A Enhanced Feature Model for Software Product
Line and Core Feature Extraction

1st GuanZhong Yang
Department of Software Engineering

Hunan University
Changsha, China

gzyang@hnu.edu.cn

2nd HaoMing Chang
Department of Software Engineering

Hunan University
Changsha, China

haomingchang@hnu.edu.cn

3rd ZeYa Mou
Department of Software Engineering

Hunan University
Changsha, China

mouzeya@hnu.edu.cn

Abstract—Feature model is an important model for capturing
domain requirements and managing commonality and variability.
However, the traditional feature modeling method is insufficient
in expressing the variability requirements, which is easy to cause
ambiguity and fails to describe the features in detail. In view
of these shortcomings, this paper gives a unified definition of
features, feature attributes and feature relationships, proposes
configuration vector and variant constraint to enrich variability
expression capabilities, and establishes an enhanced feature
meta-model for software product lines. This feature model can
help domain analysts effectively organize the variable domain
requirements. In addition, the commonality of the domain ex-
pressed by the feature model is the basis for the development of
highly reusable core assets. We propose that heuristic strategies
automatically identify and extract core feature to obtain domain
commonality. Finally, we take the chronic obstructive pulmonary
disease home care product line as an example to demonstrate our
proposed method.

Index Terms—feature modeling; software product line; core
feature; commonality analyze

I. INTRODUCTION AND MOTIVATION

Software product line engineering is a paradigm for large-
scale development of software applications [1]. The general
idea is to plan and design reusable components for reuse
before developing the system, and to manage the common
and variable parts of the components [2]. As part of Feature-
Oriented Domain Analysis(FODA) [3], feature model(FM)
has proven to be an effective way to describe product line
commonality and variability.

The Chronic Obstructive Pulmonary Diseases(COPD)
Home Care System is a product line we are developing. The
purpose of this application is to manage and monitor the
stable COPD patients in home or community. It is designed to
provide patients with environment monitoring, signs monitor-
ing, doctor consultation, health education, acute exacerbation
warnings and behavioral interventions. We have used FM
to perform requirement analysis and domain analysis. Fig.1
uses the basic feature model(BFM) to demonstrate part of the
features of the signs monitoring in the system.

Traditional feature modeling methods do not separate the
perspectives of different stakeholders. The product line of

Foundation Items: The Science and Technology Department Project of
Hunan China(2018TP2033)

DOI reference number: 10.18293/SEKE2019-110

COPD home care involves services provided to users, domain
knowledge related to COPD, various data monitoring devices
and complex implementation technologies. If stakeholders
share the same feature model view, they will not be able
to effectively focus the perspective. Though extended-feature
model [4]–[8] enrich the expression of variability from dif-
ferent perspectives, there is no agreement on the definition
of modeling elements, especially two kinds of configuration
information: mandatory and optional. This can lead to inad-
equate expression of variability and even semantic conflicts.
Therefore, the traditional feature modeling methods are diffi-
cult to effectively satisfy the domain analysis requirements of
our product line.

In addition, the COPD home care product line is a customiz-
able application for individualized patients. The patient’s use
scenario and the patient’s condition will bring more variability
to the system. In the early stage of development, accurately
extraction of core requirements in established domain model
is required so that we can distinguish between common and
variable requirements and build the basic platform based on
core requirements in the subsequent development to speed up
the time to market.

Fig. 1. Example of basic feature model.

In response to the above questions, this paper made the
following contributions:

• Introduce an enhanced feature model meta-model. We
classify features to form different levels of abstraction,
propose configuration attribute vectors to resolve seman-
tic conflicts and enrich the expression of model variabil-
ity.

701

• Based on our meta-model, a core feature extraction
heuristic strategy is proposed. The purpose is to auto-
matically analyze the commonality of product families
on a consistent feature model.

The rest of this paper is organized as follows. Sect.II describes
the related work. Sect.III introduces the meta-model modeling
elements. Sect.IV describes the core feature extraction method.
We use a practical case to verify our ideas in Sect.V. And we
conclude our work in Sect.VI.

II. RELATED WORK

[7] introduced Forfamel, a rigorous conceptual model
foundation that combines multiple feature modeling methods.
A cardinality-based feature model(CFM) formally defined in
[4]. CFM adds the concept of feature cloning, using feature-
cardinality to represent the number of cloned features. Group-
cardinality in CFM is used to express configuration constraint
of variants in variation points. [3] considered that different
features can be refined into the same feature, and proposed the
concept of pseudo-feature. [6] classified feature into capability
feature, operational environment feature, domain technical
feature, and implementation technical feature. The FM was
divided into four levels corresponding to feature classification
which mapped to implementation domain.

Some works have been devoted to extracting core features.
The concept of core feature proposed in [8]. [9] transformed
feature model into binary constraint logic, automatically ana-
lyzed all valid product through the CSP solver and obtained the
core features. [10] proposed an algorithm traverses BDD by
backtracking method to determine the core features and dead
features. Although the algorithm was very efficient, converting
the feature model to BDD was time consuming and reached
an exponential level.

III. THE ELEMENTS AND RELATIONS OF META-MODEL

Fig. 2 shows our meta-model. We will introduce the terms
and concepts necessary to understand the meta-model.

Fig. 2. Enhanced feature model meta-model.

A. Feature and Feature Attribute

Definition 1(Feature): A Feature f consist of a set of
logically relevant software requirements that provide each
stakeholder with the ability to satisfy specific business de-
mand. A feature is defined as a 4-tuple: f=(N,D,A,R), where:
N(6= φ) is the feature name to uniquely identify a feature. D is
an explanation for the feature. A is a set of feature attributes,
which describes the context information of the feature in a
FM. R represents the relationship between the features.

We extend and represent the existing modeling elements
with feature attributes. Feature attributes are divided into two
categories:essential attribute and extended attribute. They are
defined by a 2-tuple: A=(T,V), where T is a set of attribute
types for the feature, V is the value of the corresponding
attribute type. Attribute of a feature can be expressed
as:fA.type = value. There are four types of feature attribute.
T:={Classification,Configuration,VariantConstraint,Extention}
Classification attribute. We classify feature

into functional feature(FF), technical feature(TF) and system
feature(SF).

• Functional feature(FF) is used to describe the services
provided by the system, which can be clearly expressed
and visible to users and is a specific behavior of the
system.

• Technical feature(TF) is used to describe the technolo-
gies that implement functional features or non-functional
indicators. Such features are not visible to the user, but
developers are more concerned with these.

• System feature(SF) is used to describe the hardware re-
sources, implementation environment of the system to
facilitate communication between hardware and software
engineers.

This categorization allows developers to refine different
abstract level as they perform domain analysis and helps
to separate the perspectives of different stakeholders. The
expression fA.classification can be used to represent the
classification attribute of feature f.
Configuration attribute. We attach optional and

mandatory configuration information to the feature through
feature attributes. Some domain feature modeling methods
differ in their understanding of mandatory and optional feature.
[5], [11], [12] gave an absolute definition of the mandatory
feature, who considered that the mandatory features were the
features appearing in all products in a product line, not related
to its parent. However, [6], [7] interpreted it relatively, and
considered that the mandatory feature must be selected when
its parent feature was selected in the configuration process. We
recognize and adopt the relative interpretation of the manda-
tory and optional, and introduces core feature to represent the
absolute interpretation of mandatory feature. There are two
drawbacks in the absolute definition of configuration attribute.

• It loses feature parent-child relationship contextual infor-
mation.

• In the case that a feature has multi-parent features, the
absolute definition is impossible to express the semantics

702

that child-feature’s configuration attributes is different
relative to different parent.

As shown in Fig.3(The specific features are represented by
symbols.), feature f1 and f2 can be implemented by f4. The f4
is optional for f1 and mandatory for f2. When a feature have
multi-parents, absolute interpretation of mandatory feature will
cause ambiguous semantic. According to the definition of
relativity in this paper, the configuration attribute of a feature
may be different for different parent features, it is necessary
to record these additional information which may change.

Fig. 3. Semantic conflict under absolute definition of configuration informa-
tion.

Definition 2(Configuration vector): If the number
of parent of a feature f is m and its parents are
(p1,p2,...,pm) from left to right in the feature diagram.
Then C is a 1-dimensional vector of m components.
C := (boolp1, boolp2, ..., boolpi, ..., boolpm)

The component of vector C is boolean type, and boolpi = 1
denotes that f is a mandatory feature relative to the i-th
parent feature, otherwise it is an optional feature. We use
fA.config = C to represent configuration attribute.
Variant constraint. This attribute represents the

configuration constraint for all optional child-feature under
a parent during configuration process. Similar to the group-
cardinality in CFM. Fig.4 shows the feature symptoms
assessment. In global initiative of COPD[13], we use f2
to evaluate the symptoms, and a comprehensive assessment
is recommended using feature f2, f3 or f4 as supplement.
Therefore, when selecting f2, at least one must be selected in
f3, f4 and f5.

Definition 3(Variant constraint): < n,m > is an interval.
The n is the lower bound and m is the upper bound. Let
k ≥ 0 be the number of optional child-features that satisfy
0 ≤ n ≤ m ≤ k. Variant constraint attributes of feature f indi-
cate that if the feature is selected in configuration process, n
to m optional features should be selected besides mandatory
child-features. We use fA.variant =< n,m > to represent
configuration attribute.

Fig. 4. Example of variant constraint.

Extension attribute. This attribute is a feature ex-
tended attribute whose type is defined by the domain analyst.
Such as adding the binding time and binding status of the
feature.

B. Feature Relationships

Features form feature model with certain relationships. R
is a set of feature relations and R = Rstruct ∪Rconstraint.
Rstruct ⊆ f × f represents the parent-child relationship of
the feature. If feature f1 and f2 satisfy (f1, f2) ⊆ Rstruct,
then f2 is the parent of f1, and f1 is the child of f2. We
extend three types of relations over structure relation, Rstruct

=Rdecomposition ∪Rspecialization ∪Rimplement.
Rdecomposition describes the whole-part relationship be-

tween parent and child features. In Fig.1, f1 is decomposed
into f2, f3, and f4.
Rspecialization represents that a feature can be specialized

from different dimensions or aspects into more specific child-
features. Child-features have the characteristics of parent,
similar to inheritance in object-oriented, and they have special
characteristics on the basis of inheritance. In fig.1, f5 is
specialized into f7, f8, f9, f10.
Rimplement represents the technical implement or hardware

support of the low-level features to the high-level features.
Rconstraint ⊆ f × f represents the constraint between the

same classification attribute features and Rconstraint = Rreq∪
Rexcl. If (f1, f2) ⊆ Rreq indicates that f1 requires f2. If
f1 is selected during configuration, then f2 also needs to
be selected. This relationship is transitive. (f1, f2) ⊆ Rexcl

indicates that f1, f2 cannot be bound at the same time, which
is symmetry.

Fig. 5. Example of feature model structure.

Three classifications of features form three abstract levels
of feature models. Fig.5 shows the basic structure of our FM
diagram, where root is root of FM, I-f is the intermediate
feature, T-f is the terminal feature, and S-f is the starting
feature of the technical layer and the system layer. The above-
mentioned structure relationships provide domain analysts
with a way to construct a feature model. From root, the
features are continuously refined through Rdecomposition and
Rspecialization. Then consider which technical features or
system features are required to implement the service feature
T-f. At this point, the technical feature or system feature is the
S-f of the hierarchy, and then it can be considered whether
these features can continue to be refined. By continuously
iterating through this process, a FM diagram can be obtained.
The relationship between Rdecomposition and Rspecialization

703

makes the feature form the parent-child relationship of tree
structure in the same layer, Rimplement connects T-f and S-f,
thus connecting different abstract levels of FM, which becomes
directed acyclic graph(DAG).

IV. ANALYSIS OF COMMONALITY

A. Core Feature Extraction Strategy

Definition 1(Core feature): Core feature is the feature
that appear in all products which reflects the commonality of
FM. If there are n valid products in the product line. Then

core feature fc are satisfied: fc ∈
n⋂

i=1

pi. Following rules are

proposed to identify core feature:
Rule 1 The root feature in FM must be the core feature.

Because the root appear in all products.
Rule 2 If there is a path starting from a core feature, and

all the features on this path are mandatory for its parent, then
these features are core feature. We call the core feature on this
path directly accessible core features(DACF).

Rule 3 If there is a path starting from a core feature, and
all the features on this path are linked by Rreq, then these
features are core feature. We call it the required transfer core
feature(RTCF).

Rule 4 Indirectly accessible core features(IACF) that are
easily overlooked.

Only extracting DACF and DTCF will result in incomplete
core feature set. Fig.6 shows a special example (This figure is
intended to make the example more intuitive, not the represen-
tation of our method.). Assume f1, f11, f12, f13, f14 as FF ,
f2 as TF . Feature f11, f12 and f13 are all implemented by f2.
Feature f1 is the core feature, f11, f12 and f14 are optional,
f13 is mandatory, and the f2A.config = (1, 1, 0). According
to rule 2, only f13 is a core feature. However, because of
f1A.variant =< 2, 2 >, one of the feature combination
{f11,f14},{f12,f14} or {f11,f12} must be selected. Therefore,
f11 and f12 must be selected in the configuration process and
f2 is a mandatory feature for f11 and f12. Then, f2 which
must be selected should be the core feature and it is IACF.

In more in-depth view, the main reason for the occurrence
of IACF is that the variant constraints of core features make
one of their optional child-features selected in the configura-
tion process. It is precisely that these optional child-features
have a common child and this child corresponded to these
optional child-features is mandatory. Then this child that we
called IACF must be selected. Therefore, a feature is IACF
determined by its parents and its parents of the parents.

Fig. 6. Example of IACF.

We divide the structure in Fig.6 into three layers from top
to bottom. When the following conditions are satisfied, the
feature located in third layer must be the core feature.

Theory 1 The feature in first layer is a core feature.
Theory 2 The feature in the second layer is the optional

child of the feature in the first layer, and these features all have
the same child-feature, which is located in the third layer.

Theory 3 The feature located on the third layer is a
mandatory feature relative to the features of the second layer.

Theory 4 Variant constraints of the feature on first layer
make the feature on second layer must be selected.

Algorithm 1 get DACF set
Input: Sf

Output: SDACF

1: function GETDACF(Sf)
2: SDACF ← φ; queue← φ; wasIn← φ; ft ← φ
3: for each f ∈ Sf do
4: queue.clear(); wasIn.clear()
5: queue.add(f); wasIn.add(f)
6: while queue 6= φ do
7: ft ← queue.poll()
8: if ft /∈ Scf then
9: SDACF ← ft

10: end if
11: for each fc ∈ ft.child do
12: if fc /∈ wasIn & fc.conf = (ft, 1) &

fc /∈ Scf then
13: wasIn← fc; queue← fc;
14: end if
15: end for
16: end while
17: end for
18: return SDACF

19: end function

Next, we introduce the algorithms to extract DACF, DTCF
and IRCF, then extract the core features completely.

B. Data Structures

We use the following data structures:
Feature{

name:String
child:list<Feature>
parent:list<Feature>
conf:map<Feature,Boolean>
var:int[2]{n,m}
req:list<Feature>
}
Where: name identifies a feature, child is the features child

set, parent is the features parent set, conf is configuration
attribute, var is variant constraint, req is required features.

C. Algorithm

Algorithm 1 gives a process of extracting DACF. The input
is a core feature set Sf and output is SDACF . Scf is a

704

Algorithm 2 get RTCF set
Input: Sf

Output: SRTCF

1: function GETRTCFSET(Sf)
2: SRTCF ← φ
3: for each f ∈ Sf do
4: GETRTCF(f)
5: end for
6: return SRTCF

7: end function
8: function GETRTCF(f)
9: if f.req = φ then

10: return
11: end if
12: for each fr ∈ f.req do
13: if fr ∈ Scf then
14: continue
15: end if
16: SRTCF ← fr;GETRTCF(fr)
17: end for
18: end function

global collection that holds all core features. The algorithm
utilizes the breadth-first traversal of the graph, and sequentially
searches for the mandatory child-features path starting from
the feature f in the Sf . If f has multiple parents which are
core features, as long as f is a mandatory feature relative to
one of these parents, f is the core feature(line 12). Because
of the mandatory path is formed.

Algorithm 2 gives the process of extracting the RTCF.
Similarly, a core feature set is used as input, and the required
transfer path starting from feature f in Sf is searched recur-
sively, and all the features in the path are output. If a required
feature of f is already the core feature, we ignore this feature
to avoid repeated access(line13-15).

Algorithm 3 gives the process of extracting IACF. As
mentioned above, IACF must be a multi-parent features fmp.
So we take the multi-parent features set Smp as input. The
Smp can be obtained by traversing the feature model once
time(similar to algorithm 1), which is not discussed here. The
feature fmp is that IRCF determined by the attributes and
structure of its parent-feature set Sp and its parents of parents
feature set Spp. These features must satisfy the above four
conditions. Firstly, the parent relationship is used to find the
fp which needs to satisfy Theory2 and Theory3 (lines 8-
12). The fp that satisfies the condition is stored in the Sp. In
this set, we search for all fp’s parent-feature fpp which is core
feature to satisfy Theory1, and store the valid fpp in Spp

(lines 13-19). To satisfy Theory4, traverse the Spp to get the
number of all optional child-features Naoc of fpp , the number
of child-features Nocisp ∈ Sp, and the variant constraint value
[n,m] (lines 20-27). If n ≥ Naoc−Nocisp+1, it indicates that
fp must be selected in the Sp. Therefore f is the core feature.

Algorithm 4 introduces the main flow of extracting core
feature set. The root feature is used as an input and output is

Algorithm 3 get IACF Set
Input: Smp

Output: SIACF

1: function GETIACF(Smp)
2: SIACF ← φ
3: for each f ∈ Smp do
4: Sp ← φ; Spp ← φ
5: if f ∈ Scf then
6: continue
7: end if
8: for each fp ∈ f.parent do
9: if f.conf = (fp, 1)& fp /∈ Scf then

10: Sp ← fp
11: end if
12: end for
13: for each fp ∈ Sp do
14: for each fpp ∈ fp.parent do
15: if fpp ∈ Scf then
16: Spp ← fpp
17: end if
18: end for
19: end for
20: for each fpp ∈ Spp do
21: naoc ← fpp.optChildNum
22: variant← fpp.var[0]; nocisp ← 0
23: for each fc ∈ fpp.child do
24: if fc ∈ Sp then
25: nocisp ++
26: end if
27: end for
28: if variant ≥ (naoc − nocisp + 1) then
29: SIACF ← f
30: break
31: end if
32: end for
33: end for
34: return SIACF

35: end function

core feature set Scf . When the core features are acquired each
time using the above three algorithms, the newly discovered
core features may cause other features associated with them
to be transformed into core features. For example, a new core
feature’s mandatory child-feature or required feature is also
the core feature. Therefore, we reuse the three algorithms to
continuously synchronize the new core features to the Scf

until there are no new core feature. The set Stemp is used
to temporarily store the core features acquired by a certain
algorithm and use it as input to other algorithms. The set Smp

stores multi-parent features. In the inner loop, we alternately
use algorithms 1 and 2 to obtain core features until there are
no new ones (lines 4-17). In the outer loop, we judge whether
there are new IACF in the multi-parent features. If new core
features appear, it is necessary to go through the inner loop. If
it does not appear, it means that the core feature set has been

705

Algorithm 4 get Core Feature Set
Input: froot
Output: Scf

1: function GETCOREFEATURE(froot)
2: Stemp ← GETDACF(froot)
3: Smp ← FINDMULTIPARENT(froot); Scf ← φ
4: while (true) do
5: while (true) do
6: if Stemp = φ then
7: break
8: end if
9: Scf ← Stemp ∪ Scf

10: Stemp ← GETRTCFSET(Stemp)
11: if Stemp = φ then
12: break
13: else
14: Scf ← Stemp ∪ Scf

15: Stemp ← GETDACF(Stemp)
16: end if
17: end while
18: Stemp ← GETIACF(Smp)
19: if Stemp = φ then
20: return Scf

21: else
22: Stemp ← Stemp ∪ GETRTCFSET(Stemp)
23: Scf ← Stemp ∪ Scf

24: Stemp ← GETDACF(Stemp)
25: end if
26: end while
27: end function

obtained completely.

V. CASE STUDY

We applied the above FM to the COPD home care
system. As shown in Fig.7, it is part of the FM dia-
gram of our product line, which takes the core feature
sign monitoring as the root feature and covers the examples
above. We use feature attributes and feature relations to
describe the whole model, and apply the algorithm to extract
the core features of the examples. According to the algorithm,
{f1, f2, f3, f4, f9, f11, f19} is the DACF. {f14} is the
RTCF, and {f15} is the IACF. The final domain model has 336
features, including 264 service features, 64 technical features,
8 hardware features and 47 constraints. We implement the
core feature extraction method, and the FM is transformed
into a file representation in XML format. After applying the
algorithm, 101 core features are obtained, and the proportion
of core features to total features is 30.05%. Among the core
features, 91 are DACF, 8 are RTCF, and 2 are IACF.

VI. CONCLUDE

In this paper, an enhanced feature meta-model is proposed to
solve the ambiguous semantics, enrich the expressive ability
of variable requirements, and provide a hierarchical way to

Fig. 7. Feature model fragment of COPD home care system.

construct feature model. Then, a heuristic strategy is proposed
to identify and extract the core feature set on the meta-model.
We implemented and applied this method to the product line
of COPD family care system. The next step is to implement
a visualization tool for our modelling method.

REFERENCES

[1] K. Pohl, G. Bockle, and F. J. V. D. Linden, “Software product line
engineering: Foundations, principles, and techniques,” Proceedings of
the First Intl Workshop on Formal Methods in Software Product Line
Engineering, vol. 49, no. 12, pp. 29–32, 2005.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (foda) feasibility study,” Carnegie-
Mellon Univ Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1990.

[3] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “Form: A
feature-oriented reuse method with domain-specific reference architec-
tures,” Annals of Software Engineering, vol. 5, no. 1, p. 143, 1998.

[4] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing cardinality-
based feature models and their specialization,” Software process: Im-
provement and practice, vol. 10, no. 1, pp. 7–29, 2005.

[5] T. Tenório, D. Dermeval, and I. I. Bittencourt, “On the use of ontology
for dynamic reconfiguring software product line products,” in Pro-
ceedings of the ninth international conference on software engineering
advances, 2014, pp. 545–550.

[6] D. Fey, R. Fajta, and A. Boros, “Feature modeling: A meta-model
to enhance usability and usefulness,” in International Conference on
Software Product Lines. Springer, 2002, pp. 198–216.

[7] T. Asikainen, T. Mannisto, and T. Soininen, “A unified conceptual foun-
dation for feature modelling,” in 10th International Software Product
Line Conference (SPLC’06). IEEE, 2006, pp. 31–40.

[8] J. Peña, M. G. Hinchey, A. Ruiz-Cortés, and P. Trinidad, “Building the
core architecture of a nasa multiagent system product line,” in Interna-
tional Workshop on Agent-Oriented Software Engineering. Springer,
2006, pp. 208–224.

[9] D. Benavides, P. Trinidad, and A. R. Cortés, “Using constraint program-
ming to reason on feature models.” in SEKE, 2005, pp. 677–682.

[10] H. Perez-Morago, R. Heradio, D. Fernandez-Amoros, R. Bean, and
C. Cerrada, “Efficient identification of core and dead features in vari-
ability models,” IEEE Access, vol. 3, pp. 2333–2340, 2015.

[11] J. Van Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability in
software product lines,” in Proceedings Working IEEE/IFIP Conference
on Software Architecture. IEEE, 2001, pp. 45–54.

[12] A. Abbas, I. F. Siddiqui, S. U.-J. Lee, and A. K. Bashir, “Binary pattern
for nested cardinality constraints for software product line of iot-based
feature models,” IEEE Access, vol. 5, pp. 3971–3980, 2017.

[13] C. F. Vogelmeier, G. J. Criner, F. J. Martinez, A. Anzueto, P. J. Barnes,
J. Bourbeau, et al., “Global strategy for the diagnosis, management,
and prevention of chronic obstructive lung disease 2017 report. gold
executive summary,” American journal of respiratory and critical care
medicine, vol. 195, no. 5, pp. 557–582, 2017.

706

SSLDoc: Automatically Diagnosing Incorrect SSL
API Usages in C Programs

Zuxing Gu, Jiecheng Wu, Chi Li, Min Zhou, Ming Gu
School of Software Engineering, Tsinghua University, Beijing , China, 100084

Abstract—Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols provide a reliable communication chan-
nel between applications over the Internet. Implementations
of these protocols (e.g., OpenSSL and GnuTLS) publish well-
format documentation and examples online to guide the usage
of SSL/TLS APIs. However, incorrect usages have caused many
severe vulnerabilities (e.g., privilege escalation, denial of service,
man-in-the-middle attack, etc.) in recent years. In this paper,
we introduce SSLDoc to diagnose incorrect SSL API usages in
real-world C programs automatically. The key insight behind
SSLDoc is a constraint-directed static analysis technique powered
by domain-specific usage patterns that we learn from real-world
vulnerabilities and bug-fix-related patches. We have instantiated
SSLDoc for OpenSSL APIs and applied it to large-scale open-
source programs. SSLDoc found 45 previously unknown security-
sensitive bugs in OpenSSL implementation and applications in
Ubuntu. We created and submitted issues for all of them. Up to
now, 35 have been confirmed by the corresponding development
communities and 27 have been fixed in master branch.

Index Terms—SSL, API usage validation, static analysis, bug
detection

I. INTRODUCTION

Secure Socket Layer (SSL) and Transport Layer Security
(TLS) are the most widely deployed protocols in security-
sensitive software. They provide a confidential and authentic
end-to-end communication mechanism against an active, man-
in-the-middle attacker. The details of these protocols are
complicated and involves many steps to set up and validate
certificate authority [1], [2]. Therefore, client programs usually
rely on SSL libraries such as OpenSSL [3] and GnuTLS [4],
which encapsulate the internal details and diverse kinds of
cryptography algorithms into APIs with well-format documen-
tation and examples. However, correct usage of SSL APIs is
required to satisfy certain constraints, such as call conditions
or call orders. Violations of these constraints will lead to
software bugs and more critically, can have severe security
implications. For example, missing error status code validation
of SSL APIs will cause a denial of service by remote attackers
(CVE-2016-2182 [5]), and broken SSL certificate validation
will result in man-in-the-middle attacks [6]. A recent study
show that SSL certificate validation is completely broken in
many security-critical applications and libraries [7].

Many different tools, techniques and methodologies have
been proposed to address the above problems. Clark et al. [8]
present a comprehensive survey of SSL issues to enhance the
certificate infrastructure used in practice. Brubaker et al. [9]

DOI reference number: 10.18293/SEKE2019-006

systematically test the correctness of the certificate validation
logic in SSL/TLS implementations. However, they focus on
SSL implementation and require considerable manual efforts
to prepare a test environment.

To automatically detect incorrect usages of SSL APIs in
client programs, static analysis has long prevailed as one of the
most promising techniques [10]. For example, He et al. [11]
design and implement SSLINT, a scalable static analysis tool
to match a program dependence graph with a handcrafted,
precise signature modeling the correct logic usage of SSL
APIs. Although SSLINT is capable of detecting incorrect
usages in practice, it is hard to apply to APIs without pre-
defined signatures and produces many false positives and false
negatives due to imprecise static analysis (e.g., flow-insensitive
and context-insensitive). Yun et al. [12] present APISan for
incorrect API usages of causal relation and semantic relation
on arguments with security implications by leveraging the
strength of static analysis (such as control dependency anal-
ysis) and code mining (such as frequent sub-itemsets mining
algorithm). It provides accurate detection and can be applied
to scale real-world system programs. However, a challenge
for such tools is insufficient data to train models, which is
particularly severe for SSL APIs in client programs.

In this paper, we aim at augmenting current detection
capability of incorrect SSL API usage for large-scale C pro-
grams. The key insight is a constraint-directed static analysis
technique powered by domain-specific usage patterns. To
understand the root causes of incorrect usages of SSL APIs,
we begin with a preliminary investigation of real-world vulner-
abilities to summarize generic incorrect usage patterns. Lever-
aging this knowledge, we design and implement SSLDoc, a
static analysis detector employing under-constrained symbolic
execution [13] to generate abstract symbolic traces with rich
semantics and detect incorrect usages. In this way, SSLDoc
can precisely conduct a flow-, control- and context-sensitive
analysis inter-procedurally (i.e., capable of capturing temporal
sequencing of API calls, path constraints, and data flows
between parameters and return values in or across procedures).

To evaluate SSLDoc in practice, we instantiated it with
OpenSSL APIs and applied it to more than half million
lines of source code, including OpenSSL implementation and
15 applications in Ubuntu. The result shows that SSLDoc
discovers 45 previously unknown security-sensitive incorrect
SSL API usages. We reported our findings to developers
and received 35 confirmations, out of which 27 have been
fixed in multiple branches. Moreover, we share the lessons

707

learned from bug detecting, issue reporting and discussions
with developers.

In summary, our paper makes the following contributions:
• We design and implement SSLDoc, a static analysis tool

to augment current detection capability of incorrect SSL
API usage for large-scale C programs.

• We instantiate SSLDoc with OpenSSL APIs and apply
it to real-world programs. It discovers 45 previously
unknown incorrect SSL API usages, out of which 35 have
been confirmed by developers.

• We share the lessons learned from bug detecting, issue
reporting and discussions with developers in practice. We
hope our findings can motivate more researcher to combat
incorrect SSL API usages.

The rest of this paper is organized as follows. Section II
provides motivating examples of our work. Section III presents
the design of SSLDoc, followed by an evaluation in Section
IV. We share the lessons learned in Section V and discuss
related work in Section VI and conclude in Section VII.

II. MOTIVATING EXAMPLE

Instead of implementing SSL themselves, Client programs
usually rely on APIs of SSL libraries such as OpenSSL and
GnuTLS as well as higher-level data-transport libraries such as
Curl [14]. While APIs encapsulate the details, they also expose
rich semantic constraints. Violations of these constraints, in
turn, lead to serious security problems.

To better understand incorrect SSL API usage patterns and
how developers fix them in practice, we manually studied
four years’ (from 2013 to 2017) CVE entries related to
API usage bugs in National Vulnerability Database1. They
are extracted through approximate keywords matching (e.g.,
“OpenSSL API usage” and “incorrect SSL usage”) and contain
concrete patches to fix the bugs. We investigate both the CVE
description messages and patches, and identify two generic
incorrect usage patterns as shown in Figure 1:
• Certificate Validation. SSL libraries encapsulate the core

functionality of protocols and export APIs to utilize the
implementation. However, the client needs to validate all
kinds of certificates in applications. Missing validations
might allow attackers to cause a denial of service or man-in-
the-middle via an invalid one. Figure 1a shows an example
of such vulnerabilities reported in CVE-2015-0288 [15].
Function X509 get pubkey()2 attempts to decode the
public key for x. If an error occurs, it will return NULL.
In function X509 to X509 REQ(), the return value
pktmp is used without checking the error code, which
results in a NULL Pointer Dereference bug. Beyond null
pointer checking, SSL libraries use various error protocols
in practice (e.g., 0 or negative for errors in OpenSSL, but
-1 to -403 in GnuTLS).

• Causal Function Calling SSL libraries allocate memory
resources for cryptography algorithm computing, which

1http://cve.mitre.org/
2https://www.openssl.org/docs/manmaster/man3/X509 get pubkey.html

1 Location: OpenSSL/crypto/x509/x509_req.c: 70
2 X509_REQ *X509_to_X509_REQ(...){
3 [...]
4 pktmp = X509 get pubkey(x);
5 // missing certificate validation of pktmp
6 + if (pktmp == NULL)
7 + goto err;
8 i = X509_REQ_set_pubkey(ret, pktmp);
9 EVP_PKEY_free(pktmp);

10 [...]
11 }
12 ===== Correct Usage =====
13 Location: /crypto/x509/x509_cmp.c: 390
14 int X509_chain_check_suiteb(...){
15 [...]
16 pk = X509 get pubkey(x);
17 rv = check_suite_b(pk, -1, &tflags);
18 [...]
19 }
20 static int check_suite_b(EVP_PKEY *pkey,...){
21 [...]
22 // ensure pkey not NULL
23 if (pkey && ...)
24 [...]// error handling
25 }

(a) Incorrect usage for missing certificate validation reported in
CVE-2015-0288 [15].

1 Location: OpenSSL:ssl/t1_lib.c: 3567
2 static int tls_decrypt_ticket(...){
3 EVP_CIPHER_CTX ctx;
4 [...]
5 EVP CIPHER CTX init(&ctx);
6 [...] // Check HMAC of encrypted ticket
7 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen))
8 + { EVP_CIPHER_CTX_cleanup(&ctx);
9 return 2;

10 +}
11 [...]
12 sdec = OPENSSL_malloc(eticklen);
13 if (!sdec){
14 EVP CIPHER CTX cleanup(&ctx);
15 return -1;}
16 [...]
17 EVP CIPHER CTX cleanup(&ctx);
18 [...]

(b) Incorrect usage for missing releasing resource reported in CVE-
2014-3567 [16].

Fig. 1: Motivating examples of incorrect SSL API usages.

should release after their lifecycle by invoking a causal
function calling. Violations of such causal relation (i.e.,
a-b pattern) will cause a denial of service (memory con-
sumption) via an intentionally crafted input by remote at-
tackers. For example, EVP CIPHER CTX cleanup()3

clears all information from a cipher context ctx and free
up any allocated memory associated with it. However,
missing invoking it along the error handling path of
tls decrypt ticket() will be exploited by a crafted
session ticket that triggers an integrity-check failure as
shown in Figure 1b.
Detection of the above bugs is not trivial. It re-

quires a wide spectrum of semantics instead of simply
syntactic matching. For example, function invocation of
X509 get pubkey() at Line 16 in Figure 1a is correct,
because check suite b() validates the first parameter to
ensure that pkey is not NULL. To filter out such instance, it

3https://www.openssl.org/docs/man1.0.2/crypto/EVP CIPHER CTX
cleanup.html

708

Fig. 2: Overview of SSLDoc’s workflow.

demands a flow- and context-sensitive semantic analysis inter-
procedurally. Moreover, path-sensitive analysis also should be
taken into consideration to check memory leak along different
error handling paths (e.g., Line 14 and 17 in Figure 1b).

III. APPROACH

In this section, we introduce SSLDoc, a static analysis tool
to augment current SSL API usage detection capability for
large-scale C programs. We first present a brief overview of
our approach with an example of Figure 1a and elaborate each
step of bug detection in the following parts.

As shown in Figure 2, SSLDoc takes the source code and
target APIs as input and generates bug reports with concrete
locations and reasons as output. Bug detection consists of three
basic steps. (1) In Phase-1, the analysis context is built by
constructing the control flow graph and creating program path
traces for each target API by employing under-constrained
symbolic execution. In this example, two traces, t1 and t2, are
generated, as shown in the box above Program Path Traces.
In this way, SSLDoc can successfully capture the usage con-
text of X509 get pubkey(), EVP PKEY free() and
those in between. (2) In Phase-2, SSLDoc employs the traces
to detect violations of API usages as potential bugs. For ex-
ample, two API-misuse instances of X509 get pubkey()
are found for missing certificate validations labeled as Po-
tential Bugs. (3) In Phase-3, SSLDoc improves the detection
precision by leveraging inter-procedural semantics and usage
statistics. Then, the second misuse is filtered out for the check
conducted in the X509 to X509 REQ() at Line-24. We
discuss the details of our approach as follow.

A. Building Analysis Contexts

SSLDoc performs symbolic execution to generate program
path traces that capture rich semantic information for each

Fig. 3: Workflow of building analysis contexts.

target API. In Figure 3, we illustrate the workflow for building
analysis context, which consists of three steps. First, SSLDoc
parses the source code and builds a control flow graph (CFG).
Then, for each target API f, we select analysis entries as target
API call sites by labeling the callers C, which invokes f. Next,
for each caller c ∈ C, symbolic execution is employed to
generate a series of program path traces T with rich semantics
of usages of f while traversing the CFG.

We use N,Z to denote the set of non-negative and all
integers, respectively. In Figure 4, we formally describe the
structure of program path traces computed by SSLDoc, where
id ∈ N,n ∈ N, z ∈ Z and ap is short for Accesspath [17] to
represent memory locations in the form of regular expressions.
Each trace t consists of a sequence of actions a+ with a
value map V . In particular, Assume action is used to capture
path-sensitive semantics. All the actions are labeled while
traversing CFG to support flow-sensitive analysis. V records
the semantics from a symbolic variable sv to a concrete value
cv . A symbolic variable is defined by an action labeled by id
and the index n . For example, id f arg i denotes the i th

parameter of f called in the idth action. In this way, we can
capture the invocation context semantics. We use f arg 0 to
represent the return value of f and arg 0 for the symbolic
variable returned by the caller c of f in Return action.
Therefore, our program path trace is capable of capturing the
flow-, context- and path-sensitive semantics.

In Figure 5, We illustrate three traces of the example code
listed in Figure 1a. t1 and t3 are original code snippets,
and t2 is with the bug-fix patch. All traces start from the
action calling X 509 get pubkey(). Then, t1 directly
passes the return value 1 X509 get pubkey arg 0 into
X509 REQ set pubkey() without certificate validation.
By contrast, t2 validates the return value immediately. Even
though t3 passes it into check suite b() without valida-

(Traces) T ::= t

(trace) t ::= (id a)+;V

(action) a ::= Assume(exp) | Call f(sv∗) | Return(sv)
(expression) exp ::= sv1 cmpop sv2

(value map) V ::= sv → cv

(symbolic variable) sv ::= (id f arg n)

(compare operator) cmpop ::= ! = | == | >= | > | <= | <

(concrete value) cv ::= z | ap | NULL
(function) f ∈ F

Fig. 4: Abstract syntax of program path traces.

709

t1 : 1 Call X509 get pubkey();
2 Call X509 REQ set pubkey(, 1 X509 get pubkey arg 0) ;

t2 : 1 Call X509 get pubkey();
2 Assume(1 X509 get pubkey arg 0 != NULL) ;
3 Call X509 REQ set pubkey(, 1 X509 get pubkey arg 0) ;

t3 : 1 Call X509 get pubkey();
2 Call check suite b(1 X509 get pubkey arg 0, ,) ;
2 Assume(1 X509 get pubkey arg 0 != NULL) ;

Fig. 5: Program path traces of the code in Figure 1a, where
we use “ ” to represent values irrelevant.

tion, check suite b() checks the first parameter at Line
24 in Figure 1a.

Similar to the traditional analysis, the key challenge of
building such path traces in large and complex programs is to
overcome the path-explosion problem. We make two design
decisions to achieve scalability without sacrificing substantial
accuracy. (1) Limiting inter-procedural analysis. SSLDoc per-
forms symbolic execution intre-procedurally for each caller c
of the target API f at most two depth (i.e. we track c and
callees of c). We refine the bug detection results by a filtering
phase with the deeper inter-procedural semantics presented in
Section III-C. (2) Unrolling loops. SSLDoc unrolls each loop
only once to reduce the number of paths explored. While this
restriction can limit the accuracy of the semantic computation,
it does not noticeably affect the accuracy of SSL API bug
detection for only a small number of usages related to loop
variables.

B. Checking API misuses

In the checking phase, SSLDoc employs target APIs
and the program path traces T to detect bugs. To con-
figure usage pattern of SSL APIs, we provide each target
f with a usage pattern type f.T , which can be certifi-
cate validation with a predicate P (e.g., X509 get pubkey
!= NULL) and causal function calling with a us-
age pattern C (e.g., EVP CIPHER CTX init(arg1) →
EVP CIPHER CTX cleanup(arg1), where arg1 labels the
target memory object). We illustrate our detecting algorithm
in Algorithm 1. First, we extract all the target functions into
APISet. For each API f , we detect API-misuse bugs along
the traces T ′ that invoke f . Then, for each trace t in T ′, we
validate whether the usage pattern in f.T are satisfied along
t. If a path fails, SSLDoc labels the call site of f along this
t as a potential bug. To check the satisfaction of certificate
validation along t, we compute the satisfiability of P . That
is, whether there is an Assume action to ensure P . For usage
pattern C, we match with Call actions, which satisfy the target
memory object constraint. If any of the constraints fail to
match, SSLDoc reports a bug. For example, t1 in Figure 5
fails to ensure the certificate validation X509 get pubkey
!= NULL, which may result in a null pointer dereference bug.

C. Filtering Bug Reports

To achieve the scalability required to support real-world pro-
grams, we employ a limiting inter-procedural strategy to ad-

Algorithm 1 Algorithm for checking incorrect SSL API usage
Input: program path traces T , target APIs F
Output: bug report R
1: R ⇐ ∅
2: APISet ⇐ extractTargetAPISet(F)
3: for each API f ∈ APISet do
4: T ′ ⇐ extractPathTraces(f, T)
5: for each trace t ∈ T ′ do
6: result ⇐ satisfy(t, f.T)
7: if (!result) then
8: R ⇐ addBug(t, f)
9: end if

10: end for
11: end for
12: return R

dress the path-explosion problem. The strategy generates false
positives when a usage cross more than two functions. How-
ever, developers dislike using tools with low precision [18].
Therefore, we apply deeper inter-procedural semantics and
rank the final results according to usage statistics.

First, we conduct semantic-based filtering. We attempt to
infer semantics acrossfunctions. For the missing validation of
certificate x, we further check the functions which directly
receive x as a parameter. If these functions contain sanity
check against x, we filter it out. For causal function calling
pattern as a → b, if the target memory object of a is directly
assigned to the parameter of the caller c of a or returned by
c, we check whether callers C of c invoke b. We filter out the
cases that contain function invocation of b.

Then, we conduct a usage-based ranking. Basically, we
compute the number of correct/incorrect usage traces re-
spectively, ranks bug reports in decreasing order of their
likelihood of being bugs as H(f) = #of correct usage traces of f

#of incorrect uage traces off .
The highest likelihood value indicates that more correct usages
occur and the violations are less. Therefore, the violations are
highly buggy. Note that, we use the trace number instead of
call site number, because of the observation that many bugs
occur along path-branches with different context semantics.
However, we have to specially treat when H(f) is 0, because
it indicates that all the usages are buggy. The preliminary
experiment results show that it frequently occurs in small
programs which invoke SSL APIs only once or twice.

D. Implementation

SSLDoc is built in Java language. We preprocess the source
code into LLVM-IR 3.94, which provides a typed, static
single assignment (SSA) and well-suited low-level language.
Then, we parse the LLVM-IR by javacpp5 and construct an
extended control flow graph, which classifies the edges into
control edges for semantic computation and summary edges to
provide a mechanism to support large-scale programs. We have
integrated part of OpenSSL APIs with SSLDoc and provide
an interface to extend our analysis in a human-readable format
named Yaml 6.

4http://releases.llvm.org/3.9.0/docs/ReleaseNotes.html
5https://github.com/bytedeco/javacpp
6http://yaml.org/

710

IV. EVALUATION

In this section, we describe our results from incorrect SSL
API usage detection on large-scale open-source programs
using SSLDoc. We begin by providing the experimental setup.
Then we present the security-sensitive bugs we found and
concluding with lessons we learned.

a) Experimental Setup: We applied SSLDoc to find
incorrect SSL API usages in OpenSSL implementation as well
as applications using OpenSSL library in Ubuntu 16.04. Tar-
get applications are selected by search dependence attributes
using package management command line “apt-cache
rdepends libssl1.0.07”. In total, we found more than
1200 packages using this library and selected 15 packages
which are open-source on Github and ongoing development.
For all the 16 programs, we detect incorrect usages in the
latest stable versions. Then, we use GNU cflow8 to extract
target SSL APIs invoked in the applications and create usage
pattern mentioned in Section II according to the user manual
of OpenSSL9. In total, 136 different SSL APIs are integrated
with SSLDoc. We ran SSLDoc on Ubuntu 16.04 LTS (64-bit)
with a Core i5- 4590@3.30 GHz Intel processor and 16 GB
memory.

b) Result: Overall, SSLDoc detected 45 previously un-
known security-sensitive incorrect SSL API usages as listed in
Table I. We tried our best to understand the context and created
issues for all the bugs to the developers of each program.
Up to now, 32 of the new bugs have been confirmed by the
developers and 27 have been fixed in the master branch.

For example, in Figure 6 we present a bug caused by incor-
rect validation of connect status in dma, a small Mail Transport
Agent, which is fixed at 12 hours after we submitted the bug
report with bug description and explanation of bug traces.
Function SSL connect() initiates the SSL handshake with
a server. It returns 0 and negative integers to indicate SSL
handshake is not successful. However, the status validation in
dam/crypto.c only checked against negative integers, which
may cause a man-in-the-middle attack leading to leakage of
user credentials and emails messages.

V. DISCUSSION

While investigating the bug reports generated by SSLDoc,
we find several intricate bugs and gain useful experience
in the bug reporting process with open-source developers.
We share our following experience. (1) Incorrect SSL API
usages are not corner cases. In total, we find 45 previously
unknown incorrect usages. However, OpenSSL library has
provided well-format documentation and examples to guide
correct usages. These bugs may result from the lack of a bug
information sharing mechanism and the lack of API usage
constraints among client software developers. We believe
that bug fixing is an essential activity during the entire life
cycle of software development. Automatic bug-finding tools,

7In Ubuntu16.04 OpenSSL library is listed as libssl1.0.0.
8http://www.gnu.org/software/cflow/
9https://www.openssl.org/docs/manmaster/man3/

TABLE I: Previously unknown incorrect SSL API usages
detected by SSLDoc

Index Program Issue ID Target API Status
1 6567 RAND bytes XX
2 6568 ASN1 INTEGER get X
3 6569 ASN1 INTEGER set XX
4 6570 ASN1 object size X
5 6572 BN set word XX
6 6573 HMAC Init ex X
7 OpenSSL 6574 EVP PKEY get0 DH XX
8 1.1.1-pre8 6575 EC KEY generate key X
9 6781 EC GROUP new by curve name XX
10 6789 ASN1 INTEGER set XX
11 6820 ASN1 INTEGER to BN XX
12 6822 BN sub XX
13 6973 EVP MD CTX new XX
14 6977 ASN1 INTEGER set XX
15 6982 OBJ nid2obj XX
16 6983 BN sub XX
17 7235 DH set0 key X
18 dma 59 SSL connect XX
19 exim 2316 X509 NAME oneline XX
20 2317 SSL CTX set cipher list XX
21 hexchat 2244 BN set word X
22 2245 DH set0 key P
23 httping 41 SSL CTX new X
24 ipmitool 37 MD2 Init X
25 open-vm-tools 291 SSL CTX set cipher list XX
26 292 X509 STORE CTX get current cert XX
27 irssi 943 SSL get peer certificate P
28 944 BIO read P
29 keepalive 1003 SSL CTX new XX
30 1004 SSL new XX
31 thc-ipv6 28 BN new XX
32 29 BN set word XX
33 FreeRADIUS 2309 BIO new XX
34 2310 i2a ASN1 OBJECT XX
35

trafficserver
4292 SSL CTX new P

36 4293 SSL new P
37 4294 SSL write P
38 tinc 205 BN hex2bn XX
39 306 RAND load file XX
40 sslsplit 224 SSL CTX use certificate XX
41 225 SSL CTX use PrivateKey XX
42 rdesktop 280 BN bin2bn P
43 281 BN mod exp P
44 proxytunnel 36 SSL connect P
45 37 SSL new P

XX is fixed, X is confirmed without a patch, and P is wating developr responce.

Fig. 6: Screenshot of a bug caused by incorrect validation of
SSL connet() status in dma, which is fixed at 12 hours.

711

such as SSLDoc, with large-scale analysis capability can be
integrated into the development cycle. In addition, SSLDoc
can be customized to incrementally address this problem.
(2) Accelerating manual auditing. SSL API usages usually
have similar behavior patterns. For example, many types of
vulnerabilities result from insufficient validation of input or
missing certificate validations. However, discovering all the
missing checks by human is tedious and time-consuming.
Automatic tools can efficiently accelerate the manual auditing
with differences extracted as good usages and bad usages.
For example, two of the API misuses were fixed within 12
hours after we created the issues with possible fixing patches,
as shown in Figure 6. (3) Intentional choices. We also find
that many incorrect usages are not mistakes but intentional
choices. Many error status code checks of return values are
ignored by developers. During the bug reporting process with
the OpenSSL developers, we learned that they intentionally
ignore some error code checks for performance considerations
or due to the lack of an error handling mechanism in C10.

VI. RELATED WORK

A few works in the past have analyzed application vul-
nerabilities due to improper usage of SSL/TLS. Georgiev et
al. [7] employ dynamic analysis to conduct MITM attacks
and demonstrate that SSL certificate validation is completely
broken due to badly designed APIs of SSL implementations.
Later, Clark et al. [8] present a comprehensive survey of
SSL security and Brubaker et al. [9] apply Frankencerts, a
smart fuzzer to test SSL/TLS certificate validation code in
implementation. He et al. [11] develop SSLINT, a scalable,
automated, static analysis system for detecting incorrect cer-
tificate validation vulnerabilities in client programs with pre-
defined API signatures. To automatically infer usage pattern,
Yun et al. [12] present APISan to infer correct API usages
from source code without manual effort and detect various
properties with security implications. Moreover, generic bug
detection approaches also can be applied to SSL/TLS API
usage, such as static analysis approaches [19], [20] and test-
ing [21]. SSLDoc specifically targets SSL API usages in C
programs and complements these works. In addition, our work
can be easily extended to other domains.

VII. CONCLUSION

Client programs rely on APIs of libraries implementing
SSL/TLS protocols to ensure reliable communications. Incor-
rect usage of such APIs will cause security-sensitive prob-
lems, even severe vulnerabilities. In this paper, we present
SSLDoc, a static analysis detector to automatically diagnose
incorrect usages of SSL APIs in C programs. We instantiate
SSLDoc with APIs of OpenSSL and apply it to large-scale
programs. We find 45 previously unknown bugs in OpenSSL
implementation and 15 applications in Ubuntu which use SSL
APIs, out of which 27 have been fixed. We share the lessons
learned from bug detection and discussions with developers to

10https://github.com/openssl/openssl/issues/6575

motivate more researchers and practicers to combat incorrect
SSL API usages.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful feed-
back. This research is sponsored in part by National Natural
Science Foundation of China (Grant No. 61802259, 61402248,
61527812), National Science and Technology Major Project
of China (Gran No. 2016ZX01038101), and the National Key
Research and Development Program of China (Grant No.
2015BAG14B01-02, 2016QY07X1402).

REFERENCES

[1] T. Dierks and E. Rescorla, “The transport layer security (tls) protocol
version 1.2,” Tech. Rep., 2008.

[2] A. Freier, P. Karlton, and P. Kocher, “The secure sockets layer (ssl)
protocol version 3.0,” Tech. Rep., 2011.

[3] “Openssl: cryptography and ssl/tls toolkit.” https://github.com/openssl/
openssl, 2019.

[4] “Gnutls: a secure communications library implementing the ssl, tls and
dtls protocols and technologies around them.” https://gitlab.com/gnutls/
gnutls/, 2019.

[5] “Cve-2016-2182,” http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2016-2182, 2016.

[6] “Cve-2016-2113,” http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2016-2113, 2016.

[7] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating SSL
certificates in non-browser software,” in CCS’12, Raleigh, NC, USA,
October 16-18, 2012, 2012, pp. 38–49.

[8] J. Clark and P. C. van Oorschot, “Sok: SSL and HTTPS: revisiting past
challenges and evaluating certificate trust model enhancements,” in SP
2013, Berkeley, CA, USA, May 19-22, 2013, 2013, pp. 511–525.

[9] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using
frankencerts for automated adversarial testing of certificate validation in
SSL/TLS implementations,” in SP 2014, Berkeley, CA, USA, May 18-21,
2014, 2014, pp. 114–129.

[10] A. Delaitre, B. Stivalet, E. Fong, and V. Okun, “Evaluating bug finders
- test and measurement of static code analyzers,” in COUFLESS 2015,
Florence, Italy, May 23, 2015, 2015, pp. 14–20.

[11] B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakrishnan, R. Yang,
and Z. Zhang, “Vetting SSL usage in applications with SSLINT,” in SP
2015, San Jose, CA, USA, May 17-21, 2015, 2015, pp. 519–534.

[12] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, “Apisan: Sanitizing
API usages through semantic cross-checking,” in USENIX Security 16,
Austin, TX, USA, August 10-12, 2016., 2016, pp. 363–378.

[13] D. A. Ramos and D. R. Engler, “Under-constrained symbolic execution:
Correctness checking for real code,” in USENIX Security 15, Washing-
ton, D.C., USA, August 12-14, 2015., 2015, pp. 49–64.

[14] “Curl: A command line tool and library for transferring data with url
syntax.” https://github.com/curl/curl, 2019.

[15] “Cve-2015-0288,” https://www.cvedetails.com/cve/CVE-2015-0288/,
2015.

[16] “Cve-2014-3567,” http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-3567, 2015.

[17] B. Cheng and W. W. Hwu, “Modular interprocedural pointer analysis
using access paths: design, implementation, and evaluation,” in PLDI
2000, Vancouver, Britith Columbia, Canada, June 18-21, 2000, 2000,
pp. 57–69.

[18] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Gros,
A. Kamsky, S. McPeak, and D. R. Engler, “A few billion lines of code
later: using static analysis to find bugs in the real world,” Commun.
ACM, vol. 53, no. 2, pp. 66–75, 2010.

[19] A. Arusoaie, S. Ciobaca, V. Craciun, D. Gavrilut, and D. Lucanu,
“A comparison of open-source static analysis tools for vulnerability
detection in c/c++ code,” in SYNASC 2017, 2017, pp. 161–168.

[20] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static api-misuse detectors,” IEEE Transactions
on Software Engineering, pp. 1–1 (Early Access), 2018.

[21] M. Kassab, J. F. DeFranco, and P. A. Laplante, “Software testing: The
state of the practice,” IEEE Software, vol. 34, pp. 46–52, 2017.

712

Multi-Location Program Repair Strategies Learned
from Successful Experience

Shangwen Wang1,3, Xiaoguang Mao1,3, Nan Niu2, Xin Yi1,3, and Anbang Guo1,3

1National University of Defense Technology, Changsha, China
2University of Cincinnati, Cincinnati, USA

3Hunan Key Laboratory of Software Engineering for Complex Systems, Changsha, China
{wangshangwen13, xgmao, yixin09, guoanbang12}@nudt.edu.cn, niunn@ucmail.uc.edu

Abstract—Automated program repair (APR) has great
potential to reduce the effort and time-consumption in software
maintenance and becomes a hot topic in software engineering
recently with many approaches being proposed. Multi-location
program repair has always been a challenge in this field since its
complexity in logic and structure. While some approaches do not
claim to have the features for solving multi-location bugs, they
generate correct patches for these defects in practice. In this
paper, we first make an observation on multi-location bugs in
Defects4J and divide them into two categories (i.e., similar and
relevant multi-location bugs) based on the repair actions in their
patches. We then summarize the situation of multi-location bugs
in Defects4J fixed by current tools. We analyze the twenty-two
patches generated by current tools and propose two feasible
strategies for fixing multi-location bugs, illustrating them
through two detailed case studies. At last, preliminary results
prove the feasibility of our methods with the repair of two bugs
that have never been fixed before. By learning from successful
experience in the past, this paper points out possible ways ahead
for multi-location program repair.

Keywords—automated program repair; multi-location bugs;
case studies

I. INTRODUCTION

Over the years, researchers develop various Automated
Program Repair (APR) techniques aiming at reducing the
onerous burden of fixing bugs. Generally, these automated
repair tools can be classified into two categories, i.e., search-
based methodology (e.g., GenProg [1] and RSRepair [2]) and
semantics-based methodology (e.g., S3 [3] and Angelix [4]).
Search-based repair method (also known as generate-and-
validate methodology) generate patch candidates by searching
within a predefined fault space determined by Fault Location
(FL) techniques and then validate these candidates against the
provided test-suite. Semantics-based repair methodology, on
the contrary, utilizes semantic information generated by
symbolic execution and constraint solving to synthesize
patches. These state-of-the-art APR tools make great
achievements on single-edit program repair.

Multi-location program repair, which refers to fixing multi-
location bugs whose human-written patches contain multiple
chunks [4, 5], has become a challenge since the rise of APR
due to its complexity. Some recent empirical studies have
shown the importance of multi-location repair: The study by
Sobreira et al. [5] shows that more than 60% of the bugs in
Defects4J [6], a well-known dataset containing 395 real bugs
collected from six open-source Java projects, need fixing in
multiple points and Zhong and Su [7] draw the conclusion that

programmers make at least two repair actions in total to fix
more than 70% of bugs. So far, only Angelix and S3 have been
reported to possess special features designed for multi-location
bugs by capturing the dependence among multiple program
locations. However, as the authors stated in [3], semantic-based
repair exclusively modifies expressions in conditions or on the
right-hand side of assignments, leading to its not so satisfactory
performance. Thus, it is an emerging trend for solving multi-
location bugs.

While some tools do not claim that they have the abilities to
fix multi-location bugs, they generate correct patches for these
bugs when being evaluated. For example, the patch in Listing 1
modifies the types of two variables in different locations and it
is a typical multi-location defect. Recently, a tool named ACS
[8] has reported to fix this bug successfully. This phenomenon
motivates our study. In this paper, we analyze why these
patches are generated and how they fix the bugs, aiming to
provide practical guidance for future research by learning the
experience. We first conduct an empirical study on the multi-
location bugs in Defects4J and classify them into two
categories according to repair actions in their patches. We then
investigate the statistics of multi-location bugs from Defects4J
that are successfully fixed by the current tools. We analyze the
twenty-two patches for multi-location bugs generated by
current tools and propose two suggestions for solving this kind
of bugs, illustrating them through two detailed case studies.
Preliminary results show the practicalities of our suggestions
with the repair of two out of eight multi-location bugs in
Defects4J that have never been fixed before. Our methods are
successful by micro-adjustment of our suggestions with
existing tools.

II. EMPIRICAL OBSERVATION

Two patches for multi-location bugs in Defects4J, Lang#35
and Chart#5, are shown in Listings 1 and 2, respectively. We
divide multi-location bugs in this dataset into two categories by
analyzing the repair actions in the two instances.

In Listing 1, developer changes two statements at different
places into a same oracle-throwing statement. Modifications at
each edit point share similar actions in syntax and thus this bug
is classified into syntax similar multi-location bugs category
(similar multi-location bugs for short). In this category, the
similar modification we talk about may spread over both a
single line of statement (Time#3) and a chunk of codes
(Chart#14). Such cases are abundant in Defects4J, such as
Time#3 where several similar if conditional statements are
added, Math#49 where an object instantiation is modified in
many functions from a same class, Closure#4 where a conditio-

DOI reference number: 10.18293/SEKE2019-007

713

Listing 1. The patch of Lang#35

Listing 2. The patch of Chart#5

nal expression is modified similarly at two places, etc. Among
the 244 multi-location patches in our dataset, this category has
70 instances, occupying 28.69% of the total amount. A small
part of these cases (23/70) share exactly the same operations at
each edit point, such as Chart#14, adding the same conditional
block in four edit points.

The fixing shown in Listing 2 is different. It involves the
addition of an if conditional statement and corresponding
operations from lines 544-547 and the modification of the
content of an if conditional statement in line 552. These
modifications are compact and have great logical correlation in
the program structure and we name this type semantic relevant
multi-location bugs (relevant multi-location bugs for short).
The criterion is from Abstract Syntax Tree (AST) level: if the
node under one modification appears in other modified places
in this patch or the modified places are sub-nodes of a common
node, then the bug belongs to this type. Another example is the
patch of Mockito#2 where developer first uses Method
Definition Addition repair action from lines 30-341 and then
operates Method Call Addition in line 11. This type is more
popular in our dataset, holding 67.62% (165/244) of the total
amount. This result is consistent with our perception that
modifications performed at multiple locations aiming at
solving a bug should have logical correlations, in most cases.

A small proportion of the dataset which contains 9 patches
like Time#2 and Mockito#11 shows differences from the above
two conditions: modifications at different places in these
patches are neither similar nor logical related. We have not
proposed any method for this kind of situation in this paper due
to its peculiarity.

Note that the classification is based on the features of
modifications at different places and it can provide guidance
for repairing. Similar type bugs have no logical correlation at
each location and thus we may fix these places one by one,
however, relevant type bugs possess logical correlations at
each location and it may affect other places when operating in
one place. That is why relevant type bugs are more difficult to
repair and it is proved through the results which we will show
in the next section: more similar multi-location bugs have been
fixed than relevant multi-location bugs. Also note that when
counting the number of each category, we use a relevant first
strategy which means if a patch contains both similar and
relevant edits, it belongs to the latter. For example, in Math#74,
two similar loop chunks are added but there is another
modification about the loops, making this patch belong to
relevant bug. The reason for this strategy is that if both kinds of

1 Due to space limitation, some code snippets are not shown. Please
check them in https://github.com/program-repair/defects4j-dissection.

TABLE I. STATISTICAL RESULTS

Bug ID T PM S jGP jK N A ssF J HDR SF

C5 R P

C14 S P

C19 S P

CL115 R P

L10 R P

L27 R P

L35 S P

L41 R P

L50 S P

L60 S P

M4 S P

M22 S P

M35 S P P

M61 R P

M71 S P

M79 R P P

M90 R P

M93 R P

M98 S P

M99 S P

Similar 11 - 5 - - - 6 - - 1 -

Relevant 9 - 3 - - 1 3 2 - 1 -

Total 20 - 8 - - 1 9 2 - 2 -

Column “T” means the type of this bug and R refers to relevant type while S
refers to similar type. “P” denotes this bug is successfully fixed by the tool.
“Similar” and “Relevant” denote the numbers of different types of bugs fixed
by each tool and “Total” denotes the total number of bugs fixed by each tool.
It is marked with “-” if the tool cannot fix any bug.

operations are needed for fixing a bug, then the difficulty
degree is near to repairing a relevant bug.

III. SITUATION STATISTICS
In this section, we investigate how the contemporary APR

tools would handle the multi-location bugs. We select ten tools
which have been evaluated on this dataset: ProbabilisticModel
(PM) [9], SimFix (S) [10], jGenProg (jGP) [11], jKali (jK) [11],
Nopol (N) [12], ACS (A), ssFix (ssF) [13], JAID (J) [14],
HDRepair (HDR) [15], and SketchFix (SF) [16]. Note that we
adopt the experimental results for jGenProg, jKali, and Nopol
reported by Martinez et al. [11] and the results of other
approaches come from the corresponding research papers. The
results are illustrated in Table I where each tool is represented
by its acronym.

Generally speaking, 22 valid patches are generated and 20
multi-location bugs are successfully fixed including 11 similar
type and 9 relevant type, among which M35 and M79 are fixed
by two tools. There are only five tools being able to fix these
bugs (i.e., SimFix, Nopol, ACS, ssFix, and HDRepair) among
which SimFix and ACS repair the most bugs with 8 and 9,
respectively. Nopol and ssFix repair 1 and 2 bugs respectively
and they can only fix relevant multi-location bugs at this
moment. HDRepair fixes one bug for each type.

IV. LESSONS LEARNED AND SUGGESTIONS
In this section, we propose two suggestions learned from

successful experience and illustrate them through two detailed
case studies.

714

A. Case Study 1: Patch of Lang#35 Generated by ACS
We list the patch of Lang#35 generated by ACS in Fig. 1.

Another modification chunk performed at line 3578 is the same
as the code in the figure. ACS is especially designed for
synthesizing conditional expressions containing two steps:
variable selection and predicate selection. It uses a method
named Oracle-Throwing to avoid the crash, thus, it can
generate patch as shown. However, why it is able to generate
two modification chunks still needs further explanation. Note
that Lang#35 is a similar multi-location bug which means the
two modification points have no correlation in program
structure. Thus, there may be multiple test cases aiming at
testing different places in the program and they all fail. We find
that the test suite for this project contains two failing test cases
and when executing, ACS uses a fitness function which enables
it to continue fixing if the repair actions that have been
performed reduce the number of failing test cases (ACS does
not introduce this feature in its paper, we get this information
after connecting with the authors). Previous studies such as
GenProg and HDRepair use fitness functions to guide the
selection process of candidate patches while ACS exploits the
deduction of failing test cases for solving buggy points one by
one, bringing a new idea for similar multi-location bugs. The
main challenge for applying this strategy is the precondition:
the test suite must have enough failing test cases to expose the
defects and thus we must strengthen the test suite. Test case
purification [17], which means recovering the execution of
omitted assertions, has the ability to generate more practical
test cases and enhance the performance of test suite. EvoSuite
is a commonly used tool for automated test suite generation
and empirically, it can increase code coverage up to 63% [18].
Thus, if we first purify the test suite and add test cases, leading
to an enhanced test suite, and then use this fitness function to
repair, we may be able to solve more multi-location bugs. This
strategy is suitable for our study subject, Defects4J, since all
the projects in this benchmark are open source projects and the
original test suites are manually created which means they may
not cover all the entities in the code.

B. Case Study 2: Patch of Chart#5 Generated by Nopol
The patch of Chart#5 generated by Nopol is shown in Fig.

2. Unlike the human-written patch shown in Listing 2
modifying two code chunks, this patch only modifies a
conditional statement to repair this bug. The modification point
is at line 563, just under the buggy point. Nopol is a semantic-
based program repair tool utilizing angelic values and a
Satisfiability Modulo Theory (SMT) solver for synthesizing
conditional expressions. The conditional expression it
generates really avoids the error. The variable overwritten is
defined with null in line 546 and its value can only be modified
if the condition in line 548 is met. When the condition in line
548 is not met, overwritten keeps the value null and the
program goes to the conditional branch in line 563 where the
condition is not satisfied, either, after being modified. Then the

Fig. 1. Patch of Lang#35 generated by ACS

Fig. 2. Patch of Chart#5 generated by Nopol

program skips this conditional branch and goes to line 566
directly and thus the wrong expression in line 548 does not
cause the error in line 564 which means the error is avoided.
This strategy is to some extent like fault tolerance technique
[19] and it is the same principle with ACS not producing
human-written patch like Listing 1. We further study the reason
for modifying line 563.

Recently, Error Propagation Chain (EPC), which refers
to a sequence of statements between program defect and
program failure statement, is proposed by Guo et al. [20] to
improve the efficiency of fault localization. We check their
experiment results and find that line 563 is in this chain. That
indicates a new direction for fixing relevant multi-location
bugs: since modifications at each edit point possess correlation
in logic and it is hard for current technologies to fix at each
point, we can find out the closest intersection to the buggy
points in the EPCs and utilize SMT solver to find a patch
which avoids the error. It is possible to generate a patch as long
as an intersection can be found no matter how many buggy
points the program possesses. All we need to do is selecting out
the top-k suspicious statements, calculating their EPCs, and
searching for patches at the intersections preferentially. Note
that two situations of relevant multi-location bugs have been
introduced in Section II. If two AST nodes have dependency
relations, one statement will appear in another’s EPC; if two
nodes are both under a common node, then there will be an
intersection in their EPCs.

V. EMERGING RESULTS
In this section, we introduce our preliminary experimental
results. We first randomly selected four similar multi-location
bugs whose test cases are not yet capable for exposing all the
defects and used SimFix, the latest tool with the same fitness
function as ACS contains, to perform the fixing using the
strategy of Suggestion 1. We then randomly selected four
relevant multi-location bugs, each of whose EPC is less than
ten lines (due to the time limitation), added EPCs information
into their bug locations as we introduced in Suggestion 2, and
utilized Nopol for synthesizing patches. All the selected bugs
have never been repaired and the results are shown in Table II.

We manually examine the generated patches and consider a
patch correct if it is the same or semantically equivalent to
human-written one. The results show that our strategies repair
two bugs by applying our suggestions with two current tools.

Suggestion 1: For similar multi-location bugs, use a
suitable fitness function for guiding the repair process
combined with strengthened test suite.

Suggestion 2: For relevant multi-location bugs, find out
the intersection of several EPCs and search for
modifications at that point.

715

TABLE II. PRELIMINARY RESULTS
 SimFix + S1 Nopol + S2

Bug ID M46 M49 L62 T3 M95 CL8 CL50 L22

Fixed? P P

Test case purification focuses on recovering the execution
of omitted assertions and thus is sometimes useless for
strengthening the test suite. For example, in Math#49, the test
case OpenMapRealVector fails for its first function invocation
which leads to an InvocationTargetException and thus the
following function invocations cannot be executed, being the
reason for SimFix not fixing this bug. In our experiment, we
added the test cases generated by Evosuite into test suite,
successfully exposed the two defects, and at last fixed this bug.
The generated patch is the same as the standard one provided
by Defects4J. We performed the same operation to the other
three similar type bugs but SimFix failed to generate patches
for them for mainly two reasons. For Lang#62 and Time#3, the
reason is SimFix finds for fix ingredients in the original
projects but there is no similar code in the source files,
indicating that we may combine source files with existing open
source projects to enlarge the space for searching for fix
ingredients in the future. While for Math#46, the reason is the
code snippet is so large (10 lines) that it considers the donor
with a return statement the same as human-written patch as not
similar. However, after we adjusted the code snippet size to a
finer-grained value (2 lines), it still neglected the snippet which
contains fix ingredient, which indicates that the similarities for
identifying donor code snippets need to be improved.

In Closure#8, the edit point in human-written patch is line
202 in class CollapseVariableDeclarations. We calculated the
intersections of the EPCs of top-100 ranked suspicious
statements and perform synthesis on these points. Finally,
Nopol generated a patch which adds an if-conditional statement
to avoid the error under the another class. We performed the
same operations to the other three relevant type bugs but they
failed because of not finding angelic value at the interpoints
(Lang#22) and not synthesizing a patch (Math#95 and
Closure#50), corresponding to two of five limitations (No
angelic value found and Timeout in SMT) the authors discussed
in their paper, which means the repair ability of Nopol needs to
be improved.

By making some micro-adjustments of our suggestions
with current tools, we fixed two multi-location bugs. The failed
cases are due to the weaknesses of current tools according to
our analysis, indicating the potential of our suggestions to fix
more bugs when combined with more powerful tools.

VI. CONCLUSION
In this paper, we divided multi-location bugs in Defects4J

into two categories according to the repair actions in their
patches, summarized the situation of these bugs fixed by
current tools, and learned the successful experience as well as
put forward two suggestions for future research (one for each
type). Guided by our suggestions, we successfully fixed two
multi-location bugs in Defects4J which have never been
repaired before. To our best knowledge, we are the first to
propose strategies by analyzing patches generated by current
tools, bringing new idea for APR techniques as well as
pointing out possible ways for multi-location program repair.

ACKNOWLEDGEMENT
This work was supported by the National Natural Science

Foundation of China under Grant 61672529.

REFERENCES
[1] Weimer W, Nguyen T V, Le Goues C, et al. Automatically finding

patches using genetic programming[C]//Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer
Society, 2009: 364-374.

[2] Qi Y, Mao X, Lei Y, et al. The strength of random search on automated
program repair[C]//Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014: 254-265.

[3] Le X B D, Chu D H, Lo D, et al. S3: syntax-and semantic-guided repair
synthesis via programming by examples[C]//Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering. ACM,
2017: 593-604.

[4] Mechtaev S, Yi J, Roychoudhury A. Angelix: Scalable multiline
program patch synthesis via symbolic analysis[C]//Proceedings of the
38th international conference on software engineering. ACM, 2016.

[5] Sobreira V, Durieux T, Madeiral F, et al. Dissection of a bug dataset:
Anatomy of 395 patches from Defects4J[C]//2018 IEEE 25th
International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2018: 130-140.

[6] Just R, Jalali D, Ernst M D. Defects4J: A database of existing faults to
enable controlled testing studies for Java programs[C]//Proceedings of
the 2014 International Symposium on Software Testing and Analysis.
ACM, 2014: 437-440.

[7] Zhong H, Su Z. An empirical study on real bug fixes[C]//Proceedings of
the 37th International Conference on Software Engineering-Volume 1.
IEEE Press, 2015: 913-923.

[8] Xiong Y, Wang J, Yan R, et al. Precise condition synthesis for program
repair[C]//Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, 2017: 416-426.

[9] Soto M, Le Goues C. Using a probabilistic model to predict bug
fixes[C]//2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2018: 221-231.

[10] Jiang J, Xiong Y, Zhang H, et al. Shaping Program Repair Space with
Existing Patches and Similar Code[C]// The International Symposium on
Software Testing and Analysis. 2018.

[11] Martinez M, Durieux T, Sommerard R, et al. Automatic repair of real
bugs in java: A large-scale experiment on the defects4j dataset[J].
Empirical Software Engineering, 2017, 22(4): 1936-1964.

[12] DeMarco F, Xuan J, Le Berre D, et al. Automatic repair of buggy if
conditions and missing preconditions with SMT[C]//Proceedings of the
6th International Workshop on Constraints in Software Testing,
Verification, and Analysis. ACM, 2014: 30-39.

[13] Xin Q, Reiss S P. Leveraging syntax-related code for automated
program repair[C]//Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 2017: 660-670.

[14] Chen L, Pei Y, Furia C A. Contract-based program repair without the
contracts[C]//Automated Software Engineering (ASE), 2017 32nd
IEEE/ACM International Conference on. IEEE, 2017: 637-647.

[15] Le X B D, Lo D, Goues C L. History Driven Program Repair[C]// IEEE,
International Conference on Software Analysis, Evolution, and
Reengineering. IEEE, 2016:213-224.

[16] Hua J, Zhang M, Wang K, et al. Towards practical program repair with
on-demand candidate generation[C]//Proceedings of the 40th
International Conference on Software Engineering. ACM, 2018: 12-23.

[17] Xuan J, Monperrus M. Test case purification for improving fault
localization[C]//Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014:52-63.

[18] Galeotti J P, Fraser G, Arcuri A. Improving search-based test suite
generation with dynamic symbolic execution[C]//Software Reliability
Engineering (ISSRE), 2013 IEEE 24th International Symposium on.
IEEE, 2013: 360-369.

[19] Castro M, Liskov B. Practical Byzantine fault tolerance[C]// Symposium
on Operating Systems Design & Implementation. ACM, 1999:173-186.

[20] Guo A, Mao X, et al. An Empirical Study on the Effect of Dynamic
Slicing on Automated Program Repair Efficiency[C]// In: Proceedings
of IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2018: 580-584.

716

Logical Segmentation of Source Code

Jacob Dormuth, Ben Gelman, Jessica Moore, David Slater

Machine Learning Group
Two Six Labs

Arlington, Virginia, United States
E-mail: {jacob.dormuth, ben.gelman, jessica.moore, david.slater}@twosixlabs.com

Abstract

Many software analysis methods have come to rely on
machine learning approaches. Code segmentation - the pro-
cess of decomposing source code into meaningful blocks -
can augment these methods by featurizing code, reducing
noise, and limiting the problem space. Traditionally, code
segmentation has been done using syntactic cues; current
approaches do not intentionally capture logical content. We
develop a novel deep learning approach to generate logical
code segments regardless of the language or syntactic cor-
rectness of the code. Due to the lack of logically segmented
source code, we introduce a unique data set construction
technique to approximate ground truth for logically seg-
mented code. Logical code segmentation can improve tasks
such as automatically commenting code, detecting software
vulnerabilities, repairing bugs, labeling code functionality,
and synthesizing new code.

1 INTRODUCTION

With the proliferation of open-source development prac-
tices and code sharing services, such as GitHub and Bit-
bucket, large bodies of source code are increasingly avail-
able to developers. There are a number of ways in which
these code corpora could assist with the software develop-
ment process; of particular interest is the application of ma-
chine learning to software engineering practices. Recent
literature has utilized machine learning with source code
at scale, developing tools to generate comments [7], detect
software vulnerabilities [11], repair bugs [4], label function-
ality [2], and synthesize new code [6]. Code segmentation
- the process of decomposing source code into meaningful
blocks - can augment these methods, for instance, by de-
termining what portions of a file are functionally similar,

DOI reference number: 10.18293/SEKE2019-026

identifying where to generate automatic comments, and lo-
cating useful sub-function boundaries for bug detection.

Current approaches to segmentation do not intentionally
capture logical content that could improve its usefulness to
the aforementioned problems. Traditionally, code segmen-
tation has been done at a syntactic level. This means that
language-specific syntax, such as the closing curly brace of
a class or function, is the indicator for a segment. Although
this method is conceptually simple, the resulting segments
do not intentionally take into account semantic information.
Syntactic structures in natural language, such as sentences
and paragraphs, are generally also indicators of semantic
separation. In other words, two different paragraphs likely
capture two logically separate ideas, and it is simple to de-
lineate them by splitting at the end of each paragraph. Lo-
cating logical segments in source code, however, is a non-
trivial task. Syntactic structures, such as a for-loop followed
by an if-statement, are not particularly indicative of seman-
tic changes in the code. Determining if the for-loop and
if-statement are working to achieve the same logical task is
a more difficult problem than the paragraph delineation ana-
logue. Logical code segmentation captures arbitrary com-
binations of syntactic structures in a single segment.

Logical code segmentation has a multitude of uses, in-
cluding: improving code search tools by returning relevant
segments of code instead of entire files or functions, recom-
mending locations to add comments, classifying the func-
tionality of source code by reducing the problem space from
entire files/projects to concentrated blocks of code, or using
the segments as features for a model that attempts to de-
termine the modularity or complexity of a given code file.
Logical segments are able to featurize code, reduce noise,
and limit a problem space to certain types of segments.

In this work, we develop a novel code segmentation
method to generate logical segments in a language-agnostic
fashion. Although language specificity may help model
code by allowing options such as language-specific tokens
and abstract syntax trees, it adds a non-trivial burden to op-
erationalizing tools. Language specific approaches require

717

training many models, each with their own parsers, train-
ing sets, and hyperparameters. Our language-agnostic ap-
proach is able to avoid those extra steps, improving the gen-
eralizability, availability, and ease-of-use of the results. Be-
cause there is no data set of source code that is conveniently
split into logical segments, we first establish a unique data
set construction process using Stack Overflow1 (SO). Hu-
man curation is critical to determining logical segments, and
Stack Overflow provides that at a vast scale.

We build on prior work in natural language processing,
training a bidirectional long short-term memory (LSTM)
neural network to split source code into logical segments.
Since this is the first work to perform this segmentation in
the source code domain, we provide baseline models and
multiple deep neural networks for comparison. We validate
the results on six programming languages to display the lan-
guage agnosticism of the method. Lastly, we qualitatively
discuss the model’s results on real source code documents
to provide insight on performance in the desired domain.

Our main contributions are as follows:

• A novel data set construction method that utilizes
crowd-sourced data to approximate logical segments.

• First work, to our knowledge, to perform logical code
segmentation regardless of syntactical correctness or
programming language.

• Baseline models for the logical segmentation prob-
lem, demonstrating the relative effectiveness of our
language-agnostic, deep neural network on six differ-
ent programming languages.

2 RELATED WORK

The literature on source code segmentation is relatively
sparse, with existing work offering syntax-specific solutions
and requiring language specificity. Ning, Engberts, and
Kozaczynski develop a code browser that allows users to se-
lect useful, reusable segments by analyzing the control flow
and data flow in the abstract syntax trees (ASTs) of COBOL
programs [9]. More recently, Wang, Pollock, and Vijay-
Shanker attempt to locate logical segments by developing
rules that look for specific syntactical patterns [12]. Wang
et al. generate an AST for a given Java method, apply rules
that analyze the data flow and syntactic structures, and then
add line breaks around the resulting segments to enhance
the readability of the method. Although these methods pro-
vide sophisticated analysis and rules, they are inextricably
linked to the language that they operate on, and thus will
not transfer to other languages.

In this work, we deviate from the practice of using ASTs
as the foundation for our analysis. By treating source code

1https://stackoverflow.com

as a body of text akin to an NLP problem, we avoid any
programming-language-specific challenges posed by other
methods. Text segmentation has been researched more thor-
oughly than the source code analogue, with methods rang-
ing from LDA [10], to semantic relatedness graphs [3], to
deep learning approaches [1]. Of particular note is the use
of bidirectional LSTMs to identify the breaks between seg-
ments of Wikipedia articles [8]. An LSTM is a recurrent
neural network that processes sequential information [5].
Although we use the bidirectional LSTM as the primary
framework of our model, we make several changes to adapt
to the source code domain. We use a character embedding
instead of the commonly used word embedding: due to the
vast number of possible unique identifiers in source code,
optimizing an embedding for each token is infeasible. Addi-
tionally, we require an evaluation metric specifically based
on our data generation method to represent how well the
model recognizes segments the method creates.

3 DATA SET GENERATION

We model code segmentation as a classification prob-
lem, where given a sequence of characters, we must pre-
dict whether a character denotes the beginning of a new
code segment. In order to generate training data suited to
the task, we use Stack Overflow, a forum where users can
ask questions, receive answers, and post code snippets on a
wide range of computer programming topics. Because the
posters are focused on answering a specific question, the
code snippets are generally geared towards a single logical
task. Fig. 1 shows an example response on Stack Over-
flow containing blocks the user has marked as code. We
pull code snippets by searching for posts tagged with six
different programming languages: C, C++, Java, Python,
Javascript, and C#.

One problem with the data, however, is that the distri-
bution of the number of lines per code snippet is heavily
skewed. Fig. 2 shows that the majority of code snippets are
only a few lines long. Using the entire data set could bias
the model to predict segments every few lines because the
model will have seen so many short code snippets, which is
unlikely to be the case in real source code files. Using only
very long snippets, however, would not leave much training
data. Thus, we heuristically filter out all code snippets that
are less than four lines long using the elbow method.

After filtering, we generate segments by concatenating
snippets with a newline character, thereby marking the be-
ginning of a new segment. We refer to these as “dividing
newlines.” It is important to note that not all newlines mark
a new segment because a single code snippet may contain
many newlines. After this process is complete, the result is
essentially a giant block of concatenated code snippets. To
obtain individual data points, we iterate through the block

718

Figure 1. Example Stack Overflow post showing code snip-
pets.

Figure 2. Graph depicting the heavily skewed snippet length
distribution on Stack Overflow.

of snippets and generate data points using three methods:
bag of characters, uncentered, and centered, shown in Fig.
3.

In the bag of characters method, one data point is created
by taking 7 lines from the block of snippets and counting
the characters to create a “bag of characters” for each line.
These bags of characters are then concatenated together to
create a single training sample. If the middle newline (the
fourth of seven) is a dividing newline, then the label for
this data point is a 1. Otherwise, the label is a 0. This
process is repeated by sliding the 7 line window forward
by 1 line. We track the counts of 256 unique characters,
corresponding to all the ASCII characters, with an average
of about 29 characters per line.

In the uncentered method, we create a data point by se-
lecting all the characters in a 100-character window. In this

process, we assign one label for each character in the win-
dow, meaning one data point has 100 characters and 100
labels. If the character is a dividing newline, the corre-
sponding label is a 1. This process is repeated by sliding
the window by 100 characters. It is important to note that
there is no guarantee a data point in this method will con-
tain a dividing newline (or any newline at all). Even when
the data point does contain a dividing newline, there is no
guarantee that it will occur in the center of the input.

In the centered method, we create a data point by lo-
cating a newline and taking a window of 50 characters be-
fore and after that newline, for a total of 101 characters. If
that newline is a dividing newline, then the label for this
data point is a 1. Otherwise, the label is a 0. This process
is repeated by centering the window on the next occurring
newline. Whilst iterating through the block of snippets, any
window that does not have a newline in the center will be
ignored. It is important to note that other newlines, includ-
ing dividing newlines, may occur in the window; however,
the label is assigned based only on the center newline.

4 METHODOLOGY

We experiment with three models: a logistic regression
model (to serve as a baseline), and two neural network ar-
chitectures that utilize bidirectional LSTM layers. Every
model is trained on seven training sets. Six of the training
sets correspond to the different languages: C, C++, Java,
Python, Javascript, and C#. The last training set combines
all of the languages in order to evaluate language agnosti-
cism.

The logistic regression model utilizes the bag of charac-
ters data format for training. Each bag of characters, corre-
sponding to one line of code, contains counts for 256 unique
characters. The model takes seven bags of characters, for a
total input size of 1,792. The output is a value from 0 to 1,
representing the probability that the bag of characters cor-
responding to the fourth line (the middle line out of 7) con-
tains a dividing newline (recall the labeling scheme from
section 3).

The first neural network architecture uses the uncentered
data format for training. This model has an input layer of
length 100, one for each character in an uncentered data
point. Each character is passed through a 20-dimensional
character embedding, which converts a character to a 20-
dimensional, real-valued vector. These embeddings are
passed to a bidirectional LSTM layer of size 256. A bidi-
rectional LSTM allows for past and future information to
be used together, whereas a standard LSTM only considers
past information. If a human were to segment source code,
they would likely look ahead and use future information to
piece together their decisions. The sequential information
that the bidirectional LSTM learns is condensed using three

719

Figure 3. The three data generation methods operating on
the same piece of code. The window sizes are shortened for
visual clarity. In the bag of characters method, each sample
is the concatenation of seven bags of characters correspond-
ing to seven consecutive lines. In the uncentered method,
each sample is simply all the characters in the window. In
the centered method, each sample is all the characters in a
window where the middle character of the window is a new-
line. If a window in the centered method does not contain a
newline in the center, no sample (“NULL”) is generated.

time-distributed dense layers, sizes 150, 75, and 1, respec-
tively. Since the layers are time distributed, the last layer
has 100 total outputs (one for each time step). Each output
is the probability that the character at that time step indi-
cates the beginning of a new logical segment. The uncen-
tered data format has 1 label for each character, so the 100
outputs and 100 labels are used to compute the loss. We use
a batch size of 128, a dropout strength of 0.2 between each
layer for regularization, and binary cross entropy as our loss
function.

The second neural network architecture uses the centered
data format for training. In terms of model structure, it is
nearly identical to the uncentered model except that the in-
put size is 101 characters and that it has one additional layer.
The last layer of the centered model is a dense layer that
maps the 100 time distributed outputs (last layer of the un-
centered model) to a single output. Because the centered
data format guarantees a newline at the center of the input
sequence, only a single output is required from the centered

model. That single output and the label for the center new-
line are used to compute the loss.

4.1 Evaluation

Due to our data generation method, only a newline char-
acter can denote the beginning of a new code segment. As
a result, we specifically measure the newline accuracy of
our models. This distinction is critical because the logistic
regression and centered models predict only on newlines,
while the uncentered model outputs a prediction for every
character, which would skew accuracy. The newline accu-
racy metric is the percentage of newlines that are classified
correctly as either a dividing newline or non-dividing new-
line.

We split the collection of code snippets into
train/validation/test sets of 80% / 10% / 10%. The
training process is stopped when the model does not
improve after 20 epochs.

5 RESULTS

In total, we train 21 different models: 18 single-language
models and 3 multi-language models. For each of the three
architectures (logistic regression, uncentered LSTM, cen-
tered LSTM), we train a model on each language individ-
ually, as well as a model on all the languages simultane-
ously. Table 1 displays the newline accuracies for each
model/language pairing.

The logistic regression models perform the worst, but
are still significantly better than predicting a non-dividing
newline every time (non-diving newlines are the most com-
mon). This is an expected result because the logistic regres-
sion models do not take into account character interactions
like the more complex models. The neural network mod-
els show a significant improvement in performance over the
logistic regression baselines.

Although the single-language models generally perform
slightly better than their multi-language counterparts, the
difference in newline accuracy is relatively small. This is a
very positive result because the multi-language models are
able to discern logical segments across languages with little
to no performance hit.

Another interesting comparison is the difference in per-
formance between the uncentered and centered models. In
the single-language category, the uncentered models outper-
form the centered models across the board. On the other
hand, in the multi-language category, the centered models
are usually more effective. One possible reason for this
is the difference in code context between uncentered and
centered data points. In the uncentered data format, it is
possible for a data point to contain no newlines whatso-
ever. This may help the model understand the difference

720

Table 1. Newline Accuracies of Each Model

Model Language
C C++ Java Python Javascript C#

Single-Language Logistic Regression 95.26 95.2 95.6 91.61 94.53 95.63
Single-Language Uncentered LSTM 98.8 98.76 98.96 99.17 99.2 99.3
Single-Language Centered LSTM 97.35 98.35 98.84 97.82 98.79 98.87

Multi-Language Logistic Regression 94.76 94.81 95.1 90.76 93.48 95.09
Multi-Language Uncentered LSTM 98.33 98.56 98.75 97.98 98.65 98.86
Multi-Language Centered LSTM 98.5 98.62 98.82 97.83 98.73 98.95
Percent Non-Dividing Newlines 92.06 92.12 92.35 91.10 92.02 92.12

Table 1. Newline accuracy test results for every model and language. “Single-Language” models are trained and tested
on one language at a time. “Multi-Language” models are trained on every language simultaneously and then tested on
each language separately. “Percent Non-Dividing Newlines” is the newline accuracy if a model were to always predict
non-dividing for every newline.

in context when a newline is actually present. In the multi-
language scenario, however, snippets with no newlines may
have a fundamentally different pattern for each language in
the data set, which may significantly complicate what the
model needs to learn. The centered multi-language mod-
els only need to learn the differences between languages
as it pertains to the context around a newline, reducing the
cost of learning on multi-language data. Given enough data
and time, it may be possible that the multi-language mod-
els would be able to utilize the uncentered snippets more
effectively.

One other noteworthy observation is the impact of sim-
ilarity across languages. In the multi-language scenario,
Python is the most syntactically distinct language and con-
sistently performs the worst. It is feasible that the models
are able to transfer knowledge across languages, so similar
languages may benefit from each other’s data. The differ-
ences in results between languages may also speak to the
quality of Stack Overflow snippets for those languages. It
is possible that different programming languages attract dif-
ferent questions, topics, and code snippet qualities on Stack
Overflow, which would ultimately influence the model’s
performance.

5.1 Testing on Source Code

In order to better understand the utility of these models,
Fig. 4 and 5 showcase examples of the single-language deep
learning model running on a Python source file.

In Fig. 4, the model is able to recognize when the func-
tionality of the code changes from defining a Keras model to
loading the weights and compiling the model. Fig. 5 shows
how the model is able to differentiate between a string op-
eration in a for-loop and a new task of opening and writing

Figure 4. The model recognizes that compiling and loading
the weights of a Keras model is a different task from defin-
ing the layers of the model. The dashed line is the model’s
prediction of the segment location.

Figure 5. The model distinguishes between string opera-
tions and writing to a file. The dashed line is the model’s
prediction of the segment location.

to a text file.

6 CHALLENGES AND LIMITATIONS

One of the biggest challenges is the lack of ground truth
logical segments. Because the Stack Overflow code snip-
pets are simply concatenated together, the resulting data is
not necessarily representative of real code. It is possible that
two snippets concatenated together do not result in syntac-
tically correct code. There is also no guarantee of standard
formatting practices that one would expect to see in formal
software projects.

Additionally, the data generation method assumes that a

721

code snippet represents a logical chunk of code. Although
this is usually the case, there is no way to guarantee that
all code snippets are segmented logically. It is possible that
an individual snippet contains multiple logical tasks. It is
also possible that two randomly selected snippets perform
similar tasks; this introduces noise to the data set because
they will still be labeled with a dividing newline.

One possible way to address these challenges is to use
in-line comments in source code files as logical division
points. There is intended meaning behind the placement
of comments in source code files, whereas the concatena-
tion of Stack Overflow code snippets is randomized. This
method could better reflect the properties of source code.

7 CONCLUSIONS AND FUTURE WORK

We present a novel method to perform logical segmen-
tation of source code. Using crowd-sourced data from
Stack Overflow, we create a unique data set construction
technique to approximate logical segments in source code.
Drawing from the NLP domain, we develop deep neural
network models utilizing bidirectional LSTMs that can pre-
dict on source code regardless of language or syntactical
correctness. Lastly, we provide baselines and an appropri-
ate metric to evaluate the performance of our models with
regard to our data set construction.

Although our method is the first success in language-
agnostic logical code segmentation, there are a variety of
potential architectural and parameter improvements. We
could incorporate an attention mechanism into the LSTM,
allowing the model to learn more specific features in the
source code. Another avenue could be adjusting model
parameters such as window size, network depth, and loss
functions. For example, the loss function of the segmen-
tation models could be modified to incorporate the error
term of another task that uses segments as input. Finally, in-
put representations that are larger than character-scale may
improve the models without significant increases in model
complexity; word or token embeddings in addition to the
character embedding may be able to achieve this.

ACKNOWLEDGEMENTS

This project was sponsored by the Air Force Research Lab-
oratory (AFRL) as part of the DARPA MUSE program. We
would like to thank Robert Gove and Casey Haber for their
valuable feedback, support, and contributions to figures. We
also thank Banjo Obayomi for infrastructure support.

References

[1] P. Badjatiya, L. J. Kurisinkel, M. Gupta, and V. Varma.
Attention-based neural text segmentation. In Eu-

ropean Conference on Information Retrieval, pages
180–193. Springer, 2018.

[2] B. Gelman, B. Hoyle, J. Moore, J. Saxe, and D. Slater.
A language-agnostic model for semantic source code
labeling. In Proceedings of the 1st International Work-
shop on Machine Learning and Software Engineering
in Symbiosis, pages 36–44. ACM, 2018.

[3] G. Glavaš, F. Nanni, and S. P. Ponzetto. Unsupervised
text segmentation using semantic relatedness graphs.
Association for Computational Linguistics, 2016.

[4] J. Harer, O. Ozdemir, T. Lazovich, C. Reale, R. Rus-
sell, L. Kim, et al. Learning to repair software vul-
nerabilities with generative adversarial networks. In
Advances in Neural Information Processing Systems,
pages 7944–7954, 2018.

[5] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[6] V. Kashyap, R. Swords, E. Schulte, and D. Mel-
ski. Musynth: Program synthesis via code reuse and
code manipulation. In International Symposium on
Search Based Software Engineering, pages 117–123.
Springer, 2017.

[7] J. Moore, B. Gelman, and D. Slater. A convolu-
tional neural network for language-agnostic source
codesummarization. In ENASE (to appear), 2019.

[8] N. Mor, O. Koshorek, A. Cohen, and M. Rotman.
Learning text segmentation using deep lstm. 2017.

[9] J. Q. Ning, A. Engberts, and W. V. Kozaczynski. Au-
tomated support for legacy code understanding. Com-
munications of the ACM, 37(5):50–58, 1994.

[10] M. Riedl and C. Biemann. Text segmentation with
topic models. Journal for Language Technology and
Computational Linguistics, 27(1):47–69, 2012.

[11] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer,
O. Ozdemir, P. Ellingwood, and M. McConley. Au-
tomated vulnerability detection in source code using
deep representation learning. In 2018 17th IEEE In-
ternational Conference on Machine Learning and Ap-
plications (ICMLA), pages 757–762. IEEE, 2018.

[12] X. Wang, L. Pollock, and K. Vijay-Shanker. Auto-
matic segmentation of method code into meaningful
blocks to improve readability. In 2011 18th Work-
ing Conference on Reverse Engineering, pages 35–44.
IEEE, 2011.

722

TL-GAN: Generative Adversarial Networks with
Transfer Learning for Mode Collapse

1st Xianyu Wu
College of Computer Science

Chengdu University of Information Technology
Chengdu, China

Email: xianyuWU42@163.com

2nd Shihao Feng
College of Computer Science

Southwest University
Chongqing, China

15340590451@163.com

3nd Canghong Shi
College of Information Science and Technology

Southwest Jiaotong University
Chengdu, China

canghongshi@163.com

4rd Xiaojie Li∗
College of Computer Science

Chengdu University of Information Technology
Chengdu, China
lixj@cuit.edu.cn

5th Jing Yin
College of Computer Science

Chongqing University of Technology
Chongqing, China

yinjing@cput.edu.cn

6th Jiancheng Lv
College of Computer Science

Sichuan University
Chengdu, China

lvjiancheng@scu.edu.cn

Abstract—Image generation based on the generative adversar-
ial network (GAN) has been widely used in the field of computer
vision. It helps generate images similar to the given data by
learning their distribution. However, in many tasks, training
on small datasets of scenes may lead to mode collapse, such
that the generated images are often blurred and almost the
same. To solve this problem, we propose a generative adversarial
network with transfer learning for mode collapse called TL-
GAN. Owing to the size of the training dataset, we introduce
transfer learning (VGG pre-training network) to extract more
useful features from the underlying pixels and add them to
the discriminator, which can be used to calculate the distance
between samples, and to provide the discriminator with a new
training target. The discriminator thus learns the best features
that can distinguish between real data and generated data using
the proposed model. This also enhances the learning capability
of the generator, which learn further about the distribution of
real data. Meanwhile, generator can produce new images more
realistic. The results of experiments show that the TL-GAN can
guarantee the diversity of samples. A qualitative comparison with
several prevalent methods confirmed its effectiveness.

Index Terms—Image generation, Generative Adversarial Net-
work, Mode collapse, Transfer learning, VGG pre-training net-
work

I. INTRODUCTION

Most advanced deep neural network algorithms can learn
highly complex problems and patterns [1]–[5], and their capa-
bilities are impressive. However, humans can do far more than
these algorithms on image recognition and speech recognition
tasks, and it had appeared unlikely that such task could be
automated. However, GANs [6]–[8] have made this possible.

Generative Adversarial Network (GAN) is an unsupervised
method [9] that is among the most successful computer vision

This study was supported by the National Natural Science Foundation
of China (Grant No. 61602066) and the Scientific Research Foundation
(KYTZ201608) of CUIT, and in part by the major project of the Education
Department in Sichuan (17ZA0063 and 2017JQ0030), and the Sichuan
International Science and Technology Cooperation and Exchange Research
Program (2016HH0018). DOI reference number: 10.18293/SEKE2019-160

algorithms. It has been extensively researched and developed,
especially in the context of image generation [10]–[13]. GAN
was proposed by Ian Goodfellow in 2014, and consists of
two parts: a generator network G and a discriminator network
D. The generator network generates samples by learning
the distribution of real data. Its training objectives include
maximizing the probability of error. The goal of the generator
is to deceive the discriminator by generating images from
random noise that are similar to real data, and the discrim-
inator attempts to learn the differences between the generated
samples and real ones.

Many applications of the GAN have been proposed [8], [14],
[15]. For example, the iGAN contains two kinds of guidance
information [8]: to paste the high-definition texture in the
original image on the shape of the given object in it by using
light field information in a different space. The texture on the
paste is iterated until the resulting image appears realistic. Like
the iGAN, the GP-GAN copies and pastes images directly
[14], better integrates them into the original images and
performs blending. However, it is a supervised training model.
In the process of learning to blend, there is a supervised
goal and a supervised loss function. CycleGAN allows two
domains to transform each others images [15]. Traditional
GAN features one-way generation while CycleGAN involves
mutual generation. It is called a cycle because its network is
ring-like. The input to CycleGAN is a pair of images.

Despite its wide application, it has many problems, such as
training instability, gradient disappearance, mode collapse and
so on. It is an important failure mode. Specifically, model
collapse is called the most critical failure mode in GAN
networks. Generators may reproduce exactly the same image,
called pattern crash. Generally speaking, real world data
distribution is highly complex and multimodal. The probability
distribution described by the data has several ”peaks” with
different sub-groups of samples. The generator folds into a
very narrow distribution, and the generated samples are no

723

Fig. 1. Model architecture. z denotes random variables from a uniform or a Gaussian distribution, and Pg denotes fake images generated by the generator
network. Pdata represents real data, and conv and deconv denote the convolutional and the deconvolutional layers, respectively. FC denotes a fully connected
layer.

longer changed. This obviously violates GAN’s essence. For
example, for face generation, we want to train a GAN that
can generate face images. Generators need to learn hundreds
of thousands or even millions of faces. However, if there are
only tens of thousands of training data sets, the generator may
collapse, resulting in poor diversity in the generated samples,
which limits the usefulness of learning in GAN.

To solve the problem of mode collapse on small datasets
in the GAN, we propose in this paper generative adversarial
networks with transfer learning for mode collapse (TL-GAN).
We introduce transfer learning (VGG pre-trained model) to
extract useful features from the underlying pixels in images
and add them to the discriminator. These features can be used
to calculate the distance between samples and provide the
discriminator with a new training target. This also enhances
the learning capability of the generator, which can then learn
more about the distribution of real data. Instead of encouraging
samples generated by each generator to approach a single max-
imum likelihood, generator collapse is avoided. The overall
performance of these samples are closer to the real image,
and a suitable distance between different samples in the space
can be ensured.

II. RELATED WORK

Although it is widely used, there are problems with the
GAN, such as difficulty in training, mode collapse, and a lack
of diversity in the generated samples. Several variants of the
GAN have been proposed to solve these problems [10]–[13].

DCGAN: Since it was proposed in 2015, the DCGAN
has been widely used in many applications, and significantly
improves the stability of the training of the GAN and the
quality of its results [10]. However, this only solves the
problem temporarily and does not resolve difficulties in train-

ing. Furthermore, it is not easy to train D and G to reach
equilibrium.

LSGAN: Proposed in 2016, the LSGAN uses the least-
squares loss function instead of the loss function of the GAN
to alleviate instability in its training and the lack of diversity
that leads to poor image quality [11]. However, the LSGAN
also has drawbacks. Its excessive penalty for outliers may lead
to a reduction in the diversity of sample generation. It is likely
to yield a simple imitation with minor modifications to the real
data.

WGAN: The WGAN, developed in 2017, improves GAN
in term of the loss function [12]. It removes sigmoid from
the last layer of the discriminator, and forcibly truncates the
updated weights to a certain range to meet the conditions of
Lipschitz continuity. However, clipping the weight parameters
blindly to guarantee stable training can lead to low-quality and
low-resolution images.

WGAN-GP: The WGAN-GP, developed in 2017, is an
improvement over the WGAN [13], specifically its continuity
constraints. The contribution of WGAN-GP is that a technique
to restrict Lipschitz continuity-the gradient penalty is proposed
to solve the problem of mode collapse with a vanishing
training gradient. While the WGAN-GP is an improvement
over WGAN in some cases, it is not significantly superior
to reliable GAN methods in terms of results. A number of
researchers have attempted to solve problems in the GAN with
mixed success.

III. GAN WITH TRANSFER LEARNING

A. Approach

In general, the GAN model uses a large number of training
datasets, of the order of hundreds of thousands of images
(CelebA, LSUN) [11], [16]. In such cases, the generated
samples are diverse and high quality and conform to the

724

Fig. 2. Comparison of the DCGAN, LSGAN, WGAN, and WGAN-GP with our method for different epochs of a single sample on the CelebA dataset.

distribution of real data. However, in the case of a small
training dataset, the generator network can learn only a few
useful features such that the generated images look very fuzzy
or even lead to mode collapse. To solve this problem, we
introduce transfer learning that can transfer the influence of
our knowledge on the visual perception of image generation
tasks using a transmission parameter [17], [18]. The GAN
with a model pre-trained on millions of image datasets using
ImageNet outperforms a zero-trained depth model on the same
small dataset. We use the trained VGG pre-trained model on
real and generated images.

B. Model Architecture

Our network structure is shown in Figure 1. It comprises the
generator network G, discriminator network D, and a VGG
pre-trained model. The target of G captures the potential distri-
bution of real data samples Idata, in addition to generating new
data samples Ig . It starts with a random vector z as input to the
generator network followed by a fully connected layer and sub-
sequently employs a high-dimensional tensor with 512 feature
maps. Note that we use the batch normalization layer for each
deconvolutional layer, and the activation function makes use of
the rectifier linear unit (ReLU) except in the last deconvolution
layer. D is a dual classifier and determines whether the input
to it is from the real data Idata or generated samples Ig . The
discriminator network also makes use of multiple convolutions
and uses the LeakyReLU as an activation function. At the end
of the convolution, the tensor is stretched into a vector, which
uses a fully connected layer. Our model employs a kernel of
size 5×5 in both the generator and the discriminator. The VGG
pre-trained model contains stacked convolution and coupled
pooling layers. Pdata and Pg are used as inputs to the VGG
pre-trained model based on transfer learning to extract more
high-level features. In the training process, the discriminator
network aims to identify real and generated images, while the
generator network attempts to make the generated samples
more real with the aim of achieving the Nash equilibrium.

C. Loss function

1) Adversarial loss: Adversarial loss can maximize the
probability of successfully determining whether a given image
is from the training data or the generated samples. The
goal of D is to separate images generated by G from real
images. In this way, G and D constitute a min-max game. To
better deceive the discriminator network such that it generates
perceptually realistic images, we formally denote by D the
adversarial loss of the discriminator network and by G that of
the generator network. We define the adversarial losses of Ld

and Lg as follows, respectively:

Ld = EIdata∼pdata(Idata) [D(Idata)]

+EIg∼pg(Ig) [1−D(Ig)] ,
(1)

Lg = EIg∼pg(Ig)[1−D(Ig)], (2)

where Lg is the total loss of G, D(.) represents the output
of the discriminator network, and G(.) is generated by G,
which needs to learn real data distribution and produce more
realistic images. When D cannot distinguish between real data
and generated samples, the generator can better deceive the
discriminator network. The final optimization of D is given
by Eq. (3):

D∗ = Ld + λLp, (3)

where D∗ is the total loss of D, and λ represents a constant.
2) Perceptual loss: We propose perceptual loss based on the

VGG pre-training network to extract useful features from the
underlying pixels and add some of them to the discriminator.
These features are used to calculate the distance between
samples and give the discriminator a new training target. It
can thus solve the problem of blurred images and even mode
collapse on small datasets. Moreover, the computational over-
head of perception loss can be reduced by reusing the features

725

Fig. 3. Comparison of DCGAN, LSGAN, WGAN, and WGAN-GP, with our method for different epochs of a single sample on the Cartoon dataset.

extracted by the discriminator. To introduce the formula for
perceptual loss, we define perceptual loss as:

Lp = |V (Idata)− V (Ig)|, (4)

where Lp represents the perceptual loss, and V (.) represents
the output of the VGG19 network.

IV. EXPERIMENTS

A. Details of Training

We used the CelebA and Cartoon datasets for training. In
each training batch, we randomly selected 64 image patches
as Idata patches, where each patch had a size of 64× 64. The
random vector satisfied a uniform or a Gaussian distribution
Pz(z) as input to the generator network. To stabilize the
network, the range of intensity of the input and output images
was set to[-1,1].

TABLE I
STATISTICS OF THE DATASETS.

Datasets Samples Size
CelebaA 10,590 64× 64
Cartoon 51,223 64× 64

The CelebA face dataset is an open dataset of the Chinese
University of Hong Kong [16]. It contains 202,599 face
images with 10,177 celebrity identities. For our experiment,
we selected only part of the data as a small dataset for training,
with 10,590 images. The Cartoon face dataset was downloaded
from Konachan.net, a well-known animation gallery, with a
total of 51,223 images. Our experiments directly used the
Cartoon face dataset shared by HE [19].

Our experiments were implemented in Python on the Ten-
sorFlow framework using an NVIDIA Tesla M40 GPU to
accelerate training, using an SGD at a learning rate of 0.001
for all layers to analyze model performance. The momentum
parameter was set to 0.3, weight decay to 0.0001, and 64 was
set as the cardinality of each patch of training. All weights

were truncated for a positive distribution and the standard
deviation was 0.02. All convolutional layers were followed
by leaky rectified linear units (LReLUs) with a slope of 0.2.
Training the CelebA and the Cartoon datasets took 4 and 3
hours, respectively.

B. Comparisons and Analysis

To verify the effectiveness of the proposed model, we com-
pared it with state-of-the-art methods, including the DCGAN
[10], LSGAN [11], WGAN [12], and WGAN-GP [13]. It is
worth pointing out that there are no quantitative indicators to
refer to in previous papers because the generated synthetic
data have no corresponding real data reference. There was no
clear measure to assess the results of image generation tasks.
Inspired by [10]–[13], we used the final generated images
for comparison. Our experiments contained two parts. In the
first, we analyzed the effectiveness of our method on two
small datasets. We analyzed changes in a single sample in
the training process, and we studied the final visual effects.
In the second part, we considered the stability of training in
several methods.

1) Evaluation of Visual Results: CelebA We trained our
model for 200 epochs on the CelebA dataset. For a fair
comparison, we list the generated samples for the same steps
in each epoch using several methods (see Figure 2). In the
final epoch, we observed that the DCGAN [10], LSGAN [11],
WGAN [12], and WGAN-GP [13] produced poor results on a
single sample. Because the dataset was small and training time
limited, the DCGAN experienced mode collapse. It generated
images of faces of females and males alternately. The training
process of the LSGAN was very unstable. It first generated the
images of a face not wearing glasses, then one with glasses,
and again one without glasses. The WGAN and WGAN-GP
generated blurry images of faces because of slow convergence.
On the contrary, TL-GAN generated clear images of faces
from random noise in a single sample.

Cartoon We trained our model for 24 epochs on Cartoon
dataset. We list the generated samples in the same steps in

726

Fig. 4. Visual comparison of all samples on training dataset: CelebA dataset on the left and Cartoon dataset on the right.

each epoch from several methods. From Figure 3 it is clear
that the samples generated by our method showed a steady
increment in quality, and produced a perceptually realistic
image. However, the phenomenon of mode collapse appeared
in some other methods (DCGAN and LSGAN). We also
found that all other methods except the WGAN were unstable,
their generated samples did not follow a fixed trend in the
generation of shapes of face images, and they constantly
changed in the training process. The DCGAN and LSGAN
yielded images of faces of different cartoon characters in the
training process, and two types of such images were generated
in training by the WGAN-GP.

Samples of the CelebA and Cartoon datasets that were used
are shown in Figure 4. The DCGAN on CelebA exhibited
mode collapse, and it lacked sample diversity, and thus many
generated samples were almost identical. LSGAN experienced
a moderate mode collapse, and some of the images of faces
generated by it look very odd. The WGAN trained very slowly
on the CelebA dataset and its resulting images were very
blurred. A slight mode collapse was observed in the WGAN
on the Cartoon dataset. For example, the images of some faces

were unusual and hairy body parts had unnatural details. Its
results were better than those of the DCGAN and LSGAN,
but the overall effect was unsatisfactory. The WGAN-GP also
went through a slight mode collapse on the CelebA and
Cartoon face datasets. The images of faces generated by it
were vague and had strange details. The TL-GAN solved the
mode collapse problem on the small datasets and guaranteed
sample diversity. Moreover, the generator network quickly
produced the images. It yielded quality images of faces.

2) Comparison of convergence: Loss convergence on the
Cartoon dataset is shown in Figure 5. Loss of the DCGAN in
the generator network increased, probably owing to the mode
collapse caused by a too small dataset. The discriminator loss
of the DCGAN also oscillated, and it could not differentiate
real from the generated samples accurately. The loss of the
generator and discriminator networks oscillated during the
training of the LSGAN, which experienced a moderate mode
collapse. Its convergence was also slow. The loss of the
WGAN in the generator and discriminator networks tended
to be normal, but was slower than that in our method and
resulted in unclear samples generated after training. Gradient

727

Fig. 5. Loss convergence in training on the Cartoon dataset. The generator
is shown at the top and the discriminator at the bottom.

penalty was introduced in the WGAN-GP, and increased the
losses of the generator and discriminator networks at first. As
training progressed, the losses decreased. But after training,
the results were still not good, and the generated samples
were thus insufficiently clear. The results on even the Cartoon
dataset were unstable, as a single sample constantly changed
and there was no fixed shape to the images generated. The
TL-GAN converged more quickly and was more stable than
the other methods. It also produced more perceptually realistic
images.

V. CONCLUSION

In this paper, we highlighted the problem of mode collapse
on small image datasets and proposed generative adversarial
networks with transfer learning for mode collapse (TL-GAN).
Experimental results show that our method substantially out-
performs state-of-the-art approaches, and samples generated

by it were close to real images. It can also ensure sample
diversity. Compared with the other methods, the loss conver-
gence of our model was fast and stable. In the future, we
will continue to study how to use smaller data sets, such as
thousands of images. Whether there will be collapse and good
stability in our model.

REFERENCES

[1] X. Li, J. Lv, and Y. Zhang, “Manifold alignment based on sparse local
structures of more corresponding pairs.” IJCAI ’13 Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence,
pp. 2862–2868, 2013.

[2] ——, “An efficient representation-based method for boundary point and
outlier detection.” IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–12, 2016.

[3] ——, “Outlier detection using structural scores in a high-dimensional
space.” IEEE Transactions on Cybernetics, pp. 1–9, 2016.

[4] X. Wu, X. Li, J. He, X. Wu, and I. Mumtaz, “Generative adversarial
networks with enhanced symmetric residual units for single image super-
resolution,” International Conference on Multimedia Modeling, pp. 483–
494, 2019.

[5] C. Luo, X. Li, L. Wang, J. He, D. Li, and J. Zhou, “How does the
data set affect cnn-based image classification performance?” 2018 5th
International Conference on Systems and Informatics (ICSAI), pp. 361–
366, 2018.

[6] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5967–5976, 2016.

[7] Y. Taigman, A. Polyak, and L. Wolf, “Unsupervised cross-domain
image generation,” Computer Science - Computer Vision and Pattern
Recognition, 2016.

[8] J. Y. Zhu, P. Krahenbhl, E. Shechtman, and A. A. Efros, Generative
Visual Manipulation on the Natural Image Manifold. Springer Inter-
national Publishing, 2016.

[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
2014, pp. 2672–2680.

[10] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” Com-
puter Science, 2015.

[11] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, “Least
squares generative adversarial networks,” Computer Science - Computer
Vision and Pattern Recognition, 2016.

[12] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” Statistics -
Machine Learning Computer Science - Learning, 2017.

[13] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of wasserstein gans,” 2017.

[14] H. Wu, S. Zheng, J. Zhang, and K. Huang, “Gp-gan: Towards realistic
high-resolution image blending,” 2017.

[15] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” 2017, pp. 2242–
2251.

[16] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” 2015.

[17] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Aitken, A. Tejani, J. Totz,
Z. Wang, and W. Shi, “Photo-realistic single image super-resolution
using a generative adversarial network,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 105–114, 2016.

[18] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,”
2014, pp. 1717–1724.

[19] Z. HE, “The cartoon face data set,” 2018. [Online]. Available:
https://zhuanlan.zhihu.com/p/24767059

728

Piecewise Aggregation for HMM fitting. A pre-fitting model for seamless integration
with time series data.

Joaquim Assunção †, Jean-Marc Vincent ∗, Paulo Fernandes ‡

† UFSM - Department of Applied Computing - Santa Maria, Brazil
∗ Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

‡ Roberts Wesleyan College – Rochester, NY – USA
† joaquim@inf.ufsm.br, ∗ jean-marc.Vincent@imag.fr, ‡ fernandes_paulo@roberts.edu

Abstract
Broadly used and applied in many domains, Hidden Markov Mod-
els are a well established formalism, both in computer science and
statistics. Among other reasons, they owe their popularity to a fast
fitting method, i.e., the Baum-Welch algorithm, allowing to adjust
models to a variety of input data. Using expectation and maxi-
mization phases, BW assures an increase to the model likelihood
at every iteration. Yet, to initialize the sequence of expectation-
maximization (EM) steps, it is a standard procedure to start the BW
algorithm from randomly generated values. We propose a, simple
and fast, deterministic pre-fitting approach which derives the BW’s
initial values directly from the input data.

1 Introduction
Due to their relative simplicity and power to represent com-
plex systems, Hidden Markov Models (HMMs) are one of
the most widely used stochastic formalism for time series
[31]. HMMs owe their flexibility and their ease of appli-
cation to a well-developed methodological framework, in-
cluding a model fitting algorithm. The so-called Baum-
Welch algorithm (BW) can be considered a special case of
the Expectation-Maximization (EM) algorithm (Section 2).
In essence, it derives the maximum likelihood estimates for
the parameters of a given model, i.e., the best fit for the in-
put data in the sense that the probability to observe the data
given the model parameters is maximal. This is achieved by
an iterative procedure guaranteed to increase the value of the
likelihood at each iteration and such procedure finds a local
maximum; therefore, offering a model solution even when
the likelihood is untraceable or too costly to maximize di-
rectly. However, as well as EM algorithms in general, BW
tends to be sensitive to its input parameters [6][9].

Several extensions have been suggested to overcome the
flaws of EM [9][18][13][29]. They are based on combi-
nations of algorithms and techniques such as classification,
randomization or more complex stochastic additions. Oth-

∗DOI reference number: 10.18293/SEKE2019-185

ers, focused on improving the BW, have different approaches
performing changes within the algorithm, which can also
deal with possible convergence problems [4][26][16] [20].

Several extensions have been suggested to overcome the
flaws of EM [9][18][13][29]. They are based on combi-
nations of algorithms and techniques such as classification,
randomization or more complex stochastic additions. Oth-
ers, focused on improving the BW, have different approaches
performing changes within the algorithm, which can also
deal with possible convergence problems [4][26][16] [20].

Our solution focuses on the initialization only. It keeps
the BW’s structure and adds a pre-fitting deterministic step,
which by avoiding bad initial parameters tends to obtain
higher likelihood values in the first iteration, thus reducing
the number of iterations needed to find a local maximum,
which leads to a fast model fitting (Section 3). Although the
difference is minimal, the possibility of deriving the initial
values directly from the input data can be interesting for
applying these models into different scenarios.

Since an HMM is usually used having serial data as its
input [31], the idea is to use a deterministic discretization
technique for time series prior to the actual model fitting.
From this approximate description of the original observa-
tions, we then derive initial parameters which are fed into
BW. These parameters are, in general, reasonably close to
a local maximum. Thus, the combination of the parame-
ter’s selection step, in combination with the BW algorithm,
is more likely to reduce the number of iterations to maxi-
mize the parameters, therefore leading to a local maximum
likelihood faster than the most traditional approach, which is
using random numbers to initialize the parameters.

Our approach is based on a Piecewise Aggregate Ap-
proximation (PAA) technique, which is used in the algorithm
(Figure 1, Piecewise Expectation). The use of PAA with EM,
Piecewise Aggregation EM (PAEM), has advantages regard-
ing fitting speed and practicality due to its simpler set of pa-
rameters.

729

Figure 1: PAEM, schematic representation

Finally, we performed experiments and measures to
compare the traditional use of BW against PAEM (Section
5). The main contribution of our approach is to reduce the
time needed to fit HMM models. However, this is performed
with a pre-fitting without modifying the original algorithm,
which is a different approach than the others (Section 2.1).
This pre-fitting can also be seamlessly used on time series
data, reducing the modeling time.

2 Baum-Welch
The Baum-Welch algorithm (BW) is a version of EM algo-
rithm for HMMs [5]. The goal is to estimate the parameters
of an HMM given an input data [31], in the statistics litera-
ture, commonly described as observations. This goal implies
that unlike a manual fitting approach, the initial distribution
δ , the transition probability matrix Γ and the emission proba-
bilities λ , are not estimated by the modeler observations but,
automatically, by the model itself.

The BW algorithm works iteratively by successive max-
imizing local approximations of the likelihood function. It
is guaranteed to maximize the likelihood at each iteration.
EM alternates between two steps. The E-step computes the
conditional expectation of the hidden states given the obser-
vations and the model current parameters, Γ, δ and λ . These
computations are based on the complete data log-likelihood,
which is basically the natural logarithm of the likelihood
function to avoid the underflow problem [14]. In the M-step,
the expectations are maximized according to its parameters.

2.1 Variants and derivations There are several variants
and extension for the standard EM algorithm, also described
as Generic EM (GEM). This section concisely shows an ex-
tensive literature review for the EM variants and derivations.
We briefly classify the GEM-based algorithm, in order to es-
tablish their relations and differences compared to our ap-
proach.

We can globally classify these variants into determin-
istic and stochastic versions. Among the deterministic
versions, Classification EM (CEM) [9], Accelerated EM
(AEM) [18], Aitken’s accleration (AA)[13], [25], Expec-

tation Conditional Maximization (ECM)[29], ECM Either
(ECME) [23], Space-Alternating Generalized EM (SAGE)
[15], Parameter-Expanded EM (PX-EM) [24].

The stochastic versions include Stochastic EM (SEM)
[8], Stochastic Approximation type EM (SAEM) [8], Data
Augmentation algorithm (DA) [27] and Monte Carlo EM
(MCEM) [30]. Although many of them are focused on
Gaussian mixture models, all these variants have slightly
different approaches to solving slightly different problems.
A common problem is the EM step sensitiveness to the initial
parameters [6]. Bad initial parameters will lead to more
EM steps (iterations), which are necessary to find the local
maximum likelihood.

All these GEM-based algorithms have in common the
use of an iterative MLE or Recursive MLE (RMLE). How-
ever, not all fitting algorithms are based on the MLE. Some
are based on Minimum Model Divergence (MMD) and Min-
imum Prediction Error (MPE), which can be extended to
Recursive Prediction Error (RPE) as a general recursive
stochastic algorithm [3]. MMD, in few words, can be de-
scribed as a combination of MLE and the minimization of
parameter’s divergence using entropy measures. Also, Min-
imum Prediction Error (MPE) which consists of measuring
an HMM error output prediction and provide an updated es-
timation for the HMM parameters [11]. Among the algo-
rithms, using MPE we can emphasize Collings et al., [11]
and LeGland and Mevel [21]. Using MMD we can empha-
size Garg and Warmuth [17].

Despite the uses of MMD and MPE, we focus on the
classic MLE, which is commonly used for HMMs. So far,
works based on MLE are the following: [4][26][16][20][7].
However, our approach does not intend to create an entirely
new algorithm nor improve it within itself. Instead, we
perform a pre-fitting to avoid the BW sensitiveness, an
approach used by some EM variants. Also, we do not intend
to create an optimal algorithm, but a better version of the
traditional BW, which aims to be a practical option that does
not suffer from the same flaws of a GEM, which as well
as BW, is strongly dependent on its initial parameters [9].
Therefore, the convergence time is directly dependent on
how good are these initial conditions.

3 PAEM
The efficiency of fitting HMMs can be improved by com-
bining the EM algorithm with data mining techniques such
as classification methods or the K-means algorithm [9][31].
These techniques are used to choose the initial parameters
intelligently, thus reducing the impact of the EM/BW sensi-
tiveness to them.

As showed in the Section 2.1, there are many algorithms
which have been derived from the generic EM. However,
they are based on different techniques and adapted for dif-
ferent situations. Here, we adapt and combine a Piecewise

730

Aggregation technique for time series to represent the orig-
inal observations and perform a pre-fitting for the BW al-
gorithm, calling this extension the Piecewise Aggregation
EM (PAEM). PAEM profits from the simplicity of the PAA
method and the dynamism of a SAX [22] inspired method,
which can be applied for different kinds of distributions con-
cerning time series. These characteristics allow us to derive
meaningful initial parameters by a fast approximation of the
data, avoiding failing on dimensionality problems, such as a
fail to converge, which can be given by higher dimensions;
or imprecise representations, which can be lead by a strong
dimensionality reduction.

PAEM’s initial approximation enhances the initial pa-
rameters Γ and λ , making them close to the global max-
imum, which leads to a faster fitting compared to the tra-
ditional random initialization. This is due to the need of
a single initialization to maximize the parameters and to a
first better fitting, which reduces the sensitiveness effect and
tend do avoid EM iterations. Fig. 1 illustrates the general
idea: a pre-fitting in a phase called piecewise expectation
prior to the traditional BW. Two of three parameters are pre-
viously updated, Γ and λ , which together with the steady
state, stored in δ , tends to lead to a first better likelihood.
The piecewise expectation cost is ϑ(T), which is lower than
forward-backward procedures ϑ(N2T), briefly described in
the previous section. Therefore, once a pre-fitting saves one
iteration, the final computational cost should be lower.

3.1 Piecewise Expectation Piecewise Aggregate Approx-
imation (PAA) is a technique to reduce data dimensional-
ity through discretization. It has been widely applied in
the context of time series analysis. Despite being simple
and intuitive, PAA has been shown to be as powerful as
more sophisticated dimensionality reduction techniques such
as Discrete Fourier Transform [1], Discrete Wavelet Trans-
form [10], Singular Value Decomposition [19].

To perform dimensionality reduction, PAA creates a
discrete version of the original TS in w blocks. These blocks
are usually a division of the length of the TS. In our case, the
faster mapping characteristic is especially attractive. Since
we intend to reduce the total time necessary to fit a model,
more robust approaches might be too costly for a pre-fitting
procedure.

Given a time series S with length n, PAA(S) is defined
as a sequence PAA(S)= {µ(B1,µ(B2), ...,µ(Bw))}, where µ

is the mean, w is the maximum number of blocks and Bi is a
block in the index i, being (1≤ i≤ w). The mean of a block
is given by the Equation 3.1. If the division n/w results in
a float number, the result is truncated and another block is
made of the remaining part of the series.

µ(Bi) =
w
n

n
w i

∑
j= n

w (i−1)+1
S j(3.1)

Despite its simplicity, PAA is enough to start an appro-
priated representation of a given series. We use it as a map-
ping to set up variables and then calculate Γ through MLE.
Other PAA advantage is that it has only one parameter and
due to it being mainly used to reduce a time series dimen-
sionality, it is not critical for our problem. Therefore, given
a set of observations X = (x1,x2, ...,xT), PAEM only needs
one parameter, the model number of states n. It starts by
getting a sequence of symbolic values φ , with range n, that
better describes X . The total number of Blocks is equal to
w = T/m. Thus, we identify the approximation sequence
with φ = (µ(B1),µ(B2), ...,µ(Bw)).

The number of states n defines the division of the values
µ(Bi). This generates the λ values of the HMM. Thus,
vector φ has a sequence of w elements composed by n
symbols. For instance, in φ = {1,2,3,1,2,3,2,2}, w = 8
and n = 3. Now, we can extend the whole approximation
process to a set of equations.

Vector φ is directly used to get the probabilities and set
the transition probability matrix, Γ, which together with λ

are the two necessary parameters for an HMM model since
δ can be initiated null and then filled with the steady state.
Due to this solution be directly related with PAA, we call this
part of the algorithm, “Piecewise Expectation".

To generate Γ, we use the elements of φ (t), 1 ≤ t ≤ w
and 1 ≤ i, j ≤ n. The non-normalized matrix Γ is filled by
the cumulative sum of the probability to find an element φ

(t)
j

just after an element φ
(t)
i .

Γ(i, j) =
T

∑
t=2

P(φ (t)
j |φ

(t−1)
i)(3.2)

Different than Γ, the elements of λ are directly extracted
from the piecewise approximation procedure. The generated
values are actually close to the BW’s ones. This small
distance between the pre-fitted and the pos-fitted value is
constantly observed in our experiments.

4 Experiments and Results
Our experiments aim to measure and compare how fast
the local maximum likelihood is achieved through BW and
PAEM. In other words, to prove the efficiency of our algo-
rithm in finding the best model fit. To do so, we used ran-
domly generated and randomly chosen time series from Data
Market [12]. We separated our tests in three steps. First, to
compare the generated maximum likelihood from different
initialization of BW against the PAEM approach. Second,
to detect the number of necessary executions to achieve the
global maximum likelihood; consequently, how long it takes
to achieve the global maximum likelihood. Third, a direct
measurement of the user for PAEM vs BW.

Our tests followed the hypothesis that a human operator
begins with no knowledge about the dataset. In other words,

731

we consider no previous data mining or machine learning
techniques have been performed. For the last two sets of
test (Section 4.2 and 4.3), the BW initialization followed
the standard strategy [9], it was performed through random
normalized numbers to all parameters. We used 12 different
time series for models ranging from 2 to 4 states. Regarding
these 36 tests, for each BW execution, 50 different seeds
were used. To avoid outliers, the best and the worst 5 were
taken out. From these 40, we used the best, the worst and the
average measurements to compare against PAEM.

4.1 Likelihood Prior to the user time and iteration tests,
we compared the fitness of BW and PAEM with only one
initialization. Since the Expectation-Maximization part is
the same, if the BW parameters are not equiprobable they
should reach the same likelihood. Otherwise, if BW is in-
ferior, it means that not all randomized parameters are good
as an input. If PAEM is inferior, it means that the pre-fitting
fails. Table 1 shows this experiment with BW and PAEM,
where ∗ means that we used an equiprobable λ to initial-
ize the BW. In fact, if the BW’s parameters values are not
equiprobable, it tends to converge to a maximum likelihood.
The problem usually happens when an equiprobable λ or Γ

is given as an input, which is trivial to avoid.

Table 1: Experimental model measurements using random
numbers as parameter initialization.

Model # states mLLk AIC BIC

BW (Equip. λ) 2 1268.92 2547.84 2560.86
BW 2 635.32 1280.65 1293.67
PAEM 2 635.32 1280.65 1293.67
BW (Equip. λ) 3 1268.92 2559.84 2588.50
BW 3 510.22 1042.44 1071.09
PAEM 3 510.22 1042.44 1071.09
BW (Equip. λ) 4 1268.92 2575.84 2625.34
BW 4 471.82 981.65 1031.15
PAEM 4 471.82 981.65 1031.15

Although an equiprobable λ suggests a bad fitting, this
is not true for all scenarios. Despite a tiny improvement, in
some cases, an equiprobable λ retrieved a better likelihood.
For the other datasets, a similar phenomenon occurred in
some models with more than 3 states. This suggests that
a simple condition to avoid an equiprobable parameter may
not be a good solution.

Considering one decimal precision, PAEM reaches a
better likelihood in 3 cases against 2 from the pure BW. Table
2 shows these cases. For all the 36 experiments, PAEM was
better in 17 occurrences against 19 of the pure BW. However
the difference in the vast majority of these cases lies in a nth
decimal precision, which can be seen in Table 2, it represents
a negligible probability.

4.2 Iterations As in the previous section, we started by
checking our hypothesis through experiments using 50 dif-

Table 2: -Log-Likelihood comparison, cases where the dif-
ference exceeds a precision of one float point.

BW PAEM ∆%

210.13 209.71 0.01% favorable to PAEM
740.52 697.38 5.80% favorable to PAEM
773.44 718.20 7.10% favorable to PAEM
471.82 489.84 3.60% favorable to BW
321.55 322.99 0.40% favorable to BW

ferent seeds to BW, excluding the best and the worst 5. From
the 40 remaining we collected the best, the average, and the
worst case concerning the BW initialization and its number
of iterations to reach a convergence. As PAEM generates the
parameters through a deterministic technique, it only needs
one initialization. Figure 2 shows the average scenario. The
other scenarios have a similar behavior.

0

50

100

150

200

250

Models

Ite
ra

tio
ns

BW

PAEM

Figure 2: Average scenario for the required number of
iterations to find a convergence. Experiments organized
according to the models more favorable to BW (left) to the
ones more favorable to PAEM (right).

In these pictures, we can clearly see PAEM requiring
fewer iterations to find a convergence (right side), while
just in a few cases, the random parameters outperformed
PAEM (left side). Furthermore, these are retrieved from
the experiments described in the Section 4.1, which shows
an equivalent likelihood, between BW and PAEM, for 87%
of the cases. Also, the far most significant scenario which
PAEM performed poorly, loses with a difference of 3.6%
(Table 2, BW=471.8).

Concerning all the results for the ordinary BW; 40 seeds
for all the 12 series and the 2, 3, and 4 states model; the ran-
dom values for BW got an average of 47.4 iterations against
25 from PAEM’s. This shows a significant improvement for
the initial parameters quality against the traditional random
approach. Furthermore, in the vast majority of the tests,
PAEM found a convergence with fewer iterations (Figure 2.

4.3 User Time Since both, BW and PAEM, tend to con-
verge to the same likelihood and the cost to randomize values
to BW is trivial, the real advantage of PAEM lies on a faster

732

convergence, which is given by fewer iterations derived by a
better likelihood at the first iteration.

We performed time measurements to see how fast each
procedure is in relation with BW. Although the running time
is highly correlated with the number of EM iterations, a
lower running time is the final goal, therefore, a more precise
measure regarding the time actually used by BW and PAEM.
In a standard machine, Intel i5, 2.3GHz, 8GB, a four states
model had an average time of 0.34 seconds running with
PAEM and 1.17 seconds running with BW. This difference
is directly linked with the number of iterations. As described
in the previous sections, in most cases, PAEM’s pre-fitting
tends to avoid at least one iteration of the forward-backward
procedure, which costs ϑ(N2T), which is more than PAA
ϑ(T).

The user time spent, from both, had a strong correlation
with their number of iterations. Specifically, BW had a
correlation average of 93% and PAEM 76%. Which can
be explained by the different seeds in BW and the lack of
a precise control considering an ordinary machine running
other applications. Also, PAEM’s pre-fitting has a fixed
running time for series with the same length, which has a
different impact according to the series number of iterations
necessary to find a convergence.

Now, considering the average scenario, we look for
each of the 36 experiments. Thus, the radar showed by
Figure 3, illustrates the total time spent in relation to the
average scenario for each time series. From this figure, we
can clearly see the time percentage difference from each
technique and for each time series. This plot shows the
overall better performance of PAEM, failing in just 6 cases,
which are the time series 1, 10, 16, 21, 24, and 26. However,
a difference in the case 26 is meaningless since the difference
is 0.0004 in favor of BW.

Among these time series, a critical poor performance
was achieved on the time series #1 and #10, which happens
to be the shortest time series in the experiment. Considering
BW and PAEM, respectively, for the first time series, consid-
ering an average case, it required 0.026 and 0.110 seconds.
Time series X10, required, respectively, 0.025 and 0.064 sec-
onds.

Considering larger models, we can verify that PAEM
performed better, in average, for any number of states less
or equal to 22. Further tests are required for larger models.
Finally, we emphasize that, our code was extended from [31]
and they do not have focus on performance. Therefore, the
user time is far from optimal and the difference might be
much less than the observed in our experiments.

5 Discussion
Through exhaustive tests, with different series, we found
PAEM to be faster than BW with its traditional stochastic
initialization. Its performance is due to, usually, fewer itera-

0 (%)

25 (%)

50 (%)

75 (%)

100 (%)

12
3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18 19 20
21

22

23

24

25

26

27

28

29

30

31

32

33

34
35

36

 BW PAEM

Figure 3: Radar chart showing the slowest process taking
100% of the time. An average scenario considering the user
time.

tions in the EM procedure. In fact, as shown in Figure 2, in
the vast majority of executions, the convergence is achieved
using a fewer number of iterations than the pure BW. Fur-
thermore, the time needed to the piecewise approximation is
far smaller than one EM iteration.

However, it is important to emphasize the overall bet-
ter performance and that PAEM does not aim to be an op-
timal solution. We focus on a simple alternative to the ini-
tial and usual randomization of parameters. Although there
are other techniques that improve the original BW, PAEM
lies in a simple initialization that is fast and easy to imple-
ment, making it a suitable alternative to performing HMM
fitting. In fact, there are cases where authors related a faster
solution using simpler MLEs [2]. Other techniques such as
the Levenberg-Marquardt algorithm, can be used to maxi-
mize directly the likelihood, which can be faster than EM
approaches [28].

For the future improvements, we shall focus on mea-
suring the initial likelihood and the user time according to
different kinds of data and distributions. PAEM is based on
a simple Piecewise Aggregation technique. It may have a
better global performance if a more advanced technique is
used instead of Piecewise Aggregation. For this reason, we
do not focus on measure the impact of w in its parameters.
In a future work, we can focus on comparisons, such as the
impact of different values of w and more robust techniques,
like SAX [22] and its derivations. However, the time spent
to pre-process the data must be lower than the original one.
Otherwise, the overall performance might decrease. Another
important test is to detect how efficient PAEM scales regard-
ing models with a different number of states.

733

References

[1] R. AGRAWAL, C. FALOUTSOS, AND A. N. SWAMI, Efficient
similarity search in sequence databases, in Proceedings of
the 4th International Conference on Foundations of Data
Organization and Algorithms, FODO ’93, London, UK, UK,
1993, Springer-Verlag, pp. 69–84.

[2] R. M. ALTMAN AND A. J. PETKAU, Application of hidden
markov models to multiple sclerosis lesion count data, Statis-
tics in Medicine, 24 (2005), pp. 2335–2344.

[3] A. ARAPOSTATHIS AND S. I. MARCUS, Analysis of an
identification algorithm arising in the adaptive estimation of
markov chains, Mathematics of Control, Signals and Systems,
3 (1990), pp. 1–29.

[4] P. BALDI AND Y. CHAUVIN, Smooth on-line learning algo-
rithms for hidden markov models, Neural Comput., 6 (1994),
pp. 307–318.

[5] L. E. BAUM, T. PETRIE, G. SOULES, AND N. WEISS, A
maximization technique occurring in the statistical analysis
of probabilistic functions of markov chains, The Annals of
Mathematical Statistics, 41 (1970), pp. 164–171.

[6] C. BIERNACKI, G. CELEUX, AND G. GOVAERT, Choosing
starting values for the {EM} algorithm for getting the highest
likelihood in multivariate gaussian mixture models, Compu-
tational Statistics & Data Analysis, 41 (2003), pp. 561 – 575.
Recent Developments in Mixture Model.

[7] O. CAPPE, V. BUCHOUX, AND E. MOULINES, Quasi-
newton method for maximum likelihood estimation of hidden
markov models, in Acoustics, Speech and Signal Processing,
1998. Proceedings of the 1998 IEEE International Conference
on, vol. 4, May 1998, pp. 2265–2268 vol.4.

[8] G. CELEUX, D. CHAUVEAU, AND J. DIEBOLT, On Stochas-
tic Versions of the EM Algorithm, Research Report RR-2514,
1995.

[9] G. CELEUX AND G. GOVAERT, A classification {EM} algo-
rithm for clustering and two stochastic versions, Computa-
tional Statistics & Data Analysis, 14 (1992), pp. 315 – 332.

[10] K.-P. CHAN AND A.-C. FU, Efficient time series matching
by wavelets, in Data Engineering, 1999. Proceedings., 15th
International Conference on, Mar 1999, pp. 126–133.

[11] I. B. COLLINGS, V. KRISHNAMURTHY, AND J. B. MOORE,
On-line identification of hidden markov models via recursive
prediction error techniques, IEEE Transactions on Signal
Processing, 42 (1994), pp. 3535–3539.

[12] DATAMARKET!, The open portal to thousands of datasets
from leading global providers. http://datamarket.com/, 2013.

[13] A. P. DEMPSTER, N. M. LAIRD, AND D. B. RUBIN, Max-
imum likelihood from incomplete data via the em algorithm,
Journal of the Royal Statistical Society, series B, 39 (1977),
pp. 1–38.

[14] R. DURBIN, Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids, Cambridge University
Press, 1998.

[15] J. FESSLER AND A. HERO, Space-alternating generalized
expectation-maximization algorithm, Signal Processing, IEEE
Transactions on, 42 (1994), pp. 2664–2677.

[16] G. FLOREZ-LARRAHONDO, S. BRIDGES, AND E. A.
HANSEN, Incremental estimation of discrete hidden markov

models based on a new backward procedure, in Proceedings
of the 20th National Conference on Artificial Intelligence -
Volume 2, AAAI’05, AAAI Press, 2005, pp. 758–763.

[17] A. GARG AND M. K. WARMUTH, Inline updates for hmms.,
in Interspeech, ISCA, 2003.

[18] M. JAMSHIDIAN AND R. I. JENNRICH, Conjugate gradient
acceleration of the em algorithm, Journal of the American
Statistical Association, 88 (1993), pp. 221 – 228.

[19] F. KORN, H. V. JAGADISH, AND C. FALOUTSOS, Efficiently
supporting ad hoc queries in large datasets of time sequences,
in Proceedings of the 1997 ACM SIGMOD international
conference on Management of data, SIGMOD 97, New York,
NY, USA, 1997, ACM, pp. 289–300.

[20] V. KRISHNAMURTHY AND J. B. MOORE, On-line estimation
of hidden markov model parameters based on the kullback-
leibler information measure, IEEE Transactions on Signal
Processing, 41 (1993), pp. 2557–2573.

[21] F. LEGLAND AND L. MEVEL, Recursive identification of
hmms with observations in a finite set, in Decision and Con-
trol, 1995., Proceedings of the 34th IEEE Conference on,
vol. 1, Dec 1995, pp. 216–221 vol.1.

[22] J. LIN, E. KEOGH, S. LONARDI, AND B. CHIU, A symbolic
representation of time series, with implications for streaming
algorithms, in Proceedings of the 8th ACM SIGMOD work-
shop on Research issues in data mining and knowledge dis-
covery, DMKD ’03, New York, NY, USA, 2003, ACM, pp. 2–
11.

[23] C. LIU AND D. B. RUBIN, The ecme algorithm: A simple
extension of em and ecm with faster monotone convergence,
Biometrika, 81 (1994), pp. pp. 633–648.

[24] C. LIU, D. B. RUBIN, AND Y. N. WU, Parameter expansion
to accelerate em: The px-em algorithm, Biometrika, 85
(1998), pp. pp. 755–770.

[25] R. SALAKHUTDINOV, S. ROWEIS, AND Z. GHAHRAMANI,
Expectation-Conjugate Gradient: An Alternative to EM.

[26] S. SIVAPRAKASAM AND K. S. SHANMUGAN, A forward-
only recursion based hmm for modeling burst errors in digital
channels, in Global Telecommunications Conference, 1995.
GLOBECOM ’95., IEEE, vol. 2, Nov 1995, pp. 1054–1058
vol.2.

[27] M. A. TANNER AND W. H. WONG, The calculation of
posterior distributions by data augmentation, Journal of the
American Statistical Association, 82 (1987), pp. pp. 528–540.

[28] R. TURNER, Direct maximization of the likelihood of a hidden
markov model, Computational Statistics & Data Analysis, 52
(2008), pp. 4147 – 4160.

[29] D. A. VAN DYK, X.-L. MENG, AND D. B. RUBIN, Maxi-
mum likelihood estimation via the ecm algorithm: computing
the asymptotic variance, Statistica Sinica, (1995), pp. 55–75.

[30] G. C. G. WEI AND M. A. TANNER, A monte carlo imple-
mentation of the em algorithm and the poor man’s data aug-
mentation algorithms, Journal of the American Statistical As-
sociation, 85 (1990), pp. pp. 699–704.

[31] W. ZUCCHINI AND I. MACDONALD, Hidden Markov Mod-
els for Time Series: An Introduction Using R, Chapman &
Hall/CRC Monographs on Statistics & Applied Probability,
Taylor & Francis, 2009.

734

How do Practitioners Manage Decision Knowledge
during Continuous Software Engineering?

Anja Kleebaum1, Jan Ole Johanssen2, Barbara Paech1, and Bernd Bruegge2

1Heidelberg University, Heidelberg, Germany, {kleebaum, paech}@informatik.uni-heidelberg.de
2Technical University of Munich, Munich, Germany, {jan.johanssen, bruegge}@in.tum.de

Abstract—Continuous software engineering (CSE) is an agile
process that supports lightweight, flexible, and rapid software
development. Decision-making is crucial for CSE, and developers
need to know the decisions made and the related rationale to
evolve the software. This knowledge is called decision knowledge.
The management of decision knowledge in CSE environments
remains unexplored. The agile manifesto suggests to value
working software over comprehensive documentation as well as
individuals and interactions over processes and tools. What does
this mean for the documentation, exploitation, and sharing of
decision knowledge? We report on results from an interview study
with 24 practitioners from 17 companies on how decision knowl-
edge is managed during CSE. The practitioners mainly capture
decision knowledge in an informal way, for example, in natural
language discussions. Wiki and issue tracking systems represent
the preferred medium to preserve decision knowledge. Mentioned
benefits are an improved decision-making process, accountability,
knowledge sharing, and reuse. However, the exploitation of the
captured decision knowledge remains partly unclear.

Index Terms—Decision knowledge, rationale, interview study,
continuous software engineering, agile software development.

I. INTRODUCTION

Continuous software engineering (CSE) is an agile process
that supports lightweight, flexible, and rapid software devel-
opment [1]. This process is intertwined with ongoing issue-
solving and decision-making. For example, developers make
decisions regarding the software development process, exis-
tence and non-existence of software artifacts, or the software
quality [2]. Developers need decision knowledge, i. e., knowl-
edge about the decisions and their rationale, to evolve the
software. Rationale covers the justification behind decisions.

CSE offers opportunities and bears challenges for the man-
agement of decision knowledge. The opportunities are that
developers already document decision knowledge in documen-
tation locations such as commit messages, issue comments, or
pull requests during established development practices, e. g.,
when committing code changes. Thus, the documentation of
decision knowledge during CSE is non-intrusive in comparison
to using a separate tool. This might help to overcome the
capture problem that is often mentioned in articles about deci-
sion management [3]. The challenges are that the documented
decision knowledge might be hard to access and exploit for
developers since it is distributed and might be not formalized.
Further, decisions can rapidly be changed which might lead to
an inconsistent and outdated documentation. It is unexplored
how decision knowledge is managed during CSE in practice.

We conducted a semi-structured interview study with practi-
tioners from 17 companies using CSE. We already reported on
the state-of-the-practice of CSE in these companies [4], [5]. In
this paper, we report on how the companies manage decision
knowledge. We contribute insights on which types of decisions
practitioners think are important to capture, how they capture
decision knowledge, what benefits they see in capturing deci-
sion knowledge, how they share decision knowledge, and how
they deal with change. These insights should help us to reach
our overall goal to support software evolution with decision
and usage knowledge in CSE [6], [7].

The remainder of this paper is structured as follows. In
Section II, we present our research questions, the procedure of
the interview study, and descriptive data of the interviewees.
In Section III, we answer the research questions. Section IV
discusses this work and Section V lists threats to validity.
Section VI presents related work on decision knowledge
management in practice. Section VII concludes the paper.

II. RESEARCH METHOD

In the following, we describe our research questions, the
interview study, and data about the study participants.

A. Research Questions

We focus on four research questions, each refined by sub-
questions that we asked the practitioners during the interviews.

RQ1: Which decisions are captured, why, and how? This
research question investigates approaches to explicitly cap-
ture decisions and rationale during CSE within companies.
Sub-questions are: Which types of decisions do practitioners
capture? Where do practitioners capture the decisions, with
which techniques and tools? Do practitioners link decisions
and rationale to other software artifacts and if so, how? How
do practitioners preserve the evolution history of decisions?
When and how often do practitioners capture decisions? Why
do practitioners capture decisions, i. e., what are the benefits
and what do they do with the captured decisions?

RQ2: Which important decisions are not captured by prac-
titioners, why not? This research question aims to find types
of decisions that remain implicit and reasons why they are
not captured. Sub-questions are: Which important decisions
do practitioners not capture during CSE? Why do practitioners
not capture these decisions? What would be the benefits if
practitioners captured these decisions?

DOI reference number: 10.18293/SEKE2019-206 735

http://dx.doi.org/10.18293/SEKE2019-206

RQ3: How do practitioners share decision knowledge? We
want to investigate how practitioners share decision knowledge
during CSE, with these sub-questions: What are the knowledge
sources from which practitioners retrieve necessary informa-
tion for decisions that are not captured? How do practitioners
share knowledge to avoid knowledge vaporization?

RQ4: How do practitioners deal with changing decisions?
We aim to investigate on how practitioners deal with change,
with the sub-question: How do practitioners identify parts of
the system that are affected by new or changed decisions?

B. Interview Study

In the following, we summarize the realization of the
interview study that is described in more detail in [4], [5].

1) Procedure: We performed a semi-structured interview
study [8], which is a survey study and thus a means to perform
a field study [9], [10]. We separated the study into a design
and planning, data collection, and data analysis phase.

During the design and planning phase, we prepared a ques-
tionnaire. Its first part addresses the practitioners’ background
and working context. Furthermore, it contained interview
questions as listed below the respective research question in
Section II-A. The interviews also included research questions
that are not addressed in this article (see [4], [5]). We contacted
companies which to our knowledge apply CSE.

During the data collection phase, we conducted 20 inter-
views between April and September of 2017. The interviews
were conducted either in person or via phone. The interviews
took 70 minutes on average and were audio-recorded with
the permission of the interviewees. We transcribed the audio
recordings and sent the transcripts to the interviewees to
correct misunderstandings. We guaranteed the anonymity of
the practitioners by publishing only aggregated results.

In the data analysis phase, we analyzed the transcripts [11].
We utilized a qualitative data analysis software to apply two
stages. During the first stage, we allocated answers to an inter-
view question. Hereafter, we performed a fine-grained coding
stage. To answer the interview questions concerning the types
of decisions captured and not captured, we derived the codes
from Kruchten’s taxonomy [2]. This taxonomy distinguishes
between existence decisions, non-existence decisions (bans),
property decisions, and executive decisions. For the remaining
interview questions, we identified emerging topics and coded
the answers in terms of these topics. We analyzed the results
quantitatively. In the case that two interviewees participated in
an interview, we treated their answers as one subject.

2) Participants: During 20 interviews, we interviewed 24
practitioners from 17 companies. While seven of the com-
panies provide consultancy services, ten companies develop
software products. Based on their role description, we grouped
the 24 practitioners into five categories: CSE specialists (5),
e. g., a continuous deployment manager or a DevOps engineer,
developers (6), project managers (6), technical leaders (6),
and one executive director. On average, the practitioners have
spent two years in the respective role, have an experience in
IT projects of ten years, and participated in 19 IT projects.

III. RESULTS

We present results on the research questions introduced in
Section II-A. Each subsection starts with a summary followed
by a more detailed analysis of the research question.

A. Decisions Captured during CSE

In three interviews, the practitioners state that they do
not capture decisions at all. In these cases, we skipped the
interview questions for RQ1 and started with RQ2.

RQ1: Which decisions are captured, why, and how? Prac-
titioners mainly capture executive and existence decisions
regarding the software architecture and feature implementa-
tion. They mostly capture decisions in wiki and issue track-
ing systems in informal discussions and rely on techniques
for establishing trace links and version control that come
with these systems. Practitioners capture decisions as part of
regular practices, such as code reviews and meetings. They
mention improved decision-making, accountability, knowl-
edge sharing, as well as reuse support as benefits. However,
the exploitation of the decision knowledge is partly unclear.

1) Types of Captured Decisions: Twelve practitioners re-
port that they capture executive decisions, i. e., decisions
concerning the software development process, technologies, or
applied tools. Such decisions impact the entire project or sev-
eral projects. Similar to non-CSE environments, the executive
decisions can be made by a steering committee. However, one
practitioner highlights that CSE supports strongly that devel-
opers themselves are enabled to make high-level decisions. As
examples, the practitioners mention to capture the decision to
use a certain branching strategy or to do continuous delivery.
One practitioner mentions to capture decisions on when they
can consider a task as done, i. e., the definition of done, and on
when a build can be deployed to the users. Existence decisions
state that some elements will appear in the software [2].
Thirteen practitioners capture existence decisions concerning
requirements, architecture, implementation, test cases, and bug
reports. Six practitioners report that they capture decisions
related to the elicitation, prioritization, and effort estimation
of requirements for features. Eight practitioners mention that
they capture architecture decisions and another nine mention
that they capture decisions regarding the implementation of
features, e. g., on why a class was created. Non-existence
decisions or bans state that some elements will not appear in
the software [2]. Five practitioners report to capture possible
alternatives to solve a decision problem during their decision-
making process. After evaluating the alternatives against cri-
teria, they pick one alternative as the decision. The alterna-
tives they discard are documented non-existence decisions.
One practitioner reports to capture decisions regarding the
prioritization of test cases and bug fixing activities based on
risk assessment. Property decisions concern the quality of the
system and can be guidelines, design rules, or constraints [2].
One practitioner provides the example that they captured the
decision on how to deal with data inconsistency after they have
replaced their relational database with a NoSQL database.

736

2) Documentation Locations, Techniques, and Tools: Prac-
titioners use various documentation locations, techniques, and
tools to capture decisions during CSE. Eight practitioners
mention that they capture decisions in external documents
and tools such as Word files, architecture design documents,
or final project reports. Only one practitioner mention to use
an architecture management tool, which in their case is the
Enterprise Architect. Thirteen practitioners report on using a
wiki system such as Confluence. One practitioner mentions
that they rely on template pages to capture decisions. Ten
practitioners mention that they capture decisions in an issue
tracking and project management system, such as JIRA or
Redmine, as part of the issue description and its comments.
One practitioner describes that they use a distinct discovery
issue type to indicate that a decision needs to be made. Simi-
larly, another practitioner mentions that they use a tag to mark
those issues that contain an open decision. One practitioner
highlights that in their opinion pull requests are the best place
to capture decisions to implement features. They create feature
branches for a requirement and create a pull request directly
afterwards to discuss the feature implementation within the
pull request. Another practitioner reports that they document
decisions as part of the code in comments and in code reviews.
Code reviews can be done in pull requests, issue comments,
or using dedicated code review systems, such as gerrit. Three
practitioners mention commit messages as a documentation
location for decisions and another three mention informal
communication systems, e. g., chat tools like Slack, and emails.

3) Linked Artifacts: None of the practitioners uses a par-
ticular technique to establish links between captured decision
knowledge and software artifacts. However, practitioners men-
tion techniques that come naturally with capturing decision
knowledge in some documentation locations. For example, the
practitioners report that the decisions captured in the issue
tracking system can be traced to the respective issues such as
user stories and also to artifacts that are linked to these issues,
e. g., software components and code. In addition, they also
mention that separate documents or wiki pages can be tagged;
for instance, version numbers can enable traceability between
decisions and software builds. Practitioners find it hard to
keep the documentation of decisions and software artifacts
in a consistent state. The practitioner using the architecture
knowledge management tool criticizes that there are no links
between the design models and the wiki system where they
also capture decisions. They insert snapshots of the models
into the wiki page, which they rate as highly unusable,
especially when the models get changed. Another practitioner
suggests to capture decisions as close to the code as possible.

4) Evolution History of Decisions: Similar to the linking of
decision knowledge and artifacts, a preservation of the evolu-
tion history comes naturally in those documentation locations
that offer version control, e. g., the issue tracking system. One
practitioner describes that they have a technique to mark a
revised decision; they link the revised decision with the new
one rather than overwriting the revised decision. However, the
practitioner admits that they never used the technique.

5) Capturing Practices and Frequencies: Six practitioners
report that they mainly capture decisions on demand, e. g.,
when planning bigger updates. One practitioner states that
they only capture a decision in case they need to discuss on
it, i. e., for controversial issues. Seven practitioners mention
that they capture decisions as part of regular practices such
as code reviews, meeting, and retrospectives. The practitioner
reporting about the tag to mark an open decision states that
the product owner regularly filters for such tagged issues.

6) Benefits and Exploitation: Five practitioners mention
that they document decisions since the documentation im-
proves decision-making, i. e., leads to better decisions since
the criteria become clearer. Eight practitioners state that they
capture decisions and rationale for accountability reasons,
e. g., as a proof on why a certain feature has been developed
and to avoid misunderstandings in the future. One of them
states to exploit captured decisions when recovering a former
state of the software. Three practitioners state that they capture
decisions for knowledge sharing purposes. Among them, one
practitioner highlights that it is necessary to share the knowl-
edge about where a new decision needs to be made, i. e., also
to share issues. Two practitioners capture decisions in order
to support reuse in the future to avoid duplicated work.

We asked the practitioners to rate the statement The ex-
plicit capturing of decisions benefits our software development
process with one answer from a five point Likert scale. In
thirteen interviews the practitioners rated this statement: one
disagreed, three were neutral, and nine agreed (Figure 1). The
practitioners who disagreed and were neutral emphasized that
if the utilization of the captured knowledge was more clear,
they would give a higher rating.

B. Decisions not Captured during CSE

Although some practitioners capture executive, existence,
non-existence, and property decisions during CSE, others ei-
ther a) do not capture the same type of decisions or b) provide
other concrete examples for decisions that they do not capture.

RQ2: Which important decisions are not captured by practi-
tioners, why not? Decisions regarding the CSE process, pri-
oritization, alternatives that are not selected (non-existence
decisions), and the underlying rationale stay implicit. Prac-
titioners do not capture decision knowledge because they
fear intrusiveness and inconsistency, miss clear use cases
for exploitation as well as techniques and tools. They see
a potential benefit in supporting software evolution through
captured non-existence decisions and decisions for code.

1) Types of Decisions not Captured: Seven practitioners
provide examples for executive decisions regarding the CSE
process that they do not capture but that they think would
be important to capture. They state that the decisions on
the continuous integration and deployment pipeline and the
respective stages, e. g., the develop, test, and production stages,
stay implicit in the head of developers. In total, eleven
practitioners mention that they do not capture certain exis-
tence decisions. Such decisions relate to features, software

737

The explicit capturing of decisions . . .

The explicit capturing of decisions...

Number of answers

… would benefit our software development process.

… benefits our software development process.

0 5 10

strongly disagree disagree neutral agree strongly agree

Figure 1. The practitioners’ attitude towards capturing decisions (above) and towards capturing decisions that they currently do not capture (below).

architecture, implementation, and tests. For example, a practi-
tioner reports to document application programming interfaces
between microservices using Swagger but does not capture
decisions for the design of such interfaces and the underlying
rationale. The practitioners report to capture the outcome value
regarding the prioritization of requirements based on cost
estimation, test cases based on risk estimation, and bug fixing
activities. However, the rationale is not captured, especially if
it comes to reprioritization. Two practitioners report that they
do not capture configuration decisions, e. g., which compiler
or framework versions they use. Three practitioners criticize
that they do not capture the rationale behind decisions and
that they do not capture decisions on why they did not pick a
certain alternative for an issue, i. e., non-existence decisions
or bans stay implicit. Two practitioners mention that they
have a common understanding of certain property decisions,
e. g., about the coding style, but that such decisions are
not documented. One practitioner provides the example that
they did not capture the decision whether to use either a
synchronous or an asynchronous inter-service communication
between microservices. The practitioner states that these kind
of decisions are made very quickly and then get reused by
others, but are neither discussed nor captured.

2) Reasons why Decisions are not Captured: Two practi-
tioners report that the decisions on how to deploy the software
used to be captured in external documents but are no longer
captured since the deployment is now automated. However,
they still keep the former documents to externalize this knowl-
edge. Four practitioners see a problem in rapid changing
decisions that lead to outdated decisions, i. e., to inconsistency
between the captured decisions and their implementation. One
practitioner associates the waterfall process with capturing
decision knowledge. Five practitioners report that they lack
appropriate techniques or tools to capture decisions and
rationale. Three of them state that their process is not mature
enough to involve decision management. Six practitioners
do not capture decisions because they lack techniques for
an easy retrieval and exploitation of the captured decisions.
Eight practitioners fear the overhead and the intrusiveness of
capturing decisions and rationale. They could not spend the
effort and do not have enough time. One practitioner mentions
that the cost-benefit-ratio would be too high if they captured
more decisions than they currently do according to the 80/20
rule. However, the practitioners admit that the extra effort
could be reduced by applying better capturing techniques.

3) Potential Benefits if Captured: As for the captured de-
cisions, practitioners see potential benefits in establishing ac-
countability, improving decision-making and knowledge shar-
ing, as well as a support of reuse and maintenance activities.
They also stress that capturing decisions and rationale would
support continuous learning as part of the CSE process. Two
practitioners see a potential benefit in retrieving decisions and
rationale for code when evolving code. In their opinion, this
could ease the understanding of code. Three practitioners state
that it would be useful for them to know about alternatives
for a decision and the rationale why they were not selected
during software evolution. One practitioner mentions disaster
recovery as an example why knowledge sharing and capturing
decisions was important.

We asked the practitioners to rate the statement The explicit
capturing of decisions would benefit our software development
process regarding the decisions that they currently do not
capture. Practitioners of eleven interviews rated this statement:
three disagreed, one was neutral, and seven agreed (Figure 1).

C. Sharing of Decision Knowledge during CSE

We dedicated two interview questions to address this re-
search question.

RQ3: How do practitioners share decision knowledge?
Practitioners strongly rely on face-to-face communication,
i. e., colleagues’ knowledge, to recover implicit decisions. To
share knowledge equally they apply techniques such as pair
programming and inviting all team members as reviewers
to pull requests. However, they also try to recover implicit
decisions using reverse engineering.

1) Alternative Knowledge Sources: Six practitioners state
that they try to do reverse engineering to recover knowledge
from code and issue tracking systems. Ten practitioners men-
tion that they ask colleagues, which has the disadvantage that
both the inquiring person and the respondent need to interrupt
their current activity. One practitioner reports that they have an
emergency mobile phone that is carried by one knowledgeable
project member for a period of time; afterwards, it is passed to
the next project member. Two practitioners report that it can be
hard to scan through many emails and pull requests to recover
a decision. Thus, this decision was somehow documented but
hard to retrieve. Another practitioner enforces that decisions
are hard to retrieve in communication channels using the
slogan “if it happens in [chat tool], it did not happen”.

738

2) Avoidance of Knowledge Vaporization: The practitioners
try to avoid knowledge vaporization by sharing knowledge
between project members. One practitioner states that in larger
teams it is both necessary to share the knowledge within
and across team boundaries. Knowledge management should
address both the intra- and inter-team scope. Within teams, the
practitioners try to share knowledge between all members as
homogeneously as possible. They strongly rely on face-to-face
communication. Further, one practitioner mentions that they
always invite all team members as reviewers for pull requests
and also do pair programming to distribute knowledge. One
practitioner states that they encourage team members to always
share their notes with others, e. g., by using a wiki system,
instead of “writing diaries”. Two practitioners mention to
have a dedicated process to onboard new project members.
Generally, practitioners state that if a project member is about
to leave the company, they would have a period of time during
which this person tries to share and capture their knowledge.

D. Managing Changing Decisions during CSE

Overall, we received only few responses from practitioners
regarding the management of changing decisions during CSE.

RQ4: How do practitioners deal with changing decisions?
Practitioners use cost and risk estimation as well as priori-
tization before integrating changing decisions. They depend
on implicit knowledge and team communication to identify
parts of the system affected by new or changed decisions.
They rely on automated tests to detect side and ripple effects.

None of the practitioners report about a technique or tool
to identify parts of the system that are affected by new or
changed decisions. One practitioner reports about their change
management process. For a change request, the project leader
needs to decide whether the change will be integrated and—
if so—the developers estimate the cost for the change, define
a priority, and break it down into tasks. Other practitioners
emphasize the importance of automated tests to detect side and
ripple effects as well as risk management. One practitioner of
a consulting company criticizes that workflows often do not
scale when the project and the respective team sizes increase.
Change impact analysis would be especially important for
larger projects, however, it is not integrated since it had not
been necessary at the beginning when the project was small.

IV. DISCUSSION

In the following, we discuss the results in terms of findings,
problems, and our improvement ideas.

From the results of our interview study, we cannot make
a clear statement of which decisions are captured and which
decisions stay implicit, since some practitioners mentioned to
capture decisions that others do not capture and vice versa. Yet,
the answers towards RQ1 and RQ2 provide examples of deci-
sions practitioners consider important to be captured and for
which purposes. It is interesting that many practitioners find
executive decisions regarding the CSE process important to be
captured. Reasons might be that CSE involves a continuous

process improvement that comes with a continuous decision-
making. The CSE process contains many defined workflows
that developers need to decide on and for which they need to
have a common understanding [1], [4].

Our findings confirm the challenges of CSE listed in Sec-
tion I: In 19 interviews, the practitioners mention that their
decision capturing method needs to be improved and that it is
far from being perfect. Only in one interview, a practitioner
in the role of a quality manager states that they are very
focused to capture decisions. The degree of formalization
of decision-making and documentation in practice seems to
be rather low. During the interviews, only five practitioners
mention to capture alternatives for a decision, i. e., non-
existence decisions. However, Kruchten states that it is very
important to capture non-existence decisions as they are not
visible in the software artifacts and cannot be recovered using
reverse engineering [2]. Also, the underlying rationale is not
captured systematically. The practitioners argue to not capture
decisions since the rapid change would make them outdated
soon. Further, the practitioners state that the usage of too many
tools for capturing decisions can be frustrating. As reasons
they list a) redundancy, i. e., they need to document knowledge
in more than one tool, which means twice the effort and might
result in an inconsistent documentation, and b) a workflow
interruption, i. e., they have to change their working context
for documentation purposes, which means intrusiveness.

Although the practitioners confirm to document decision
knowledge in typical documentation locations, e. g., the issue
tracking system, the opportunities of CSE for an improved
decision knowledge management are not yet exhausted. The
practitioners stress that the utilization of the captured decision
knowledge is not clear to them and that it is not exploited in
a proper way. They also highlight that they have difficulties
to find and retrieve the decisions—especially if captured in
informal communication channels such as Slack. In summary,
the capturing and exploitation of decision knowledge needs to
be better integrated into the daily practices of developers.

We aim to provide solution proposals for these findings
applicable for practitioners [12]. In [7] and [13], we de-
scribe ideas for a continuous decision knowledge management
(ConDec) as part of CSE and in [14] we present a dashboard
for knowledge visualization. The ConDec tool support1 inte-
grates with existing tools to minimize the intrusiveness of the
decision knowledge management, e. g., with the issue tracking
system. It provides many features for capturing and exploiting
decision knowledge during CSE and supports knowledge shar-
ing and changes. For example, ConDec enables the explicit,
formal capture of decision knowledge in the description and
comments of JIRA issues, commit messages, and code com-
ments. It does not restrict the type of decisions, i. e., developers
can capture executive, existence, non-existence, and property
decisions. It enables developers to view decision knowledge
in relation to software artifacts such as features and code. We
evaluate the ConDec tool support in agile student courses [15].

1https://github.com/cures-hub

739

https://github.com/cures-hub

V. THREATS TO VALIDITY

We conducted the interview study from a positivist philo-
sophical stance, i. e., we try to draw conclusions on how
practitioners manage decision knowledge during CSE from the
interviews. We discuss the four criteria for validity as usually
done for empirical research with a positivist stance [9], [8]. A
more detailed discussion can be found in [4], [5].

Construct validity focuses on whether the theoretical con-
structs are measured and interpreted correctly. The practition-
ers might have interpreted the interview questions different to
what we intended. To reveal misinterpretations, we allowed
them to ask questions at any time and conducted two inter-
views with colleagues that we discussed afterwards. We used
open-ended questions to elicit as much information as possible.

Internal validity concerns whether the results we draw really
follow from the data, e. g., whether there are confounding
factors that influence the results. The practitioners might have
provided answers that do not fully reflect their daily work,
since they knew that the results would be published. We
guaranteed the full anonymity of interviewees and companies
to address this. The interpretation of answers might be biased
by the authors’ a priori expectations, which we addressed by
coding the transcriptions and discussing the codes.

External validity addresses the generalizability of the study
results. We contacted companies that we already knew, which
might result in a selection bias. It is mitigated by the fact that
the authors are from two universities with different industrial
contacts. Interviews are subjective, since they rely on the
practitioners’ statements. To reduce subjectivity, we conducted
20 interviews, to acquire a wider set of opinions.

Reliability validity concerns the study’s dependency on
specific researchers. After we carried out coding training and
checked intercoder reliability, two authors individually coded
different transcripts. We addressed this threat by discussing
questions during coding. In addition, a third author of this
paper supervised the interview analysis.

VI. RELATED WORK

Miesbauer and Weinreich collected 120 examples of deci-
sions made in practice using an interview study [16]. Similar
to our study, they classified these decisions according to
Kruchten’s taxonomy [2] and list documentation locations.
They also found that the majority of the decisions were
existence decisions and that property decisions were rarely
mentioned. In contrast to our study, they found that practition-
ers did not mention non-existence decisions. They did not ask
for practitioners’ knowledge sharing and change management
practices, but list influence factors for decision-making.

Similar to our work, Furtado et al. explore tools, processes,
and benefits of knowledge management [17]. They found
Google Drive and email lists applied most prevalent to capture
knowledge and point out the value of the informal messaging
service Slack to improve knowledge sharing. In contrast to
our study, they did not focus on decision knowledge and their
results are limited to one institution only.

VII. CONCLUSION

We reported on findings from an interview study on how
practitioners manage decision knowledge in CSE environ-
ments. The practitioners mainly capture decision knowledge in
an informal way, in wiki and issue tracking systems. The ex-
ploitation of the captured decision knowledge is partly unclear
and needs to be improved. We develop techniques and tool
support for a continuous decision knowledge management.

ACKNOWLEDGEMENTS

This work was supported by the DFG (German Research
Foundation) under the Priority Programme SPP1593: Design
For Future – Managed Software Evolution (CURES project).
We thank the practitioners for sharing their insights.

REFERENCES

[1] S. Krusche and B. Bruegge, “CSEPM - A continuous software engi-
neering process metamodel,” in 3rd International Workshop on Rapid
Continuous Software Engineering, 2017, pp. 2–8.

[2] P. Kruchten, “An ontology of architectural design decisions in software
intensive systems,” in 2nd Groningen Workshop on Software Variability
Management, 2004, pp. 54–61.

[3] A. H. Dutoit, R. McCall, I. Mistrík, and B. Paech, Rationale Manage-
ment in Software Engineering. Springer, 2006.

[4] J. O. Johanssen, A. Kleebaum, B. Paech, and B. Bruegge, “Practitioners’
eye on continuous software engineering: An interview study,” in Int.
Conf. on Softw. and System Process (ICSSP). ACM, 2018, pp. 41–50.

[5] ——, “Continuous software engineering and its support by usage and
decision knowledge: An interview study with practitioners,” Journal of
Software: Evolution and Process, 2019.

[6] J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech, “Towards
a systematic approach to integrate usage and decision knowledge in
continuous software engineering,” in 2nd Workshop on Continuous
Software Engineering, 2017, pp. 7–11.

[7] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “Tool support
for decision and usage knowledge in continuous software engineering,”
in 3rd Workshop on Cont. Softw. Eng., 2018, pp. 74–77.

[8] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research
in Softw. Eng.: Guidelines and Examples. John Wiley & Sons, 2012.

[9] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting em-
pirical methods for softw. engineering research,” in Guide to Advanced
Empirical Softw. Eng. London: Springer, 2008, ch. 11, pp. 285–311.

[10] K.-J. Stol and B. Fitzgerald, “The ABC of Software Engineering Re-
search,” ACM Transactions on Software Engineering and Methodology,
vol. 27, no. 3, pp. 1–51, 2018.

[11] J. Saldaña, The Coding Manual for Qualitative Researchers, 2nd ed.
SAGE Publications, 2009.

[12] A. S. Freire, A. Meireles, G. Guimarães, M. Perkusich, R. M. da Silva,
K. C. Gorgônio, A. Perkusich, and H. O. Almeida, “Investigating gaps
on agile improvement solutions and their successful adoption in industry
projects - A systematic literature review,” in 30th Int. Conf. on Software
Engineering and Knowledge Engineering, 2018, pp. 40–45.

[13] A. Kleebaum, J. O. Johanssen, B. Paech, R. Alkadhi, and B. Bruegge,
“Decision knowledge triggers in continuous software engineering,” in
4th Int. Workshop on Rapid Cont. Softw. Eng., 2018, pp. 23–26.

[14] J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech, “Towards
the Visualization of Usage and Decision Knowledge in Continuous
Software Engineering,” in 2017 IEEE Working Conference on Software
Visualization, vol. 1806. IEEE, sep 2017, pp. 104–108.

[15] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “Teaching
rationale management in agile project courses,” in 16. Workshop Softw.
Eng. im Unterricht der Hochschulen (SEUH), 2019, pp. 125–132.

[16] C. Miesbauer and R. Weinreich, “Classification of design decisions -
an expert survey in practice,” in 7th European Conference on Software
Architecture (ECSA’13), K. Drira, Ed. Springer, 2013, pp. 130–145.

[17] F. S. Furtado, G. Alexandre, N. G. de Sá Leitão Júnior, I. H. de Farias Ju-
nior, and H. P. Moura, “Knowledge management in a software devel-
opment organization: Identifying tools, processes and benefits,” in 29th
Int. Conf. on Softw. Eng. and Knowl. Eng., 2017, p. 627.

740

Initial evaluation of the brain activity under
different software development situations

Rustam Ikramov, Vladimir Ivanov, Sergey Masyagin, Ruslan Shakirov,
Ilyas Sirazidtinov, Giancarlo Succi, Ananga Thapaliya, Alexander Tormasov, Oydinoy Zufarova

Innopolis University
Innopolis, Russia
f.last@innopolis.ru

Abstract—The use of biological signals to understand software
development has become more popular in the last few years but
poses new challenges with respect to the overall experimental
settings. In this paper we present such challenges and the
approach we took to overcome them. We illustrate our approach
by evaluating two programming situations: pair programming
and programming with music. The subjects involved in the
experimentation are mostly students, however, in the largest case
we involved graduate students coming from industry with at
least three years of working experience. The results in general
support the validity of this approach and encourage to go further
in this research line. Moreover, as a byproduct, the analysis
of pair programming confirms, from a biological perspective,
early hypotheses that pair programming induces higher level of
concentration.

Index Terms—Empirical methods, software experimentation

I. INTRODUCTION

Software is the result of the creating activity of software
developers. It is clear that improving developers’ working
conditions might lead to improving the quality of created
software the same as productivity of the employer. It is also
should be said that working in an area full of distracting agents
or activities will decrease the worker’s performance. There are
lots of different assumptions and myths on how to improve
the software development process, but almost no one has an
argumented proof. Moreover, there is no a general way for
evaluating a developer’s physical and mentional state. As a
consequence the state of mind of developers play a major role
in the quality and the productivity of the produced software
systems. In the recent years, the research arena has become
more aware of this fact and new studies have emerge, some
of which also directly analyzing biological signals. However,
the overall research field in this area is still in its infancy.
This paper presents the early results and challenges of using
a full EEG to understand the brain activity during coding,
in research that started about two years ago [1]. Specifically,
we are trying to evaluate empirically how different settings
may induce different brainwaves, and from this, understand
the mental states of developers in such different settings and
thus devise the most suited for a variety of work tasks and
conditions. In this prototypical phase, a wide approach has
been taken in collecting and analyzing the data, considering
“standard” working tasks, in essence preferring breadth over
depth in the analysis [27].

Our intention is threefold:

• to perform a preliminary observational evaluation of
the areas where phenomena could occur for a followup
deeper evaluation;

• to gather a better understanding of the opportunities
and the problems arising when collecting and analyzing
developers data using EEG, in the hope of facilitating
future research;

• to expand our research by supplying our initial results to
researchers and research groups interested in replicating
our findings.

We have considered two settings, primarily because they
represented two situations already present in our working
context:

• developing using pair programming (the largest part of
the experiment);

• developing with music in the background (still consid-
ered, given the interest of the involved researchers).

Notice that we have decided to include in this paper also
the small portion of collected data referring to programming
with music, as it uses a different experimental protocol which
adds a significant breadth at this initial investigation.

The subjects involved in our research belong primarily to
two groups:

• graduate students with at least three years of working
experience in the industry, who can be assimilated to
professionals

• undergraduate students

The unique contribution of this work is that the results in
general support the validity of this approach and encourage us
to go further in this research line. Moreover, as a byproduct,
the analysis of pair programming confirms, from a biological
perspective, early hypotheses that pair programming induces
higher level of concentration; this appears quite remarkable.

This paper is organized as follows. Section II presents
the overall background of the paper. Section III outlines the
approach taken to analyze the data and how the data was
collected. Section IV details the analysis of the data that we
have collected. Section V summarizes the early results that we
have obtained so far. Section VI outlines the challenges that
we have faced in this kind of empirical work to share it with

DOI reference number: 10.18293/SEKE2019-215 741

other researchers worldwide in the quest of identifying best
practices. Section VII draws some conclusions.

TABLE I
SUMMARY OF THE EXPERIMENTS

Id Situation Subjects N Analysis
1 Pair programming Graduate students

with working
experience

10 ERD

2 Pair programming Undergraduate 3 Correlation
3 Programming with

music
Undergraduate 2 ERD

4 Programming with
music

Undergraduate 2 Correlation

II. BACKGROUND

As mentioned, there has been an increased interest in using
biological signals to understand the mind of developers, in
particular using three main kinds of devices:

• electroencephalogram (EEG),
• functional magnetic resonance imaging (fMRI),
• various bio-metric sensors.

a) Electroencephalogram: This is the technique we are
considering. To our knowledge, so far a complete portable
EEG device has been used in areas related to software engi-
neering only in the study conducted by Lee et al. (2016) [16]
on exploring how the mind of developers evolved from novice
to experts in program comprehension tasks.

b) Functional magnetic resonance imaging: Functional
magnetic resonance imaging (fMRI) provides indirect esti-
mation of brain activity, measuring metabolic changes in
blood flow and oxygen consumption as a result of increased
underlying neural activity. This technique allows the detection
of active regions of the brain [8]. As a result, fMRI is widely
used to determine specific brain regions which are responsible
for the certain mental activity. In order to learn about software
developers’ brain activity, researchers chose code review and
code comprehension as the primary activities for which brain
activity needs to be understood [8], [22], [23].

Siegmund et al. (2014) detected activation specific
Broadmann-areas during code comprehension [22]. In their
followup work (2017) they investigated the difference between
bottom-up program comprehension and comprehension with
semantic cues in terms of brain areas involved [23]. This study
uses very accurate techniques to explore the work of the brain,
the fMRI. Floyd et al. (2017) have performed a similar study
applying fMRI to understand the mental activities surrounding
program comprehension [9].

c) Ensemble of bio-metric sensors: An alternative ap-
proach has been to use an ensemble of bio-metric sensors
like eye trackers for measuring pupil size and eye blinks,
electroencephalography to determine brain activity, electro-
dermal activity sensors to detect skin-related activity, and
heart-related sensors [10], [17], [29].

TABLE II
TECHNICAL CHARACTERISTICS OF THE MITSAR SMART-BCI EEG

DEVICE

Options Smart BCI EEG headset
EEG channels 24
Poly channel 1 for ECG
Reference A1, A2, (A1+A2)/2, Cz,

REF
Frequency band 0(DC) 70 Hz
Sampling rate 2000 Hz
Storage rate 250 Hz
Noise 1.2µV peak-to-peak
Input range ±300µV

This approach was applied in a series of investigations
which will be described below. The main interest in these
investigations was to obtain metrics that correlate with soft-
ware developers performance. Züger and Fritz (2015) used
interruptibility [29] while Müller and Fritz (2015) used pos-
itive and negative emotions of software developers [17] as
metrics of progress in the change task. They processed the data
from multiple bio-sensors and applied methods of supervised
learning (Naive Bayes) to distinguish levels of these cognitive
states [17], [29].

In these studies, monitoring the state of the mind in depth
was limited because:

• the assessment of emotions was performed subjectively
by the participants [17];

• a single channel EEG device was used, which may result
in an error of up to 50% [21].

III. APPROACH TO DATA ANALYSIS

a) Infrastructure used: We used wireless 24 channel
Mitsar SMART-BCI elastic cap for our experiment (details
are in Table II). The placement of electrodes was according
to the standard 10-20 scheme. Technical characteristics of the
Mitsar Smart-BCI EEG device are presented in II. One of the
very important steps of EEG recording is the preparation of
the EEG cap. We used the canonical type of cleaning before
the experiment which is cleaning with spirit. During the data
recording, we also used conductive gel to provide a better
connection between electrodes and scalp.

Since we use a multi-channel EEG device, the first step
to undertake is to select the channels that are the core of
the analysis. On the one hand, many channels provide a
wide range of information from the whole scalp. On the
other hand, this information can be redundant. Moreover,
electrodes placed on different parts of the scalp are affected
by different types of EGG artifacts, e.g. frontal electrodes are
more likely to be affected by muscle and eye movements.
During the experimental set up of the device, we found out
that a signal from the frontal electrodes cannot be cleaned
with EEG prepossessing techniques like Individual Component
Analysis and manual filtering. We did not propose any other
methods than these two for frontal electrodes since we found
out for this particular experiment, central electrodes would

742

be enough for the analysis and result. Based on this fact we
decided to analyze only central electrodes (F3, Fz, F4, C3, Cz,
C4, P3, Pz, P4) since they provide proper quality data which
can be used in further analysis.

The collected data have a lot of interference including:
• imperfection of EEG equipment;
• metal objects nearby;
• Wi-Fi and mobile network, mobile phones;
• artifacts from the person (e.g. blinking, jaw movements,

sneeze);
• harsh background sounds;
• size of the cap.
Moreover, there are patterns to take into account, like the

age, the gender, and other physiological characteristics of the
subject.

Therefore, after the selection of the channels, we have
performed a cleaning of the data with the following filters:

• Amplitude filtering: All data which was not in the range
[−200µV ; +200µV] we considered as an artifact and
removed from the signal. If the total share of noisy data
in the channel was more than 20% we considered the
channel as compromised and removed it from the dataset.

• High and low pass filters: The range of filter was picked
according to the possible variance of individual alpha and
theta waves and equaled to [2Hz; 15Hz].

• A notch filter was used to remove the noise from AC
lines.
b) Processing of the EEG data: As mentioned above, we

decided to use only clean channels (data). The choice of clean
channels was reasoned by EEG artifacts that are very hard to
be recovered to the original data. Moreover, we use use the
following infrastructure:

• Programming tools: Anaconda 3 Python distribution,
NumPy, and SciPy packs, MNE 0.16.1

• Electrodes: ’F3-Cz, ’Fz-Cz’, ’F4-Cz’, ’C3-Cz’, ’C4-Cz’,
’P3-Cz’, ’Pz-Cz’, ’P4-Cz’ (depending on the setting)

• Filtering: Finite impulse response method, as provided
by MNE library

Our approach is described in Algorithm 1, implemented, as
mentioned using Python 3 with scipy and numpy libraries.

c) Analysis of the EEG data: The first step of analysing
the data is an adjustment of alpha and theta waves ranges
since they could be different for various ages. The variabil-
ity of alpha waves in age-matched groups has been shown
to have a normal distribution (µ = 10Hz, σ = 1Hz) and
exhibits tonic changes, increasing from childhood to adult-
hood, then declining according to the following formula [13]:
PeakAlphaFrequency = 11.95− 0.053×Age

We computed peak alpha frequency for each participant (or
Individual Alpha Frequency - IAF) and used as the anchor
point for calculating alpha sub-bands.

The importance of alpha sub-bands comes from the fact
that they improve the accuracy of amplitude measures and
more accurately reacts on functional differences of the dif-
ferent oscillators, i.e., functional groupings of neurons, which

Data: EEG measurements of participants
Result: ERD Distributions
for each measurement in Data do

IAF(individual α frequency) = 11.95 - 0.053 · Age;
theta = [IAF - 6; IAF - 4];
L1A = [IAF - 4; IAF - 2];
L2A = [IAF - 2; IAF];
UA = [IAF; IAF + 2];
fft = FFT(measurment) erdall= (calibration
(participant) - fft) / calibration(participant);

end
for each subband do

erd [subband] = mean(erdall [subband]);
end
Algorithm 1: ERD distribution calculating algorithm

contribute to alpha power. For instance, the phasic changes
in the lower-1 alpha (L1A) and lower-2 alpha (L2A) sub-
bands are considered to be as an indicator of task-related
attentional demands including both components of attention
- alertness and arousal [14]. On the other hand upper alpha
(UA) changes correlates with semantic memory processing and
synchronization in the theta band reflects episodic memory
and the encoding of new information [14]. Concluding all
above it can be said that our choice of features depended on
the connection between the EEG feature and the cognitive
processes that this feature can represent.

In our study we used these ranges of sub-bands:
• L1A range is [IAF - 4Hz ; IAF - 2Hz]
• L2A range is [IAF - 2Hz; IAF]
• UA range is [IAF ; IAF + 2Hz]
• Theta range is [IAF - 6Hz ; IAF - 4Hz]
Next step is counting the number of waves included in the

corresponding interval. In this way, we can evaluate the brain
activity at each time point.

The analysis is then centered in two main techniques:
• ERD,
• Correlations of brainwaves.
The ERD (Event-Related Desynchronization) is a measure

of the level to which neurons no longer oscillate in synchrony
as they become activated to process the given task [5].
Consequently, more task demanding work should cause bigger
ERD difference between rest and programming periods. ERD
is calculated as it is shown in the formula below:

ERD =
(amplitude)rest − (amplitude)programming

(amplitude)rest
×100%

The ERD is computed for 2000ms window of the signal via
Fast Fourier Transformation (FFT). As a result, we obtain a
time-series or distribution of ERD for each sub-band for each
different programming activity. The name convention of the
ERD time-series is presented in Table VI.

Intuitively calculating ERD is subtracting the values of
the spectrum from calibration value and normalizing on the

743

calibration value. As a result we obtain a normalized spectrum
of difference in which we find a mean value for the specific
frequency ranges. We performed this procedure for each
channel and calculated resulted distributions as the average
among all channels. For example, we can have active spectrum
only for alpha and theta waves as seen from Table III in case
of pair programming. This implies that the result can vary and
we can get active spectrum for other different waves based on
different ERD value based on different types of experiment.

The analysis of the correlation of brainwaves identifies
the relationships existing among theta and L1-alpha waves,
L2-alpha and upper alpha waves. Strong correlations explain
different mental activities and statuses.

For instance from all the data obtained from EEG, individual
L1-alpha waves stands out as a measure that can be correlated
with other brainwaves such as L2-alpha or upper alpha waves.
For example, in our studies correlation between these waves
in case of pair programming was slightly higher as compared
to solo programming whereas this correlation was lower in the
case of programming with music rather than without music.
These examples from our study imply that correlation can
differ affecting the results to be higher or lower depending
on the type of experiments we are performing.

d) Experimental protocol: In all cases the students were
divided in two groups: treatment and control, even if in one
case the control group was very small; again, please remember
that the goal of this study is to determine in practice the
feasibility of the approach rather than performing sound and
reliable observation for the situation under consideration. Each
part of the experimentation was scheduled in a separate day
and, given the initial availability of two EEG device, when
two subjects were involved, they were analyzed together. The
following is the detailed steps and here P1 indicates participant
one and and P2 indicates participant two.

The steps for the analysis of pair programming have been:

1) Calibrating P1 and P2. The calibration part consists of
two parts. First one is when subjects sit with closed
eyes in front of the computer in a restful state and the
second one is the same but with opened eyes. The steps
are required to measure alpha and theta synchronizations
during calm state.

2) Solo programming of P1 and P2 (60 minutes).
3) Break, rest period without hard mental activity (10

minutes).
4) Pair programming, P1 is on driver mode, P2 is a

navigator (60 minutes).
5) Break, rest period without hard mental activity (10

minutes).
6) Pair programming, P1 is on navigator mode, P1 is a

driver (60 minutes).

The steps for the analysis of the effect of music have been:

1) Calibration P1 (with and without music): First, the
subject sits with the closed eyes in front of the computer
in a calm state and for the second time with the same
instructions but with opened eyes. As it was mentioned

before, these steps and instructions are necessary to
determine the alpha and theta synchronization during
the restful state.

2) P1 starts programming for the given task without music.
(60 minutes)

3) Rest period without any types of hard mental activity.
P1 is on calm state (break) for 10 minutes.

4) P1 starts programming for the given task and listening
for a music (the music was chosen by P1 according to
his personal preferences). (60 minutes)

e) Description of the collected data: As mentioned, the
subjects involved in our research belong primarily to two
groups:

• volunteer graduate students with at least three years of
working experience in the industry, who can be assimi-
lated to professionals,

• volunteer undergraduate students.
The graduate students were mostly recruited during the so-

called “bootcamp,” a two weeks course preparing our students
to of preparation to study. Such students are between 23 and
30 years of age and come directly from industry with at least
3 years of experience, so we can consider them almost as
professional for the purpose of the generalizability of data.

The undergraduate students were mostly second year stu-
dents participating at the data collection for curiosity and
interest in neurosciences.

Excluding calibration data, the dataset contains 36 hours of
recorded EEG data mostly for the analysis of pair program-
ming (11 hours for driver, 11 for navigator and 12 for solo)
and 2 hours for programming with music.

IV. ANALYSIS OF THE COLLECTED DATA

Pair programming (PP) is a technique of extreme program-
ming and other agile methods where two developers work
together on one workstation, one being the “driver,” who uses
the keyboard and write the code, the other being the ”navi-
gator” who provides systematic guidance to the driver [12].
Pair programming was picked as a primary topic of the study
since it may influence on software developer’s productivity and
attention. There have been multiple studies on pair program-
ming evidencing its pros and cons, the pros including: reducing
a defect rate, improving the design, increasing productivity
[6], and increased concentration of developers [25]. Music
Programming is a common practice but, despite of this, rarely
investigated: developers and programmers listen to music of
their choice while coding.

Our experiment about Pair Programming involved 11 gradu-
ate students with ERD to analyse the data and 3 undergraduate
students with correlation analysis; our experiment with Music
Programming involved 2 undergraduate students and used
correlation to analyse the data (Table I).

a) ERD: During the evaluation using ERD, we compare
the ERD values in 3 working cases: solo, driver, and navigator.
We check the difference between such values using the non-
parametric Mann-Whitney test and we determine the signif-
icance of the difference. As mention, given the exploratory

744

goals of this paper we do not systematically track the signifi-
cance of the result; in this case we use the significance level
as an indication of a significant effect of the “treatment,” that
is, working in pair or working with music.

Specifically, we consider ERD of theta waves, which desyn-
chronizes (decreases) with the higher memory load, ERD of all
alpha ranges (L1A, L2A, UA) synchronizes (increases) with a
higher level of attention and semantic memory processing (n
other words, the higher value of ERD in alpha band indicates
higher attention and semantic memory processing during the
given task for the given participant). Using this information
we can calculate statistics of ERD distributions of the same
sub-bands but from the different activities and compare them.

TABLE III
VALUES OF ERD IN THE FIRST EXPERIMENT

Sub-
band

Highest value Significance Interpretation

L1A Pair - navigator Yes Higher attention required
L2A Pair - navigator No As above
UA Not conclusive No Nothing
Theta Solo No Usually opposite of L1A,

so confirms the results

b) Correlations: Using correlations we compare Pear-
son’s correlation coefficients between the 3 cases of pair/solo
programming (solo, pair/driver, and pair/navigator) and the 2
cases of programming with and without music. The brain-
waves differ from each other while any kind of mental or
physical activity is done by the object. As theta waves decrease
with the higher memory load and all the alpha ranges (L1A,
L2A, UA) increase with a higher level of attention and
semantic memory processing, the correlation of this waves
should differ over time. Using this information we can cal-
culate the statistics of the correlation of the same sub-bands
from the different activities and compare them. To perform a
comparison of Correlation, we performed Pearson’s correlation
coefficients (Tables IV and V).

V. RESULTS AND DISCUSSION

a) Analysis with ERD: In general, desynchronization in
the lower alpha band reflects higher levels of attention [14];
for such band in the case pair programming we obtained the
highest ERD for pair-navigator mode and equal values for

TABLE IV
CORRELATION ANALYSIS FOR PAIR PROGRAMMING

Participant Theta and L1-α L2-alpha and Upper α
1 (PP-Driver) 0.9 0.8
1 (PP-Navigator) 0.86 0.82
1 (Solo) 0.80 0.86
2 (PP-Driver) 0.799 0.9
2 (PP-Navigator) 0.81 0.85
2 (Solo) 0.84 0.87
3 (PP-Driver) 0.88 0.82
3 (PP-Navigator) 0.93 0.73
3 (Solo) 0.875 0.81

TABLE V
CORRELATION ANALYSIS FOR PROGRAMMING WITH MUSIC

Environment Theta and L1-alpha L2-alpha and Upper al-
pha

With music (Par-
ticipant 1)

0.825 0.878

Without music
(Participant 1)

0.875 0.815

With music (Par-
ticipant 2)

0.827 0.91

Without music
(Participant 2)

0.827 0.835

solo and pair-driver mode (Table III). It may mean that pair
programming in navigator mode requires more attention, and
this reflects the intuition that the navigator position requires
evaluating and guiding the development, which in turn intu-
itively requires a significant effort of attention, also because
the navigator is not involved in a physical contact with the
keyboard. The analysis of UA was not conclusive.

According to Klimesch et. al. [14] synchronization in the
theta band reflects episodic memory and the encoding of
new information. For the theta region we obtained a highest
value for solo programming, followed by the navigator, and
finally the driver. Theta and alpha waves are supposed to be
invariant, which roughly means when alpha increases, theta
decreases, and vice versa. As a result, we have that higher
desynchronization means lower synchronization. If we denote
ERS as event-related synchronization we get the following
relation: ERSpair−driver > ERSpair−navigator > ERSsolo.

Anyway, for now, it is difficult to interpret the meaning of
difference in episodic memory working. However, the second
part which states the theta band reflects the encoding of new
information might be true in case of pair programming.

The analysis of ERD for programming with music did not
evidence any specific patterns, perhaps also because of the
limited dataset available.

b) Analysis with correlations: The analysis of the corre-
lation for pair programming (Table IV) appears somehow to
support the claims made with the analysis of ERD. Indeed,
the very small dataset is not conclusive for practical reasons,
still seeing a second experiment conducted with a different
approach hinting at the same pattern as the first one, provides
some observational confirmation of the statement that the
navigator in pair programming has higher level of attention.

The analysis of the correlation with music (Table V) is again
not conclusive, and again we can replicate the limits of the
small dataset.

VI. CHALLENGES ENCOUNTERED

Since the goal of this paper is primarily to provide a
reference for future experiences in using biological sensors
to detect the states of minds of developers, it is important
to underline the different challenges that emerged during the
experimentations, so that future research can take suitable
precautions to mitigate or even eliminate them:

745

1) As this was quite a new experiment in the field of
computer science, there was a lack of other works
and papers related to the field of computer science to
structure our overall experimental setting, therefore it
took a considerable effort to define a solid experimental
protocol and in due course a significant amount of data
got lost.

2) The EEG picked up a lot of muscle activity, clouding
our data. So subjects had to stay as still as possible and
blink as minimum as possible.

3) The device could not record from the subjects with the
thick hair even with the addition of the gel.

4) The EEG experiment was highly influenced by envi-
ronment noise, so a lot of filtering was done. Location
of the experiment highly depends on the goal of the
experiment, so it was difficult to find its perfect place.

5) Large number of subjects were required and a huge
number of experiments were conducted for extraction
of useful data and information from the device because
the device had poor signal to noise ratio, therefore, this
approach is quite effort intensive.

6) It took a long time to start the experiment because
the device required a complex arrangement of many
electrodes around the head with the use of different
gels; moreover, also the setup of the computer software
required some time.

VII. DISCUSSION AND CONCLUSION

As mentioned, the goal of our work is to provide a new con-
tribution to people interested in performing analysis of soft-
ware development using biological signals, thus discovering a
whole new understanding of the state of mind of developers,
who are the main resource in the production of software. To
this end we have run four experiments, the largest of which
involving 10 graduate students with at least three years of
programming experience, so with a professional background
similar to developers working in companies, thus providing
higher credibility to our observational findings. We have run
three additional very small experiments with undergraduate
students. The subject of the first largest experiment and of a
second small experiment was to analyze pair programming,
while the other two small experiments focused on program-
ming with music.

The first result that we have obtained is that, despite several
possible challenges, some of which discussed in Section VI,
the approach appears to work. For the largest experiment,
anyway involving only 10 subjects, we did obtain some
observational conclusions confirming previous evidence that
pair programming increases the level of attention from a clear
biological standpoint. We think that this result is remarkable.

For the case of programming with music, we have not been
able to achieve any significant result. We are not discouraged
by this – it is an effect of the significant amount of work
required to run such experiment and we think that a larger
experiment may lead to more conclusive statements.

We have also seen that as the time progresses, indeed, we
have become more effective in collecting the required data,
so there is an important learning phase that, while it cannot
eliminate the significant amount of effort required by this
approach, still can partially mitigate it. As a lateral comment,
we have not identified any pattern in the data we have lost, so
we assume that the results that we have obtained in the largest
experiment related to pair programming does not suffer of it.

Moreover a growing number of experiments could be
relevant in software relevant for safety critical situations,
infrastructures, etc. [2]–[4], [7], [24], [28] or during learning
phases [11], [18]. It would also be interesting to involve the
open source community in sharing personal data [15], [19],
[20], [26].

Summing up, based on all the results, our future work
will be based on more focused experimentation on specific
programming situations using larger datasets of students and
then, indeed, trying to move our analysis to the industry. Also
we will try to use not only central electrodes but also the
frontal electrodes and for the evaluation, not only correlation
and ERD but also other available techniques will be used, thus
generating more accurate and comparable results. After apply-
ing different approaches for EEG data processing it was found
that described correlation methods does not provide veridical
outcomes for the further analysis so it should not be used for
analyzing EEG data. The observed results might be used for
identifying the most productive programming techniques. In
the future researches we will test other conditions which may
have an impact on developer’s productivity.

VIII. ACKNOWLEDGMENTS

We thank Innopolis University for generously supporting
this research.

REFERENCES

[1] S. Busechian, V. Ivanov, A. Rogers, I. Sirazitdinov, G. Succi, A. Tor-
masov, and J. Yi. Understanding the Impact of Pair Programming on the
Minds of Developers. In Proceedings of the 40th International Confer-
ence on Software Engineering Companion, ICSE-NIER’18, Gothenburg,
Sweden, May-June 2018. ACM.

[2] L. Corral, A. B. Georgiev, A. Sillitti, and G. Succi. A method for
characterizing energy consumption in Android smartphones. In Green
and Sustainable Software (GREENS 2013), 2nd International Workshop
on, pages 38–45. IEEE, May 2013.

[3] L. Corral, A. Sillitti, and G. Succi. Software development processes for
mobile systems: Is agile really taking over the business? In Engineering
of Mobile-Enabled Systems (MOBS), 2013 1st International Workshop
on the, pages 19–24, May 2013.

[4] L. Corral, A. Sillitti, G. Succi, A. Garibbo, and P. Ramella. Evolution
of Mobile Software Development from Platform-Specific to Web-Based
Multiplatform Paradigm. In Proceedings of the 10th SIGPLAN Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2011, pages 181–183, New York, NY, USA,
2011. ACM.

[5] I. Crk, T. Kluthe, and A. Stefic. Understanding programming expertise:
An empirical study of phasic brain wave changes. 2015.

[6] E. di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi, and
J. Vlasenko. Memory processes, brain oscillations and eeg synchro-
nization. IEEE Transactions on Software Engineering, 39:930 – 953,
2013.

[7] E. Di Bella, A. Sillitti, and G. Succi. A multivariate classification of
open source developers. Information Sciences, 221:72–83, 2013.

746

[8] B. Floyd, T. Santander, and W. Weimer. Decoding the representation of
code in the brain: an fmri study of code review and expertise. In Pro-
ceedings of the 39th International Conference on Software Engineering,
ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pages 175–186,
2017.

[9] B. Floyd, T. Santander, and W. Weimer. Decoding the representation of
code in the brain: An fmri study of code review and expertise. In Pro-
ceedings of the 39th International Conference on Software Engineering,
ICSE ’17, pages 175–186, Piscataway, NJ, USA, 2017. IEEE Press.

[10] T. Fritz and S. C. Müller. Leveraging biometric data to boost software
developer productivity. In Leaders of Tomorrow Symposium: Future of
Software Engineering, FOSE@SANER 2016, Osaka, Japan, March 14,
2016, pages 66–77, 2016.

[11] I. Fronza, A. Sillitti, and G. Succi. An Interpretation of the Results of the
Analysis of Pair Programming During Novices Integration in a Team.
In Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, ESEM ’09, pages 225–235.
IEEE Computer Society, 2009.

[12] J. Kivi, D. Haydon, J. Hayes, R. Schneider, and G. Succi. Extreme
programming: a university team design experience. In 2000 Canadian
Conference on Electrical and Computer Engineering. Conference Pro-
ceedings. Navigating to a New Era (Cat. No.00TH8492), volume 2,
pages 816–820 vol.2, May 2000.

[13] W. Klimesch. Memory processes, brain oscillations and eeg synchro-
nization. International Journal of Psychophysiology, 24:61–100, 1996.

[14] W. Klimesch. Eeg alpha and theta oscillations reflect cognitive and
memory performance: a review and analysis. Brain research reviews,
29(2-3):169–195, 1999.

[15] G. L. Kovács, S. Drozdik, P. Zuliani, and G. Succi. Open Source
Software for the Public Administration. In Proceedings of the 6th Inter-
national Workshop on Computer Science and Information Technologies,
October 2004.

[16] S. Lee, A. Matteson, D. Hooshyar, S. Kim, J. Jung, G. Nam, and
H. Lim. Comparing programming language comprehension between
novice and expert programmers using EEG analysis. In 16th IEEE
International Conference on Bioinformatics and Bioengineering, BIBE
2016, Taichung, Taiwan, October 31 - November 2, 2016, pages 350–
355, 2016.

[17] S. C. Müller and T. Fritz. Stuck and frustrated or in flow and happy:
Sensing developers’ emotions and progress. In 37th IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE 2015, Florence, Italy,
May 16-24, 2015, Volume 1, pages 688–699, 2015.

[18] W. Pedrycz, B. Russo, and G. Succi. Knowledge transfer in system
modeling and its realization through an optimal allocation of information
granularity. Appl. Soft Comput., 12(8):1985–1995, Aug. 2012.

[19] E. Petrinja, A. Sillitti, and G. Succi. Comparing OpenBRR, QSOS, and
OMM assessment models. In Open Source Software: New Horizons -
Proceedings of the 6th International IFIP WG 2.13 Conference on Open
Source Systems, OSS 2010, pages 224–238, Notre Dame, IN, USA, May
2010. Springer, Heidelberg.

[20] B. Rossi, B. Russo, and G. Succi. Adoption of free/libre open
source software in public organizations: factors of impact. Information
Technology & People, 25(2):156–187, 2012.

[21] I. M. Rytis Maskeliunas, Robertas Damasevicius and M. Vasiljevas.
Consumer-grade eeg devices: are they usable for control tasks? PeerJ,
4:1–22, March 2016.

[22] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann. Understanding understanding source
code with functional magnetic resonance imaging. In 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India - May
31 - June 07, 2014, pages 378–389, 2014.

[23] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner,
A. Begel, A. Bethmann, and A. Brechmann. Measuring neural efficiency
of program comprehension. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
Paderborn, Germany, September 4-8, 2017, pages 140–150, 2017.

[24] A. Sillitti, A. Janes, G. Succi, and T. Vernazza. Measures for mobile
users: an architecture. Journal of Systems Architecture, 50(7):393–405,
2004.

[25] A. Sillitti, G. Succi, and J. Vlasenko. Understanding the Impact of
Pair Programming on Developers Attention: A Case Study on a Large
Industrial Experimentation. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pages 1094–1101,
Piscataway, NJ, USA, June 2012. IEEE Press.

[26] G. Succi, J. Paulson, and A. Eberlein. Preliminary results from an
empirical study on the growth of open source and commercial software
products. In EDSER-3 Workshop, pages 14–15, 2001.

[27] A. Valerio, G. Succi, and M. Fenaroli. Domain analysis and framework-
based software development. SIGAPP Appl. Comput. Rev., 5(2):4–15,
Sept. 1997.

[28] T. Vernazza, G. Granatella, G. Succi, L. Benedicenti, and M. Mintchev.
Defining Metrics for Software Components. In Proceedings of the World
Multiconference on Systemics, Cybernetics and Informatics, volume XI,
pages 16–23, July 2000.

[29] M. Züger and T. Fritz. Interruptibility of software developers and its
prediction using psycho-physiological sensors. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems,
CHI 2015, Seoul, Republic of Korea, April 18-23, 2015, pages 2981–
2990, 2015.

747

Finding conservative schema evolutions by
analysing API changes

1st Lynda Ait Oubelli
IRIT/INP-ENSEEIHT, ONERA/DTIS

University of Toulouse
Toulouse, France

Lynda.Ait-Oubelli@onera.fr

2nd Yamine Aït Ameur
IRIT/INP-ENSEEIHT
University of Toulouse

Toulouse, France
yamine@enseeiht.fr

3rd Judicaël Bedouet
ONERA/DTIS

University of Toulouse
Toulouse, France

Judicael.Bedouet@onera.fr

4th Benoît Chausserie-Laprée
CNES- The French Space Agency

Toulouse, France
Benoit.Chausserie-Lapree@cnes.fr

5th Béatrice Larzul
CNES- The French Space Agency

Toulouse, France
Beatrice.Larzul@cnes.fr

Abstract—Because verification and validation are impor-
tant activities in model driven engineering (MDE), verifying
interfaces preservation is considered an interesting step
to understand the evolution of data models by analyzing
their interfaces. The interfaces defined on a data model
can be used to define model evolution correctness using
observational semantics. In this paper, we propose an
approach that supports rigorous analysis, verification and
validation of behavioral re-factoring. Our work addresses
the problem of data model evolution in a formal modelling
and verification setting. We focus on data conservation
in the specific context of space engineering, where data
models may involve thousands of concepts, relationships
and each concept has a number of fields or attributes and
each relationship has a number of properties.

Index Terms—data models evolution, data model
transformation, data models comparison (Bi-simulation),
graphs, labelled transition system (LTS)

I. Introduction

Because project stakeholders require an easy and
safe (behaviour-preserving) technique to update model-
based applications, several approaches based on formal
methods have been proposed [1]–[3]. This work gave rise
to several formal comparison approaches [4]–[6]. In this
paper, we propose an approach that supports analysis
of models behavior preservation after re-factoring. It
consists in checking that the APIs (Application Program-
ming Interfaces) of a source data model still hold on the
target data model. To address the problem of data model
evolution, we have identified three requirements.

Accessibility. Access to model concepts shall be pre-
served after model refactoring i.e. source model getters

DOI reference number: 10.18293/SEKE2019-132

or setters shall be preserved. Accessibility requirement
becomes a path problem in a graph.

Cardinalities. The cardinalities defining the extensions
of the relationships between source model concepts
(specifying the allowed number or range of instances)
shall be preserved after model refactoring.

Knowledge. In order to strengthen concepts evolution,
a knowledge base can be associated to the refactoring
process to define possible knowledge equivalences or
relationships between model concepts. Ontologies are
good candidates for such knowledge bases [7].

This paper deals with the accessibility requirement.
It particularly focuses on the models produced in space
engineering.
This paper is organized as follows. Section 2 overviews
related work. The proposed approach to handle model
evolution and data migration is presented in Section 3.
Basic definitions are presented in Section 4. Section 5
summarizes our results, overviews our experiments and
positions our approach with respect to the state of the art.
Finally, section 6 concludes and provides future work.

II. Related work

The problem of model refactoring has been addressed
by several authors with different perspectives.

Application Programming Interfaces (API). They
offer operators to process model concepts by encap-
sulating modelling details. [8] proposed two categories
of application interfaces: external and internal ones.
External APIs are designed by library maintainers for
clients usage while internal ones are used by the library

748

code itself. To automatically collect refactoring opera-
tions between two APIs versions, [8] uses the RefFinder
tool, which identifies up to different 52 refactoring types
between two API versions. The identified refactoring
types are structural, only detectable by mechanical trans-
formations. However, [9] observes that APIs breaking
changes are not involved in refactorings. In this case, an
application built with an older version of the component
API, may fail under a new component API version.
When the problem is visible, the application fails to
compile or to link. Moreover, it may succeed to compile
but its behaviour may be altered [10].

Refactoring. Refactoring-based migration tools are
discussed in [11] where the research CatchUp tool is
used to update applications. It uses refactorings descrip-
tions to help application developers migrate their appli-
cations to a new version. It aims to update applications
by recording and playing back the refactorings. Only
few refactorings have full records and replay support.
According to [10], refactoring at model level is inher-
ently more challenging due to difficulties in assessing the
potential impact on structural and behavioral features of
the software system.

Data models comparison. Authors in [6] address
the problem of user interface (UI) evolution. They fo-
cus on the user interface behaviour preservation and
study the design process of a user interface resulting
from the evolution of a former user interface due to
the introduction of new devices and/or new interaction
capabilities. Interface behaviors are described by labelled
transition systems (LTS) and comparison is handled by
bi-simulation of LTS. Furthermore, [4] describe how user
interfaces equivalence, with respect to their interaction
capabilities and appearance, can be measured. The UI di-
vergences are highlighted, and the possibility of leaving
these divergences out of the analysis is provided.

Our previous work [12] proposes an intrusive ap-
proach to manage model evolution based on structural
differences. It results in a set of evolution operators from
source to target models. Models are inspected to identify
a set of differences and may produce false positives/false
negatives.

In this paper, we propose a non-intrusive approach
to handle model evolution. Instead of using a syntactical
approach, we rely on API preservation. We consider that
a data model evolution is correct if the source data model
API is preserved in the target one. The approach is based
on path access preservation and graph bi-simulation [13].

III. Handling model evolution and data migration: our
approach

In order to handle the semantic data changes involved
in the development and exploitation of complex systems
in a critical application domain like space engineering,
we need to design a rigorous protocol to control the
semantic model evolution and data migration.

The approach we propose to compare a source and
a target data model relies on 4 steps. Each step manip-
ulates graphs to handle modelling language’s semantic
evolution. Fig. 1 depicts the defined approach.

• Step 1. Data models refactoring (interpretation).
It identifies, in each data model, the concepts altered
by the evolution. Two input data models will be
compared according to these shared identified con-
cepts. According to the latter, both source and target
data models are interpreted into a shared model.
We use labelled directed graphs (LDG) as ground
shared model. Two LDG are produced for source
(LDGs) and target (LDGt).

• Step 2. Data models projection. For each LDG
produced from Step 1, a set of labelled transition
systems (LTS) with different initial states is pro-
duced.

• Step 3. LTS comparison. The obtained LTS for
both source and target data models are compared
using a simulation relationship. Each target LTS
shall simulate the corresponding source LTS. When
all the source LTS are simulated by the target ones,
concept access path preservation is ensured.

• Step 4. Data conservation. If step 3 succeeds,
source data instances conforming to source and
target data models are migrated. The migration
procedure is defined depending on the kind of
established simulation relation of step 3: strong sim-
ulation (source data instances are reused) or weak
simulation (source data instances are refactored
using the API corresponding to the path identified
by the simulation relation).

IV. Formalisation of our approach

For the accessibility requirement identified in section
I, and according to step 1, we define LDG as the unified
ground model in which data models are transposed.

A. A formal model for checking data model evolution

In the following, C, attr and Bt denote the set of data
model concepts (classes, entities, etc.) of attributes and
of basic types (Boolean, Integer, etc.).

749

Fig. 1. A four steps based approach for data migration.

Definition 1: A Labelled Directed Graph ldg ∈ LDG
is a graph ldg = (V, E) where

• V = C × P(attr × Bt) is a non-empty set of nodes.
Each node represents a concept and its attributes.

• E ⊆ V× label×V is a set of directed edges denoting
the relations between the concepts.

For any e = (vs, l, vt) ∈ E, vs and vt represent
the source and target node of edge e. Node v =

(c, {(a1, t1), . . . , (an, tn)}) ∈ C × P(attr × Bt) defines

• c as a concept (class, entity, relation, etc.), with
• {(a1, t1), . . . , (an, tn)} as a set of typed attributes.

We have considered (l) as a label ⊆

{isa, re f s, haspart, parto f , re f , cast, prop} the set
of relations for: inheritance is_a, aggregation refs,
composition haspart, reflexive composition partof,
references between concepts ref, casting cast and
association property prop. Other relations may be
studied for other analyzed data modelling language.

Definition 2: A labelled transition system lts is a
structure lts = (S , s0,T,→) where S is a finite number of
states, s0 ∈ S is an initial state, T denotes a set of labels
and → ⊆ S × T × S is a transition relation. The specific
label τ ∈ T denotes empty label used to model internal
actions, i.e., non observable actions in our approach. We
note LTS as the set of lts and T ∗ as the set of all possible
sequences built on labels of T [13].

LTS is the projection of graph LDG on each concept,
i.e. each graph ldg has many lts with different initial
states corresponding to different concepts.

Step1. Interpretation

Interpretation is the process that produces a graph g ∈
LDG from a conceptual model cm ∈ CM where CM is

a set of conceptual models like UML, Entity-Relation
(ER), XIF1.

We denote CM
Int
−→ LDG and g = Int(cm) the function

that describes this process. Each concept (e.g. a class for
UML diagrams, an entity for ER, an element for an XIF
data model) resp. each concept relation (e.g. inheritance,
class association, an entity relation) of cm is interpreted
by a node resp. by an edge in the graph g.

Step2. Projection

Projection is the process that produces a set LTS =

{lts_1, · · · lts_n} of lts ⊆ LTS from a graph ldg =

(V, E) ∈ LDG where n correspponds to the number of
nodes in g. We denote LDG

Pro j
−→ LTS and LTS =

Pro j(g) the function that describes this process. The
following transformation rules for projection define a lts.
Nodes of V = C × P(attr × Bt). For each node v =

(c, {(a1, t1), . . . , (an, tn)}) ∈ C × P(attr × Bt) in g,
• the concept c ∈ C defines a state c ∈ S
• each type ti ∈ Bt defines a state ti ∈ S
• each attribute ai defines a transition (c, ai, ti) ∈→

Edges of E ⊆ V × label × V . Each edge e = (vs, l, vt)
∈ E where vs = (cs, {(as1, ts1), . . . , (asn, tsn)}) and
vt = (ct, {(at1, tt1), . . . , (atn, ttn)}) defines a transition
(cs, l, ct) ∈ →.

Initial states for each lts. Finally, each node vi ∈ V of
the graph g = (V, E) defines the initial state of ltsi ∈

{lts1, · · · ltsn}.
The projection results in a set of labelled transition sys-
tems associated to any data model. Therefore, analysis
techniques defined for labelled transition systems can be
applied. In particular, our approach uses lts comparison

1XML Interchange Format (XIF): A standard in space engineering to
define space data models [14].

750

techniques based on the definition of a simulation rela-
tionship.

lts as a model for APIs

An api in a set of API is made of operations opi

like getters, setters, testers etc. to respectively access,
modify or query concepts or attributes of a data model.
We note api = {op1, · · · , opm} ∈ API.

For a given lts ∈ LTS , we say that an api ∈ API
of a given concept c is valid if and only if for each
operation opi ∈ api there exists a path, starting from
the initial state corresponding to the concept c, which
accesses each input and output concepts used by any
opi ∈ api. We say that lts satisfies the api API and note
lts |=a api.

This definition can be extended to the APIs of any
concept in a graph g = Int(cm) resulting from the
interpretation of a conceptual model cm. We say that
a set Api ⊆ API of APIs defined on g is satisfied if and
only if for each api ∈ API there exists a ltsi ∈ Pro j(ldg)
such that ltsi |=a api. We note g |=g Api.

Step 3. LTS comparison

Let gs and gt be two ldg. Let ltss ∈ Pro j(gs) and
ltst ∈ Pro j(gt) be two lts with an initial state associated
to the same concept c and api an API defined on the
ltss on the concept c.

We say that api is preserved on ltst if and only if ltst

simulate ltss (written as ltst ∼ ltss). Informally, all the
paths in ltss are also paths in ltst i.e. api is still satisfied
in ltst. Formally, we write

ltst |=a api⇐⇒ ltst ∼ ltss ∧ ltss |=a api

Step4. Data conservation

Let gs and gt be two ldg and Api a set of API defined
on gs such that gs |=g Api. We say that a set Api of
APIs is preserved on gt if and only if for all api ∈ Api
such that ∃ ltss ∈ pro j(gs) ∧ ltss |=a api there exists
a ltst ∈ pro j(gt) such that ltst ∼ ltss ∧ ltss |=a api.
Formally, we write

gt |=g Api
⇐⇒

∀api ∈ Api,∃ ltss ∈ pro j(gs),∃ ltst ∈ Pro j(gt).
such that ltss |=a api ∧ ltst ∼ ltss

Definition 3: Finally, we say that a conceptual model
cmt is a correct evolution of a conceptual model cms

with respect to a set Api of APIs if and only if

gs = Int(cms) |=g Api =⇒ gt = Int(cmt) |=g Api

Once the conceptual model cmt is proved to be a
correct evolution of cms, instances can be migrated.
The APIs of the source conceptual model are used to
rebuild the instances in the target data model. Some of
the produced instances may be partially valued in case
cmt is richer than the source data model.

B. Example

Below, we apply the defined methodology on the
example of a conceptual UML class diagram depicted on
Figure 2. The objective is to check if the class diagram
on the right hand side of Figure 2 is a correct evolution
of the one on the left hand side.

Fig. 2. An example of a data model evolution.

Step1. Interpretation

An example of evolution of an UML class diagram
is given in Figure 2. The source and target data models
are interpreted using the Int function leading to two ldg.
The source data model contains three concepts A, B and
C. Concept B and concept C inherit from concept A.
Concept A has three attributes a1, a2 and a3. Concept
C has one attribute a4 and concept B has one attribute
a5. In the target data model, we decide to push-down
the attribute a3 from concept A to both concepts B and
C.

Step2. Projection

We project the source and target ldg to labelled
transition systems. Since three nodes are identified at
the ldg level, we obtain three lts for both source and
target ldg as shown on Figure 3 for the model on the
left hand side of Figure 2. The initial state of each lts is
one of the three nodes of the associated ldg.

Step 3. LTS comparison

In this case study, strong equivalence is not ensured.
However, each target lts weakly simulates the corre-
sponding source lts. One may notice that the opposite
does not hold.

751

Fig. 3. Projection of a ldg to a set of lts.

Step4. Data conservation

For data migration, we can assert that the obtained ldg
and lts are conform to Definition 3. The functions of the
APIs can be used for data migration.

V. Case Studies

Our approach has been deployed in the space engi-
neering domain. We have studied several case studies
with complex data models. In this section, we review
the case of the Microscope data model. The Microscope
space mission aims at testing the universality of free fall,
for the first time in space [15]. In the following, we con-
sider an extract of the data model used to parameterize
the telemetry processing and especially to combine two
telemetries.

Step1. Interpretation

As shown in Figure 4, it was decided to refactor
the data model by replacing two attributes by two
composition relationships towards a new class, called
AbstractData.

Fig. 4. An extract of a data model evolution in Microscope.

The original attributes signal1 and signal2 are
factorized into a class SessionData, inheriting from
AbstractData and owning a signal attribute of type
Signal. This way, end-users can combine two teleme-
tries with a known signal or not. Thus, we can identify
the following evolutions:
• a new abstract class named AbstractData is

added;

• two new classes named SessionData,
OtherData inheriting from AbstractData
are added;

• a new attribute named signal of type Signal is
added to the class SessionData;

• a new attribute named signalExt of type String
is added to the class OtherData;

• the types of signal1 and signal2 are changed
from Signal to AbstractData.

As explained previously, the source and target data
models are transformed into two LDG. In the source
LDG, the class Signals become one concept. In the
target LDG, three new concepts appear : AbstractData,
SessionData and OtherData.

Step2. Projection

As shown in Figure 5, we project the source and target
LDG to one source lts ltss and one target lts ltst.

Fig. 5. An extract of the projection of the ldg to a set of lts in
Microscope.

As the Signals concept is the only concept that exists
in both sides, the initial state of each lts is Signals.

Step 3. LTS comparison.

As shown in Figure 5, from the initial state Signals,
all the source transitions are feasible if we cast the target
signal1 and signal2 to the concept SessionData:

signal1source = ((S essionData)signal1target).signal

signal2source = ((S essionData)signal2target).signal

Thus, ltst simulates ltss since the following weak sim-
ulation binary relationship R = {< S ignals, S ignals >}
exists. One may notice that the opposite is false because
of the transition signalExt.

Step4. Data conservation

During the migration, the values of the old instances of
the class Signals are preserved, through the creation of
two new instances of the class SessionData, initialized
with these values.

752

VI. Conclusion and Future work
Tool support: The use of the CADP2 toolbox helps a

lot. Our investigations proved that we have been able to
get the diagnosis of the comparison results.

Using template transformations, we were able to
transform the Microscope data models to an LDG,
then to obtain an internal representation of labelled
transition system in AUT (automaton) format. Finally,
the simulation between the two automatons is checked,
using observational equivalence relationship, thanks to
the CADP BISIMULATOR module.

Results and Discussion: In this paper, we presented a
semantic observational approach for treating data models
evolution. The main interest of the proposed approach
is the transposition of the information accessibility in
a data model at a logical interface level into a path
problem in a labelled directed graph. The approach
proved capable to capture all evolutions of a data model
into a single logical operator instead of a no-exhaustive
list of evolution operators.

Finally, the proposed approach is generic, it is not
defined for a single specific data modelling language. It
applies to any data modelling language provided that an
interpretation of each data model by a ldg (from which
a set of lts is produced) is defined.

Concluding remarks: We believe that addressing the
problem of model evolution based on model behavior is
promising. Interfaces defined on data models are used to
define model evolution correctness using observational
semantics. They are also used to prove the existence
or the non-existence of composite operators having the
property to preserve information contained in original
instances.

Relying on labelled transition systems has three poten-
tial advantages. First, the overall system is often easier
to understand due to the formal and precise nature of
the representation scheme. Secondly, the behavior of the
system can be analyzed using labelled transition systems
theory and associated techniques, which includes tools
for analysis. Finally, techniques developed for the com-
parison of parallel programs can also be applied.

Future work: As a perspective of this approach,
we expect to realize a comparative study between the
proposed approach and the previous one by compar-
ing traces found by a graph comparison algorithm to
structural differences found previously in [12]. We also
intend to extend our work to address the evolution of
models in presence of cardinalities. Finally, integrating
domain knowledge through the introduction of a domain

2https://cadp.inria.fr/

ontology helps in identifying semantic equivalence at
concepts levels and thus address heterogeneous models
evolution.

Acknowledgment

Authors would like to express their gratitude to Dr.
Raquel Araujo OLIVEIRA for her comments and her
constructive suggestions.

References
[1] A. Ferdjoukh, A. Baert, E. Bourreau, A. Chateau, R. Coletta,

and C. Nebut, “Instantiation of meta-models constrained with
ocl: a csp approach,” in 2015 3rd International Conference on
Model-Driven Engineering and Software Development (MODEL-
SWARD). IEEE, 2015, pp. 213–222.

[2] J. E. Rivera, F. Durán, and A. Vallecillo, “Formal specification
and analysis of domain specific models using maude,” Simula-
tion, vol. 85, no. 11-12, pp. 778–792, 2009.

[3] A. Narayanan and G. Karsai, “Using semantic anchoring to
verify behavior preservation in graph transformations,” Electronic
Communications of the EASST, vol. 4, 2006.

[4] R. Oliveira, S. Dupuy-Chessa, and G. Calvary, “Equivalence
checking for comparing user interfaces,” in Proceedings of the 7th
ACM SIGCHI Symposium on Engineering interactive Computing
Systems. ACM, 2015, pp. 266–275.

[5] R. Oliveira and J. Dingel, “Supporting model refinement with
equivalence checking in the context of model-driven engineering
with uml-rt.” in MODELS (Satellite Events), 2017, pp. 307–314.

[6] A. Chebieb and Y. Ait-Ameur, “A formal model for plastic human
computer interfaces,” Frontiers of Computer Science, vol. 12,
no. 2, pp. 351–375, 2018.

[7] J. Euzenat, P. Shvaiko et al., Ontology matching. Springer, 2007,
vol. 18.

[8] R. Khatchadourian and H. Masuhara, “Defaultification refactor-
ing: A tool for automatically converting java methods to default,”
in 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2017, pp. 984–989.

[9] R. G. Kula, A. Ouni, D. M. German, and K. Inoue, “An empirical
study on the impact of refactoring activities on evolving client-
used apis,” Information and Software Technology, vol. 93, pp.
186–199, 2018.

[10] D. Dig and R. Johnson, “How do apis evolve? a story of
refactoring,” Journal of software maintenance and evolution:
Research and Practice, vol. 18, no. 2, pp. 83–107, 2006.

[11] J. Henkel and A. Diwan, “Catchup! capturing and replaying
refactorings to support api evolution,” in Proceedings. 27th
International Conference on Software Engineering, 2005. ICSE
2005. IEEE, 2005, pp. 274–283.

[12] L. Ait-Oubelli, Y. Aït-Ameur, J. Bedouet, R. Kervarc,
B. Chausserie-Laprée, and B. Larzul, “A scalable model based
approach for data model evolution: Application to space mis-
sions data models,” Computer Languages, Systems & Structures,
vol. 54, pp. 358–385, 2018.

[13] R. Milner, Communication and concurrency. Prentice hall New
York etc., 1989, vol. 84.

[14] V. Hémery, B. Larzul, and B. Chausserie-Laprée, “Best-ng: a new
modeler for describing the satellite’s database,” in 2018 SpaceOps
Conference, 2018, p. 2305.

[15] Q. Baghi, G. Métris, J. Bergé, B. Christophe, P. Touboul, and
M. Rodrigues, “Gaussian regression and power spectral density
estimation with missing data: The microscope space mission as
a case study,” Physical Review D, vol. 93, no. 12, p. 122007,
2016.

753

https://cadp.inria.fr/

Documenting and Exploiting Software Feature Knowledge through Tags

Marcus Seiler Barbara Paech

Institute for Computer Science, Heidelberg University, Germany
E-mail: {seiler|paech}@informatik.uni-heidelberg.de

Abstract

Knowledge about features and their relations to detailed
requirements or code is important and useful for many soft-
ware engineering activities such as for performing change
impact analysis and tracking feature progress. Document-
ing feature knowledge is challenging, as companies docu-
ment features and requirements in issue tracking systems
(ITS) and work on code in integrated development envi-
ronments (IDE). Managing feature knowledge over time is
challenging, as features, requirements, and code continu-
ously change. Also, managing the relationships through
trace links is challenging, as creating links manually is too
time-consuming, and recovering links retrospectively is too
error-prone. We developed an approach and tool TAFT to
document feature knowledge in ITS and IDE continuously.
TAFT uses feature tags to indicate relations between feature
descriptions, requirements, work items, and source code.
Currently, TAFT comprises a dashboard to track the fea-
ture progress, a recommendation system to suggest feature
tags for specifications, an inheritor to apply feature tags au-
tomatically, and capabilities to navigate in feature knowl-
edge. The tool is integrated into the developers’ work envi-
ronments Jira and Eclipse. In this paper, we present details
on the tool support for TAFT, and we report on the results
of a case study, which indicates its acceptance.

1. Introduction

Nowadays, many software-developing companies use an
issue tracking system (ITS) to support software engineer-
ing work [2]. ITS contain several software engineering arti-
facts like requirements, development tasks (work items), or
bug reports. An integrated development environment (IDE)
is typically used to work on code that implement artifacts
from ITS. Within ITS, requirements are often formulated as
requests to modify or to add a specific feature. Since infor-
mation regarding features is spread across the two sources
ITS and IDE, it is hard to document and maintain features

DOI reference number: 10.18293/SEKE2019-109

and their relations to code. Explicit knowledge about fea-
tures and their relations to other artifacts, such as detailed
requirements or code is not only useful for software evolu-
tion [14], but is also important for many software engineer-
ing activities including management tasks such as tracking
the feature progress for release planning [9], and includ-
ing development tasks, such as identifying affected artifacts
when performing change impact analysis [11]. While the
artifacts of feature knowledge are available in ITS and IDE,
in practice their relationship is often managed implicitly or
incompletely. This makes it difficult to exploit the feature
knowledge for development and management tasks.

In previous work [19], we presented an interview study
with practitioners on the use of tagging for feature knowl-
edge and first ideas on a lightweight tagging approach to
document feature knowledge. In this approach all artifacts
relating to a feature are tagged with the feature. The ex-
perts from practice found our ideas beneficial. Document-
ing feature knowledge using tags seems easy at first glance.
However, the experts indicated that providing suitable tags
is not that easy and managing feature knowledge across dif-
ferent tools, and over time is a challenging task. The tag
consistency over time is challenging, as the development
of software systems is characterized by continuous change
to features, requirements, and code [7]. In this paper, we
present tool support to document, maintain, and exploit fea-
ture knowledge with tags in ITS and IDE consistently and
efficiently. Currently, our tool support focuses on consis-
tency across different tools and on efficiency to apply tags.
The tool support comprises a dashboard to track the feature
progress, a recommendation system to suggest feature tags
for specifications, an inheritor to apply feature tags auto-
matically, and capabilities to navigate in feature knowledge.

We conducted a case study with students in order to
evaluate the acceptance of our approach and tool support
according to the technology acceptance model (TAM) [6].
The results show that the students found our approach very
useful for navigating to code parts during bug fixing. They
rated our approach and tool support as easy to use and em-
phasized that the approach is intuitive to use. Also, they
are motivated to use the approach and tool in future. The

754

students mentioned the following concerns: cumbersome
initial set-up of the dashboard, missing support for viewing
metrics from past sprints, and inaccurate recommendations.

The remaining paper is organized as follows: Section 2
introduces the terminology used throughout the paper and
our TAFT approach. Section 3 describes the details on the
tool support. Section 4 describes the case study with its
research questions, hypotheses, and results. Section 5 dis-
cusses related work. Section 6 finally concludes this paper.

2. Background

This section briefly introduces the terms software fea-
tures and feature knowledge. Then it describes our ap-
proach in more detail.

2.1. Software Features and Feature Knowledge

Various definitions of the term software feature exist in
the literature [12, 4, 3]. We adopted the definition by Bosch
[4] and define a feature in the context of this paper as a
functional or non-functional property of a software system.

Different software engineering artifacts that are docu-
mented during specification and implementation relate to
a feature. A feature description provides a general spec-
ification of the feature. Requirements refine the feature.
Work items describe development tasks related to realizing
the feature. Code implements (parts of) the feature. We
therefore define feature knowledge as knowledge compris-
ing feature descriptions and all related software engineer-
ing artifacts such as requirements, work items, and code, as
well as their relations.

Figure 1 shows an example of feature knowledge from
the studied project (cf. Section 4). As shown on the left
hand side of Figure 1, a feature description was documented
during specification and was refined by a requirement after-
wards. The work item describes the implementation task
for the requirement. Finally, the right hand side of Figure 1
shows the code implementing the functionality of the re-
quirement.

2.2. The Feature Tagging Approach (TAFT)

The process of assigning keywords to artifacts is an ef-
fective approach to attach additional information to artifacts
[20]. We developed a lightweight approach to manage fea-
ture knowledge across ITS and IDE [19]. Instead of creat-
ing traces between feature knowledge, feature knowledge is
tagged with the same keyword. In particular, we use tags for
feature descriptions, requirements, work items, and code.
The TAFT approach works as follows: One tag for each
feature of a software is used. The tag summarizes the fea-
ture in a short and concise manner. This tagging adheres
to the following rules: First, a feature description is tagged
with a feature tag if and only if it contains the description

of the feature. Second, a requirement is tagged with a fea-
ture tag if and only if the requirement refines the feature.
Third, a work item is tagged with a feature tag if and only
if the described task addresses specification, quality assur-
ance, or implementation of the feature. Finally, source code
is tagged with a feature tag if and only if the source code
implements (parts of) the feature.

In the example given in Figure 1, the tag
Transportation is used to summarize the described
feature. The feature tag is applied to the feature description,
the requirement, and the work item in Figure 1 as they
relate to the feature Transportation. The second statement
of the code listing in Figure 1 shows the feature tag, as the
code implements parts of the feature Transportation.

Our approach is independent of the development method
used. Thus, TAFT is applicable for projects using traditional
methods such as waterfall, and for projects using a modern
development method such as agile. Moreover, we do not
make any assumptions about the cardinality of the relations
between features and requirements or between features and
code. Thus, it is possible to have requirements, work items,
and code tagged with multiple features unlike in the exam-
ple.

3. Tool Support for TAFT

We developed tool support for TAFT in Jira1 and
Eclipse2, which are common tools for managing software
development projects and for working on code, respectively.

Our tool supports the two stakeholders developer and
project manager in capturing feature knowledge through la-
bels in Jira and annotations in code. It also supports them in
exploiting feature knowledge for development tasks and for
management tasks, respectively. We annotate the code with
tags instead of tagging commits, as commit messages often
contain noise in terms of tangled changes. Tangled changes
could result in wrong feature knowledge when tagging a
commit [8, 13]. Moreover, code annotations help to under-
stand the code [21] and the cost for creating and maintain-
ing annotations in code is negligible [10]. We rely on Java
annotations instead of comment annotations. Unlike com-
ment annotations, Java annotation are language specific, but
they retain in the compiled byte code. This is useful for ex-
ploiting feature knowledge in (legacy) software even if the
source code is not available (anymore).

In the following, we describe the details of the main
tool functionality: the feature navigator, the feature dash-
board, the feature recommendation and the feature inheri-
tance. The Eclipse plug-in Feature Navigator analyzes the
source code of a project and scans the code for annotations
to support developers. Figure 2b shows a screenshot of the

1https://www.atlassian.com/software/jira
2https://www.eclipse.org/

755

Feature: Integration of an API to retrieve
data from public transportation such as
stations and their departure schedules.

Requirement: As a user, I want to click
on a station in order to view the departure
schedule.

Work item: Implement service function
to retrieve the departure schedule of a
station.

// Package, imports and further code omitted
@Feature("Transportation")
public class OpnvManager implements IOpnvManager {

public void queryStation(String stationID) {
Request request = new Request.Builder().url(new HttpUrl.Builder()

.scheme("http").host("rnv.the-agent-factory.de")

.addQueryParameter("stationID", stationID).build();
new OkHttpClient().newCall(request);
}

}

Figure 1: Example of feature knowledge documented in specifications and in code

Feature Navigator. The Feature Navigator lists code files
implementing a certain feature. The developer can search
for features and code files and can directly navigate to a
code file once s/he clicked the code in the Feature Naviga-
tor.

The Jira dashboard Feature Dashboard supports project
managers in tracking the progress of features in a project.
Figure 2a shows the Feature Dashboard. The Feature Dash-
board scans the project for feature tags and displays various
metrics, e.g., the number of features, the number of require-
ments (in this case user stories), and the number of code
lines implementing a feature. The metrics are calculated
based on the labels applied to issues and the annotations ap-
plied to code. The dashboard can be configured for a project
and the shown metrics can be selected. Multiple instances
of the dashboard are possible to have metrics for multiple
projects.

Developers and project managers might not document or
update feature knowledge regularly, if the effort is too high.
As suggested by Robillard et al. [15], we use recommen-
dation systems to reduce the effort for the tool users. The
completion of labels when typing parts of a feature tag is a
built-in function of Jira. We extended Eclipse’s code com-
pletion capabilities to complete annotations in code when
typing parts of an annotation. Both, the label completion in
Jira and the annotation completion in Eclipse represent sim-
ple recommendation systems. In addition, we developed a
Jira plug-in to recommend feature tags for issues. Currently,
we recommend existing feature tags based on the issue de-
scription using a multi-class Naive Bayes classifier. The
feature tags are presented to the user together with the con-
fidence score of the classifier. The user is then able to click
on the feature tag to apply it to the actual issue. Figure 2c
shows the recommended feature tags (Transportation,
RouteFinding, Filter, Tweets) with their corre-
sponding confidence scores on the right hand side of the
Figure for a user story Departure Schedule. In this ex-
ample, the best matching feature tag is Transportation
with a confidence score of 74.71% and is shown at the first
position of the list. It is up to the user whether to apply one
of the recommended feature tags. The classifier is trained it-
eratively whenever a user applies one of the recommended
feature tags. In addition, we provide a feature tag inheri-

tance plug-in for Jira to further reduce the effort to apply
feature tags manually. The inheritance plug-in uses existing
relations from Jira to automatically apply feature tags for is-
sues in parent-child relations such as a user story consisting
of several work items.

4. Evaluation of TAFT

We conducted a study with students in order to assess the
acceptance of the TAFT. In the following, we describe the
design of the case study and the applied research method in
Section 4.1. Section 4.2 presents and discusses the results.
Finally, Section 4.3 discusses threats to validity.

4.1. Case Study Design & Research Method

Study Context: The study was performed during a de-
velopment project with six students over a period of six
months. The project lasted from October 2017 to March
2018. The students developed an indoor navigation app for
Android-based devices for a real customer. Primary users
are (other) students who use the app to locate and navigate
rooms where lectures take place. Also the app is able to
retrieve information from public transportation allowing to
display the departure schedule of a nearby station. The cus-
tomer was a mobile development company. The develop-
ment method was Scrum-like. In each sprint, one of the
students acted as Scrum master and thus was responsible
for development planning and communicating with the cus-
tomer. The customer provided a high-level vision descrip-
tion of the app. The students derived features and refined
them during development in agreement with the customer.
They used Jira with epics to describe features and with user
stories to refine features, and with work items to describe
development tasks. The students used Git for Java source
code and Eclipse as development environment. They ap-
plied our TAFT approach and used its tool support during
the project. At the beginning of the project, the approach
and the basic usage of the tool support were introduced.
Also, the students were supported in the initial set-up of
the tool support.

At the end, the project comprised five epics, 17 user sto-
ries, 74 work items, and 40 code files. According to our
approach, the feature tags were applied to the user stories,

756

(a) Dashboard to track feature progress

(b) Navigator to find feature in code

(c) Recommendation to suggest feature

Figure 2: Tool support for the TAFT approach

the work items, and the code files. We conducted semi-
structured interviews with the students to evaluate the ac-
ceptance. The questionnaire used during the interview con-
tained open and closed questions.

Research Questions, Metrics, and Hypotheses: To
evaluate the acceptance of our tool, we build upon the Tech-
nology Acceptance Model (TAM) by Davis et al. [6], which
models the user acceptance of information technology. In
our case, the information technology is the approach and
the tool support. TAM uses the variables perceived ease of
use, a subjects’ intention to use and perceived usefulness.
We raise the following research questions for acceptance
evaluation:

RQ1 How easy is it to use the approach and tool support?
RQ2 How useful is the approach and tool support?
RQ3 Do the students intend to use the approach and tool

support in future?

Regarding the tool support, we are particularly interested
in the recommendation and the dashboard. For usefulness,
we are particularly interested in progress tracking and fea-
ture knowledge relations. We provided a questionnaire to

the students with questions corresponding to the research
questions.

According to Davis et al. [6] point scales such as Lik-
ert scales can be used to measure the variables of TAM. We
used a Likert scale with five scale points for asking the stu-
dents to assess the approach and tool support. The answers
to the Likert scale were mapped to an integer as follows:
strongly disagree = 1, disagree = 2, neutral (neither agree
nor disagree) = 3, agree = 4, and strongly agree = 5.

We use the students’ assessments together with their ra-
tionale for the ratings as metric for RQ1, RQ2, and RQ3,
respectively. Our hypothesis for acceptance is: We expect
that the values for the TAM-variables are higher or equal to
3.5. Thus, we expect that most of the responses are in the
range between neutral (with a slight tendency to agree) and
strongly agree.

4.2. Results & Discussion

In the following, we use the answers to the open ques-
tions to provide the details for the assessments of the stu-
dents.

757

The students stated that the approach is easy to use
(RQ1) as it is very intuitive to use. All students found it
easy to apply feature tags to issues. A minority stated that
applying feature tags in code is more complicated. The stu-
dents needed more effort to equip some code files with fea-
ture tags, as these code files implemented multiple features.
This is backed up by the numbers of the project. Each of
the 17 issues had exactly one of the tags applied. Of the 40
code files, 37 had at least one of the tags applied. The ma-
jority (33 code files) contained one tag. One code file each
contained two and three tags. Two code files contained four
tags. Altogether, it seems easier to tag specifications instead
of code files. The recommendation is rated easy to use and
a little less useful compared to the usefulness to relate and
track feature knowledge. Overall, the students stated that
the recommendation works well and that the recommenda-
tion can help to prevent incorrect feature tags. However, the
students did not use it very often (only for 14.04% of all is-
sues). A minority reported that wrong recommendations for
feature tags decrease the usefulness. One reason could be
that the students were presented with all feature tags includ-
ing those with low confidence values. Therefore, we need
to study how recommendation usage can be improved.

Overall, the students found the approach useful (RQ2).
The use of the dashboard to track the progress was rated as
easy and very useful. The students stated that the dashboard
exactly provides the data needed to perform the tracking.
However, they missed the functionality to view metrics for
past sprints in the dashboard. Also, a minority perceived the
initial set-up of the dashboard somewhat cumbersome.

The result for the intention (RQ3) is rather poor com-
pared to the other two variables. The rather low intention
to use the dashboard could be due to the fact that this is
mainly helpful for the project manager and the students do
not see themselves as project managers in the short future.
The students justified the assessment for the intention with
the dependency on the project size. In smaller projects with
a similar scope as this evaluation project, the students would
rather not use the approach and the tools, as the applica-
tion and maintenance of the tags creates overhead for de-
velopers and they can remember the feature knowledge by
themselves. In very large projects, students indicated that
there could be many feature tags that need to be managed.
Therefore, they would apply the approach and tool support
in those projects. Some students used the feature tags in
code to locate code parts that might be affected by bugs.
We plan to investigate whether improved support for locat-
ing code affected by bugs would raise the motivation for
future usage.

Overall, our hypotheses hold and we conclude that our
approach is feasible and accepted. We applied our approach
in a new project, but it could be also applied to an exist-
ing project. The requirements and the code files of an ex-

isting project must be equipped with feature tags in retro-
spect to make our approach work. The effort for this re-
documentation is considerable as the relations between all
requirements and all code files have to be mapped to the fea-
tures. However, it can be incrementally done during refac-
toring or other changes to features.

4.3. Threats to Validity

We discuss threats according to Runeson et al. [16].
Construct Validity: The construct validity was ensured

through data source triangulation by using direct methods
(semi-structured interviews with open and closed question-
naires) as well as indirect methods (review of data produced
by tool logging). A possible threat is that researcher and
interviewee might interpret the questions differently. The
threat is mitigated by the format of face-to-face interviews,
which enabled the interviewees to ask questions. Also, an-
other researcher checked the questionnaire for applicability
and understandability.

Internal Validity: The students knew that the researcher
had developed the approach and its tool support. The threat
was mitigated as the researcher appreciated both positive
and negative feedback from the students. The motivation of
the students to use the approach and its tool support might
be influenced by worries about grades. However, the re-
searcher was not involved in the final grading and the usage
had no influence on the grades.

External Validity: The documented feature knowledge
is specific to this development project and the size of the
development project is limited. Moreover, we applied our
approach for a new project only. Thus, the results for other
projects can be different from the results reported in this
study, and the findings cannot be generalized for developers
working in industry. However, the project contained situ-
ations common to projects in industry, e.g., the elicitation
of requirements by the participants, changing requirements
due to changed customer needs, as well as communication
problems across developers regarding their tasks.

Reliability: One researcher did the interviews and as-
sessments to ensure consistency. Other researchers might
interpret the results in another direction. The researcher
documented the steps during design, data collection, and
analysis. In addition, another researcher reviewed the de-
sign of the case study and the steps for analysis to increase
reliability. This also ensures the reproducibility of the study.

5. Related Work
Our approach relates to traceability. TAFT provides a

coarser-grained traceability as commonly used trace links,
as the relations between requirements and code files are es-
tablished on feature level. In [18], we compared the trace
links resulting from tags with other approaches to create
traceability links.

758

There are few approaches which also use tags to docu-
ment and exploit feature knowledge. Mainly they are from
the area of product lines where features are used to man-
age variability. Thus, they are more heavyweight than our
approach. Savage et al. [17] present an Eclipse based tool
for locating and tracing feature in code. The underlying ap-
proach is different from ours, as they do not directly tag
code with its implementing features. Instead, a user man-
ually relates code to feature using an annotation after fea-
ture location was performed. Similar to the metrics in our
dashboard, they provide a view showing the distribution of
features across the code. Ji et al. [10] present an approach
to equip code with feature annotations. They simulated the
development of a product line of cloned projects using the
annotation approach. They found that maintaining such an-
notations in code is not costly, but useful for maintenance
tasks. Andam et al. [1] and Burger et al. [5] both present
a standalone tool for locating features in code. Both use
comment annotations to document features in code and they
use feature location techniques to annotate the code (semi-
)automatically. Andam et al. [1] also provide a dashboard
for viewing feature metrics. In contrast to ours, their dash-
board targets at developers by providing more specialized
metrics, e.g. nesting depths of annotations. As the tools fo-
cus on feature location, all of them provide capabilities to
navigate in feature knowledge documented in code. None
of the tools tag specifications nor do they provide recom-
mendations or inheritance of tags.

6. Conclusion & Future Work

In this paper, we reported on the tool support of our
TAFT approach and its acceptance in a case study with stu-
dents. Overall, the results show that the approach and tool
support are accepted.

In future work we would like to address the problems
experienced by the students. To further ease the application
of feature tags, we are also working on recommendations to
suggest feature tags in code and on inheriting feature tags
for code. In addition, we want to investigate how practi-
tioners think about our tool, e.g., by performing interviews
with practitioners.

Acknowledgement. We would like to thank all students for
their effort in this study.

References

[1] B. Andam, A. Burger, T. Berger, and M. R. V. Chaudron. Florida:
Feature location dashboard for extracting and visualizing feature
traces. In 11th Int. Work. on Variability Modelling of Software-
intensive Systems, pages 100–107. ACM, 2017.

[2] O. Baysal, R. Holmes, and M. W. Godfrey. Situational Awareness:
Personalizing Issue Tracking Systems. In 35th Int. Conf. on Software
Engineering, pages 1185–1188. IEEE, 2013.

[3] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki. What is a feature?: A qualitative
study of features in industrial software product lines. In 19th Int.
Conf. on Software Product Line, pages 16–25. ACM, 2015.

[4] J. Bosch. Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach. ACM Press Books. Addison-
Wesley, 2000.

[5] A. Burger and S. Grüner. Finalist2: Feature identification, local-
ization, and tracing tool. In 25th Int. Conf. on Software Analysis,
Evolution and Reengineering, pages 532–537. IEEE, 2018.

[6] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw. User acceptance
of computer technology: A comparison of two theoretical models.
Manage. Sci., 35(8), Aug. 1989.

[7] M. W. Godfrey and D. M. German. The Past, Present, and Future
of Software Evolution. In Frontiers of Software Maintenance, pages
129–138. IEEE, 2008.

[8] K. Herzig and A. Zeller. The impact of tangled code changes. In
10th Work. Conf. on Mining Software Repositories, pages 121–130.
IEEE, 2013.

[9] S. Jantunen, L. Lehtola, D. C. Gause, U. R. Dumdum, and R. J.
Barnes. The Challenge of Release Planning. In Int. Work. on Soft-
ware Product Management, pages 36–45. IEEE, 2011.

[10] W. Ji, T. Berger, M. Antkiewicz, and K. Czarnecki. Maintaining
feature traceability with embedded annotations. In 19th Int. Conf. on
Software Product Line, pages 61–70. ACM, 2015.

[11] N. Kama. Change Impact Analysis for the Software Development
Phase : State-of-the-art. Journal of Software Engineering and Its
Applications, 7:235–244, 2013.

[12] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son. Feature-oriented domain analysis (foda) feasibility study. Tech-
nical report, Carnegie-Mellon University Software Engineering In-
stitute, November 1990.

[13] H. Kirinuki, Y. Higo, K. Hotta, and S. Kusumoto. Hey! are you
committing tangled changes? In 22nd Int. Conf. on Program Com-
prehension, pages 262–265. ACM, 2014.

[14] L. Passos, K. Czarnecki, S. Apel, A. Wa̧sowski, C. Kästner, and
J. Guo. Feature-oriented software evolution. In 7th Int. Work. on
Variability Modelling of Software-intensive Systems. ACM, 2013.

[15] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann. Rec-
ommendation Systems in Software Engineering. Springer, 2014.

[16] P. Runeson, M. Host, A. Rainer, and B. Regnell. Case Study Research
in Software Engineering: Guidelines and Examples. John Wiley &
Sons, Hoboken, NJ, USA, 1st edition, 2012.

[17] T. Savage, M. Revelle, and D. Poshyvanyk. Flat3: feature location
and textual tracing tool. In 32nd Int. Conf. on Software Engineering,
pages 255–258. IEEE, 2010.

[18] M. Seiler, P. Hübner, and B. Paech. Comparing traceability through
information retrieval, commits, interaction logs, and tags. In 10th Int.
Work. on Software and Systems Traceability. IEEE, 2019. (accepted
to be appear).

[19] M. Seiler and B. Paech. Using tags to support feature management
across issue tracking systems and version control systems. In 23rd
Int. Work. Conf. Requirements Engineering Foundation for Software
Quality, pages 174–180. Springer, 2017.

[20] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T. Cheng, and
M. Muller. How Software Developers Use Tagging to Support Re-
minding and Refinding. IEEE Transactions on Software Engineer-
ing, 35:470–483, 2009.

[21] M. Sulír, M. Nosál’, and J. Porubän. Recording concerns in source
code using annotations. Computer Languages, Systems & Structures,
46:44–65, nov 2016.

759

Research on Scheduling Area Partition Method Based
on Multiple Algorithms

Lefeng Li
College of Computer Science
Inner Mongolia University
Hohhot 010012, China

E-mail: 932164210@qq.com

Shanshan Wang
College of Computer Science
Inner Mongolia University
Hohhot 010012, China

Corresponding author e-mail: cswangss@imu.edu.cn

Abstract—Shared bicycle, as a green means of transportation, is
very popular among people and it is an important way for many
people to travel daily. In recent years, with the increasing scale
and frequency of bike sharing system, the unbalanced use of
shared bicycle has a great impact on the users' experience, which
is one of the main problems faced by current system operators. of
Division of the traffic area can not only provide a new idea for
solving the problem of unbalanced bike usage, but also provide a
theoretical and practical basis for the planning, layout,
construction, operation and scientific dispatching of shared
bicycle system. However, there are few clear methods to study the
partition method of shared dispatching area. To solve this
problem, based on historical bicycle data, traffic station data, we
analyze the rules of shared bicycle space-time characteristics and
propose a method of dividing shared bicycle dispatching areas by
combining K-medoids clustering, association rules and total
demand constraint adjustment. We evaluate our approach on the
New York City (NYC Citi Bike) bicycle sharing system and show
the advantages of our approach for Large-scale station-level
dispatching area optimization (beyond baseline approaches).

Keywords-scheduling area partition method; bike sharing
system; rebalance; clustering; Total demand optimization

I. INTRODUCTION
Bicycle sharing system is widely used domestically and

abroad. It provides great help to solve the problem of "last
kilometer" and traffic jam. A user can rent (i.e. check-out) a
bike at a station near their origin and return (i.e. check-in) it to
a station close to their destination. A record is generated when
a bicycle is borrowed/returned, including the location of the
origin station, the location of the destination station, and the
duration of the ride.

However, bicycle sharing system still faces challenges in
bike rebalancing between stations. Essentially, bike usage is
constrained by time and location, so the traffic in the whole city
will be unbalanced. For example, some stations may have a lot
of bicycles returning, but some stations may not have available
bicycles for users. In order to solve this problem, Most studies
directly predict bicycle demand during a future period in order
to avoid unbalanced problems and dispatchers manually
schedule ahead of time, but the accuracy is not high,and when
the number of stations is large, dispatchers need to schedule
each station manually, which increases the workload and
difficulty of delivery personnel and makes it difficult to

DOI reference number:10.18293/SEKE2019-020.

achieve efficient and orderly scheduling. Thus, in order to
reduce the workload and the difficulty of their jobs, therefor
makes it difficult to achieve efficient and orderly
scheduling.Thus,in order to reduce the workload and difficulty,
we start with reducing the scale of the problem,which is to
divide the whole traffic into different areas.The location,
station-station trip frequencies as self-fluidity and the bike
demands are taken into account,and the areas are adjusted by
constraints to achieve the optimal results of the maximum
balance within the areas. This not only reduces the workload
and difficulty of dispatchers, but also experiments (see Chapter
IV, Part C) show that the demand distribution of bike usage of
cluster is more regular than that of station-level bike usage.
Therefore, our proposed method lays a foundation for
improving the accuracy of bike usage demand prediction in the
future.

In these days, the scanning method and the clustering
algorithm [1] are mainly used domestically and abroad to
divide the vehicle scheduling area. Among them, the scanning
method [2] is only applicable to the cases where the number of
users is small and the distribution area is not large. Although
the spatial clustering algorithm [3] applicable to the cases of a
large number of customers and a large scheduling area, there is
still a lack of criteria for reasonably allocating the weights of
spatial and non-spatial attributes, or a lack of accurate methods
to define the distance between feature attributes. If applied
directly to dynamic scheduling of shared bicycle system, it may
lead to large random errors.

Bike sharing system has a large number of stations and
complex attributes, which makes it difficult to calibrate their
attributes one by one. However, due to the self-fluidity of
shared bicycle [4,5], there is a strong correlation between some
stations.Therefore, if the association rules are used to collect
stations with strong correlation and adopt K-medoids algorithm
[6,7] and constraint adjustment for scheduling, it can
effectively avoid large random errors.

Based on the above analysis, considering the actual bike
demand of real-time dispatching of bike sharing system, we
propose a scientific method for dividing the shared bicycle
scheduling area by combining K-medoids clustering,
association rules and restraint adjustment of total demand in the
bike sharing system. In the first step of this method, K-medoids
clustering is applied to the stations of bike sharing system.Then
on the basis of the self-fluidity between stations and the
transformation relationship between stations, the set of strong

760

association rules is screened out by using association rules.
According to the constraints of the total demand in the areas,
the total demand within the areas is optimized, and the regional
division of dynamic dispatch of urban shared bicycle system is
finally realized.

II. DESIGN OVERVIEW

We provide an overview of the symbols used in this
paper (Table I) and problem definitions, as well as the
description of design approach.

A. Basic Definitions
Definition 1: Station information. A station

),,(i ii latlonidS denotes station information, where id
represents the unique identity of each station, ilon is the
longitude of the station, ilat is the latitude of the station.

Definition 2: Trip. A Trip),,,(r dodo ssT is a
historical bike usage record, where os denotes the origin

station, ds is the destination station; o and d are the time

when bike is checked out at os and checked in at

ds ,respectively.

Definition 3: Demand of bicycles. In time t, given a set of
Check-out of station is ,

ni SSSS OOOt ,...,)(O
21

 and check-

in of station is ,
ni SSSS IIIt ,...,)(I

21
 ,We want to get the

demand of each station)t()t()(.
ii SSi OItdS .

Problem Definition:Scientific division of regions. Given a
set of stations n21i ...SSSS ，， , we want to cluster each
station is to form k12111i1 ,..., ，，，， CCCC clusters.

TABLE I. NOTATIONS

Notation Description
N Number of historical bike usage records

Coefficient of normal bike transaction records
Number of shared bikes

t Days of data acquisition
Coefficient of bike flow distribution
Coefficient of on-frame mobile bike
Correlation coefficient from station i to station j
Number of bikes from station i to station j
Number of bikes flowing out from station i
The station
A bike usage record
The cluster
Check-out of station in time t
Check-in of station in time t

B. Design Methodology
Despite the time and location of the user's choice of

borrowing is random, bikes are bound to be checked in at some
station. Based on this simple observation, bike sharing system
is decoupled in Figure 1 into two parts by analyzing the

mobility [8,9] of bikes and characteristics.Based on historical
bike usage records, we first use statistical methods to analyze
the spatial and temporal distribution characteristics of bikes.
Then, considering the space-time distribution characteristics of
shared bikes, we propose a scientific method for dividing
dispatching areas (see chapter III). Finally, the experimental
results of NYC Citi Bike System show the advantages of our
method.

Figure 1. Components of a bike-sharing system

III. SCHEDULINGAREA PARTITIONALGORITHMS

In this chapter, firstly, the spatial and temporal distribution
characteristics of bike sharing system operation data are
analyzed. The purpose is to grasp the operating regularity of
the system, mine the trip patterns, obtain the macro operation
rules of each station, and improve the quality of the dynamic
scheduling of the bike sharing system.Then we put forward a
scientific division method and show the specific steps of
implementation through the above analysis. The goal of
scientific partitioning is to transform the problem from a
complex one (about 1,000 predictions per hour) to a simpler
one, thereby reducing the complexity of the problem, making it
easier to handle and helping to avoid over-fitting.

A. Spatiotemporal Analysis
Distribution Characteristics. As shown in Figure 2, from

the macro-analysis [10] of the impact of month on the shared
bicycle demand, it can be seen that there is a regular pattern of
increasing demand from April to June. From June to September,
the demand is stable but still in a high level. Selecting these
months is conducive to dealing with the imbalance during the
peak period. The figure on the right specifically shows the time
distribution regular pattern of two different parameters, stations
and time. It can be found that the early peak appears around 8
o'clock and the late peak appears around 5 o'clock.

Figure 2. Law of time distribution

Analysis of Spatial Distribution Characteristics. Spatial
distribution [11] characteristics analysis is based on each
station as the research object. It analyses the distribution
regularity of the whole city and the stations to which the
vehicles borrowed from the station are returned or the vehicles

761

returned to the station are borrowed from the station, and
calculates the correlation between the stations. Station
correlation refers to the flow correlation between two stations.
We use the correlation coefficient to express their correlation.
The larger the value, the more frequent the bicycle flows
between the rental points, the greater the travel demand of
users in this area. The formula can be expressed as follows.

1
,,r

 ijiji nn (1)

Through the analysis of the spatial distribution
characteristics of the stations, the borrow-return flow
relationship between the stations in the system is determined,
which provides the data basis for clustering the dispatching
areas.

B. Specific realization
Figure 3 presents the iterative procedure of the partitioning

method which organically combines three factors (location,
self-fluidity and bike usage demand) of the stations.Stations
within the same circle represent a cluster. The algorithm
repeats the following three steps in each iteration: Geo-
clustering, Strong Association Rule generation and constraint
adjustment.

Figure 3. Partitioning method procedure

 Location clustering. According to the geographic
location of each station, it is clustered into

1
1,11 }{ k

kkCK by K-medoids method, this is the first
time that location clustering is performed on all
stations in the shared system”.

 Strong Association Rule Set generation. check-in/
check-out between each station is calculated by the
statistics of historical bike usage records, and the
strong association rule set 2

1,2 }{ k
kkC is screened by

Aprior algorithm [12,13]. In this paper, we select 7:00-
9:00 in the early peak period and 17:00-19:00 in the
late peak period as the basis for screening strong
association rule sets. In the process of preliminary
classification of shared bicycle stations by association
rules, the minimum support threshold minupS is very
important, which determines the quality of clustering in
the next step. If the value is too small, the correlation
between the stations in the set is very weak, it will
bring great errors to the later clustering to divide the

dispatching area. If the value is too large, some stations
with correlation may be screened out. When the next
clustering division is carried out, most stations with
less correlation will be introduced, which will also lead
to larger errors in the result of division. Since there is
no general method to determine the minimum support
threshold, which is usually set artificially according to
specific conditions, this paper considers that in a bike
sharing system, the minimum support threshold should
be determined according to various factors, and the
expression is as follows.

*
**
*

min
bnt
pNSup (2)

A frequent itemset [14] is formed by selecting the
records whose correlation coefficients are greater than
those of the bike usage records. The relevant stations
are put into the same set by using association rule
algorithm. The stations in the set are the result of the
users' free choice of the place to rent or return the bike
when they travel. The principle of dividing the
dispatching area is to excavate the travel rules of the
users and balance the task of dispatching the vehicles.
To improve scheduling efficiency, the correlation set
meets the precondition of adjusting clustering in the
next step.

 Constraint adjustment. The cluster 2
1,2 }{ k

kkC obtained

in step 2 and cluster 1
1,1 }{ k

kkC obtained in step 1 are
calculated as follows.

12
1,11,2 }{}{ k

kk
k
kk CC (3)

where
21
1,21,1 }{,}{ k

kk
k
kk CC .If the result calculated

by (3) is 1
1,1 }{ k

kki CC , it is the result of optimization,

On the contrary, is in iC is calculated in 1
1,1 }{ k

kkC and
2
1,2 }{ k

kkC as follows.

k
i is dsC 1 (t).min)t((4)

where the)t(SC value at 1
1,1 }{ k

kkC is the smallest,

then is is classified as 1
1,1 }{ k

kkC , and vice versa.

Until all the collection in the 1k clusters: 2
1,2 }{ k

kkC

are processed.

C. Algorithm Complexity Analysis
Time complexity [15,16]. The time complexity of our

proposed method is mainly composed of k-medoids clustering
and searching for the minimum total demand. In k-medoids
algorithm, each point needs to be enumerated and the sum of its
distances to all other points is obtained, so the complexity
is)(2nO . In addition,the time complexity of seeking the

762

minimum total demand is)(2nO .To sum up, the time
complexity of the whole algorithm is)(22 nnO ,i.e.)2(2nO .

Spatial complexity[17]. The main memory overhead of the
algorithm is the calculation of the cluster center and the total
demand. The memory overhead can be effectively reduced by
calculating the distance of a single data object at a time and the
local demand in the morning and evening peak periods,which
results in a spatial complexity of)(nO , so the spatial
complexity of the whole algorithm is)(nO .

Figure 4. An Algorithm of Partition Method

IV. EXPERIMENTS

In this section, we use our proposed method to construct a
model for partitioning the scheduling area, and test our method
on two data sets (station data and bike data [18]).

A. Data Collection
This paper uses two data sets, one is historical bike usage

data set, the other is station data set. These data sets record data
from April 1 to September 30, 2014. Through the statistical
collation of the data set, the station information and the
historical bike records are unified into bicycle data set, a total
of 473,620 records were recorded. The detailed description
below can be obtained in Table II.

TABLE II. DETAILS OF THE NEW YORK DATA COLLECTION IN 2014

Bike Data
#Stations 344
#Bikes 6800
#Records 5,359,995

B. Baseline & Metric
The method in our work to divide traffic dispatching areas

is denoted as Partition Method （ PM ） by combining K-
medoids clustering, association rules and total demand.In order
to confirm the effectiveness of our algorithm, we carried out
experiments to compare our method with the following
baselines:

Bipartite Station Clustering(BSC)[19]. This method
grouped individual stations into clusters according to their
geographical locations and transition patterns. Finally, the
whole traffic is divided into 23 groups.

Adaptive Capacity Constrained K-centers Clustering
(CCKC)[20]. This method considers the distance between
stations and the location of outliers, grouping outliers with
other outliers, and setting up delivery personnel in outliers.

Metric. The metric we adopt to measure results are Sum Of
The Squared Errors (SSE).

2

1

k

i Cp
i

i

mpSSE (5)

Where p is the sample point in iC and im is the center
of iC .

C. Experimental result
Station-level partition method. Intuitively, the larger the

number of clusters, the lower the prediction accuracy. When
there is only one cluster, its usage demand is the whole traffic
flow, which can be predicted accurately; when there are
clusters, it means that each station forms a cluster, and the
outflow/ inflow of the cluster fluctuates greatly, even if it can
be predicted, but it is difficult to predict accurately. However,
on the other hand, the number of clusters should not be too
small, because if the cluster is too large, such as a cluster
containing all stations, redistributing bicycles to the cluster
cannot provide convenience for users. Therefore, we take the
number of outliers as the baseline though many experiments,
and finally the number of clusters is determined to be 23.

Similarly, we use another method to evaluate the
effectiveness of our method.That's the elbow method SSE we
talked about above. When the number of clusters K is less than
the number of real clusters, the aggregation degree of each
cluster will be greatly increased with the increase of K. When
K reaches the real cluster number, the aggregation degree
returns will be rapidly reduced with the increase of k, so the
decrease of SSE will decrease sharply, and then become flat
with the increase of K value. That is to say, the graph of the
relationship between SSE and K is as follows: The shape of an
elbow, and the K value corresponding to this elbow is the real
clustering number of data. Obviously, As can be seen from
Figure 5, when the SSE value is the smallest, the number of
clusters K is still 23. Therefore, the effectiveness of our method
is verified.

Figure 5. Evaluation of our method

Determination of Minimum Threshold. In addition, when
we use Aprior algorithm to further filter the set of strong

763

association rules, the minimum support threshold will be
involved. In the process of borrowing and returning, because
some records of data set are abnormal transaction records
generated by the manual bicycle dispatching operation of the
station, the coefficient of normal bicycle transaction records is
taken as ρ=0.98; when selecting data samples, there are about
6800 bicycles in the bike sharing system, but a considerable
number of bicycles are in the Off-Shelf state during the peak
period, that is to say, they do not participate. With the flow of
shared bicycles, the coefficient ω=0.9 of mobile bicycles on
the rack is taken. when shared bicycles are moving at the
station, according to the results of data analysis, bicycles leased
from one s may be returned to other 3-5 stations besides their
own, so the distribution coefficient of bicycle flow is taken
as =0.25, according to formula (2) ,the minimum support
threshold minSup = 0.1 is obtained. The final result is obtained
through the restraint adjustment of the total regional demand.
(as shown in Figure 6.)

Figure 6. Clustering results

Performance comparison. In order to confirm the
effectiveness of our model, we carried out experiments and
compared our method with two baselines. CCKC (adaptive
constrained central point clustering) and BSC (clustering based
on K-means method according to the transformation
relationship and geographical location between stations). The
effectiveness and efficiency of the proposed PM are shown in
Figure 7. It can be seen that for a given number of vehicles, we
can concentrate on optimizing the stations and effectively find
abnormal stations. With the increase of the number of vehicles
scheduled, the number of outlier stations decreases rapidly. PM
algorithm can help determine the minimum number of vehicles
covering all target stations, or balance operation costs and the
number of outlying stations.

Figure 7. Comparison of clustering efficiency

Clustering Analysis of Shared Bicycle Usage Distribution.
Figure 8 shows the demand of shared bicycle in different time
at station level and class level. It can be concluded that the
trend of shared bicycle demand is more stable after using the
zoning algorithm. This demonstrates the effectiveness of our
proposed partition method, and also provides the possibility for
improving the prediction accuracy of shared bicycle demand in
the traffic field.

Figure 8. Station and cluster distribution

V. CONCLUSIONS
Based on the characteristics of complex relationship, large

scale and large randomness among stations of bike sharing
system, we consider the self-mobility of bikes among stations.
We study urban bike sharing system with three algorithms:
Association rules, K-medoids clustering and total demand
restraint adjustment, and take New York City bike sharing
system as an example to simulate and partition. This method
takes into account the relationship between stations, the
attributes of geographical location and the total demand for
bicycles. Compared with CCKC and BSC methods, it is
concluded that the number of outliers in this method is more
stable and the value of SSE is the smallest. Furthermore, The
area obtained by our algorithm is more stable than that of
single station, which also shows that our method provides a
theoretical basis for improving the accuracy of traffic flow
prediction.

ACKNOWLEDGMENT

This work is supported by Programs of National Natural
Science Foundation of China (No:71461023) .

REFERENCES
[1] Saberi M , Ghamami M , Gu Y , et al. Understanding the impacts of a

public transit disruption on bicycle sharing mobility patterns: A case of
Tube strike in London[J]. Journal of Transport Geography, 2018,
66:154-166.

[2] Li Y , Zheng Y , Zhang H , et al. Traffic prediction in a bike-sharing
system[C]// the 23rd SIGSPATIAL International Conference. ACM,
2015.

[3] Liu J , Sun L , Chen W , et al. Rebalancing Bike Sharing Systems: A
Multi-source Data Smart Optimization[C]// Acm Sigkdd International
Conference on Knowledge Discovery & Data Mining. ACM, 2016.

[4] Yang Z , Hu J , Shu Y , et al. Mobility Modeling and Prediction in Bike-
Sharing Systems[J]. 2016.

[5] Li H , Hong L Y , Mo Y C , et al. Restructuring performance prediction
with a rebalanced and clustered support vector machine[J]. Journal of
Forecasting, 2018(4).

764

[6] J. Liu, Q. Li, M. Qu, W. Chen, J. Yang, X. Hui,H. Zhong, and Y. Fu.
Station site optimization in bike sharing systems. In ICDM 2015. IEEE,
2015.

[7] Holmgren J , Moltubakk G , Jody O’Neill. Regression-based evaluation
of bicycle flow trend estimates[J]. Procedia Computer Science, 2018,
130:518-525.

[8] Dell’Amico, Mauro, Iori M , Novellani S , et al. A destroy and repair
algorithm for the Bike sharing Rebalancing Problem.[J]. Computers &
Operations Research, 2016, 71(C):149-162.

[9] Zhang J , Pan X , Li M , et al. Bicycle-Sharing System Analysis and Trip
Prediction[J]. 2016.

[10] Longbiao Chen, Daqing Zhang, Leye Wang, Dingqi Yang, Xiaojuan
Ma, Shijian Li, Zhaohui Wu, Gang Pan, Thi-Mai-Trang Nguyen, and
Jérémie Jakubowicz.2016. Dynamic cluster-based over-demand
prediction in bike sharing systems.In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing.
ACM, 841–852.

[11] Mike Benchimol, Pascal Benchimol, Benoît Chappert, Arnaud De La
Taille, Fabien Laroche, Frédéric Meunier, and Ludovic Robinet. 2011.
Balancing the stations of a self service “bike hire” system. RAIRO-
Operations Research 45, 1 (2011), 37–61.

[12] Gerardo Berbeglia, Jean-François Cordeau, Irina Gribkovskaia, and
Gilbert Laporte. 2007. Static pickup and delivery problems: A
classification scheme and survey. TOP 15, 1 (2007), 1–31.

[13] Lin L , He Z , Peeta S . Predicting Station-level Hourly Demands in a
Large-scale Bike-sharing Network: A Graph Convolutional Neural
Network Approach[J]. 2017.

[14] Faghih-Imani A , Hampshire R , Marla L , et al. An empirical analysis of
bike sharing usage and rebalancing: Evidence from Barcelona and
Seville[J]. Transportation Research Part A: Policy and Practice, 2017,
97:177-191.

[15] Zhang L , Tang S , Yang Z , et al. Demo: Data Analysis and
Visualization in Bike-Sharing Systems[C]// International Conference on
Mobile Systems. ACM, 2016.

[16] Oliveira G N , Sotomayor J L , Torchelsen R P , et al. Visual Analysis of
Bike-Sharing Systems[J]. Computers & Graphics, 2016, 60:119-129.

[17] Bouveyron C , Côme, Etienne, Jacques J . The discriminative functional
mixture model for a comparative analysis of bike sharing systems[J].
Dissertations & Theses - Gradworks, 2016, 9(4).

[18] http://www.citibikenyc.com/system-data.
[19] Chen T , Lu S . Robust Vehicle Detection and Viewpoint Estimation

with Soft Discriminative Mixture Model[J]. IEEE Transactions on
Circuits and Systems for Video Technology, 2016:1-1.

[20] Li Q L , Chen C , Fan R N , et al. Queueing Analysis of a Large-Scale
Bike Sharing System through Mean-Field Theory[J]. 2016.

[21] Tomaras D , Boutsis I , Kalogeraki V . Lessons Learnt from the analysis
of a bike sharing system[C]// International Conference. 2017.

[22] O'Mahony E , Shmoys D B . Data Analysis and Optimization for
(Citi)Bike Sharing[C]// Twenty-ninth Aaai Conference on Artificial
Intelligence. AAAI Press, 2015.

[23] Liu J , Li Q , Qu M , et al. Station Site Optimization in Bike Sharing
Systems[C]// 2015 IEEE International Conference on Data Mining
(ICDM). IEEE Computer Society, 2015.

[24] Basch C H , Ethan D , Zybert P , et al. Public Bike Sharing in New York
City: Helmet Use Behavior Patterns at 25 Citi Bike™ Stations[J].
Journal of Community Health, 2014, 40(3):530-3.

[25] Chen Q , Sun T . A model for the layout of bike stations in public bike-
sharing systems[J]. Journal of Advanced Transportation, 2015,
49(8):884-900.

[26] Vogel P , Saavedra B A N , Mattfeld D C . A Hybrid Metaheuristic to
Solve the Resource Allocation Problem in Bike Sharing Systems[J].
2014.

[27] Li Z , Zhang J , Gan J , et al. Large-Scale Trip Planning for Bike-
Sharing Systems[C]// 2017 IEEE 14th International Conference on
Mobile Ad Hoc and Sensor Systems (MASS). IEEE Computer Society,
2017.

[28] Bao J , Xu C , Liu P , et al. Exploring Bikesharing Travel Patterns and
Trip Purposes Using Smart Card Data and Online Point of Interests[J].
Networks and Spatial Economics, 2017, 17(4):1231-1253.

[29] Bordagaray M , dell’Olio, Luigi, Fonzone A , et al. Capturing the
conditions that introduce systematic variation in bike-sharing travel
behavior using data mining techniques[J]. Transportation Research Part
C: Emerging Technologies, 2016, 71:231-248.

[30] Chen L , Xiaojuan M A , Nguyen T M , et al. Understanding bike trip
patterns leveraging bike sharing system open data[J]. Frontiers of
Computer Science, 2017, 11(1).

[31] Cagliero L , Cerquitelli T , Chiusano S , et al. Predicting critical
conditions in bicycle sharing systems[J]. Computing, 2017, 99(1):39-57.

[32] Zhang J , Yu P S . Trip Route Planning for Bicycle-Sharing
Systems[C]// 2016 IEEE 2nd International Conference on Collaboration
and Internet Computing (CIC). IEEE, 2016.

[33] Faghih-Imani A , Anowar S , Miller E J , et al. Hail a cab or ride a bike?
A travel time comparison of taxi and bicycle-sharing systems in New
York City[J]. Transportation Research Part A Policy and Practice, 2017,
101:11-21.

[34] Zhang J , Pan X , Li M , et al. Bicycle-Sharing System Analysis and Trip
Prediction[J]. 2016.

[35] Benarbia T, Labadi K, Darcherif A M, et al. Real-time inventory control
and rebalancing in bike-sharing systems by using a stochastic Petri net
model[C]// International Conference on Systems & Control. 2018.

765

Anomaly Detection in the Registry of the
Secondary Energy Distribution Network

1st Carlos Fonsêca
Post-Graduation Program in Computer Engineering

University of Pernambuco
Recife, Brazil

ccbf@ecomp.poli.br

2nd Alexandre Maciel
Post-Graduation Program in Computer Engineering

University of Pernambuco
Recife, Brazil

amam@ecomp.poli.br

Abstract—The paper aims to create an intelligent model of
data analysis in the registry of the secondary energy distribution
network. With emphasis on the search for possible inconsistencies
that can be only cadastral or really physical. For this, it uses
some techniques of data mining giving focus for the detection
of anomalies. This study used a private database containing
information about the assets that make up the secondary energy
distribution network, such as: poles, transformers, disconnectors,
among others. The research was developed following all steps pre-
sented in the CRISP-DM methodology. To detect the anomalies,
it was used algorithms Isolation Forest, DBSCAN and BIRCH.
As a result, the three algorithms pointed to a set of specialty
anomalies, validated by a specialist, however, Isolation forest was
more accurate in the inference of the anomalies. From this study,
distribution companies will be able to identify risky or financially
problematic situations in advance.

I. INTRODUCTION

With the great volume of data coming from diverse sources
and produced by different entities (citizens, applications, pub-
lic institutions, among others), an urgent need was generated
to treat this data in an automated way. Through the extraction
of information and production of knowledge, applications can
be created that directly reflect the improvement of services
available to all citizens. In response to these needs, emerged
Data Mining (DM) [1].

Data mining is a technology that has emerged from the
intersection of three areas: statistics, artificial intelligence, and
machine learning. It aims to extract useful knowledge (eg pat-
terns) of complex and vast data. The techniques used for data
mining are from different approaches and their applications
depend on the nature of the data and the scenario of the
problem [2].

There are six categories of widely accepted and imple-
mented data mining techniques: classification, grouping, as-
sociation, regression, summarization, and anomaly detection
[3].

Anomaly detection techniques have been applied success-
fully in critical systems and result in better damage control
and component failure prediction [4].

Therefore, the accomplishment of this work becomes sig-
nificant as it seeks to contribute with studies for the detection

DOI reference number: 10.18293/SEKE2019-058

of anomalies, in addition to studies in the area of data mining
in the energy sector.

II. APPROACHES BASED ON ANOMALIES DETECTION

A. Detection of Anomalies

With the increasing use of advanced database technologies
developed over the last few decades, it is not difficult to
efficiently store huge volumes of data and be able to retrieve
them whenever necessary. While data storage is very valuable
to an organization, most organizations are unable to extract
relevant information in a timely manner for decision making.
This situation has aroused recent interest in research in the
area of data mining [7].

Detecting behavioral deviations in data can solve problems
of identifying frauds, disturbances and irregularities in general.
This works based on the identification of points placed outside
reasonable limits, called anomalies [8].

An anomaly is an observation that presents a great distance
from the others of the series sampled or that is inconsistent.
The existence of anomalies typically implies the interpretation
of the results of the statistical tests applied to the samples [9].

Several applications today require in-depth data analysis
to filter sporadic values and ensure system reliability. Such
techniques are especially useful for fraud detection, where
malicious attempts often differ from most nominal cases
and can therefore be prevented by identifying external data.
These anomalies can be defined as observations that deviate
sufficiently from most observations to consider that they were
generated by a different process [10].

These observations are called anomalies when their number
is significantly smaller than the proportion of nominal cases,
usually less than 5% [10].

Various methods of learning machines are suitable for
anomaly detection. However, supervised algorithms are more
restricted than unsupervised methods because a set of labeled
data needs to be provided. This requirement is particularly
expensive when labeling must be performed by humans.
Dealing with a fairly unbalanced class distribution, which is
inherent in anomaly detection, can also affect the efficiency
of supervised algorithms [11].

766

III. METHODOLOGY

One of the most popular methodologies to increase the
success of data mining processes is the CRISP-DM (Cross-
Industry Standard Process for Data Mining) [12]. The method-
ology defines a non-rigid six-phase sequence that allows the
construction and implementation of a mining model to be
used in a real environment, helping business decisions [13].
Therefore, the development of this work will follow the six
phases of CRISP-DM.

A. Business Understanding

Electric power distribution networks are composed of high,
medium and low voltage lines. These are, respectively, the sub-
transmission networks, primary and secondary energy, where
they concentrate different purposes. The secondary network
of distribution, focus of analysis in this work, is that which
supplies the common users and small building facilities, that
is, the great mass of users of the distribution companies [5].

Every year, hundreds of people are hit by direct or indirect
damages from clandestine electricity connections throughout
Brazil. There are records of transformer overload that causes
harm to the community and fires that are traced back to this
type of crime [6].

B. Data Understanding

To obtain the partial results, it was necessary to integrate the
bases provided by the company into a single table, containing
all the information passed for analysis. After the integration,
some necessary techniques were applied for the selection of
the data that will compose the model.

The databases were integrated using one table as reference
for joining the others. The table used as reference for the merge
was the one referring to the poles that make up the secondary
distribution network. At the end of this initial integration a
table with 165 attributes and 2,249,159 records was obtained.
It can be noted that this is a table with large horizontal
dimension and possibly reducible. Some analyzes were carried
out in order to obtain a possible reduction of dimensionality.

C. Data Preparation

Initially, a statistical analysis of the attributes was per-
formed, which served to deepen the data. It was possible to
verify the quantity, mean, standard deviation, minimum and
maximum of each quantitative attribute.

An analysis was performed regarding the variance of the
attributes, since attributes with low variance do not influence
significantly in the models of machine learning. Soon after
the first adopted strategy a reduction was achieved for 112
attributes.

Next, an analysis was performed on the correlation of
the variables, where it was possible to observe that only 47
variables had some degree of correlation with some other
one in question. Among the variables with some degree of
correlation, few had a correlation with greater significance.

After the previous step was created a data dictionary that
helped a little more in the understanding of the data. With

the data dictionary, it was made explicit that most attributes
are categorical and discrete quantitative. With a deeper un-
derstanding of the data it was possible to perform a new
dimensionality reduction for 96 attributes.

After consulting with a specialist in the area of electricity,
some more attributes were removed, as it was clear to the
expert that they would not add value to the model. At the end
of this attribute selection step, the database was reduced to 52
attributes.

1) Sub-databases: It was necessary to create sub-databases,
in which they were extracted from data from the main
database, which contained 2,240,756 records and 52 attributes.
The extraction of sub-bases was necessary because some of
the algorithms used were not having good results with the
complete base and also to obtain a better understanding about
the influence of each equipment.

The sub-databases were extracted as follows: base only with
the attributes of the poles, base only with poles that had
some equipment connected to it, base with poles only with
capacitor banks, base with poles only with fuses, base with the
poles with only lightning rods, base with the poles only with
disconnectors, base with the poles only with sectionalizers and
a base with the poles only with transformers.

These sub-databases were important for a better understand-
ing of the influence of each equipment in the general context
of the problem.

D. Modeling

The modeling implementation will be performed using the
Python platform, as it provides a variety of routines for
statistical calculations (linear and nonlinear methods, statistical
tests, grouping, simulations, anomaly detection, etc.) and is
strongly recommended for modeling and analysis statistic.

E. Evaluation

The evaluation was carried out mainly by the specialist
engineer of the electric sector. The three algorithms were
confronted in their results, with the focus of a more robust
validation regarding the performance of each of them.

F. Deployment

An application, for use by electrical industry experts, is still
being developed. Upon completion of the development, the
tool will be thoroughly tested in real production scenarios.

IV. RESULTS AND DISCUSSIONS

A. Isolation Forest

The implementation of Isolation Forest [14] that was used
to obtain the results of this research came from the scikit-learn
library [15]. The library provides the results on a scale between
-1 and 1, with the closest results of -1 being characterized as
possible anomalies. The values of the parameters that were
configured in the execution of the algorithm are: max sample
= auto and contamination = 0,01.

767

Fig. 1. Histogram showing the result of the execution of the Isolation Forest
to the database of poles that have some equipment.

In the graph of Figure 1, the possible anomalous points in
the region between -0.15 and -0.10 can be found. The other
points of the base were condensed to the right of the graph,
indicating that they were points more difficult to isolate and
therefore have a high probability of not being anomalies.

Fig. 2. Histogram showing the result of the execution of the Isolation Forest
to the database of the poles that have capacitor banks.

In Figure 2, it is noted that the points received normality
notes in distinct groups and not in a continuous block. The
points with the highest anomalous characteristics were well
isolated and closer to -0.10 or less.

Fig. 3. Histogram showing the result of the execution of the Isolation Forest
to the database of the poles that have disconnectors.

In Figure 3, two isolated groups located to the left of the
graph are evident. One of the groups of points is a little closer
to the normal characteristics to the right of -0.10. The most
extreme group and also with fewer points is that it appears to
have more anomalous characteristics.

Fig. 4. Histogram showing the result of the execution of the Isolation Forest
to the database of the poles that have sectionalizers.

In Figure 4, you may see a small group of possible anoma-
lous points located to the left of the graph. The rest of the
data were grouped in points closer to normal.

Fig. 5. Histogram showing the result of the execution of the Isolation Forest
to the database of poles that have transformers.

768

In Figure 5, can be analyzed a very small group to the
left, far from the rest of the points. This group has a great
possibility of being anomalous points.

With emphasis on the enhancement of Isolation Forest [14]
results, two other algorithms, DBSCAN [16] and BIRCH [17],
were used. The three algorithms used are part of the Scikit-
Learn [15] library. The algorithms DBSCAN [16] and BIRCH
[17], had their results compared to the results of Isolation
Forest [14], in order to provide greater certainty about the
anomalies found.

B. Analysis of Anomalies

With the result of the execution of the Isolation Forest
[14] algorithm, in the sub-databases, being supported by the
specialist engineer and the algorithms DBSCAN [16] and
BIRCH [17], several anomalies.

1) Poles with Capacitor Banks: In this sub-base anomalies
were found by the algorithms and a specific one was validated
by the specialist engineer. The capacitor bank, which the
specialist validated, was the only one in the whole sample
that had a different cell power than the others.

2) Poles with Fuse Keys: In the sub-base in question, an
anomaly was found and validated by the specialist. Anomaly
analysis demonstrated that the pole on which the fuse switch
was located demonstrated a single supported stress within all
samples.

3) Poles with lightning rods: The analysis of the sub-base
of the poles with lightning, presented a single para-ray that
was with the primary tension different from the others.

4) Poles with Disconnectors: Among the poles with dis-
connectors that presented anomalies, the one that stood out
showed the highest rated current among all.

5) Poles with Sectionalisers: All the anomalous poles that
contained sectionalizers presented the same nominal voltage,
being the only one different in this aspect which demonstrated
greater anomalous characteristics.

6) Poles with Transformers: Among the poles of this sub-
base, two main anomalies were found, later validated. The
first is that there are two poles with heights and the same
construction materials, but with different efforts. And the next
anomaly, comes from a single pole with a state different from
the others.

V. CONCLUSION

This article focuses on a major challenge: the detection
of anomalies in the registration of the secondary energy
distribution network. It was concluded that this work was able
to meet the challenge, after the identification of the anomalies
by the algorithms and subsequent results of the dosages by a
specialist engineer in the electrical sector.

The identified anomalies can be complex and difficult
to understand we argue that anomaly detection approaches
should support experts when analyzing anomalies along with
the related alarms. It is shown how much information can
be provided by the proposed rule based anomaly detection
approach.

We assume that it is necessary to identify but also to
understand anomalies to choose appropriate anomaly coun-
termeasures. Future work will concentrate on expanding and
evaluating the proposed approaches root cause analysis capa-
bilities. For this, visualization and management tools will be
created that enable to handle the provided information in an
interactive manner.

VI. ACKNOWLEDGEMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nıvel Superior - Brasil
(CAPES) - Finance Code 001.

We would also like to thank the financial and technological
support of In Forma Software company.

REFERENCES

[1] Goldschmidt, R., Bezerra, E., Passos, E. Data mining: Conceitos,
técnicas, algoritmos, orientações e aplicações. Rio de Janeiro-RJ: El-
sevier, 56-60. (2015)

[2] Kampff, Adriana Justin Cerveira. Mineração de dados educacionais para
geração de alertas em ambientes virtuais de aprendizagem como apoio
à prática docente. (2009).

[3] Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From
data mining to knowledge discovery in databases. AI magazine 17.3
(1996): 37.

[4] Worden, Keith, Graeme Manson, and Nick RJ Fieller. ”Damage de-
tection using outlier analysis.” Journal of Sound and Vibration 229.3
(2000): 647-667.

[5] ABRADEE. A Distribuição de Energia.
http://www.abradee.com.br/setor-de-distribuicao/a-distribuicao-de-
energia. Last accessed 16 Nov 2018

[6] G1. Mais um transformador pega fogo e prejudica lojistas
em Itapetininga. http://g1.globo.com/sao-paulo/itapetininga-
regiao/noticia/2014/02/mais-um-transformador-pega-fogo-e-prejudica-
lojistas-em-itapetininga.html. Last accessed 16 Nov 2018

[7] Lu, Hongjun, Rudy Setiono, and Huan Liu. Neurorule: A connectionist
approach to data mining. arXiv preprint arXiv:1701.01358 (2017).

[8] Oliveira, Cledson D., et al. Detecção de Fraudes, Anomalias e Erros em
Análise de Dados Contábeis: Um Estudo com Base em Outliers. Revista
Eletrônica do Departamento de Ciências Contábeis & Departamento de
Atuária e Métodos Quantitativos (REDECA) 1.1: 102-127.

[9] Barnett, Vic, and Toby Lewis. Outliers in statistical data. Wiley, 1974.
[10] Domingues, Rmi, et al. A comparative evaluation of outlier detection

algorithms: Experiments and analyses. Pattern Recognition 74 (2018):
406-421.

[11] Japkowicz, Nathalie, and Shaju Stephen. The class imbalance problem:
A systematic study. Intelligent data analysis 6.5 (2002): 429-449.

[12] Chapman, Pete, et al. CRISP-DM 1.0 Step-by-step data mining guide.
(2000).

[13] Moro, Sergio, Raul Laureano, and Paulo Cortez. Using data mining for
bank direct marketing: An application of the crisp-dm methodology. Pro-
ceedings of European Simulation and Modelling Conference-ESM’2011.
EUROSIS-ETI, 2011.

[14] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. 2008
Eighth IEEE International Conference on Data Mining. IEEE, 2008.

[15] Pedregosa, Fabian, et al. Scikit-learn: Machine learning in Python.
Journal of machine learning research 12.Oct (2011): 2825-2830.

[16] Ester, Martin, et al. A density-based algorithm for discovering clusters
in large spatial databases with noise. Kdd. Vol. 96. No. 34. 1996.

[17] Zhang, Tian, Raghu Ramakrishnan, and Miron Livny. BIRCH: an
efficient data clustering method for very large databases. ACM Sigmod
Record. Vol. 25. No. 2. ACM, 1996.

769

Analyzing the impact of Technological KM and

Participatory KM in FTA
Diego Cardoso Borda Castro¹, Carlos Eduardo Barbosa¹

,
², Luis Felipe Coimbra Costa¹, Jano Moreira de Souza¹

¹COPPE – Graduate School and Research in Engineering

Universidade Federal do Rio de Janeiro (UFRJ)

Rio de Janeiro, Brazil

{diegocbcastro, eduardo, luisfcosta, jano}@cos.ufrj.br

²CASNAV – Center for Naval Systems Analyses

Brazilian Navy

Rio de Janeiro, Brazil

Abstract — The labor market is becoming increasingly

competitive, with new technologies and products being launched

at all times. Companies that have the privilege of creating the

products at the beginning of innovation can serve more

customers and thus generate more profits. In this search for the

market, companies are increasingly willing to please their

customers, trying to understand what they seek. There are

several concepts, ways, strategies, and technologies that help

companies better understand what people are searching for,

interfering with this market. These strategies include Future-

oriented Technology Analysis (FTA) and others, such as

Knowledge Management (KM), from which we focus on

Technological and Participatory practices. These strategies are

directly related bringing a fundamental advantage to the

company that knows how to use these concepts effectively.

Keywords — Knowledge Management, Participatory

Knowledge Management, Technological Knowledge

Management, Future-oriented Technology Analysis.

I. INTRODUCTION

The last years have shown a growth in new ways of
thinking through information technologies. With this growth,
also increased the competition for the manufacture of products
where companies are seeking to meet more and more the needs
and expectations of their customers, leading to a race for
innovation. All these transformations make companies do not
know where, when and how to innovate to become more
competitive ahead of their competitors.

A company needs to have a competitive intelligence to
become more attractive to its consumers, knowing when to
make deliver the right product at the right time. Therefore,
innovating in management methods and processes is one of the
main challenges of a market with fierce competition, a high
degree of uncertainty and a great deal of information available.

As a possible solution to this problem, the prospection is
introduced to increase the company's competitiveness, seeking
to find new trends so that companies can know where they
should invest. Future studies directly support decision-making
at various levels in the society. The purpose is not to predict the
future, but find desirable futures and ways to achieve them.

Future-oriented Technology Analysis (FTA) is an umbrella
term for a wide range of activities that facilitate decision-
making and coordinated action, especially in the formulation of
science, technology and innovation policies. Understanding the
changes in technologies is only a part of the understanding of
the market; some other aspects can help the companies to gain
their competitiveness. Among them, there are the

Technological Knowledge Management (TKM) that consists of
numerous practices and use of new tools and the Participatory
Knowledge Management (PKM), which involves the sharing
of information through groups of people, social networks, and
institutions. These strategies may be directly related, bringing
advantages to the company that uses them effectively.

II. THEORETICAL FOUNDATION

A. Future-oriented technology analysis (FTA)

Drucker [1] states that it is not important to predict the
future because it considers that it is uncertain and it is not
possible to be sure of what is to happen. In contrast, Schwarz
[2] argues that several managers can already understand the
need to study the future for understanding what is needed.

A company must always be ahead of its competitors in
technological innovations, being aware of the market's
directions and prepared to face or take advantage of new
technologies [3]. To make it happen, the FTA is introduced,
and its importance is undeniable. However, FTA has many
different concepts which are still being studied and deepened.

FTA can be defined as a set of methodologies to support
decisions about emerging technologies, including their
development and future impacts [4]. Therefore, several groups
with different goals use a set of several approaches for the
future that share some assumptions and differ in others. Their
objective is to support decision-makers with analyses and new
ideas to be prepared for the future [5].

B. Technological Knowledge Management (TKM)

Knowledge Management requires technologies to be done
efficiently: they support strategies, processes, and methods that
help to better disseminate and apply information within the
enterprise. Several technologies that can help KM such as the
implementation of intranets, data warehouses, data mining,
decision support tools, video conferencing, groupware,
electronic panels, online databases, expert systems, intelligent
search agents and management of electronic documents.

TKM seeks to understand technological progress and its
impacts, to enable institutions to deal with change and, above
all, to integrate innovation into organizational strategy [6].
Currently, it is considered to have the most significant impact
on the changes that are taking place within companies;
however, although technology is widely recognized as being
essential for competitiveness, technology management has
been one of the most challenging activities among the
attributions to managers [7]. Despite the advantages offered by

DOI reference number: 10.18293/SEKE2019-031

770

technologies, some challenges are faced by companies when
trying to implement them, Betz [7] cites some such as: "the not
invented here syndrome", the physical separation of the
research laboratories of the responsible sector, the use of
inadequate techniques of planning and technological
monitoring, being able to result in a distorted vision about the
future and the late use of new technologies, resulting in the loss
of the market for competitors [7].

C. Participatory Knowledge Management (PKM)

PKM is the KM derived to participatory management,
which is the set of organizational conditions and managerial
behaviors that encourage the participation of all in the
management process. Participatory management empowers the
group members to make organizational decisions [8]. Involving
of everyone means that, in the beginning, no person, at any
hierarchical level, should be excluded from the participatory
process, everyone is aware of the methods and approaches that
are being implemented within the company.

A more knowledge-oriented view can be given by Valtolina
et al. [9], where they define PKM as the use of methods, tools,
and guidelines to mediate cooperation between user groups and
IT professionals. PKM facilitate collaboration between users
who have different types of knowledge, and each user is
responsible for disseminating the information. In general, PKM
can be summarized as the use of a group of people to generate
and use knowledge on different topics.

III. USING TKM, PKM AND FTA IN DECISION-MAKING

A. FTA realation to PKM and TKM

Godet [10] argues that all those who intend to foresee the
future (prophets, oracles, seers, sensitives, clairvoyants, and
others) are impostors because the future does not exist, it is yet
to be created and therefore it is not written anywhere. In fact,
talking about technological prospecting regarding knowledge
can be a bit tricky as the future is uncertain and can change at
any time. So how can there be statements about such? FTA
seeks to assist in decision-making by looking at a history of
events that may have implications for future circumstances.
Logically it is not yet possible to predict the future and to know
for sure what will happen, but it is possible to look at the past
and the present to raise hypotheses and assumptions about
some events of the future.

The junction of the FTA and KM can be seen as
information-based activities, to enable an organization to
anticipate its competitors and anticipate the changes that may
occur, and as a consequence take advantage of that condition to
increase its competitive intelligence [11]. FTA has a long-term
vision and a greater focus on technology, while competitive
intelligence has a short-term view with a broader discussion.

Bell and Olick [12] reformulate the idea of knowledge of
the future by arguing that it is possible to postulate and think to
predict some possibilities. These postulates can be seen as sets
of knowledge that have to do with the consequences of
situations that can evolve into a possible future.

The FTA-KM relationship is relevant since the former tries
to predict future events while the latter focuses on knowledge
management within the company. If the next trends are

incorporated in the KM before they happen, they can be
introduced as soon as possible in the company, bringing a
competitive intelligence that aims at finding the risks and
opportunities in the market early, to generate a competitive
advantage. The combination of these two ideas can be seen in a
very simplified way, as if FTA were to seek new knowledge
and trends that can affect the market, and then enters the part of
the KM that will analyze this information to manage new
expertise within the company, trying to understand, store and
use in the best possible way what was introduced.

As already explained, KM has some ramifications, such as
TKM and PKM, and each of them relates to FTA differently,
each with its particularities. The basis for the intermediation
between the TKM and FTA starts at the information collection
stage, which is then addressed to the treatment of them, and,
finally, the systematization of the information. In other words,
it is the analysis, interpretation, and production of knowledge
so that, in the end, the dissemination of results is done. The
TKM and PKM are interconnected and are two poles of
different concepts of KM, the former more geared towards the
use of technologies and the latter for the active participation of
all in an interactive way.

One of the areas of FTA that can integrate more with TKM
is the technical evaluation, which seeks to predict the
consequences of the introduction of a specific technology in all
the spheres with which it interacts. Looking at technology
management, it aims at understanding the use of tools and their
impacts to enable institutions to cope with change. By reading
the two concepts, it is easy to see that there is a relationship
between the two, where they can help each other. With these
ideas in mind, prospecting can seek new technologies that can
be supported by TKM, where the former finds new concepts
that can be integrated into the organization while the latter tries
to manage these concepts better, trying to find better ways to
apply each one of the ideas more effectively. Overall, the first
aid provided by TKM for knowledge management is the use of
new technologies to facilitate the exchange of information
between users, increasing data speeds, assisting in connecting
people of different groups.

Jaspers et al. [13] state that in the TKM, the stakes are the
ways of dealing with concrete facts, for example, sites,
databases, publications, dissemination procedures, among
others. In this concept, forecasting processes deal with a
considerable mass of information and rely primarily on systems
to obtain more real and comprehensive knowledge. In this part,
new technologies can help in the efficient and faster
dissemination of information that has been constructed through
FTA methods. On the other hand, FTA may be able to find
some relevant information about the use of possible
technologies, which now need to be learned and implemented
within the company.

When speaking in a group of people, the first thing that
comes to mind is the PKM, which has more emphasis on social
practices and interactions between individuals and groups that
create, develop and use knowledge, approaching the idea of the
social learning cycle, taking into account cultural factors,
values, and opinions. PKM includes various means of
exchange and communication, such as a face-to-face meeting.

771

Surveys are increasingly using the dynamics, effects of
simultaneous effort/cooperation of groups and processes of
dialogue to achieve new knowledge [13]. This is one of FTA
main points of connection with PKM, the use, and application
of information that is provided by groups of people to create
new concepts within companies, linking people who are
positioned in different groups.

As is the case in many other KM fields, future-oriented
TKM concepts run the risk of being considered sufficient,
neglecting the social side of PKM. However, a forecast is not
only a process for collecting, analyzing and filtering data, and
it also has a social dimension that is also very important:
society needs to exchange ideas and develop visions for a
collective future [13]. One of the challenges of PKM is how to
efficiently use participants' knowledge and imagination to
search for hypotheses for the future, by continually initiating
and optimizing the interaction of information and people [13].

One of the areas of FTA that best fit with the PKM is the
vision that guides the future by consensus, which uses as a base
the opinions collected through the cognitive and intuitive
process of a group of experts, and the PKM aims at using the
mutual knowledge of a group of people. A link between these
two concepts is easy to see, and the participation of groups can
help create new ideas for the future.

B. Proposed Approach

As it was seen, PKM and TKM are directly related to FTA
and bring several benefits to the company that correctly uses
these techniques, but it is worth remembering that with these
advantages they bring some harm. So, we need to know how to
use them correctly. The main problems encountered were: the
fear of using new technologies, the reluctance on the part of the
professional to share their knowledge and the time of learning,
depending on the technology presented. We seek to solve these
problems creating a new concept junction model (PKM, TKM,
and FTA), improving management agility, decision-making
efficiency and the generation of competitive advantage.

The proposed model is presented in Fig. 1. The starting
point for this methodology will be to look from the past to the
present to develop a future forecast. In this method, two
metrics are used: a projection based on existing data (looking at
the past) and one based on queries and opinions (having
something more focused on people and the present) so that,
thus the future can be predicted. These two methods are being
used to try to reduce the number of predicted errors and have
both advantages and disadvantages. The first is a quantitative
method and requires reliable and standardized historical bases,
while the second is a qualitative method that presents problems
with the limit of knowledge of specialists and interested
people. With the two being used collaboratively, it is hoped
that the problems cited will be minimized.

After the initial presentation of the methodology making
use of FTA, some techniques are necessary for the forecasts to
be made in the best way. Some are presented below.

 Market monitoring: used to predict possible trends,
be it short, medium and long-term;

 Interviews and brainstorming: collecting
participants' opinions;

 Cross-impact analysis: understanding the
relationships of factors and trends found;

 Roadmaps: analysis of the technologies found;

 Creation of scenarios: considerations of plausible
futures.

Fig. 1. Junction model with concepts of FTA, PKM, and TKM.

Five prospecting techniques have been presented, each of
which has advantages and disadvantages. The use of trends
offers predictive substances based on quantifiable parameters
in the short term; however, at the same time, it requires
historical data and thus vulnerable to change; the use of
interviews and brainstorming can bring a large number of
information depending on the way it is performed, yet, it is
limited to the knowledge of the people who participated in the
process; the analysis of cross-impacts is of great importance
when a critical scenario is being developed, since it can
understand the relationships between the information that has
been found, but care must be taken not to obtain a biased and
unreal result; the use of roadmaps seeks to implement and
execute strategic maps in order to align the company's strategy
with its technological capabilities, but care must also be taken
in this part to avoid constructing something that cannot be
accomplished; Finally, the creation of scenarios presents rich
and complex portraits of possible futures, but it may bring
something unattainable. Practitioners must observe which
methodology best fit their context, and it is worth emphasizing
that a combination of techniques is always well-seen, aiming at
reducing the number of future errors. In this phase the first
stage of the process ends, bringing with it the new technologies
that have been recovered through prospecting. With this, many
new and old data will be collected (loose data or random data
without any analysis). After this collection, the data will be
analyzed and thus transformed into information (organized
data), and finally, this information will be converted into
knowledge entering the context of the company.

With the knowledge in hand, steps in the KM. As said
before, it works on the data that the company has, managing
knowledge. In this approach, this management will be divided
into two parts, the control of technological expertise and the
participatory management of experience, each with its
function. The former will try to understand the technical

772

culture that was brought by FTA so that they can be introduced
into the company. At this stage, two problems that have already
been described are added; the fear of using new technologies
and the lengthy learning time depending on the technology
presented. In order to solve these two problems, four different
approaches will be used: the first step will be to make a
conceptualization of the employees, if they seek to understand
the benefits of the technologies will be easier to accept them, as
a consequence, the person will also be more willing to learn to
use it. Patience, therefore, is essential in this first moment, it is
necessary to explain calmly and repeat the information several
times, if necessary. This first point will help the employee to
accept the technology. Then, a series of training is started
which can be done on the person's machine, leaving the user
with the highest possible tranquility. On the other hand, face-
to-face training will also be carried out, where the person can
take his most recurring questions to be clarified with
specialized professionals in the field. In the third stage, the
concept of pair programming will be used with another view,
where some jobs with different levels of difficulty will be
advised to various people who have done the training, always
seeking to leave a more experienced person with a less skilled
one. In the fourth and final phase, it will be suggested that
people who have never performed a particular task can try, to
be able to learn more about the work and, consequently,
decrease the dependency of specialists in a specific area within
the company. This last proposal would help the employees to
create, in turn, a desire to seek new knowledge, because only
then would they be able to deliver the task.

Once the TKM issues have been resolved, PKM is
introduced so that people from many different knowledgeable
areas can share their information in a unified way. The main
idea is everyone would participate equally in this step, being
able to collaborate with what they judge necessary, completely
altering the organizational climate, where all employees would
be like "leaders" having a self-management, stimulating,
guiding and coordinating changes. This model is very flexible
and aims at leveling the group, boosting participation and
dismembering the traditional model. For this model to be
deployed correctly, two points must be aligned within the
company. The first one is the need for communication between
the sectors to make information exchange possible. The second
is that a friendly working environment is necessary, where
everyone can be allowed to speak equally.

In the PKM stage, a new problem is presented, the
reluctance on the part of the professional in sharing their
knowledge. In the search for the solution of this problem, some
ways of exchanging information will be presented. The first is
to create an intranet so that employees can register what they
find relevant. The second is to create a bank of ideas to
encourage employees to adopt a creative attitude. Awards
would be given to the ideas that were judged more pertinent,
promoting a friendly competition among the participants. The
last thought would be the creation of study groups within the
company, where groups with specific themes would be created,
each week a different group would talk about what they have
learned over time, thus spreading the information in another
way. The groups would be formed with a fixed time, so that
people are always participating in different groups at all times,

sharing what they learned. This completes the stages of the
search, analysis, knowledge generation and conceptualization.
Learning in this scheme can be seen as an extension of the idea
of experience, i.e., people will do with everything they have
understood and learned. They know how to use the knowledge
in the right way, identifying what is the best decision to make.

IV. FINAL REMARKS

The market is increasingly competitive with new creations.
For a company to win its market, it must have an advantage
over the others. In this quest for advantages, technological
prospecting methods are being used so that it is possible to
create visions of the future and thereby to know what are the
new preferences and trends of this market. In this search for
new technologies, FTA can benefit from several methods to try
to predict the future, such as the use of road mapping, expert
opinion, trend monitoring, among many others.

Once this new information has been retrieved and stored, it
needs to be handled and managed for better use. At that time
the part of the KM enters, seeking to manage this data the best
way. For this to happen effectively, KM was branched out in
two areas to PKM and TKM, each with its primary focus.

In this work, we presented a brief explanation about the
aspects of FTA, TKM, and PKM, after the necessary reports
have been made, a search on what has already been done to
improve this area was carried out, and finally a new approach
of utilization of these three concepts. As future work we
intended to test it in an organization to confirm its viability.

REFERENCES

[1] P. F. Drucker, The Essential Drucker. HarperCollins, 2001.

[2] J. Oliver Schwarz, “Assessing the future of futures studies in
management,” Futures, vol. 40, no. 3, pp. 237–246, Apr. 2008.

[3] D. Reis and R. Lobo, “Technological forecasting: the methodology used

by a federation of industries in Brazil,” Australian Journal of Basic and
Applied Sciences, vol. 9, no. 20, pp. 503–509, 2015.

[4] A. L. Porter et al., “Technology futures analysis: Toward integration of
the field and new methods,” Technological Forecasting and Social

Change, vol. 71, no. 3, pp. 287–303, Mar. 2004.

[5] C. Cagnin, A. Havas, and O. Saritas, “Future-oriented technology
analysis: Its potential to address disruptive transformations,”

Technological Forecasting and Social Change, vol. 80, no. 3, pp. 379–

385, 2013.
[6] R. SBRAGIA, “Apresentação do XXI Simpósio de Gestão da Inovação

Tecnológica,” São Paulo: USP/FEA, 2000.

[7] F. Betz, “Strategic technology management,” 1993.
[8] A. Bernardes, G. G. Cummings, C. S. Gabriel, Y. D. M. Évora, V. G.

Maziero, and G. Coleman‐Miller, “Implementation of a participatory

management model: analysis from a political perspective,” Journal of
Nursing Management, vol. 23, no. 7, pp. 888–897, 2015.

[9] S. Valtolina, B. R. Barricelli, and Y. Dittrich, “Participatory knowledge-

management design: A semiotic approach,” Journal of Visual Languages
& Computing, vol. 23, no. 2, pp. 103–115, Apr. 2012.

[10] M. Godet, “Caixa de Ferramentas da prospectiva tecnológica,” Centro de

Estudos de Prospectiva e Estratégia–CEPES, Lisboa, 2000.
[11] A. Eerola and I. Miles, “Methods and tools contributing to FTA: A

knowledge-based perspective,” Futures, vol. 43, no. 3, pp. 265–278, Apr.

2011.
[12] W. Bell and J. K. Olick, “An epistemology for the futures field: Problems

and possibilities of prediction,” Futures, vol. 21, no. 2, pp. 115–135, Apr.

1989.
[13] M. Jaspers, H. Banthien, and J. Mayer-Ries, “New forms of knowledge

management in participatory foresight: The case of ‘Futur,’” in Eu-us

seminar: New technology foresight, forecasting & assessment methods
(Seville, 2004.

773

Complex Networks Analysis for Software
Architecture: a Case Study on Hibernate

Daniel Henrique Mourão Falci, Bruno Rafael de Oliveira Rodrigues
Orlando Abreu Gomes and Fernando Silva Parreiras

Laboratory for Advanced Information Systems - LAIS
FUMEC University

Belo Horizonte, Brazil 30130–009
http://www.fumec.br/lais

I. INTRODUCTION

In the Software Engineering field, one has been observing
an unceasing search for quantitative measures capable of
assessing internal software attributes such as maintainabil-
ity, reusability, agility, among others. The argument is that
these characteristics, also known as architecturally significant
requirements (ARS), when combined, determine the product
quality [1], what in turn affects the development costs, partic-
ularly while under the software maintenance cycle.

A natural choice to study the association level among soft-
ware components is through the usage of call graphs, where
vertexes may represent software elements in a system, and
the edges map their calls, giving shape to a complex network
of relationships [2]. Such representation may be dynamic,
indicating that it was captured during system execution, or
static that on the contrary, analyzes the source code structure.
Call graphs have proven its utility in many software devel-
opment activities such as compiler optimization and program
understanding [3].

Considering this scenario, the following research question
emerge: ”Which software attributes may be revealed through
the application of common complex network analysis mea-
sures on call graphs?”. We also intend to analyze the topo-
logical and basal properties of software in network theory
field. In this work, we utilize the Hibernate library, a well-
known Object/Relational Mapping (ORM) framework, widely
employed in Java-based enterprise applications.

The rest of this paper is organized as follows: In section 2
we expose our methods and materials. In section 3 we discuss
our results, and finally, in section 4 we conclude our work.

II. MATERIALS AND METHODS

This paper relied on the static call graph representation
extracted from Hibernate library in its version 5.1.31. All
the undertaken analysis presented here utilized the software
Gephi2 and the complex network analysis package named
NetworkX3, for the Python language. We used the Gephi to

DOI reference number: 10.18293/SEKE2019-035
1http://www.hibernate.org
2https://gephi.org/users/download/
3https://networkx.github.io

create the network’s visual representations and to acquire its
basal properties. Through of NetworkX library was performed
data manipulations and the investigations in this study.

A. Call graph extraction

To extract the static call graph structure from Hibernate,
we developed a tool named Call Graph Extractor (CGE4).
This tool can read the bytecode of Java classes embedded into
JavaArchive files (JAR files) with the goal of extracting the
caller and the callee for all instructions of each class contained
in the referred file. In other words, our software analyzes
internal methods of a class, regardless of their visibility
(public, private, static, and so on), creating a relationship table
in an output file.

B. Graph modeling

In our method, for each extracted call, we create three
vertexes: The caller method, the callee class, and the callee
method. If the caller and callee classes are different, indi-
cating an object transition, we link them with two edges
observing the rule: [(callerMethod, calleeClass), (calleeClass,
calleeMethod)]. If the caller and callee classes are equals,
denoting an internal call, then the rule applied is different:
[(callerMethod, calleeClass), (callerMethod, calleeMethod)].
It is worth noting that our representation cannot be considered
bipartite due to the presence of edges linking same type
vertexes, in our case, methods.

In order to constrain the graph representation to the li-
brary domain, we discarded the calls whose caller or callee
instructions did not belong to the ”org.hibernate” package,
consequently removing any call to the native Java library.
Following these procedures, we obtained a graph comprised
of 27,556 vertexes and 57,919 edges.

III. RESULTS AND DISCUSSION

In this section we present the basal properties of Hibernate
network analyzing its small-world, scale-free and community
properties. Among the values for some of the main complex
network measures are: average shortest path = 19.664; the
average clustering coefficient =0.194; the average shortest path

4https://github.com/dfalci/callgraphextractor

774

= 19.644; average degree = 2.02; network diameter = 62;
modularity = 0.838 and the number of communities = 446.

In order to verify the existence of small world which is
characterized by being a regular networks that can be highly
clustered, like regular lattices, have small characteristic path
lengths, like random graphs [4]. In our Hibernate network
representation, we calculated the link creation probability p
as shown by the equation 1, where l is the number of edges
and n represents the number of vertexes. With the p value,
we proceeded to the generation of a random network based
the Erdős–Rényi model [5]. For the random network, we
registered an average clustering coefficient C = 0 and an
average shortest path d = 3.479. These values were obtained
from the mean of the values obtained by five random networks.
The value of C is derived from the very low value of p,
which may produce random graphs with sparse connectivity,
so sparse that may result in a disconnected graph, as it is
the case. Through the comparison of the values obtained from
Hibernate and random networks, reported in the equation 2.
One may say that the Hibernate network presents small-world
characteristics. Its clustering coefficient is much higher than
the one of the random network, while the average shortest path
in both networks is close, although the average shortest path
obtained for Hibernate network is more than five times greater
than the value achieved by the random network.

p =
2l

n (n− 1)
=

2(57, 919)

27, 556 (27, 555)
= 0.0001525 (1)

CHibernate � CRandom and dHibernate ≈ dRandom

0, 194 � 0 and 19.664 ≈ 3.479
(2)

The Hibernate network degree distribution analysis suggests
that it may be classified as a scale-free network. Scale-free
indicates that the development of large networks is governed
by robust self-organizing phenomena that go beyond the
particulars of the individual systems [6]. It follows a power
law distribution (P (k) ∼ k−α) whose main characteristic is
the existence of a few number of vertexes possessing a large
number of connections while the vast majority of vertexes have
a small number of links. The log-log plot reveal the angular
coefficient α ≈ 2.6. One of the main properties of scale-
free networks is its failure resistance. This definition though,
must not be used in a software context, since a failure on
the smallest software component may compromise the whole
system. This finding is in compliance with previous studies
[7], [8], [9].

The modularity analysis was based on the algorithm de-
scribed by [10], known as Louvain method. The modularity
value (M = 0.838) is close to the maximum possible value (1)
which reveals a high network propensity to form communities.
In fact, 446 communities were detected by this method, which
results in an average value of 61.78 vertexes per class. The ten
biggest classes, though, holds 47.45% of the total number of
vertexes.

Figure 1. Top ranked software components

The Figure 1 shows the top 3 vertexes obtained from
the analysis of the main complex network analysis measures
when applied to Hibernate’s call graph. Due to the lack of
comparison ground for the task of describing the relevance
of such software components, particularly over the Hibernate
source code structure, we limited our analysis to present the
top ranked software elements for each network measure.

IV. CONCLUSION

In this paper, we analyzed the properties of a widely
employed Java-based software through its static call graphs.
We investigated its topology that revealed a small-world and
scale-free network, in compliance with the findings of [7],
[9], [8]. Furthermore, we have identified that the network
exhibits a strong propensity to form communities. Finally, we
highlighted the top 3 software components for some of the
main complex network analysis measures.

The tools developed in this work may benefit research
in this field of study as it provides accessible means to
create static call graphs for Java-based software. In future we
plan to compare the traditional measures applied in software
engineering domain with the ones obtained through the appli-
cation of complex network analysis measures. We also plan
to investigate the application of modularity as way of finding
higher level software components and its respective relevance
within system.

REFERENCES

[1] L. Chen, M. A. Babar, and B. Nuseibeh, “Characterizing architecturally
significant requirements,” IEEE software, vol. 30, no. 2, pp. 38–45, 2013.

[2] M. Pezzè and M. Young, Teste e análise de software: processos,
princı́pios e técnicas. Bookman Editora, 2009.

[3] J. Bohnet and J. Döllner, “Visual exploration of function call graphs
for feature location in complex software systems,” in Proceedings of
the 2006 ACM symposium on Software visualization. ACM, 2006, pp.
95–104.

[4] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[5] P. Erdős and A. Rényi, “On random graphs i,” Publ. Math. Debrecen,
vol. 6, pp. 290–297, 1959.

[6] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[7] S. Valverde and R. V. Solé, “Hierarchical small worlds in software
architecture,” arXiv preprint cond-mat/0307278, 2003.

[8] L. Wang, Z. Wang, C. Yang, L. Zhang, and Q. Ye, “Linux kernels as
complex networks: A novel method to study evolution,” in Software
Maintenance, 2009. ICSM 2009. IEEE International Conference on.
IEEE, 2009, pp. 41–50.

[9] L. Ying and D.-w. Ding, “Topology structure and centrality in a java
source code,” in Granular Computing (GrC), 2012 IEEE International
Conference on. IEEE, 2012, pp. 787–789.

[10] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

775

An Approach for Collecting Real Estate Development News

I. THE APPROACH

Fig. 1. The architecture of the proposed approach

Figure 1 presents the architecture of our approach to
collect, classify and rank real estate development news from
the Web. We highlight that the crawler component of our
approach firstly uses a set of seed URLs to collect real estate
development news, storing them in a business pages corpus,
re-feeding itself from URLs contained in the collected pages.
The crawling flow used by our approach is similar to a
previous work reported in [1].

Second, the filter component extracts textual features, i.e.,
page title, page description, and page text, from the real es-
tate development news corpus. For this, it filters valid pages
by removing pages from invalid URLs, duplicated, empty,
redirected and private pages. Then, it performs stop words
removal, stemming, and removal of punctuation, accents and
special characters in order to increase the quality of the
textual features. Finally, it exploits a real estate development
ontology to extract entities from the textual features.

Third, the ranking component uses supervised algorithms
to learn a ranking model in order to provide an ordered list
with the most relevant business opportunities extracted from
the Web.

II. PRELIMINARY EXPERIMENTS AND RESULTS

To evaluate our approach, we run experiments to answer
the following research questions: i) how effective is our
approach to collect and filter real estate development news?
ii) which textual features provide better filtering perfor-
mance? The evaluation of the entity recognition and ranking
strategies will be carried out in future work.

Particularly, we use a dataset composed of 419 real estate
development news, reported in Table I, previously collected
from the Web and labeled by experts to evaluate two different
algorithms used to generate the filtering models: SVM (Sup-
port Vector Machine) with linear kernel and RF (Random
Forest). Additionally, we use nine configurations for training
and test sets, varying the training and test percentages from
90-10 to 10-90, we performed 5-fold cross-validation [2],

and we report effectiveness in terms of accuracy, i.e., the
percentage of true positives for all positive predictions. More-
over, we evaluate four different sources of textual features
extracted from the business pages: i) Title (TO); ii) Title
(TD) + Description; iii) Title + Full Text (TF); iv) Title +
Description + Full Text (ALL).

TABLE I
NUMBER OF REAL ESTATE DEVELOPMENT NEWS COLLECTED USING

OUR APPROACH.

Processing Steps # Remaining Pages
Crawler 1,493

Duplicate Removal 1,034
Invalid URLs Removal 564

Empty Removal 558
Redirected Removal 466

Private Removal 419

Table II shows the accuracy of each leaning algorithm
used to filter real estate development news with different
features for each training and test configuration schema.
From Table II we observe that the title-only feature is less
effective than the others, since it contains few words that
are related to the business context. Additionally, we observe
that SVM mostly outperforms RF with accuracy from 92% to
100% depending on the number of instances used in training.

TABLE II
FILTERING REAL ESTATE DEVELOPMENT NEWS ACCURACY.

Config. RF SVM
TO TD TF ALL TO TD TF ALL

90/10 0,70 1,00 0,90 0,93 0,80 0,96 0,96 1,00
80/20 0,65 0,96 0,83 0,90 0,73 0,96 0,98 0,98
70/30 0,64 0,90 0,93 0,86 0,71 0,89 0,97 0,92
60/40 0,68 0,81 0,88 0,95 0,73 0,91 0,97 0,91
50/50 0,71 0,86 0,87 0,90 0,75 0,95 0,87 0,93
40/60 0,70 0,82 0,77 0,83 0,73 0,87 0,86 0,92
30/70 0,72 0,72 0,71 0,88 0,71 0,86 0,93 0,91
20/80 0,71 0,52 0,72 0,92 0,72 0,75 0,90 0,90
10/90 0,72 0,71 0,71 0,78 0,73 0,79 0,87 0,92

Recalling our first and second research questions, these
observations attest the effectiveness of our approach to
collect and filter real estate development news. In addition,
we show that our textual features provide impact positively
in the filtering performance.

REFERENCES

[1] F. Hamborg, N. Meuschke, C. Breitinger, and B. Gipp, “news-please:
A generic news crawler and extractor,” in Proceedings of the 15th
International Symposium of Information Science, 2017.

[2] R. Jain, The art of computer systems performance analysis: Tech-
niques for experimental design, measurement, simulation, and model-
ing. Wiley-Interscience, New York, 1991.

776

GraphQL Servers generation from R2RML
mappings with morph-GraphQL (DEMO)
1st Ahmad Alobaid

Department of Artificial Intelligence
Universidad Politétcnica de Madrid

Madrid, Spain
aalobaid@fi.upm.es

2nd Freddy Priyatna
Department of Artificial Intelligence
Universidad Politétcnica de Madrid

Madrid, Spain
fpriyatna@fi.upm.es

3rd David Chaves-Fraga
Department of Artificial Intelligence
Universidad Politétcnica de Madrid

Madrid, Spain
dchaves@fi.upm.es

4th Oscar Corcho
Department of Artificial Intelligence
Universidad Politétcnica de Madrid

Madrid, Spain
ocorcho@fi.upm.es

Abstract—The adoption of GraphQL is on the rise, many
companies and institutes are adopting it due to its ease of
use, ease of maintenance, and hide the complexity from the
user. Such advantages come from using a unified global schema
and mapping it to the underlying data sources. The semantic
web community has already adopted a similar way to map
different data resources (e.g., R2RML). We present a novel way
of generating GraphQL server from R2RML mappings.

Index Terms—GraphQL, R2RML, Wrapper, Adapter

I. INTRODUCTION

Facebook developed GraphQL1 as an alternative to REST
and made it open source to be used by the public in 2015.
A GraphQL server consists of multiple components: schema,
resolvers, and data sources. The GraphQL schema is the
exposed view - an interface that the user (the person who
writes queries) can use to access the underlying data sources.
GraphQL resolvers are written codes (in a programming
language) to link fields in the data sources to the exposed
schema. The data sources are the where the data are stored
and can be retrieved from such as a Relation Database (e.g.,
MySQL).

R2RML [1], published in 2012 by the RDB2RDF W3C
Working Group, is a W3C recommendations for transforming
the content of relational databases into RDF datasets. It allows
the users to specify rules of how this transformation being
done, such as how the URIs be generated, or which columns
to be used in the transformation rules.

II. MORPH-GRAPHQL

In [2] we introduce morph-GraphQL2, that takes as its input
R2RML mappings and generates the corresponding GraphQL
server. GraphQL engine interprets queries written in GraphQL
and use the corresponding resolvers to fetch the data from
the data sources. This workflow is shown in Fig. 1. R2RML

1https://graphql.org/
2https://github.com/oeg-upm/morph-graphql, deployed at http://graphql.

morph.oeg-upm.net

will be the input to morph-GraphQL and it will output the
corresponding GraphQL resolvers and schema. The schema,
resolvers and the data source are the input to the GraphQL
engine.

Fig. 1. Workflow of morph-GraphQL

In this demo we will show how we create R2RML mappings
for the CSV files3 containing Star Wars data that is used as the
example in the reference implementation4. Then we will use
morph-GraphQL to generate GraphQL schema and resolvers
from created mappings. Finally, we will evaluate some queries
corresponding to the Star Wars example.

Acknowledgement: This work is supported by the Spanish
Ministerio de Economı́a, Industria y Competitividad and EU
FEDER funds under the DATOS 4.0: RETOS Y SOLU-
CIONES - UPM Spanish national project (TIN2016-78011-
C4-4-R)

REFERENCES

[1] S. Das, S. Sundara, and R. Cyganiak, “R2RML: RDB to RDF Mapping
Language,” https://www.w3.org/TR/r2rml/, accessed: 2018-12-07.

[2] F. Priyatna, D. Chaves-Fraga, A. Alobaid, and O. Corcho, “morph-
GraphQL: GraphQL resolvers generation from R2RML mappings.” in
SEKE, 2019.

3https://github.com/oeg-upm/morph-graphql/tree/master/examples/starwars
4https://github.com/graphql/graphql-js

777

https://graphql.org/
https://github.com/oeg-upm/morph-graphql
http://graphql.morph.oeg-upm.net
http://graphql.morph.oeg-upm.net
https://www.w3.org/TR/r2rml/
https://github.com/oeg-upm/morph-graphql/tree/master/examples/starwars
https://github.com/graphql/graphql-js

SEKE2019 Author Index

Author Index

Abid, Saad Bin 355
Abreu Gomes, Orlando 774
Acher, Mathieu 541
Acuna, Silvia T. 479
Aguiar, Rui 503
Ait Oubelli, Lynda 748
Ait-Ameur, Yamine 748
Akram, Junaid 349
Alencar, Paulo 20, 415, 489
Alexandre, Tielle 233
Alkharabsheh, Khalid 361
Almeida, Hyggo 26, 82, 165, 171
Alobaid, Ahmad 291, 777
Alvarez Rodŕıguez, Jose Maŕıa 64
Aman Shah, Akber 349
Amraoui, Hend 681
An, Dongdong 153
Anbang, Guo 713
Angele, Kevin 32
Anvik, John 205
Arcangeli, Jean-Paul 473
Ardelean, Alexandru 449
Assunção, Joaquim 513, 729
Aung, Moe Nandi 159
Ayachi Ghannouchi, Sonia 459
Azouzi, Sameh 459

Barbosa, Carlos Eduardo 770
Barbosa, Simone 325
Batista, Marcelo 135
Bedouet, Judicaël 748
Bent,a, Kuderna-Iulian 449
Bertuol, Gelson 661
Beserra, Leandro 215
Biffl, Stefan 693
Bixin, Li 612
Blersch, Martin 32
Blot, Elliott 227
Bordini, Rafael 71
Borges, Olimar 453
Bracco, Luciano 509
Brahmi, Zaki 459
Brito E Abreu, Fernando 199
Brito, Beatriz 579

A-1

SEKE2019 Author Index

Bruegge, Bernd 735
Bruel, Jean-Michel 473
Brunotte, Wasja 94, 245

C, Marimuthu 553
Cai, Xiaoshu 281
Cai, Ziyi 431
Cairo, Aloisio 199
Campos, Ursula 325
Cao, Junming 5, 410
Cao, Kaibo 425
Cao, Kunlin 535
Cardoso Borda Castro, Diego 770
Cardoso Brandão, Wladmir 776
Carneiro, Glauco 199, 497
Casanova Pietroboni, Carlos Antonio 509
Castro, John W. 479
Catania, Samantha 117
Ceretta Nunes, Raul 253
Cesar, Marcos 26
Chang, Haoming 701
Chausserie-Laprée, Benôıt 748
Chaves-Fraga, David 291, 777
Chen, Chunqi 518
Chen, Cong 563
Chen, Dan 634
Chen, Junhua 141
Chen, Wenwang 634
Chen, Wenzhi 404
Chen, Xiang 425
Chen, Xing 367
Chen, Yangyang 563
Chen, Yimei 43
Chen, Yiyan 367
Chen, Yuanyi 634
Chen, Yucheng 535
Chen, Yuting 5, 307, 410, 518
Cheng, Wen 287
Cheng, Yaru 630
Chi, Xiaoxiao 11
Chimalakonda, Sridhar 493
Choma, Joelma 88
Chondamrongkul, Nacha 187
Coelho, Roberta 215
Colomé, Marcelo 253
Conte, Tayana 325
Corcho, Oscar 291, 777
Correia, Filipe Figueiredo 88

A-2

SEKE2019 Author Index

Costa, Alexandre 26, 82
Costa, Luis Felipe Coimbra 770
Cotos, José M. 361
Couto, Julia 39, 71, 453
Cowan, Don 20, 415
Craske, Antoine 687
Crespo, Yania 361
Cuenca, Javier 606
Curry, Edward 606

da Cruz Mello, Otávio 600
da Silva, Lucas Pereira 129
Da Silva, Tiago Silva 88
Daneva, Maya 398
Dantas, Emanuel 82
de Assis, Thiago Botti 55
De Battista, Anabella 509
de Carvalho, Cleuves 221
de Lara, Juan 479
de Lima Silva, Luis Alvaro 253
de Oliveira Rodrigues, Bruno Rafael 583, 774
de Oliveira Salim, Matheus 776
de Souza França, Renata 583
Deng, Fei 15, 102
Devanla, Gurudev 209
Diosan, Laura 547
Do, Canh Minh 107
Dobrean, Dragos 547
Domingues Regateiro, Diogo 503
Dormuth, Jacob 717
Dorneles Soares, Heder 233
Du, Bowen 331
Du, Tianjiao 5

E. M. Almeida, Paulo 640
El-Fallah Seghrouchni, Amal 233
Elloumi, Mourad 681
Endo, André Takeshi 55
Engelmann, Debora 71
Exman, Iaakov 61, 75

Famá, Fernanda 221
Fan, Guisheng 319
Fan, Hongfei 331
Faria, João 646
Fei, Yuan 147, 265
Feng, Shihao 723
Feng, Wenlong 1

A-3

SEKE2019 Author Index

Fernandes, Paulo 513, 729
Fernandes, Sergio 589
Fernandez-Delgado, Manuel 361
Fernández-Izquierdo, Alba 573
Ferreira Salgado, Vińıcius 776
Fonsêca, Carlos 766
Fontoura, Adriano 239
Fontoura, Lisandra 239
Fu, Duankang 307
Fu, Huiyuan 343
Fu, Lirong 404

Gabriel, Vagner 71
Galappaththi, Akalanka 205
Gao, Feng 15, 102
Gao, Jianhua 141
Gao, Min 523
Garćıa-Castro, Raúl 573
Garrido, Filipe 579
Gelman, Ben 717
Giallonardo, Ester 301
Gong, Xufang 469
Gorgonio, Kyller 165
Gorgônio, Kyller 221
Grechanik, Mark 209
Gu, Ming 707
Gu, Qing 425
Gu, Zuxing 707
Guerra, Eduardo 88
Guo, Junxia 43
Guo, Yirou 529

He, Xin 379
Heinz, Marcel 541
Hong, Zhong 563
Hu, Chuangshumin 367
Hu, Haibo 523
Hu, Jun 49
Huang, Mengxing 1
Huang, Qiguo 425
Huang, Zhiming 367
Huang, Zijie 141
Hübner Brondani, Camila 600, 661

Ikramov, Rustam 741
Iqbal, Nayyar 523
Ivanov, Vladimir 741

A-4

SEKE2019 Author Index

Jabeen, Farzana 529
Jabeen, Gul 349
Jain, Shivani 313
Jebali, Adel 113
Jemai, Abderrazak 113
Jiang, Jian-Min 563
Jiang, Siyu 431
Jin, Menglei 624
Jin, Xin 419
Johanssen, Jan Ole 735

K, Chandrasekaran 553
Kabir, Ahmedul 655
Karre, Sai Anirudh 618
Kathrein, Lukas 693
Kleebaum, Anja 735
Klünder, Jil 94
Kortum, Fabian 94
Kou, Huaizhen 11
Koussaifi, Maroun 473

Lai, Chih-Ju 557
Lakkundi, Chaitanya S. 493
Larrinaga, Felix 606
Larzul, Béatrice 748
Le Borgne, Alexandre 465
Li, Bixin 443, 469
Li, Chi 707
Li, Lefeng 760
Li, Menglong 1
Li, Qingshan 287
Li, Tengfei 153
Li, Wei 5
Li, Xiaojie 535, 723
Li, Xin 437
Li, Yinghua 379
Li, Yingling 49
Li, Zengyang 385
Li, Zheng 43
Liang, Peng 398
Lin, Lan 193
Liu, Hanwen 11
Liu, Jing 153
Liu, Peiyu 404
Liu, Qin 331
Liu, Weibin 624, 630
Liu, Xiumin 650
Liu, Zhanghui 367

A-5

SEKE2019 Author Index

Liu, Zheng 650
Llorens, Juan 64
Longo, Douglas Hiura 129
Loparo, Kenneth 281
Lopes, Adriana 325
Lopes, Lucelene 513
Lu, Gang 259, 265
Lu, Jiawei 275
Lu, Lu 431
Lu, Peng 557
Lucas, Edson 489
Lucio, Levi 355
Lulu, Wang 612
Luo, Chao 535
Luo, Yi 331
Lv, Jiancheng 723
Lämmel, Ralf 541
Lüder, Arndt 693

M. Souza, Cinthia 640
Maciel, Alexandre 766
Magalhaes, Ana Patricia 589
Mahajan, Vishal 355
Manzoni Fontoura, Lisandra 600, 661
Mao, Xiaoguang 713
Marczak, Sabrina 453
Marques, Nuno C. 497
Masyagin, Sergey 741
Mathur, Neeraj 618
Matos, Ecivaldo 579
Mei, Shanshan 529
Meixner, Kristof 693
Melo dos Santos, Glaucia 20
Menegassi, André Augusto 55
Meneguzzi, Felipe 39
Meng, Zhangyuan 410
Mhamdi, Faouzi 681
Micallef, Mark 117, 594
Mo, Shaocong 419
Monteiro, Miguel 497
Moore, Jessica 717
Morayo, Adedjouma 391
Moreno, Valent́ın 64

Mortágua Pereira, Óscar 503
Mou, Zeya 701
Mourão Falci, Daniel Henrique 774, 776

Neuhaus, Priscilla 39

A-6

SEKE2019 Author Index

Ni, Chao 425
Ni, Zeyu 410
Niu, Nan 713
Nogueira, Ana Filipa 687
Nunes, João 165
Nunes, Nuno 579

Ogata, Kazuhiro 107, 159, 181
Oliveira, Toacy 20, 415, 489
Ouyang, Liubo 337

Paech, Barbara 735, 754
Palisetti, Sanjana 553
Pan, Haibo 275
Pantoja, Carlos 233
Pedro, Antonio 26
Pedroza, Gabriel 391
Peng, Rong 567
Pereyra Rausch, Fernando 509
Perez, Quentin 465
Perkusich, Angelo 26, 82, 165, 171, 221
Perkusich, Mirko 26, 82, 165, 171
Persch, Henrique 239
Phyo, Yati 159
Ping, Luo 349
Poggi, Francesco 301
Porter, Chris 117, 594
Prikladnicki, Rafael 453
Priyatna, Freddy 291, 777

Qi, Jiyang 385
Qi, Lianyong 11
Qiang, Yin 612
Qiong, Zeng 563
Qiu, Shaojian 431
Qu, Yili 419

R. G. Meireles, Magali 640
Ramos, Felipe 26
Raza, Mushtaq 646
Relvas, Antonio 497
Ren, Ranci 479
Resende, Antonio 199
Ribeiro, José Carlos 687
Rocha, Mauricio 135
Rosa, Jean 579
Rossi, Davide 301
Rottoli, Giovanni Daian 509

A-7

SEKE2019 Author Index

Ruiz, Duncan 39
Ruiz, Duncan D. 453

Sabou, Marta 693
Sadiq, Ali Zafar 655
Saha, Anju 313
Sakib, Kazi 655
Salva, Sébastien 227
Sang, Jun 523
Santos, Danilo 221
Santos, Glaucia 415
Saraiva, Renata 171
Sassi, Salma 113
Schab, Esteban 509
Schneider, Kurt 94, 245
Seiler, Marcus 754
Sergeant, Emilien 687
Shakirov, Ruslan 741
Shen, Beijun 5, 307, 410, 518
Sheng, Feng 259
Shi, Canghong 723
Shu, Hongping 563
Shuai, Jia 419
Silote Neto, Florindo 583
Silva Parreiras, Fernando 583, 774, 776
Silva, Luiz 165
Silva, Thiago 485
Simão, Adenilso 135
Sinderen, Marten 398
Sirazidtinov, Ilyas 741
Slater, David 717
Song, Qi 535
Song, Tianyou 331
Sousa, Thiago 135
Souza, Jano 770
Spanier, Assaf 61
Strüber, Daniel 245
Su, Jianmin 437
Succi, Giancarlo 741
Sun, Dongzhen 265
Sun, Haiying 153
Sun, Jing 187, 297
Sun, Meng 271
Sun, Tao 177
Sun, Weidi 271
Sun, Xin 193
Sun, Yingcheng 281

A-8

SEKE2019 Author Index

Taboada, Jose Angel 361
Takada, Shingo 123
Tang, Haoran 379
Tang, Hui 337
Tang, Xiangru 385
Tao, Linmi 529
Thapaliya, Ananga 741
Tichy, Walter 32
Tormasov, Alexander 741
Trouilhet, Sylvie 473
Trætteberg, Hallvard 485
Tudor, Luke 297

Urtado, Christelle 465

Vale, Anderson 589
Valente, Pedro 579
Vauttier, Sylvain 465
Venigalla, Akhila Sri Manasa 493
Vieira, Renata 71
Viertel, Fabien Patrick 245
Vilain, Patŕıcia 129
Vincent, Jean-Marc 729
Vinicius, Marcus 82
Vital, Rachel 20
Viterbo, Jose 233
Vuong, Thi Anh Tuyet 123

Wallach, Harel 75
Waltersdorfer, Laura 693
Wang, Bangchao 567
Wang, Chong 398
Wang, Dongdong 443
Wang, Dongjing 373
Wang, Hai H. 297
Wang, Junjie 49
Wang, Lu 287
Wang, Qi 177
Wang, Qing 49
Wang, Shangwen 713
Wang, Shanshan 760
Wang, Tao 398
Wang, Tong 443, 469
Wang, Xiao Jie 343
Wang, Zhihao 385
Wang, Zhuo 567
Wang, Zonghui 404
Warren, Ian 187

A-9

SEKE2019 Author Index

Wehrmann, Jonatas 39
Wei, Bingyang 297
Weigelt, Sebastian 32
Wen, Wushao 437
Winckler, Marco 485
Winkler, Dietmar 693
Wu, Jiecheng 707
Wu, Linbo 15
Wu, Qinyue 5
Wu, Ruobiao 147
Wu, Xi 535
Wu, Xianyu 723

Xiang, Chen 667, 675
Xiang, Hong 523
Xiao, Gang 275
Xiao, Guangyi 337
Xiao, Lili 265
Xie, Zefeng 419
Xin, Wang 535
Xing, Weiwei 624, 630
Xiong, Yunxiang 518
Xu, Jun 275
Xu, Kaihui 373
Xu, Qiwen 147

Y, Raghu Reddy 618
Yan, Yunqiang 15, 102
Yang, Cheng-Zen 557
Yang, Guanzhong 701
Yang, Kang 319
Yang, Xiaoxing 437
Yang, Xingguang 319
Yang, Yixiao 667, 675
Yang, Zongyuan 259
Yao, Wenbin 343
Yi, Xin 713
Yin, Jiaqi 147, 259, 265
Yin, Jing 723
Yin, Youbing 535
You, Zhi-Jun 557
Yu, Chang Wu 331
Yu, Dongjin 373
Yu, Huiqun 319

Zaina, Luciana 88
Zeng, Jun 379
Zenha-Rela, Mário 687

A-10

SEKE2019 Author Index

Zhang, He 287
Zhang, Shi 563
Zhang, Shiyu 529
Zhang, Yelian 469
Zhang, Yu 1
Zhao, Ruilian 43
Zhao, Yaxin 567
Zheng, Wenbo 419
Zheng, Zengwei 634
Zhou, Huan 275
Zhou, Jiliu 535
Zhou, Min 707
Zhou, Shufan 307
Zhu, Hongming 331
Zhu, Huibiao 147, 259, 265
Zimeo, Eugenio 301
Ziviani, Fabŕıcio 583
Zufarova, Oydinoy 741

A-11

SEKE2019 Additional Reviewers

Additional Reviewers

Afsharchi, Mohsen
Albuquerque, Danyllo
Allian, Ana Paula
Ayora, Clara

Barat, Souvik
Barletta, Vita Santa
Braga Gomes,

Campos, Eduardo
Cassano, Fabio
Castro, John W.
Chen, Zheyi
Cordeiro, André
Costa, Alexandre
Cézane, Dalton

Deval, Vipin
Dilorenzo, Ednaldo
Dixit, Abhishek
Domingues Regateiro, Diogo
Dray, Gerard
Dwivedi, Vimal
Dósea, Marcos

Fekri, Mohammad Navid
Feng, Yuzhou
Fernandes Gomes Da Silva, Rodrigo
Ferreira, Juan M.
Ferreira, Thiago
Filho, Emanuel

Galappaththi, Akalanka
Gamage, Dimuthu
Garćıa, Ignacio
Georgieva, Petia
Ghosh, Ananda
Ghosh, Aritra
Guy, Ed

Kane, Shridhar
Khan, Mujahid
Khoshgoftaar, Taghi
Kormiltsyn, Aleksandr

A-12

SEKE2019 Additional Reviewers

Lambolais, Thomas
Legretto, Alessandra
Li, Yi
Lichtenthäler, Robin
Lin, Yun
Liu, Ai
Lu, Yuteng

Magues, Daniel

MagÜes, Daniel
Malaviya, Sugandha
Manner, Johannes
Mihret, Zelalem

Moraga, Ma Ángeles
Moreira, José
Morgan, Jameson
Mottu, Jean-Marie

Nebut, Clémentine
Neto, Ademar
Nunes, João

Park, Sumin
Pereira, Luiz
Perez, Quentin
Perkusich, Mirko
Prado Lima, Jackson
Pérez-Castillo, Ricardo

Ramos, Felipe
Rocha, Adriano
Rodŕıguez, Francy
Roychoudhury, Suman
Rybarczyk, Ryan

Sehovac, Ljubisa
Silva, Raissa
Sobreira, Victor
Song, Jiyoung
Sunkle, Sagar

Tchechmedjiev, Andon
Teixeira, Lucas
Theis Geraldi, Ricardo
Tian, Yifang
Tibermacine, Chouki

A-13

SEKE2019 Additional Reviewers

Udokwu, Chibuzor

Vilar, Rodrigo A.

Wen, Junye
Winzinger, Stefan

A-14

Copyright © 2019
Printed by
KSI Research Inc. &
Knowledge Systems Institute
156 Park Square
Pittsburgh, PA 15238 USA
Tel: +1-412-606-5022Tel: +1-412-606-5022
Fax: +1-847-679-3166
Email: seke@ksiresearch.org
Printed in USA, 2019
ISBN 1-891706-48-9 (paper)
ISSN 2325-9000 (print)

SEKE
Proceedings of the 31st
International Conference on
Software Engineering &
Knowledge Engineering

Lisbon, Portugal
July 10 - 12, 2019

	Blank Page
	SEKE2019_Proc2.pdf
	Introduction
	Active Ontologies
	Related Work
	Proprietary Virtual Assistants
	Platforms for Conversational Interfaces
	Natural Language Interfaces to Databases

	Automatic Generation of Active Ontologies
	Taxonomy Extraction from Database Structures
	Leaf Node Generation
	Database Values
	Lexical Databases and Dictionaries
	Utterance Samples

	Limitations

	Evaluation
	Conclusion and Future Work
	Acknowledgement
	References
	Introduction
	Approach
	Locating the changed classes of submitted commits
	Generating the full dependencies of code version
	Searching affected classes and identifying related test classes
	Extending test classes

	Experiment Design and Evaluation Metrics
	Subject projects and data preparation
	Baseline approach
	Evaluation metrics
	Fault detection efficiency
	Cost effectiveness

	Experiment Results and Analysis
	Category Dual_F
	Fault detection efficiency
	Cost effectiveness

	Category FEST_F
	Fault detection efficiency
	Cost effectiveness

	Category Dual_NF
	Category CI_F
	fault detection efficiency
	Cost-effectiveness

	Validity
	Related Work
	Conclusion
	Acknowledgments
	References
	Introduction
	Theoretical Background
	Hospital bed allocation
	Ontology

	Bed Allocation Ontology
	Classes
	Object Properties
	Individuals
	Rules
	First scenario
	Second scenario
	Third scenario
	Fourth scenario

	Related Work
	Conclusions
	References
	Introduction
	Background
	Sequence Diagram
	Model-Driven Transformation
	Extended Finite State Machine
	Model-Based Testing

	Our Approach
	Metamodels
	Transformation Rules
	Test Case Generation

	Example
	Related Works
	Conclusions and Future Work
	References
	Introduction
	Related Work
	The Experimental Design
	Step 1 - Obtain source code
	Step 2 - Get commits and coresponding files
	Step 3 - Search for fixed bugs
	Step 4 - Organize data
	Step 5 - Identify classes affected by code smells
	Step 6 - Evidence of code smells influence on bugs

	The Study Results
	Distribution adherence testing
	Correlation analysis by commit ranges
	Answering the research questions
	Threats to Validity

	Conclusions
	I. introduction
	II. RELATED WORK
	III. SURVEY SETTINGS
	IV. RESULTS
	V. THREATS TO VALIDITY
	VI. CONCLUSIONS AND FUTURE WORK
	References

	introduction
	Highlights
	Machine learning pipeline
	Data Collection
	Data Cleaning
	Feature selection and Labelling
	Model Selection
	Model Deployment

	State of the Art
	Preliminary Results
	Future Directions
	References
	I. Introduction
	II. Releted Work
	III. Hybrid Model Based on Sparse Matrix of User Check-ins
	A. Definations
	B. Model framework
	C. Restricted Boltzmann Machine Based on Sparse Matrix
	D. Non-Negative Matrix Factorization Model Based on Sparse Matrix
	E. Hybrid RBMNMF Model
	1) Input into two stacking RBMs model for sparse data training and filling. Then predict location score matrices and .
	2) Input into a single RBM and predict the location-user correlation score matrix . Then transpose the .
	3) Factorize into two non-negative matrices to obtain another location score matrix for users.
	4) Predict the final recommendation matrix as follows.
	5) Recommend Top-N POIs to users according to .

	IV. Experiments
	A. Datasets
	B. Evaluation Metric
	C. Experimental Result

	V. Conclusion
	Acknowledgment
	References

	Introduction
	related work
	ARCHITECTURE
	Cds-pooling
	Cds-cnn
	Cds-san

	Experiment
	Dataset
	Evaluation Metrics
	Experiment Hyperparameters
	Experimental results
	Result Analysis and Case study

	Discussion And Analysis
	Conclusion And Future Work
	References
	Introduction
	Materials and methods
	Plan Review
	Specify Research Question
	Develop Review Protocol
	Validate Review Protocol

	Conduct Review
	Identify Relevant Research
	Select Primary Studies
	Assess Study Quality
	Extract Required Data
	Synthesize Data

	Document Review
	Write Review Report
	Validate Report

	Results
	What are the most common definitions to the term data lake?
	Which system architectures are reported to be used in data lakes ecosystems?
	Ingestion
	Storage
	Processing
	Presentation
	Security

	Conclusion
	References
	I. Introduction
	II. Preliminaires
	A. Configurable learning process
	B. Cloud computing and e-learning
	C. Multi-tenancy
	D. Resource allocation in cloud-based Business process
	E. Discussion

	III. Multi-tenancy aware configurable learning process as a servie discovery architecture
	References

	Introduction
	Related Work
	Proposed Taxonomy
	Design Methodology
	Development of SOTagger
	Evaluation and Results
	Threats to Validity
	Conclusion and Future Work
	References
	Introduction
	Basic Tools
	Markov Chains
	Diagram Decision-based Dictionary Retriever

	Proposed Method
	Training Task
	Disambiguation using Markov Chains

	Application Example
	Final Considerations
	Introduction
	Related Work
	Code Generation and NL2SQL
	Multitask Learning

	Approach
	A Multitask QA Network
	Encoder
	Decoder

	Experiments
	Setup
	Results for RQ1
	Results for RQ2

	Conclusion
	Acknowledgement
	References
	Introduction
	Apple's MVC
	Analysis
	Complexity
	Issues
	Solutions
	Findings

	Misunderstandings
	Issues
	Solutions
	Findings

	Model
	Issues
	Solutions
	Findings

	View
	Issues
	Solutions
	Findings

	Coordinating Controllers
	Issues
	Solution
	Findings

	View Controllers
	Issues
	Solutions
	Findings

	Conclusions
	References
	I. Introduction
	II. Related Work
	III. Design of Layout Anomaly Detection Mechanisms
	A. Layout Anomalies
	1) Component Missing
	2) Cropped Text
	3) Component Overlap
	4) Component Overflow
	5) Misalignment
	6) Component/Text Scale Maladaptation

	B. LAD Architecture
	1) Script Language
	2) Architecture Design

	IV. Experiments
	A. Experimental Environment
	B. Experimental Results

	V. Conclusion
	Acknowledgement
	References

	Introduction
	Notation and Running example
	System Model
	Scheduling and Isolation control
	Conclusion
	References
	Introduction
	Proposed Model
	Research hypotheses

	Method
	Results
	Descriptive analysis of the sample
	Structural Model
	Analysis of hypothesis
	Discussion

	Threats to validity
	Conclusion
	References
	I. Introduction
	II. Background
	A. Software Product Lines and Model-Driven Development
	B. SIS product family

	III. related works
	IV. DSCHOLAR DSML
	V. Code Generator
	VI. Proposal Evaluation
	VII. conclusions
	references
	Identify MVC architectural pattern based on ontology
	I. Introduction
	II. Background
	A. MVC architectural pattern
	B. Ontology
	1) TBOX
	2) ABOX

	III. Methodology
	A. Ontology of concept layer
	B. Ontology of specific target system
	1) extract information
	2) Building ontology

	C. Inference the MVC architectural pattern

	IV. Expriment and Evaluation
	A. Purpose and metrics
	B. Exprimental setup
	C. Result of Overrall
	D. Result of Part
	E. Analysis and Conclusions
	F. Threats to validity

	V. Conclusion and Future Work
	Acknowledgement
	References

	Introduction
	Grouping Change-sets
	Cosine similarity
	Hash tags
	Our Approach

	Preliminary Evaluation
	Related Work
	Conclusion and Future Work
	References
	I. Introduction
	II. Related Work
	A. Deciding the filling order
	B. Select the best matching patch
	C. Inpaint the unknown area and update the confidence term

	III. Proposed method
	A. Confidence term updating
	B. The new matching method

	IV. Experiment and analysis
	V. Conclusion
	Acknowledgment
	References

	I. INTRODUCTION
	II.RELATED WORK
	III.PROPOSED METHOD
	B. Similarity computation
	C. Map trajectory to larger space
	D. Noise and varying sampling rates

	IV.EXPERIMENTS
	A.Experiment setup
	B.Performance evaluation
	C. Experiment in accuracy
	D. Experiment in efficiency
	E. Time complexity

	Introduction
	Background
	The ProcessPAIR Approach
	Model Definition
	Model Calibration
	Performance Analysis

	Related Work
	Optimal Code Review Rate
	Productivity Measurement

	Proposed Method and Results
	Method
	Results

	Conclusions
	References
	Introduction
	Research Method
	Research Questions
	Interview Study
	Procedure
	Participants

	Results
	Decisions Captured during CSE
	Types of Captured Decisions
	Documentation Locations, Techniques, and Tools
	Linked Artifacts
	Evolution History of Decisions
	Capturing Practices and Frequencies
	Benefits and Exploitation

	Decisions not Captured during CSE
	Types of Decisions not Captured
	Reasons why Decisions are not Captured
	Potential Benefits if Captured

	Sharing of Decision Knowledge during CSE
	Alternative Knowledge Sources
	Avoidance of Knowledge Vaporization

	Managing Changing Decisions during CSE

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	References
	Introduction
	Related work
	Handling model evolution and data migration: our approach
	Formalisation of our approach
	A formal model for checking data model evolution
	Example

	Case Studies
	Conclusion and Future work
	References
	I. INTRODUCTION
	II.DESIGN OVERVIEW
	A.Basic Definitions
	B.Design Methodology

	III.SCHEDULING AREA PARTITION ALGORITHMS
	A.Spatiotemporal Analysis
	B.Specific realization
	C.Algorithm Complexity Analysis

	IV.EXPERIMENTS
	A.Data Collection
	B.Baseline & Metric
	C.Experimental result

	V.CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

	Introduction
	morph-GraphQL
	References

	Blank Page
	Blank Page

